
Gene set enrichment analysis with tmod

January Weiner

2020-06-18

Abstract

The package tmod provides blood transcriptional modules described by Chaussabel et al. (2008) and
by Li et al. (2014) as well as metabolic profiling clusters from Weiner et al. (2012). Furthermore, the
package includes tools for testing the significance of enrichment of the modules as well as visualisation of
the features (genes, metabolites etc.) and modules. This vignette is a tutorial for the package.

Contents

Important note on terminology 1

Basic data analysis 2

The Gambia data set . 2
Transcriptional module analysis . 3

Working with multiple sets of comparisons 6

Working with limma . 6
Comparing tests across experimental conditions . 9
Using other sets of modules . 13

Functional multivariate analysis 14

PCA and tag clouds . 18

Permutation tests 23

Accessing the tmod data 25

Using and creating custom sets of modules 26

MSigDB . 27
Manual creation of tmod module objects: MSigDB . 29

Case study: Metabolic profiling of TB patients 30

Introduction . 30
Differential analysis . 30
Functional multivariate analysis . 34

Appendix: Mathematics behind CERNO test 38

References 39

Important note on terminology

tmod is a package for feature set / module enrichment. How does that differ from gene set enrichment?

1

Firstly, the statistical tests and algorithms for gene set enrichment analysis work just as well on any other
type of data. Whenever you can assign some feature (genes, proteins, metabolites) into distinct classes, you
can use one or all feature set enrichment algorithms.

Secondly, Subramanian et al. (2005) introduced a fair amount of confusion by calling their particular algorithm
“GSEA”, short for “gene set enrichment analysis”.

Thirdly, tmod was first created to allow an analysis of transcriptional modules.

For these reasons, in the following, I refer to modules (that is, sets of features), which can be gene sets,
metabolite sets or other feature sets. Also, I am referring to features rather than genes in most cases.

Basic data analysis

The Gambia data set

In the following, we will use the Egambia data set included in the package. The data set has been generated
by Maertzdorf et al. (2011) and has the GEO ID GSE28623. The data is already background corrected and
normalized, so we can proceed with a differential gene expression analysis. Note that only a bit over 5000
genes from the original set of over 45000 probes is included.

library(limma)

library(tmod)

data(Egambia)

design <- cbind(Intercept=rep(1, 30), TB=rep(c(0,1), each= 15))

E <- as.matrix(Egambia[,-c(1:3)])

fit <- eBayes(lmFit(E, design))

tt <- topTable(fit, coef=2, number=Inf,

genelist=Egambia[,1:3])

head(tt, 10)

GENE_SYMBOL GENE_NAME EG logFC AveExpr

4178 FAM20A family with sequence similarity 20, member A" 54757 2.955829 4.007327

20799 FCGR1B Fc fragment of IgG, high affinity Ib, receptor (CD64)" 2210 2.391490 13.401207

4122 BATF2 basic leucine zipper transcription factor, ATF-like 2 116071 2.680837 10.398520

23567 ANKRD22 ankyrin repeat domain 22 118932 2.763908 8.651749

20498 SEPT4 septin 4 5414 3.286528 4.223270

20360 CD274 CD274 molecule 29126 2.377399 7.334747

2513 AIM2 absent in melanoma 2 9447 1.966342 9.933621

24032 GOLSYN Golgi-localized protein 55638 -2.534812 2.221666

1337 ETV7 ets variant 7 51513 2.844012 8.075046

467 SERPING1 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1" 710 2.639069 7.708228

OK, we see some of the genes known to be prominent in the human host response to TB. We can display one
of these using tmod’s showGene function (it’s just a boxplot combined with a beeswarm, nothing special):

group <- rep(c("CTRL", "TB"), each=15)

showGene(E["20799",], group,

main=Egambia["20799", "GENE_SYMBOL"])

2

FCGR1B
lo

g
2
 e

x
p
re

s
s
io

n

11

12

13

14

15

16

C
T

R
L

T
B

Fine, but what about the modules?

Transcriptional module analysis

There are two main functions in tmod to understand which modules are significantly enriched1

The first one, tmodHGtest, is simply a hypergeometric test on two groups of genes: ‘foreground’ (fg), or the
list of differentially expressed genes, and ‘background’ (bg) – the gene universe, i.e., all genes present in the
analysis. The gene identifiers used currently by tmod are HGNC identifiers, and we will use the GENE_SYMBOL

field from the Egambia data set.

