
Package ‘trip’
June 15, 2020

Type Package

Title Tools for the Analysis of Animal Track Data

Version 1.7.1

Depends R (>= 3.3.0)

Imports geodist, maptools, MASS, methods, raster, reproj, sp,
spatstat, glue, viridis, traipse, crsmeta

Suggests adehabitatLT, knitr, dplyr, testthat, covr, rmarkdown,
lubridate, maps, spelling

Description Functions for accessing and manipulating spatial data for animal
tracking, with straightforward coercion from and to other formats. Filter
for speed and create time spent maps from animal track data. There are
coercion methods to convert between 'trip' and 'ltraj' from 'adehabitatLT',
and between 'trip' and 'psp' and 'ppp' from 'spatstat'. Trip objects
can be created from raw or grouped data frames, and from types in the 'sp',
'sf', 'amt', 'trackeR', 'mousetrap', and other packages.

URL https://github.com/Trackage/trip

BugReports https://github.com/Trackage/trip/issues

NeedsCompilation no

ByteCompile yes

License GPL-3

LazyData yes

VignetteBuilder knitr

RoxygenNote 7.1.0

Encoding UTF-8

Language en-US

Author Michael D. Sumner [aut, cre],
Sebastian Luque [ctb],
Anthony Fischbach [ctb],
Tomislav Hengl [ctb]

Maintainer Michael D. Sumner <mdsumner@gmail.com>

1

https://github.com/Trackage/trip
https://github.com/Trackage/trip/issues

2 trip-package

Repository CRAN

Date/Publication 2020-06-15 12:10:06 UTC

R topics documented:

trip-package . 2
adjust.duplicateTimes . 3
argos.sigma . 4
as.Other . 5
as.trip . 6
cut.trip . 7
filter_penSS . 9
forceCompliance . 11
homedist . 12
makeGridTopology . 13
oc.theme . 13
rasterize . 14
readArgos . 15
reproj . 18
sda . 18
sepIdGaps . 19
speedfilter . 20
TimeOrderedRecords . 21
TimeOrderedRecords-class . 22
trackAngle . 22
trackDistance . 23
trip-accessors . 24
trip-class . 25
trip-methods . 26
trip.split.exact . 29
tripGrid . 30
tripGrid.interp . 31
walrus818 . 32
world_north . 32
write_track_kml . 33

Index 35

trip-package trip.

adjust.duplicateTimes 3

Description

Functions for accessing and manipulating spatial data for animal tracking, with straightforward
coercion from and to other formats. Filter for speed and create time spent maps from animal track
data. There are coercion methods to convert between ’trip’ and ’ltraj’ from ’adehabitatLT’, and
between ’trip’ and ’psp’ and ’ppp’ from ’spatstat’. Trip objects can be created from raw or grouped
data frames, and from types in the ’sp’, ’sf’, ’amt’, ’trackeR’, and other packages.

adjust.duplicateTimes Adjust duplicate DateTime values

Description

Duplicated DateTime values within ID are adjusted forward (recursively) by one second until no
duplicates are present. This is considered reasonable way of avoiding the nonsensical problem of
duplicate times.

Usage

adjust.duplicateTimes(time, id)

Arguments

time vector of DateTime values

id vector of ID values, matching DateTimes that are assumed sorted within ID

Details

This function is used to remove duplicate time records in animal track data, rather than removing
the record completely.

Value

The adjusted DateTime vector is returned.

Warning

I have no idea what goes on at CLS when they output data that are either not ordered by time or
have duplicates. If this problem exists in your data it’s probably worth finding out why.

See Also

readArgos

4 argos.sigma

Examples

DateTimes with a duplicate within ID
tms <- Sys.time() + c(1:6, 6, 7:10) *10
id <- rep("a", length(tms))
range(diff(tms))

duplicate record is now moved one second forward
tms.adj <- adjust.duplicateTimes(tms, id)
range(diff(tms.adj))

argos.sigma Assign numeric values for Argos "class"

Description

Assign numeric values for Argos "class" by matching the levels available to given numbers. An
adjustment is made to allow sigma to be specified in kilometres, and the values returned are the
approximate values for longlat degrees. It is assumed that the levels are part of an "ordered" factor
from least precise to most precise.

Usage

argos.sigma(x, sigma = c(100, 80, 50, 20, 10, 4, 2), adjust = 111.12)

Arguments

x factor of Argos location quality "classes"

sigma numeric values (by default in kilometres)

adjust a numeric adjustment to convert from kms to degrees

Details

The available levels in Argos are levels=c("Z","B","A","0","1","2","3").

The actual sigma values given by default are (as far as can be determined) a reasonable stab at what
Argos believes.

Value

Numeric values for given levels.

as.Other 5

Examples

cls <- ordered(sample(c("Z", "B", "A", "0", "1", "2", "3"), 30,
replace=TRUE),

levels=c("Z", "B", "A", "0", "1", "2", "3"))
argos.sigma(cls)

as.Other As ("trip", other-classes)

Description

Coercing trip objects to other classes.

Function to create a SpatialLinesDataFrame from a trip object, resulting in a line segment for each
implicit segment along the tracks. The object stores the start and end times, duration and the ID of
the segment.

Usage

S3 method for class 'trip'
as.ppp(X, ..., fatal)

S3 method for class 'trip'
as.psp(x, ..., from, to)

as.track_xyt.trip(x, ..., from, to)

explode(x, ...)

Arguments

X trip object.

... reserved for future methods

fatal Logical value, see Details of as.ppp

x trip object

from see as.psp for that method.

to See as.psp.

