Package ‘track’

July 23, 2016

Version 1.1.9

Date 2016-07-20

Title Store Objects on Disk Automatically
Author Tony Plate <tplate@acm.org>
Maintainer Tony Plate <tplate@acm.org>

Description Automatically stores objects in files on disk
so that files are rewritten when objects are changed, and
so that objects are accessible but do not occupy memory
until they are accessed. Keeps track of times when objects
are created and modified, and caches some basic
characteristics of objects to allow for fast summaries of
objects. Also provides a command history mechanism that
saves the last command to a history file after each
command completes.

License GPL

Depends R (>=2.1.0), methods
Suggests scriptests
NeedsCompilation no

Repository CRAN

Date/Publication 2016-07-23 00:05:49

R topics documented:

show.envs
track-Intro e e e
track.attach
track.auto L
track.copy
track.design
track.future
track.history
trackinfo L

2 show.envs
track.manage L. e e e e e e e e 26
track.Options e e e e e 29
track.performance 33
track.pluginldruo 34
track.preremove L e 36
trackrebuild e 37
trackrename L. L e e e e e e e e 39
track.Setup L e e 40
track.status e e e 44
track.summary L e 46
track.Sync 49

Index 52

show.envs Show the environments referenced within an object.

Description

show. envs recursively examines x and the objects within it, printing the names of any environments
encountered. It does NOT recursively enter environments — once it finds an environment it just prints
the name of that environment and doesn’t look further inside the environment.

Usage

show.envs(x, obj = substitute(x))

Arguments

X The object to examine.

obj An expression describing the object. Not intended to be supplied by the user.
Details

show. envs attemps to show the environments referenced within an object, but it may miss some. If
you encounter any such cases, please email them to <tplate@acm.org>.

Value

The number of environments encountered.

Author(s)

Tony Plate <tplate@acm.org>.

Examples

X <=
m <-

data.frame(a=1:10, b=10:1)
Im(a ~ b, data=x)

show.envs(m)

track-intro 3

track-intro Overview of track package

Description

The track package sets up a link between R objects in memory and files on disk so that objects
are automatically saved to files when they are changed. R objects in files are read in on demand
and do not consume memory prior to being referenced. The track package also tracks times when
objects are created and modified, and caches some basic characteristics of objects to allow for fast
summaries of objects.

Each object is stored in a separate RData file using the standard format as used by save(), so
that objects can be manually picked out of or added to the track database if needed. The track
database is a directory usually named rdatadir that contains a RData file for each object and
several housekeeping files that are either plain text or RData files.

Tracking works by replacing a tracked variable by an activeBinding, which when accessed looks
up information in an associated tracking environment’ and reads or writes the corresponding RData
file and/or gets or assigns the variable in the tracking environment. In the default mode of operation,
R variables that are accessed are stored in memory for the duration of the top level task (i.e., in
one expression evaluated from the prompt.) A callback that is called each time a top-level-task
completes does three major things:

* detects newly created or deleted variables, and adds or removes from the tracking database as
appropriate, and
* writes changed variables to the database, and
¢ deletes cached objects from memory.
The track package also provides a self-contained incremental history saving function that writes
the most recent command to the file .Rincr_history at the end of each top-level task, along with
a time stamp that does not appear in the interactive history. The standard history functionality

(savehistory/loadhistory) in R writes the history only at the end of the session. Thus, if the R
session terminates abnormally, history is lost.

Details

There are four main reasons to use the track package:
* conveniently handle many moderately-large objects that would collectively exhaust memory
or be inconvenient to manage in files by manually using save (), load(), and/or save. image().

* have changed or newly created objects saved automatically at the end of each top-level com-
mand, which ensures objects are preserved in the event of accidental or abnormal termination
of the R session, and which also makes startup and saving much faster when many large ob-
jects in the global environment must be loaded or saved.

* keep track of creation and modification times on objects

* get fast summaries of basic characteristics of objects - class, size, dimension, etc.

track-intro

There is an option to control whether tracked objects are cached in memory as well as being stored
on disk. By default, objects are cached in memory for the duration of a top-level task. To save time
when working with collections of objects that will all fit in memory, turn on caching with and turn
off cache-flushing track.options(cache=TRUE, cachePolicy="none"), or start tracking with
track.start(..., cache=TRUE, cachePolicy="none"). A possible future improvement is to
allow conditional and/or more intelligent caching of objects. Some data that would be needed for
this is already collected in access counts and times that are recorded in the tracking summary.

Here is a brief example of tracking some variables in the global environment:

> library(track)

> # By default, track.start() uses/creates a db in the dir
> # 'rdatadir' in the current working directory; supply arg
> # dir= to change.

> track.start()

> x <- 123 # Variable 'x' is now tracked
>y <- matrix(1:6, ncol=2) # 'y' is assigned & tracked

> z1 <= list("a", "b", "c")

> z2 <- Sys.time()

> track.summary(size=F) # See a summary of tracked vars
class mode extent length modified TA TW
X numeric numeric [1] 1 2007-09-07 08:50:58 0 1
matrix numeric [3x2] 6 2007-09-07 08:50:58 @ 1
z1 list list [[3]] 3 2007-09-07 08:50:58 0 1
z2 POSIXt,POSIXct numeric [1] 1 2007-09-07 08:50:58 @ 1

> # (TA="total accesses”, TW="total writes")
> 1s(all=TRUE)
[1] HXH Hyll IIZ-I n ”22”

> track.stop(pos=1) # Stop tracking

> 1s(all=TRUE)

character(0)

>

> # Restart using the tracking dir -- the variables reappear

> track.start() # Start using the same tracking dir again ("rdatadir”)
> 1s(all=TRUE)

[-I] IIXH Ilyll HZ-IH ”22”

> track.summary(size=F)

class mode extent length modified TA TW
X numeric numeric [1] 1 2007-09-07 08:50:58 0 1
matrix numeric [3x2] 6 2007-09-07 08:50:58 0 1
z1 list list [[3]] 3 2007-09-07 08:50:58 0@ 1
z2 POSIXt,POSIXct numeric [1] 1 2007-09-07 08:50:58 0@ 1

> track.stop(pos=1)

>

> # the files in the tracking directory:

> list.files("rdatadir”, all=TRUE)

[13 ».” o

[3] "filemap.txt" ".trackingSummary.rda”
[5] "x.rda" "y.rda"”

track-intro 5

[7] "z1.rda" "z2.rda"
>

There are several points to note:

» The global environment is the default environment for tracking — it is possible to track vari-
ables in other environments, but that environment must be supplied as an argument to the track
functions.

* By default, newly created or deleted variables are automatically added to or removed from the
tracking database. This feature can be disabled by supplying auto=FALSE to track.start(),
or by calling track.auto(FALSE).

* When tracking is stopped, all tracked variables are saved on disk and will be no longer acces-
sible until tracking is started again.

* The objects are stored each in their own file in the tracking dir, in the format used by save ()/load()
(RData files).

List of basic functions and common calling patterns

For straightforward use of the track package, only a single call to track.start() need be made to
start automatically tracking the global environment. If it is desired to save untrackable variables at
the end of the session, track.stop() should be called before calling save.image() or q('yes"'),
because track.stop() will ensure that tracked variables are saved to disk and then remove them
from the global environment, leaving save.image() to save only the untracked or untrackable
variables. The basic functions used in automatic tracking are as follows:

e track.start(dir=...): start tracking the global environment, with files saved in dir (the
default is rdatadir).

e track.summary(): print a summary of the basic characteristics of tracked variables: name,
class, extent, and creation, modification and access times.

* track.info(): print a summary of which tracking databases are currently active.

* track.stop(pos=, all=): stop tracking. Any unsaved tracked variables are saved to disk.
Unless keepVars=TRUE is supplied, all tracked variables become unavailable until tracking
starts again.

e track.attach(dir=..., pos=): attach an existing tracking database to the search list at
the specified position. The default when attaching at positions other than 1 is to use readonly
mode, but in non-readonly mode, changes to variables in the attached environment will be
automatically saved to the database.

* track.rescan(pos=): rescan a tracking directory that was attached by track.attach() ata
position other than 1, and that is preferably readonly.

For the non-automatic mode, four other functions cover the majority of common usage:

* track.start(dir=..., auto=TRUE/FALSE): start tracking the global environment, with
files saved in dir

* track(x): start tracking x - x in the global environment is replaced by an active binding and x
is saved in its corresponding file in the tracking directory and, if caching is on, in the tracking
environment

6 track-intro

e track(x <- value): start tracking x
e track(list=c('x"', 'y')): start tracking specified variables
* track(all=TRUE): start tracking all untracked variables in the global environment

* untrack(x): stop tracking variable x - the R object x is put back as an ordinary object in the
global environment

* untrack(all=TRUE): stop tracking all variables in the global environment (but tracking is
still set up)

e untrack(list=...): stop tracking specified variables

* track.remove(x): completely remove all traces of x from the global environment, track-
ing environment and tracking directory. Note that if variable x in the global environment is
tracked, remove (x) will make x an "orphaned" variable: remove(x) will just remove the ac-
tive binding from the global environment, and leave x in the tracked environment and on file,
and x will reappear after restarting tracking.

Complete list of functions and common calling patterns

The track package provides many additional functions for controlling how tracking is performed
(e.g., whether or not tracked variables are cached in memory), examining the state of tracking
(show which variables are tracked, untracked, orphaned, masked, etc.) and repairing tracking envi-
ronments and databases that have become inconsistent or incomplete (this may result from resource
limitiations, e.g., being unable to write a save file due to lack of disk space, or from manual tinker-
ing, e.g., dropping a new save file into a tracking directory.)

The functions that can be used to set up and take down tracking are:

* track.start(dir=...): start tracking, using the supplied directory

* track.stop(): stop tracking (any unsaved tracked variables are saved to disk and all tracked
variables become unavailable until tracking starts again)

e track.dir(): return the path of the tracking directory
Functions for tracking and stopping tracking variables:
e track(x) track(var <- value) track(list=...) track(all=TRUE): start tracking vari-
able(s)
e track.load(file=...): load some objects from a RData file into the tracked environment
e untrack(x, keep.in.db=FALSE) untrack(list=...) untrack(all=TRUE): stop tracking
variable(s) - value is left in place, and optionally, it is also left in the the database
Functions for getting status of tracking and summaries of variables:
* track.summary(): return a data frame containing a summary of the basic characteristics of
tracked variables: name, class, extent, and creation, modification and access times.

e track.status(): return a data frame containing information about the tracking status of
variables: whether they are saved to disk or not, etc.

e track.info(): return a data frame containing information about which tracking dbs are cur-
rently active.

e track.mem(): return a data frame containing information about number of objects and mem-
ory usage in tracking dbs.

track-intro 7

env.is.tracked(): tell whether an environment is currently tracked

The remaining functions allow the user to more closely manage variable tracking, but are less likely
to be of use to new users.

Functions for getting status of tracking and summaries of variables:

tracked(): return the names of tracked variables

untracked(): return the names of untracked variables

untrackable(): return the names of variables that cannot be tracked
track.unsaved(): return the names of variables whose copy on file is out-of-date

track.orphaned(): return the names of once-tracked variables that have lost their active
binding (should not happen)

track.masked(): return the names of once-tracked variables whose active binding has been
overwritten by an ordinary variable (should not happen)

Functions for managing tracking and tracked variables:

track.options(): examine and set options to control tracking

track.load(): load variables from a saved RData file into the tracking session

track. copy() and track.move(): copy or move variables from one tracking db to another
track.rename() rename variables in a tracking db

track.rescan(): reload variable values from disk (can forget all cached vars, remove no-
longer existing tracked vars)

track.auto(): turn auto-tracking on or off

Functions used internally as part of auto-tracking (generally not called by the user when auto-
tracking is running):

track.sync(): write unsaved variables to disk, and remove excess objects from memory.
This function can be called by the user if they wish to remove excess objects from memory
during a memory-intensive top-level command.

track.sync.callback(): calls track.sync(), this function is installed as a task callback
(to be called each time a top-level task is completed, see taskCallback). This function is not
exported by the track package.

track.auto.monitor(): an additional callback that monitors the existence of the callback to
track.sync.callback and re-instates it if missing. This function is not exported by the track
package.

