Package 'trialr'

April 6, 2020

Version 0.1.4

Date 2020-04-06

Title Clinical Trial Designs in 'rstan'

Description A collection of clinical trial designs and methods, implemented in 'rstan' and R, including: the Continual Reassessment Method by O'Quigley et al. (1990) <doi:10.2307/2531628>; EffTox by Thall & Cook (2004) <doi:10.1111/j.0006-341X.2004.00218.x>; and the Augmented Binary method by Wason & Seaman (2013) <doi:10.1002/sim.5867>; and more. We provide functions to aid model-fitting and analysis. The 'rstan' implementations may also serve as a cookbook to anyone looking to extend or embellish these models. We hope that this package encourages the use of Bayesian methods in clinical trials. There is a preponderance of early phase trial designs because this is where Bayesian methods are used most. If there is a method you would like implemented, please get in touch.

Maintainer Kristian Brock <kristian.brock@gmail.com>

License GPL (>= 3)

Encoding UTF-8

LazyData true

ByteCompile true

Depends R (>= 3.5.0), methods, Rcpp (>= 1.0.1)

Imports rstan (>= 2.18.2), rstantools (>= 1.5.1), rlang (>= 0.4.5), dplyr, tidyr, purrr, magrittr, stringr, ggplot2, gtools, coda, tidybayes (>= 2.0.3), tibble (>= 3.0.0), binom, MASS

LinkingTo StanHeaders (>= 2.18.1), rstan (>= 2.18.2), BH (>= 1.69.0-1), Rcpp (>= 1.0.1), RcppEigen (>= 0.3.3.5.0)

SystemRequirements GNU make

NeedsCompilation yes

RoxygenNote 7.0.2

VignetteBuilder knitr

URL https://github.com/brockk/trialr

$\pmb{BugReports} \ \text{https://github.com/brockk/trialr/issues}$

Suggests testthat, knitr, rmarkdown, ggridges, covr, DiagrammeR

Author Kristian Brock [aut, cre] (https://orcid.org/0000-0002-3921-0166), Trustees of Columbia University [cph]

Repository CRAN

Date/Publication 2020-04-06 13:20:02 UTC

R topics documented:

trialr-package
as.data.frame.crm_fit
$as. data. frame. efftox_fit $
$as.mcmc.list.crm_fit \dots \dots$
$as.mcmc.list.efftox_fit \dots \dots$
$as_tibble.augbin_2t_1a_fit $
$as_tibble.dose_finding_paths \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$augbin_2t_1a_fit \dots \qquad \qquad 7$
augbin_fit
binary_prob_success
careful_escalation
closest_to_target
crm_codified_dose_logistic
crm_dtps
$crm_fit\text{-}class \dots $
$crm_params\text{-}class \ . \ . \ . \ . \ . \ . \ . \ . \ . \$
$crm_path_analysis \dots 18$
$crm_prior_beliefs \ \dots \ $
crm_process
$df_parse_outcomes \ \dots \ $
$dose_finding_fit\text{-}class \ . \ . \ . \ . \ . \ . \ . \ . \ . \$
dose_finding_path_node-class
$efftox_analysis_to_df \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
efftox_contour_plot
$efftox_dtps \dots \dots \dots 28$
efftox_dtps_to_dataframe
efftox_fit-class
efftox_get_tox
efftox_parameters_demo
efftox_params-class
efftox_parse_outcomes
efftox_path_analysis
efftox_process
efftox_simulate
efftox_solve_p
efftox_superiority
efftox_utility

trialr-package 3

ex		83
	weights_at_dose	81
	trialr_simulate	
	tox_at_dose	
	total_weight_at_dose	
	summary.efftox_fit	
	summary.crm_fit	
	stan_peps2	
	stan_hierarchical_response_thall	
	stan_efftox_demo	
	stan_efftox	
	stan_crm	
	stan_augbin_demo	
	stan_augbin	62
	spread_paths	61
	rlkjcorr	60
	ranBin2	
	prob_tox_exceeds	59
	prob_success	
	prior_predictive_augbin_2t_1a	
	print.efftox_fit	56
	print.crm_fit	
	print.augbin_fit	
	predict.augbin_2t_1a_fit	54
	plot.efftox_fit	53
	plot.crm_fit	52
	peps2_process	51
	peps2_get_data	
	parse_eff_tox_dose_finding_outcomes	48
	parse_dose_finding_outcomes	
	n_at_dose	
	eff_at_dose	
	efftox_utility_density_plot	44

Description

trialr collects in one place Bayesian clinical trial designs and methods. Models are implemented in Stan and helper functions are provided in R.

References

Stan Development Team (2018). RStan: the R interface to Stan. R package version 2.18.2. http://mc-stan.org

 $as. data. frame. efftox_fit$

Description

Convert crm_fit object to data.frame.

Usage

```
## S3 method for class 'crm_fit'
as.data.frame(x, ...)
```

Arguments

```
crm_fit object to convert.
Χ
```

Extra parameters, passed onwards.

Value

A data.frame

```
as.data.frame.efftox_fit
                          Convert efftox_fit object to data.frame.
```

Description

Convert efftox_fit object to data.frame.

Usage

```
## S3 method for class 'efftox_fit'
as.data.frame(x, ...)
```

Arguments

. . .

```
efftox_fit object to convert.
Extra parameters, passed onwards.
```

Value

A data.frame

as.mcmc.list.crm_fit 5

Description

This function allows trialr to use tidybayes functions.

Usage

```
## S3 method for class 'crm_fit'
as.mcmc.list(crm_fit, ...)
```

Arguments

```
crm_fitObject of class crm_fit...Extra variables that are passed onwards.
```

Value

Object of class mcmc.list

```
as.mcmc.list.efftox_fit

Convert efftox_fit to instance of mcmc.list
```

Description

This function allows trialr to use tidybayes functions.

Usage

```
## S3 method for class 'efftox_fit'
as.mcmc.list(efftox_fit, ...)
```

Arguments

```
efftox_fit Object of class efftox_fit
... Extra variables that are passed onwards.
```

Value

```
Object of class mcmc.list
```

Description

```
Cast augbin_2t_1a_fit object to tibble.
```

Usage

```
## S3 method for class 'augbin_2t_1a_fit'
as_tibble(x, ...)
```

Arguments

- x Object of class augbin_2t_1a_fit.
- ... Extra args passed onwards.

Value

Object of class tibble

```
as\_{\tt tibble.dose\_finding\_paths} \\ {\it Cast dose\_finding\_paths object to tibble.}
```

Description

Cast dose_finding_paths object to tibble.

Usage

```
## S3 method for class 'dose_finding_paths'
as_tibble(x, ...)
```

Arguments

- x Object of class dose_finding_paths.
- ... Extra args passed onwards.

Value

Object of class tibble

7 augbin_2t_1a_fit

augbin_2t_1a_fit	Class used by trialr to fit Wason & Seaman's Augmented Binary
	method in single arm trials with two post-baseline tumour assess-
	ments.

Description

Class used by trialr to fit Wason & Seaman's Augmented Binary method in single arm trials with two post-baseline tumour assessments.

Usage

```
augbin_2t_1a_fit(num_patients, tumour_size, non_shrinkage_failure, fit)
```

Arguments

Integer, the number of patients analysed. num_patients

matrix-like object containing tumour size measures, with rows representing patumour_size

tients and columns representing chronological assessment points. Column one

is baseline.

non_shrinkage_failure

matrix-like object containing logical indicators of non-shrinkage failure, with rows representing patients and columns representing chronological assessment

points.

fit An object of class stanfit, containing the posterior samples.

References

Wason JMS, Seaman SR. Using continuous data on tumour measurements to improve inference in phase II cancer studies. Statistics in Medicine. 2013;32(26):4639-4650. doi:10.1002/sim.5867

Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). European Journal of Cancer. 2009;45(2):228-247. doi:10.1016/j.ejca.2008.10.026

See Also

```
augbin_fit stan_augbin
```

8 binary_prob_success

augbin_fit Class used by trialr to fit Wason & Seaman's Augmented Binamethod.
--

Description

Class used by trialr to fit Wason & Seaman's Augmented Binary method.

Usage

```
augbin_fit(num_patients, tumour_size, non_shrinkage_failure, fit)
```

Arguments

num_patients Integer, the number of patients analysed.

tumour_size matrix-like object containing tumour size measures, with rows representing pa-

tients and columns representing chronological standardised assessment points.

Column one is baseline.

non_shrinkage_failure

matrix-like object containing logical indicators of non-shrinkage failure, with rows representing patients and columns representing chronological standardised

assessment points.

fit An object of class stanfit, containing the posterior samples.

References

Wason JMS, Seaman SR. Using continuous data on tumour measurements to improve inference in phase II cancer studies. Statistics in Medicine. 2013;32(26):4639-4650. doi:10.1002/sim.5867

Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). European Journal of Cancer. 2009;45(2):228-247. doi:10.1016/j.ejca.2008.10.026

See Also

stan_augbin

binary_prob_success Calculate the binary probability of success.

Description

Calculate the binary probability of success.

Calculate the binary probability of success from an augbin_2t_1a_fit object.

binary_prob_success 9

Usage

```
binary_prob_success(x, ...)
## S3 method for class 'augbin_2t_1a_fit'
binary_prob_success(
    x,
    y1_lower = -Inf,
    y1_upper = Inf,
    y2_lower = -Inf,
    y2_upper = log(0.7),
    conf.level = 0.95,
    ...
)
```

Arguments

X	an R object of class "augbin_fit"
	arguments passed to other methods
y1_lower	numeric, minimum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 1 to baseline. Defaults to negative infinity.
y1_upper	numeric, maximum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 1 to baseline. Defaults to positive infinity.
y2_lower	numeric, minimum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 2 to baseline.
y2_upper	numeric, maximum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 2 to baseline. Defaults to $\log(0.7)$.
conf.level	confidence level for interval.

Value

```
a data.frame-like object
```

Examples

```
## Not run:
fit <- stan_augbin_demo()
binary_prob_success(fit, y2_upper = log(0.7))
## End(Not run)</pre>
```

10 careful_escalation

careful_escalation

Dose selection function that practices careful escalation.

Description

Dose selection function that avoids dose-skipping in escalation and advocates stopping when there is sufficient evidence that the risk of toxicity at a reference dose exceeds some threshold.

Usage

```
careful_escalation(
  dose_finding_fit,
  tox_threshold,
  certainty_threshold,
  reference_dose = 1,
  start_dose = 1
)
```

Arguments

```
dose_finding_fit

Instance of dose_finding_fit.

tox_threshold numeric, the toxicity threshold.

certainty_threshold

numeric, the required confidence that the risk of toxicity exceeds 'tox_threshold' to advocate stopping.

reference_dose the integer index of the reference dose. 1 by default, i.e. the lowest dose-level.

start_dose the integer index of the desired starting dose. 1 by default. This is required for the function to give the desired answer when no patients have yet been treated.
```

Value

an integer dose-level

Examples

closest_to_target 11

closest_to_target Get index of element in

Get index of element in vector with value closest to a target

Description

Get index of element in vector with value closest to a target

Usage

```
closest_to_target(vector, target)
```

Arguments

vector Identify element in this numeric vector

target numeric target

Value

an integer indexing vector

Examples

```
closest_to_target(c(0.1, 0.2, 0.3), 0.05) # 1
closest_to_target(c(0.1, 0.2, 0.3), 0.22) # 2
closest_to_target(c(0.1, 0.2, 0.3), -0.05) # 1
closest_to_target(c(0.1, 0.2, 0.3), 8) # 3
```

crm_codified_dose_logistic

Calculate codified CRM doses.

Description

Calculate the codified CRM doses that map to probability of toxicity prob_tox in a logistic model with expected values for intercept and gradient. I.e. find x[i] such that $logit(p[i]) = \alpha + \beta x[i]$, were p is prob_tox.

Usage

```
crm_codified_dose_logistic(prob_tox, alpha_mean, beta_mean)
```

Arguments

prob_tox Numeric vector, seek codified doses that yield these probabilities of toxicity.

alpha_mean Numeric, expected value of intercept.

beta_mean Numeric, expected value of gradient with respect to dose.

12 crm_dtps

Value

Numeric vector of codified doses.

Examples

```
skeleton <- c(0.05, 0.1, 0.2, 0.5)
crm_codified_dose_logistic(skeleton, 1, 0)
crm_codified_dose_logistic(skeleton, 3, 0.5)</pre>
```

crm_dtps

Calculate dose-transition pathways for a CRM study

Description

Calculate dose-transition pathways (DTPs, Yap et al, 2017) for a dose-finding trial using the continual reassessment method (CRM) design. DTPs are a glimpse into the future for an in-progress trial. They tell us what the model would advise for all feasible future outcomes. They can be used in the design stages to detect possible undesirable behaviour. They can be used during the trial to aid planning and understanding.