In this particular example, however, we have almost no genes which are significantly differentially expressed
after correction for multiple testing: the power of the test with 10 individuals in each group is too low. For
the sake of the example, we will therefore relax our selection. Normally, I’d use a q-value threshold of at least
0.001.

fg <- tt$GENE_SYMBOL[tt$adj.P.Val < 0.05 & abs(tt$logFC) > 1]

res <- tmodHGtest(fg=fg, bg=tt$GENE_SYMBOL)

res

ID Title b B n N E P.Value

LI.M112.0 LI.M112.0 complement activation (I) 4 11 47 4826 37.33849 2.480096e-06

LI.M11.0 LI.M11.0 enriched in monocytes (II) 4 20 47 4826 20.53617 3.414323e-05

LI.M75 LI.M75 antiviral IFN signature 3 10 47 4826 30.80426 9.906126e-05

LI.S4 LI.S4 Monocyte surface signature 3 10 47 4826 30.80426 9.906126e-05

LI.S5 LI.S5 DC surface signature 4 34 47 4826 12.08010 2.957367e-04

LI.M165 LI.M165 enriched in activated dendritic cells (II) 3 19 47 4826 16.21277 7.521410e-04

LI.M4.3 LI.M4.3 myeloid cell enriched receptors and transporters 2 5 47 4826 41.07234 9.112727e-04

LI.M16 LI.M16 TLR and inflammatory signaling 2 5 47 4826 41.07234 9.112727e-04

The columns in the above table contain the following:

• ID The module ID. IDs starting with “LI” come from Li et al. (S. Li et al. 2014), while IDs starting
with “DC” have been defined by Chaussabel et al. (Chaussabel et al. 2008).

1If you work with limma, there are other, more efficient and simpler to use functions. See “Working with limma” below.

3

• Title The module description
• b Number of genes from the given module in the fg set
• B Number of genes from the module in the bg set
• n Size of the fg set
• N Size of the bg set
• E Enrichment, calcualted as (b/n)/(B/N)
• P.Value P-value from the hypergeometric test
• adj.P.Val P-value adjusted for multiple testing using the Benjamini-Hochberg correction

Well, IFN signature in TB is well known. However, the numbers of genes are not high: n is the size of the
foreground, and b the number of genes in fg that belong to the given module. N and B are the respective
totals – size of bg+fg and number of genes that belong to the module that are found in this totality of the
analysed genes. If we were using the full Gambia data set (with all its genes), we would have a different
situation.

Another approach is to sort all the genes (for example, by the respective p-value) and perform a U-test on
the ranks of (i) genes belonging to the module and (ii) genes that do not belong to the module. This is a bit
slower, but often works even in the case if the power of the statistical test for differential expression is low.
That is, even if only a few genes or none at all are significant at acceptable thresholds, sorting them by the
p-value or another similar metric can nonetheless allow to get meaningful enrichments2.

Moreover, we do not need to set arbitrary thresholds, like p-value or logFC cutoff.

l <- tt$GENE_SYMBOL

res2 <- tmodUtest(l)

head(res2)

ID Title U N1 AUC P.Value adj.P.Val

LI.M37.0 LI.M37.0 immune activation - generic cluster 352659 100 0.7462103 1.597067e-17 5.525852e-15

LI.M37.1 LI.M37.1 enriched in neutrophils (I) 50280 12 0.8703781 4.530577e-06 6.569127e-04

LI.S4 LI.S4 Monocyte surface signature 43220 10 0.8974252 6.853638e-06 6.569127e-04

LI.M75 LI.M75 antiviral IFN signature 42996 10 0.8927741 8.632649e-06 6.569127e-04

LI.M11.0 LI.M11.0 enriched in monocytes (II) 74652 20 0.7766542 9.492958e-06 6.569127e-04

LI.M67 LI.M67 activated dendritic cells 28095 6 0.9714730 3.200305e-05 1.811391e-03

nrow(res2)

[1] 25

This list makes a lot of sense, and also is more stable than the other one: it does not depend on modules that
contain just a few genes. Since the statistics is different, the b, B, n, N and E columns in the output have
been replaced by the following:

• U The Mann-Whitney U statistics
• N1 Number of genes in the module
• AUC Area under curve – a measure of the effect size

There are two tests in tmod which both operate on an ordered list of genes: tmodUtest and tmodCERNOtest.
The U test is simple, however has two main issues. Firstly, it detects enrichments as well as depletions – that
is, modules which are enriched at the bottom of the list (e.g. modules which are never, ever regulated in a
particular comparison) will be detected as well. This is often undesirable. Secondly, large modules will be
reported as significant even if the actual effect size (i.e., AUC) is modest or very small, just because of the
sheer number of genes in a module. Unfortunately, also the reverse is true: modules with a small number of
genes, even if they consist of highly up- or down-regulated genes from the top of the list will not be detected.

The CERNO test, described by Yamaguchi et al. (Yamaguchi et al. 2008), is based on Fisher’s method of
combining probabilities. In summary, for a given module, the ranks of genes from the module are logarithmized,

2The rationale is that the non-significant p-values are not associated with the test that we are actually performing, but
merely used to sort the gene list. Thus, it does not matter whether they are significant or not.

