Package ‘trade’

June 29, 2020
Type Package

Title Tools for Trade Practitioners

Version 0.5.5

Author Charles Taragin

Maintainer Charles Taragin <ctaragin@ftc.gov>
Depends antitrust (>= 0.99.11)

Imports methods, stats

Suggests bookdown,knitr

VignetteBuilder knitr

Description A collection of tools for trade practitioners, including the ability to calibrate differ-
ent consumer demand systems and simulate the effects of tariffs and quotas under different com-
petitive regimes. These tools are derived from Anderson et al. (2001) <doi:10.1016/S0047-
2727(00)00085-2> and Froeb et al. (2003) <doi:10.1016/S0304-4076(02)00166-5>.

License Unlimited
Encoding UTF-8
LazyLoad yes
RoxygenNote 7.1.0

Collate 'QuotaClasses.R' 'TariffClasses.R' "TariffCournot-methods.R'
"TariffMonComRUM-methods.R' 'summary-methods.R' 'ps-methods.R’
'bertrand_quota.R' bertrand_tariff.R' 'cournot_tariff.R'
'initialize-methods.R' 'monopolistic_competition_tariff.R'
'trade-deprecated.R' 'trade_shiny.R'

NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-29 21:50:02 UTC

R topics documented:

bertrand_quota L. 2
bertrand_tariff L 4

2 bertrand_quota

cournot_tariff L e e e 7
initialize-methods L 10
monopolistic_competition_tariff L oo 10
ps-methods 12
Quota-Classes e e e 13
summary-methods L e 13
Tariff-classes e e 15
TariffCournot-methods e 15
Tariff MonComRUM-methods 16

Index 17

bertrand_quota quota Simulation With A Bertrand Pricing Game
Description

Simulate the effect of quotas when firms play a Bertrand pricing game and consumer demand is
either Logit, CES, or AIDS

Usage

bertrand_quota(
demand = c("logit"),
prices,
quantities,
margins,
owner,
mktElast = NA_real_,
diversions,
quotaPre = rep(Inf, length(quantities)),
quotaPost,
priceOutside = ifelse(demand == "logit", 0, 1),
priceStart,
isMax = FALSE,
parmStart,
control.slopes,
control.equ,

labels = paste("Prod”, 1:length(quantities), sep = ""),
)
Arguments
demand A character vector indicating which demand system to use. Currently allows
logit (default), ces, or aids.
prices A length k vector product prices. Default is missing, in which case demand

intercepts are not calibrated.

bertrand_quota

quantities

margins

owner

mktElast

diversions

quotaPre

quotaPost

priceQutside

priceStart

isMax

parmStart

control.slopes

control.equ

labels

Details

A length k vector of product quantities.

A length k vector of product margins. All margins must be either be between 0
and 1, or NA.

EITHER a vector of length k whose values indicate which firm produced a prod-
uct before the merger OR a k x k matrix of pre-merger ownership shares.

A negative number equal to the industry pre-merger price elasticity. Default is
NA.

A k x k matrix of diversion ratios with diagonal elements equal to -1. Default is
missing, in which case diversion according to revenue share is assumed.

A vector of length k where each element equals the current quota (expressed as
a proportion of pre-merger quantities) imposed on each product. Default is Inf,
which assumes no quota.

A vector of length k where each element equals the new quota (expressed as a
proportion of pre-merger quantities) imposed on each product. Default is Inf,
which assumes no quota.

price of the outside good. Equals O for logit and 1 for ces. Not used for aids.

For aids, a vector of length k who elements equal to an initial guess of the
proportional change in price caused by the merger. The default is to draw k
random elements from a [0,1] uniform distribution. For ces and logit, the default
is prices.

If TRUE, checks to see whether computed price equilibrium locally maximizes
firm profits and returns a warning if not. Default is FALSE.

aids only. A vector of length 2 who elements equal to an initial guess for
"known" element of the diagonal of the demand matrix and the market elasticity.

A list of optim control parameters passed to the calibration routine optimizer
(typically the calcSlopes method).