Lower-level functions for managing tracking and tracked variables (generally not called by the user
when auto-tracking is running):

track.remove(): completely remove all traces of a tracked variable
track.save(): write unsaved variables to disk
track. flush(): write unsaved variables to disk, and remove from memory

track.forget(): delete cached versions without saving to file (the object saved in the file
will be retrieved next time the variable is accessed)

8 track-intro

Functions for recovering from errors (caused by bugs or by multiple sessions updating bookkeeping
data):

* track.rebuild(): rebuild tracking information from objects in memory or on disk
Design and internals of tracking:

» See help page track.design

Note

Some special kinds of objects don’t work properly if referenced as active bindings and/or stored in
a save file. One example is RODBC connections. To make it easy to work with such objects, two
ways of excluding variables from automatic tracking are provided: the autoTrackExcludePattern
option (a vector regular expressions: variables whose name match one of these will not be tracked);
and the autoTrackExcludeClass option (a vector of class names: variables whose class matches
one of these will not be tracked). New values can be added to these options as follows:

track.options(autoTrackExcludePattern="regexp")
track.options(autoTrackExcludeClass="classname")

Tracking is not particularly suitable for storing objects that contain environments, because those
environments and their contents will be fully written out in the saved file (in a live R session, en-
vironments are references, and there can be multiple references to one environment.) Functions
are one of the most common objects that contain environments, which can contain data objects
local to the function (e.g., see the examples in the R FAQ in the section "Lexical scoping" under
"What are the differences between R and S?" http://cran.r-project.org/doc/FAQ/R-FAQ.
html#lLexical-scoping). Additionally, the results of some modeling functions contain environ-
ments, e.g., Lm holds several references to the environment that contains the data. When an 1m object
is save’ed, the environment containing the data, and all the other objects in that environment, can
be saved in the same file. To work with large data objects and modeling functions, consider first cre-
ating a tracking database that contains the data objects. Then, in a different R session (which can be
running at the same time), use track.attach to attach the db of data objects at pos=2 on the search
list. When working in this way, the data objects will only be kept in memory when being used,
and modeling functions that record environments in their results can be successful used (though
beware of modeling functions that store large amounts of data in their results.) Alternatively, use
modeling functions that do not store references to environments. The utility function show.envs
from the track package will show what environments are referenced within an object (though it is
not guaranteed to find them all.)

Author(s)

Tony Plate <tplate @acm.org>

References
Roger D. Peng. Interacting with data using the filehash package. R News, 6(4):19-24, October
2006. http://cran.r-project.org/doc/Rnews

David E. Brahm. Delayed data packages. R News, 2(3):11-12, December 2002. http://cran.
r-project.org/doc/Rnews

http://cran.r-project.org/doc/FAQ/R-FAQ.html#Lexical-scoping
http://cran.r-project.org/doc/FAQ/R-FAQ.html#Lexical-scoping
http://cran.r-project.org/doc/Rnews
http://cran.r-project.org/doc/Rnews
http://cran.r-project.org/doc/Rnews

track-intro 9

See Also

Design of the track package.

Potential future features of the track package.

Documentation for save and load (in "base’ package).

Documentation for makeActiveBinding and related functions (in ’base’ package).
Inspriation from the packages g.data and filehash.

Description of the facility (addTaskCallback) for adding a callback function that is called at the
end of each top-level task (each time R returns to the prompt after completing a command): http:
//developer.r-project.org/TaskHandlers.pdf.

Examples

HHHEHHAEEEH R AR A
Warning: running this example will cause variables currently
in the R global environment to be written to .RData files

in a tracking database on the filesystem under R's temporary
directory, and will cause the variables to be removed from
the R global environment.

It is recommended to run this example with a fresh R session
with no important variables in the global environment.
HHHHHHHEHEE AR AR A

T

library(track)

Start tracking the global environment using a tmp directory

Default tracking db dir is 'rdatadir' in the current working

directory; omit the dir= argument to use this.

if (lis.element('tmpenv', search())) attach(new.env(), name='tmpenv', pos=2)
assign('tmpdatadir', pos='tmpenv', value=file.path(tempdir(), 'rdatadirl'))
track.start(dir=tmpdatadir)

a<-1
b <- 2
1s()

track.status()

track. summary ()

track.info()

track.stop()

Variables are now gone because default action of track.stop()
is to not read all tracked variables into memory (this could
exhaust memory and/or be very time consuming).

1sO)

bring them back

track.start(dir=tmpdatadir)

1sO)

It is possible to keep tracked vars after stopping tracking:
track.stop(keepVars=TRUE)

1sO)

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

10

track.attach

track.attach

Attach a tracking database to the search path.

Description

Attach a tracking database to the search path at a position other than 1. Variables in the tracking
database are made available through a new environment attached at pos on the search path.

Usage

track.attach(dir, pos = 2, name = NULL,

create = FALSE, readonly = !create,
lockEnv = FALSE, verbose = TRUE, auto = NULL,
dup.ok = FALSE)

track.detach(pos = NULL, name = NULL, detach = TRUE)

Arguments
dir

pos

name
create

readonly

lockEnv

verbose

detach

auto

dup.ok

The directory where the tracking database resides.

The position on the search path to attach the new environment at, or where it is
currently attached.

The name to use on the search path for the new environment.
Should the tracking database be created if it does not exist?

Logical flag indicating whether the tracking db should be attached in a readonly
mode. The global environment (pos=1 in the search path) cannot be tracked in
a readonly mode.

Should the environment be locked for a readonly tracking environment? The
default is FALSE because locking the environment is irreversible, and it prevents
rescanning or caching (because can’t delete or add bindings)

print a message about what directory is being tracked?

If TRUE, the environment attached to the search path (in a position other than 2)
will be detached after stopping tracking, IF it was created by track.attach()
and if there are no variables left remaining in the environment after removing
all tracked variables. If detach="force", the attached environment will be re-
moved even if there are variables remaining in it (though not if it was not created
by track.attach).

Should auto-tracking be used? (see track.start).

Is it OK to proceed if the tracking database is already attached on the search
path? If dup.ok=FALSE (the default) and the tracking database is already at-
tached, the function issues a warning and does nothing.

track.auto 11

Details

track.attach attaches a new environment to the search path at the specified position and variables
in the tracking database are made available in it through lazy loading. Using readonly==TRUE
ensure that no changes at all are made to the tracking database, and the environment is locked to
ensure that variables cannot be created or deleted.

track.detach syncs all variables to files and detaches the environment from the search list if it is
empty. See track.stop for conditions under which the environment may not be detached.

Value

NULL

Author(s)

Tony Plate <tplate@acm.org>

See Also

track.start

Examples

Not run:
track.attach("”path/to/tracking-database”, pos=2, name="trackdb")
track.detach(pos=2)

End(Not run)

track.auto Query or set the status of automated tracking

Description

Query or set the status of automated tracking

Usage

track.auto(auto = NULL, pos = 1, envir = as.environment(pos))

Arguments
auto NULL the default (to query the status of automatic tracking), or logical (TRUE or
FALSE) to set it.
pos The search path position of the environment being tracked (default is 1 for the
global environment)
envir The environment being tracked. This is an alternate way (to the use of pos=) of

specifying the environment being tracked, but should be rarely needed.

12 track.copy

Value

A logical value, indicating whether automatic tracking is on or off.

Author(s)

Tony Plate <tplate@acm.org>

See Also

track.start

Examples

Not run:

track.auto() # query the status of auto-tracking
track.auto(FALSE) # turn auto-tracking off
track.auto(TRUE) # turn auto-tracking on

End(Not run)

track.copy Copy or move objects from one tracking db to another

Description

Copy or move objects from one tracking db to another.

Usage

track.copy(from, to = 1, list = NULL, pattern = NULL, glob = NULL, delete = FALSE,
clobber = FALSE, skipExisting = FALSE, verbose = TRUE, do.untrackable = FALSE)

track.move(from, to = 1, list = NULL, pattern = NULL, glob = NULL, delete = TRUE,
clobber = FALSE, skipExisting = FALSE, verbose = TRUE, do.untrackable = FALSE)

Arguments

from The position on the search list of the source db. Can be numeric or the name as
returned by search(). Can be a vector, in which case the action is repeated for
each element of from.

to The position on the search list of the destination db. Can be numeric or the name
as returned by search().

list A character vector of the objects to copy or move

pattern A regular expression specifying the objects to copy or move

glob A glob specifying the objects to copy or move

delete Should the objects in the source db be removed? The default is FALSE for

track.copy and TRUE for track.move.

track.copy 13

clobber Should the objects in the destination db be overwritten?

skipExisting If TRUE, skip objects where an object of the same name already exists in the
destination db .

verbose If TRUE, write out what is being done.

do.untrackable If TRUE, also copy untrackable objects. Not yet implemented.

Details

track. copy copies objects by copying their underlying files from the source tracking db to the
destination tracking db (behavior for untracked or untrackable objects is different — see below). It
also copies the object summary (preserving modification times etc.) Objects are not loaded in R
when copied, and if a copied object is cached in the source or destination db, the cached copy will
be removed.

The readonly status of both tracking dbs will be respected — the function will stop with an error
before doing anything if a readonly flag conflicts with what it needs to do.

The metadata in source and destination tracking dbs (i.e., the file map and the object summary) are
updated after each object is copied. Thus, if an error occurs during copying, e.g., due to filesystem
permissions or lack of space, the source and destination dbs will be left in a consistent state.

track.move calls track.copy with a default of delete=TRUE to remove the source object.

NB: do.untrackable is not yet implemented: untracked/untrackable objects are ignored.
By default, untrackable objects in the source tracking db will not be copied or moved, and a
warning will be given. The rules for untrackability are those of the destination db, as specified
by the tracking options autoTrackExcludePattern and autoTrackExcludeClass in that db. If
do.untrackable=TRUE, untrackable objects will be copied or moved (with delete still controlling
whether the original is left or removed.) Untrackable objects that are copied are left as an ordinary
untracked object in the destination db.

Value

A character vector of the objects copied or moved.

Author(s)

Tony Plate <tplate @acm.org>

Examples

HHHHHHARHEE R R
Warning: running this example will cause variables currently

in the R global environment to be written to .RData files

in a tracking database on the filesystem under R's temporary
directory, and will cause the variables to be removed temporarily
from the R global environment.