4

summed and multiplied by -2:

fCERNO = −2 ·

N
∑

i=1

ln
Ri

Ntot

This statitic has the χ2 distribution with 2 · N degrees of freedom, where N is the number of genes in a given
module and Ntot is the total number of genes (Yamaguchi et al. 2008).

The CERNO test is actually much more practical than the U test for most purposes.

l <- tt$GENE_SYMBOL

res2 <- tmodCERNOtest(l)

head(res2)

ID Title cerno N1 AUC cES P.Value

LI.M37.0 LI.M37.0 immune activation - generic cluster 426.35781 100 0.7462103 2.131789 1.824844e-18

LI.M11.0 LI.M11.0 enriched in monocytes (II) 113.80864 20 0.7766542 2.845216 5.255069e-09

LI.S4 LI.S4 Monocyte surface signature 76.37298 10 0.8974252 3.818649 1.606057e-08

LI.M112.0 LI.M112.0 complement activation (I) 73.67987 11 0.8455773 3.349085 1.722322e-07

LI.M75 LI.M75 antiviral IFN signature 65.29854 10 0.8927741 3.264927 1.045914e-06

LI.M16 LI.M16 TLR and inflammatory signaling 46.33475 5 0.9790500 4.633475 1.247201e-06

Here, the results are similar, however CERNO test was able to detect another module – “TLR and inflammatory
signaling”. Although only 5 genes are in this module (which is why U test could not detect it), the genes are
all on the top of the list of the differentially regulated genes.

Let us now investigate in more detail the module LI.M75, the antiviral interferon signature. We can use the
evidencePlot function to see how the module is enriched in the list l.

evidencePlot(l, "LI.M75")

0 1000 2000 3000 4000 5000

List of genes

F
ra

c
ti
o

n
 o

f
g

e
n

e
s
 i
n

 m
o

d
u

le

0
.0

0
.4

0
.8

In essence, this is a receiver-operator characteristic (ROC) curve, and the area under the curve (AUC) is
related to the U-statistic, from which the P-value in the tmodUtest is calculated, as AUC = U

n1·n2

. Both the
U statistic and the AUC are reported. Moreover, the AUC can be used to calculate effect size according to
the Wendt’s formula(Wendt 1972) for rank-biserial correlation coefficient:

r = 1 −

2 · U

n1 · n2

= 1 − 2 · AUC

5

In the above diagram, we see that nine out of the 10 genes that belong to the LI.M75 module and which are
present in the Egambia data set are ranked among the top 1000 genes (as sorted by p-value).

Working with multiple sets of comparisons

Working with limma

Given the popularity of the limma package, tmod includes functions to easily integrate with limma. In fact,
if you fit a design / contrast with limma function lmFit and calculate the p-values with eBayes(), you can
directly use the resulting object in tmodLimmaTest and tmodLimmaDecideTests3.

res.l <- tmodLimmaTest(fit, Egambia$GENE_SYMBOL)

length(res.l)

[1] 2

names(res.l)

[1] "Intercept" "TB"

head(res.l$TB)

ID Title cerno N1 AUC cES P.Value

LI.M37.0 LI.M37.0 immune activation - generic cluster 414.27395 100 0.7255121 2.071370 4.568772e-17

LI.M11.0 LI.M11.0 enriched in monocytes (II) 105.61794 20 0.7862464 2.640449 7.921155e-08

LI.M112.0 LI.M112.0 complement activation (I) 75.62229 11 0.8667988 3.437377 8.385947e-08

LI.S4 LI.S4 Monocyte surface signature 69.97439 10 0.8836794 3.498719 1.838992e-07

LI.M75 LI.M75 antiviral IFN signature 66.10214 10 0.8645349 3.305107 7.780282e-07

LI.M67 LI.M67 activated dendritic cells 50.35750 6 0.9712310 4.196458 1.208877e-06

The tmodLimmaTest function uses coefficients and p-values from the limma object to order the genes. By
default, the genes are ordered by MSD (Minimum Significant Difference), rather than p-value or log fold
change.

The MSD is defined as follows:

MSD =

{

CI.L if logFC > 0

−CI.R if logFC < 0

Where logFC is the log fold change, CI.L is the left boundary of the 95% confidence interval of logFC and
CI.R is the right boundary. MSD is always greater than zero and is equivalent to the absolute distance
between the confidence interval and the x axis. For example, if the logFC is 0.7 with 95% CI = [0.5, 0.9],
then MSD=0.5; if logFC is -2.5 with 95% CI = [-3.0, -2.0], then MSD = 2.0.

The idea behind MSD is as follows. Ordering genes by decreasing absolute log fold change will include on the
top of the list some genes close to background, for which log fold changes are grand, but so are the errors and
confidence intervals, just because measuring genes with low expression is loaded with errors. Ordering genes
by decreasing absolute log fold change should be avoided.