6 as.trip

Value

ppp object

psp object

SpatialLinesDataFrame

SpatialLinesDataFrame object with each individual line segment identified by start/end time and
trip ID

Examples

Not run:
d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))

sp::coordinates(d) <- ~x+y
this avoids complaints later, but these are not real track data (!)
sp::proj4string(d) <- sp::CRS("+proj=laea +ellps=sphere", doCheckCRSArgs = FALSE)
tr <- trip(d, c("tms", "id"))

as(tr, "ppp")

End(Not run)
Not run:
d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))

sp::coordinates(d) <- ~x+y
this avoids complaints later, but these are not real track data (!)
sp::proj4string(d) <- sp::CRS("+proj=laea +ellps=sphere", doCheckCRSArgs = FALSE)
tr <- trip(d, c("tms", "id"))

as.psp.trip(tr)

End(Not run)
d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))

sp::coordinates(d) <- ~x+y
this avoids complaints later, but these are not real track data (!)
sp::proj4string(d) <- sp::CRS("+proj=laea +ellps=sphere", doCheckCRSArgs = FALSE)
tr <- trip(d, c("tms", "id"))

spldf <- explode(tr)
summary(tr)

as.trip Coercion from other classes to trip objects

Description

Coercing objects to trip class

Usage

as.trip(x, ...)

cut.trip 7

Arguments

x, ltr ltraj object
... Arguments passed to other methods. Ignored for ltraj method.

Methods

coerce signature(from="ltraj",to="trip")

as.trip signature(x="ltraj")

Examples

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))
sp::coordinates(d) <- ~x+y
this avoids complaints later, but these are not real track data (!)
sp::proj4string(d) <- sp::CRS("+proj=laea +ellps=sphere", doCheckCRSArgs = FALSE)
tr <- trip(d, c("tms", "id"))

if (require(adehabitatLT)) {
##l <- as.ltraj.trip(tr)
##ltraj2trip(l)
##as.trip(l)

}

cut.trip Split trip events into exact time-based boundaries.

Description

Split trip events within a single object into exact time boundaries, adding interpolated coordinates
as required.

Usage

S3 method for class 'trip'
cut(x, breaks, ...)

Arguments

x A trip object.
breaks A character string such as the breaks argument for cut.POSIXt, or alternatively

a vector of date-time boundaries. (If the latter these must encompass all the time
range of the entire trip object.)

... Unused arguments.

Details

Motion between boundaries is assumed linear and extra coordinates are added at the cut points.

This function was completely rewritten in version 1.1-20.

8 cut.trip

Value

A list of trip objects, named by the time boundary in which they lie.

Author(s)

Michael D. Sumner and Sebastian Luque

See Also

See also tripGrid.

Examples

Not run:
set.seed(66)
d <- data.frame(x=1:100, y=rnorm(100, 1, 10),

tms= as.POSIXct(as.character(Sys.time()), tz = "GMT") + c(seq(10, 1000, length=50),
seq(100, 1500, length=50)), id=gl(2, 50))

sp::coordinates(d) <- ~x+y
tr <- trip(d, c("tms", "id"))

cut(tr, "200 sec")

bound.dates <- seq(min(tr$tms) - 1, max(tr$tms) + 1, length=5)
trip.list <- cut(tr, bound.dates)
bb <- bbox(tr)
cn <- c(20, 8)
g <- sp::GridTopology(bb[, 1], apply(bb, 1, diff) / (cn - 1), cn)

tg <- tripGrid(tr, grid=g)
tg <- sp::as.image.SpatialGridDataFrame(tg)
tg$x <- tg$x - diff(tg$x[1:2]) / 2
tg$y <- tg$y - diff(tg$y[1:2]) / 2

op <- par(mfcol=c(4, 1))
for (i in 1:length(trip.list)) {

plot(sp::coordinates(tr), pch=16, cex=0.7)
title(names(trip.list)[i], cex.main=0.9)
lines(trip.list[[i]])
abline(h=tg$y, v=tg$x, col="grey")
image(tripGrid(trip.list[[i]], grid=g), interpolate=FALSE,
col=c("white", grey(seq(0.2, 0.7, length=256))),add=TRUE)
abline(h=tg$y, v=tg$x, col="grey")
lines(trip.list[[i]])
points(trip.list[[i]], pch=16, cex=0.7)

}

par(op)
print("you may need to resize the window to see the grid data")

cn <- c(200, 80)

filter_penSS 9

g <- sp::GridTopology(bb[, 1], apply(bb, 1, diff) / (cn - 1), cn)

tg <- tripGrid(tr, grid=g)
tg <- sp::as.image.SpatialGridDataFrame(tg)
tg$x <- tg$x - diff(tg$x[1:2]) / 2
tg$y <- tg$y - diff(tg$y[1:2]) / 2

op <- par(mfcol=c(4, 1))
for (i in 1:length(trip.list)) {

plot(sp::coordinates(tr), pch=16, cex=0.7)
title(names(trip.list)[i], cex.main=0.9)
image(tripGrid(trip.list[[i]], grid=g, method="density", sigma=1),

interpolate=FALSE,
col=c("white", grey(seq(0.2, 0.7, length=256))),
add=TRUE)

lines(trip.list[[i]])
points(trip.list[[i]], pch=16, cex=0.7)

}

par(op)
print("you may need to resize the window to see the grid data")

End(Not run)

data("walrus818", package = "trip")
library(lubridate)
walrus_list <- cut(walrus818, seq(floor_date(min(walrus818$DataDT), "month"),
ceiling_date(max(walrus818$DataDT), "month"), by = "1 month"))
g <- rasterize(walrus818) * NA_real_
stk <- raster::stack(lapply(walrus_list, rasterize, grid = g))
st <- raster::aggregate(stk, fact = 4, fun = sum, na.rm = TRUE)
st[!st > 0] <- NA_real_

plot(st, col = oc.colors(52))

filter_penSS Non-destructive smoothing filter

Description

Non-destructive filter for track data using penalty smoothing on velocity.

Usage

filter_penSS(tr, lambda, first = TRUE, last = TRUE, ...)

10 filter_penSS

Arguments

tr A trip object.

lambda Smoothing parameter, see Details.

first Fix the first location and prevent it from being updated by the filter.

last Fix the last location and prevent it from being updated by the filter.

... Arguments passed on to nlm

Details

Destructive filters such as speedfilter can be recast using a penalty smoothing approach in the
style of Green and Silverman (1994).

This filter works by penalizing the fit of the smoothed track to the observed locations by the sum of
squared velocities. That is, we trade off goodness of fit against increasing the total sum of squared
velocities.