It is recommended to run this example with a fresh R session

with no important variables in the global environment.
HHHEHHARHEE R R R

T RN

library(track)

14 track.design

Track two environments and transfer objects from one to the other.
Use tmp dirs for the tracking dbs.
track.start(dir=file.path(tempdir(), 'rdatadir2'))
track.attach(dir=file.path(tempdir(), 'rdatadir3'), pos=2, create=TRUE)
assign("x1", 1, pos=2)

assign("x2", 2, pos=2)

assign("y3", 3, pos=2)

assign("y4", 4, pos=2)

assign("z5", 5)

track.status(1)

track.status(2)

track.copy(from=2, pat=""x", clobber=TRUE)

1s(1)

1s(2)

track.move(from=2, pat=""y", clobber=TRUE)

track.move(from=1, to=2, pat=""z", clobber=TRUE)

1s(1)

1s(2)

c(x1, x2, y3, y4)

track.move(from=2, pat=""x", clobber=TRUE)

1s(1)

1s(2)

c(x1, x2, y3, y4)

track.status(1)

track.status(2)

track.detach(2)

Would normally not call track.stop(), but do so here to clean up after
running this example.

track.stop(keepVars=TRUE)

track.design Design of a tracking environment

Description

This document describes the layout of a tracking environment. Object tracking works by replacing
a variable with an active binding, and keeping the actual value of the variable on disk and/or in
another environment. Tracked objects are automatically resaved to disk when they are changed.
Basic characteristics, such as class, size, extent, and creation and modification times are recorded
in a summary of all tracked objects.

Details

Object tracking works by replacing a variable with an active binding, and keeping the actual value of
the variable on disk and/or in another environment. Whenever the variable is fetched or assigned, the
active binding is called, and it writes the object to disk if necessary, and records basic characteristics
of the objects in a summary of all objects, including creation, modification and access times.

A tracking environment can be linked to one environment on the search path, but the tracking
environment is not on the search path itself. An environment on the search path can only have one

track.design 15

tracking environment linked to it. In standard use, variables are tracked automatically by a task
callback function. Alternatively, variables to track can be registered with the tracking environment
using the function track().

Any user-created environment on the search path, or the global environment, can be tracked.

The format used to store R objects in files is the one used by save()/load() — the objects in those
files can be read using load() if desired.

The various variables and files involved in tracking are as follows (assuming the RData suffix being
used is "rda"). Note that the default tracked visible environment is the global environment.

Tracked Visible Environment

(on search list) Tracking Environment
(not on search list)
B e L et + e e T L T e e +
| .trackingEnv|-->| .trackingDir |---> Tracking Directory (files)
I (. I I
I x (%) || x (@) | +- x.rda
| abc (%) | | abc (@) | +- abc.rda
I Y &) ol Y (@) | +- _1.rda
I x1 [I I
I x2 [I I
| | | .trackingFileMap | +- filemap.txt
| | | .trackingSummary | +- .trackingSummary.rda
		.trackingUnsaved
		.trackingSummaryChanged
		.trackingOptions
B e e + R e E LT P +

* variables marked (*) are tracked and are actually an active binding that refers to the cor-
responding variable in the tracking environment. There can also be untracked variables in
the visible tracked environment, but in the standard mode of operation these are detected by
the end-of-task callback function and are immediately converted to tracked variables (except
for variables with reserved names like .trackingSummary, and variables matching exclude pat-
terns, see options autoTrackExcludePattern and autoTrackExcludeClass in track.options.

* variables marked (@) may or may not exist — if they do not exist in the tracking environment,
they will be automatically read from file when the corresponding tracked object is accessed.

* The "trackingEnv" attribute on the tracked environment is the tracking environment. This is
implemented as an attribute on the tracked environment rather than as a variable in the tracked
environment so that save.image() on the tracked environment will ignore the tracking en-
vironment. If the tracking environment were stored as a variable in the tracked environment,
save.image() could end up storing two copies of every tracked variable: one when it ac-
cessed the active binding (it stores a copy of the object: save() doesn’t know it’s an active
binding); and another if the object is cached in the tracking environment.

* The "trackingDir" attribute on the tracking environment specifies the absolute pathname of the
directory under which tracked objects are stored on file. It uses the absolute pathname because
the current directory of the R session can be changed using setwd(), which would result in
losing a relative pathname.

16 track.design

e .trackingFileMap stores the base part of the file name corresponding to each tracked ob-
ject as a named character vector (the names on the vector are the object names). Objects
that do not have simple names have an associated file name like "_NNN" where "NNN"
is a number. For example, the .trackingFileMap for the above configuration could be

c(abc="abc", x="x", Y="_1"). Simple object names are those conforming to the following
rules:

— less than 55 characters

— are comprised of only lower-case letters, digits O through 9, "." and "\ "

— begin with a lower-case letter

— are not one of the following: con, prn, aux, nul, com1 through com9, 1pt1 through
1pt9, and do not begin with one of these names followed by a period (i.e., prn.foo and
prn.foo.bar are both not simple names) (these are special file names under Microsoft
Windows - see http://en.wikipedia.org/wiki/Filename and search the web on the
keywords "windows short file names rules prn com" to find an official Microsoft site.)

The object . trackingFileMap is always kept in memory and is always saved to disk (as text
in the file filemap. txt) whenever it is changed.

e .trackingSummary is a data frame recording various basic characteristics of the tracked ob-
jects, such as class, size and extent, and also times of creation, and most recent modification
and access. The tracking summary should be accessed using the function track.summary().

* .trackingSummaryChanged A logical flag indicating whether or not the tracking summary
copy on disk is in sync with version in memory. To reduce overhead on accessing objects,
there is an option to not resave the tracking summary when it is changed on accessing an
object — this variable indicates if it has been changed.

» .trackingUnsaved: If the tracking options are set up so that objects are not automatically
written to files on assignment, this variable contains a vector of names of all objects that have
not been saved.

* .trackingOptions: are accessed and changed by the track.options() function. They
are kept in memory, and also written to disk whenever they are changed. The tracking di-
rectory is organized as an R package. It’s layout is as follows (saying, for example, that
attr(trackingEnv, "trackingDir")is/tmp/trackdirl, and .trackingFileMapisc(abc="abc"”, x="x", Y="_1

/tmp/trackdiri

+- filemap.txt
+- .trackingSummary.rda

+- x.rda

+- abc.rda

+- _1.rda
Terminology

One could describe a tracking environment as "attached" to the tracked environment, but that using
that term would risk confusion with the role of the attach() function and search path in R. So,
instead the track package says that a tracking environment is "linked" to the tracked environment.

track: The track fracks variables, by setting up a one-to-one relationship between R objects and
files on disks so that when an object in R is modified, the file on disk is automatically updated.

http://en.wikipedia.org/wiki/Filename

track.design 17

tracked environment: A fracked environment contains user variables and is usually on the search
path.

tracked object: A fracked object (in a tracked environment) that has an active binding so that when
it is modified, the corresponding file on disk is also modified.

untracked object: An untracked object in a tracked environment is an ordinary object that is not
tracked and has no corresponding file.

tracking environment: A fracking environment is a special environment used by the track pack-
age to track objects in the tracked environment

linked: A tracking environment is linked to a tracked environment (by the trackingEnv attribute
on the tracked environment, which points to the tracking environment.)

start tracking, stop tracking: Tracking is started by creating a tracking environment, linking it to
the tracked environment, and setting up bindings for tracked objects.

tracking database: A fracking database is the collection of files and directories that stores the
tracking information.

active tracking database: A tracking database that is currently linked to an environment in a run-
ning R session.

Untrackable variables — reserved names

Only ordinary variables can be tracked — variables that are active bindings cannot be tracked.

Several variable names are reserved and cannot be tracked: .trackingEnv, .trackingFileMap,
.trackingUnsaved, .trackingSummary, .trackingSummaryChanged, .trackingOptions. Ad-
ditionally, any variable with a newline character ("\n") as part of its name cannot be tracked (the
main reason for this is that the mapping from object names to file names is stored in a text file, and
newline character delimits the name).

The file map

The mapping from object names to file names is stored in the file fileMap. txt. This data is stored
as ordinary text file to make it easy for users to see the object-file mappings outside of R.

Implementation considerations

The reason that objects must be explicitly registered for tracking is that there is currently no way of
setting up a function to be called when a new object is created, so new objects are always created as
ordinary R objects. Similarly, the R remove () functions does not have any hooks, so if remove() is
called on a tracked variable, it will just remove the active binding in the visible environment, but will
not disturb the underlying tracking environment. The track.remove() function will completely
remove a tracked variable from the visible environment and the underlying tracking environment
(including deleting an associated disk file.)

Object tracking was intended to be used in situations where large numbers of large objects must be
manipulated. Consequently, there is a good chance of exhausting resources while using the track
package. The track code tries to check return codes when creating objects or writing files, and in
cases where it is unable to complete an operation it tries leave the tracking environment in a state
from which objects can be salvaged. The functions track.rebuild() and track.flush() are
provided to help recover from situations where resource limitations prevented successful operation.

18 track.design

Note that files are generally written in a "unsafe" manner (i.e., existing files can be overwritten
with partial new files), but in these cases data is retained in the memory and can be rewritten after
resolving file system problems.

The R functions exists() should be used with care on tracked objects, because it will actually fetch

the object, possibly needing to read it from disk. In the track code, the exists("x") function is not

used to check existence of a possibly tracked object x, instead an idiom like is.element(”"x", objects(all=TRUE))
is used.

These statements about the available facilities in R were true as of R-2.4.1 (released Dec 2006).

The rules for how variable names are mapped to file names are based on trying to use filenames that
will work properly on all three operating systems R works on (Linux, Windows, and Mac OS X).
A somewhat obscure point that must be taken into account is the case-insensitivity of Mac OS X
and Windows. Even though modern versions of the OS’s seem to use case in their file names, this
is because they are case preserving, but they are in fact still case insensitive. This means that a file
created with the name "X.rda" is the same file as the "x.rda". Here is a short shell transcript showing
this behavior in a bash shell running under Windows and Mac OS X (it’s the same in both).

$ echo 123 > X
$ cat x

123

$ echo 456 > x
$ cat x

456

$ cat X

456

Thus, in order to work on OS’s, file mapping must be used to create different filenames for the R
objects "x" and "X" (which are in fact different in R.)

Portability

Tracking directories are intended to be operating-system independent and completely portable across
different operating systems.

Compression

Saved R objects are compressed by default in R and by the track package. Decompression speed is
very important for interactive response when using track, because each time an object is accessed,
it is read from its file (unless the object is cached). Of the compression algorithms available as
of R-2.12.0, which are gzip, bzip2, and xz, gzip is the winner in terms of speed. The default
compression level in R for gzip is 6, but level 1 gives faster compression with slightly larger files
(though decompression is not faster). The 1zop compression algorithm http://www.1lzop.org is
still faster but it is not yet available in R.

Here are some comparisons and benchmarks of various compression programs:

e http://www.linuxjournal.com/node/8051/print
e http://tukaani.org/lzma/benchmarks.html

http://www.lzop.org
http://www.linuxjournal.com/node/8051/print
http://tukaani.org/lzma/benchmarks.html

track.future 19

http://stephane.lesimple.fr/wiki/blog/lzop_vs_compress_vs_gzip_vs_bzip2_vs_
1zma_vs_lzma2-xz_benchmark_reloaded

* http://aliver.wordpress.com/2010/06/22/huge-unix-file-compresser-shootout-with-tons-of-datagra
* http://www.maximumcompression.com/
* http://mattmahoney.net/dc/text.html

Compression/decompression is nicely handled in R: only the call to save() has arguments for

compression. Decompression in 1load() is handled automatically using a standard code (magic) at

the start of the saved file. Saved files can also be compressed or decompressed outside of R, and

load() will still handle them correctly, provided the compression used is one of the types that R
knows about.

Author(s)

Tony Plate <tplate @acm.org>

References

Roger D. Peng. Interacting with data using the filehash package. R News, 6(4):19-24, October
2006. http://cran.r-project.org/doc/Rnews.

David E. Brahm. Delayed data packages. R News, 2(3):11-12, December 2002. http://cran.
r-project.org/doc/Rnews

See Also

Overview of the track package.
Documentation for makeActiveBinding and related functions (in ’base’ package).