On the other hand, in a list ordered by p-values, many of the genes on the top of the list will have strong
signals and high expression, which results in better statistical power and ultimately with lower p-values –
even though the actual fold changes might not be very impressive.

However, by using MSD and using the boundary of the confidence interval to order the genes, the genes on
the top of the list are those for which we can confidently that the actual log fold change is large. That is

3The function tmodLimmaDecideTests is described in the next section

6

because the 95% confidence intervals tells us that in 95% cases, the real log fold change will be anywhere
within that interval. Using its bountary closer to the x-axis (zero log fold change), we say that in 95% of the
cases the log fold change will have this or larger magnitude (hence, “minimal significant difference”).

This can be visualized as follows, using the drop-in replacement for limma’s topTable function, tmodLim-
maTopTable, which calculates msd as well as confidence intervals. We will consider only genes with positive
log fold changes and we will show top 50 genes as ordered by the three different measures:

plotCI <- function(x, ci.l, ci.r, title="") {

n <- length(x)

plot(x,

ylab="logFC", xlab="Index",

pch=19, ylim=c(min(x-ci.l), max(x+ci.r)),

main=title)

segments(1:n, ci.l, 1:n, ci.r, lwd=5, col="#33333333")

}

par(mfrow=c(1,3))

x <- tmodLimmaTopTable(fit, coef="TB")

print(head(x))

logFC.TB t.TB msd.TB SE.TB d.TB ciL.TB ciR.TB qval.TB

34 0.02819016 0.07556852 -0.7277810 0.3730410 0.02879949 -0.7277810 0.7841613 0.99538447

36 1.52416640 3.87981294 0.7280616 0.3928453 1.63977633 0.7280616 2.3202712 0.04393162

41 0.07888294 0.17834978 -0.8174289 0.4422934 0.09554857 -0.8174289 0.9751948 0.99504430

44 0.15321399 0.32385505 -0.8055162 0.4730944 0.19850746 -0.8055162 1.1119442 0.99504430

52 -0.23501607 -0.61703279 -0.5368429 0.3808810 -0.24514187 -1.0068750 0.5368429 0.99504430

62 -0.31952987 -0.55848332 -0.8399144 0.5721386 -0.50066053 -1.4789741 0.8399144 0.99504430

x <- x[x$logFC.TB > 0,] # only to simplify the output!

x2 <- x[order(abs(x$logFC.TB), decreasing=T),][1:50,]

plotCI(x2$logFC.TB, x2$ciL.TB, x2$ciR.TB, "logFC")

x2 <- x[order(x$qval.TB),][1:50,]

plotCI(x2$logFC.TB, x2$ciL.TB, x2$ciR.TB, "q-value")

x2 <- x[order(x$msd.TB, decreasing=T),][1:50,]

plotCI(x2$logFC.TB, x2$ciL.TB, x2$ciR.TB, "MSD")

7

0 10 20 30 40 50

2
4

6
8

1
0

logFC

Index

lo
g
F

C

0 10 20 30 40 50

2
4

6
8

q−value

Index

lo
g
F

C

0 10 20 30 40 50

2
4

6
8

MSD

Index

lo
g
F

C

Black dots are logFCs, and grey bars denote 95% confidence intervals. On the left panel, the top 50 genes
ordered by the fold change include several genes with broad confidence intervals, which, despite having a
large log fold change, are not significantly up- or down-regulated.

On the middle panel the genes are ordered by p-value. It is clear that the log fold changes of the genes vary
considerably, and that the list includes genes which are more and less strongly regulated in TB.

The third panel shows genes ordered by decreasing MSD. There is less variation in the logFC than on the
second panel, but at the same time the fallacy of the first panel is avoided. MSD is a compromise between
considering the effect size and the statistical significance.

What about enrichments?

x <- tmodLimmaTopTable(fit, coef="TB", genelist=Egambia[,1:3])

x.lfc <- x[order(abs(x$logFC.TB), decreasing=T),]

x.qval <- x[order(x$qval.TB),]

x.msd <- x[order(x$msd.TB, decreasing=T),]

head(tmodCERNOtest(x.lfc$GENE_SYMBOL))

ID Title cerno N1 AUC cES P.Value

LI.M37.0 LI.M37.0 immune activation - generic cluster 381.20058 100 0.7345239 1.906003 1.990299e-13

LI.M112.0 LI.M112.0 complement activation (I) 67.57425 11 0.8340036 3.071557 1.583945e-06

LI.M75 LI.M75 antiviral IFN signature 59.49036 10 0.8714493 2.974518 8.537502e-06

LI.S4 LI.S4 Monocyte surface signature 58.93059 10 0.8759759 2.946529 1.041171e-05

LI.M67 LI.M67 activated dendritic cells 44.54543 6 0.9406639 3.712119 1.232614e-05