A list of BBsolve control parameters passed to the non-linear equation solver
(typically the calcPrices method).

A k-length vector of labels.

Additional options to feed to the BBsolve optimizer used to solve for equilib-
rium prices.

Let k denote the number of products produced by all firms. Using price, and quantity, information
for all products in each market, as well as margin information for at least one products in each
market, bertrand_quota is able to recover the slopes and intercepts of the Logit, demand system.
These parameters are then used to simulate the price effects of a quota under the assumption that
the firms are playing a simultaneous price setting game.

Value

bertrand_quota returns an instance of class Quotalogit.

4 bertrand_tariff

References

Simon P. Anderson, Andre de Palma, Brent Kreider, Tax incidence in differentiated product oligopoly,
Journal of Public Economics, Volume 81, Issue 2, 2001, Pages 173-192.

Examples

Calibration and simulation results from a 80% quota on non-US beers "OTHER-LITE"
and "OTHER-REG”
Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c(”BUD","OLD STYLE","MILLER”,"MILLER-LITE","”OTHER-LITE","OTHER-REG")
owner <-c("BUD","OLD STYLE","MILLER","MILLER","OTHER-LITE","OTHER-REG")

price <- c¢(.0441,.0328,.0409, .0396,.0387,.0497)

quantities <- c(.066,.172,.253,.187,.099,.223)*100

margins <- c(.3830,.5515,.5421,.5557,.4453,.3769)

quota <- c(Inf,Inf,Inf,Inf,.8,.8)

names(price) <-
names(quantities) <-
names(margins) <-

prodNames
result.logit <- bertrand_quota(demand = "logit"”,prices=price,quantities=quantities,
margins = margins,owner=owner, quotaPost = quota, labels=prodNames)
print(result.logit) # return predicted price change
summary(result.logit) # summarize merger simulation
bertrand_tariff Tariff Simulation With A Bertrand Pricing Game
Description

Simulate the effect of tariffs when firms play a Bertrand pricing game and consumer demand is
either Logit, CES, or AIDS

Usage
bertrand_tariff(
demand = c("logit"”, "ces"”, "aids"),
prices,
quantities,
margins,
owner,

mktElast = NA_real_,
diversions,

bertrand_tariff

tariffPre = rep(@, length(quantities)),
tariffPost = rep(@, length(quantities)),
priceOutside = ifelse(demand == "logit", 0, 1),
priceStart,
isMax = FALSE,
parmStart,
control.slopes,
control.equ,
labels = paste(”Prod”, 1:length(quantities), sep = ""),
)
Arguments
demand A character vector indicating which demand system to use. Currently allows
logit (default), ces, or aids.
prices A length k vector product prices. Default is missing, in which case demand
intercepts are not calibrated.
quantities A length k vector of product quantities.
margins A length k vector of product margins. All margins must be either be between 0
and 1, or NA.
owner EITHER a vector of length k whose values indicate which firm produced a prod-
uct before the tariff OR a k x k matrix of pre-merger ownership shares.
mktElast A negative number equal to the industry pre-merger price elasticity. Default is
NA.
diversions A k x k matrix of diversion ratios with diagonal elements equal to -1. Default is
missing, in which case diversion according to revenue share is assumed.
tariffPre A vector of length k where each element equals the current ad valorem tariff
(expressed as a proportion of the consumer price) imposed on each product.
Default is 0, which assumes no tariff.
tariffPost A vector of length k where each element equals the new ad valorem tariff (ex-
pressed as a proportion of the consumer price) imposed on each product. Default
is 0, which assumes no tariff.
priceOutside price of the outside good. Equals O for logit and 1 for ces. Not used for aids.
priceStart For aids, a vector of length k who elements equal to an initial guess of the
proportional change in price caused by the merger. The default is to draw k
random elements from a [0,1] uniform distribution. For ces and logit, the default
is prices.
isMax If TRUE, checks to see whether computed price equilibrium locally maximizes
firm profits and returns a warning if not. Default is FALSE.
parmStart aids only. A vector of length 2 whose elements equal to an initial guess for each

control.slopes

"known" element of the diagonal of the demand matrix and the market elasticity.

