
Package ‘traineR’
October 7, 2019

Type Package

Title Predictive Models Homologator

Version 1.0.0

Depends R (>= 3.5)

Imports neuralnet (>= 1.44.2), rpart (>= 4.1-13), xgboost (>=
0.81.0.1), randomForest (>= 4.6-14), e1071 (>= 1.7-0.1), kknn
(>= 1.3.1), dplyr (>= 0.8.0.1), ada (>= 2.0-5), nnet (>=
7.3-12), dummies (>= 1.5.6), stringr (>= 1.4.0)

Suggests knitr, rmarkdown, rpart.plot

Description Methods to unify the different ways of creating predictive models and their different pre-
dictive formats. It includes
methods such as K-Nearest Neighbors, Decision Trees, ADA Boosting, Extreme Gradient Boost-
ing, Random Forest, Neural Networks, Deep Learning,
Support Vector Machines and Bayesian Methods.

License GPL (>= 2)

Encoding UTF-8

LazyData true

URL http://www.promidat.com

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Oldemar Rodriguez R. [aut, cre],
Andres Navarro D. [ctb, prg]

Maintainer Oldemar Rodriguez R. <oldemar.rodriguez@ucr.ac.cr>

Repository CRAN

Date/Publication 2019-10-07 17:20:05 UTC

1

http://www.promidat.com

2 confusion.matrix

R topics documented:
confusion.matrix . 2
general.indexes . 3
train.ada . 4
train.bayes . 5
train.glm . 6
train.knn . 8
train.neuralnet . 9
train.nnet . 11
train.randomForest . 13
train.rpart . 14
train.svm . 16
train.xgboost . 17
varplot . 20

Index 21

confusion.matrix confusion.matrix

Description

create the confusion matrix.

Usage

confusion.matrix(newdata, prediction)

Arguments

newdata matrix or data frame of test data.

prediction a prmdt prediction object.

Value

A matrix with predicted and actual values.

Examples

data("iris")

n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

modelo.knn <- train.knn(Species~., data.train)

general.indexes 3

modelo.knn
prob <- predict(modelo.knn, data.test, type = "prob")
prob
prediccion <- predict(modelo.knn, data.test, type = "class")
prediccion
confusion.matrix(data.test, prediccion)

general.indexes general.indexes

Description

Calculates the confusion matrix, overall accuracy, overall error and the category accuracy

Usage

general.indexes(newdata, prediction, mc = NULL)

Arguments

newdata matrix or data frame of test data.

prediction a prmdt prediction object.

mc (optional) a matrix for calculating the indices. If mc is entered as parameter
newdata and prediction are not necessary.

Value

A list with the confusion matrix, overall accuracy, overall error and the category accuracy. The class
of this list is indexes.prmdt

Examples

data("iris")

n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

modelo.knn <- train.knn(Species~., data.train)
modelo.knn
prob <- predict(modelo.knn, data.test, type = "prob")
prob
prediccion <- predict(modelo.knn, data.test, type = "class")
prediccion
general.indexes(data.test, prediccion)

4 train.ada

train.ada train.ada

Description

Provides a wrapping function for the ada.

Usage

train.ada(formula, data, ..., subset, na.action = na.rpart)

Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model.

... arguments passed to rpart.control. For stumps, use rpart.control(maxdepth=1,cp=-
1,minsplit=0,xval=0). maxdepth controls the depth of trees, and cp controls the
complexity of trees. The priors should also be fixed through the parms argument
as discussed in the second reference.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function that indicates how to process ‘NA’ values. Default=na.rpart.

Value

A object ada.prmdt with additional information to the model that allows to homogenize the results.

Note

the parameter information was taken from the original function ada.

See Also

The internal function is from package ada.

Examples

data("Puromycin")

n <- seq_len(nrow(Puromycin))
.sample <- sample(n, length(n) * 0.75)
data.train <- Puromycin[.sample,]
data.test <- Puromycin[-.sample,]

modelo.ada <- train.ada(state~., data.train)
modelo.ada
prob <- predict(modelo.ada, data.test , type = "prob")

train.bayes 5

prob
prediccion <- predict(modelo.ada, data.test , type = "class")
prediccion
confusion.matrix(data.test, prediccion)

train.bayes train.bayes

Description

Provides a wrapping function for the naiveBayes.

