The traineR
package seeks to unify the different ways of creating predictive models and their different predictive formats. It includes methods such as K-Nearest Neighbors, Decision Trees, ADA Boosting, Extreme Gradient Boosting, Random Forest, Neural Networks, Deep Learning, Support Vector Machines, Bayesian and Logical Regression.
The main idea of the package is that all predictions can be execute using a standard syntax, also that all predictive methods can be used in the same way by default, for example, that all packages are use classification in their default invocation and all methods use a formula to determine the predictor variables (independent variables) and the response variable.
For the following examples we will use the Puromycin
dataset:
conc | rate | state |
---|---|---|
0.02 | 76 | treated |
0.02 | 47 | treated |
0.06 | 97 | treated |
0.06 | 107 | treated |
0.11 | 123 | treated |
0.11 | 139 | treated |
0.22 | 159 | treated |
0.22 | 152 | treated |
0.56 | 191 | treated |
0.56 | 201 | treated |
n <- seq_len(nrow(Puromycin))
.sample <- sample(n, length(n) * 0.7)
data.train <- Puromycin[.sample,]
data.test <- Puromycin[-.sample,]
Modeling:
#>
#> Call: glm(formula = state ~ ., family = binomial, data = data.train)
#>
#> Coefficients:
#> (Intercept) conc rate
#> 3.39624 3.42996 -0.03899
#>
#> Degrees of Freedom: 15 Total (i.e. Null); 13 Residual
#> Null Deviance: 21.93
#> Residual Deviance: 18.1 AIC: 24.1
Prediction as probability:
Note: the result is always a matrix.
#> treated untreated
#> [1,] 0.6388459 0.36115413
#> [2,] 0.7355117 0.26448826
#> [3,] 0.9255903 0.07440971
#> [4,] 0.2989682 0.70103183
#> [5,] 0.6705812 0.32941877
#> [6,] 0.7226067 0.27739331
#> [7,] 0.6993258 0.30067423
Prediction as classification:
Note: the result is always a factor.
#> [1] treated treated treated untreated treated treated treated
#> Levels: treated untreated
Confusion Matrix
#> prediction
#> real treated untreated
#> treated 3 0
#> untreated 3 1
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real treated untreated
#> treated 3 0
#> untreated 3 1
#>
#> Overall Accuracy: 0.5714
#> Overall Error: 0.4286
#>
#> Category Accuracy:
#>
#> treated untreated
#> 1.000000 0.250000
Modeling:
#> Call:
#> ada(state ~ ., data = data.train, iter = 200)
#>
#> Loss: exponential Method: discrete Iteration: 200
#>
#> Final Confusion Matrix for Data:
#> Final Prediction
#> True value treated
#> treated 9
#> untreated 7
#>
#> Train Error: 0.438
#>
#> Out-Of-Bag Error: 0.438 iteration= 6
#>
#> Additional Estimates of number of iterations:
#>
#> train.err1 train.kap1
#> 1 1
Prediction as probability:
#> treated untreated
#> [1,] 0.5625 0.4375
#> [2,] 0.5625 0.4375
#> [3,] 0.5625 0.4375
#> [4,] 0.5625 0.4375
#> [5,] 0.5625 0.4375
#> [6,] 0.5625 0.4375
#> [7,] 0.5625 0.4375
Prediction as classification:
#> [1] treated treated treated treated treated treated treated
#> Levels: treated untreated
Confusion Matrix:
#> prediction
#> real treated untreated
#> treated 3 0