Usage

```
crm_dtps(
    skeleton,
    target,
    model,
    cohort_sizes,
    previous_outcomes = "";
    next_dose = NULL,
    user_dose_func = NULL,
    verbose = FALSE,
    i_am_patient = FALSE,
    ...
)
```

Arguments

skeleton a vector of the prior guesses of toxicity at doses. This should be a monotonically-

increasing vector of numbers between 0 and 1.

target the target toxicity probability, a number between 0 and 1. This value would

normally be one of the values in skeleton, but that is not a requirement.

model Character string to denote desired model. One of empiric, logistic, logistic_gamma,

or logistic2. The choice of model determines which extra parameters are re-

quired by See Details.

cohort_sizes vector of future cohort sizes, i.e. positive integers. E.g. To calculate paths for the

the next cohort of two followed by another cohort of three, use cohort_sizes

= c(2,3).

crm_dtps 13

previous_outcomes

Outcomes observed hitherto in the syntax required by df_parse_outcomes.

next_dose optional, integer (1-based) dose-level to be given to the next cohort. If omitted,

the dose suggested by the model is used.

user_dose_func optional delegate for deciding dose. A function that takes a crm_fit as the sole

argument and returns the integer (1-based) dose-level to be given next, or NA to show that no dose should be chosen and the trial stopped. This function gives the user the opportunity to build in custom behaviour to tailor the dose selection decision in response to the insights garnered by the fit model, or recommend that a trial path be halted immediately. If omitted, the dose ordinarily chosen by

the model is used. An example is given below.

verbose logical, TRUE to get log messages.

i_am_patient logical. The number of paths to analyse grows faster than linearly in the number

of future cohorts to resolve. Fitting many models by MCMC can take a long time. This function will not proceed unless you signify your patience when the

number of paths to reolve exceeds 100.

... Extra parameters passed to stan_crm.

Details

Different model choices require that different parameters are provided. See below.

Value

A list of dose_finding_path_node objects.

Parameter requirements of empiric model

• beta_sd

Parameter requirements of logistic model

- a0
- beta_mean
- beta_sd

Parameter requirements of logistic_gamma model

- a0
- beta_shape
- beta_inverse_scale

Parameter requirements of logistic2 model

- alpha_mean
- alpha_sd
- beta_mean
- beta_sd

14 crm_dtps

Author(s)

Kristian Brock

References

Yap C, Billingham LJ, Cheung YK, Craddock C, O'Quigley J. Dose transition pathways: The missing link between complex dose-finding designs and simple decision-making. Clinical Cancer Research. 2017;23(24):7440-7447. doi:10.1158/1078-0432.CCR-17-0582

See Also

df_parse_outcomes, stan_crm, crm_path_analysis, dose_finding_path_node

Examples

```
## Not run:
target <- 0.25
skeleton \leftarrow c(0.05, 0.15, 0.25, 0.4, 0.6)
# Run DTPs for the first two cohorts of two for new a trial:
paths <- crm_dtps(skeleton = skeleton, target = target, model = 'empiric',</pre>
                  cohort_sizes = c(2, 2), next_dose = 3, beta_sd = 1)
length(paths) # 13
library(tibble)
df <- as_tibble(paths)</pre>
df
# Run DTPs for the next cohort of three in a trial that has already treated
# six patients, seeing some toxicity at dose-level 3:
paths2 <- crm_dtps(skeleton = skeleton, target = target, model = 'empiric',</pre>
                   cohort_sizes = c(3), previous_outcomes = '2NNN 3TTN',
                   beta_sd = 1)
length(paths2) # 5
as_tibble(paths2)
# We see that de-escalation to dose-level 2 should occur now, and that any
# further toxicity will result in advice for further de-escalation to
# dose-level 1.
# An example with a custom dose selection function
paths3 <- crm_dtps(skeleton = skeleton, target = target, model = 'empiric',</pre>
                   cohort_sizes = c(3, 3), previous_outcomes = '2NN 3TN',
                   next_dose = 2, beta_sd = 1,
                   user_dose_func = function(x) {
                     careful_escalation(x, tox_threshold = target + 0.1,
                                         certainty_threshold = 0.7)
                   }, seed = 123, refresh = 0)
spread_paths(as_tibble(paths3) %>% select(-fit, -parent_fit, -dose_index))
# Stopping is recommended when the dose selection function returns NA.
```

crm_fit-class 15

```
## End(Not run)
```

crm_fit-class

Class of model fit by trialr using the CRM dose-finding design.

Description

Class of model fit by trialr using the CRM dose-finding design.

Usage

```
crm_fit(
  dose_indices,
  num_patients,
  doses,
  tox,
  weights,
  prob_tox,
  median_prob_tox,
  prob_mtd,
  recommended_dose,
  dat,
  fit,
  samples = NULL
)
```

Arguments

dose_indices A vector of integers representing the dose-levels under consideration.

num_patients Integer, the number of patients analysed.

doses vector of integers representing the dose given to the patients.

tox vector of integers representing the toxicity status of the patients.

weights Vector of numeric weights for the observations for patients 1:num_patients, thus

facilitating the TITE-CRM design.

prob_tox The posterior mean probabilities of toxicity at doses 1:n; a vector of numbers

between 0 and 1.

median_prob_tox

The posterior median probabilities of toxicity at doses 1:n; a vector of numbers

between 0 and 1.

prob_mtd The posterior probability that each dose is the MTD, by the chosen model; a vec-

tor of numbers between 0 and 1. This probability reflects the uncertainty remaining in the parameter distributions, whereas $prob_t$ and $median_prob_t$ do

not.

recommended_dose

An integer representing the dose-level that is recommended for the next patient or cohort. Contrast to modal_mtd_candidate.

16 crm_params-class

dat Object crm_params containing data passed to sampling.

fit An object of class stanfit, containing the posterior samples.

samples An optional data.frame like object of samples.

Details

See methods(class = "crm_fit") for an overview of available methods.

See Also

```
stan_crm
```

crm_params-class

Container class for parameters to fit the CRM models in trialr.

Description

Container class for parameters to fit the CRM models in trialr.

Usage

```
crm_params(
    skeleton,
    target,
    a0 = NULL,
    alpha_mean = NULL,
    alpha_sd = NULL,
    beta_mean = NULL,
    beta_sd = NULL,
    beta_shape = NULL,
    beta_inverse_scale = NULL)
```

Arguments

skeleton	a vector of the prior guesses of toxicity at doses. This should be a monotonically-increasing vector of numbers between 0 and 1.
target	the target toxicity probability, a number between 0 and 1. This value would normally be one of the values in skeleton, but that is not a requirement.
a0	Value of fixed intercept parameter. Only required for certain models. See Details.
alpha_mean	Prior mean of intercept variable for normal prior. Only required for certain models. See Details.
alpha_sd	Prior standard deviation of intercept variable for normal prior. Only required for certain models. See Details.

crm_params-class 17

beta_mean Prior mean of gradient variable for normal prior. Only required for certain models. See Details.

beta_sd Prior standard deviation of slope variable for normal prior. Only required for certain models. See Details.

beta_shape Prior shape parameter of slope variable for gamma prior. Only required for certain models. See Details.

beta_inverse_scale

Prior inverse scale parameter of slope variable for gamma prior. Only required for certain models. See Details.

Details

Different model parameterisations require that difference parameter values are specified.

Parameter requirements of empiric model

• beta_sd

Parameter requirements of logistic model

- a0
- beta_mean
- beta_sd

Parameter requirements of logistic_gamma model

- a0
- beta_shape
- beta_inverse_scale

Parameter requirements of logistic2 model

- alpha_mean
- alpha_sd
- beta_mean
- beta_sd

See Also

stan_crm

18 crm_path_analysis

crm_path_analysis	Fit a CRM model to the incrementally observed outcomes on a trial pathway.
	pathway.

Description

Fit a continuous reassessment method (CRM) model to the outcomes cumulatively observed at the end of each cohort in a trial pathway. E.g. if the trial pathway is 1NN 2NN 3NT, we have three cohorts of two patients. This function will fit the model to the following four states: before any patients have been evaluated; after 1NN; after 1NN 2NN; and finally after 1NN 2NN 3NT. This allows us to analyse how the trial model is evolving in its estimation as trial data is accumulated.

Usage

```
crm_path_analysis(outcome_str, skeleton, target, model, verbose = FALSE, ...)
```

Arguments

outcome_str	A string representing the outcomes observed hitherto. See df_parse_outcomes for a description of syntax and examples. Alternatively, you may provide doses_given and tox parameters. See Details.
skeleton	a vector of the prior guesses of toxicity at doses. This should be a monotonically-increasing vector of numbers between 0 and 1.
target	the target toxicity probability, a number between 0 and 1. This value would normally be one of the values in skeleton, but that is not a requirement.
model	Character string to denote desired model. One of empiric, logistic, logistic_gamma, or logistic2. The choice of model determines which extra parameters are required by See Details.
verbose	logical, TRUE to get log messages.
• • •	Extra parameters passed to stan_crm.

Details

Different model choices require that different parameters are provided. See below.

Value

A list of dose_finding_path_node objects.

Parameter requirements of empiric model

• beta_sd

crm_path_analysis

Parameter requirements of logistic model

- a0
- beta_mean
- beta_sd

Parameter requirements of logistic_gamma model

- a0
- beta_shape
- beta_inverse_scale

Parameter requirements of logistic2 model

- alpha_mean
- alpha_sd
- beta_mean
- beta_sd

Author(s)

Kristian Brock

See Also

```
df_parse_outcomes, stan_crm, dose_finding_path_node
```

Examples

```
## Not run:
# CRM example
target <- 0.25
skeleton \leftarrow c(0.05, 0.15, 0.25, 0.4, 0.6)
paths <- crm_path_analysis(</pre>
  outcome_str = '1NNN 2NTN 2NNN',
  skeleton = skeleton, target = target, model = 'empiric',
  beta_sd = 1, seed = 123, refresh = 0)
length(paths) # 4
names(paths)[1] # ""
names(paths)[2] # "1NNN"
names(paths)[3] # "1NNN 2NTN"
names(paths)[4] # "1NNN 2NTN 2NNN"
# Each node is an analysis fit to the cumulative outcomes
# Converting to a tibble presents some nice tidyverse-related opportunities
library(tibble)
df <- as_tibble(paths)</pre>
## End(Not run)
```

20 crm_prior_beliefs

crm_prior_beliefs

Get the prior beliefs for a CRM trial scenario.

Description

Infer the prior beliefs consistent with the parameters and model form for a CRM dose-finding trial. This function could be interpreted as fitting the model to no data, thus examining the beliefs on dose-toxicity that are suggested by the parameter priors alone. This function provides the task analagous to stan_crm before any data has been collected.

Usage

```
crm_prior_beliefs(
    skeleton,
    target,
    model = c("empiric", "logistic", "logistic_gamma", "logistic2"),
    a0 = NULL,
    alpha_mean = NULL,
    alpha_sd = NULL,
    beta_mean = NULL,
    beta_sd = NULL,
    beta_shape = NULL,
    beta_inverse_scale = NULL,
    ...
)
```

Arguments

skeleton	a vector of the prior guesses of toxicity at doses. This should be a monotonically-increasing vector of numbers between 0 and 1.
target	the target toxicity probability, a number between 0 and 1. This value would normally be one of the values in skeleton, but that is not a requirement.
model	Character string to denote desired model. One of empiric, logistic, logistic_gamma, or logistic2. The choice of model determines which parameters are required. See Details.
a0	Value of fixed intercept parameter. Only required for certain models. See Details.
alpha_mean	Prior mean of intercept variable for normal prior. Only required for certain models. See Details.
alpha_sd	Prior standard deviation of intercept variable for normal prior. Only required for certain models. See Details.
beta_mean	Prior mean of gradient variable for normal prior. Only required for certain models. See Details.
beta_sd	Prior standard deviation of slope variable for normal prior. Only required for certain models. See Details.

crm_prior_beliefs 21

beta_shape Prior shape parameter of slope variable for gamma prior. Only required for certain models. See Details.

beta_inverse_scale

Prior inverse scale parameter of slope variable for gamma prior. Only required for certain models. See Details.

... extra parameters passed to stan_crm.

Details

Different model choices require that different parameters are provided. See below.

Value

An object of class crm_fit

Parameter requirements of empiric model

• beta_sd

Parameter requirements of logistic model

- a0
- beta_mean
- beta_sd

Parameter requirements of logistic_gamma model

- a0
- beta_shape
- beta_inverse_scale

Parameter requirements of logistic2 model

- alpha_mean
- alpha_sd
- beta_mean
- beta_sd

Author(s)

Kristian Brock

References

O'Quigley, J., Pepe, M., & Fisher, L. (1990). Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics, 46(1), 33-48. https://www.jstor.org/stable/2531628 Cheung, Y.K. (2011). Dose Finding by the Continual Reassessment Method. CRC Press. ISBN 9781420091519

22 crm_process

See Also

```
stan_crm crm_fit
```

Examples

crm_process

Process RStan samples from a CRM model.

Description

Internal function to process rstan samples from a CRM model to make inferences about dose-toxicity and which dose should be recommended next. Typically, this function is not required to be called explicitly by the user because stan_crm will call it implicitly.

Usage

```
crm_process(dat, fit)
```

Arguments

dat An instance of crm_params, a list of CRM parameters.

fit An instance of rstan::stanmodel, derived by fitting one of the trialr CRM

models.

Value

An instance of crm_fit.

df_parse_outcomes 23

df_parse_outcomes

Parse a string of dose-finding trial outcomes to binary vector notation.

Description

Parse a string of dose-finding trial outcomes to the binary vector notation required by Stan for model invocation. The outcome string describes the doses given and outcomes observed. The format of the string is the pure phase I analogue to that described in Brock et al. (2017). The letters T and N are used to represents patients that experienced (T)oxicity and (N)o toxicity. These letters are concatenated after numerical dose-levels to convey the outcomes of cohorts of patients. For instance, 2NNT represents a cohort of three patients that were treated at dose-level 2, one of whom experienced toxicity, and two that did not. The results of cohorts are separated by spaces. Thus, 2NNT 1NN extends our previous example, where the next cohort of two were treated at dose-level 1 and neither experienced toxicity. See examples.

Usage

```
df_parse_outcomes(outcome_string, as.list = TRUE)
```

Arguments

```
outcome_string character string, conveying doses given and outcomes observed.

as.list TRUE (the default) to return a list; FALSE to return a data.frame
```

Value

If as.list == TRUE, a list with elements tox, doses and num_patients. These elements are congruent with those of the same name in crm_params, for example. If as.list == FALSE, a data.frame with columns tox and doses.