Usage

train.bayes(formula, data, laplace = 0, ..., subset,
na.action = na.pass)

Arguments

formula A formula of the form class ~ x1 + x2 + Interactions are not allowed.

data Either a data frame of predictors (categorical and/or numeric) or a contingency
table.

laplace positive double controlling Laplace smoothing. The default (0) disables Laplace
smoothing.

... Currently not used.

subset For data given in a data frame, an index vector specifying the cases to be used
in the training sample. (NOTE: If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action
is not to count them for the computation of the probability factors. An alternative
is na.omit, which leads to rejection of cases with missing values on any required
variable. (NOTE: If given, this argument must be named.)

Value

A object bayes.prmdt with additional information to the model that allows to homogenize the re-
sults.

Note

the parameter information was taken from the original function naiveBayes.

See Also

The internal function is from package naiveBayes.

6 train.glm

Examples

data("iris")

n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

modelo.bayes <- train.bayes(Species ~., data.train)
modelo.bayes
prob <- predict(modelo.bayes, data.test, type = "prob")
prob
prediccion <- predict(modelo.bayes, data.test, type = "class")
prediccion
confusion.matrix(data.test, prediccion)

train.glm train.glm

Description

Provides a wrapping function for the glm

Usage

train.glm(formula, data, family = binomial, weights, subset, na.action,
start = NULL, etastart, mustart, offset, control = list(...),
model = TRUE, method = "glm.fit", x = FALSE, y = TRUE,
singular.ok = TRUE, contrasts = NULL, ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
under ‘Details’.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which glm is called.

family a description of the error distribution and link function to be used in the model.
For glm this can be a character string naming a family function, a family function
or the result of a call to a family function. For glm.fit only the third option is
supported. (See family for details of family functions.)

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

train.glm 7

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset. The
‘factory-fresh’ default is na.omit. Another possible value is NULL, no action.
Value na.exclude can be useful.

start starting values for the parameters in the linear predictor.

etastart starting values for the linear predictor.

mustart starting values for the vector of means.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of
length equal to the number of cases. One or more offset terms can be included
in the formula instead or as well, and if more than one is specified their sum is
used. See model.offset.

control a list of parameters for controlling the fitting process. For glm.fit this is passed
to glm.control.

model a logical value indicating whether model frame should be included as a compo-
nent of the returned value.

method the method to be used in fitting the model. The default method "glm.fit" uses
iteratively reweighted least squares (IWLS): the alternative "model.frame" re-
turns the model frame and does no fitting. User-supplied fitting functions can
be supplied either as a function or a character string naming a function, with a
function which takes the same arguments as glm.fit. If specified as a character
string it is looked up from within the stats namespace.

x, y For glm: logical values indicating whether the response vector and model matrix
used in the fitting process should be returned as components of the returned
value. For glm.fit: x is a design matrix of dimension n * p, and y is a vector of
observations of length n.

singular.ok logical; if FALSE a singular fit is an error.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

... For glm: arguments to be used to form the default control argument if it is
not supplied directly. For weights: further arguments passed to or from other
methods.

Value

A object glm.prmdt with additional information to the model that allows to homogenize the results.

See Also

The internal function is from package glm.

The internal function is from package glm.

8 train.knn

Examples

data("Puromycin")

n <- seq_len(nrow(Puromycin))
.sample <- sample(n, length(n) * 0.65)
data.train <- Puromycin[.sample,]
data.test <- Puromycin[-.sample,]

modelo.glm <- train.glm(state~., data.train)
modelo.glm
prob <- predict(modelo.glm, data.test , type = "prob")
prob
prediccion <- predict(modelo.glm, data.test , type = "class")
prediccion
confusion.matrix(data.test, prediccion)

train.knn train.knn

Description

Provides a wrapping function for the train.kknn.

Usage

train.knn(formula, data, kmax = 11, ks = NULL, distance = 2,
kernel = "optimal", ykernel = NULL, scale = TRUE,
contrasts = c(unordered = "contr.dummy", ordered = "contr.ordinal"),
...)

Arguments

formula A formula object.

data Matrix or data frame.

kmax Maximum number of k, if ks is not specified.

ks A vector specifying values of k. If not null, this takes precedence over kmax.

distance Parameter of Minkowski distance.

kernel Kernel to use. Possible choices are "rectangular" (which is standard unweighted
knn), "triangular", "epanechnikov" (or beta(2,2)), "biweight" (or beta(3,3)), "tri-
weight" (or beta(4,4)), "cos", "inv", "gaussian" and "optimal".

ykernel Window width of an y-kernel, especially for prediction of ordinal classes.

scale logical, scale variable to have equal sd.

contrasts A vector containing the ’unordered’ and ’ordered’ contrasts to use.