Inspriation from the packages g.data and filehash.

track. future Potential future features of the track package

Description

Potential future features of the track package, in some vague order of feasibility and priority ("easy’,
’medium’ and "hard’ are an estimate of design and coding difficulty):

better handling of writing files on changes to objects: (medium) with cachePolicy="tltPurge", changed
objects are only written to file at the end of a top level task. However, with cachePol-
icy="none", objects are written to file on each change — is better control over this needed?

untracked variables in the summary: (easy) would this be useful? wouldn’t need to cache these,
mark with an asterisk in a special column? Compute these each time track.summary is called.

option writeToDisk: is this redundant option with cache and cachePolicy?

http://stephane.lesimple.fr/wiki/blog/lzop_vs_compress_vs_gzip_vs_bzip2_vs_lzma_vs_lzma2-xz_benchmark_reloaded
http://stephane.lesimple.fr/wiki/blog/lzop_vs_compress_vs_gzip_vs_bzip2_vs_lzma_vs_lzma2-xz_benchmark_reloaded
http://aliver.wordpress.com/2010/06/22/huge-unix-file-compresser-shootout-with-tons-of-datagraphs
http://www.maximumcompression.com/
http://mattmahoney.net/dc/text.html
http://cran.r-project.org/doc/Rnews
http://cran.r-project.org/doc/Rnews
http://cran.r-project.org/doc/Rnews

20

track.future

other default tracked environment: (easy) would it be useful to allow an environment other than
the global environment to be the default tracking environment? This could be implemented
by using options(”tracked.environment™) as the default environment for all the tracking
functions (rather than the currently hardcoded pos=1)

DONE better cleanup: (easy) provide an integrated quiting function that saves all tracked vars
and history before quitting (and maybe also saves untracked vars in an RData file)

caching rules: (hard) allow rule-based decisions for caching, e.g., only cache objects under a cer-
tain size, or only cache objects of certain classes, or enforce a limit on memory for caching
tracked variables, and flush out least-recently used variables

record file read/writes: (easy) record each time a file is read or written in the summary. Could be
useful for smarter caching.

auto-trust in rebuild: (easy) when rebuilding an active tracking environment, base decision whether
to use summary row from file or environment on which has more recent dates in it. (whole
dataframe, or row by row?)

smarter reading of filemap.txt: (medium) check the mod time on filemap.txt when getting the
filemap obj, and if the file on disk appears to have changed, reread it instead of just getting it
from memory. This would allow working together better with other sessions that are simulta-
neously using this tracking dir. Don’t know how much it would slow things down — do some
timings. Note that to make this work in a fool-proof manner would require locks.

investigate double-get: doing subset-replacement (e.g., X[2] <- ...) retrieves X twice (see ex-
ample below)

DONE readonly mode: (hard) to allow linking tracking dirs that might be in use by other R pro-
cesses — would require not recording gets — this would require adding a new env on the search
path and tracking it

DONE autoflush: (hard) automatic flushing of variables that haven’t been used frequently (trig-
gered automaticall when memory runs low?) — this is why the summary records fetches as
well as writes

safer restart: (medium) check that we will be able to restart before doing the stop (check for
masked variables or other potential clobber problems)

safe saves: (hard) write files in a safe way so that the original file is not removed until the new file
is written — not sure if this is necessary, because objects are in memory, and can be rewritten
if there is a failure

DONE autotrack: (hard) automatically track new variables? (would require hooks in base-R that
get called when a new var is created)

Example of the "double-get" when assigning a subset (using the example from the help page for
makeActiveBinding). Note that it works correctly, but retrieving the object twice seems unnecces-
sary and could be slow with very large objects.

f <= local({
X <=1
function(v) {
if (missing(v))
cat("get\n")
else {

+ + + + + V

track.future

cat("set\n")
X <<= v

+ + + +
(o]

+ 3

+ 1

> makeActiveBinding("X", f, .GlobalEnv)
NULL

> bindingIsActive("X", .GlobalEnv)
[1] TRUE

> X

get

(111

> X <- 2

set

> X

get

[1]1 2

>

> X[1]

get

[1]1 2

> X[2] <- 1 # 'X' is fetched twice
get

get

set

> X

get

[11 21

>

See Also

Overview and design of the track package.

Examples

Example (transcript shown above) of how subset-assignment
results in two retrievals when the object is an active binding.
f <- local({
X <=1
function(v) {
if (missing(v)) {
cat("get\n")

} else {
cat("set\n")
X <<- v

}

X

22

»
makeActiveBinding("X", f, .GlobalEnv)

bindingIsActive("X", .GlobalEnv)
X

X <-2

X

X[1]

X[2] <= 1 # 'X' is fetched twice
X

track.history

track.history Functions for incrementally writing command history to a file.

Description

These functions provide the ability to append recent commands to a history file after (almost) every
top level command. This makes it unnecessary to use savehistory() and solves the problem of
command history not being saved on accidental or abnormal termination of an R session.

Usage

track.history.start(file = NULL, width = NULL, style = NULL, times

NULL, load = TRUE, verbose = FALSE, message="Session start")
track.history.stop()
track.history.status()
track.history.load(times = FALSE)
track.history.writer(expr, value, ok, visible)

Arguments
file File to store the incremental history in. Defaults to .Rincr_history.
width Width to use deparsing for fast-style history saving. Defaults to 120.
style Two styles are possible:
e full: (default) Use the internal R history mechanism. This is slower, but it
records everything typed at the command prompt, in the original formatting.
» fast: Use deparsed version of the most recently executed command. This
is fast, but it doesn’t record comments and some commands with errors,
and it changes formatting.
times Should time stamps be written to or read from the file? The default behavior for
track.history.start() is TRUE. The default when loading history is FALSE,
so that time stamps do not appear in the interactive history.
load Should existing history be loaded when starting incremental history?
verbose Should comments be printed?
expr Provided by the task callback

value Provided by the task callback

track.history 23

ok Provided by the task callback
visible Provided by the task callback
message A string to be written (once) to the incremental history file along with the date

and time when incremental history tracking is started.

Details

Default values are taken first from options incr.hist.style, incr.hist.width, incr.hist.file
and incr.hist. times. If those option values don’t exist, values are taken from environment vari-
ables R_INCR_HIST_STYLE, R_INCR_HIST_WIDTH, R_LINCR_HIST_FILE, R_INCR_HIST_TIMES.

e track.history.start() installs track.history.writer() as a task callback handler.

* track.history.load() loads history from the file that incremental history is being written
to.

e track.history.stop() removes the task callback handler.
* track.history.writer() is the task callback handler — it is not intended to be called by the
user.
If arguments are supplied to track.history.start(), their values are remembered in options()
and used for the remainder of the session or until changed.

The history stored using style="full” is more complete and accurate, in that it includes com-
ments, unparseable commands, and original formatting. It is somewhat slower because it is based
on the internal history mechanism, which doesn’t provide an easy way of identifying which are
the new commands. Consequently, when using style="full"” track.history.writer() must
inspect the entire internal history at the end of each command to work out which lines in it have
been added since the last time history was written. However, the time difference seems negligible
for interactive use on ordinary workstations circa 2010.

To set up incremental history tracking automatically, put the following in your .Rprofile:

if (interactive()) {
track.history.load()
track.history.start()

Value

track.history.status() returns a character string: "on" or "of f". The other functions currently
provide no useful return values.

Author(s)

Tony Plate <tplate@acm.org>

See Also

addTaskCallback To read in command history that is stored in a particular file, use loadhistory(file).
savehistory

24 track.info

Examples

Not run:
Can't use history except in Rgui and Rterm
track.history.start()

End(Not run)

track.info Return filenames and directories for tracked variables.

Description

Return filenames and directories for tracked variables.

Usage

track.filename(expr, list = character(@), pos =1,

envir = as.environment(pos), suffix = FALSE)
track.datadir(pos = 1, envir = as.environment(pos), relative = TRUE)
track.info(pos = NULL, envir = as.environment(pos), all=is.null(pos))
track.mem(pos = NULL, envir = as.environment(pos), all=is.null(pos))
env.is.tracked(pos = 1, envir = as.environment(pos))
tracked.envs(envirs=search())

Arguments
expr An unquoted variable name
list A character vector of variable names
pos The search path position of the environment being tracked (default is 1 for the
global environment)
envir The environment being tracked. This is an alternate way (to the use of pos=) of
specifying the environment being tracked, but should be rarely needed.
suffix : Return the filename with the RData suffix (extension) (taken from track.options("”"RDataSuffix"))
relative : Return a path relative to the current working directory, or an absolute path?
all Return info about all tracked environments?
envirs A list or vector of objects that can be interpreted as environments by as.environment
Value

track.filename() returns the filenames for tracked variables. These names are guaranteed to be
distinct for distinct variables.

track.datadir() returns the directory in which RData files for tracked variables are stored.

track.info: returns a dataframe of information (directory, readonly/writable status) about envi-
ronments currently tracked.

track.info 25

track.mem: returns a dataframe of information (number of objects, memory usage) about environ-
ments currently tracked.

env.is.tracked: returns TRUE or FALSE

tracked.envs: with no arguments, it returns the names of tracked environment that are on the search
list. If given an argument that is a vector of environments (or environment names), it returns
the subset of that vector that are tracked environments.

Note

The track package stores RData files in the directory returned by track.datadir(). It is not
advisable to write other RData files to that directory. Filenames for variables may change when an
object is deleted and then recreated.

A warning message like "env R_GlobalEnv (pos 1 on search list) appears to be an inactive tracked
environment, saved from another session and loaded here inappropriately” indicates that the envi-
ronment has some but not all of the structure of a tracked environment. In particular, the variable
.trackingEnv exists in it, but does not seem to be connected properly. Some of the bindings
may be active bindings, but they may have come disconnected from the tracking environment.
The most common way that this kind of situation can arise is from doing save.image() before
track.stop(), and then reloading the saved image (e.g., when restarting R). To fix this situation,
do the following:

1. rm(.trackingEnv, pos=1)

2. names(which(!sapply(1s(pos=1), bindingIsActive, as.environment(1)))) #
to see which variables have active bindings

3. x1 <= x # for each variable x that has an active binding and that you want to save
4. rm(x, pos=1)
5. save.image() # to overwrite the old saved .RData file (only works with position 1)

If the inactive tracked environment is at a position other than 1 on the search list, substitute the
appropriate position for 1 in the above.

Author(s)

Tony Plate <tplate@acm.org>

See Also

Overview and design of the track package.

Examples

HHHHHHARHEEE R AR
Warning: running this example will cause variables currently

in the R global environment to be written to .RData files

in a tracking database on the filesystem under R's temporary
directory, and will cause the variables to be removed temporarily
from the R global environment.

It is recommended to run this example with a fresh R session

with no important variables in the global environment.

e RN

26 track.manage

A

library(track)
track.start(dir=file.path(tempdir(), 'rdatadir4'))
x <- 33

X <- array(1:24, dim=2:4)

Y <- list(a=1:3,b=2)

X[2] <= -1

track.datadir(relative=TRUE)
track.datadir(relative=FALSE)
track.filename(list=c("x", "X"))

track.info()

track.mem()

env.is.tracked(pos=1)

env.is.tracked(pos=2)

Would normally not call track.stop(), but do so here to clean up after
running this example.

track.stop(pos=1, keepVars=TRUE)

track.manage Manage how objects are handled in a tracking session

Description

Functions to start and stop tracking objects, remove them, load objects from RData files, and man-
age cached and saved copies of objects. These functions should not be needed in plain vanilla use
of the track package.