#> untreated 4 0
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real treated untreated
#> treated 3 0
#> untreated 4 0
#>
#> Overall Accuracy: 0.4286
#> Overall Error: 0.5714
#>
#> Category Accuracy:
#>
#> treated untreated
#> 1.000000 0.000000
For the following examples we will use the iris
dataset:
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa |
4.9 | 3.0 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
4.6 | 3.1 | 1.5 | 0.2 | setosa |
5.0 | 3.6 | 1.4 | 0.2 | setosa |
5.4 | 3.9 | 1.7 | 0.4 | setosa |
4.6 | 3.4 | 1.4 | 0.3 | setosa |
5.0 | 3.4 | 1.5 | 0.2 | setosa |
4.4 | 2.9 | 1.4 | 0.2 | setosa |
4.9 | 3.1 | 1.5 | 0.1 | setosa |
Modeling:
#> n= 112
#>
#> node), split, n, loss, yval, (yprob)
#> * denotes terminal node
#>
#> 1) root 112 70 virginica (0.34821429 0.27678571 0.37500000)
#> 2) Petal.Length< 2.6 39 0 setosa (1.00000000 0.00000000 0.00000000) *
#> 3) Petal.Length>=2.6 73 31 virginica (0.00000000 0.42465753 0.57534247)
#> 6) Petal.Length< 4.85 32 2 versicolor (0.00000000 0.93750000 0.06250000) *
#> 7) Petal.Length>=4.85 41 1 virginica (0.00000000 0.02439024 0.97560976) *
Prediction as probability:
#> setosa versicolor virginica
#> 4 1 0.00000000 0.0000000
#> 6 1 0.00000000 0.0000000
#> 8 1 0.00000000 0.0000000
#> 10 1 0.00000000 0.0000000
#> 15 1 0.00000000 0.0000000
#> 25 1 0.00000000 0.0000000
#> 28 1 0.00000000 0.0000000
#> 35 1 0.00000000 0.0000000
#> 40 1 0.00000000 0.0000000
#> 41 1 0.00000000 0.0000000
#> 44 1 0.00000000 0.0000000
#> 53 0 0.02439024 0.9756098
#> 54 0 0.93750000 0.0625000
#> 59 0 0.93750000 0.0625000
#> 65 0 0.93750000 0.0625000
#> 66 0 0.93750000 0.0625000
#> 69 0 0.93750000 0.0625000
#> 73 0 0.02439024 0.9756098
#> 75 0 0.93750000 0.0625000
#> 76 0 0.93750000 0.0625000
#> 77 0 0.93750000 0.0625000
#> 78 0 0.02439024 0.9756098
#> 83 0 0.93750000 0.0625000
#> 86 0 0.93750000 0.0625000
#> 88 0 0.93750000 0.0625000
#> 92 0 0.93750000 0.0625000
#> 93 0 0.93750000 0.0625000
#> 96 0 0.93750000 0.0625000
#> 97 0 0.93750000 0.0625000
#> 99 0 0.93750000 0.0625000
#> 101 0 0.02439024 0.9756098
#> 113 0 0.02439024 0.9756098
#> 120 0 0.02439024 0.9756098
#> 121 0 0.02439024 0.9756098
#> 130 0 0.02439024 0.9756098
#> 133 0 0.02439024 0.9756098
#> 139 0 0.93750000 0.0625000
#> 142 0 0.02439024 0.9756098
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa virginica
#> [13] versicolor versicolor versicolor versicolor versicolor virginica
#> [19] versicolor versicolor versicolor virginica versicolor versicolor
#> [25] versicolor versicolor versicolor versicolor versicolor versicolor
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] versicolor virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 16 3
#> virginica 0 1 7
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 16 3
#> virginica 0 1 7
#>
#> Overall Accuracy: 0.8947
#> Overall Error: 0.1053
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.842105 0.875000
The model still supports the functions of the original package.
