Package ‘treeHMM’

December 12, 2019
Type Package
Title Tree Structured Hidden Markov Model
Version 0.1.1
Maintainer Prajwal Bende <pbende@ualberta.ca>

Description Used for Inference, Prediction and Parameter learning for tree structured Hid-
den Markov Model. The package propose a new architecture of Hid-
den Markov Model(HMM) known as Tree Structured HMM which could be used in various ap-
plications which involves graphs, trees etc.

License GPL (>=2.0.0)

Encoding UTF-8

LazyData true

Imports Matrix, gtools, future, matrixStats, PRROC
RoxygenNote 6.1.1

NeedsCompilation no

Author Prajwal Bende [aut, cre],
Russ Greiner [ths],
Pouria Ramazi [ths]

Repository CRAN
Date/Publication 2019-12-12 17:10:02 UTC

R topics documented:

backward L 2
baumWelch 3
baumWelchRecursion e 4
bwd_seq_gen e e e 5
forward e e 6
fwd_seq_gen 7
mitHMM e e e 8
NOISY_OT &+« v v v v e e i e e e e e e e e e e e e e e e e e e 9
Index 10

2 backward

backward Infer the backward probabilities for all the nodes of the treeHMM

Description

backward calculates the backward probabilities for all the nodes

Usage

backward(hmm, observation, bt_seq, kn_states = NULL)

Arguments
hmm hmm Object of class List given as output by initHMM
observation A list consisting "k" vectors for "k" features, each vector being a character series
of discrete emmision values at different nodes serially sorted by node number
bt_seq A vector denoting the order of nodes in which the tree should be traversed in
backward direction(from leaves to roots). Output of bwd_seq_gen function.
kn_states (Optional) A (L * 2) dataframe where L is the number of training nodes where
state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes
Details
The backward probability for state X and observation at node k is defined as the probability of
observing the sequence of observations e_k+1, ... ,e_n under the condition that the state at node k
is X. That is:
b[X,k] :=Prob(E_k+1 =e_k+1,... ,E_n=e_n | X_k=X)

where E_1...E_n=e_1...e_nis the sequence of observed emissions and X_k is a random variable
that represents the state at node k

Value

(N * D) matrix denoting the backward probabilites at each node of the tree, where "N" is possible
no. of states and "D" is the total number of nodes in the tree

See Also

forward

Examples

tmat = matrix(c(0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),

5,5, byrow= TRUE) #for "X" (5 nodes) shaped tree
hmmA = initHMM(c("P","”"N"),list(c("L","R")), tmat) #one feature with two discrete levels "L" and "R"
obsv = list(c("L","L","R","R","L")) #emissions for the one feature for the 5 nodes in order 1:5
bt_sq = bwd_seq_gen(hmmA)

baumWelch 3

kn_st = data.frame(node=c(3),state=c("P"),stringsAsFactors = FALSE)
#state at node 3 is known to be "P"
BackwardProbs = backward(hmmA,obsv,bt_sq,kn_st)

baumWelch Inferring the parameters of a tree Hidden Markov Model via the
Baum-Welch algorithm

Description

For an initial Hidden Markov Model (HMM) with some assumed initial parameters and a given set
of observations at all the nodes of the tree, the Baum-Welch algorithm infers optimal parameters
to the HMM. Since the Baum-Welch algorithm is a variant of the Expectation-Maximisation algo-
rithm, the algorithm converges to a local solution which might not be the global optimum. Note
that if you give the training and validation data, the function will message out AUC and AUPR
values after every iteration. Also, validation data must contain more than one instance of either of
the possible states

Usage

baumWelch(hmm, observation, kn_states = NULL, kn_verify = NULL,
maxIterations = 50, delta = 1e-05, pseudoCount = @)

Arguments

hmm hmm Object of class List given as output by initHMM

observation A list consisting "k" vectors for "k" features, each vector being a character series
of discrete emmision values at different nodes serially sorted by node number

kn_states (Optional) A (L * 2) dataframe where L is the number of training nodes where
state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes

kn_verify (Optional) A (L * 2) dataframe where L is the number of validation nodes where

state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes

maxIterations (Optional) The maximum number of iterations in the Baum-Welch algorithm.
Default is 100

delta (Optional) Additional termination condition, if the transition and emission ma-
trices converge, before reaching the maximum number of iterations (maxIterations).
The difference of transition and emission parameters in consecutive iterations
must be smaller than delta to terminate the algorithm. Default is 1e-9

pseudoCount (Optional) Adding this amount of pseudo counts in the estimation-step of the
Baum-Welch algorithm. Default is zero

4 baumWelchRecursion

Value

List of three elements, first being the infered HMM whose representation is equivalent to the rep-
resentation in initHMM, second being a list of statistics of algorithm and third being the final state
probability distribution at all nodes.