When lambda=0 the smoothed track reproduces the raw track exactly. Increasing lambda favours
tracks requiring less extreme velocities, at the expense of reproducing the original locations.

Value

A trip object with updated coordinate values based on the filter - all the data, including original
coordinates which are maintained in the trip data frame.

Author(s)

Simon Wotherspoon and Michael Sumner

References

Green, P. J. and Silverman, B. W. (1994). Nonparametric regression and generalized linear models:
a roughness penalty approach. CRC Press.

See Also

speedfilter

Examples

Not run: ## Example takes a few minutes

Fake some data

Brownian motion tethered at each end
brownian.bridge <- function(n, r) {

x <- cumsum(rnorm(n, 0, 1))
x <- x - (x[1] + seq(0, 1, length=n) * (x[n] - x[1]))
r * x

forceCompliance 11

}

Number of days and number of obs
days <- 50
n <- 200

Make separation between obs gamma distributed
x <- rgamma(n, 3)
x <- cumsum(x)
x <- x/x[n]

Track is lissajous + brownian bridge
b.scale <- 0.6
r.scale <- sample(c(0.1, 2, 10.2), n, replace=TRUE,

prob=c(0.8, 0.18, 0.02))
set.seed(44)

tms <- ISOdate(2001, 1, 1) + trunc(days * 24 * 60 * 60 *x)
lon <- 120 + 20 * sin(2 * pi * x) +

brownian.bridge(n, b.scale) + rnorm(n, 0, r.scale)
lat <- -40 + 10 *(sin(3 * 2 * pi * x) + cos(2 * pi * x) - 1) +

brownian.bridge(n, b.scale) + rnorm(n, 0, r.scale)

tr <- new("trip",
SpatialPointsDataFrame(cbind(lon, lat),

data.frame(gmt=tms, id="lbb")),
TimeOrderedRecords(c("gmt", "id")))

plot(tr)

the filtered version
trf <- filter.penSS(tr, lambda=1, iterlim=400, print.level=1)

lines(trf)

End(Not run)

forceCompliance Function to ensure dates and times are in order with trip ID

Description

A convenience function, that removes duplicate rows, sorts by the date-times within ID, and re-
moves duplicates from a data frame or SpatialPointsDataFrame.

Usage

forceCompliance(x, tor)

12 homedist

Arguments

x data.frame or SpatialPointsDataFrame-class

tor character vector of names of date-times and trip ID columns

Value

data.frame or SpatialPointsDataFrame-class.

Note

It’s really important that data used are of a given quality, but this function makes the most common
trip problems easy to apply.

See Also

trip

homedist Calculate maximum distance from ’home’ for each trip

Description

This function returns a distance from a given ’home’ coordinate for each individual trip. Use the
home argument to provide a single, common 2-element (x,y or lon,lat) coordinate. If home is NULL
(the default), then each individual trip’s first location is used.

Usage

homedist(x, home = NULL)

Arguments

x trip object

home see details

Value

numeric vector of distances in km (for longlat), or in the units of the trip’s projection

See Also

spDistsN1

makeGridTopology 13

makeGridTopology Generate a GridTopology from a Spatial object

Description

Sensible defaults are assumed, to match the extents of data to a manageable grid.

Usage

makeGridTopology(
obj,
cells.dim = c(100, 100),
xlim = NULL,
ylim = NULL,
buffer = 0,
cellsize = NULL,
adjust2longlat = FALSE

)

Arguments

obj any Spatial object, or other object for which bbox will work

cells.dim the number of cells of the grid, x then y

xlim x limits of the grid

ylim y limits of the grid

buffer proportional size of the buffer to add to the grid limits

cellsize pixel cell size

adjust2longlat assume cell size is in kilometres and provide simple adjustment for earth-radius
cells at the north-south centre of the grid

Details

Approximations for kilometres in longlat can be made using cellsize and adjust2longlat.

oc.theme SeaWiFS ocean colour colours

Description

Generate ocean colour colours, using the SeaWiFS scheme

14 rasterize

Usage

oc.theme(x = 50)

oc.colors(n)

Arguments

x Number of colours to generate as part of a theme

n Number of colours to generate

Details

This is a high-contrast palette, log-scaled originally for ocean chlorophyll.

Value

A set of colours or a theme object.

See Also

Similar functions in sp spplot, bpy.colors

Examples

Not run:
oc.colors(10)
library(lattice)
trellis.par.set(oc.theme())
d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))

sp::coordinates(d) <- ~x+y
this avoids complaints later, but these are not real track data (!)
sp::proj4string(d) <- sp::CRS("+proj=laea +ellps=sphere", doCheckCRSArgs = FALSE)
tr <- trip(d, c("tms", "id"))

tg <- tripGrid(tr)
spplot(tg)

End(Not run)

rasterize Rasterize trip objects based on line-segment attributes.

Description

Trip rasterize.

readArgos 15

Arguments

x trip object

y Raster* object

field attribute from which differences will be calculated, defaults to the time-stamp
between trip locations

Value

RasterLayer

Examples

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))
sp::coordinates(d) <- ~x+y
this avoids complaints later, but these are not real track data (!)
sp::proj4string(d) <- sp::CRS("+proj=laea +ellps=sphere", doCheckCRSArgs = FALSE)
tr <- trip(d, c("tms", "id"))

tr$temp <- sort(runif(nrow(tr)))
r <- rasterize(tr)

rasterize(tr, grid = r)
rasterize(tr, r, field = "temp")
Not run:
rasterize(tr, method = "density")
rasterize(tr, method = "density", grid = r)

rasterize(tr, r, field = "tms")
rasterize(tr, r)

library(raster)
r2 <- aggregate(r, fact = 4)
rasterize(tr, grid = r2)
rasterize(tr, method = "density")
rasterize(tr, method = "density", grid = r2)
rasterize(tr, r2, field = "temp")
rasterize(tr, r2, field = "tms")
rasterize(tr, r2)

End(Not run)

readArgos Read Argos "DAT" or "DIAG" files

16 readArgos

Description

Return a (Spatial) data frame of location records from raw Argos files. Multiple files may be read,
and each set of records is appended to the data frame in turn. Basic validation of the data is enforced
by default.