For an introduction to the track package, see Overview (?track.intro).

Usage

track(expr, pos = 1, envir = as.environment(pos), list = NULL,
pattern = NULL, glob = NULL, exclude = TRUE)
track.assign(x, value, pos = 1, envir = as.environment(pos), flush = TRUE)
untrack(expr, pos = 1, envir = as.environment(pos), list = NULL,
pattern = NULL, glob = NULL, all = FALSE, keep.in.db = FALSE)
track.remove(expr, pos = 1, envir = as.environment(pos), list = NULL,
pattern = NULL, glob = NULL, all = FALSE, force = TRUE)
track.save(expr, pos = 1, envir = as.environment(pos), list = NULL,
pattern = NULL, glob = NULL,
all = missing(expr) && missing(list) && missing(pattern) && missing(glob))
track.resave(expr, pos = 1, envir = as.environment(pos), list = NULL,
pattern = NULL, glob = NULL,
all = missing(expr) && missing(list) && missing(pattern) && missing(glob))
track.flush(expr, pos = 1, envir = as.environment(pos), list = NULL,
pattern = NULL, glob = NULL,
all = missing(expr) && missing(list) && missing(pattern) && missing(glob),
force = FALSE)

track.manage

27

track.forget(expr, pos = 1, envir = as.environment(pos), list = NULL,
pattern = NULL, glob = NULL, all = FALSE)
track.load(files, pos = 1, envir = as.environment(pos), list = NULL,

pattern

= NULL, glob = NULL, cache = FALSE, clobber = FALSE,

time.of.file = TRUE, warn = TRUE)

Arguments

expr

pos

envir

list
pattern
glob
all

exclude

keep.in.db

files
cache
clobber

force

time.of.file

warn
X

value
flush

Details

An unquoted variable name

The search path position of the environment being tracked (default is 1 for the
global environment)

The environment being tracked. This is an alternate way (to the use of pos=) of
specifying the environment being tracked, but should be rarely needed.

A character vector of variable names to operate upon
A regular expression specifying variable names to operate upon
A regular expression specifying variable names to operate upon

If TRUE, operate upon all elegible variables. The default is FALSE for functions
that can change data, and TRUE for functions that merely control whether data is
in memory or file or both.

Controls exclusion of particular variables by pattern matching against a vec-
tor of regular expressions in the autoTrackExcludePattern option value. If
exclude==TRUE (the default), exclude variables that match. If exclude==FALSE,
ignore the exclusion patterns.

If TRUE, the variable is left in the tracking database, though the link to it is broken
(it becomes masked)

A vector of names of RData files (any file saved by save())
TRUE or FALSE indicating whether to keep the tracked object cached in memory
TRUE or FALSE indicating whether to overwrite existing objects of the same name

If TRUE, for track. remove remove orphaned tracked variables; for track. flush
flush out variables that would normally be kept in cache.

If TRUE, use the access times on the file to populate the access time fields in the
tracking summary.

If TRUE, issue warnings about object not acted upon.
A variable name, as a character vector of length 1
The value to assign

Logical value, specifying whether to flush the assigned object out of memory

These functions are executed for their side effects:

* track: start tracking the specified variables

* track.assign: assign a value to a variable (start tracking variable if it is not already tracked.)
Optionally flush the value out of memory.

28 track.manage

* untrack: stop tracking the specified variables, leaving the object in envir so that it can still
be used. If keep. in.db=TRUE, the variable is left in the tracking environment (but is masked),
if keep.in.db=FALSE (the default), all trace of the variable is completely removed from the
tracking environment.

* track.remove: completely remove all traces of a tracked variable (also removes untracked
variables)

* track.save: write unsaved variables to disk
* track.flush: write unsaved variables to disk, and remove from memory

* track.forget: delete cached versions without saving to file (file version will be retrieved
next time the variable is accessed)

* track.rescan: reload variable values from disk (can forget all cached vars, remove no-longer
existing tracked vars)

* track.load: load variables from a saved RData file into the tracking session - if list is
supplied, only these variables are loaded in. Already existing variables will be skipped and
not overwritten unless clobber=TRUE is supplied.

The variables to be acted upon are specified either in expr (a variable name, unquoted) or list
(character vector containing names of variables), or by regular expression pattern or shell pattern
glob. If no specification is given, all variables are acted upon.

Value

The value returned from these functions is invisible and typically contains the names of objects
acted upon.

track: a character vector containing the names of objects added to the tracking envi-
ronment

untrack, track.remove, track.save, track.flush, track.forget, track.rescan:
a character vector containing the names of objects in the tracking environment
that were acted upon

track.load: a list with two components:

* loaded: names of objects that were loaded from file

* skipped: names of objects in file that were not loaded

Author(s)

Tony Plate <tplate @acm.org>

See Also

Overview and design of the track package.

track.options 29

Examples

HHHHHHAREEE R AR
Warning: running this example will cause variables currently

in the R global environment to be written to .RData files

in a tracking database on the filesystem under R's temporary
directory, and will cause the variables to be removed temporarily
from the R global environment.

It is recommended to run this example with a fresh R session

with no important variables in the global environment.
HHHEHHAEEEE AR AR AR

T

library(track)
track.start(dir=file.path(tempdir(), 'rdatadir5'))
x <- 33

X <- array(1:24, dim=2:4)

Y <- list(a=1:3,b=2)

X[2] <- -1

track.summary(time=0, access=1, size=FALSE)
yl <- 2

y2 <- 3

z1 <- 4

z2 <-5

23 <- 6

untracked()

track.summary(time=0, access=1, size=FALSE)
1s(all=TRUE)

track.stop(pos=1)

1s(all=TRUE)

a<-7

b <- 8

save(list=c("a", "b"), file=file.path(tempdir(), "ab.rda"))
remove(list=c("a", "b"))

track.start(dir=file.path(tempdir(), 'rdatadir5'))

track.summary(time=0, access=1, size=FALSE)
track.load(file.path(tempdir(), "ab.rda"))

track.summary(time=0, access=1, size=FALSE)

track.status()

Would normally not call track.stop(), but do so here to clean up after
running this example.

track.stop(pos=1, keepVars=TRUE)

track.options Set and get tracking options on a tracked environment

Description

Set and get tracking options on a tracked environment. Each tracked environment has its own set
of tracking options exists which can be changed indpendently. Global default values can be set in
options("global.track.options").

30

Usage
track.options(..., pos = 1, envir = as.environment(pos),
values=list(...), save = FALSE, clear=FALSE, delete=FALSE,
trackingEnv, only.preprocess = FALSE, old.options = list())
Arguments

Either option names as character data, or specifications for setting options as
named arguments or in a named list. See DETAILS for descriptions of options.

pos The search path position of the environment being tracked (default is 1 for the
global environment)

envir The environment being tracked. This is an alternate way (to the use of pos=) of
specifying the environment being tracked, but should be rarely needed.

values A named list of option values to set. track.options(readonly=T) is equiva-
lent to track.options(values=1list(readonly=TRUE))

save If TRUE, current options are saved to disk and will be used in future. Note that
all current options settings are saved, not just the new settings made in this call.

clear If TRUE, and the option can have multiple values (e.g., autoTrackExcludeClass),
the current values are cleared prior to using the supplied values. The default
behavior, with clear=FALSE and delete=FALSE is to add supplied values to
multi-valued options, and to replace the value for single-valued options.

delete If TRUE, and the option can have multiple values, the supplied values are re-
moved from the current values (if they are not in the current values, they are
silently ignored.)

trackingEnv The hidden environment in which tracked objects are stored. It is not necessary

track.options

to supply this in normal use.

only.preprocess

old.options

Details

If TRUE, process any options specifications and return the full list of option set-
tings with the values as specified, and defaults for all othe roptions. Stored
options are neither accessed nor changed. Intended for internal use.

A list of old options to use, can only be suppled when only.preprocess=TRUE.
Intended for internal use.

Valid option names and values are as follows:

alwaysCache: character (default ".Last"): vector of objects to always keep in memory. ".Last”
is here to avoid difficulties quitting R if the tracking DB becomes unavailable.

alwaysCacheClass: character (default "ff"): vector of classes whose objects are always kept in
memory. "ff" is here by default because "ff" objects generally occupy only a small amount
of memory, and flushing the object from memory causes unnecessary finalization calls on the
external pointers in "ff" objects, which changes their behavior.

alwaysSaveSummary: logical (default TRUE) if TRUE, always save the summary on any change
to the summary. Summaries are not saved for databases attached in a readonly mode.

track.options 31

autoTrackExcludeClass: character vector. Variables whose class is in this vector are not auto-
tracked. The default is "RODBC", because variables of that class do not work after being saved
and reloaded.

autoTrackExcludePattern: character vector (default c("*\.track”, "*\.required")) variables
whose name matches any of these regular expressions are not auto-tracked

autoTrackFullSyncWait: (default -1) auto track will wait at least this many seconds between do-
ing a full sync at the end of a top level task. If equal to zero, do a full sync at the end of each
top level task. If less than zero, don’t do a full sync. Doing a full sync can be slow, so this is
off by default.

cache: logical (default TRUE): keep objects in memory?

cacheKeepFun: A function that specifies which objects to keep in memory at the end of a top-
level-task. track.plugins for further info. Can be "none” or NULL.

cachePolicy: The higher-level policy to follow regarding keeping objects in memory. Currently
has two possible values - one of them allows special action at the end of a top-level-task:

"none”: No special action at end of task, i.e., follow option cache
"eotPurge"”: Purge objects from memory at the end of a top-level task

Also affects when changes to objects are written to disk - see option writeToDisk below.

clobberVars: vector of string specifying variables to be clobbered silently when attaching a track-
ing db

compress: character or logical (default TRUE) passed to save(). Possible values are "none”,
"gzip", "xz", "bzip2". save() currently uses gzip by default (i.e., when compress=TRUE),
which according to save() offers the best tradeoff of filesize and compression and decom-

pression times.
compression_level: numeric (default 1) passed to save()
debug: integer (default 0) if > 0, print some diagnostic debugging messages

maintainSummary: logical (default TRUE) if TRUE, record time & number of changes and ac-
cesses

RDataSuffix: character (default "rda") suffix to use for files containing saved R objects

readonly: logical (default TRUE for track.attach() and FALSE for track.start()) should
any changes be allowed to the files? Note that this option is a function of how a tracking
database is accessed — it is not a property of the database itself. A particular tracking database
can attached on one R session with readonly=TRUE and at the same time be attached to an-
other R session with readonly=FALSE. To unconditionally protect a tracking database from
modification, use file permissions.

recordAccesses: logical (default TRUE) if TRUE, record counts and times for access ("get") op-
erations on tracked variables

summaryAccess: logical, or integer value 0,1,2,3,4; controls what info about accesses is output by
track.summary()

summaryTimes: logical, or integer value 0,1,2,3 (see track.summary() for the effect of these
settings)

writeToDisk: logical (default TRUE): always write changed objects to disk? If TRUE, when objects
are written to disk depends on cachePolicy: cachePolicy="none": write objects immedi-
ately on a change; cachePolicy="eotPurge": write changed objects at the end of a top-level
task

32 track.options

The option settings are saved as a list in an object called . trackingOptions in the tracking envi-
ronment (with a copy mirrored to a file in the tracking dir if save=TRUE.)