... Further arguments passed to or from other methods.

train.neuralnet 9

Value

A object knn.prmdt with additional information to the model that allows to homogenize the results.

Note

the parameter information was taken from the original function train.kknn.

See Also

The internal function is from package train.kknn.

Examples

data("iris")

n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

modelo.knn <- train.knn(Species~., data.train)
modelo.knn
prob <- predict(modelo.knn, data.test, type = "prob")
prob
prediccion <- predict(modelo.knn, data.test, type = "class")
prediccion
confusion.matrix(data.test, prediccion)

train.neuralnet train.neuralnet

Description

Provides a wrapping function for the neuralnet.

Usage

train.neuralnet(formula, data, hidden = 1, threshold = 0.01,
stepmax = 1e+05, rep = 1, startweights = NULL,
learningrate.limit = NULL, learningrate.factor = list(minus = 0.5,
plus = 1.2), learningrate = NULL, lifesign = "none",
lifesign.step = 1000, algorithm = "rprop+", err.fct = "sse",
act.fct = "logistic", linear.output = TRUE, exclude = NULL,
constant.weights = NULL, likelihood = FALSE)

10 train.neuralnet

Arguments

formula a symbolic description of the model to be fitted.

data a data frame containing the variables specified in formula.

hidden a vector of integers specifying the number of hidden neurons (vertices) in each
layer.

threshold a numeric value specifying the threshold for the partial derivatives of the error
function as stopping criteria.

stepmax the maximum steps for the training of the neural network. Reaching this maxi-
mum leads to a stop of the neural network’s training process.

rep the number of repetitions for the neural network’s training.

startweights a vector containing starting values for the weights. Set to NULL for random
initialization.

learningrate.limit

a vector or a list containing the lowest and highest limit for the learning rate.
Used only for RPROP and GRPROP.

learningrate.factor

a vector or a list containing the multiplication factors for the upper and lower
learning rate. Used only for RPROP and GRPROP.

learningrate a numeric value specifying the learning rate used by traditional backpropagation.
Used only for traditional backpropagation.

lifesign a string specifying how much the function will print during the calculation of
the neural network. ’none’, ’minimal’ or ’full’.

lifesign.step an integer specifying the stepsize to print the minimal threshold in full lifesign
mode.

algorithm a string containing the algorithm type to calculate the neural network. The fol-
lowing types are possible: ’backprop’, ’rprop+’, ’rprop-’, ’sag’, or ’slr’. ’back-
prop’ refers to backpropagation, ’rprop+’ and ’rprop-’ refer to the resilient back-
propagation with and without weight backtracking, while ’sag’ and ’slr’ induce
the usage of the modified globally convergent algorithm (grprop). See Details
for more information.

err.fct a differentiable function that is used for the calculation of the error. Alterna-
tively, the strings ’sse’ and ’ce’ which stand for the sum of squared errors and
the cross-entropy can be used.

act.fct a differentiable function that is used for smoothing the result of the cross product
of the covariate or neurons and the weights. Additionally the strings, ’logistic’
and ’tanh’ are possible for the logistic function and tangent hyperbolicus.

linear.output logical. If act.fct should not be applied to the output neurons set linear output to
TRUE, otherwise to FALSE.

exclude a vector or a matrix specifying the weights, that are excluded from the calcula-
tion. If given as a vector, the exact positions of the weights must be known. A
matrix with n-rows and 3 columns will exclude n weights, where the first col-
umn stands for the layer, the second column for the input neuron and the third
column for the output neuron of the weight.

train.nnet 11

constant.weights

a vector specifying the values of the weights that are excluded from the training
process and treated as fix.

likelihood logical. If the error function is equal to the negative log-likelihood function, the
information criteria AIC and BIC will be calculated. Furthermore the usage of
confidence.interval is meaningfull.

Value

A object neuralnet.prmdt with additional information to the model that allows to homogenize the
results.

Note

the parameter information was taken from the original function neuralnet.

See Also

The internal function is from package neuralnet.

Examples

data("iris")

n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

modelo.neuralnet <- train.neuralnet(Species~., data.train,hidden = c(10, 14, 13),
linear.output = FALSE, threshold = 0.01, stepmax = 1e+06)

modelo.neuralnet
prob <- predict(modelo.neuralnet, data.test, type = "prob")
prob
prediccion <- predict(modelo.neuralnet, data.test, type = "class")
prediccion
confusion.matrix(data.test, prediccion)

train.nnet train.nnet

Description

Provides a wrapping function for the nnet.