Usage

readArgos(
x,
correct.all = TRUE,
dtFormat = "%Y-%m-%d %H:%M:%S",
tz = "GMT",
duplicateTimes.eps = 0.01,
p4 = "+proj=longlat +ellps=WGS84",
verbose = FALSE,
read_alt = NULL,
...

)

readDiag(x, return_trip = FALSE, read_alt = 1L, ...)

Arguments

x vector of file names of Argos "DAT" or "DIAG" files.

correct.all logical - enforce validity of data as much as possible? (see Details)

dtFormat the DateTime format used by the Argos data "date" and "time" pasted together

tz timezone - GMT/UTC is assumed
duplicateTimes.eps

what is the tolerance for times being duplicate?

p4 PROJ.4 projection string, "+proj=longlat +ellps=WGS84" is assumed

verbose if TRUE, details on date-time adjustment is reported

read_alt is NULL by default, with longitude and latitude read from the PRV message, if
1 or 2 then attempt is made to read the alternative locations (but these are not
always present)

... reserved for future use

return_trip for readDiag() if TRUE will return a trip object, use read_alt to control the
location

Details

readArgos performs basic validation checks for class trip are made, and enforced based on
correct.all:

No duplicate records in the data, these are simply removed. Records are ordered by DateTime
("date", "time", "gmt") within ID ("ptt"). No duplicate DateTime values within ID are allowed: to
enforce this the time values are moved forward by one second - this is done recursively and is not
robust.

readArgos 17

If validation fails the function will return a SpatialPointsDataFrame-class. Files that are not
obviously of the required format are skipped.

Argos location quality data "class" are ordered, assuming that the available levels is levels=c("Z","B","A","0","1","2","3").

A projection string is added to the data, assuming the PROJ.4 longlat - if any longitudes are greater
than 360 the PROJ.4 argument "+over" is added.

readDiag simply builds a data.frame.

With read_alt the default value NULL returns the PRV location as-is. Some files may have a
standardized location, and a dummy. If read_alt is set to 1 or 2 the corresponding "alternative"
location is returned. 1 is a standardized location corresponding to the original PRV message, and 2
is a "dummy" location.

Value

readArgos returns a trip object, if all goes well, or simply a SpatialPointsDataFrame-class.

readDiag returns a data.frame with 8 columns:

• lon1,lat1 first pair of coordinates

• lon1,lat1 second pair of coordinates

• gmt DateTimes as POSIXct

• id Platform Transmitting Terminal (PTT) ID

• lq Argos location quality class

• iq some other thing

Warning

This works on some Argos files I have seen.

References

The Argos data documentation was (ca. 2003) at http://www.argos-system.org/manual. Specific de-
tails on the PRV ("provide data") format were found in Chapter 4_4_8, originally at ’http://www.cls.fr/manuel/html/chap4/chap4_4_8.htm’.

See Also

trip, SpatialPointsDataFrame-class, adjust.duplicateTimes, for manipulating these data,
and argos.sigma for relating a numeric value to Argos quality "classes".

sepIdGaps for splitting the IDs in these data on some minimum gap.

order, duplicated, , ordered for general manipulation of this type.

Examples

argosfile <-
system.file("extdata/argos/98feb.dat", package = "trip", mustWork = TRUE)

argos <- readArgos(argosfile)

18 sda

reproj Reprojection

Description

A reproj method for trip objects.

Usage

S3 method for class 'trip'
reproj(x, target, ..., source = NULL)

Arguments

x trip object

target target projection

... ignored

source projection of source data, usually ignore this for trips

Value

a trip reprojected to ’target’

sda Filter track for speed, distance and angle.

Description

Create a filter index of a track for "bad" points with a combination of speed, distance and angle
tests.

Usage

sda(x, smax, ang = c(15, 25), distlim = c(2.5, 5), pre = NULL)

Arguments

x trip object

smax maximum speed, in km/h

ang minimum turning angle/s in degrees

distlim maximum step lengths in km

pre include this filter in the removal

sepIdGaps 19

Details

This is an independent implementation from that in the package argosfilter by Freitas 2008.

Value

logical vector, with FALSE values where the tests failed

References

Freitas, C., Lydersen, C., Fedak, M. A. and Kovacs, K. M. (2008), A simple new algorithm to filter
marine mammal Argos locations. Marine Mammal Science, 24: 315?V325. doi: 10.1111/j.1748-
7692.2007.00180.x

sepIdGaps Separate a set of IDs based on gaps

Description

A new set of ID levels can be created by separating those given based on a minimum gap in another
set of data. This is useful for separating instruments identified only by their ID into separate events
in time.

Usage

sepIdGaps(id, gapdata, minGap = 3600 * 24 * 7)

Arguments

id existing ID levels

gapdata data matching id with gaps to use as separators

minGap the minimum "gap" to use in gapdata to create a new ID level

Details

The assumption is that a week is a long time for a tag not to record anything.

Value

A new set of ID levels, named following the pattern that "ID" split into 3 would provided "ID",
"ID_2" and "ID_3".

Warning

It is assumed that each vector provides is sorted by gapdata within id. No checking is done, and
so it is suggested that this only be used on ID columns within existing, validated trip objects.

20 speedfilter

See Also

trip

Examples

id <- gl(2, 8)
gd <- Sys.time() + 1:16
gd[c(4:6, 12:16)] <- gd[c(4:6, 12:16)] + 10000
sepIdGaps(id, gd, 1000)

speedfilter Filter track data for speed

Description

Create a filter of a track for "bad" points implying a speed of motion that is unrealistic.

Usage

speedfilter(x, max.speed = NULL, test = FALSE)

Arguments

x trip object

max.speed speed in kilometres (or other unit) per hour, the unit is kilometres if the trip is in
longitude latitude coordinates, or in the unit of the projection projection (usually
metres per hour)

test cut the algorithm short and just return first pass

Details

Using an algorithm (McConnnell et al., 1992), points are tested for speed between previous / next
and 2nd previous / next points. Contiguous sections with an root mean square speed above a given
maximum have their highest rms point removed, then rms is recalculated, until all points are below
the maximum. By default an (internal) root mean square function is used, this can be specified by
the user.