The options can be used to tune performance to resource availability (time & memory) and robust-
ness in the face of machine or user error. Some possible settings are:

maximize robustness and speed: cache=TRUE and writeToDisk=TRUE (the default): always write
an object to disk when it is changed, and keep a copy in memory, so that an object only needs
to be read once

minimize memory usage and maximize robustness: writeToDisk=TRUE, cache=FALSE: always
write an object to disk when it is changed, and don’t keep a copy in memory — need to read
from disk whenever the object is referred to

maximize speed: writeToDisk=FALSE, cache=TRUE: don’t write the object to disk - just keep a
copy in memory after it is first accessed and only write it when track.stop() or one of
track.save() or its friends is called. This combination less robust because changed variables
can be lost if R crashes, or the user quits R without remembering to call track.stop().
This mode of operation is like the g.data package, but with automatically keeping track of
which variables have been changed and need to be written to disk (and the writing of changed
variables with one call to track.save() or track.stop()).

The combination writeToDisk=FALSE and cache=FALSE is possible, but is unlikely to be desirable
— this will keep changed objects in memory, but will not keep merely fetched objects in memory.

The options maintainSummary, recordAccesses, and alwaysSaveSummary control when the ob-
ject summary is updated and when it is saved to disk (the default is for it to be updated and saved to
disk for every read and write access to an object, whether or not the object is cached in memory).

Global default values can be setin options(”global. track.options”) as alistlike options(global.track.options=1i

Value

The value returned is a list of option values. If options were specified as arguments, the old values
of those options are returned (unless only.preprocess=TRUE was supplied). If no options were
specified as arguments, the full list of current option values is returned.

Cache plugin functions

track allows users to supply their own plugin functions that specify cache rules. The plugin func-
tion is called at the end of a top-level command. The default plugin function implements a rule
that flushes least-recently accessed large objects from the cache when more memory usage is over
a threshold. See track.plugins for further info.

Author(s)

Tony Plate <tplate @acm.org>

See Also

Overview and design of the track package. See track.plugins for description of cache plugin func-
tions

track.performance 33

Examples

HHHEHHHEHE A AR
Warning: running this example will cause variables currently

in the R global environment to be written to .RData files

in a tracking database on the filesystem under R's temporary
directory, and will cause the variables to be removed temporarily
from the R global environment.

It is recommended to run this example with a fresh R session

with no important variables in the global environment.
HHHHHHAAHE AR R

T EEEE

library(track)

track.start(dir=file.path(tempdir(), 'rdatadir6'))

x <- 33

X <- array(1:24, dim=2:4)

track.status()

track.options(cache=TRUE, writeToDisk=FALSE) # change for just this session
different ways of retrieving option values

track.options(c("cache”, "writeToDisk"))

track.options(”cache”, "writeToDisk")

track.options("cache")

track.options()

see the effect of the changed options on the status of X (X is not saved to disk)
track.status()

X[1,1,1]1 <- @

track.status()

track. flush()

track.status()

track.stop(pos=1)

track.start(dir=file.path(tempdir(), 'rdatadir6'))

note that options previously changed are back at defaults (because default
to track.options() is save=FALSE

track.options(c("cache”, "writeToDisk"))
track.options(cache=TRUE, writeToDisk=FALSE, save=TRUE) # change the options on disk
track.options(c("cache”, "writeToDisk"))

track.stop(pos=1)

track.start(dir=file.path(tempdir(), 'rdatadir6'))

now options previously changed are remembered (because track.options(..., save=TRUE) was used)
track.options(c("cache”, "writeToDisk"))

track.stop(pos=1, keepVars=TRUE)

track.performance Performance tuning with track.

Description

Performance tuning with track involves trading off memory use for faster access times to objects.
Access time is fastest when all objects are cached in memory, but memory can be exhausted if this
is done. Memory use is minimized when objects are not cached in memory at all, but then a file

34 track.plugin.lru

must be read or written each time an object is referenced, and the whole file must be read or written
even if only a small part of the object is actually used or changed.

The default mode of operation of track balances memory use and access times by keeping objects
in memory for the duration of a top-level task, and flushing them out at the end of the task.

Three options (see track.options) control performance:

* cache: TRUE/FALSE should variables be cached at all?
* cachePolicy: t1tPurge/none higher level policy for maintaining cache

» writeToDisk: TRUE/FALSE should objects be written after a change?

Useful possible combinations of settings are:
» cache=TRUE, cachePolicy="tltPurge", writeToDisk=TRUE: (DEFAULT) keep objects in mem-
ory for the duration of a task; flush and/or write to disk at the end of task

» cache=TRUE, cachePolicy="none", writeToDisk=TRUE: keep all objects in memory until
removed with track. flush; write changed objects to disk immediately

» cache=TRUE, cachePolicy="none", writeToDisk=FALSE: keep all objects in memory until
removed with track. flush; don’t automatically write changed objects to disk (use track. save)

 cache=FALSE, cachePolicy="none", writeToDisk=TRUE: keep no objects in memory; write
changed objects to disk immediately

Performance tuning is a possible area of future development of the track package, at as version 0.9-

9, the defaults settings of cache=TRUE, cachePolicy="t1tPurge”, and writeToDisk=TRUE work
well. However, smarter caching based on access patterns to objects is certainly possible.

See Also

Overview and design of the track package.

track.plugin.lru Plugins for cache policies in the track package.

Description

Plugins for cache policies in the track package specify what objects should be keep in memory at
the end of each top level command.

Usage

track.plugin.lru(objs, inmem, envname)

track.plugin.Iru

Arguments

objs

inmem

envname

Details

35

: the full object summary dataframe. A subset of this data frame is returned by
track.summary(); invoke track.summary(times=3, access=3, size=T, all=T)
to get the full data frame. The names of the objects are in the rownames of the
dataframe.

: a logical vector with length equal to the number of rows in objs. It will have
value TRUE where the corresponding object is in memory, and FALSE otherwise.

: a single string containing the name of the tracking environment, in a form like
<env R_GlobalEnv>.

track contains an experimental feature that allows users to supply their own plugin functions that
specify cache rules. Currently, the plugin function can specify whether or not an object will be
flushed from memory at the end of a top-level command.

track.plugin.lru() implements a simple least-recently-used discard policy. To use is, supply it
to track.options():

track.options(cacheKeepFun=track.plugin.lru, save=TRUE)

Here is another example of a very simple cache plugin function: this one keeps in memory variables
whose names begin with the letter *x’.

my.plugin <- function(objs, inmem, envname) {
keep <- regexpr(”"*x", rownames(objs))>0
browser() # uncomment for debugging & development
return(keep)

To use this plugin function, supply it to track.options():

track.options(cacheKeepFun=my.plugin, save=TRUE)

Value

A plugin function must return a logical vector the same length as inmem, with TRUE values where
the corresponding objects should be kept in memory.

Note

To flush cached tracked objects from memory, use track.flush().

Author(s)

Tony Plate <tplate@acm.org>

36 track.preremove

track.preremove Remove other resources associated with an object.

Description

Remove other resources associated with an object prior to its removal by the tracking system. This
S3 generic function exists so that methods can be specified for cleaning up particular objects.

Usage
track.preremove(obj, objName, envir, ...)
Arguments
obj The R object that will be removed.
objName The name of the R object that will be removed.
envir The environment in which the object exists (i.e., the tracked environment, not
the tracking environment.)
Other arguments.
Details

A track.preremove() method should clean up other resources (e.g., files) associated with obj.
The track.remove() first calls track.preremove() and then will removes obj from the system
after the call to track.preremove () has returned.

Value

Return values are ignored.

Author(s)

Tony Plate <tplate@acm.org>

See Also

track.remove

track.rebuild

37

track.rebuild

Rebuild database information for tracked objects

Description

Rebuild database information (the file map, and/or the object summary) for objects in an active
tracking environment, or for saved objects in a tracking directory.

Usage

track.rebuild(pos = 1, envir = as.environment(pos), dir = NULL,
fix = FALSE, level=c("missing”, "all"),
trust=c("unspecified”, "environment”, "db"),
verbose=1, RDataSuffix=NULL, dryRun=TRUE, replace.wd=TRUE,
use.file.times=TRUE)

Arguments

pos

envir

dir

fix

level

trust

verbose
RDataSuffix
dryRun

replace.wd

use.file.times

The position of the environment to which the tracking database to rebuild is
linked (for active tracking databases.

The tracked environment for which to rebuild the tracking database (for active
tracking databases.

The directory where the tracking database is stored (for tracking databases not
currently active.

If TRUE, try to fix various problems such as illegal file names by renaming files
or moving unusable RData files to a ’quarantine’ directory. If fix=TRUE and
dryRun=TRUE, changes will be reported but not made.

If "missing”, rebuild only missing information, if "all”, rebuild information
for all objects.

When rebuilding an active tracking database, and there are conflicts between the
data in the environment versus that in files, which should be trusted?

Controls number of messages about progress
What suffix should be used for RData files? (Usually worked out automatically.)

If TRUE, no data objects in R or files on disk are changed: the return value is
a list containing the rebuilt file map and the rebuilt object summary. If FALSE,
objects in R environments and files on disk can be changed. The default is TRUE
to guard against changing things when it would have been better not to have
changed things, but this default may change in future.

If TRUE, file paths in diagnostic output are printed starting with "./" where pos-
sible — this makes comparisons of test output more portable.

If TRUE, file creation, modification and access times are used for objects that
were not found in existing summary objects. If FALSE, the current time is used,
which can be useful for testing purposes.

38 track.rebuild

Details

The file map and/or the object summary are rebuilt. If level=="all", all RData files will be read,
which could take a long time if there are many files. If level=="missing", RData files will be read
only where there is missing information.

If there are incompatible RData files in the directory (e.g., illegal or duplicated object names, or
multiple objects), track.rebuild will stop with an error unless fix==TRUE, in which case the
incompatible RData files will either be renamed or moved to a quarantine subdirectory. In the
case of duplicated object names, the second object encountered will be moved.

Value

The value returned is a list with between two and four components:

fileMap The mapping from object names to files (excluding the suffix)
summary The dataframe that summarizes objects
unsaved (optional) The names of variables that are not saved to disk. This component is

only present if it is non-empty.

masked (optinal) The names of tracked variables that are masked by other variables in
the tracked environment. This component is only present if it is non-empty.

The returned value is invisible.

Author(s)

Tony Plate <tplate @acm.org>

See Also

Overview and design of the track package.

Examples

B S i S
Warning: running this example will cause variables currently

in the R global environment to be written to .RData files

in a tracking database on the filesystem under R's temporary
directory, and will cause the variables to be removed temporarily
from the R global environment.

It is recommended to run this example with a fresh R session

with no important variables in the global environment.
AR HEHA AR

T

Rebuild a damaged tracking database

library(track)

first build a tracking dir populated with some variables
track.start(dir=file.path(tempdir(), 'rdatadir7'))

x <- 33

X <- array(1:24, dim=2:4)

Y <- list(a=1:3,b=2)

X[2] <= -1

track.rename 39

abc <- "def”

def <- list(1,2,3)

invisible(Y); invisible(abc); invisible(abc); invisible(abc)

track. summary ()

track.stop(pos=1)

damage the database (remove the filemap)

unlink(file.path(tempdir(), 'rdatadir7', 'filemap.txt'))

and rebuild

track.rebuild(dir=file.path(tempdir(), 'rdatadir7'), verbose=2, dryRun=FALSE, fix=TRUE)
track.start(file.path(tempdir(), 'rdatadir7'))

track. summary ()

track.status()

Would normally not call track.stop(), but do so here to clean up after
running this example.

track.stop(pos=1, keepVars=TRUE)

track.rename Rename variables in a tracked environment

Description

Rename variables in a tracked environment

Usage

track.rename(old, new, pos = 1, envir = as.environment(pos),
clobber = FALSE, verbose = TRUE)

Arguments
old character vector of old names
new character vector of new names (must be same length as *old’)
pos The position on the search list of the tracked db. Can be numeric or the name as
returned by search().
envir The tracked environment.
clobber Should existing variables be overwritten?
verbose Write out what is being done?
Details

Variables retain their tracked/untracked status (with the exception that a tracked variable can go
from being tracked to being untracked if the new name matches the tracking option autoTrackExcludePattern.)