References

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implementing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology, 17(1), 112. https://doi.org/10.1186/s12874-017-0381-x

Examples

```
x = df_parse_outcomes('1NNN 2NTN 3TTT')
x$num_patients # 9
x$doses # c(1, 1, 1, 2, 2, 2, 3, 3, 3)
x$tox # c(0, 0, 0, 0, 1, 0, 1, 1, 1)
sum(x$tox) # 4
```

dose_finding_fit-class

```
dose_finding_fit-class
```

Class of dose-finding model fit by trialr using Stan.

Description

Class of dose-finding model fit by **trialr** using Stan.

Usage

```
dose_finding_fit(
  dose_indices,
  num_patients,
  doses,
  tox,
  prob_tox,
  median_prob_tox,
  recommended_dose,
  dat,
  fit
)
```

Arguments

dose_indices A vector of integers representing the dose-levels under consideration.

doses vector of integers representing the dose given to the patients.

tox vector of integers representing the toxicity status of the patients.

prob_tox The posterior mean probabilities of toxicity at doses 1:n; a vector of numbers

between 0 and 1.

median_prob_tox

The posterior median probabilities of toxicity at doses 1:n; a vector of numbers

between 0 and 1.

recommended_dose

An integer representing the dose-level that is recommended for the next patient

or cohort.

dat Object crm_params containing data passed to sampling.

fit An object of class stanfit, containing the posterior samples.

See Also

```
crm_fit, efftox_fit
```

```
{\tt dose\_finding\_path\_node-class}
```

Class to hold the elements of a single dose-finding analysis residing in a pathway of analyses.

Description

A pathway in a dose-finding trial is a series of successive analyses. For instance, the model will likely be fit to all of the outcomes observed at the end of the first cohort, the second cohort, etc. This class holds the elements reflecting the analysis, and the place of this analysis in the pathway.

Usage

```
dose_finding_path_node(
  node_id,
  parent_node_id,
  depth,
  outcomes,
  next_dose,
  fit,
  parent_fit
)
```

Arguments

node_id	An integer representing the id of this node in a pathway.
parent_node_id	An integer representing the id of this node's parent in the pathway.
depth	An integer representing the depth of this node in the pathway, where the root has depth 0.
outcomes	A string representing the outcomes observed at the time of analysis. See $df_parse_outcomes$ for a description of syntax and examples.
next_dose	An integer representing the dose recommended by the model for the next patient or cohort of patients.
fit	Object obtained from fitting the dose-finding model to outcomes.
parent_fit	Object obtained from fitting the dose-finding model to the outcomes of the parent node. Comparing to fit will oten be valuable.

Value

Instance of class dose_finding_path_node

Examples

Description

Convenient function to turn an efftox_fit into a data.frame.

Usage

```
efftox_analysis_to_df(x)
```

Arguments

Х

An instance of efftox_fit

Value

a data.frame

See Also

```
stan_efftox
```

Examples

```
fit <- stan_efftox_demo(outcome_str = '1N 2E 3B')
df <- efftox_analysis_to_df(fit)
df</pre>
```

efftox_contour_plot 27

Description

Plot EffTox utility contours. The probability of efficacy is on the x-axis and toxicity on the y-axis. The zero-utility curve is plotted bolder. The three "hinge points" are plotted as blue triangles. Optional Prob(Efficacy) vs Prob(Toxicity) points can be added; these are shown as red numerals, enumerated in the order provided.

Usage

```
efftox_contour_plot(
   fit,
   use_ggplot = FALSE,
   prob_eff = fit$prob_eff,
   prob_tox = fit$prob_tox,
   num_points = 1000,
   util_vals = seq(-3, 3, by = 0.2)
)
```

Arguments

fit	An instance of efftox_fit.
use_ggplot	logical, TRUE to use ggplot2. Defaults to FALSE to use standard R graphics.
prob_eff	vector of numbers between 0 and 1, containing the efficacy probabilities of extra points to add to the plot as points, e.g. the posterior mean efficacy probabilities of the doses under investigation. Paired with prob_tox, thus they should be the same length. Defaults to the values fitted by the model. Use NULL to supress.
prob_tox	vector of numbers between 0 and 1, containing the toxicity probabilities of extra points to add to the plot as points, e.g. the posterior mean toxicity probabilities of the doses under investigation. Paired with prob_eff, thus they should be the same length. Defaults to the values fitted by the model. Use NULL to supress.
num_points	integer for number of points to calculate on each curve. The default is 1000 and this should be plenty.
util_vals	A contour is plotted for each of these utility values. The default is contours spaced by 0.2 between from -3 and 3, i.e. $seq(-3,3,by=0.2)$.

Value

if use_ggplot = TRUE, an instance of ggplot; else no object is returned. Omit assignment in either case to just view the plot.

See Also

```
stan_efftox
```

28 efftox_dtps

Examples

efftox_dtps

Calculate dose-transition pathways for an EffTox study

Description

Calculate dose-transition pathways for an EffTox study. The function efftox_dtps_to_dataframe performs a similar function, but is much less-flexible.

Usage

```
efftox_dtps(
  cohort_sizes,
  previous_outcomes = ""
  next_dose = NULL,
  user_dose_func = NULL,
  verbose = FALSE,
  i_am_patient = FALSE,
  ...
)
```

Arguments

 $cohort_sizes$

vector of future cohort sizes, i.e. positive integers. E.g. To calculate paths for the the next cohort of two followed by another cohort of three, use cohort_sizes = c(2,3).

previous_outcomes

Outcomes observed hitherto in the syntax required by efftox_parse_outcomes.

next_dose the dose-level to be given to the immediately next cohort.

user_dose_func optional delegate for deciding dose. A function that takes a efftox_fit as the

sole argument and returns the integer (1-based) dose-level to be given next, or NA to show that no dose should be chosen and the trial stopped. This function gives the user the opportunity to build in custom behaviour to tailor the dose selection decision in response to the insights garnered by the fit model, or recommend that a trial path be halted immediately. If omitted, the dose ordinarily

chosen by the model is used. An example is given below.

verbose logical, TRUE to get progress messages.

i_am_patient logical, TRUE to show your tolerance for waiting for over 100 models to fit. Set

to FALSE by default.

... extra params passed to rstan::sampling.

efftox_dtps 29

Value

dose pathways in a data. frame.

References

Yap C, Billingham LJ, Cheung YK, Craddock C, O'Quigley J. Dose transition pathways: The missing link between complex dose-finding designs and simple decision-making. Clinical Cancer Research. 2017;23(24):7440-7447. doi:10.1158/1078-0432.CCR-17-0582

Brock K, Billingham L, Copland M, Siddique S, Sirovica M, Yap C. Implementing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology. 2017;17(1):112. doi:10.1186/s12874-017-0381-x

See Also

efftox_parse_outcomes, stan_efftox, efftox_path_analysis, dose_finding_path_node

Examples

Not run:

```
real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0),
                      efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
                      p_e = 0.1, p_t = 0.1,
                      eff0 = 0.5, tox1 = 0.65,
                      eff_star = 0.7, tox_star = 0.25,
                      alpha_mean = -7.9593, alpha_sd = 3.5487,
                      beta_mean = 1.5482, beta_sd = 3.5018,
                      gamma_mean = 0.7367, gamma_sd = 2.5423,
                      zeta_mean = 3.4181, zeta_sd = 2.4406,
                      eta_mean = 0, eta_sd = 0.2,
                      psi_mean = 0, psi_sd = 1, seed = 123)
# Calculate paths for the next two cohorts of 2, in an in-progress trial
# Warning: this create 100 paths. It will run for a minute or two.
paths2 <- efftox_dtps(cohort_sizes = c(2, 2),</pre>
                      previous_outcomes = '1NN 2EE',
                      next\_dose = 1,
                      real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0),
                      efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
                      p_e = 0.1, p_t = 0.1,
                      eff0 = 0.5, tox1 = 0.65,
                      eff_star = 0.7, tox_star = 0.25,
                      alpha_mean = -7.9593, alpha_sd = 3.5487,
                      beta_mean = 1.5482, beta_sd = 3.5018,
                      gamma_mean = 0.7367, gamma_sd = 2.5423,
                      zeta_mean = 3.4181, zeta_sd = 2.4406,
                      eta_mean = 0, eta_sd = 0.2,
                      psi_mean = 0, psi_sd = 1, seed = 123,
```

Calculate paths for the first cohort of 3 in Thall et al 2014 example

paths1 <- efftox_dtps(cohort_sizes = c(3), next_dose = 1,</pre>

30 efftox_dtps

```
i_am_patient = TRUE)
# Paths can be converted to a tibble
library(tibble)
library(dplyr)
df <- as_tibble(paths2)</pre>
df %>% print(n = 200)
# And shaped in a wide format
spread_paths(df %>% select(-fit, -parent_fit, -dose_index)) %>%
  print(n = 100)
# Incredibly, there are 100 ways these two cohorts of two can end up.
# An example with a custom dose selection function.
# Define a function to select the maximal utility dose, no matter what.
# Note: this diverges from the original authors' intentions; we provide this
# for illustration only!
max_utility_dose <- function(efftox_fit) {</pre>
  return(which.max(efftox_fit$utility))
}
# Fit the paths, providing the user_dose_func parameter
# Warning: this create 100 paths. It will run for a minute or two.
paths3 <- efftox_dtps(cohort_sizes = c(2, 2),</pre>
                      previous_outcomes = '1NN 2EE',
                      next\_dose = 1,
                      real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0),
                      efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
                      p_e = 0.1, p_t = 0.1,
                      eff0 = 0.5, tox1 = 0.65,
                      eff_star = 0.7, tox_star = 0.25,
                      alpha_mean = -7.9593, alpha_sd = 3.5487,
                      beta_mean = 1.5482, beta_sd = 3.5018,
                      gamma_mean = 0.7367, gamma_sd = 2.5423,
                      zeta_mean = 3.4181, zeta_sd = 2.4406,
                      eta_mean = 0, eta_sd = 0.2,
                      psi_mean = 0, psi_sd = 1,
                      user_dose_func = max_utility_dose,
                      seed = 123, i_am_patient = TRUE)
# We can see where the dose-selections differ at the second future cohort
# by joining these paths to those calculated in the previous example:
left_join(
  as_tibble(paths2)%>%
    select(.node, .parent, .depth, outcomes, model_dose = next_dose),
  as_tibble(paths3) %>%
    select(.node, user_dose = next_dose),
  by = '.node'
) %>% spread_paths() %>%
  filter(model_dose2 != user_dose2)
# They differ in many places. The user defined functions sometimes selects
# higher doses; sometimes lower.
```

```
## End(Not run)
```

```
efftox_dtps_to_dataframe
```

Calculate dose-transition pathways for an EffTox study

Description

Calculate dose-transition pathways for an EffTox study. Note that TODO TODO TODO

Usage

```
efftox_dtps_to_dataframe(dat, cohort_sizes, next_dose, ...)
```

Arguments

dat	An instance of efftox_params, a list of EffTox parameters. An example is yielded by efftox_parameters_demo.
cohort_sizes	vector of future cohort sizes, i.e. positive integers. E.g. To calculate paths for the the next cohort of two followed by another cohort of three, use cohort_sizes = $c(2,3)$.
next_dose	the dose-level to be given to the immediately next cohort.
	extra params passed to rstan::sampling.

Value

dose pathways in a data.frame.

References

Brock K, Billingham L, Copland M, Siddique S, Sirovica M, Yap C. Implementing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology. 2017;17(1):112. doi:10.1186/s12874-017-0381-x

See Also

```
efftox_dtps, efftox_params, efftox_parameters_demo
```

32 efftox_fit-class

Examples

efftox_fit-class

Class of model fit by trialr using the EffTox dose-finding design.

Description

Phase I/II dose-finding trials, i.e. those that search for a dose my efficacy and toxicity outcomes search for the optimal biological dose (OBD), rather than the maximum tolerated dose (MTD) that is typically sought be traditional toxicity-only dose-finding.

Usage

```
efftox_fit(
  dose_indices,
  num_patients,
  doses,
  tox,
  eff,
  prob_tox,
  prob_eff,
  median_prob_tox,
 median_prob_eff,
  prob_acc_tox,
  prob_acc_eff,
  utility,
  post_utility,
  prob_obd,
  acceptable,
```

efftox_fit-class 33

```
recommended_dose,
  dat,
  fit
)
```

Arguments

dose_indices A vector of integers representing the dose-levels under consideration.

num_patients Integer, the number of patients analysed.

doses vector of integers representing the dose given to the patients.

tox vector of integers representing the toxicity status of the patients.

vector of integers representing the efficacy status of the patients.

prob_tox The posterior mean probabilities of toxicity at doses 1:n; a vector of numbers

between 0 and 1.

prob_eff The posterior mean probabilities of efficacy at doses 1:n; a vector of numbers

between 0 and 1.

median_prob_tox

The posterior median probabilities of toxicity at doses 1:n; a vector of numbers

between 0 and 1.

median_prob_eff

The posterior mean probabilities of efficacy at doses 1:n; a vector of numbers

between 0 and 1.

prob_acc_tox The posterior mean probabilities that toxicity at the doses is acceptable, i.e. that

it is less than the maximum toxicity threshold; a vector of numbers between 0

and 1.

prob_acc_eff The posterior mean probabilities that efficacy at the doses is acceptable, i.e.

that it exceeds the minimum acceptable efficacy threshold; a vector of numbers

between 0 and 1.

utility The utilities of doses 1:n, calculated by plugging the posterior mean probabilities

of efficacy and toxicity into the utility formula, as advocated by Thall & Cook.

