Package ‘trimTrees’

February 20, 2015
Type Package

Title Trimmed opinion pools of trees in a random forest
Version 1.2

Date 2014-08-1

Depends R (>= 2.5.0),stats,randomForest,mlbench

Author Yael Grushka-Cockayne, Victor Richmond R. Jose, Kenneth C. Lichten-
dahl Jr. and Huanghui Zeng, based on the source code from the randomForest pack-
age by Andy Liaw and Matthew Wiener and on the original For-
tran code by Leo Breiman and Adele Cutler.

Maintainer Yael Grushka-Cockayne <grushkay@darden.virginia.edu>

Description Creates point and probability forecasts from the trees in a random forest us-
ing a trimmed opinion pool.

Suggests MASS

License GPL (>=2)
NeedsCompilation yes

Repository CRAN

Date/Publication 2014-08-14 07:11:17

R topics documented:

cinbag . . . . .
hitRate . . . . . . . e
trimTrees . . . . . . . e e e

Index



cinbag

cinbag

Modified Classification and Regression with Random Forest

Description

cinbag implements a modified random forest algorithm (based on the source code from the ran-
domForest package by Andy Liaw and Matthew Wiener and on the original Fortran code by Leo
Breiman and Adele Cutler) to return the number of times a row appears in a tree’s bag. cinbag
returns a randomForest object, e.g., rfobj, with an additional output, a matrix with inbag counts
(rows) for each tree (columns). For instance, rfobj$inbagCount is similar to rfobj$inbag, but
with inbag counts instead of inbag indicators.

Usage

cinbag(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,

Arguments

X

xtest
ytest

ntree
mtry
replace

classwt
cutoff

mtry=if (!is.null(y) && !is.factor(y))

max (floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,

sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
maxnodes = NULL,

importance=FALSE, locallImp=FALSE, nPerm=1,

proximity, oob.prox=proximity,

norm.votes=TRUE, do.trace=FALSE,

keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)

a data frame or a matrix of predictors, or a formula describing the model to be
fitted (for the print method, an randomForest object).

A response vector. If a factor, classification is assumed, otherwise regression is
assumed. If omitted, randomForest will run in unsupervised mode.

a data frame or matrix (like x) containing predictors for the test set.
response for the test set.

Number of trees to grow. This should not be set to too small a number, to ensure
that every input row gets predicted at least a few times.

Number of variables randomly sampled as candidates at each split. Note that
the default values are different for classification (sqrt(p) where p is number of
variables in x) and regression (p/3).

Should sampling of cases be done with or without replacement?
Priors of the classes. Need not add up to one. Ignored for regression.

(Classification only) A vector of length equal to number of classes. The ‘win-
ning’ class for an observation is the one with the maximum ratio of proportion
of votes to cutoff. Default is 1/k where k is the number of classes (i.e., majority
vote wins).



cinbag

strata

sampsize

nodesize

maxnodes

importance

localImp

nPerm

proximity

oob.prox

norm.votes

do.trace

keep.forest

corr.bias

keep.inbag

Value

A (factor) variable that is used for stratified sampling.

Size(s) of sample to draw. For classification, if sampsize is a vector of the length
the number of strata, then sampling is stratified by strata, and the elements of
sampsize indicate the numbers to be drawn from the strata.

Minimum size of terminal nodes. Setting this number larger causes smaller trees
to be grown (and thus take less time). Note that the default values are different
for classification (1) and regression (5).

Maximum number of terminal nodes trees in the forest can have. If not given,
trees are grown to the maximum possible (subject to limits by nodesize). If set
larger than maximum possible, a warning is issued.

Should importance of predictors be assessed?

Should casewise importance measure be computed? (Setting this to TRUE will
override importance.)

Number of times the OOB data are permuted per tree for assessing variable
importance. Number larger than 1 gives slightly more stable estimate, but not
very effective. Currently only implemented for regression.

Should proximity measure among the rows be calculated?
Should proximity be calculated only on “out-of-bag” data?

If TRUE (default), the final result of votes are expressed as fractions. If FALSE,
raw vote counts are returned (useful for combining results from different runs).
Ignored for regression.

If set to TRUE, give a more verbose output as randomForest is run. If set to
some integer, then running output is printed for every do. trace trees.

If set to FALSE, the forest will not be retained in the output object. If xtest is
given, defaults to FALSE.

perform bias correction for regression? Note: Experimental. Use at your own
risk.

Should an n by ntree matrix be returned that keeps track of which samples are
“in-bag” in which trees (but not how many times, if sampling with replacement)

optional parameters to be passed to the low level function cinbag.default.