Renaming works correctly when old and new names overlap, e.g., track.rename(c("x","y"), c("y","x"))
will swap the values of x and y.

40 track.setup

Value

A list containing the old and new names:

old a character vector of names
new a character vector of names
Author(s)

Tony Plate <tplate@acm.org>

Examples

HHHHHHARHE AR
Warning: running this example will cause variables currently

in the R global environment to be written to .RData files

in a tracking database on the filesystem under R's temporary
directory, and will cause the variables to be removed temporarily
from the R global environment.

It is recommended to run this example with a fresh R session

with no important variables in the global environment.
HHHHHHAREEEE R AR

T TR E N

track.start(dir=file.path(tempdir(), 'rdatadir8'))

a<-1

b <- rep(2, 2)

track.rename(c("a”, "b"), c("b", "a"), clobber=TRUE)

c(a, b)

Would normally not call track.stop(), but do so here to clean up after
running this example.

track. stop(keepVars=TRUE)

track.setup Setup and stop tracking

Description

Functions to setup and stop tracking, and resync to a changed disk db

Usage

track.start(dir="rdatadir”, pos = 1, envir = as.environment(pos),

create = TRUE,

clobber = c("no"”, "files"”, "variables"”, "vars”, "var"),

discardMissing = FALSE,

cache = NULL, cachePolicy = NULL, options = NULL,

RDataSuffix = NULL, auto = NULL, readonly = FALSE,

lockEnv = FALSE, check.Last = TRUE, autoCheckSize = 1e6, verbose = TRUE)
track.stop(pos = 1, envir = as.environment(pos), all = FALSE,

track.setup 41

stop.on.error = FALSE, keepVars = FALSE, sessionEnd = FALSE,
verbose = TRUE, detach = TRUE, callFrom = NULL)

track.rescan(pos = 1, envir = as.environment(pos), discardMissing = FALSE,
forgetModified = FALSE, level = c("low”, "high"), dryRun = FALSE,
verbose = TRUE)

track.Last()

Arguments

dir The directory where tracking data is stored

pos The search path position of the environment being tracked (default is 1 for the
global environment)

envir The environment being tracked. This is an alternate way (to the use of pos=) of
specifying the environment being tracked, but should be rarely needed.

create If TRUE, create the tracking directory if it doesn’t exist

clobber Controls action taken when there are objects of the same name in the tracking

directory and in envir: no means stop (unless objects are have the same values
and are small); files means use the version from the tracking directory; and
variables, vars or var means use the version in envir (and overwrite the
version in the tracking directory). See also argument autoCheckSize.

discardMissing Discard all information about objects whose save file is missing?

cache Should objects be keep cached in memory? Default is TRUE. This option is a
shorthand way of supplying options=1list(cache=...).

cachePolicy Policy for keeping cached objects in memory. Default is t1tPurge, for which
cached objects are removed from memory at the end of a top-level task. This
option is a shorthand way of supplying options=list(cachePolicy=...).

options Option values (as a list) to be used for this tracking database. See track.options().

all If TRUE, all tracked environment are unlinked

auto If TRUE, automatically track new variables and deleted variables in the envi-

ronment (through use of a task callback). If auto==NULL, take the value from
getOptions("”global.track.options”)$autoTrack, and if that is NULL, use
TRUE

readonly Logical flag indicating whether the tracking db should be attached in a readonly
mode. The global environment (pos=1 in the search path) cannot be tracked in
a readonly mode.

stop.on.error If FALSE, failures to unlink a tracking environment are ignored, though a warning
message is printed

keepVars If FALSE, all tracked variables are removed and will be no longer accessible. If
TRUE, tracked variables will be left as ordinary variables in the environment, as
well as remaining in files.

detach If TRUE, the environment attached to the search path (in a position other than 2)
will be detached after stopping tracking, IF it was created by track.attach()
and if there are no variables left remaining in the environment after removing

42 track.setup

all tracked variables. If detach="force", the attached environment will be re-
moved even if there are variables remaining in it (though not if it was not created
by track.attach).

callFrom A character string used in a message saying where track.stop() was called
from.

forgetModified If TRUE, discard the versions of objects that are modified and in memory
RDataSuffix The suffix to use for RData files. This should not normally need to be specified.

lockEnv Should the environment be locked for a readonly tracking environment? The
default is FALSE because locking the environment is irreversible, and it prevents
rescanning or caching (because can’t delete or add bindings)

check.Last By default, a warning is issued if the .Last function in the track package is
masked by any other .Last function. Supplying check.Last=FALSE inhibits
this check and warning.

autoCheckSize If there are objects with the same name in an existing tracking db being at-
tached, and the environment, and clobber="'no', track.start() will check
whether the objects are the same (using identical()). If they are the same,
track.start() will proceed. This check is only performed if the total size of
the objects, and the files, is less than autoCheckSize bytes.

level Should the rescan be done at a high or low level: a high level just stops tracking
and restarts it; a low level tries to individually bring the environment in line with
the file database.

dryRun If TRUE, no changes are actualy made, but messages are printed describing what
changes would be made.

sessionEnd If TRUE, this is a call at the end of a session and no recovery from errors is
possible — just try to as best as can to save objects as appropriate.
verbose print a message about what directory is being tracked?
Details

track.start: start tracking envir. If the tracking directory already exists, objects in it will be
made accessible, otherwise it will be created (unless create=FALSE).

track.stop: stop tracking envir (default is the global environment). Unsaved values will be saved
to files first. Tracked variables will become unavailable unless keepVars=TRUE is supplied. If
no arguments are supplied, stops tracking the global environment (pos=1). (In standard use,
there is not a problem with only calling track.stop() prior to quitting R, thinking that it
will cleanup all tracked environments, because tracked envs at positions other than 1 will be
attached readonly.)

track.rescan: Rescan the tracking dir, so that if anything has changed there, the current vari-
ables on file will be used instead of any cached in memory. If we have some modified vari-
ables cached in memory but not saved to disk, this function will stop with an error unless
forgetModified==TRUE. Variables that have disappeared from the tracking dir will disappear
from visibility, and variables added to the tracking dir will become available.

JLast: track.start() or track.attach() set .Last inthe global env to have the value track.Last,
provided .Last does not already exist there. .Last will be called at the end of an R session,
before the remaining variables in the global environment are saved to .RData. track.Last
stops tracking all tracking db’s, and removes tracked vars from their environments.

track.setup 43

Value

track.start, track.stop, track.rescan:

all return invisible(NULL) (this may change if it becomes clear what useful
return values would be)

track.Last: calls track.stop(all=TRUE) to ensure that all tracking information and objects
are written to files, and removes tracked variables from the environment.

Simple Usage

These functions have many arguments providing much control over tracking, but the arguments
used in simple usage are:

track.start()

track.start(dir = "rdatadir")
track.stop(pos = 1, all = FALSE)
track.rescan(pos = 2)

Author(s)

Tony Plate <tplate@acm.org>

See Also

Overview and design of the track package.

Examples

HHHEHHAEHEEEE R R A
Warning: running this example will cause variables currently

in the R global environment to be written to .RData files

in a tracking database on the filesystem under R's temporary
directory, and will cause the variables to be removed temporarily
from the R global environment.

It is recommended to run this example with a fresh R session

with no important variables in the global environment.
HHHEHHHEHE AR AR A

e

library(track)
track.start(dir=file.path(tempdir(), 'rdatadir9'))
x <- 33

X <- array(1:24, dim=2:4)

Y <- list(a=1:3,b=2)

X[2] <- -1

track.datadir(relative=TRUE)
track.filename(list=c("x", "X"))
track.summary(time=0, access=1, size=FALSE)
env.is.tracked(pos=1)

env.is.tracked(pos=2)

1s(all=TRUE)

track.stop(pos=1)

1s(all=TRUE)

44

track.sta

track.status

rt(dir=file.path(tempdir(), 'rdatadir9'))

1s(all=TRUE)

track.summary(time=0, access=1, size=FALSE)

Would normally not call track.stop(), but do so here to clean up after
running this example.

track.stop(pos=1, keepVars=TRUE)

track.status Return information about the status of tracking

Description

Return information about the status of tracking in a particular environment. Functions tell which
variables are and which are not tracked, and whether objects exist in memory or in files.

Usage

track.st

tracked(
untracke
track.or
track.ma
untracka

track.un

Arguments

pos

envir

expr
gexpr
list

pattern

atus(pos = 1, envir = as.environment(pos), expr,

gexpr = NULL, list = NULL, pattern = NULL, glob = NULL,

file.status = TRUE, tracked = NA, reserved = FALSE,

all.names = FALSE,

what = c("all”, "tracked”, "trackable”, "untracked”,

"orphaned”, "masked”, "unsaved”, "untrackable"))

pos=1, envir=as.environment(pos), list=NULL,
pattern=NULL, glob=NULL, all.names = TRUE)

d(pos=1, envir=as.environment(pos), list=NULL,
pattern=NULL, glob=NULL, all.names = TRUE)

phaned(pos=1, envir=as.environment(pos), list=NULL,
pattern=NULL, glob=NULL, all.names = TRUE)

sked(pos=1, envir=as.environment(pos), list=NULL,
pattern=NULL, glob=NULL, all.names = TRUE)

ble(pos=1, envir=as.environment(pos), list=NULL,
pattern=NULL, glob=NULL, all.names = TRUE)

saved(pos=1, envir=as.environment(pos), list=NULL,
pattern=NULL, glob=NULL, all.names = TRUE)

The search path position of the environment being tracked (default is 1 for the
global environment)

The environment being tracked. This is an alternate way (to the use of pos=) of
specifying the environment being tracked, but should be rarely needed.

An unquoted variable name
A variable name as an expression — not intended for use by end-users
A character vector of variable names

A regular expression specifying variable names to operate upon

track.status 45

glob A glob pattern specifying variable names to operate upon
file.status Check whether or not the file associated with a tracked object exists
tracked If TRUE, return information only on tracked objects, if FALSE, return information

only on objects that are not tracked, and if NA return information on all variables
(subject to other filtering).

all.names should names beginning with a period be included (like all.names in 1s)

what controls the information returned: "all” means return a data frame of status,
other values means return a list of names of objects having that status

reserved If TRUE, include info about non-tracked variables with reserved names. The
default is to always omit these variables from the status summary.

Details

These functions return information about the status of tracking on some or all variables in envir
and the tracking environment. Tracking status depends on the relationship among four entities used
for a tracked object:

* the name of the object

* the binding in envir which should be an active binding that refers to the tracking environment

* the cached object in the tracking environment (i.e., stored in memory in R)

* the corresponding disk file in the tracking directory

Statuses are defined as follows:

Status object name variable cached object file
tracked ordinary active binding maybe yes, maybe up-to-date
untrackable reserved name ordinary no no
untracked ordinary ordinary no no
masked ordinary ordinary yes maybe
orphaned ordinary none yes maybe
unsaved ordinary active binding yes not up-to-date

The arguments expr, list, pattern, and glob all serve to restrict the set of variables considered.

Value

track.status: returns a data.frame if what=="all", or a character vector otherwise.

track.dir: returns a single character string that is the full path to the directory where copies
of objects are stored (the "tracking directory").

tracked, untracked, track.orphaned, track.masked, untrackable, track.unsaved:
all return a character vector naming the variables with a particular status.