Contrast to post_utility; a vector of numbers.

post_utility The posterior mean utilities of doses 1:n, calculated from the posterior distribu-

tions of the utilities. This is in contrast to utility, which uses plug-in posterior means of efficacy and toxicity, as advocated by Thall & Cook; a vector of num-

bers.

prob_obd The posterior probability that each dose is the optimal biological dose (OBD);

a vector of numbers between 0 and 1. This probability reflects the uncertainty remaining in the parameter distributions, whereas $prob_t$ and $prob_eff(etc)$

do not.

acceptable A vector of logical values to indicate whether doses 1:n are acceptable, accord-

ing to the rules for acceptable efficacy & toxicity, and rules on not skipping

untested doses.

recommended_dose

An integer representing the dose-level recommended for the next patient or co-

hort; or NA if stopping is recommended.

dat Object efftox_params containing data passed to sampling.

fit An object of class stanfit, containing the posterior samples.

34 efftox_get_tox

Details

See methods(class = "efftox_fit") for an overview of available methods.

See Also

```
stan_efftox stan_efftox_demo
```

efftox_get_tox

Get the Prob(Tox) for Prob(Eff) and utility pairs

Description

Get the probability of toxicity for probability-of-efficacy and utility pairs

Usage

```
efftox_get_tox(eff, util, p, eff0, tox1)
```

Arguments

eff	Probability of efficacy; number between 0 and 1
util	Utility score; number
p	p-index of EffTox utility contours. Use efftox_solve_p
eff0	Efficacy probability required when toxicity is impossible; a number between 0 and 1
tox1	Toxicity probability permitted when efficacy is guaranteed; a number between 0 and 1

Value

Probability(s) of toxicity

Note

Various ways of vectorising the function are demonstrated in the examples

See Also

```
efftox_solve_p
```

Examples

efftox_parameters_demo

Get parameters to run the EffTox demo

Description

Get parameters to run the EffTox demo. These match those used to demonstrate EffTox in Thall et al. 2014.

Usage

```
efftox_parameters_demo()
```

Value

a list of parameters, described in efftox_params

References

Thall, Herrick, Nguyen, Venier & Norris. 2014, Effective sample size for computing prior hyper-parameters in Bayesian phase I-II dose-finding

See Also

```
efftox_params
```

Examples

```
dat <- efftox_parameters_demo()
names(dat)
dat$real_doses == c(1, 2, 4, 6.6, 10)</pre>
```

36 efftox_params-class

efftox_params-class

Container class for parameters to fit the EffTox model in trialr.

Description

Container class for parameters to fit the EffTox model in trialr.

Usage

```
efftox_params(
  real_doses,
  efficacy_hurdle,
  toxicity_hurdle,
  p_e,
  p_t,
  eff0,
  tox1,
  eff_star,
  tox_star,
  alpha_mean,
  alpha_sd,
  beta_mean,
 beta_sd,
  gamma_mean,
 gamma_sd,
  zeta_mean,
  zeta_sd,
  eta_mean,
  eta_sd,
  psi_mean,
  psi_sd
)
```

Arguments

real_doses

a vector of numbers. The doses under investigation. They should be ordered from lowest to highest and be in consistent units. E.g., to conduct a dose-finding trial of doses 10mg, 20mg and 50mg, use c(10, 20, 50).

efficacy_hurdle

Minimum acceptable efficacy probability. A number between 0 and 1.

toxicity_hurdle

Maximum acceptable toxicity probability. A number between 0 and 1.

p_e Certainty required to infer a dose is acceptable with regards to being probably

efficacious; a number between 0 and 1.

p_t Certainty required to infer a dose is acceptable with regards to being probably

tolerable; a number between 0 and 1.

efftox_parse_outcomes 37

eff0	Efficacy probability required when toxicity is impossible; a number between 0 and 1 (see Details).
tox1	Toxicity probability permitted when efficacy is guaranteed; a number between 0 and 1 (see Details).
eff_star	Efficacy probability of an equi-utility third point (see Details).
tox_star	Toxicity probability of an equi-utility third point (see Details).
alpha_mean	The prior normal mean of the intercept term in the toxicity logit model. A number.
alpha_sd	The prior normal standard deviation of the intercept term in the toxicity logit model. A number.
beta_mean	The prior normal mean of the slope term in the toxicity logit model. A number.
beta_sd	The prior normal standard deviation of the slope term in the toxicity logit model. A number.
gamma_mean	The prior normal mean of the intercept term in the efficacy logit model. A number.
gamma_sd	The prior normal standard deviation of the intercept term in the efficacy logit model. A number.
zeta_mean	The prior normal mean of the slope term in the efficacy logit model. A number.
zeta_sd	The prior normal standard deviation of the slope term in the efficacy logit model. A number.
eta_mean	The prior normal mean of the squared term coefficient in the efficacy logit model. A number.
eta_sd	The prior normal standard deviation of the squared term coefficient in the efficacy logit model. A number.
psi_mean	The prior normal mean of the association term in the combined efficacy-toxicity model. A number.
psi_sd	The prior normal standard deviation of the association term in the combined efficacy-toxicity model. A number.

See Also

stan_efftox stan_efftox_demo

Description

Parse a string of EffTox outcomes to the binary vector notation required by Stan for model invocation. The outcome string describes the doses given and outcomes observed. The format of the string is described in Brock et al. (2017). The letters E, T, N and B are used to represents patients that experienced (E)fficacy only, (T)oxicity only, (B)oth efficacy and toxicity, and (N)either. These letters are concatenated after numerical dose-levels to convey the outcomes of cohorts of patients. For instance, 2ETB represents a cohort of three patients that were treated at dose-level 2, and experienced efficacy, toxicity and both events, respectively. The results of cohorts are separated by spaces. Thus, 2ETB 1NN extends our previous example, where the next cohort of two were treated at dose-level 1 and both patients experienced neither efficacy nor toxicity. See examples.

We present the notation in the EffTox setting but it is applicable in general seamless phase I/II dose-finding scenarios.

Usage

```
efftox_parse_outcomes(outcome_string, as.list = TRUE)
```

Arguments

```
outcome_string character string, conveying doses given and outcomes observed.

as.list TRUE (be default) to return a list; FALSE to return a data.frame
```

Value

If as.list == TRUE, a list with elements eff, tox, doses and num_patients. These elements are congruent with those of the same name in efftox_params. If as.list == FALSE, a data.frame with columns eff, tox, and doses.

References

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implementing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology, 17(1), 112. https://doi.org/10.1186/s12874-017-0381-x

```
x = efftox_parse_outcomes('1NNE 2EEN 3TBB')
x$num_patients == 9
x$eff == c(0, 0, 1, 1, 1, 0, 0, 1, 1)
sum(x$tox) == 3
```

efftox_path_analysis 39

efftox_path_analysis Fit an EffTox model to the incrementally observed outcomes on a trial pathway.

Description

Fit a EffTox model to the outcomes cumulatively observed at the end of each cohort in a trial pathway. E.g. if the trial pathway is 1EN 2NN 3BT, we have three cohorts of two patients. This function will fit the model to the following four states: before any patients have been evaluated; after 1EN; after 1EN 2NN; and finally after 1EN 2NN 3BT. This allows us to analyse how the trial model is evolving in its estimation as trial data is accumulated.

Usage

```
efftox_path_analysis(outcome_str, verbose = FALSE, ...)
```

Arguments

outcome_str A string representing the outcomes observed hitherto. See efftox_parse_outcomes

 $for a description \ of \ syntax \ and \ examples. \ Alternatively, you \ may \ provide \ doses_given$

and tox parameters. See Details.

verbose logical, TRUE to get log messages.

... All other parameters are passed to stan_efftox.

Value

A list of dose_finding_path_node objects.

Author(s)

Kristian Brock

See Also

```
efftox_parse_outcomes, stan_efftox, dose_finding_path_node
```

```
## Not run:
# EffTox example
paths <- efftox_path_analysis(
   outcome_str = '1NNN 2NEN 3NEB',
   real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0),
   efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
   p_e = 0.1, p_t = 0.1,
   eff0 = 0.5, tox1 = 0.65,
   eff_star = 0.7, tox_star = 0.25,
   alpha_mean = -7.9593, alpha_sd = 3.5487,</pre>
```

40 efftox_process

```
beta_mean = 1.5482, beta_sd = 3.5018,
 gamma_mean = 0.7367, gamma_sd = 2.5423,
 zeta_mean = 3.4181, zeta_sd = 2.4406,
 eta_mean = 0, eta_sd = 0.2,
 psi_mean = 0, psi_sd = 1, seed = 123, refresh = 0)
length(paths) # 4
names(paths)[1] # ""
names(paths)[2] # "1NNN"
names(paths)[3] # "1NNN 2NEN"
names(paths)[4] # "1NNN 2NEN 3NEB"
# Each node is an analysis fit to the cumulative outcomes
# Converting to a tibble presents some nice tidyverse-related opportunities
library(tibble)
df <- as_tibble(paths)</pre>
df
## End(Not run)
```

efftox_process

Process RStan samples from an EffTox model

Description

Internal function to process rstan samples from an EffTox model to make inferences about dose-acceptability, dose-utility and which dose should be recommended next.

Usage

```
efftox_process(dat, fit)
```

Arguments

An instance of efftox_params, a list of EffTox parameters. An example is yielded by efftox_parameters_demo.

fit An instance of rstan::stanmodel, derived by fitting the trialr EffTox model.

Value

An instance of efftox_fit.

efftox_simulate 41

efftox_simulate

Run EffTox simulations

Description

Run EffTox simulations for assumed true efficacy and toxicity curves.

Usage

```
efftox_simulate(
  dat,
  num_sims,
  first_dose,
  true_eff,
  true_tox,
  cohort_sizes,
  ...
)
```

Arguments

dat	An instance of efftox_params, a list of EffTox parameters. An example is yielded by efftox_parameters_demo.
num_sims	integer, number of simulated iterations
first_dose	integer, the dose-level to give to patient 1, e.g. 1 for the lowest dose.
true_eff	the true probabilities of efficacy at the doses under investigation; a vector of numbers between 0 and 1.
true_tox	the true probabilities of toxicity at the doses under investigation; a vector of numbers between 0 and 1.
cohort_sizes	a vector of integer cohort sizes. A dose decision is made when each cohort is completed and the next cohort is treated at the recommended dose. To conduct a trial using at most 20 patients, where dose is re-evaluated after every second patient, use $rep(2,10)$. To conduct a trial of 8 patients where dose is re-evaluated after each single patient, use $rep(1,8)$. Cohort size need not be uniform. E.g. $c(rep(1,5), rep(3,10))$ represents a trial where the dose is re-evaluated after each patient for the first 5 patients, and then after every third patient for a further 30 patients.

Value

A list with named elements recommended_dose, efficacies, toxicities, and doses_given.

Extra parameters provided via the ellipsis are passed to stan::sampling

42 efftox_solve_p

Examples

efftox_solve_p

Calculate the p-index for EffTox utility contours

Description

Calculate the p-index for EffTox utility contours so that the neutral utility contour intersects the following points in the Prob(Efficacy) - Prob(Toxicity) plane: (eff0, 0), (1, tox1) and (eff_star, tox_star)

Usage

```
efftox_solve_p(eff0, tox1, eff_star, tox_star)
```

Arguments

eff0	Efficacy probability required when toxicity is impossible; a number between $\boldsymbol{0}$ and $\boldsymbol{1}$
tox1	Toxicity probability permitted when efficacy is guaranteed; a number between $\boldsymbol{0}$ and $\boldsymbol{1}$
eff_star	Efficacy probability of an equi-utility third point
tox_star	Toxicity probability of an equi-utility third point

Value

The p-index

References

Thall, Herrick, Nguyen, Venier & Norris. 2014, Effective sample size for computing prior hyper-parameters in Bayesian phase I-II dose-finding

efftox_superiority 43

Examples

```
efftox_solve_p(0.5, 0.65, 0.7, 0.25)
```

efftox_superiority

Get dose-superiority matrix in EffTox

Description

Get a dose-superiority matrix from an EffTox dose analysis. EffTox seeks to choose the dose with the highest utility, thus superiority is inferred by posterior utility. The item in row i, col j is the posterior probability that the utility of dose j exceeds that of dose i.

Usage

```
efftox_superiority(fit)
```

Arguments

fit

An instance of efftox_fit.

Value

n by n matrix, where n is number of doses under investigation. The item in row i, col j is the posterior probability that the utility of dose j exceeds that of dose i.

Examples

```
fit <- stan_efftox_demo('1N 2E 3B')
sup_mat <- efftox_superiority(fit)</pre>
```

efftox_utility

Get the utility of efficacy & toxicity probability pairs

Description

Get the utility of efficacy & toxicity probability pairs

Usage

```
efftox_utility(p, eff0, tox1, prob_eff, prob_tox)
```

Arguments

р	p-index of EffTox utility contours. Use efftox_solve_p
eff0	Efficacy probability required when toxicity is impossible; a number between 0 and 1
tox1	Toxicity probability permitted when efficacy is guaranteed; a number between 0 and 1 $$
prob_eff	Probability of efficacy; number between 0 and 1
prob_tox	Probability of toxicity; number between 0 and 1

Value

Utility value(s)

See Also

```
efftox_solve_p
```

Examples

```
efftox_utility_density_plot
```

Plot densities of EffTox dose utilities

Description

Plot densities of EffTox dose utilities. Optionally plot only a subset of the doses by specifying the doses parameter. This function requires ggplot2 be installed.