LI.M165 LI.M165 enriched in activated dendritic cells (II) 84.06285 19 0.7057362 2.212180 2.482939e-05

head(tmodCERNOtest(x.qval$GENE_SYMBOL))

ID Title cerno N1 AUC cES P.Value

LI.M37.0 LI.M37.0 immune activation - generic cluster 427.03180 100 0.7523212 2.135159 1.521279e-18

LI.M11.0 LI.M11.0 enriched in monocytes (II) 114.85395 20 0.7910112 2.871349 3.691442e-09

LI.S4 LI.S4 Monocyte surface signature 77.27812 10 0.9164037 3.863906 1.131929e-08

LI.M112.0 LI.M112.0 complement activation (I) 74.30410 11 0.8595676 3.377459 1.367620e-07

LI.M75 LI.M75 antiviral IFN signature 65.41723 10 0.8932932 3.270861 1.001270e-06

LI.M16 LI.M16 TLR and inflammatory signaling 46.32281 5 0.9790085 4.632281 1.253436e-06

8

head(tmodCERNOtest(x.msd$GENE_SYMBOL))

ID Title cerno N1 AUC cES P.Value

LI.M37.0 LI.M37.0 immune activation - generic cluster 414.27395 100 0.7255121 2.071370 4.568772e-17

LI.M11.0 LI.M11.0 enriched in monocytes (II) 105.61794 20 0.7862464 2.640449 7.921155e-08

LI.M112.0 LI.M112.0 complement activation (I) 75.62229 11 0.8667988 3.437377 8.385947e-08

LI.S4 LI.S4 Monocyte surface signature 69.97439 10 0.8836794 3.498719 1.838992e-07

LI.M75 LI.M75 antiviral IFN signature 66.10214 10 0.8645349 3.305107 7.780282e-07

LI.M67 LI.M67 activated dendritic cells 50.35750 6 0.9712310 4.196458 1.208877e-06

In this case, the results of p-value and msd-ordering are very similar.

Comparing tests across experimental conditions

In the above example with the Gambian data set there were only two coefficients calculated in limma,
the intercept and the TB. However, often there are several coefficients or contrasts which are analysed
simultaneously, for example different experimental conditions or different time points. tmod includes several
functions which make it easy to visualize such sets of enrichments.

The object res.l created above using the tmod function tmodLimmaTest is a list of tmod results. Any such
list can be directly passed on to functions tmodSummary and tmodPanelPlot, as long as each element of the
list has been created with tmodCERNOtest or a similar function. tmodSummary creates a table summarizing
module information in each of the comparisons made. The values for modules which are not found in a result
object (i.e., which were not found to be significantly enriched in a given comparison) are shown as NA’s:

head(tmodSummary(res.l), 5)

A tmodSummary object

ID Title AUC.Intercept q.Intercept AUC.TB q.TB

LI.M11.0 LI.M11.0 enriched in monocytes (II) 0.8145651 0.0001137611 0.7862464 9.671792e-06

LI.M112.0 LI.M112.0 complement activation (I) NA NA 0.8667988 9.671792e-06

LI.M118.0 LI.M118.0 enriched in monocytes (IV) NA NA 0.8377967 2.850219e-03

LI.M124 LI.M124 enriched in membrane proteins 0.8807517 0.0114869572 NA NA

LI.M127 LI.M127 type I interferon response NA NA 0.9448247 1.043621e-02

We can neatly visualize the above information on a heatmap-like representation:

tmodPanelPlot(res.l, text.cex=0.8)

9

enriched in neutrophils (I) (LI.M37.1)

immune activation − generic cluster (LI.M37.0)

enriched in monocytes (II) (LI.M11.0)

enriched in monocytes (IV) (LI.M118.0)

TLR and inflammatory signaling (LI.M16)

complement activation (I) (LI.M112.0)

Monocyte surface signature (LI.S4)

antiviral IFN signature (LI.M75)

activated dendritic cells (LI.M67)

enriched in activated dendritic cells (II) (LI.M165)

innate antiviral response (LI.M150)

myeloid cell enriched receptors and transporters (LI.M4.3)

DC surface signature (LI.S5)

AP−1 transcription factor network (LI.M20)

In
te

rc
e

p
t

T
B

Effect size:

P value:

0.5 1

0.01 0.001 10
−4

10
−5

10
−6

The sizes of the red blobs on the figure correspond to the effect size, that is, the AUC, while the intensity of
the color reflects the q-value from the module enrichment test. We can see that also the intercept term is
enriched for genes found in monocytes and neutrophils. Note that by default, tmodPanelPlot only shows
enrichments with p < 0.01, hence a slight difference from the tmodSummary output.

The function tmodPanelPlot has many optional arguments for customization, including options for label sizes,
p value thresholds and custom functions for plotting the test results instead of just red blobs.