library(rpart.plot)
prp(model, extra = 104, branch.type = 2,
box.col = c("pink", "palegreen3", "cyan")[model$frame$yval])
Modeling:
#>
#> Naive Bayes Classifier for Discrete Predictors
#>
#> Call:
#> naiveBayes.default(x = X, y = Y, laplace = laplace)
#>
#> A-priori probabilities:
#> Y
#> setosa versicolor virginica
#> 0.3482143 0.2767857 0.3750000
#>
#> Conditional probabilities:
#> Sepal.Length
#> Y [,1] [,2]
#> setosa 4.989744 0.3633143
#> versicolor 5.806452 0.4857540
#> virginica 6.592857 0.6696897
#>
#> Sepal.Width
#> Y [,1] [,2]
#> setosa 3.423077 0.4022709
#> versicolor 2.754839 0.3150013
#> virginica 2.978571 0.3234989
#>
#> Petal.Length
#> Y [,1] [,2]
#> setosa 1.446154 0.1699011
#> versicolor 4.219355 0.4621828
#> virginica 5.573810 0.5746938
#>
#> Petal.Width
#> Y [,1] [,2]
#> setosa 0.2435897 0.09677666
#> versicolor 1.3032258 0.22133515
#> virginica 2.0238095 0.26021522
Prediction as probability:
#> setosa versicolor virginica
#> [1,] 1.000000e+00 1.071383e-15 6.701222e-25
#> [2,] 1.000000e+00 4.268729e-13 5.801983e-21
#> [3,] 1.000000e+00 5.391183e-16 6.217552e-25
#> [4,] 1.000000e+00 6.141601e-16 2.275240e-25
#> [5,] 1.000000e+00 1.142206e-17 1.640288e-25
#> [6,] 1.000000e+00 1.080282e-12 1.230312e-21
#> [7,] 1.000000e+00 5.851351e-16 9.265819e-25
#> [8,] 1.000000e+00 2.380378e-15 1.333151e-24
#> [9,] 1.000000e+00 7.775698e-16 9.180135e-25
#> [10,] 1.000000e+00 2.457791e-16 6.513699e-25
#> [11,] 1.000000e+00 1.728229e-09 2.278467e-17
#> [12,] 5.871962e-131 2.139680e-01 7.860320e-01
#> [13,] 2.774835e-76 9.999635e-01 3.645541e-05
#> [14,] 2.220755e-104 9.816160e-01 1.838404e-02
#> [15,] 4.334317e-61 9.999637e-01 3.627346e-05
#> [16,] 2.344627e-100 9.526729e-01 4.732711e-02
#> [17,] 6.409147e-110 9.918752e-01 8.124817e-03
#> [18,] 3.664958e-129 8.812189e-01 1.187811e-01
#> [19,] 3.229216e-90 9.974054e-01 2.594644e-03
#> [20,] 3.473957e-100 9.727787e-01 2.722126e-02
#> [21,] 3.836698e-120 8.048875e-01 1.951125e-01
#> [22,] 2.526170e-148 3.500945e-02 9.649906e-01
#> [23,] 6.105094e-68 9.999691e-01 3.087840e-05
#> [24,] 5.599902e-113 8.139719e-01 1.860281e-01
#> [25,] 3.947529e-95 9.991235e-01 8.764975e-04
#> [26,] 1.615086e-107 9.834664e-01 1.653357e-02
#> [27,] 6.343141e-72 9.999639e-01 3.613649e-05
#> [28,] 5.981069e-79 9.998411e-01 1.589346e-04
#> [29,] 7.084951e-84 9.996427e-01 3.572576e-04
#> [30,] 7.558802e-34 9.999997e-01 2.919161e-07
#> [31,] 2.052543e-275 6.921915e-10 1.000000e+00
#> [32,] 9.672565e-209 5.090873e-06 9.999949e-01
#> [33,] 1.239089e-133 9.418073e-01 5.819272e-02
#> [34,] 1.830530e-239 2.628877e-08 1.000000e+00
#> [35,] 2.270355e-192 1.331016e-04 9.998669e-01
#> [36,] 8.909747e-222 3.444607e-06 9.999966e-01
#> [37,] 1.106930e-141 1.685430e-01 8.314570e-01
#> [38,] 8.843208e-204 1.255829e-06 9.999987e-01
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa virginica
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor versicolor versicolor virginica versicolor versicolor
#> [25] versicolor versicolor versicolor versicolor versicolor versicolor
#> [31] virginica virginica versicolor virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 17 2