If the coordinates of the trip data are not projected, or NA the distance calculation assumes longlat
and kilometres (great circle). For projected coordinates the speed must match the units of the
coordinate system. (The PROJ.4 argument "units=km" is suggested).

Value

Logical vector matching positions in the coordinate records that pass the filter.

TimeOrderedRecords 21

Warning

This algorithm is destructive, and provides little information about location uncertainty. It is pro-
vided because it’s commonly used and provides an illustrative benchmark for further work.

It is possible for the filter to become stuck in an infinite loop, depending on the function passed to
the filter. Several minutes is probably too long for hundreds of points, test on smaller sections if
unsure.

Note

This algorithm was originally taken from IDL code by David Watts at the Australian Antarctic
Division, and used in various other environments before the development of this version.

Author(s)

David Watts and Michael D. Sumner

References

The algorithm comes from McConnell, B. J. and Chambers, C. and Fedak, M. A. (1992) Foraging
ecology of southern elephant seals in relation to the bathymetry and productivity of the southern
ocean. Antarctic Science 4 393-398

See Also

sda for a fast distance angle filter to combine with speed filtering

TimeOrderedRecords TimeOrderedRecords

Description

Object to identify DateTimes and IDs in a Spatial object.

Usage

TimeOrderedRecords(x)

Arguments

x Character vector of 2 elements specifying the data columns of DateTimes and
IDs

Value

TimeOrderedRecords holds a 2-element character vector, naming the data columns of DateTimes
and IDs.

22 trackAngle

Examples

##' tor <- TimeOrderedRecords(c("datetime", "ID"))

TimeOrderedRecords-class

A class for the identifiers of DateTime and ID records in spatial data.

Description

The main use of this class and creator function is for SpatialPointsDataFrame-classs which are
used with TimeOrderedRecords for the class trip.

Slots

TOR.columns: 2-element vector of class "character"

Note

Future versions may change significantly, this class is very basic and could probably be imple-
mented in a better way. Specifying TOR columns by formula would be a useful addition.

See Also

TimeOrderedRecords, trip for creating trip objects, and trip-class for that class

Examples

showClass("TimeOrderedRecords")
tor <- new("TimeOrderedRecords", TOR.columns=c("datetime", "ID"))

trackAngle Determine internal angles along a track

Description

Calculate the angles between subsequent 2-D coordinates using Great Circle distance (spherical)
methods.

Usage

trackAngle(x)

S3 method for class 'trip'
trackAngle(x)

Default S3 method:
trackAngle(x)

trackDistance 23

Arguments

x trip object, or matrix of 2-columns, with x/y coordinates

Details

If x is a trip object, the return result has an extra element for the start and end point of each individual
trip, with value NA.

This is an optimized hybrid of "raster::bearing" and gzAzimuth.

Value

Vector of angles (degrees) between coordinates.

trackDistance Determine distances along a track

Description

Calculate the distances between subsequent 2-D coordinates using Euclidean or Great Circle dis-
tance (WGS84 ellipsoid) methods.

Usage

trackDistance(x1, y1, x2, y2, longlat = TRUE, prev = FALSE)

Arguments

x1 trip object, matrix of 2-columns, with x/y coordinates OR a vector of x start
coordinates

y1 vector of y start coordinates, if x1 is not a matrix

x2 vector of x end coordinates, if x1 is not a matrix

y2 vector of y end coordinates, if x1 is not a matrix

longlat if FALSE, Euclidean distance, if TRUE Great Circle distance

prev if TRUE and x1 is a trip, the return value has a padded end value (\"prev\"ious),
rather than start (\"next\")

Details

If x1 is a trip object, arguments x2, x3, y2 are ignored and the return result has an extra element for
the start point of each individual trip, with value 0.0.

The prev argument is ignore unless x1 is a trip.

Distance values are in the units of the input coordinate system when longlat is FALSE, and in
kilometres when longlat is TRUE.

This originally used spDistsN1, then implemented the sp gcdist source directly in R, and now
uses geodist.

24 trip-accessors

Value

Vector of distances between coordinates.

References

Original source taken from sp package, but now using Helmert from Karney (2013) see the geodist
package.

Examples

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))
sp::coordinates(d) <- ~x+y
this avoids complaints later, but these are not real track data (!)
sp::proj4string(d) <- sp::CRS("+proj=laea +ellps=sphere", doCheckCRSArgs = FALSE)
tr <- trip(d, c("tms", "id"))

the method knows this is a trip, so there is a distance for every
point, including 0s as the start and at transitions between
individual trips

trackDistance(tr)

the default method does not know about the trips, so this is
##(n-1) distances between all points
trackDistance(coordinates(tr), longlat = FALSE)

we get NA at the start, end and at transitions between trips

Not run:
angles <- trackAngle(walrus818)

End(Not run)

trip-accessors Functions to retrieve DateTime and ID data from within (Spatial) data
frames.

Description

Functions for retrieving the names of the columns used for DateTime and ID, as well as the data.

Usage

getTORnames(obj)

getTimeID(obj)

S3 method for class 'summary.TORdata'
print(x, ...)

trip-class 25

Arguments

obj trip object.

x trip object

... currently ignored

Value

getTORnames retrieves the column names from an object extending the class TimeOrderedRecords,
and getTimeID returns the data as a data frame from an object extending the class TimeOrderedRecords.

See Also

trip-class, for the use of this class with SpatialPointsDataFrame-class.

trip

Examples

tor <- TimeOrderedRecords(c("time", "id"))
getTORnames(tor)

trip-class A class for sets of animal trips (track data).

Description

An extension of SpatialPointsDataFrame-class by including "TimeOrderedRecords". The
records within the data frame are explicitly ordered by DateTime data within IDs.

Objects from the Class

Objects can be created by calls of the form trip(obj="SpatialPointsDataFrame",TORnames="TimeOrderedRecords").
The object contains all the slots present within a SpatialPointsDataFrame-class, particularly
data which contains columns of at least those specified by TOR.columns.