See Also

baumWelchRecursion

Examples

tmat= matrix(c(0,9,1,9,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),
5,5, byrow= TRUE) #for "X" (5 nodes) shaped tree

hmmA= initHMM(c("P","”"N"),list(c("L","R")), tmat) #one feature with two discrete levels "L" and "R"
obsv= list(c("L","L","R","R","L")) #emissions for the one feature for the 5 nodes in order 1:5
kn_st = data.frame(node=c(2),state=c("P"),stringsAsFactors = FALSE)

#state at node 2 is known to be "P"
kn_vr = data.frame(node=c(3,4,5),state=c("P","N","P"),stringsAsFactors = FALSE)

#state at node 3,4,5 are "P","N","P" respectively
learntHMM= baumWelch(hmmA, obsv,kn_st, kn_vr)

baumWelchRecursion Implementation of the Baum Welch Algorithm as a special case of EM
algorithm

Description

baumWelch recursively calls this function to give a final estimate of parameters for tree HMM Uses
Parallel Processing to speed up calculations for large data. Should not be used directly.

Usage

baumWelchRecursion(hmm, observation, kn_states = NULL,
kn_verify = NULL)

Arguments

hmm hmm Object of class List given as output by initHMM

observation A list consisting "k" vectors for "k" features, each vector being a character series
of discrete emmision values at different nodes serially sorted by node number

kn_states (Optional) A (L * 2) dataframe where L is the number of training nodes where
state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes

kn_verify (Optional) A (L * 2) dataframe where L is the number of validation nodes where

state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes

bwd_seq_gen 5

Value

List containing estimated Transition and Emission probability matrices

See Also
baumWelch

Examples

tmat = matrix(c(0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),
5,5, byrow= TRUE) #for "X" (5 nodes) shaped tree

hmmA = initHMM(c("P","N"),list(c("L","R")), tmat) #one feature with two discrete levels "L" and "R"
obsv = list(c("L","L","R","R","L")) #emissions for the one feature for the 5 nodes in order 1:5
kn_st = data.frame(node=c(2),state=c("P"),stringsAsFactors = FALSE)

#state at node 2 is known to be "P"
data.frame(node=c(3,4,5),state=c("P","N","P"),stringsAsFactors = FALSE)

#state at node 3,4,5 are "P","N","P" respectively
newparam= baumWelchRecursion(hmmA,obsv,kn_st, kn_vr)

kn_vr

bwd_seq_gen Calculate the order in which nodes in the tree should be traversed
during the backward pass(leaves to roots)

Description

Tree is a complex graphical model where we can have multiple parents and multiple children for
a node. Hence the order in which the tree should be tranversed becomes significant. Backward
algorithm is a dynamic programming problem where to calculate the values at a node, we need
the values of the children nodes beforehand, which need to be traversed before this node. This
algorithm outputs a possible(not unique) order of the traversal of nodes ensuring that the childrens
are traversed first before the parents

Usage
bwd_seq_gen(hmm, nlevel = 100)

Arguments
hmm hmm Object of class List given as output by initHMM
nlevel No. of levels in the tree, if known. Default is 100
Value

Vector of length "D", where "D" is the number of nodes in the tree

See Also

backward

6 forward

Examples

tmat = matrix(c(e,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),

5,5, byrow= TRUE) #for "X" (5 nodes) shaped tree
hmmA = initHMM(c("A","B"),1list(c("L","R")), tmat) #one feature with two discrete levels "L" and "R"
bt_sgq = bwd_seq_gen(hmmA)

forward Infer the forward probabilities for all the nodes of the treeHMM

Description

forward calculates the forward probabilities for all the nodes

Usage

forward(hmm, observation, ft_seq, kn_states = NULL)

Arguments
hmm hmm Object of class List given as output by initHMM
observation A list consisting "k" vectors for "k" features, each vector being a character series
of discrete emmision values at different nodes serially sorted by node number
ft_seq A vector denoting the order of nodes in which the tree should be traversed in
forward direction(from roots to leaves). Output of fwd_seq_gen function.
kn_states (Optional) A (L * 2) dataframe where L is the number of training nodes where
state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes
Details

The forward probability for state X up to observation at node k is defined as the probability of
observing the sequence of observations e_1,..,e_k given that the state at node k is X. That is:
f[X,k] :=Prob(X_k=X]|E_1=e_1,..,E_k=e_k)

where E_1...E_n=e_1...e_nis the sequence of observed emissions and X_k is a random variable
that represents the state at node k