12 train.nnet

Usage

train.nnet(formula, data, weights, ..., subset, na.action,
contrasts = NULL)

Arguments

formula A formula of the form class ~ x1 + x2 + ...

data Data frame from which variables specified in formula are preferentially to be
taken.

weights (case) weights for each example – if missing defaults to 1.

... arguments passed to or from other methods.

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action
is for the procedure to fail. An alternative is na.omit, which leads to rejection
of cases with missing values on any required variable. (NOTE: If given, this
argument must be named.)

contrasts a list of contrasts to be used for some or all of the factors appearing as variables
in the model formula.

Value

A object nnet.prmdt with additional information to the model that allows to homogenize the results.

Note

the parameter information was taken from the original function nnet.

See Also

The internal function is from package nnet.

Examples

data("iris")

n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

modelo.nn <- train.nnet(Species~., data.train, size = 20)
modelo.nn
prob <- predict(modelo.nn, data.test, type = "prob")
prob
prediccion <- predict(modelo.nn, data.test, type = "class")
prediccion

train.randomForest 13

confusion.matrix(data.test, prediccion)

train.randomForest train.randomForest

Description

Provides a wrapping function for the randomForest.

Usage

train.randomForest(formula, data, ..., subset, na.action = na.fail)

Arguments

formula a formula describing the model to be fitted (for the print method, an randomFor-
est object).

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which randomForest is called from.

... optional parameters to be passed to the low level function randomForest.default.

subset an index vector indicating which rows should be used. (NOTE: If given, this
argument must be named.)

na.action A function to specify the action to be taken if NAs are found. (NOTE: If given,
this argument must be named.)

Value

A object randomForest.prmdt with additional information to the model that allows to homogenize
the results.

Note

the parameter information was taken from the original function randomForest.

See Also

The internal function is from package randomForest.

Examples

data("iris")

n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

14 train.rpart

modelo.rf <- train.randomForest(Species~., data.train)
modelo.rf
prob <- predict(modelo.rf, data.test, type = "prob")
prob
prediccion <- predict(modelo.rf, data.test, type = "class")
prediccion
confusion.matrix(data.test, prediccion)

train.rpart train.rpart

Description

Provides a wrapping function for the rpart.

Usage

train.rpart(formula, data, weights, subset, na.action = na.rpart, method,
model = TRUE, x = FALSE, y = TRUE, parms, control, cost, ...)

Arguments

formula a formula, with a response but no interaction terms. If this a a data frame, that
is taken as the model frame.

data an optional data frame in which to interpret the variables named in the formula.

weights optional case weights.

subset optional expression saying that only a subset of the rows of the data should be
used in the fit.

na.action the default action deletes all observations for which y is missing, but keeps those
in which one or more predictors are missing.

method one of "anova", "poisson", "class" or "exp". If method is missing then the routine
tries to make an intelligent guess. If y is a survival object, then method = "exp" is
assumed, if y has 2 columns then method = "poisson" is assumed, if y is a factor
then method = "class" is assumed, otherwise method = "anova" is assumed. It
is wisest to specify the method directly, especially as more criteria may added
to the function in future. Alternatively, method can be a list of functions named
init, split and eval. Examples are given in the file ‘tests/usersplits.R’ in the
sources, and in the vignettes ‘User Written Split Functions’.

model if logical: keep a copy of the model frame in the result? If the input value for
model is a model frame (likely from an earlier call to the rpart function), then
this frame is used rather than constructing new data.

x keep a copy of the x matrix in the result.

y keep a copy of the dependent variable in the result. If missing and model is
supplied this defaults to FALSE.

train.rpart 15

parms optional parameters for the splitting function. Anova splitting has no parame-
ters. Poisson splitting has a single parameter, the coefficient of variation of the
prior distribution on the rates. The default value is 1. Exponential splitting has
the same parameter as Poisson. For classification splitting, the list can contain
any of: the vector of prior probabilities (component prior), the loss matrix (com-
ponent loss) or the splitting index (component split). The priors must be positive
and sum to 1. The loss matrix must have zeros on the diagonal and positive off-
diagonal elements. The splitting index can be gini or information. The default
priors are proportional to the data counts, the losses default to 1, and the split
defaults to gini.

control a list of options that control details of the rpart algorithm. See rpart.control.

cost a vector of non-negative costs, one for each variable in the model. Defaults to
one for all variables. These are scalings to be applied when considering splits,
so the improvement on splitting on a variable is divided by its cost in deciding
which split to choose.