An object of class randomForest, which is a list with the following components:

call
type
predicted

importance

the original call to randomForest
one of regression, classification, or unsupervised.
the predicted values of the input data based on out-of-bag samples.

a matrix with nclass + 2 (for classification) or two (for regression) columns.
For classification, the first nclass columns are the class-specific measures com-
puted as mean descrease in accuracy. The nclass + 1st column is the mean
descrease in accuracy over all classes. The last column is the mean decrease
in Gini index. For Regression, the first column is the mean decrease in accu-
racy and the second the mean decrease in MSE. If importance=FALSE, the last
measure is still returned as a vector.



importanceSD

localImp

ntree
mtry

forest

err.rate

confusion

votes

oob.times

proximity

mse

rsq
test

inbag

inbagCount

Note

cinbag

The “standard errors” of the permutation-based importance measure. For classi-
fication, a p by nclass + 1 matrix corresponding to the first nclass + 1
columns of the importance matrix. For regression, a length p vector.

a p by n matrix containing the casewise importance measures, the [i,j] ele-
ment of which is the importance of i-th variable on the j-th case. NULL if
localImp=FALSE.

number of trees grown.
number of predictors sampled for spliting at each node.

(a list that contains the entire forest; NULL if randomForest is run in unsuper-
vised mode or if keep.forest=FALSE.

(classification only) vector error rates of the prediction on the input data, the i-th
element being the (OOB) error rate for all trees up to the i-th.

(classification only) the confusion matrix of the prediction (based on OOB data).

(classification only) a matrix with one row for each input data point and one
column for each class, giving the fraction or number of (OOB) ‘votes’ from the
random forest.

number of times cases are ‘out-of-bag’ (and thus used in computing OOB error
estimate)

if proximity=TRUE when randomForest is called, a matrix of proximity mea-
sures among the input (based on the frequency that pairs of data points are in the
same terminal nodes).

(regression only) vector of mean square errors: sum of squared residuals divided
by n.

(regression only) “pseudo R-squared”: 1 - mse / Var(y).

if test set is given (through the xtest or additionally ytest arguments), this
component is a list which contains the corresponding predicted, err.rate,
confusion, votes (for classification) or predicted, mse and rsq (for regres-
sion) for the test set. If proximity=TRUE, there is also a component, proximity,
which contains the proximity among the test set as well as proximity between
test and training data.

An indicator (1 or 0) for each training set row and each tree. The indicator is
1 if the training set row is in the tree’s bag and is O otherwise. Note that this
value is not listed in the original randomForest function’s output, although it is
implemented.

A count for each training set row and each tree. The count is the number of times
the training set row is in the tree’s bag. This output is not available in the original
randomForest package. The purpose of the cinbag function is to augment the
randomForest function so that it returns inbag counts. These counts are neces-
sary for computing and ensembling the trees’ empirical cumulative distribution
functions.

cinbag’s source files call the C functions classRFmod. c and regRFmod. c, which are slightly mod-
ified versions of the randomForest’s source files classRF.c and regRF. c, respectively.



hitRate 5

Author(s)

Yael Grushka-Cockayne, Victor Richmond R. Jose, Kenneth C. Lichtendahl Jr. and Huanghui Zeng,
based on the source code from the randomForest package by Andy Liaw and Matthew Wiener and
on the original Fortran code by Leo Breiman and Adele Cutler.

References

Breiman L (2001). Random forests. Machine Learning 45 5-32.

Breiman L (2002). Manual on setting up, using, and understanding random forests V3.1. http:
//0z.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf.

See Also

trimTrees, hitRate

Examples

# Load the data

set.seed(201) # Can be removed; useful for replication
data <- as.data.frame(mlbench.friedman1(500, sd=1))
summary (data)

# Prepare data for trimming
train <- datal[1:400, ]

test <- data[401:500, ]
xtrain <- train[,-11]
ytrain <- train[,11]

xtest <- test[,-11]

ytest <- test[,11]

# Run cinbag

set.seed(201) # Can be removed; useful for replication

rf <- cinbag(xtrain, ytrain, ntree=500, nodesize=5, mtry=3, keep.inbag=TRUE)
rf$inbag[,1] # First tree's inbag indicators

rf$inbagCount[,1] # First tree's inbag counts

hitRate Empirical Hit Rates for a Crowd of Forecasters

Description

This function calculates the empirical hit rates for a crowd of forecasters over a testing set. The
function takes as its arguments the forecasters’ probability integral transform (PIT) values — one for
each testing set row — and the prediction interval of interest.