#> virginica 0 1 7
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 17 2
#> virginica 0 1 7
#>
#> Overall Accuracy: 0.9211
#> Overall Error: 0.0789
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.894737 0.875000
Modeling:
#>
#> Call:
#> randomForest(formula = Species ~ ., data = data.train, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 2
#>
#> OOB estimate of error rate: 5.36%
#> Confusion matrix:
#> setosa versicolor virginica class.error
#> setosa 39 0 0 0.00000000
#> versicolor 0 29 2 0.06451613
#> virginica 0 4 38 0.09523810
Prediction as probability:
#> setosa versicolor virginica
#> 4 1.000 0.000 0.000
#> 6 1.000 0.000 0.000
#> 8 1.000 0.000 0.000
#> 10 1.000 0.000 0.000
#> 15 0.926 0.074 0.000
#> 25 1.000 0.000 0.000
#> 28 1.000 0.000 0.000
#> 35 1.000 0.000 0.000
#> 40 1.000 0.000 0.000
#> 41 1.000 0.000 0.000
#> 44 1.000 0.000 0.000
#> 53 0.000 0.538 0.462
#> 54 0.000 1.000 0.000
#> 59 0.000 0.980 0.020
#> 65 0.002 0.996 0.002
#> 66 0.000 0.988 0.012
#> 69 0.000 0.900 0.100
#> 73 0.000 0.466 0.534
#> 75 0.000 0.968 0.032
#> 76 0.000 0.980 0.020
#> 77 0.000 0.722 0.278
#> 78 0.000 0.176 0.824
#> 83 0.000 1.000 0.000
#> 86 0.004 0.994 0.002
#> 88 0.000 0.916 0.084
#> 92 0.000 0.992 0.008
#> 93 0.000 0.992 0.008
#> 96 0.002 0.998 0.000
#> 97 0.002 0.998 0.000
#> 99 0.002 0.986 0.012
#> 101 0.000 0.002 0.998
#> 113 0.000 0.000 1.000
#> 120 0.000 0.608 0.392
#> 121 0.000 0.000 1.000
#> 130 0.000 0.288 0.712
#> 133 0.000 0.000 1.000
#> 139 0.000 0.488 0.512
#> 142 0.000 0.000 1.000
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor virginica
#> [19] versicolor versicolor versicolor virginica versicolor versicolor
#> [25] versicolor versicolor versicolor versicolor versicolor versicolor
#> [31] virginica virginica versicolor virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 17 2
#> virginica 0 1 7
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 17 2
#> virginica 0 1 7
#>
#> Overall Accuracy: 0.9211
#> Overall Error: 0.0789
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.894737 0.875000
The model still supports the functions of the original package.
Modeling:
#>
#> Call:
#> kknn::train.kknn(formula = Species ~ ., data = data.train)
#>
#> Type of response variable: nominal
#> Minimal misclassification: 0.04464286
#> Best kernel: optimal
#> Best k: 6
Prediction as probability:
#> setosa versicolor virginica
#> [1,] 1 0.00000000 0.00000000
#> [2,] 1 0.00000000 0.00000000
#> [3,] 1 0.00000000 0.00000000
#> [4,] 1 0.00000000 0.00000000
#> [5,] 1 0.00000000 0.00000000
#> [6,] 1 0.00000000 0.00000000
#> [7,] 1 0.00000000 0.00000000
#> [8,] 1 0.00000000 0.00000000
#> [9,] 1 0.00000000 0.00000000
#> [10,] 1 0.00000000 0.00000000
#> [11,] 1 0.00000000 0.00000000
#> [12,] 0 0.79289322 0.20710678
#> [13,] 0 1.00000000 0.00000000
#> [14,] 0 0.88155533 0.11844467
#> [15,] 0 1.00000000 0.00000000
#> [16,] 0 1.00000000 0.00000000
#> [17,] 0 0.54957247 0.45042753
#> [18,] 0 0.11844467 0.88155533
#> [19,] 0 1.00000000 0.00000000
#> [20,] 0 1.00000000 0.00000000
#> [21,] 0 0.68160686 0.31839314
#> [22,] 0 0.43112780 0.56887220
#> [23,] 0 1.00000000 0.00000000