A list of optim control parameters passed to the calibration routine optimizer
(typically the calcSlopes method).

6 bertrand_tariff

control.equ A list of BBsolve control parameters passed to the non-linear equation solver
(typically the calcPrices method).

labels A k-length vector of labels.

Additional options to feed to the BBsolve optimizer used to solve for equilib-
rium prices.

Details

Let k denote the number of products produced by all firms. Using price, and quantity, information
for all products in each market, as well as margin information for at least one products in each
market, bertrand_tariff is able to recover the slopes and intercepts of either a Logit, CES, or
AIDS demand system. These parameters are then used to simulate the price effects of an ad valorem
tariff under the assumption that the firms are playing a simultaneous price setting game.

Value

bertrand_tariff returns an instance of class TarifflLogit, TariffCES, or TariffAIDS, depend-
ing upon the value of the “demand” argument.

References

Simon P. Anderson, Andre de Palma, Brent Kreider, Tax incidence in differentiated product oligopoly,
Journal of Public Economics, Volume 81, Issue 2, 2001, Pages 173-192.

See Also

monopolistic_competition_tariff to simulate the effects of a tariff under monopolistic compe-
tition.

Examples

Calibration and simulation results from a 10% tariff on non-US beers "OTHER-LITE"
and "OTHER-REG”
Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c("BUD","OLD STYLE","MILLER","MILLER-LITE"”,"OTHER-LITE","OTHER-REG")
owner <-c("BUD","”OLD STYLE","MILLER","MILLER","OTHER-LITE","OTHER-REG")

price <- ¢(.0441,.0328,.0409, .0396,.0387,.0497)

quantities <- c(.066,.172,.253,.187,.099,.223)*100

margins <- c(.3830,.5515,.5421, .5557,.4453,.3769)

tariff <- c(0,0,0,0,.1,.1)

names(price) <-
names(quantities) <-
names(margins) <-
prodNames

result.logit <- bertrand_tariff(demand = "logit",prices=price,quantities=quantities,
margins = margins,owner=owner,

cournot_tariff 7

tariffPost = tariff, labels=prodNames)

print(result.logit) # return predicted price change
summary(result.logit) # summarize merger simulation
cournot_tariff Tariff Simulation With A Cournot Quantity Setting Game
Description

Simulate the effect of tariffs when firms play a cournot quantity setting game and consumer demand
is either linear or log-linear

Usage

cournot_tariff(
prices,
quantities,
margins = matrix(NA_real_, nrow(quantities), ncol(quantities)),
demand = rep("linear”, length(prices)),
cost = rep("linear”, nrow(quantities)),
tariffPre = matrix(@, nrow = nrow(quantities), ncol = ncol(quantities)),
tariffPost = tariffPre,
mcfunPre = list(),
mcfunPost = mcfunPre,
vcfunPre = list(),
vcfunPost = vcfunPre,
capacitiesPre = rep(Inf, nrow(quantities)),
capacitiesPost = capacitiesPre,

productsPre = !is.na(quantities),
productsPost = productsPre,
owner,

mktElast = rep(NA_real_, length(prices)),
quantityStart = as.vector(quantities),
control.slopes,

control.equ,

labels,
)
Arguments
prices A length k vector product prices.
quantities An n x k matrix of product quantities. All quantities must either be positive, or

if the product is not produced by a plant, NA

margins

demand

cost

tariffPre

tariffPost

mcfunPre

mcfunPost

vcfunPre

vcfunPost

capacitiesPre

capacitiesPost

productsPre

productsPost

owner

mktElast
quantityStart

control.slopes

control.equ

labels

cournot_tariff

An n x k matrix of product margins. All margins must be either be between 0
and 1, or NA.

A length k character vector equal to "linear" if a product’s demand curve is
assumed to be linear or "log" if a product’s demand curve is assumed to be log-
linear.

A length k character vector equal to "linear" if a plant’s marginal cost curve is
assumed to be linear or "constant" if a plant’s marginal curve is assumed to be
constant. Returns an error if a multi-plant firm with constant marginal costs does
not have capacity constraints.