Usage

hitRate(matrixPIT, interval = c(0.25, 0.75))


http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf
http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf

6 hitRate

Arguments
matrixPIT A ntest-by-nForecaster matrix of PIT values where ntest is the number of
rows in the testing set and nForecaster is the number of forecasters. Each
column represents a different forecaster’s PITs for the testing set. A PIT value
is the forecaster’s cdf evaluated at the realization of the response in the testing
set.
interval Prediction interval of interest. The default interval=c(0.25, @.75) is the
central 50% prediction interval.
Value
HR An nForecaster vector of empirical hit rates — one for each forecaster. A
forecaster’s empirical hit rate is the percentage of PIT values that fall within
[interval[1],intervall[2]], e.g., [0.25,0.75] according to the default.
Author(s)

Yael Grushka-Cockayne, Victor Richmond R. Jose, Kenneth C. Lichtendahl Jr., and Huanghui
Zeng.

References

Grushka-Cockayne Y, Jose VRR, Lichtendahl KC Jr. (2014). Ensembles of overfit and overconfi-
dent forecasts, working paper.

See Also

trimTrees, cinbag

Examples

# Load the data

set.seed(201) # Can be removed; useful for replication
data <- as.data.frame(mlbench.friedmani(500, sd=1))
summary (data)

# Prepare data for trimming
train <- data[1:400, ]

test <- datal[401:500, ]
xtrain <- train[,-11]
ytrain <- train[,11]

xtest <- test[,-11]

ytest <- test[,11]

# Run trimTrees
set.seed(201) # Can be removed; useful for replication
tt <- trimTrees(xtrain, ytrain, xtest, ytest, trim=0.15)

# Outputs from trimTrees
mean(hitRate(tt$treePITs))



trimTrees

hitRate(tt$trimmedEnsemblePITs)
hitRate(tt$untrimmedEnsemblePITs)

trimTrees

Trimmed Opinion Pools of Trees in Random Forest

Description

This function creates point and probability forecasts from the trees in a random forest using Jose
et al.’s trimmed opinion pool, a trimmed average of the trees’ empirical cumulative distribution
functions (cdf). For tuning purposes, the user can input the trimming level used in this trimmed

average and

Usage

then compare the scores of the trimmed and untrimmed opinion pools, or ensembles.

trimTrees(xtrain, ytrain, xtest, ytest=NULL, ntree = 500,

Arguments

xtrain
ytrain

xtest
ytest

ntree
mtry
nodesize
trim

trimIsExte

uQuantiles

mtry = if (!is.null(ytrain) && !is.factor(ytrain))
max(floor(ncol(xtrain)/3), 1) else floor(sqrt(ncol(xtrain))),
nodesize = if (l!is.null(ytrain) && !is.factor(ytrain)) 5 else 1,
trim = @, trimIsExterior = TRUE,

uQuantiles = seq(@.05, .95, 0.05), methodIsCDF = TRUE)

A data frame or a matrix of predictors for the training set.

A response vector for the training set. If a factor, classification is assumed,
otherwise regression is assumed.

A data frame or a matrix of predictors for the testing set.
A response vector for the testing set. If no testing set is passed, probability
integral transform (PIT) values and scores will be returned as NAs.
Number of trees to grow.
Number of variables randomly sampled as candidates at each split.
Minimum size of terminal nodes.
The trimming level used in the trimmed average of the trees’ empirical cdfs.
For the cdf approach, the trimming level is the fraction of cdfs values to be
trimmed from each end of the ordered vector of cdf values (for each support
point) before the average is computed. For the moment approach, the trees’
means are computed, ordered, and trimmed. The trimmed opinion pool using
the moment approach is an average of the remaining trees.

rior If TRUE, the trimming is done exteriorly, or from the ends of the ordered vector.
If FALSE, the trimming is done interiorly, or from the middle of the ordered
vector.
A vector of probabilities in a strictly increasing order and between 0 and 1. For
instance, if uQuantiles=c(@.25,0.75), then the 0.25-quantile and the 0.75-
quantile of the trimmed and untrimmed ensembles are scored.

methodIsCDF If TRUE, the method for forming the trimmed opinion pool is according to the

cdf approach in Jose et al (2014). If FALSE, the moment approach is used.



Value

trimTrees

An object of class trimTrees, which is a list with the following components:

forestSupport

treeValues

treeCounts

treeCumCounts

treeCDFs

treePMFs

treeMeans

treeVars

treePITs

treeQuantiles

Possible points of support for the trees and ensembles.