See Also

trip for examples of directly using the class.

trip-accessors describes methods for accessing information on trip objects.

26 trip-methods

Examples

showClass("trip")

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))
sp::coordinates(d) <- ~x+y
this avoids complaints later, but these are not real track data (!)
sp::proj4string(d) <- sp::CRS("+proj=laea +ellps=sphere", doCheckCRSArgs = FALSE)
tr <- trip(d, c("tms", "id"))

summary(tr)
plot(tr)
lines(tr)

dim(tr)
names(tr)
subset(tr, id == "2")
as.data.frame(tr)

tr[1:3,]
tr[, 1]
tr[[1]]

trip-methods Function to handle animal track data, organized as trip objects

Description

Create an object of class trip, extending the basic functionality of SpatialPointsDataFrame-class
by specifying the data columns that define the "TimeOrdered" quality of the records.

Usage

trip(obj, TORnames, correct_all = TRUE)

trip(obj) <- value

S4 method for signature 'trip'
split(x, f, drop = FALSE, ...)

S4 method for signature 'trip,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

trip-methods 27

Arguments

obj A data frame, a grouped data frame or a SpatialPointsDataFrame-class con-
taining at least two columns with the DateTime and ID data as per TORnames.
See Details.

TORnames Either a TimeOrderedRecords object, or a 2-element character vector specify-
ing the DateTime and ID column of obj

correct_all logical value, if TRUE the input data is corrected for common problems

value A 4-element character vector specifying the X, Y, DateTime coordinates and ID
of obj.

x trip object

f grouping vector as per split()

drop unused but necessary for method consistency

i, j, ... indices specifying elements to extract

Details

The original form of trip() required very strict input as a ’SpatialPointsDataFrame’ and specifying
which were the time and ID columns, but the input can be more flexible. If the object is a grouped
data frame (’dplyr-style’) then the (first) grouping is assumed to define individual trips and that
columns 1, 2, 3 are the x-, y-, time-coordinates in that order. It can also be a trip object for
redefining TORnames.

The trip() function can ingest track_xyt, telemetry, SpatialPointsDataFrame, sf, trackeRdata,
grouped_df, data.frame, tbl_df, mousetrap, and in some cases lists of those objects. Please get
in touch if you think something that should work does not.

Track data often contains problems, with missing values in location or time, times out of order or
with duplicated times. The correct_all argument is set to TRUE by default and will report any
inconsistencies. Data really should be checked first rather than relying on this auto-cleanup. The
following problems are common:

• duplicated records (every column with the same value in another row)

• duplicated date-time values

• missing date-time values, or missing x or y coordinates

• records out of order within trip ID

For some data types there’s no formal structure, but a simple convention such as a set of names in
a data frame. For example, the VTrack package has AATAMS1 which may be turned into a trip with
trip(AATAMS1 %>% dplyr::select(longitude, latitude, timestamp, tag.ID, everything()) In time we
can add support for all kinds of variants, detected by the names and contents.

See Chapter 2 of the trip thesis for more details.

Value

A trip object, with the usual slots of a SpatialPointsDataFrame-class and the added TimeOrderedRecords.
For the most part this can be treated as a data.frame with Spatial coordinates.

https://eprints.utas.edu.au/12273/

28 trip-methods

Methods

Most of the methods available are by virtue of the sp package. Some, such as split.data.frame
have been added to SPDF so that trip has the same functionality.

trip signature(obj="SpatialPointsDataFrame",TORnames="ANY")The main construction.

trip signature(obj="SpatialPointsDataFrame",TORnames="TimeOrderedRecords")Object and
TimeOrdered records class

trip signature(obj="ANY",TORnames="TimeOrderedRecords"): create a trip object from a
data frame.

trip signature(obj="trip",TORnames="ANY"): (Re)-create a trip object using a character vec-
tor for TORnames.

trip signature(obj="trip",TORnames="TimeOrderedRecords"): (re)-create a trip object us-
ing a TimeOrderedRecords object.

See Also

speedfilter, and tripGrid for simplistic speed filtering and spatial time spent gridding.

Examples

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))

the simplest way to create a trip is by order of columns

trip(d)

or a grouped data frame can be used, the grouping is used as the trip ID
library(dplyr)
use everything() to keep all other columns
d %>% group_by(id) %>% select(x, y, tms, everything())

sp::coordinates(d) <- ~x+y
this avoids complaints later, but these are not real track data (!)
sp::proj4string(d) <- sp::CRS("+proj=laea +ellps=sphere", doCheckCRSArgs = FALSE)
(tr <- trip(d, c("tms", "id")))

real world data in CSV
mi_dat <- read.csv(system.file("extdata/MI_albatross_sub10.csv", package = "trip"),

stringsAsFactors = FALSE)
installed subset because the data is quite dense
mi_dat <- mi_dat[seq(1, nrow(mi_dat), by = 10),]
mi_dat$gmt <- as.POSIXct(mi_dat$gmt, tz = "UTC")
mi_dat$sp_id <- sprintf("%s%s_%s_%s", mi_dat$species,

substr(mi_dat$breeding_status, 1, 1), mi_dat$band, mi_dat$tag_ID)
sp::coordinates(mi_dat) <- c("lon", "lat")
there are many warnings, but the outcome is fine
(sp_id == 'WAi_14030938_2123' has < 3 locations as does LMi_12143650_14257)
mi_dat <- trip(mi_dat, c("gmt", "sp_id"))

trip.split.exact 29

plot(mi_dat, pch = ".")
#lines(mi_dat) ## ugly

mi_dat_polar <- reproj(mi_dat, "+proj=stere +lat_0=-90 +lon_0=154 +datum=WGS84")
plot(mi_dat_polar, pch = ".")
lines(mi_dat_polar)
Not run:
a simple example with the common fixes required for basic track data

dat <- read.csv("trackfile.csv")
names(dat) ## e.g. [1] "long" "lat" "seal" "date" "local" "lq"
library(sp)
coordinates(dat) <- c("long", "lat")

date/times may be in a particular time zone, please check
dat$gmt <- as.POSIXct(strptime(paste(dat$date, dat$local),

"%d-%b-%y %H:%M:%S"), tz="GMT")

if there are problems in the data, this will error
tr <- trip(dat, c("gmt", "seal"))

the following code tries to fix common problems

remove completely-duplicated rows
dat <- dat[!duplicated(dat),]
order the rows by seal, then by time
dat <- dat[order(dat$seal, dat$gmt),]
fudge duplicated times
dat$gmt <- adjust.duplicateTimes(datgmt, datseal)

finally, convert to Spatial and create trip object
coordinates(dat) <- c("long", "lat")
tr <- trip(dat, c("gmt", "seal"))

End(Not run)

trip.split.exact Deprecated functions in trip

Description

These functions will be declared defunct in a future release.