An n x k matrix where each element equals the current ad valorem tariff (ex-
pressed as a proportion of consumer price) imposed on each product. Default is
0, which assumes no tariff.

An n x k matrix where each element equals the new ad valorem tariff (expressed
as a proportion of consumer price) imposed on each product. Default is 0, which
assumes no tariff.

a length n list of functions that calculate a plant’s marginal cost under the current
tariff structure. If empty (the default), assumes quadratic costs.

a length n list of functions that calculate a plant’s marginal cost under the new
tariff structure. If empty (the default), assumes quadratic costs.

a length n list of functions that calculate a plant’s variable cost under the current
tariff structure. If empty (the default), assumes quadratic costs.

a length n list of functions that calculate a plant’s variable cost under the new
tariff structure. If empty (the default), assumes quadratic costs.

A length n numeric vector of plant capacities under the current tariff regime.
Default is Inf.

A length n numeric vector of plant capacities under the new tariff regime. De-
fault is Inf.

An n x k matrix that equals TRUE if under the current tariff regime, a plant
produces a product. Default is TRUE if ’quantities’ is not NA.

An n x k matrix that equals TRUE if under the new tariff regime, a plant pro-
duces a product. Default equals *productsPre’.

EITHER a vector of length n whose values indicate which plants are commonly
owned OR an n x n matrix of ownership shares.

A length k vector of product elasticities. Default is a length k vector of NAs

A length k vector of quantities used as the initial guess in the nonlinear equation
solver. Default is ’quantities’.

A list of optim control parameters passed to the calibration routine optimizer
(typically the calcSlopes method).

A list of BBsolve control parameters passed to the non-linear equation solver
(typically the calcPrices method).

A k-length vector of labels.

Additional options to feed to the BBsolve optimizer used to solve for equilib-
rium quantities.

cournot_tariff 9

Details

Let k denote the number of products and n denote the number of plants. Using price, and quantity,
information for all products in each market, as well as margin information for at least one products
in each market, cournot_tariff is able to recover the slopes and intercepts of either a Linear or
Log-linear demand system. These parameters are then used to simulate the price effects of a tariff
under the assumption that the firms are playing a homogeneous products simultaneous quantity
setting game.

Value

cournot_tariff returns an instance of class Cournot from package antitrust, depending upon the
value of the “demand” argument.

References

Simon P. Anderson, Andre de Palma, Brent Kreider, The efficiency of indirect taxes under imperfect
competition, Journal of Public Economics, Volume 81, Issue 2, 2001,Pages 231-251.

Examples

Simulate the effect of a 75% ad valorem tariff in a
5-firm, single-product market with linear demand and quadratic costs
Firm 1 is assumed to be foreign, and so subject to a tariff

n <- 5 #number of firms in market
cap <- rnorm(n,mean = .5, sd = .1)
int <- 10

slope <- -.25

tariffPre <- tariffPost <- rep(@, n)
tariffPost[1] <- .75

B.pre.c = matrix(slope,nrow=n,ncol=n)
diag(B.pre.c) = 2% diag(B.pre.c) - 1/cap
quantity.pre.c = rowSums(solve(B.pre.c) * -int)
price.pre.c = int + slope * sum(quantity.pre.c)
mc.pre.c = quantity.pre.c/cap

vc.pre.c = quantity.pre.c”2/(2*cap)
margin.pre.c = 1 - mc.pre.c/price.pre.c

#prep inputs for Cournot
owner.pre <- diag(n)

result.c <- cournot_tariff(prices = price.pre.c,quantities = as.matrix(quantity.pre.c),
margins=as.matrix(margin.pre.c),
owner=owner.pre,
tariffPre = as.matrix(tariffPre),
tariffPost = as.matrix(tariffPost))

10 monopolistic_competition_tariff

summary(result.c, market = TRUE) # summarize tariff (high-level)
summary(result.c, market = FALSE) # summarize tariff (detailed)
initialize-methods Initialize Methods
Description

Initialize methods for the TariffBertrand and TariffCournot classes

Usage

S4 method for signature 'TariffBertrand'
initialize(.Object, ...)