#> [24,] 0 0.91133789 0.08866211
#> [25,] 0 0.57102402 0.42897598
#> [26,] 0 0.97854845 0.02145155
#> [27,] 0 1.00000000 0.00000000
#> [28,] 0 1.00000000 0.00000000
#> [29,] 0 1.00000000 0.00000000
#> [30,] 0 1.00000000 0.00000000
#> [31,] 0 0.00000000 1.00000000
#> [32,] 0 0.00000000 1.00000000
#> [33,] 0 0.45257934 0.54742066
#> [34,] 0 0.00000000 1.00000000
#> [35,] 0 0.02145155 0.97854845
#> [36,] 0 0.00000000 1.00000000
#> [37,] 0 0.31768962 0.68231038
#> [38,] 0 0.00000000 1.00000000
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor virginica
#> [19] versicolor versicolor versicolor virginica versicolor versicolor
#> [25] versicolor versicolor versicolor versicolor versicolor versicolor
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 17 2
#> virginica 0 0 8
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 17 2
#> virginica 0 0 8
#>
#> Overall Accuracy: 0.9474
#> Overall Error: 0.0526
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.894737 1.000000
Modeling:
#> # weights: 163
#> initial value 153.617515
#> iter 10 value 28.819486
#> iter 20 value 4.924200
#> iter 30 value 3.615155
#> iter 40 value 1.854831
#> iter 50 value 0.011083
#> iter 60 value 0.001094
#> final value 0.000061
#> converged
#> a 4-20-3 network with 163 weights
#> inputs: Sepal.Length Sepal.Width Petal.Length Petal.Width
#> output(s): Species
#> options were - softmax modelling
Prediction as probability:
#> setosa versicolor virginica
#> 4 1.000000e+00 1.546687e-56 2.336245e-198
#> 6 1.000000e+00 3.332658e-47 7.387809e-160
#> 8 1.000000e+00 8.605065e-58 4.171322e-196
#> 10 1.000000e+00 5.396825e-58 9.345036e-196
#> 15 1.000000e+00 8.739341e-47 1.322881e-160
#> 25 1.000000e+00 1.407381e-57 6.035234e-197
#> 28 1.000000e+00 7.577839e-58 2.347442e-194
#> 35 1.000000e+00 9.066583e-58 3.704699e-196
#> 40 1.000000e+00 4.940023e-58 1.283180e-195
#> 41 1.000000e+00 1.971711e-44 8.388773e-165
#> 44 1.000000e+00 9.797117e-46 1.776559e-162
#> 53 2.476404e-37 3.742841e-01 6.257159e-01
#> 54 6.584845e-13 1.000000e+00 2.519266e-43
#> 59 9.153057e-51 1.000000e+00 3.024217e-130
#> 65 8.654427e-43 1.000000e+00 2.648430e-146
#> 66 5.301057e-53 1.000000e+00 2.866997e-128
#> 69 4.478239e-37 1.609650e-03 9.983904e-01
#> 73 1.467830e-55 6.683108e-13 1.000000e+00
#> 75 2.324727e-50 1.000000e+00 1.190386e-130
#> 76 1.603854e-52 1.000000e+00 1.273821e-127
#> 77 1.927115e-24 1.000000e+00 4.748771e-19
#> 78 6.278086e-80 7.828374e-30 1.000000e+00
#> 83 7.224007e-42 1.000000e+00 1.621730e-155
#> 86 3.968306e-52 1.000000e+00 3.269074e-122
#> 88 4.987657e-24 1.000000e+00 8.733128e-20
#> 92 3.737283e-47 1.000000e+00 3.505326e-139
#> 93 1.074203e-39 1.000000e+00 9.119432e-156
#> 96 3.783578e-19 1.000000e+00 2.592248e-174
#> 97 1.769415e-21 1.000000e+00 9.181676e-173
#> 99 1.450102e-38 1.000000e+00 1.149523e-148
#> 101 3.122249e-59 1.469631e-16 1.000000e+00
#> 113 4.837125e-92 1.854271e-37 1.000000e+00
#> 120 1.817907e-56 1.814376e-13 1.000000e+00
#> 121 1.251625e-91 4.226529e-37 1.000000e+00
#> 130 2.514084e-57 5.207645e-14 1.000000e+00
#> 133 9.245415e-87 3.670472e-34 1.000000e+00
#> 139 7.890998e-52 3.090833e-09 1.000000e+00