Usage

as.SpatialLinesDataFrame.trip(from)

trip.split.exact(x, dates)

30 tripGrid

as.ltraj.trip(xy)

as.trip.SpatialLinesDataFrame(from)

Arguments

from trip object

x see cut.trip

dates see cut.trip

xy trip object

See Also

cut.trip, as.Other

tripGrid Generate a grid of time spent by line-to-cell gridding

Description

Create a grid of time spent from an object of class trip by exact cell crossing methods, weighted
by the time between locations for separate trip events.

Usage

tripGrid(x, grid = NULL, method = "pixellate", ...)

Arguments

x object of class trip

grid GridTopology - will be generated automatically if NULL

method pixellate or density

... pass arguments to density.psp if that method is chosen (and temporary mecha-
nism to direct users of legacy methods to tripGrid.interp)

Details

Zero-length lines cannot be summed directly, their time value is summed by assuming the line is
a point. A warning used to be given, but as it achieved nothing but create confusion it has been
removed. The density method returns proportionate values, not summed time durations.

See pixellate.psp and pixellate.ppp for the details on the method used. See density.psp for
method="density".

Trip events are assumed to start and end as per the object passed in. To work with inferred "cutoff"
positions see split.trip.exact.

tripGrid.interp 31

Value

tripGrid returns an object of class SpatialGridDataFrame, with one column "z" containing the
time spent in each cell in seconds.

tripGrid.interp Generate a grid of time spent using approximate methods

Description

Create a grid of time spent from an object of class trip by approximating the time between locations
for separate trip events.

Usage

tripGrid.interp(x, grid = NULL, method = "count", dur = NULL, ...)

kdePoints(x, h = NULL, grid = NULL, resetTime = TRUE, ...)

countPoints(x, dur = 1, grid = NULL)

Arguments

x object of class trip

grid GridTopology - will be generated automatically if NULL

method name of method for quantifying time spent, see Details

dur The \"dur\"ation of time used to interpolate between available locations (see
Details)

... other arguments passed to interpequal or kdePoints

h kernel bandwidth

resetTime rescale result back to the total duration of the input

Details

This set of functions was the the original tripGrid from prior to version 1.1-6. tripGrid should be
used for more exact and fast calculations assuming linear motion between fixes.

The intention is for tripGrid.interp to be used for exploring approximate methods of line-to-cell
gridding.

Trip locations are first interpolated, based on an equal-time spacing between records. These interpo-
lated points are then "binned" to a grid of cells. The time spacing is specified by the dur (duration)
argument to interpequal in seconds (i.e. dur=3600 is used for 1 hour). Shorter time periods will
require longer computation with a closer approximation to the total time spent in the gridded result.

Currently there are methods "count" and "kde" for quantifying time spent, corresponding to the
functions "countPoints" and "kdePoints". "kde" uses kernel density to smooth the locations, "count"
simply counts the points falling in a grid cell.

32 world_north

Value

tripGrid returns an object of class SpatialGridDataFrame, with one column "z" containing the
time spent in each cell in seconds. If kdePoints is used the units are not related to the time values
and must be scaled for further use.

See Also

bandwidth.nrd for the calculation of bandwidth values used internally when not supplied by the
user

walrus818 Walrus tracking data set.

Description

Behavior of Pacific Walruses Tracked from the Alaska Coast of the Chukchi Sea.

Details

Data set is provided as a ’trip’ object. This is the abstract for the work:

"We tracked movements and haulout foraging behavior of walruses instrumented with satellite-
linked data loggers from the Alaskan shores of the Chukchi Sea during the autumn of 2009 (n=13)
and 2010 (n=2)." Jay, C. V. and Fischbach, A.S.

Examples

data(walrus818)
plot(walrus818)
lines(walrus818)

##dontdoanything
library(mapview)
##mapview(as(walrus818, "SpatialLinesDataFrame"), burst = TRUE)

world_north World north polygons

Description

A spatial polygons object with coastlines of the northern hemisphere.

Usage

world_north

write_track_kml 33

Format

An object of class SpatialPolygonsDataFrame with 185 rows and 11 columns.

Details

This data set exists purely to avoid requiring reprojection in the vignette, the data uses the same
projection as walrus818.

write_track_kml Create a time-continuous KML file

Description

Export track data to a KML file, for use in Google Earth the continuous time slider.

Usage

write_track_kml(
id,
lon,
lat,
utc,
z = NULL,
kml_file = tempfile(fileext = ".kmz"),
name = NULL,
altitude_mode = c("absolute", "clampToGround", "clampToSeaFloor", "relativeToGround",

"relativeToSeaFloor")
)

Arguments

id vector of grouping IDs (or a trip object)

lon vector of longitude (ignored if id is a trip)

lat vector of latitude (ignored if id is a trip)

utc vector of POSIXct date-times (ignored if id is a trip)

z vector of elevations, this cannot be set if ’id’ is a trip

kml_file filename for KML (KML or KMZ) (must end in .kml or .kmz)

name internal name of dat (derived from kml_file if not specified)

altitude_mode the altitude mode, ’absolute’, ’clampToGround’, ’clampToSeaFloor’, ’relative-
ToGround’, or ’relativeToSeaFloor’, see Details

34 write_track_kml

Details

To include altitude set every argument explicitly, by input of separate ’id’, ’lon’, ’lat’, ’utc’ and ’z’
arguments. If the first argument ’id’ is a trip object there is no facility to include the ’z’ altitude
values.