S4 method for signature 'QuotaBertrand'
initialize(.Object, ...)

S4 method for signature 'TariffCournot'

initialize(.Object, ...)
Arguments
.Object an instance of class TariffBertrand or TariffCournot

arguments to pass to initialize

monopolistic_competition_tariff
Tariff Simulation With A Monopolistic Competition Pricing Game

Description

Simulate the effect of tariffs when firms play a Monopolistic Competition game and consumer
demand is either Logit or CES

Usage
monopolistic_competition_tariff(
demand = c("logit"”, "ces"),
prices,
quantities,
margins,

mktElast = NA_real_,
mktSize,

monopolistic_competition_tariff 11

tariffPre = rep(@, length(quantities)),
tariffPost = rep(@, length(quantities)),

priceOutside = ifelse(demand == "logit", 0, 1),
labels = paste(”Prod”, 1:length(quantities), sep = "")
)
Arguments
demand A character vector indicating which demand system to use. Currently allows
“logit" or “ces" .
prices A length k vector product prices. Default is missing, in which case demand
intercepts are not calibrated.
quantities A length k vector of product quantities.
margins A length k vector of product margins. All margins must be either be between 0
and 1, or NA.
mktElast A negative number equal to the industry pre-tariff price elasticity. Default is NA
mktSize A positive number equal to the industry pre-tariff market size. Market size
equals total quantity sold,including sales to the outside good.
tariffPre A vector of length k where each element equals the current ad valorem tariff
(expressed as a proportion of the consumer price) imposed on each product.
Default is 0, which assumes no tariff.
tariffPost A vector of length k where each element equals the new ad valorem tariff (ex-

pressed as a proportion of the consumer price) imposed on each product. Default
is 0, which assumes no tariff.

priceOutside price of the outside good. Default O for logit and 1 for ces. Not used for aids.
labels A k-length vector of labels.

Details

Let k denote the number of products produced by all firms. Using price, and quantity, information
for all products in each market, as well as margin information for at least one products in each
market, monopolistic_competition_tariff is able to recover the slopes and intercepts of a Logit
demand system. These parameters are then used to simulate the price effects of an ad valorem tariff
under the assumption that the firms are playing a monopolisitcally competitive pricing game

Value
monopolistic_competition_tariff returns an instance of class TariffMonComLogit , depend-
ing upon the value of the “demand” argument.

References

Simon P. Anderson, Andre de Palma, Brent Kreider, Tax incidence in differentiated product oligopoly,
Journal of Public Economics, Volume 81, Issue 2, 2001, Pages 173-192. Anderson, Simon P., and
André De Palma. Economic distributions and primitive distributions in monopolistic competition.
Centre for Economic Policy Research, 2015.

12 ps-methods

See Also

bertrand_tariff to simulate the effects of a tariff under a Bertrand pricing game.

Examples

Calibration and simulation results from a 10% tariff on non-US beers "OTHER-LITE"
and "OTHER-REG"
Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c(”BUD”,"OLD STYLE","MILLER","MILLER-LITE","OTHER-LITE","OTHER-REG")
price <- c(.0441,.0328,.0409,.0396,.0387,.0497)

quantities <- c(.066,.172,.253,.187,.099,.223)x100

margins <- c(.3830,.5515,.5421, .5557, .4453,.3769)

tariff <- c(0,0,0,0,.1,.1)

names(price) <-
names(quantities) <-
names(margins) <-
prodNames

result.logit <- monopolistic_competition_tariff(demand = "logit",prices=price,quantities=quantities,
margins = margins,
tariffPost = tariff, labels=prodNames)

print(result.logit) # return predicted price change
summary(result.logit) # summarize merger simulation

result.ces <- monopolistic_competition_tariff(demand = "ces"”,prices=price,quantities=quantities,
margins = margins,
tariffPost = tariff, labels=prodNames)

print(result.ces) # return predicted price change
summary (result.ces) # summarize merger simulation
ps-methods Methods To Calculate Producer Surplus
Description