Usage

```
efftox_utility_density_plot(fit, doses = NULL)
```

Arguments

fit	An instance of efftox_fit.

doses optional, vector of integer dose-levels to plot. E.g. to plot only dose-levels 1, 2

& 3 (and suppress the plotting of any other doses), use doses = 1:3

eff_at_dose 45

Value

an instance of ggplot. Omit assignment to just view the plot.

Note

This function requires that ggplot2 be installed.

Examples

```
fit <- stan_efftox_demo('1N 2E 3B')
efftox_utility_density_plot(fit) + ggplot2::ggtitle('My doses') # Too busy?
# Specify subset of doses to make plot less cluttered
efftox_utility_density_plot(fit, doses = 1:3) + ggplot2::ggtitle('My doses')</pre>
```

eff_at_dose

Get the number of efficacy events seen at the doses under investigation.

Description

Get the number of efficacy events seen at the doses under investigation.

Usage

```
eff_at_dose(x, dose, ...)
## S3 method for class 'efftox_fit'
eff_at_dose(x, dose = NULL, ...)
```

Arguments

```
x An R object of class "dose_finding_fit"

dose Optional integer, at which dose-level? Omit to get data on all doses.
... arguments passed to other methods
```

Value

integer vector

```
## Not run:
# EffTox example
x <- stan_efftox_demo(outcome_str = '1N 2E')
eff_at_dose(fit)  # c(0, 1, 0, 0)
eff_at_dose(fit, dose = 2) # 1
eff_at_dose(fit, dose = 3) # 0
## End(Not run)</pre>
```

n_at_dose

Get the number of patients treated at the doses under investigation.

Description

Get the number of patients treated at the doses under investigation.

Usage

```
n_at_dose(x, dose, ...)
## S3 method for class 'dose_finding_fit'
n_at_dose(x, dose = NULL, ...)
```

Arguments

x An R object of class "dose_finding_fit"dose Optional integer, at which dose-level? Omit to get data on all doses.... arguments passed to other methods

Value

integer vector

Examples

parse_dose_finding_outcomes

Parse a string of dose-finding trial outcomes.

Description

Parse a string of dose-finding trial outcomes

Parse a string of dose-finding trial outcomes to a list. The outcome string describes the doses given, outcomes observed and the timing of analyses that recommend a dose. The format of the string is the pure phase I analogue to that described in Brock _et al_. (2017). The letters T and N are used to represents patients that experienced (T)oxicity and (N)o toxicity. These letters are concatenated after numerical dose-levels to convey the outcomes of cohorts of patients. For instance, 2NNT represents a cohort of three patients that were treated at dose-level 2, one of whom experienced toxicity, and two that did not. The results of cohorts are separated by spaces and it is assumed that a dose-finding decision takes place at the end of a cohort. Thus, 2NNT 1NN builds on our previous example, where the next cohort of two were treated at dose-level 1 and neither of these patients experienced toxicity. See examples.

Usage

```
parse_dose_finding_outcomes(outcome_string)
```

Arguments

outcome_string character representing doses given, outcomes observed, and timing of analyses. See Description.

Value

a list with a slot for each cohort. Each cohort slot is itself a list, containing elements: * dose, the integer dose delivered to the cohort; * outcomes, a character string representing the T or N outcomes for the patients in this cohort.

References

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implementing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology, 17(1), 112. https://doi.org/10.1186/s12874-017-0381-x

```
x = parse_dose_finding_outcomes('1NNN 2NNT 3TT')
length(x)
x[[1]]$dose
x[[1]]$outcomes
x[[2]]$dose
x[[2]]$outcomes
x[[3]]$dose
x[[3]]$dose
```

```
parse_eff_tox_dose_finding_outcomes
```

Parse a string of phase I/II dose-finding trial outcomes.

Description

Parse a string of phase I/II dose-finding trial outcomes. Phase I/II trials conduct dose-finding by efficacy and toxicity outcomes.

Parse a string of phase I/II dose-finding outcomes to a list. The outcome string describes the doses given, efficacy and toxicity outcomes observed and the timing of analyses that recommend a dose. The format of the string is described in Brock _et al_. (2017). The letters E, T, N & B are used to represents patients that experienced (E)fficacy, (T)oxicity, (N)either and (B)oth. These letters are concatenated after numerical dose-levels to convey the outcomes of cohorts of patients. For instance, 2NET represents a cohort of three patients that were treated at dose-level 2, one of whom experienced toxicity only, one that experienced efficacy only, and one that had neither. The results of cohorts are separated by spaces and it is assumed that a dose-finding decision takes place at the end of a cohort. Thus, 2NET 1NN builds on our previous example, where the next cohort of two were treated at dose-level 1 and neither of these patients experienced either event. See examples.

Usage

```
parse_eff_tox_dose_finding_outcomes(outcome_string)
```

Arguments

outcome_string character representing doses given, outcomes observed, and timing of analyses. See Description.

Value

a list with a slot for each cohort. Each cohort slot is itself a list, containing elements: * dose, the integer dose delivered to the cohort; * outcomes, a character string representing the E, T N or B outcomes for the patients in this cohort.

References

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implementing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology, 17(1), 112. https://doi.org/10.1186/s12874-017-0381-x

```
x = parse_eff_tox_dose_finding_outcomes('1NEN 2ENT 3TB')
length(x)
x[[1]]$dose
x[[1]]$outcomes
x[[2]]$dose
x[[2]]$outcomes
```

peps2_get_data 49

```
x[[3]]$dose
x[[3]]$outcomes
```

peps2_get_data

Get data to run the PePS2 trial example

Description

Get data to run the BEBOP model in the PePS2 trial. The trial investigates pembrolizumab in non-small-cell lung cancer. Patients may be previously treated (PT) or treatment naive (TN). Pembro response rates in lung cancer have been shown to increase with PD-L1 tumour proportion score. PD-L1 score is measured at baseline. Each patient belongs to one of the Low, Medium or High categories. These two baseline variables stratify the patient population and are used as predictive variables to stratify the analysis. The BEBOP model studies co-primary efficacy and toxicity outcomes in the presence of predictive data. Thus, PePS2 studies efficacy and toxicity in 6 distinct cohorts: TN Low, TN Medium, TN High, PT Low, PT Medium, PT High. The design admits all-comers and does not target specific sample sizes in the individual cohorts. Hyperprior parameters have defaults to match those used in PePS2, but all may be overridden. The returned object includes randomly-sampled outcomes, as well as parameters to run the model. These are all combined in the same list object for passing to RStan, as is the convention. See the accompanying vignette for a full description.

Usage

```
peps2_get_data(
  num_patients,
  cohort_probs = NULL,
  prob_eff,
  prob_tox,
  eff_tox_or,
  cohort_rho = c(15.7, 21.8, 12.4, 20.7, 18, 11.4),
  alpha_mean = -2.2,
  alpha_sd = 2,
  beta_mean = -0.5,
  beta_sd = 2,
  gamma_mean = -0.5,
  gamma_sd = 2,
  zeta_mean = -0.5,
  zeta_sd = 2,
  lambda_mean = -2.2,
  lambda_sd = 2,
  psi_mean = 0,
  psi_sd = 1
)
```

50 peps2_get_data

Arguments

num_patients	Total number of patients to use, positive integer.
cohort_probs	Probabilities that a patient belongs to each of the 6 cohorts, in the order given above; a vector of numbers between 0 and 1 that add up to 1. cohort_probs or cohort_rho must be specified.
prob_eff	Probabilities of efficacy in each of the 6 cohorts, in the order given above; a vector of numbers between 0 and 1
prob_tox	Probabilities of toxicity in each of the 6 cohorts, in the order given above; a vector of numbers between 0 and 1
eff_tox_or	Measure of strength of association between efficacy and toxicity, in each of the 6 cohorts, in the order given above; a vector of numbers. Use 1 for no association; numbers increasingly greater than 1 for stronger positive associations, and numbers less than 1 for stronger negative associations
cohort_rho	Concentration parameters for cohort membership, in the order given above, using a Dirichlet distribution. This leads to randomly- sampled cohort sizes distributed Dir(cohort_rho). cohort_probs or cohort_rho must be specified.
alpha_mean	The prior mean of alpha. Alpha is the efficacy model intercept.
alpha_sd	The prior standard deviation of alpha. Alpha is the efficacy model intercept.
beta_mean	The prior mean of beta. Beta is the efficacy model term for being previously treated.
beta_sd	The prior standard deviation of beta. Beta is the efficacy model term for being previously treated.
gamma_mean	The prior mean of gamma. Gamma is the efficacy model term for being PD-L1 score = Low.
gamma_sd	The prior standard deviation of gamma. Gamma is the efficacy model term for being PD-L1 score = Low.
zeta_mean	The prior mean of zeta. Zeta is the efficacy model term for being PD-L1 score = Medium.
zeta_sd	The prior standard deviation of zeta. Zeta is the efficacy model term for being PD-L1 score = Medium.
lambda_mean	The prior mean of lambda. Lambda is the toxicity model intercept.
lambda_sd	The prior standard deviation of lambda. Lambda is the toxicity model intercept.
psi_mean	The prior mean of psi. Psi is the joint model association parameter.

Value

a list of parameters

peps2_process 51

Examples

peps2_process

Process RStan samples from a BEBOP model fit to PePS2 data

Description

Process RStan samples from a BEBOP model fit to PePS2 data. This step lets us make inferences about whether the modelled efficacy and toxicity probabilities suggest the treatment is acceptable in each of the cohorts under study. The parameters have default values to match those used in the PePS2 trial. See the accompanying vignette for a full description.

Usage

```
peps2_process(
    fit,
    min_eff = 0.1,
    max_tox = 0.3,
    eff_cert = 0.7,
    tox_cert = 0.9
)
```

Arguments

fit	An instance of rstan::stanmodel, derived by fitting data to the BEBOP in PePS2 model. Use stan_peps2.
min_eff	The lower efficacy probability threshold; a number between 0 and 1.
max_tox	The upper toxicity probability threshold; a number between 0 and 1.
eff_cert	Certainty required to infer the treatment is acceptable with regards to being probably efficacious; a number between 0 and 1.
tox_cert	Certainty required to infer the treatment is acceptable with regards to being probably tolerable; a number between 0 and 1.

52 plot.crm_fit

Value

a list with the following items:

- ProbEff, the posterior mean probability of efficacy in the 6 cohorts.
- ProbAccEff, the posterior mean probability that the probability of efficacy exceeds min_eff, in the 6 cohorts.
- ProbTox, the posterior mean probability of toxicity in the 6 cohorts.
- ProbAccTox, the posterior mean probability that the probability of toxicity is less than max_tox, in the 6 cohorts.
- Accept, a vector of logical values to show whether treatment should be accepted in the 6
 cohorts. Treatment is acceptable when it is probably efficacious and probably not toxic, with
 respect to the described rules.
- alpha, the posterior mean estimate of alpha.
- beta, the posterior mean estimate of beta.
- gamma, the posterior mean estimate of gamma.
- zeta, the posterior mean estimate of zeta.
- lambda, the posterior mean estimate of lambda.
- psi, the posterior mean estimate of psi.

See Also

```
peps2_get_data
```

Examples

```
set.seed(123)
fit <- stan_peps2(
    eff = c(0, 1, 0, 1, 0, 0),
    tox = c(0, 0, 1, 1, 0, 0),
    cohorts = c(3, 1, 1, 4, 5, 6))
decision <- peps2_process(fit)
decision$Accept
decision$ProbEff
decision$ProbAccEff</pre>
```

plot.crm_fit

Plot an crm_fit

Description

Plot an crm_fit

plot.efftox_fit 53

Usage

```
## S3 method for class 'crm_fit'
plot(x, pars = "prob_tox", ...)
```

Arguments

x crm_fit object to plot.

pars Parameters to plot. Plots utility scores by default.

... Extra parameters, passed onwards.

Value

A plot

plot.efftox_fit

Plot an efftox_fit

Description

Plot an efftox_fit

Usage

```
## S3 method for class 'efftox_fit'
plot(x, pars = "utility", ...)
```

Arguments

x efftox_fit object to plot.

pars Parameters to plot. Plots utility scores by default.

... Extra parameters, passed onwards.

Value

A plot

```
predict.augbin_2t_1a_fit
```

Predict probability of success for given tumour size measurements.

Description

This method simply forwards to prob_success.

Usage

```
## S3 method for class 'augbin_2t_1a_fit'
predict(
   object,
   y1_lower = -Inf,
   y1_upper = Inf,
   y2_lower = -Inf,
   y2_upper = log(0.7),
   probs = c(0.025, 0.975),
   newdata = NULL,
   ...
)
```

Arguments

object	Object of class augbin_2t_1a_fit.
y1_lower	numeric, minimum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 1 to baseline. Defaults to negative infinity.
y1_upper	numeric, maximum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 1 to baseline. Defaults to positive infinity.
y2_lower	numeric, minimum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 2 to baseline.
y2_upper	numeric, maximum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 2 to baseline. Defaults to $log(0.7)$.
probs	pair of probabilities to use to calculate the credible interval for the probability of success.
newdata	data for which to infer the probability of success. A dataframe-like object with baseline tumour sizes in first column, and first and second post-baseline tumour sizes in columns 2 and 3. Omitted by default. When omitted, newdata is set to be the object\$tumour_size.
	Extra args passed onwards.

Value

Object of class tibble

print.augbin_fit 55

print.augbin_fit

Print augbin_fit object.

Description

Print augbin_fit object.

Usage

Arguments

x augbin_fit object to print.pars parameters in model to summarise.Extra parameters, passed onwards.

print.crm_fit

Print crm_fit object.

Description

Print crm_fit object.