#> 142 8.108284e-67 6.326458e-18 1.000000e+00
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa virginica
#> [13] versicolor versicolor versicolor versicolor virginica virginica
#> [19] versicolor versicolor versicolor virginica versicolor versicolor
#> [25] versicolor versicolor versicolor versicolor versicolor versicolor
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 15 4
#> virginica 0 0 8
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 15 4
#> virginica 0 0 8
#>
#> Overall Accuracy: 0.8947
#> Overall Error: 0.1053
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.789474 1.000000
Modeling:
model <- train.neuralnet(Species~., data.train, hidden = c(5, 7, 6),
linear.output = FALSE, threshold = 0.01, stepmax = 1e+06)
summary(model)
#> Length Class Mode
#> call 7 -none- call
#> response 336 -none- logical
#> covariate 448 -none- numeric
#> model.list 2 -none- list
#> err.fct 1 -none- function
#> act.fct 1 -none- function
#> linear.output 1 -none- logical
#> data 5 data.frame list
#> exclude 0 -none- NULL
#> net.result 1 -none- list
#> weights 1 -none- list
#> generalized.weights 1 -none- list
#> startweights 1 -none- list
#> result.matrix 139 -none- numeric
#> prmdt 4 -none- list
Prediction as probability:
#> setosa versicolor virginica
#> 4 1.000000e+00 7.520966e-09 2.151651e-73
#> 6 1.000000e+00 3.186572e-09 3.872734e-74
#> 8 1.000000e+00 4.956146e-09 1.176603e-73
#> 10 1.000000e+00 1.111382e-08 7.268415e-73
#> 15 1.000000e+00 2.738011e-09 5.357574e-74
#> 25 1.000000e+00 6.052141e-09 9.680225e-74
#> 28 1.000000e+00 4.624278e-09 1.233391e-73
#> 35 1.000000e+00 1.020539e-08 6.916276e-73
#> 40 1.000000e+00 5.304083e-09 1.620110e-73
#> 41 1.000000e+00 3.747112e-09 6.508743e-74
#> 44 1.000000e+00 4.535698e-09 9.850490e-74
#> 53 3.131123e-27 1.000000e+00 1.870941e-11
#> 54 2.152842e-28 1.000000e+00 4.846579e-07
#> 59 1.048216e-26 1.000000e+00 6.407027e-16
#> 65 2.006298e-17 9.943706e-01 1.676224e-49
#> 66 1.677645e-22 1.000000e+00 1.099708e-30
#> 69 3.524108e-136 1.191678e-07 9.999999e-01
#> 73 5.622027e-136 3.895389e-03 9.960149e-01
#> 75 4.675819e-24 1.000000e+00 6.456487e-26
#> 76 5.885650e-24 1.000000e+00 3.982887e-25
#> 77 2.224245e-28 1.000000e+00 4.511630e-06
#> 78 2.168082e-88 1.304623e-01 9.996563e-01
#> 83 9.023581e-23 1.000000e+00 1.608341e-31
#> 86 1.581528e-19 9.998680e-01 2.179492e-41
#> 88 1.362631e-133 8.461852e-07 9.999987e-01
#> 92 2.411740e-26 1.000000e+00 1.204970e-17
#> 93 1.700887e-25 1.000000e+00 1.305427e-21
#> 96 5.009343e-21 1.000000e+00 1.153501e-38
#> 97 2.655415e-23 1.000000e+00 7.947050e-30
#> 99 1.082483e-16 9.967580e-01 5.176147e-51
#> 101 2.652424e-136 2.131374e-10 1.000000e+00
#> 113 2.547936e-136 8.710763e-11 1.000000e+00
#> 120 4.832810e-136 1.347726e-04 9.998669e-01
#> 121 2.276329e-136 7.082123e-12 1.000000e+00
#> 130 7.604880e-136 7.652724e-01 2.182817e-01
#> 133 2.838645e-136 9.654628e-10 1.000000e+00
#> 139 2.946490e-129 1.024946e-07 9.999999e-01
#> 142 2.265475e-136 9.694502e-13 1.000000e+00
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa versicolor
#> [13] versicolor versicolor versicolor versicolor virginica virginica