It is often of interest to see which enriched modules go up, and which go down? Specifically, we would like to
see, for each module, how many genes are up-, and how many genes are down-regulated. tmodPanelPlot
takes an optional argument, pie, which contains information on significantly regulated genes in modules. We
can conveniently generate it from a limma linear fit object with the tmodLimmaDecideTests function:

10

pie <- tmodLimmaDecideTests(fit, genes=Egambia$GENE_SYMBOL)

head(pie$TB[order(pie$TB[,"up"], decreasing=T),])

down N up

DC.M3.4 0 11 9

DC.M4.2 0 16 7

LI.M11.0 0 16 4

LI.M37.0 0 110 4

LI.M112.0 0 9 4

LI.M165 0 24 4

data(tmod)

tmod$MODULES["DC.M3.4",]

ID Title Category Annotated

DC.M3.4 DC.M3.4 Interferon DC.M3 Yes http://www.biir.net/public_wikis/module_annotation/V2_Trial_8_Modules_M3.4

The pie object is a list. Each element of the list corresponds to one coefficient and is a data frame with the
columns “down”, “N” and “up” (in that order). Importantly, all names of the “res.l” list must correspond to
an item in the pie list.

all(names(pie) %in% names(res.l))

[1] TRUE

We can now use this information in tmodPanelPlot:

tmodPanelPlot(res.l, pie=pie, text.cex=0.8)

11

enriched in neutrophils (I) (LI.M37.1)

immune activation − generic cluster (LI.M37.0)

enriched in monocytes (II) (LI.M11.0)

enriched in monocytes (IV) (LI.M118.0)

TLR and inflammatory signaling (LI.M16)

complement activation (I) (LI.M112.0)

Monocyte surface signature (LI.S4)

antiviral IFN signature (LI.M75)

activated dendritic cells (LI.M67)

enriched in activated dendritic cells (II) (LI.M165)

innate antiviral response (LI.M150)

myeloid cell enriched receptors and transporters (LI.M4.3)

DC surface signature (LI.S5)

AP−1 transcription factor network (LI.M20)

In
te

rc
e

p
t

T
B

Effect size:

P value:

0.5 1

0.01 0.001 10
−4

10
−5

10
−6

A rug-like plot can be also generated:

tmodPanelPlot(res.l,

pie=pie, pie.style="rug",

grid="between")

12

enriched in neutrophils (I) (LI.M37.1)
immune activation − generic cluster (LI.M37.0)

enriched in monocytes (II) (LI.M11.0)
enriched in monocytes (IV) (LI.M118.0)

TLR and inflammatory signaling (LI.M16)
complement activation (I) (LI.M112.0)

Monocyte surface signature (LI.S4)
antiviral IFN signature (LI.M75)

activated dendritic cells (LI.M67)
enriched in activated dendritic cells (II) (LI.M165)

innate antiviral response (LI.M150)
myeloid cell enriched receptors and transporters (LI.M4.3)

DC surface signature (LI.S5)
AP−1 transcription factor network (LI.M20)

In
te

rc
e

p
t

T
B

Effect size:

P value:

0.5 1

0.01 0.001 10
−4

10
−5

10
−6

There is also a more general function, tmodDecideTests that also produces a tmodPanelPlot-compatible
object, a list of data frames with gene counts. However, instead of taking a limma object, it requires (i) a
gene name, (ii) a vector or a matrix of log fold changes, and (iii) a vector or a matrix of p-values. We can
replicate the result of tmodLimmaDecideTests above with the following commands:

tt.I <-

topTable(fit, coef="Intercept", number=Inf, sort.by="n")

tt.TB <- topTable(fit, coef="TB", number=Inf, sort.by="n")

pie2 <- tmodDecideTests(Egambia$GENE_SYMBOL,

lfc=cbind(tt.I$logFC, tt.TB$logFC),

pval=cbind(tt.I$adj.P.Val, tt.TB$adj.P.Val))

identical(pie[[1]], pie2[[1]])

[1] TRUE

Using other sets of modules

By default, tmod uses the modules published by Li et al. (S. Li et al. 2014) (LI). A second set of modules
was published by Chaussabel et al. (Chaussabel et al. 2008) (DC); new module definitions were described by
Banchereau et al. (Banchereau et al. 2012) and can be found on a public website4.