For the last testing set row, this component outputs each tree’s ytrain values
(not necessarily unique) that are both inbag and in the xtest’s terminal node.
Note that the ytrain values may not be unique. This component is an ntrain-
by-ntree matrix where ntrain is the number of rows in the training set.

For the last testing set row, each tree’s counts of treeValues and lists them by
their unique values. This component is an nSupport-by-ntree matrix. nSupport
is the number of unique ytrain values, or support points of the forest.

Cumulative tally of treeCounts of dimension nSupport+1-by-ntree.

Each tree’s empirical cdf based on treeCumCounts for the last testing set row
only. This component is an nSupport+1-by-ntree matrix. Note that the first
row in this matrix is all zeros.

Each tree’s empirical probability mass function (pmf) for the last testing set row.
This component is an nSupport-by-ntree matrix.

For each testing set row, each tree’s mean according to its empirical pmf. This
component is an ntest-by-ntree matrix where ntest is the number of rows in
the testing set.

For each testing set row, each tree’s variance according to its empirical pmf.
This component is an ntest-by-ntree matrix.

For each testing set row, each tree’s probability integral transform (PIT), the em-
pirical cdf evaluated at the realized ytest value. This component is an ntest-
by-ntree matrix. If ytest is NULL, NAs are returned.

For the last testing set row, each tree’s quantiles — one for each element in
uQuantiles, the empirical cdf evaluated at the realized ytest value. This com-
ponent is an ntree-by-nQuantile matrix where nQuantile is the number of
elements in uQuantiles.

treeFirstPMFValues

bracketingRate

For each testing set row, this component outputs the pmf value on the minimum
(or first) support point in the forest. For binary classification, this corresponds to
the probability that the minimum (or first) support point will occur. This com-
ponent’s dimension is ntest-by-ntree. It is useful for generating calibration
curves (stated probabilities in bins vs. their observed frequencies) for binary
classification.

For each testing set row, the bracketing rate from Larrick et al. (2012) is com-
puted as 2xp*(1-p) where p is the fraction of trees’ means above the ytest
value. If ytest is NULL, NAs are returned.

bracketingRateAllPairs

The average bracketing rate across all testing set rows for each pair of trees.
This component is a symmetric ntree-by-ntree matrix. If ytest is NULL, NAs
are returned.



trimTrees 9

trimmedEnsembleCDFs
For each testing set row, the trimmed ensemble’s forecast of ytest in the form
of a cdf. This component is an ntest-by-nSupport + 1 matrix. nSupport is
the number of unique ytrain values, or support points of the forest.
trimmedEnsemblePMFs
For each testing set row, the trimmed ensemble’s pmf. This component is an
ntest-by-nSupport matrix.
trimmedEnsembleMeans
For each testing set row, the trimmed ensemble’s mean. This component is an
ntest vector.
trimmedEnsembleVars
For each testing set row, the trimmed ensemble’s variance.
trimmedEnsemblePITs
For each testing set row, the trimmed ensemble’s probability integral transform
(PIT), the empirical cdf evaluated at the realized ytest value. If ytest is NULL,
NAs are returned.
trimmedEnsembleQuantiles
For the last testing set row, the trimmed ensemble’s quantiles — one for each
element in uQuantiles.
trimmedEnsembleComponentScores
For the last testing set row, the components of the trimmed ensemble’s linear
and log quantile scores.If ytest is NULL, NAs are returned.
trimmedEnsembleScores
For each testing set row, the trimmed ensemble’s linear and log quantile scores,
ranked probability score, and two-moment score. See Jose and Winkler (2009)
for a description of the linear and log quantile scores. See Gneiting and Raftery
(2007) for a description of the ranked probability score. The two-moment score
is the score in Equation 27 of Gneiting and Raftery (2007). If ytest is NULL,
NAs are returned.
untrimmedEnsembleCDFs
For each testing set row, the linear opinion pool’s, or untrimmed ensemble’s,
forecast of ytest in the form of a cdf.
untrimmedEnsemblePMFs
For each testing set row, the untrimmed ensemble’s pmf.
untrimmedEnsembleMeans
For each testing set row, the untrimmed ensemble’s mean.
untrimmedEnsembleVars
For each testing set row, the untrimmed ensemble’s variance.
untrimmedEnsemblePITs
For each testing set row, the untrimmed ensemble’s probability integral trans-
form (PIT), the empirical cdf evaluated at the realized ytest value. If ytest is
NULL, NAs are returned.
untrimmedEnsembleQuantiles
For the last testing set row, the untrimmed ensemble’s quantiles — one for each
element in uQuantiles.
untrimmedEnsembleComponentScores
For the last testing set row, the components of the untrimmed ensemble’s linear
and log quantile scores. If ytest is NULL, NAs are returned.