#> [19] versicolor versicolor versicolor virginica versicolor versicolor
#> [25] virginica versicolor versicolor versicolor versicolor versicolor
#> [31] virginica virginica virginica virginica versicolor virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 15 4
#> virginica 0 1 7
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 15 4
#> virginica 0 1 7
#>
#> Overall Accuracy: 0.8684
#> Overall Error: 0.1316
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.789474 0.875000
Modeling:
#>
#> Call:
#> svm(formula = Species ~ ., data = data.train, probability = TRUE)
#>
#>
#> Parameters:
#> SVM-Type: C-classification
#> SVM-Kernel: radial
#> cost: 1
#>
#> Number of Support Vectors: 43
Prediction as probability:
#> setosa versicolor virginica
#> 4 0.968608365 0.019105447 0.012286189
#> 6 0.968623363 0.019772682 0.011603956
#> 8 0.974328946 0.014908117 0.010762937
#> 10 0.970821088 0.017625544 0.011553368
#> 15 0.958780614 0.024078859 0.017140527
#> 25 0.968897255 0.018498886 0.012603859
#> 28 0.973350694 0.015725435 0.010923871
#> 35 0.970035447 0.018778221 0.011186332
#> 40 0.973868646 0.015324132 0.010807223
#> 41 0.974743448 0.014651355 0.010605197
#> 44 0.965648099 0.021950011 0.012401889
#> 53 0.020467167 0.743553672 0.235979162
#> 54 0.012058435 0.934863781 0.053077784
#> 59 0.016593078 0.933555711 0.049851211
#> 65 0.031766804 0.959771890 0.008461306
#> 66 0.019852828 0.948222406 0.031924766
#> 69 0.030624405 0.552459945 0.416915650
#> 73 0.018364613 0.360298305 0.621337083
#> 75 0.015741538 0.965869276 0.018389186
#> 76 0.016958438 0.944192767 0.038848795
#> 77 0.021172928 0.716342128 0.262484944
#> 78 0.014931436 0.299819051 0.685249513
#> 83 0.015327806 0.977456080 0.007216114
#> 86 0.048804186 0.919170196 0.032025618
#> 88 0.027634621 0.790585931 0.181779448
#> 92 0.014418541 0.952965013 0.032616447
#> 93 0.013014844 0.973713457 0.013271699
#> 96 0.027471974 0.965509793 0.007018232
#> 97 0.017498103 0.973630889 0.008871009
#> 99 0.053956219 0.927767038 0.018276743
#> 101 0.015500247 0.006789848 0.977709905
#> 113 0.008833892 0.009111355 0.982054753
#> 120 0.025820297 0.385502876 0.588676827
#> 121 0.009298254 0.007023832 0.983677914
#> 130 0.016066083 0.106711423 0.877222494
#> 133 0.009122860 0.002691522 0.988185619
#> 139 0.014484964 0.395409668 0.590105368
#> 142 0.011044964 0.012890575 0.976064461
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor virginica
#> [19] versicolor versicolor versicolor virginica versicolor versicolor
#> [25] versicolor versicolor versicolor versicolor versicolor versicolor
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 17 2
#> virginica 0 0 8
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 17 2
#> virginica 0 0 8
#>
#> Overall Accuracy: 0.9474
#> Overall Error: 0.0526
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.894737 1.000000
Modeling:
#> ##### xgb.Booster
#> raw: 61.3 Kb
#> call:
#> xgb.train(params = params, data = train_aux, nrounds = nrounds,
#> watchlist = watchlist, obj = obj, feval = feval, verbose = verbose,
#> print_every_n = print_every_n, early_stopping_rounds = early_stopping_rounds,