Usage

```
## S3 method for class 'crm_fit'
print(x, ...)
```

Arguments

x crm_fit object to print.

... Extra parameters, passed onwards.

Description

Print efftox_fit object.

Usage

```
## S3 method for class 'efftox_fit'
print(x, ...)
```

Arguments

```
x efftox_fit object to convert.... Extra parameters, passed onwards.
```

```
prior_predictive_augbin_2t_1a
```

Sample data from the Augmented Binary model prior predictive distribution.

Description

Sample data from the prior predictive distributions of the two-period, single arm Augmented Binary model, subject to chosen prior parameters.

Usage

```
prior_predictive_augbin_2t_1a(
  num_samps,
  alpha_mean,
  alpha_sd,
 beta_mean,
 beta_sd,
  gamma_mean,
  gamma_sd,
  sigma_mean,
  sigma_sd,
  omega_lkj_eta,
  alpha_d1_mean,
  alpha_d1_sd,
  gamma_d1_mean,
  gamma_d1_sd,
  alpha_d2_mean,
```

```
alpha_d2_sd,
  gamma_d2_mean,
  gamma_d2_sd
)
```

Arguments

num_samps	Number of samples.
alpha_mean	Prior mean of alpha parameter.
alpha_sd	Prior sd of alpha parameter.
beta_mean	Prior mean of beta parameter.
beta_sd	Prior sd of beta parameter.
gamma_mean	Prior mean of gamma parameter.
gamma_sd	Prior sd of gamma parameter.
sigma_mean	Prior mean of sigma parameter.
sigma_sd	Prior sd of sigma parameter.
omega_lkj_eta	Prior eta parameter for LKJ prior on covariance matrix of log tumour sizes.
alpha_d1_mean	Prior mean of alpha_D1 parameter.
alpha_d1_sd	Prior sd of alpha_D1 parameter.
gamma_d1_mean	Prior mean of gamma_D1 parameter.
gamma_d1_sd	Prior sd of gamma_D1 parameter.
alpha_d2_mean	Prior mean of alpha_D2 parameter.
alpha_d2_sd	Prior sd of alpha_D2 parameter.
gamma_d2_mean	Prior mean of gamma_D2 parameter.
gamma_d2_sd	Prior sd of gamma_D2 parameter.

Value

Object of class tibble

See Also

```
stan_augbin
```

58 prob_success

prob_success

Calculate the probability of success.

Description

Calculate the probability of success.

Calculate the probability of success for an augbin_2t_1a_fit object.

Usage

```
prob_success(x, ...)
## S3 method for class 'augbin_2t_1a_fit'
prob_success(
    x,
    y1_lower = -Inf,
    y1_upper = Inf,
    y2_lower = -Inf,
    y2_upper = log(0.7),
    probs = c(0.025, 0.975),
    newdata = NULL,
    ...
)
```

Arguments

X	an R object of class "augbin_fit"
	arguments passed to other methods
y1_lower	numeric, minimum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 1 to baseline. Defaults to negative infinity.
y1_upper	numeric, maximum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 1 to baseline. Defaults to positive infinity.
y2_lower	numeric, minimum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 2 to baseline.
y2_upper	numeric, maximum threshold to constitute success, scrutinising the log of the tumour size ratio comparing time 2 to baseline. Defaults to $log(0.7)$.
probs	pair of probabilities to use to calculate the credible interval for the probability of success.
newdata	data for which to infer the probability of success. A dataframe-like object with baseline tumour sizes in first column, and first and second post-baseline tumour sizes in columns 2 and 3. Omitted by default. When omitted, newdata is set to be the fit\$tumour_size.

Value

Object of class tibble

prob_tox_exceeds 59

Examples

```
## Not run:
fit <- stan_augbin_demo()
prob_success(fit, y2_upper = log(0.7))
## End(Not run)</pre>
```

prob_tox_exceeds

Calculate the probability that the rate of toxicity exceeds some threshold

Description

Calculate the probability that the rate of toxicity exceeds some threshold Calculate the probability that the rate of toxicity exceeds some threshold

Usage

```
prob_tox_exceeds(x, ...)
## S3 method for class 'dose_finding_fit'
prob_tox_exceeds(x, threshold, ...)
```

Arguments

```
x an R object of class "dose_finding_fit"
... arguments passed to other methods
threshold numeric, threshold value.
```

Value

numerical vector of probabilities numerical vector of probabilities

60 rlkjcorr

ranBin2	Sample pairs of correlated binary events	

Description

This function is reproduced from the binarySimCLF package on CRAN. The original package appears no longer to be maintained. View the original source at: https://github.com/cran/binarySimCLF/blob/master/R/ranBin2.

Usage

```
ranBin2(nRep, u, psi)
```

Arguments

nRep	Number of simulated event pairs, positive integer.
u	Mean event probabilities, expressed as a vector of length 2. E.g. to simulate associated bivariate events with probabilities $80 \text{ u} = c(0.8,0.3)$.
psi	Odds ratio, number. This parameter controls the strength of association. Use psi = 1 for no association. Values greater than 1 correspond to increasingly positive association between the two events, and vice-versa.

Value

Matrix of events represented as 0s and 1s, with nRep rows and 2 columns. The first column is the incidence of event 1.

Examples

```
probs <- c(0.8, 0.3)
s <- ranBin2(1000, probs, psi=0.2) # 1000 pairs of outcomes
cor(s) # Negatively correlated because psi < 1
colMeans(s) # Event rates as expected
```

rlkjcorr

Sample LKJ correlation matrices.

Description

This function was copied from Richard McElreath's rethinking package hosted at https://github.com/rmcelreath/rethinking. In turn, he appears to have copied it from Ben Bolker's rLKJ function from the emdbook package, although I cannot find it there (else I would have imported it).

Usage

```
rlkjcorr(n, K, eta = 1)
```

spread_paths 61

Arguments

Number of matrices to sample.K dimenstion of matrix to sample.eta Distribution parameter

Value

matrix

spread_paths Spread the information in dose_finding_paths object to a wide data.frame format.

Description

Spread the information in dose_finding_paths object to a wide data.frame format.

Usage

```
spread_paths(df = NULL, dose_finding_paths = NULL, max_depth = NULL)
```

Arguments

df

Optional data.frame like that returned by as_tibble(dose_finding_paths). Columns .depth, .node, .parent are required. All other columns are spread with a suffix reflecting depth.

dose_finding_paths

Optional instance of dose_finding_paths. Required if 'df' is null.

max_depth integer, maximum depth of paths to traverse.

Value

A data.frame

62 stan_augbin

stan_augbin

Fit Wason & Seaman's Augmented Binary model for tumour response.

Description

Phase II clinical trials in oncology commonly assess response as a key outcome measure. Patients achieve a RECIST response if their tumour size post-baseline has changed in size by some threshold amount and they do not experience non-shrinkage failure. An example of non-shrinkage failure is the appearance of new lesions. As a dichtotomisation of the underlying continuous tumour size measurement, RECIST response is inefficient. Wason & Seaman introduced the Augmented Binary method to incorporate mechanisms for non-shrinkage failure whilst modelling the probability of response based on the continuous tumour size measurements. See model-specific sections below, and the references.

Usage

```
stan_augbin(
  tumour_size,
  non_shrinkage_failure,
 arm = NULL,
 model = c("2t-1a"),
 prior_params = list(),
)
```

Arguments

tumour_size

matrix-like object containing tumour size measures, with rows representing patients and columns representing chronological standardised assessment points.

Column one is baseline.

non_shrinkage_failure

matrix-like object containing logical indicators of non-shrinkage failure, with rows representing patients and columns representing chronological standardised

assessment points.

arm

optional vector of integers representing the allocated treatment arms for patients, assumed in the same order as tumour_size and non_shrinkage_failure. NULL

to fit the augbin variant for single-arm trials. NULL is the default.

model

Character string to denote the desired model. Currently, only 2t-1a is supported, representing the model variant with two post-baseline assessments in a single arm trial. Multi-period and multi-arm versions will be added in future releases. The model choice determines the prior parameters that must be provided.

See sections below.

prior_params

list of prior parameters. These are combined with the data and passed to rstan::sampling.

The parameters required depend on the model form being fit. See sections be-

low.

Extra parameters are passed to rstan::sampling. Commonly used options are iter, chains, warmup, cores, control. See sampling.

stan_augbin 63

Value

an instance or subclass of type augbin_fit.

Single-arm model with two post-baseline assessments

The complete model form is:

$$(y_{1i}, y_{2i})^T \sim N((\mu_{1i}, \mu_{2i})^T, \Sigma)$$

$$\mu_{1i} = \alpha + \gamma z_{0i}$$

$$\mu_{2i} = \beta + \gamma z_{0i}$$

$$logit(Pr(D_{1i} = 1 | Z_{0i})) = \alpha_{D1} + \gamma_{D1} z_{0i}$$

$$logit(Pr(D_{2i} = 1 | D_{1i} = 0, Z_{0i}, Z_{1i})) = \alpha_{D2} + \gamma_{D2} z_{1i}$$

where z_{0i}, z_{1i}, z_{2i} are tumour sizes at baseline, period 1, and period 2, for patient i; y_{1i}, y_{2i} are the log-tumour-size ratios with respect to baseline; D_{1i}, D_{2i} are indicators of non-shrinkage failure; and Σ is assumed to be unstructured covariance matrix, with associated correlation matrix having an LKJ prior.

The following prior parameters are required:

- alpha_mean & alpha_sd for normal prior on α .
- beta_mean & beta_sd for normal prior on β .
- gamma_mean & gamma_sd for normal prior on γ .
- sigma_mean & sigma_sd for normal priors on diagonal elements of Σ ;
- omega_lkj_eta for a LKJ prior on the two-period correlation matrix associated with Sigma. omega_lkj_eta = 1 is uniform, analogous to a Beta(1,1) prior on a binary probability.
- alpha_d1_mean & alpha_d1_sd for normal prior on α_{D1} .
- gamma_d1_mean & gamma_d1_sd for normal prior on γ_{D1} .
- alpha_d2_mean & alpha_d2_sd for normal prior on α_{D2} .
- gamma_d2_mean & gamma_d2_sd for normal prior on γ_{D2} .

Author(s)

Kristian Brock

References

Wason JMS, Seaman SR. Using continuous data on tumour measurements to improve inference in phase II cancer studies. Statistics in Medicine. 2013;32(26):4639-4650. doi:10.1002/sim.5867

Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). European Journal of Cancer. 2009;45(2):228-247. doi:10.1016/j.ejca.2008.10.026

See Also

augbin_fit prior_predictive_augbin_2t_1a sampling

stan_augbin_demo

Examples

```
priors <- list(alpha_mean = 0, alpha_sd = 1,</pre>
               beta_mean = 0, beta_sd = 1,
               gamma_mean = 0, gamma_sd = 1,
               sigma_mean = 0, sigma_sd = 1,
               omega_lkj_eta = 1,
               alpha_d1_mean = 0, alpha_d1_sd = 1,
                gamma_d1_mean = 0, gamma_d1_sd = 1,
               alpha_d2_mean = 0, alpha_d2_sd = 1,
               gamma_d2_mean = 0, gamma_d2_sd = 1)
# Scenario 1 of Table 1 in Wason & Seaman (2013)
N <- 50
sigma <- 1
delta1 <- -0.356
mu <- c(0.5 * delta1, delta1)
Sigma = matrix(c(0.5 * sigma^2, 0.5 * sigma^2, 0.5 * sigma^2, sigma^2),
               ncol = 2)
alphaD <- -1.5
gammaD <- 0
set.seed(123456)
y <- MASS::mvrnorm(n = N, mu, Sigma)
z0 \leftarrow runif(N, min = 5, max = 10)
z1 <- exp(y[, 1]) * z0
z2 <- exp(y[, 2]) * z0
d1 <- rbinom(N, size = 1, prob = gtools::inv.logit(alphaD + gammaD * z0))</pre>
d2 <- rbinom(N, size = 1, prob = gtools::inv.logit(alphaD + gammaD * z1))</pre>
tumour_size <- data.frame(z0, z1, z2) # Sizes in cm</pre>
non_shrinkage_failure <- data.frame(d1, d2)</pre>
# Fit
## Not run:
fit <- stan_augbin(tumour_size, non_shrinkage_failure,</pre>
                    prior_params = priors, model = '2t-1a', seed = 123)
## End(Not run)
```

stan_augbin_demo

Simple helper function to demonstrate fitting of an Augmented Binary model.

Description

This function exist mostly to demonstrate things you can do to instances of augbin_fit without having to paste into each example the not inconsiderable blob of code to sample outcomes and fit the model.

Usage

```
stan_augbin_demo()
```

stan_crm 65

Value

```
instance of augbin_fit
```

See Also

```
stan_augbin augbin_fit prior_predictive_augbin_2t_1a sampling
```

Examples

```
## Not run:
fit <- stan_augbin_demo()
# I told you it was simple.
## End(Not run)</pre>
```

stan_crm

Fit a CRM model

Description

Fit a continual reassessment method (CRM) model for dose-finding using Stan for full Bayesian inference. There are several likelihood and prior combinations supported. See model-specific sections below.