10 trimTrees

untrimmedEnsembleScores
For each testing set row, the untrimmed ensemble’s linear and log quantile
scores, ranked probability score, and two-moment score. If ytest is NULL, NAs
are returned.

Author(s)

Yael Grushka-Cockayne, Victor Richmond R. Jose, Kenneth C. Lichtendahl Jr., and Huanghui
Zeng.

References

Gneiting T, Raftery AE. (2007). Strictly proper scoring rules, prediction, and estimation. Journal
of the American Statistical Association 102 359-378.

Jose VRR, Grushka-Cockayne Y, Lichtendahl KC Jr. (2014). Trimmed opinion pools and the
crowd’s calibration problem. Management Science 60 463-475.

Jose VRR, Winkler RL (2009). Evaluating quantile assessments. Operations Research 57 1287-
1297.

Grushka-Cockayne Y, Jose VRR, Lichtendahl KC Jr. (2014). Ensembles of overfit and overconfi-
dent forecasts, working paper.

Larrick RP, Mannes AE, Soll JB (2011). The social psychology of the wisdom of crowds. In J.I.
Krueger, ed., Frontiers in Social Psychology: Social Judgment and Decision Making. New York:
Psychology Press, 227-242.

See Also

hitRate, cinbag

Examples

# Load the data

set.seed(201) # Can be removed; useful for replication
data <- as.data.frame(mlbench.friedmani(500, sd=1))
summary (data)

# Prepare data for trimming
train <- data[1:400, ]

test <- data[401:500, ]
xtrain <- train[,-11]
ytrain <- train[,11]

xtest <- test[,-11]

ytest <- test[,11]

# Option 1. Run trimTrees with responses in testing set.
set.seed(201) # Can be removed; useful for replication
tt1l <- trimTrees(xtrain, ytrain, xtest, ytest, trim=0.15)

#Some outputs from trimTrees: scores, hit rates, PIT densities.
colMeans(tt1$trimmedEnsembleScores)
colMeans(tt1$untrimmedEnsembleScores)



trimTrees 11

mean(hitRate(tt1$treePITs))
hitRate(tt1$trimmedEnsemblePITs)
hitRate(tt1$untrimmedEnsemblePITs)
hist(tt1$trimmedEnsemblePITs, prob=TRUE)
hist(tt1$untrimmedEnsemblePITs, prob=TRUE)

# Option 2. Run trimTrees without responses in testing set.

# In this case, scores, PITs, or hit rates will not be available.
set.seed(201) # Can be removed; useful for replication

tt2 <- trimTrees(xtrain, ytrain, xtest, trim=0.15)

# Some outputs from trimTrees: cdfs for last test value.
plot(tt2$trimmedEnsembleCDFs[100,], type="1",col="red",ylab="cdf",xlab="y")
lines(tt2$untrimmedEnsembleCDFs[100, 1)

legend(275,0.2,c("trimmed”, "untrimmed”),col=c("red”,"black”),lty = c(1, 1))
title("CDFs of Trimmed and Untrimmed Ensembles")

# Compare the CDF and moment approaches to trimming the trees.

ttCDF <- trimTrees(xtrain, ytrain, xtest, trim=0.15, methodIsCDF=TRUE)

ttMA <- trimTrees(xtrain, ytrain, xtest, trim=0.15, methodIsCDF=FALSE)
plot(ttCDF$trimmedEnsembleCDFs[100,], type="1", col="red", ylab="cdf"”, xlab="y")
lines(ttMA$trimmedEnsembleCDFs[100,])

legend(275,0.2,c("CDF Approach”, "Moment Approach”), col=c("red","black"),lty = c(1, 1))
title("CDFs of Trimmed Ensembles”)



Index

*Topic classif
cinbag, 2
hitRate, 5
trimTrees, 7

*Topic randomForest
cinbag, 2
hitRate, 5
trimTrees, 7

+Topic regression
cinbag, 2
hitRate, 5
trimTrees, 7

+Topic tree
cinbag, 2
hitRate, 5
trimTrees, 7

cinbag, 2, 6, 10
hitRate, 5,5, 10

trimTrees, 5, 6, 7

12



	cinbag
	hitRate
	trimTrees
	Index