4http://www.biir.net/public_wikis/module_annotation/G2_Trial_8_Modules

13

http://www.biir.net/public_wikis/module_annotation/G2_Trial_8_Modules

Depending on the mset parameter to the test functions, either the LI or DC sets are used, or both, if the
mset=all has been specified.

l <- tt$GENE_SYMBOL

res2 <- tmodUtest(l, mset="all")

head(res2)

ID Title U N1 AUC P.Value adj.P.Val

LI.M37.0 LI.M37.0 immune activation - generic cluster 352659 100 0.7462103 1.597067e-17 9.678227e-15

DC.M4.2 DC.M4.2 Inflammation 91352 20 0.9503953 1.674762e-12 5.074530e-10

DC.M1.2 DC.M1.2 Interferon 73612 17 0.9004196 5.703006e-09 9.623646e-07

DC.M3.2 DC.M3.2 Inflammation 96366 24 0.8361620 6.352241e-09 9.623646e-07

DC.M5.15 DC.M5.15 Neutrophils 65289 16 0.8483498 7.240084e-07 8.774982e-05

DC.M7.29 DC.M7.29 Undetermined 77738 20 0.8087599 9.084521e-07 9.175366e-05

As you can see, the information contained in both module sets is partially redundant.

Functional multivariate analysis

Transcriptional modules can help to understand the biological meaning of the calculated multivariate
transformations. For example, consider a principal component analysis (PCA), visualised using the pca3d
package (Weiner 2013):

mypal <- c("#E69F00", "#56B4E9")

pca <- prcomp(t(E), scale.=TRUE)

col <- mypal[factor(group)]

par(mfrow=c(1, 2))

l<-pcaplot(pca, group=group, col=col)

legend("topleft", as.character(l$groups),

pch=l$pch,

col=l$colors, bty="n")

l<-pcaplot(pca, group=group, col=col, components=3:4)

legend("topleft", as.character(l$groups),

pch=l$pch,

col=l$colors, bty="n")

14

−40 −20 0 20 40 60

−
6
0

−
4
0

−
2
0

0
2
0

4
0

PC 1

P
C

 2
CTRL
TB

−40 −20 0 20

−
2
0

0
1
0

2
0

3
0

4
0

PC 3

P
C

 4

CTRL
TB

The fourth component looks really interesting. Does it correspond to the modules which we have found
before? Each principal component is, after all, a linear combination of gene expression values multiplied by
weights (or scores) which are constant for a given component. The i-th principal component for sample j is
given by

PCi,j =
∑

k

wi,k · xk,j

where k is the index of the variables (genes in our case), wi,k is the weight associated with the i-th component
and the k-th variable (gene), and xk,j is the value of the variable k for the sample j; that is, the gene
expression of gene k in the sample j. Genes influence the position of a sample along a given component the
more the larger their absolute weight for that component.

For example, on the right-hand figure above, we see that samples which were taken from TB patients have a
high value of the principal component 4; the opposite is true for the healthy controls. The genes that allow
us to differentiate between these two groups will have very large, positive weights for genes highly expressed
in TB patients, and very large, negative weights for genes which are highly expressed in NID, but not TB.

We can sort the genes by their weight in the given component, since the weights are stored in the pca object
in the “rotation” slot, and use the tmodUtest function to test for enrichment of the modules.

o <- order(abs(pca$rotation[,4]), decreasing=TRUE)

l <- Egambia$GENE_SYMBOL[o]

res <- tmodUtest(l)

head(res)

ID Title U N1 AUC P.Value adj.P.Val

LI.M37.0 LI.M37.0 immune activation - generic cluster 339742 100 0.7188785 3.133111e-14 1.084056e-11

LI.M37.1 LI.M37.1 enriched in neutrophils (I) 50096 12 0.8671929 5.405722e-06 6.700097e-04

LI.M75 LI.M75 antiviral IFN signature 43379 10 0.9007267 5.809333e-06 6.700097e-04

LI.M11.0 LI.M11.0 enriched in monocytes (II) 74343 20 0.7734395 1.185187e-05 1.025187e-03

LI.S5 LI.S5 DC surface signature 115007 34 0.7058762 1.711493e-05 1.184353e-03

LI.M67 LI.M67 activated dendritic cells 28291 6 0.9782503 2.506730e-05 1.445548e-03

15

Perfect, this is what we expected: we see that the neutrophil / interferon signature which is the hallmark of
the TB biosignature. What about other components? We can run the enrichment for each component and
visualise the results using tmod’s functions tmodSummary and tmodPanelPlot. Below, we use the filter.empty
option to omit the principal components which show no enrichment at all.