Usage

```
stan_crm(
 outcome_str = NULL,
  skeleton,
  target,
 model = c("empiric", "logistic", "logistic_gamma", "logistic2"),
  a0 = NULL
  alpha_mean = NULL,
  alpha_sd = NULL,
  beta_mean = NULL,
  beta_sd = NULL,
  beta_shape = NULL,
  beta_inverse_scale = NULL,
  doses_given = NULL,
  tox = NULL,
 weights = NULL,
)
```

stan_crm

Arguments

outcome_str	A string representing the outcomes observed hitherto. See df_parse_outcomes for a description of syntax and examples. Alternatively, you may provide doses_given and tox parameters. See Details.
skeleton	a vector of the prior guesses of toxicity at doses. This should be a monotonically-increasing vector of numbers between 0 and 1.
target	the target toxicity probability, a number between 0 and 1. This value would normally be one of the values in skeleton, but that is not a requirement.
model	Character string to denote desired model. One of empiric, logistic, logistic_gamma, or logistic2. The choice of model determines which parameters are required. See Details.
a0	Value of fixed intercept parameter. Only required for certain models. See Details.
alpha_mean	Prior mean of intercept variable for normal prior. Only required for certain models. See Details.
alpha_sd	Prior standard deviation of intercept variable for normal prior. Only required for certain models. See Details.
beta_mean	Prior mean of gradient variable for normal prior. Only required for certain models. See Details.
beta_sd	Prior standard deviation of slope variable for normal prior. Only required for certain models. See Details.
beta_shape	Prior shape parameter of slope variable for gamma prior. Only required for certain models. See Details.
beta_inverse_scale	
	Prior inverse scale parameter of slope variable for gamma prior. Only required for certain models. See Details.
doses_given	A optional vector of dose-levels given to patients 1:num_patients, where 1=lowest dose, 2=second dose, etc. Only required when outcome_str is not provided.
tox	An optional vector of toxicity outcomes for patients 1:num_patients, where 1=toxicity and 0=no toxicity. Only required when outcome_str is not provided.
weights	An optional vector of numeric weights for the observations for patients 1:num_patients, thus facilitating the TITE-CRM design. Can be used with outcome_str, or with doses_given and tox. It is generally tider to specify doses_given, tox and weights when a TITE-CRM analysis is desired.
• • •	Extra parameters are passed to rstan::sampling. Commonly used options are iter, chains, warmup, cores, and control.

Details

The quickest and easiest way to fit a CRM model to some observed outcomes is to describe the outcomes using **trialr**'s syntax for dose-finding outcomes. See df_parse_outcomes for full details and examples.

Different model choices require that different parameters are provided. See sections below.

stan_crm 67

Value

An object of class crm_fit

The empiric model

The model form is:

$$F(x_i, \beta) = x_i^{\exp \beta}$$

and the required parameters are:

• beta_sd

The logistic model

The model form is:

$$F(x_i, \beta) = 1/(1 + \exp(-a_0 - \exp(\beta)x_i))$$

and the required parameters are:

- a0
- beta_mean
- beta_sd

The logistic_gamma model

The model form is:

$$F(x_i, \beta) = 1/(1 + \exp(-a_0 - \exp(\beta)x_i))$$

and the required parameters are:

- a0
- beta_shape
- beta_inverse_scale

The logistic2 model

The model form is:

$$F(x_i, \beta) = 1/(1 + \exp(-\alpha - \exp(\beta)x_i))$$

and the required parameters are:

- alpha_mean
- alpha_sd
- beta_mean
- beta_sd

Author(s)

Kristian Brock

References

O'Quigley, J., Pepe, M., & Fisher, L. (1990). Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics, 46(1), 33-48. https://www.jstor.org/stable/2531628 Cheung, Y.K. (2011). Dose Finding by the Continual Reassessment Method. CRC Press. ISBN 9781420091519

See Also

```
crm_fit sampling
```

Examples

```
## Not run:
# CRM example
fit1 <- stan_crm('1N 2N 3T', skeleton = c(0.1, 0.2, 0.35, 0.6),
                 target = 0.2, model = 'empiric', beta_sd = sqrt(1.34),
                 seed = 123)
fit2 <- stan_crm('1NNN 2NNN 3TTT', skeleton = c(0.1, 0.2, 0.35, 0.6),
                 target = 0.2, model = 'logistic', a0 = 3, beta_mean = 0,
                 beta_sd = sqrt(1.34), seed = 123)
# The seed is passed to the Stan sampler. The usual Stan sampler params like
# cores, iter, chains etc are passed on too via the ellipsis operator.
# TITE-CRM example, p.124 of Dose Finding by the CRM, Cheung (2010)
fit3 < -stan_{crm}(skeleton = c(0.05, 0.12, 0.25, 0.40, 0.55), target = 0.25,
                doses_given = c(3, 3, 3, 3),
                tox = c(0, 0, 0, 0),
                weights = c(73, 66, 35, 28) / 126,
                model = 'empiric', beta_sd = sqrt(1.34), seed = 123)
fit3$recommended_dose
## End(Not run)
```

stan_efftox

Fit an EffTox model

Description

Fit an EffTox model using Stan for full Bayesian inference.

Usage

```
stan_efftox(
  outcome_str = NULL,
  real_doses,
  efficacy_hurdle,
```

```
toxicity_hurdle,
  p_e,
  p_t,
  eff0,
  tox1,
  eff_star,
  tox_star,
  alpha_mean,
  alpha_sd,
  beta_mean,
  beta_sd,
  gamma_mean,
  gamma_sd,
  zeta_mean,
  zeta_sd,
  eta_mean,
  eta_sd,
  psi_mean,
  psi_sd,
  doses_given = NULL,
  eff = NULL,
  tox = NULL,
)
```

Arguments

outcome_str A string representing the outcomes observed hitherto. See efftox_parse_outcomes for a description of syntax and examples. Alternatively, you may provide doses_given, eff and tox parameters. See Details.

real_doses A vector of numbers. The doses under investigation. They should be ordered from lowest to highest and be in consistent units. E.g., #' to conduct a dose-

from lowest to highest and be in consistent units. E.g., #' to conduct a dose-finding trial of doses 10mg, 20mg and 50mg, use c(10, 20, 50).

efficacy_hurdle

Minimum acceptable efficacy probability. A number between 0 and 1.

toxicity_hurdle

Maximum acceptable toxicity probability. A number between 0 and 1.

p_e Certainty required to infer a dose is acceptable with regards to being probably efficacious; a number between 0 and 1.

emedelous, a named between a and 1.

p_t Certainty required to infer a dose is acceptable with regards to being probably

tolerable; a number between 0 and 1.

eff0 Efficacy probability required when toxicity is impossible; a number between 0

and 1 (see Details).

tox1 Toxicity probability permitted when efficacy is guaranteed; a number between 0

and 1 (see Details).

eff_star Efficacy probability of an equi-utility third point (see Details).

tox_star	Toxicity probability of an equi-utility third point (see Details).
alpha_mean	The prior normal mean of the intercept term in the toxicity logit model. A number.
alpha_sd	The prior normal standard deviation of the intercept term in the toxicity logit model. A number.
beta_mean	The prior normal mean of the slope term in the toxicity logit model. A number.
beta_sd	The prior normal standard deviation of the slope term in the toxicity logit model. A number.
gamma_mean	The prior normal mean of the intercept term in the efficacy logit model. A number.
gamma_sd	The prior normal standard deviation of the intercept term in the efficacy logit model. A number.
zeta_mean	The prior normal mean of the slope term in the efficacy logit model. A number.
zeta_sd	The prior normal standard deviation of the slope term in the efficacy logit model. A number.
eta_mean	The prior normal mean of the squared term coefficient in the efficacy logit model. A number.
eta_sd	The prior normal standard deviation of the squared term coefficient in the efficacy logit model. A number.
psi_mean	The prior normal mean of the association term in the combined efficacy-toxicity model. A number.
psi_sd	The prior normal standard deviation of the association term in the combined efficacy-toxicity model. A number.
doses_given	A optional vector of dose-levels given to patients 1:num_patients, where 1=lowest dose, 2=second dose, etc. Only required when outcome_str is not provided.
eff	An optional vector of efficacy outcomes for patients 1:num_patients, where 1=efficacy and 0=no efficacy. Only required when outcome_str is not provided.
tox	An optional vector of toxicity outcomes for patients 1:num_patients, where 1=toxicity and 0=no toxicity. Only required when outcome_str is not provided.
	Extra parameters are passed to rstan::sampling. Commonly used options are iter, chains, warmup, cores, control. sampling.

Details

The quickest and easiest way to fit an EffTox model to some observed outcomes is to describe the outcomes using **trialr**'s syntax for efficacy-toxicity dose-finding outcomes. See efftox_parse_outcomes for full details and examples.

Utility or attractivess scores are calculated in EffTox using L^p norms. Imagine the first quadrant of a scatter plot with prob_eff along the x-axis and prob_tox along the y-axis. The point (1, 0) (i.e. guaranteed efficacy & no toxicity) is the holy grail. The neutral contour intersects the points (eff0, 0), (1, tox1) and (eff_star, tox_star). A unique curve intersects these three points and identifies a value for p, the exponent in the L^p norm. On this neutral- utility contour, scores are equal to zero. A family of curves with different utility scores is defined that are "parallel" to this neutral curve. Points with probabilities of efficacy and toxicity that are nearer to (1, 0) will yield greater scores, and vice-versa.

Value

An object of class efftox_fit

Author(s)

Kristian Brock <kristian.brock@gmail.com>

References

Thall, P., & Cook, J. (2004). Dose-Finding Based on Efficacy-Toxicity Trade-Offs. Biometrics, 60(3), 684-693.

Thall, P., Herrick, R., Nguyen, H., Venier, J., & Norris, J. (2014). Effective sample size for computing prior hyperparameters in Bayesian phase I-II dose-finding. Clinical Trials, 11(6), 657-666. https://doi.org/10.1177/1740774514547397

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implementing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology, 17(1), 112. https://doi.org/10.1186/s12874-017-0381-x

See Also

```
efftox_fit stan_efftox_demo
```

```
## Not run:
# This model is presented in Thall et al. (2014)
mod1 <- stan_efftox('1N 2E 3B',</pre>
                     real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0),
                     efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
                     p_e = 0.1, p_t = 0.1,
                     eff0 = 0.5, tox1 = 0.65,
                      eff_star = 0.7, tox_star = 0.25,
                      alpha_mean = -7.9593, alpha_sd = 3.5487,
                      beta_mean = 1.5482, beta_sd = 3.5018,
                      gamma_mean = 0.7367, gamma_sd = 2.5423,
                     zeta_mean = 3.4181, zeta_sd = 2.4406,
                      eta_mean = 0, eta_sd = 0.2,
                     psi_mean = 0, psi_sd = 1, seed = 123)
# Shorthand for the above is:
mod2 <- stan_efftox_demo('1N 2E 3B', seed = 123)</pre>
# the seed is passed to the Stan sampler. The usual Stan sampler params like
# cores, iter, chains etc are passed on too via the ellipsis operator.
## End(Not run)
```

72 stan_efftox_demo

stan_efftox_demo

Fit the EffTox model presented in Thall et al. (2014)

Description

Fit the EffTox model presented in Thall et al. (2014) using Stan for full Bayesian inference.

Usage

```
stan_efftox_demo(outcome_str, ...)
```

Arguments

outcome_str A string representing the outcomes observed hitherto. See efftox_parse_outcomes

for a description of syntax and examples. Alternatively, you may provide doses_given,

eff and tox parameters. See Details.

.. Extra parameters are passed to rstan::sampling. Commonly used options are

iter, chains, warmup, cores, control. sampling.

Value

An object of class efftox_fit

Author(s)

Kristian Brock kristian.brock@gmail.com

References

Thall, P., & Cook, J. (2004). Dose-Finding Based on Efficacy-Toxicity Trade-Offs. Biometrics, 60(3), 684-693.

Thall, P., Herrick, R., Nguyen, H., Venier, J., & Norris, J. (2014). Effective sample size for computing prior hyperparameters in Bayesian phase I-II dose-finding. Clinical Trials, 11(6), 657-666. https://doi.org/10.1177/1740774514547397

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implementing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology, 17(1), 112. https://doi.org/10.1186/s12874-017-0381-x

See Also

```
efftox_fit stan_efftox
```

Examples

```
## Not run:
# This model is presented in Thall et al. (2014)
mod2 <- stan_efftox_demo('1N 2E 3B', seed = 123)
# The seed is passed to the Stan sampler. The usual Stan sampler params like
# cores, iter, chains etc are passed on too via the ellipsis operator.
## End(Not run)</pre>
```

```
stan_hierarchical_response_thall
```

Fit the hierarchical response model described by Thall et al. (2003).

Description

Fit the hierarchical response model to exchangeable groups described by Thall et al. (2003).

Usage

```
stan_hierarchical_response_thall(
  group_responses,
  group_sizes,
  mu_mean,
  mu_sd,
  tau_alpha,
  tau_beta,
  ...
)
```

Arguments

```
responses
vector of integers, number of responses in each group
group_sizes
vector of integers, number of patients in each group
mu_mean
mean parameter of normal prior distribution on mu. See details.
mu_sd
standard deviation parameter of normal prior distribution on mu. See details.
tau_alpha
parameter alpha of inverse gamma prior distribution on tau. See details.
tau_beta
beta parameter of inverse gamma prior distribution on tau. See details.
...
Extra parameters are passed to rstan::sampling. Commonly used options are iter, chains, warmup, cores, and control.
```

Details

Thall *et al.* (2003) describe hierarchical methods for analysing treatment effects of a common intervention in several sub-types of a disease. The treatment effects are assumed to be different but exchangeable and correlated. Observing efficacy in one cohort, for example, increases one's expectations of efficacy in others. They demonstrate the hierarchical approach in a trial with binary response outcomes and in another with time-to-event outcomes. This function fits their model for binary response outcomes.

Let the probability of response in group i be $\pi[i]$ for i=1,...,N. They assume a logistic model so that $\theta_i = \log \pi_i/(1-\pi_i)$ is the log-odds of response in group i. They assume that $\theta_i \sim N(\mu, \sigma^2)$.