If ’z’ is included it is applied as a third coordinate, with ’altitude_mode’ controlling the interpreta-
tion, see https://developers.google.com/kml/documentation/altitudemode. If the ’kml_file’
ends with ".kmz" the file is compressed, otherwise it must end with ".kml" and the compression
archive step is not applied.

Sadly the interactive time slider is only available with the desktop version of Google Earth, the data
loads into the browser version but can’t be interactive.

Value

character vector, file name location of file produced

Author(s)

Original implementation by Tomislav Hengl in the ’plotKML’ package for ’SpatialLinesDataFrame’,
adapted by M. Sumner for use in continuous-time form.

Examples

Not run:
kfile <- write_track_kml(walrus818[seq(1, 1000, by = 5),])
print(kfile)
unlink(kfile)

End(Not run)

https://developers.google.com/kml/documentation/altitudemode

Index

∗Topic IO
readArgos, 15

∗Topic chron
cut.trip, 7

∗Topic classes
trip-class, 25

∗Topic color
oc.theme, 13

∗Topic datasets
world_north, 32

∗Topic manip
argos.sigma, 4
cut.trip, 7
filter_penSS, 9
makeGridTopology, 13
readArgos, 15
sepIdGaps, 19
speedfilter, 20
trip-accessors, 24
tripGrid, 30
tripGrid.interp, 31

∗Topic misc
filter_penSS, 9

[,trip,ANY,ANY,ANY-method
(trip-methods), 26

[,trip-method (trip-methods), 26
[[<-,trip,ANY,missing-method

(trip-methods), 26

adjust.duplicateTimes, 3, 17
argos.sigma, 4, 17
as.ltraj.trip (trip.split.exact), 29
as.Other, 5, 30
as.ppp, 5
as.ppp (as.Other), 5
as.psp, 5
as.psp (as.Other), 5
as.SpatialLinesDataFrame.trip

(trip.split.exact), 29
as.track_xyt.trip (as.Other), 5

as.trip, 6
as.trip,ltraj-method (as.trip), 6
as.trip,track_xyt-method (as.trip), 6
as.trip-methods (as.trip), 6
as.trip.SpatialLinesDataFrame

(trip.split.exact), 29

bandwidth.nrd, 32
bpy.colors, 14

coerce,trip,ltraj-method (as.trip), 6
countPoints (tripGrid.interp), 31
cut.POSIXt, 7
cut.trip, 7, 30

data.frame, 12
duplicated, 17

explode (as.Other), 5

filter.penSS (filter_penSS), 9
filter_penSS, 9
forceCompliance, 11

geodist, 23
getTimeID (trip-accessors), 24
getTORnames (trip-accessors), 24
gzAzimuth, 23

homedist, 12

interpequal (tripGrid.interp), 31

kdePoints (tripGrid.interp), 31

lines,trip-method (trip-class), 25
ltraj2trip (as.trip), 6

makeGridTopology, 13

nlm, 10

35

36 INDEX

oc.colors (oc.theme), 13
oc.theme, 13
order, 17
ordered, 17

plot,trip,missing-method (trip-class),
25

print.summary.TORdata (trip-accessors),
24

rasterize, 14
rasterize,trip,missing-method

(rasterize), 14
rasterize,trip,RasterLayer-method

(rasterize), 14
readArgos, 3, 15
readDiag (readArgos), 15
readDiag(), 16
reproj, 18

sda, 18, 21
sepIdGaps, 17, 19
show,summary.TORdata-method

(trip-class), 25
show,trip-method (trip-class), 25
spDistsN1, 12, 23
speedfilter, 10, 20, 28
split(), 27
split,trip,ANY-method (trip-methods), 26
split,trip-method (trip-methods), 26
spplot, 14
subset,trip-method (trip-class), 25
summary,trip-method (trip-class), 25

TimeOrderedRecords, 21, 22
TimeOrderedRecords-class, 22
trackAngle, 22
trackDistance, 23
trip, 12, 17, 20, 22, 25
trip (trip-methods), 26
trip(), 27
trip,ANY,TimeOrderedRecords-method

(trip-methods), 26
trip,data.frame,ANY-method

(trip-methods), 26
trip,grouped_df,ANY-method

(trip-methods), 26
trip,list,ANY-method (trip-methods), 26
trip,mousetrap,ANY-method

(trip-methods), 26

trip,sf,ANY-method (trip-methods), 26
trip,SpatialPointsDataFrame,ANY-method

(trip-methods), 26
trip,SpatialPointsDataFrame,TimeOrderedRecords-method

(trip-methods), 26
trip,telemetry,ANY-method

(trip-methods), 26
trip,track_xyt,ANY-method

(trip-methods), 26
trip,trackeRdata,ANY-method

(trip-methods), 26
trip,trip,ANY-method (trip-methods), 26
trip,trip,TimeOrderedRecords-method

(trip-methods), 26
trip-accessors, 24
trip-class, 25
trip-deprecated (trip.split.exact), 29
trip-methods, 26
trip-package, 2
trip.split.exact, 29
trip<- (trip-methods), 26
trip<-,data.frame,character-method

(trip-methods), 26
tripGrid, 8, 28, 30
tripGrid.interp, 30, 31
tripTransform (trip.split.exact), 29

walrus818, 32, 33
world_north, 32
write_track_kml, 33

	trip-package
	adjust.duplicateTimes
	argos.sigma
	as.Other
	as.trip
	cut.trip
	filter_penSS
	forceCompliance
	homedist
	makeGridTopology
	oc.theme
	rasterize
	readArgos
	reproj
	sda
	sepIdGaps
	speedfilter
	TimeOrderedRecords
	TimeOrderedRecords-class
	trackAngle
	trackDistance
	trip-accessors
	trip-class
	trip-methods
	trip.split.exact
	tripGrid
	tripGrid.interp
	walrus818
	world_north
	write_track_kml
	Index