#> maximize = maximize, save_period = save_period, save_name = save_name,
#> xgb_model = xgb_model, callbacks = callbacks, eval_metric = "mlogloss")
#> params (as set within xgb.train):
#> booster = "gbtree", objective = "multi:softprob", eta = "0.3", gamma = "0", max_depth = "6", min_child_weight = "1", subsample = "1", colsample_bytree = "1", num_class = "3", eval_metric = "mlogloss", silent = "1"
#> xgb.attributes:
#> niter
#> callbacks:
#> cb.evaluation.log()
#> # of features: 4
#> niter: 79
#> nfeatures : 4
#> evaluation_log:
#> iter train_mlogloss
#> 1 0.740732
#> 2 0.527475
#> ---
#> 78 0.013840
#> 79 0.013824
Prediction as probability:
#> setosa versicolor virginica
#> [1,] 0.9937019348 0.004694931 0.0016031280
#> [2,] 0.9937019348 0.004694931 0.0016031280
#> [3,] 0.9937019348 0.004694931 0.0016031280
#> [4,] 0.9937019348 0.004694931 0.0016031280
#> [5,] 0.9809110165 0.017506495 0.0015824926
#> [6,] 0.9937019348 0.004694931 0.0016031280
#> [7,] 0.9937019348 0.004694931 0.0016031280
#> [8,] 0.9937019348 0.004694931 0.0016031280
#> [9,] 0.9937019348 0.004694931 0.0016031280
#> [10,] 0.9937019348 0.004694931 0.0016031280
#> [11,] 0.9937019348 0.004694931 0.0016031280
#> [12,] 0.0083601316 0.096496999 0.8951427937
#> [13,] 0.0058255759 0.990090132 0.0040843207
#> [14,] 0.0043704547 0.985747635 0.0098818727
#> [15,] 0.0051471349 0.992852747 0.0020001004
#> [16,] 0.0043704547 0.985747635 0.0098818727
#> [17,] 0.0036267822 0.978951156 0.0174220894
#> [18,] 0.0082334196 0.110191204 0.8815754056
#> [19,] 0.0043704547 0.985747635 0.0098818727
#> [20,] 0.0043704547 0.985747635 0.0098818727
#> [21,] 0.0053602201 0.958572268 0.0360674523
#> [22,] 0.0006793801 0.001405758 0.9979148507
#> [23,] 0.0037102066 0.993688643 0.0026012317
#> [24,] 0.0010788182 0.998502016 0.0004192127
#> [25,] 0.0045832088 0.976719618 0.0186972171
#> [26,] 0.0021105944 0.993117213 0.0047721863
#> [27,] 0.0037102066 0.993688643 0.0026012317
#> [28,] 0.0045003397 0.993750870 0.0017487663
#> [29,] 0.0045003397 0.993750870 0.0017487663
#> [30,] 0.0159253646 0.974438965 0.0096356086
#> [31,] 0.0011289724 0.002253027 0.9966179729
#> [32,] 0.0006796400 0.001023654 0.9982966781
#> [33,] 0.0121437991 0.882153332 0.1057028919
#> [34,] 0.0009805845 0.001956897 0.9970625043
#> [35,] 0.0086283339 0.067511708 0.9238599539
#> [36,] 0.0006206841 0.000934856 0.9984444976
#> [37,] 0.0104090199 0.574849725 0.4147412181
#> [38,] 0.0006794436 0.001312412 0.9980081916
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa virginica
#> [13] versicolor versicolor versicolor versicolor versicolor virginica
#> [19] versicolor versicolor versicolor virginica versicolor versicolor
#> [25] versicolor versicolor versicolor versicolor versicolor versicolor
#> [31] virginica virginica versicolor virginica virginica virginica
#> [37] versicolor virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 16 3
#> virginica 0 2 6
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 11 0 0
#> versicolor 0 16 3
#> virginica 0 2 6
#>
#> Overall Accuracy: 0.8684
#> Overall Error: 0.1316
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.842105 0.750000