The authors implemented their model in BUGS. As is the convention in BUGS, the authors define normal distributions by a precision parameter τ as opposed to the standard deviation parameter σ used here. We have re-specified their model to comply with the Stan convention of using standard deviation. The authors use a normal prior on μ , and a gamma prior on τ , equivalent to an inverse gamma prior on $\tau^{-1} = \sigma^2$.

The authors provide WinBUGS code in their publication. We implement their model here in Stan.

Value

```
Object of class rstan::stanfit returned by rstan::sampling
```

References

Thall, Wathen, Bekele, Champlin, Baker, and Benjamin. 2003. "Hierarchical Bayesian approaches to phase II trials in diseases with multiple subtypes." Statistics in Medicine 22 (5): 763–80. https://doi.org/10.1002/sim.1399.

See Also

```
rstan::stanfit, rstan::sampling
```

Examples

```
## Not run:
# Example from p.778 of Thall et al. (2003)
mod0 <- stan_hierarchical_response_thall(
   group_responses = c(0, 0, 1, 3, 5, 0, 1, 2, 0, 0),
   group_sizes = c(0, 2, 1, 7, 5, 0, 2, 3, 1, 0),
   mu_mean = -1.3863,
   mu_sd = sqrt(1 / 0.1),
   tau_alpha = 2,
   tau_beta = 20)
## End(Not run)</pre>
```

stan_peps2 75

stan_peps2

Fit the P2TNE model developed for the PePS2 trial to some outcomes.

Description

The PePS2 trial investigates pembrolizumab in non-small-cell lung cancer. Patients may be previously treated (PT) or treatment naive (TN). Response rates in lung cancer have been shown to increase with PD-L1 tumour proportion score. PD-L1 score is measured at baseline. Each patient belongs to one of the categories <1 stratify the patient population and are used as predictive variables to stratify the analysis. The BEBOP model studies co-primary efficacy and toxicity outcomes in the presence of predictive data. Thus, PePS2 studies efficacy and toxicity in 6 distinct cohorts: TN Low, TN Medium, TN High, PT Low, PT Medium, PT High. The design admits all-comers and does not target specific sample sizes in the individual cohorts. Hyperprior parameters have defaults to match those used in PePS2, but all may be overridden. The returned object includes randomly-sampled outcomes, as well as parameters to run the model. These are all combined in the same list object for passing to RStan, as is the convention. See the accompanying vignette for a full description.

Usage

```
stan_peps2(
  eff,
  tox,
  cohorts,
  alpha_mean = -2.2,
  alpha_sd = 2,
  beta_mean = -0.5,
  beta_sd = 2,
  gamma_mean = -0.5,
  gamma_sd = 2,
  zeta_mean = -0.5,
  zeta_sd = 2,
  lambda_mean = -2.2,
  lambda_sd = 2,
  psi_mean = 0,
  psi_sd = 1,
)
```

Arguments

eff A vector of efficacy outcomes for the patients, where 1=efficacy and 0=no effi-

A vector of toxicity outcomes for the patients, where 1=toxicity and 0=no toxitox

cohorts A vector of integers from 1 to 6, denoting the cohorts to which the patients

belong.

76 summary.crm_fit

alpha_mean	The prior mean of alpha. Alpha is the efficacy model intercept.
alpha_sd	The prior standard deviation of alpha. Alpha is the efficacy model intercept.
beta_mean	The prior mean of beta. Beta is the efficacy model term for being previously treated.
beta_sd	The prior standard deviation of beta. Beta is the efficacy model term for being previously treated.
gamma_mean	The prior mean of gamma. Gamma is the efficacy model term for being PD-L1 score = Low.
gamma_sd	The prior standard deviation of gamma. Gamma is the efficacy model term for being PD-L1 score = Low.
zeta_mean	The prior mean of zeta. Zeta is the efficacy model term for being PD-L1 score = Medium.
zeta_sd	The prior standard deviation of zeta. Zeta is the efficacy model term for being PD-L1 score = Medium.
lambda_mean	The prior mean of lambda. Lambda is the toxicity model intercept.
lambda_sd	The prior standard deviation of lambda. Lambda is the toxicity model intercept.
psi_mean	The prior mean of psi. Psi is the joint model association parameter.
psi_sd	The prior standard deviation of psi. Psi is the joint model association parameter.
•••	Extra parameters are passed to rstan::sampling. Commonly used options are iter, chains, warmup, cores, and control.

Value

Object of class rstan::stanfit returned by rstan::sampling

Examples

```
## Not run:
fit <- stan_peps2(
  eff = c(0, 1, 0, 1, 0, 0),
  tox = c(0, 0, 1, 1, 0, 0),
  cohorts = c(3, 1, 1, 4, 5, 6)

## End(Not run)</pre>
```

summary.crm_fit

Obtain summary of an crm_fit

Description

Obtain summary of an crm_fit

summary.efftox_fit 77

Usage

```
## S3 method for class 'crm_fit'
summary(object, ...)
```

Arguments

object crm_fit object to summarise.
... Extra parameters, passed onwards.

Value

A summary object.

See Also

stan_crm

summary.efftox_fit

Obtain summary of an efftox_fit

Description

Obtain summary of an efftox_fit

Usage

```
## S3 method for class 'efftox_fit'
summary(object, ...)
```

Arguments

```
object efftox_fit object to summarise.
... Extra parameters, passed onwards.
```

Value

A summary object.

78 total_weight_at_dose

Description

Get the total weight of patient outcomes at the doses under investigation.

Usage

```
total_weight_at_dose(x, dose, ...)
## Default S3 method:
total_weight_at_dose(x, dose = NULL, ...)
```

Arguments

```
x An R object of class "dose_finding_fit"dose Optional integer, at which dose-level? Omit to get data on all doses.... arguments passed to other methods
```

Value

numerical vector

Examples

tox_at_dose 79

tox_at_dose

Get the number of toxicity events seen at the doses under investigation.

Description

Get the number of toxicity events seen at the doses under investigation.

Usage

```
tox_at_dose(x, dose, ...)
## S3 method for class 'dose_finding_fit'
tox_at_dose(x, dose = NULL, ...)
```

Arguments

x An R object of class "dose_finding_fit"dose Optional integer, at which dose-level? Omit to get data on all doses.... arguments passed to other methods

Value

integer vector

Examples

trialr_simulate

Run a simulation study.

80 trialr_simulate

Description

This function is a fairly flexible way of running simulation studies in trialr, and beyond. It essentially uses delegates to perform this pattern:

```
for i in 1:N:
    data = get_data_func()
    fit = fit_model_func(data)
    if summarise_func is null:
        sims[i] = fit
    else
        sims[i] = summarise_func(data, fit)
    end
loop
return sims
```

Usage

```
trialr_simulate(
   N,
   get_data_func,
   fit_model_func,
   summarise_func = NULL,
   num_logs = 10,
   num_saves = NULL,
   save_func = NULL
)
```

Arguments N

.,	integer, number of simulated iterations to run.
get_data_func	Function that takes no parameters and returns a sampled dataset to be analysed. I.e. the call signature is $f()$.
<pre>fit_model_func</pre>	Function that accepts the output of get_data_func as the sole parameter and fits the model or performs the analysis, returning an object of arbitrary type.
summarise_func	Optional. If provided, this function should accept the ouputs of get_data_func and fit_model_func as parameters 1 & 2 and perform some post-fit processing or simplification. The result of this call is the output from iteration i. If omitted, the fit object from fit_model_func is simply used as the output from iteration i.
	N Cl NITI I

integer, number of simulated iterations to run.

num_logs Number of log messages to receive about progress. NULL to suppress logging. E.g. if N=100 and num_logs=10, you will get log messages when i=10, 20, 30,

etc.

num_saves Number of interimittent saves to attempt. NULL to suppress saving E.g. if

N=100 and num_saves=10, the save_func delegate will be called after iteration

i=10, 20, 30, etc.

weights_at_dose 81

save_func

Optional. Function that takes the interim list of simulated objects as the sole parameter and saves them somehow. This, combined with num_saves, allows periodic saving of in-progress results to avoid complete data loss if the simulation study fails for some reason.

Value

list of length N. The items in the list are as returned by summarise_func or fit_model_func.

Examples

```
get_data_func <- function() {</pre>
  group_sizes <- rbinom(n = 5, size = 50, prob = c(0.1, 0.3, 0.3, 0.2, 0.1))
  group_responses <- rbinom(n = 5, size = group_sizes,</pre>
                             prob = c(0.2, 0.5, 0.2, 0.2, 0.2)
  list(
    group_responses = group_responses, group_sizes = group_sizes,
    mu_mean = gtools::logit(0.1), mu_sd = 1, tau_alpha = 2, tau_beta = 20
  )
}
fit_model_func <- function(data) {</pre>
  data <- append(data, list(refresh = 0))</pre>
  do.call(stan_hierarchical_response_thall, args = data)
summarise_func <- function(data, fit) {</pre>
  # Probability that estimate response rate exceeds 30%
  unname(colMeans(as.data.frame(fit, 'prob_response') > 0.3))
}
## Not run:
sims <- trialr_simulate(N = 20, get_data_func, fit_model_func, summarise_func)</pre>
# Posterior probabilities that the response rate in each cohort exceeds 30%:
do.call(rbind, sims)
# Cohorts are in columns; simulated iterations are in rows.
## End(Not run)
```

weights_at_dose

Get the weights of patient outcomes at the doses under investigation.

Description

Get the weights of patient outcomes at the doses under investigation.

Usage

```
weights_at_dose(x, dose, ...)
## Default S3 method:
weights_at_dose(x, dose = NULL, ...)
```

82 weights_at_dose

```
## S3 method for class 'crm_fit'
weights_at_dose(x, dose = NULL, ...)
```

Arguments

x An R object of class "dose_finding_fit"dose Optional integer, at which dose-level? Omit to get data on all doses.... arguments passed to other methods

Value

list if dose omitted, numerical vector if dose provided.

Examples

Index

as.data.frame.crm_fit,4	efftox_dtps, 28, 31
as.data.frame.efftox_fit,4	efftox_dtps_to_dataframe, 28, 31
as.mcmc.list.crm_fit,5	efftox_fit, 4, 5, 24, 26–28, 40, 53, 56, 71,
as.mcmc.list.efftox_fit,5	72, 77
as_tibble.augbin_2t_1a_fit,6	<pre>efftox_fit (efftox_fit-class), 32</pre>
as_tibble.dose_finding_paths, 6	efftox_fit-class, 32
augbin_2t_1a_fit, 7	efftox_get_tox, 34
augbin_fit, 7, 8, 55, 63-65	efftox_parameters_demo, <i>31</i> , 35, <i>40</i> , <i>41</i>
2.38.22. 2.5, 1, 2, 22, 22	efftox_params, 31, 33, 35, 40, 41
binary_prob_success, 8	efftox_params (efftox_params-class), 36
	efftox_params-class, 36
careful_escalation, 10	efftox_parse_outcomes, 28, 29, 37, 39, 69,
closest_to_target, 11	70, 72
crm_codified_dose_logistic, 11	efftox_path_analysis, 29, 39
crm_dtps, 12	efftox_process, 40
crm_fit, 4, 5, 13, 21, 22, 24, 53, 55, 67, 68, 77	efftox_simulate, 41
crm_fit (crm_fit-class), 15	
crm_fit-class, 15	efftox_solve_p, 34, 42, 44
crm_params, 16, 22, 24	efftox_superiority, 43
	efftox_utility, 43
crm_params (crm_params-class), 16	efftox_utility_density_plot,44
crm_params-class, 16	1
crm_path_analysis, 14, 18	list, 13, 18, 39
crm_prior_beliefs, 20	21
crm_process, 22	mcmc.list, 5
df_parse_outcomes, 13, 14, 18, 19, 23, 25, 66	n_at_dose, 46
<pre>dose_finding_fit, 10</pre>	
dose_finding_fit	parse_dose_finding_outcomes,46
<pre>(dose_finding_fit-class), 24</pre>	<pre>parse_eff_tox_dose_finding_outcomes,</pre>
<pre>dose_finding_fit-class, 24</pre>	48
dose_finding_path_node, 13, 14, 18, 19, 29,	peps2_get_data, 49, 52
39	peps2_process, 51
dose_finding_path_node	plot.crm_fit,52
<pre>(dose_finding_path_node-class),</pre>	plot.efftox_fit, 53
25	predict.augbin_2t_1a_fit, 54
dose_finding_path_node-class, 25	print.augbin_fit, 55
	print.crm_fit,55
eff_at_dose, 45	print.efftox_fit, 56
efftox_analysis_to_df, 26	prior_predictive_augbin_2t_1a, 56, 63,
efftox_contour_plot, 27	65
5 5555115541 _p156, 27	

INDEX

```
prob_success, 54, 58
prob_tox_exceeds, 59
ranBin2, 60
rlkjcorr, 60
rstan::sampling, 74, 76
rstan::stanfit, 74, 76
sampling, 16, 24, 33, 62, 63, 65, 68, 70, 72
spread_paths, 61
stan_augbin, 7, 8, 57, 62, 65
stan_augbin_demo, 64
stan_crm, 13, 14, 16-22, 65, 77
stan_efftox, 26, 27, 29, 34, 37, 39, 68, 72
stan_efftox_demo, 34, 37, 71, 72
stan\_hierarchical\_response\_thall, 73
stan_peps2, 75
stanfit, 7, 8, 16, 24, 33
summary.crm_fit, 76
summary.efftox_fit, 77
tibble, 6, 54, 57, 58
total_weight_at_dose, 78
tox_at_dose, 79
trialr(trialr-package), 3
trialr-package, 3
trialr_simulate, 79
weights_at_dose, 81
```