Producer Surplus methods for the TariffBertrand and TariffCournot classes

Usage

S4 method for signature 'TariffBertrand'
calcProducerSurplus(object, preMerger = TRUE)

S4 method for signature 'TariffCournot'
calcProducerSurplus(object, preMerger = TRUE)

Quota-classes 13

Arguments
object an instance of class TariffBertrand or TariffCournot
preMerger when TRUE, calculates producer surplus under the existing tariff regime. When
FALSE, calculates tariffs under the new tariff regime. Default is TRUE.
Value

product-level (or in the case of Cournot, plant-level) producer surplus

Quota-classes S4 classes to model quotas

Description

Extend classes from the antitrust package to accomodate quotas.

Slots

quotaPre For QuotaCournot, a matrix containing current plant-level (rows) AND product-level
(columns) quotas. Default is a matrix of Os. For all other classes, a vector containing current
product-level quotas. Quotas are expressed as a proportion of pre-merger output. Default is a
vector of Infs.

quotaPost a For QuotaCournot, a matrix containing new plant-level (rows) AND product-level
(columns) quotas. Default is a matrix of Infs. For all other classes, a vector containing new
product-level quotas. quotas are expressed as a proportion of pre-merger output. Default is a
vector of Infss.

summary-methods Summary Methods

Description

Summary methods for the TariffBertrand, QuotaBertrand, and TariffCournot classes

Usage

S4 method for signature 'TariffBertrand'
summary (

object,

revenue = FALSE,

levels = FALSE,

parameters = FALSE,

market = FALSE,

insideOnly = TRUE,

14

digits = 2
)
S4 method for signature 'QuotaBertrand'
summary (

object,

revenue = FALSE,
levels = FALSE,
parameters = FALSE,
market = FALSE,
insideOnly = TRUE,
digits = 2

summary-methods

)

S4 method for signature 'TariffCournot'

summary (
object,

market = FALSE,

revenue FALSE,
levels = FALSE,
parameters FALSE,
digits = 2
)
Arguments
object an instance of class TariffBertrand, QuotaBertrand, or TariffCournot
revenue When TRUE, returns revenues, when FALSE returns quantitities. Default is
FALSE.
levels When TRUE returns changes in levels rather than percents and quantities rather
than shares, when FALSE, returns changes as a parcent and shares rather than
quantities. Default is FALSE.
parameters When TRUE, displays demand and cost parameters. Default is FALSE.
market When TRUE, displays aggregate information about the effect of a tariff. When
FALSE displays product-specific (or in the case of Cournot, plant-specific) ef-
fects. Default is FALSE
insideOnly When TRUE, rescales shares on inside goods to sum to 1. Default is FALSE.
digits Number of digits to report. Default is 2.
Value

Prints either market or product/plant-level summary and invisibly returns a data frame containing
the same information.

Tariff-classes 15

Tariff-classes S4 classes to model tariffs

Description

Extend classes from the antitrust package to accomodate tariffs.

Slots

tariffPre For TariffCournot, a matrix containing current plant-level (rows) AND product-level
(columns) tariffs. Default is a matrix of Os. For all other classes, a vector containg current
product-level tariffs. ad valorem taxes are expressed as a proportion of the consumer price.
Default is a vector of Os.

tariffPost a For TariffCournot, a matrix containing new plant-level (rows) AND product-level
(columns) tariffs. Default is a matrix of Os. For all other classes, a vector containing new
product-level tariffs. ad valorem taxes are expressed as a proportion of the consumer price.
Default is a vector of 0s.

TariffCournot-methods Additional methods for TariffCournot Class

Description

Producer Surplus methods for the TariffBertrand and TariffCournot classes

Usage
S4 method for signature 'TariffCournot'
calcSlopes(object)

S4 method for signature 'TariffCournot'
calcQuantities(object, preMerger = TRUE, market = FALSE)

Arguments
object an instance of class TariffCournot
preMerger when TRUE, computes result under the existing tariff regime. When FALSE,
calculates tariffs under the new tariff regime. Default is TRUE.
market when TRUE, computes market-wide results. When FALSE, calculates plant-
specific results.
Value

calcSlopes return a TariffCournot object containing estimated slopes. CalcQuantities returns a
matrix of equilbrium quantities under either the current or new tariff.