Note

These functions check whether the binding in envir is an active binding, but they cannot check
whether the active binding has the correct function associated with it because R provides no mech-

46 track.summary

anism for R-level access to the function associated with active bindings.

Author(s)

Tony Plate <tplate @acm.org>

See Also

Overview and design of the track package.

Examples

HHHEHHHEHE AR AR
Warning: running this example will cause variables currently

in the R global environment to be written to .RData files

in a tracking database on the filesystem under R's temporary
directory, and will cause the variables to be removed temporarily
from the R global environment.

It is recommended to run this example with a fresh R session

with no important variables in the global environment.
HHHHHHARHEE R R

T EEE R

library(track)

track.start(dir=file.path(tempdir(), 'rdatadir10'))
x1 <- 123

X2 <- 456

x3 <- 789

track.status()

rm(x3)

track.status()

Would normally not call track.stop(), but do so here to clean up after
running this example.

track.stop(pos=1, keepVars=1)

track. summary Return a summary of the basic properties of tracked objects

Description

Return a summary of the basic properties of tracked objects: name, class, size, dimensions (if any),
and creation, modification and access times.

Usage

track.summary(expr, pos = 1, envir = as.environment(pos), list = NULL, pattern = NULL,
glob = NULL, all.names = FALSE,
times = track.options(”summaryTimes"”, envir=envir)[[1]],
access = track.options(”summaryAccess"”, envir=envir)[[1]],
size=TRUE, cache=FALSE, full=FALSE)

track.summary

Arguments
expr

pos

envir

list
pattern
glob
all.names

times

access

size

cache
full

Details

47

: An unquoted variable name

: The search path position of the environment being tracked (default is 1 for the
global environment)

: The environment being tracked. This is an alternate way (to the use of pos=)
of specifying the environment being tracked, but should be rarely needed.

: A character vector of variable names to summarize

: A regular expression specifying variable names to summarize

: A regular expression specifying variable names to summarize

: should names beginning with a period be included (like all.names in 1s)

: An integer 0..3 specifying how many time columns to return (in order of:
modify, create, access)

: An integer 0..3 specifying how many access-count columns to return for each
writes and accesses (0=none, 1=total, 2=prior and current session, 3=prior, cur-
rent session and total)

: (logical) include the size column? (The values in this column are system
dependent, so make it easy to exclude so that test output is constant across sys-
tems.)

: (logical) include the cache column?

: (logical) include all the optional columns?

Returns part or all of the cached summary data. There is one row per object. Only tracked objects
appear in the summary.

Value

The value returned is a dataframe that summarizes the specified objects. This function does not
create any output itself — the auto-printing of the returned value is the visible output. The data
frame has one row for each object (rownames are the object names) and some of the following

columns:

class:

mode:

extent:

length:
size:

cache:

(character) from class() (if class(obj) has more than one component, all
components are appended separated by commas, if class(obj) returns a zero-
length result, the value is "?")

(character) from mode ()

(character) from dim() or length(), with double brackets if the object is a list
(will contain " (error)" if dim(obj) causes an error)

(integer) from length() (will be NA if length(obj) causes an error)
(integer) from object.size()

(character): Indicates whether the objected should always be kept cached. Pos-
sible values are

48 track.summary

yes, no: Automatically determined from track.options("alwaysCache") (ob-
ject names) or track.options(”alwaysCacheClass") (object classes);
re-evaluated when object changes

fixedyes, fixedno: Always do this; don’t re-evaluate when object changes. This
is intended to allow manually setting this for each object if desired, but as
of version 1.0.9 no way for the user to do this safely has been provided.

modified: most recent modification time

created: time object created

read: most recent modification time

A: (logical) Accuracy of times: TRUE if object summary has been maintained since

object was first tracked; FALSE if the object summary was lost at some point and
then recreated

ES: (integer) sessions alive

SR: (integer) num reads this session

SW: (integer) num writes this session

PR: (integer) total reads prior to this session
PW: (integer) total writes prior to this session
TR: (integer) total reads

TW: (integer) total writes

Which columns are present depends on the arguments times, access, and size.

The reason for the class column containing all classes of the object separated by commas is that
extracting the most informative class label is not simple, for example, the class of an object returned
by glm() is c("glm”, "Im") (most informative first), while the class of an object returned by
Sys.time() is c("POSIXt", "POSIXct") (most informative last).

Note
The object summary data is maintained in an object called . trackingSummary kept in the tracking
environment. It is not visible on the search path.

Author(s)

Tony Plate <tplate @acm.org>

See Also

Overview and design of the track package.

Examples

HHHHHHAREE R AR

Warning: running this example will cause variables currently

in the R global environment to be written to .RData files

in a tracking database on the filesystem under R's temporary

directory, and will cause the variables to be removed temporarily

track.sync 49

from the R global environment.

It is recommended to run this example with a fresh R session
with no important variables in the global environment.
HHHEHHAREERE SRR R AR

library(track)

track.start(dir=file.path(tempdir(), 'rdatadir1i1'))
x <- 33

X <- array(1:24, dim=2:4)

Y <- list(a=1:3,b=2)

X[2] <- -1

yl <= 2

y2 <- 3

track. summary ()

track.summary(time=0, access=1, size=FALSE)
track.summary (X)

track.summary(list=c("x", "X"))

track. summary(pattern="[xX]")

Would normally not call track.stop(), but do so here to clean up after
running this example.

track.stop(pos=1, keepVars=TRUE)

track.sync Synchronize the tracking database stored in files on disk to reflect
changed, new, or deleted objects in R, and flush excess objects from
memeory.
Description

Synchronize the tracking database to reflect new and/or deleted objects. This function is intended
to be called by a task callback so that the tracking database automatically keeps up with new and
deleted objects. The appropriate task callback is installed by track.start(..., auto = TRUE).
If too much memory is occupied by objects, excess objects are flushed from memory.

This function differs from track. rescan() in that track.rescan() updates R view of the database
to agree with changes on disk, while track.sync() is primarily intended to go the other way (to
make the disk database agree with R).

Usage

track.sync(pos = 1, master=c(”auto”, "envir”, "files"), envir = as.environment(pos),
trackingEnv = getTrackingEnv(envir), full = TRUE,
dryRun = FALSE, taskEnd = FALSE)

Arguments

pos The search path position of the environment being tracked (default is 1 for the
global environment)

50

master

envir

trackingEnv

full

dryRun

taskEnd

Details

track.sync

What to treat as the master for the synchronization. For a readonly tracked
environment, the default auto will default to "files"” (the only sensible inter-
pretation). Otherwise, must be supplied (to avoid accidents with users mis-
remembering the default.) When master="envir", changes are propagated
from the R environment to the file system. When master="files", the R envi-
ronment is made to reflect the file system (differences could result from changes
to the R environment, or from changes to the file system, e.g., by another R
process changing the database).

The environment being tracked. This is an alternate way (to the use of pos=) of
specifying the environment being tracked, but should be rarely needed.

The environment that contains data for the tracking database.

If TRUE, do a full check, which involves checking that all apparently tracked
variables do in fact have an active binding. If NA, only do a full check if more
than track.options("autoTrackFullSyncWait") seconds have passed since
the last full check (because this check can be slow when there are many variables
in the environment.

If TRUE, no changes are made to either the file system or to the R environment,
but changes that would be made are printed out. Note that a change to a file for
a tracked variable will not be detect.

Should be TRUE when called at the end of a top-level command task (i.e., when
called by the task callback handler.)

Synchronizing the tracking database with the contents of the environment involves three tasks:

1. start tracking new untracked variables

2. for objects that have disappeared from the environment, delete them from the tracking database

3. check that all apparently tracked variables do in fact have an active binding

Currently, this function will not correctly handle the case where master="files" and where objects
are cached and an underlying file is changed.

Value

Returns an invisible list with the following components:

new

removed

Note

character vector of names of new variables

character vector of names of variables that were removed

The check that all apparently tracked variables have an active binding currently only checks that the
variable has an active binding — there is no way (at the R level) to check that the active binding is

the correct one.

Author(s)

Tony Plate <tplate @acm.org>

track.sync 51

See Also

track. rescan for rescanning a tracked database after the files on disk have changed (this is usually
only used for tracked environment attached at a position 2 or greater.)

Overview and design of the track package.

Index

xTopic database
track-intro, 3
xTopic data
track-intro, 3
track.attach, 10
track.auto, 11
track.copy, 12
track.design, 14
track.future, 19
track.info, 24
track.manage, 26
track.options, 29
track.performance, 33
track.plugin.lru, 34
track.preremove, 36
track.rebuild, 37
track.rename, 39
track.setup, 40
track.status, 44
track.summary, 46
track.sync, 49
*Topic misc
show.envs, 2
track.history, 22
+Topic package
track-intro, 3
+Topic utilities
track-intro, 3

addTaskCallback, 9, 23

Design, 9
design, 21, 25, 28, 32, 34, 38,43, 46, 48, 51

env.is.tracked, 7
env.is.tracked (track.info), 24

filehash, 9, 19
future features, 9

g.data, 9, 19

52

load, 9
loadhistory, 23

makeActiveBinding, 9, 19

Overview, 19, 21, 25, 26, 28, 32, 34, 38, 43,
46,48, 51

save, 9, 31
savehistory, 23
show.envs, 2, 8

taskCallback, 7

track, 5, 6

track (track.manage), 26
track-intro, 3

track-overview (track-intro), 3
track-package (track-intro), 3
track.attach, 5, 10
track.auto, 7, 11

track.cache (track.plugin.lru), 34
track.copy, 7, 12

track.datadir (track.info), 24
track.design, 8, 14
track.detach (track.attach), 10
track.dir, 6

track.dir (track.status), 44
track.filename (track.info), 24
track.flush, 7, 34, 35
track.forget, 7

track. future, 19
track.history, 22
track.info, 5, 6,24

track.intro (track-intro), 3
track.lLast (track.setup), 40
track.load, 6, 7
track.manage, 26
track.masked, 7

track.masked (track.status), 44
track.mem, 6

INDEX

track.
track.
track.
track.

track

track

track

track

track

track

mem (track.info), 24
move, 7

move (track.copy), 12
options, 4,7, 15,29, 34

.orphaned, 7
track.
track.
track.
track.

orphaned (track.status), 44
overview (track-intro), 3
package (track-intro), 3
performance, 33

.plugin (track.plugin.lru), 34
track.
track.
track.
track.
.rebuild, 8, 37
track.
track.
track.
track.
.save, 7, 34
track.
track.
track.
track.
.stop, 5, 6, 11
track.
track.
track.
track.
.unsaved (track.status), 44

plugin.lru, 34
plugins, 31, 32
plugins (track.plugin.lru), 34
preremove, 36

remove, 6, 7, 36
rename, 7, 39
rescan, 5, 7,49, 51
rescan (track.setup), 40

setup, 40
start, 4-6, 10—12

start (track.setup), 40
status, 6, 44

stop (track.setup), 40
summary, 5, 6, 31, 46
sync, 7, 49

unsaved, 7

tracked, 7
tracked (track.status), 44
tracked.envs (track.info), 24

untrack, 6

untrack (track.manage), 26
untrackable, 7

untrackable (track.status), 44
untracked, 7

untracked (track.status), 44

53

	show.envs
	track-intro
	track.attach
	track.auto
	track.copy
	track.design
	track.future
	track.history
	track.info
	track.manage
	track.options
	track.performance
	track.plugin.lru
	track.preremove
	track.rebuild
	track.rename
	track.setup
	track.status
	track.summary
	track.sync
	Index