... arguments to rpart.control may also be specified in the call to rpart. They
are checked against the list of valid arguments.

Value

A object rpart.prmdt with additional information to the model that allows to homogenize the results.

Note

the parameter information was taken from the original function rpart.

See Also

The internal function is from package rpart.

Examples

data("iris")

n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

modelo.rpart <- train.rpart(Species~., data.train)
modelo.rpart
prob <- predict(modelo.rpart, data.test, type = "prob")
prob
prediccion <- predict(modelo.rpart, data.test, type = "class")
prediccion
confusion.matrix(data.test, prediccion)

16 train.svm

train.svm train.svm

Description

Provides a wrapping function for the svm.

Usage

train.svm(formula, data, ..., subset, na.action = na.omit,
scale = TRUE)

Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which ‘svm’ is called from.

... additional parameters for the low level fitting function svm.default

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action
is na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

scale A logical vector indicating the variables to be scaled. If scale is of length 1, the
value is recycled as many times as needed. Per default, data are scaled internally
(both x and y variables) to zero mean and unit variance. The center and scale
values are returned and used for later predictions.

Value

A object svm.prmdt with additional information to the model that allows to homogenize the results.

Note

the parameter information was taken from the original function svm.

See Also

The internal function is from package svm.

train.xgboost 17

Examples

data("iris")

n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

modelo.svm <- train.svm(Species~., data.train)
modelo.svm
prob <- predict(modelo.svm, data.test , type = "prob")
prob
prediccion <- predict(modelo.svm, data.test , type = "class")
prediccion
confusion.matrix(data.test, prediccion)

train.xgboost train.xgboost

Description

Provides a wrapping function for the xgb.train.

Usage

train.xgboost(formula, data, nrounds, watchlist = list(), obj = NULL,
feval = NULL, verbose = 1, print_every_n = 1L,
early_stopping_rounds = NULL, maximize = NULL, save_period = NULL,
save_name = "xgboost.model", xgb_model = NULL, callbacks = list(),
eval_metric = "mlogloss", extra_params = NULL, booster = "gbtree",
objective = NULL, eta = 0.3, gamma = 0, max_depth = 6,
min_child_weight = 1, subsample = 1, colsample_bytree = 1, ...)

Arguments

formula a symbolic description of the model to be fit.

data training dataset. xgb.train accepts only an xgb.DMatrix as the input. xgboost, in
addition, also accepts matrix, dgCMatrix, or name of a local data file.

nrounds max number of boosting iterations.

watchlist named list of xgb.DMatrix datasets to use for evaluating model performance.
Metrics specified in either eval_metric or feval will be computed for each of
these datasets during each boosting iteration, and stored in the end as a field
named evaluation_log in the resulting object. When either verbose>=1 or cb.print.evaluation
callback is engaged, the performance results are continuously printed out during
the training. E.g., specifying watchlist=list(validation1=mat1, validation2=mat2)
allows to track the performance of each round’s model on mat1 and mat2.

18 train.xgboost

obj customized objective function. Returns gradient and second order gradient with
given prediction and dtrain.

feval custimized evaluation function. Returns list(metric=’metric-name’, value=’metric-
value’) with given prediction and dtrain.

verbose If 0, xgboost will stay silent. If 1, it will print information about performance.
If 2, some additional information will be printed out. Note that setting verbose
> 0 automatically engages the cb.print.evaluation(period=1) callback function.

print_every_n Print each n-th iteration evaluation messages when verbose>0. Default is 1
which means all messages are printed. This parameter is passed to the cb.print.evaluation
callback.

early_stopping_rounds

If NULL, the early stopping function is not triggered. If set to an integer k,
training with a validation set will stop if the performance doesn’t improve for k
rounds. Setting this parameter engages the cb.early.stop callback.

maximize If feval and early_stopping_rounds are set, then this parameter must be set as
well. When it is TRUE, it means the larger the evaluation score the better. This
parameter is passed to the cb.early.stop callback.

save_period when it is non-NULL, model is saved to disk after every save_period rounds, 0
means save at the end. The saving is handled by the cb.save.model callback.

save_name the name or path for periodically saved model file.
xgb_model a previously built model to continue the training from. Could be either an object

of class xgb.Booster, or its raw data, or the name of a file with a previously saved
model.