16 TariffMonComRUM-methods

TariffMonComRUM-methods

Additional methods for TariffMonComLogit, TariffMonComCES
Classes

Description

Producer Surplus methods for the TariffMonComLogit and TariffMonComCES classes

Usage
S4 method for signature 'TariffMonComLogit'
calcSlopes(object)

S4 method for signature 'TariffMonComCES'
calcSlopes(object)

S4 method for signature 'TariffMonComLogit'
calcMargins(object, preMerger = TRUE)

S4 method for signature 'TariffMonComCES'
calcMargins(object, preMerger = TRUE)

S4 method for signature 'TariffMonComLogit'
calcPrices(object, preMerger = TRUE)

S4 method for signature 'TariffMonComCES'
calcPrices(object, preMerger = TRUE)

Arguments
object an instance of class TariffMonComLogit or class TariffMonComCES
preMerger when TRUE, computes result under the existing tariff regime. When FALSE,
calculates tariffs under the new tariff regime. Default is TRUE.
Value

calcSlopes return a TariffMonComLogit or TariffMonComCES object containing estimated slopes.
CalcQuantities returns a matrix of equilbrium quantities under either the current or new tariff.

Index

BBsolve, 3,6, 8
bertrand_quota, 2
bertrand_tariff, 4, /2

calcMargins, TariffMonComCES-method
(TariffMonComRUM-methods), 16
calcMargins, TariffMonComLogit-method
(TariffMonComRUM-methods), 16
calcPrices,TariffMonComCES-method
(TariffMonComRUM-methods), 16
calcPrices, TariffMonComLogit-method
(TariffMonComRUM-methods), 16
calcProducerSurplus, TariffBertrand-method
(ps-methods), 12
calcProducerSurplus, TariffCournot-method
(ps-methods), 12
calcQuantities,TariffCournot-method
(TariffCournot-methods), 15
calcSlopes,TariffCournot-method
(TariffCournot-methods), 15
calcSlopes, TariffMonComCES-method
(TariffMonComRUM-methods), 16
calcSlopes,TariffMonComLogit-method
(TariffMonComRUM-methods), 16
Cournot, 9
cournot_tariff,7

initialize,QuotaBertrand-method
(initialize-methods), 10
initialize,TariffBertrand-method
(initialize-methods), 10
initialize,TariffCournot-method
(initialize-methods), 10
initialize-methods, 10

monopolistic_competition_tariff, 6, 10
optim, 3,5, 8
ps-methods, 12

17

Quota-classes, 13

QuotaBertrand-class (Quota-classes), 13
QuotaCournot-class (Quota-classes), 13
Quotalogit, 3

QuotalLogit-class (Quota-classes), 13

summary,QuotaBertrand-method
(summary-methods), 13
summary, TariffBertrand-method
(summary-methods), 13
summary, TariffCournot-method
(summary-methods), 13
summary-methods, 13

Tariff-classes, 15

TariffAIDS, 6

TariffAIDS-class (Tariff-classes), 15

TariffBertrand-class (Tariff-classes),
15

TariffCES, 6

TariffCES-class (Tariff-classes), 15

TariffCournot-class (Tariff-classes), 15

TariffCournot-methods, 15

TarifflLogit, 6

TarifflLogit-class (Tariff-classes), 15

TariffMonComLogit, 7/

TariffMonComLogit-class
(Tariff-classes), 15

TariffMonComRUM-methods, 16

	bertrand_quota
	bertrand_tariff
	cournot_tariff
	initialize-methods
	monopolistic_competition_tariff
	ps-methods
	Quota-classes
	summary-methods
	Tariff-classes
	TariffCournot-methods
	TariffMonComRUM-methods
	Index