Value
(N * D) matrix denoting the forward probabilites at each node of the tree, where "N" is possible no.
of states and "D" is the total number of nodes in the tree

See Also

backward

fwd_seq_gen

Examples

tmat = matrix(c(o,90,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),

5,5, byrow= TRUE) #for "X" (5 nodes) shaped tree
hmmA = initHMM(c("P","N"),list(c("L","R")), tmat) #one feature with two discrete levels "L" and "R"
obsv = list(c("L","L","R","R","L")) #emissions for the one feature for the 5 nodes in order 1:5
ft_sq = fwd_seq_gen(hmmA)
kn_st = data.frame(node=c(3),state=c("P"),stringsAsFactors = FALSE)

#state at node 3 is known to be "P"

ForwardProbs = forward(hmmA,obsv,ft_sq,kn_st)

fwd_seq_gen Calculate the order in which nodes in the tree should be traversed
during the forward pass(roots to leaves)

Description

Tree is a complex graphical model where we can have multiple parents and multiple children for
a node. Hence the order in which the tree should be tranversed becomes significant. Forward
algorithm is a dynamic programming problem where to calculate the values at a node, we need the
values of the parent nodes beforehand, which need to be traversed before this node. This algorithm
outputs a possible(not unique) order of the traversal of nodes ensuring that the parents are traversed
first before the children.

Usage
fwd_seq_gen(hmm, nlevel = 100)

Arguments
hmm hmm Object of class List given as output by initHMM
nlevel No. of levels in the tree, if known. Default is 100
Value

Vector of length "D", where "D" is the number of nodes in the tree

See Also

forward

Examples

tmat = matrix(c(o,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),
5,5, byrow= TRUE) #for "X" (5 nodes) shaped tree
hmmA = initHMM(c("A","B"),1list(c("L","R")), tmat) #one feature with two discrete levels "L" and "R"

ft_sq = fwd_seq_gen(hmmA)

8 initHMM

initHMM Initializing treeHMM with given parameters

Description

Initializing treeHMM with given parameters

Usage

initHMM(States, Symbols, treemat, startProbs = NULL, transProbs = NULL,
emissionProbs = NULL)

Arguments

States A (2 * 1) vector with first element being discrete state value for the cases(or pos-
itive) and second element being discrete state value for the controls(or negative)
for given treeHMM

Symbols List containing (M * 1) vectors for discrete values of emissions(where "M" is
the possible number of emissions) for each feature variable

treemat Adjacent Symmetry Matrix that describes the topology of the tree

startProbs (N * 1) vector containing starting probabilities for the states, where "N" is the
possible number of states(Optional). Default is equally probable states

transProbs (N * N) matrix containing transition probabilities for the states, where "N" is the

possible number of states(Optional)

emissionProbs List of (N * M) matrices containing emission probabilities for the states, for
each feature variable(optional). Default is equally probable emissions

Value

List describing the parameters of treeHMM(pi, alpha, beta)

Examples

tmat = matrix(c(o,90,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),

5,5, byrow= TRUE) #for "X" (5 nodes) shaped tree
states = c("P","N") #"P" represent cases(or positive) and "N" represent controls(or negative)
hmmA = initHMM(states,list(c("L","R")), tmat) #one feature with two discrete levels "L" and "R"
hmmB = initHMM(states, list(c("X","Y")),tmat, c(0.5,0.5), matrix(c(0.7,0.3,0.3,0.7),2,2))

noisy_or 9

noisy_or Calculating the probability of transition from multiple nodes to given
node in the tree

Description

Calculating the probability of transition from multiple nodes to given node in the tree

Usage

noisy_or(hmm, prev_state, cur_state)

Arguments
hmm Object of class List given as output by initHMM,
prev_state vector containing state variable values for the previous nodes
cur_state character denoting the state variable value for current node
Value

The Noisy_OR probability for the transition

Examples

tmat = matrix(c(o,90,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),

5,5, byrow= TRUE) #for "X" (5 nodes) shaped tree
hmmA = initHMM(c("P","N"),list(c("L","R")), tmat) #one feature with two discrete levels "L" and "R"
Transprob = noisy_or (hmmA,c("P","N"),"P") #for transition from P & N simultaneously to P

Index

backward, 2, 5, 6
baumWelch, 3,4, 5
baumWelchRecursion, 4, 4
bwd_seq_gen, 2,5

forward, 2,6, 7
fwd_seq_gen, 6, 7

initHMM, 2-7,8, 9

noisy_or, 9

10

	backward
	baumWelch
	baumWelchRecursion
	bwd_seq_gen
	forward
	fwd_seq_gen
	initHMM
	noisy_or
	Index