callbacks a list of callback functions to perform various task during boosting. See call-
backs. Some of the callbacks are automatically created depending on the param-
eters’ values. User can provide either existing or their own callback methods in
order to customize the training process.

eval_metric eval_metric evaluation metrics for validation data. Users can pass a self-defined
function to it. Default: metric will be assigned according to objective(rmse for
regression, and error for classification, mean average precision for ranking). List
is provided in detail section.

extra_params the list of parameters. The complete list of parameters is available at http://xgboost.readthedocs.io/en/latest/parameter.html.
booster booster which booster to use, can be gbtree or gblinear. Default: gbtree.
objective objective specify the learning task and the corresponding learning objective,

users can pass a self-defined function to it. The default objective options are
below: + reg:linear linear regression (Default). + reg:logistic logistic regression.
+ binary:logistic logistic regression for binary classification. Output probability.
+ binary:logitraw logistic regression for binary classification, output score be-
fore logistic transformation. + num_class set the number of classes. To use only
with multiclass objectives. + multi:softmax set xgboost to do multiclass classifi-
cation using the softmax objective. Class is represented by a number and should
be from 0 to num_class - 1. + multi:softprob same as softmax, but prediction
outputs a vector of ndata * nclass elements, which can be further reshaped to
ndata, nclass matrix. The result contains predicted probabilities of each data
point belonging to each class. + rank:pairwise set xgboost to do ranking task by
minimizing the pairwise loss.

train.xgboost 19

eta eta control the learning rate: scale the contribution of each tree by a factor of 0 <
eta < 1 when it is added to the current approximation. Used to prevent overfitting
by making the boosting process more conservative. Lower value for eta implies
larger value for nrounds: low eta value means model more robust to overfitting
but slower to compute. Default: 0.3

gamma gamma minimum loss reduction required to make a further partition on a leaf
node of the tree. the larger, the more conservative the algorithm will be.gamma
minimum loss reduction required to make a further partition on a leaf node of
the tree. the larger, the more conservative the algorithm will be.

max_depth max_depth maximum depth of a tree. Default: 6
min_child_weight

min_child_weight minimum sum of instance weight (hessian) needed in a child.
If the tree partition step results in a leaf node with the sum of instance weight
less than min_child_weight, then the building process will give up further parti-
tioning. In linear regression mode, this simply corresponds to minimum number
of instances needed to be in each node. The larger, the more conservative the
algorithm will be. Default: 1

subsample subsample subsample ratio of the training instance. Setting it to 0.5 means that
xgboost randomly collected half of the data instances to grow trees and this will
prevent overfitting. It makes computation shorter (because less data to analyse).
It is advised to use this parameter with eta and increase nrounds. Default: 1

colsample_bytree

colsample_bytree subsample ratio of columns when constructing each tree. De-
fault: 1

... other parameters to pass to params.

Value

A object xgb.Booster.prmdt with additional information to the model that allows to homogenize the
results.

Note

the parameter information was taken from the original function xgb.train.

See Also

The internal function is from package xgb.train.

Examples

data("iris")

n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

20 varplot

modelo.xg <- train.xgboost(Species~., data.train, nrounds = 79, maximize = FALSE)
modelo.xg
prob <- predict(modelo.xg, data.test, type = "prob")
prob
prediccion <- predict(modelo.xg, data.test, type = "class")
prediccion
confusion.matrix(data.test, prediccion)

varplot Plotting prmdt ada models

Description

Plotting prmdt ada models

Usage

varplot(x, ...)

Arguments

x A ada prmdt model

... optional arguments to print o format method

Value

a plot of the importance of variables.

Index

ada, 4

confusion.matrix, 2

general.indexes, 3
glm, 6, 7

naiveBayes, 5
neuralnet, 9, 11
nnet, 11, 12

randomForest, 13
rpart, 14, 15
rpart.control, 15

svm, 16

train.ada, 4
train.bayes, 5
train.glm, 6
train.kknn, 8, 9
train.knn, 8
train.neuralnet, 9
train.nnet, 11
train.randomForest, 13
train.rpart, 14
train.svm, 16
train.xgboost, 17

varplot, 20

xgb.train, 17, 19

21

	confusion.matrix
	general.indexes
	train.ada
	train.bayes
	train.glm
	train.knn
	train.neuralnet
	train.nnet
	train.randomForest
	train.rpart
	train.svm
	train.xgboost
	varplot
	Index