Calculate enrichment for each component

gs <- Egambia$GENE_SYMBOL

function calculating the enrichment of a PC

gn.f <- function(r) {

tmodCERNOtest(gs[order(abs(r), decreasing=T)],

qval=0.01)

}

x <- apply(pca$rotation, 2, gn.f)

tmodSummary(x, filter.empty=TRUE)[1:5,]

A tmodSummary object

ID Title AUC.PC3 q.PC3 AUC.PC4 q.PC4 AUC.PC9 q.PC9

LI.M11.0 LI.M11.0 enriched in monocytes (II) NA NA 0.7734395 2.136524e-07 NA

LI.M112.0 LI.M112.0 complement activation (I) NA NA 0.7509865 4.910746e-05 NA

LI.M118.0 LI.M118.0 enriched in monocytes (IV) NA NA 0.8528591 5.027869e-05 NA

LI.M127 LI.M127 type I interferon response NA NA 0.9593030 3.706095e-03 NA

LI.M144 LI.M144 cell cycle, ATP binding 0.9894257 0.006051848 NA NA NA

The following plot shows the same information in a visual form. The size of the blobs corresponds to the
effect size (AUC value), and their color – to the q-value.

tmodPanelPlot(x)

16

cell movement, Adhesion & Platelet activation (LI.M30)

extracellular matrix (II) (LI.M2.1)

regulation of transcription, transcription factors (LI.M213)

cell cycle, ATP binding (LI.M144)

immune activation − generic cluster (LI.M37.0)

enriched in neutrophils (I) (LI.M37.1)

DC surface signature (LI.S5)

enriched in monocytes (II) (LI.M11.0)

antiviral IFN signature (LI.M75)

enriched in activated dendritic cells (II) (LI.M165)

TLR and inflammatory signaling (LI.M16)

Monocyte surface signature (LI.S4)

enriched in monocytes (IV) (LI.M118.0)

complement activation (I) (LI.M112.0)

activated dendritic cells (LI.M67)

innate antiviral response (LI.M150)

complement and other receptors in DCs (LI.M40)

type I interferon response (LI.M127)

enriched in B cells (I) (LI.M47.0)

enriched in myeloid cells and monocytes (LI.M81)

platelet activation − actin binding (LI.M196)

P
C

1
P

C
2

P
C

3
P

C
4

P
C

5
P

C
6

P
C

7
P

C
8

P
C

9
P

C
1
0

P
C

1
1

P
C

1
2

P
C

1
3

P
C

1
4

P
C

1
5

P
C

1
6

P
C

1
7

P
C

1
8

P
C

1
9

P
C

2
0

P
C

2
1

P
C

2
2

P
C

2
3

P
C

2
4

P
C

2
5

P
C

2
6

P
C

2
7

P
C

2
8

P
C

2
9

P
C

3
0

Effect size: P value:

0.5 1 0.01 0.001 10
−4

10
−5

10
−6

However, we might want to ask, for each module, how many of the genes in that module have a negative, and
how many have a positive weight? We can use the function tmodDecideTests for that. For each principal
component shown, we want to know how many genes have very large (in absolute terms) weights – we can
use the “lfc” parameter of tmodDecideTests for that. We define here “large” as being in the top 25% of all
weights in the given component. For this, we need first to calculate the 3rd quartile (top 25% threshold). We
will show only 10 components:

qfnc <- function(r) quantile(r, 0.75)

qqs <- apply(pca$rotation[,1:10], 2, qfnc)

pie <- tmodDecideTests(gs, lfc=pca$rotation[,1:10], lfc.thr=qqs)

tmodPanelPlot(x[1:10], pie=pie,

pie.style="rug", grid="between")

17

platelet activation − actin binding (LI.M196)

DC surface signature (LI.S5)

immune activation − generic cluster (LI.M37.0)

enriched in monocytes (II) (LI.M11.0)

antiviral IFN signature (LI.M75)

TLR and inflammatory signaling (LI.M16)

enriched in activated dendritic cells (II) (LI.M165)

enriched in neutrophils (I) (LI.M37.1)

Monocyte surface signature (LI.S4)

enriched in monocytes (IV) (LI.M118.0)

complement activation (I) (LI.M112.0)

activated dendritic cells (LI.M67)

innate antiviral response (LI.M150)

complement and other receptors in DCs (LI.M40)

enriched in myeloid cells and monocytes (LI.M81)

type I interferon response (LI.M127)

enriched in B cells (I) (LI.M47.0)

cell movement, Adhesion & Platelet activation (LI.M30)

extracellular matrix (II) (LI.M2.1)

regulation of transcription, transcription factors (LI.M213)

cell cycle, ATP binding (LI.M144)

P
C

1

P
C

2

P
C

3

P
C

4

P
C

5

P
C

6

P
C

7

P
C

8

P
C

9

P
C

1
0

Effect size: P value:

0.5 1 0.01 0.001 10
−4

10
−5

10
−6

PCA and tag clouds

For another way of visualizing enrichment, we can use the tagcloud package (Weiner 2014). P-Values will be
represented by the size of the tags, while AUC – which is a proxy for the effect size – will be shown by the
color of the tag, from grey (AUC=0.5, random) to black (1):

library(tagcloud)

w <- -log10(res$P.Value)

c <- smoothPalette(res$AUC, min=0.5)

tags <- strmultline(res$Title)

tagcloud(tags, weights=w, col=c)

18

immune activation
− generic cluster

TLR and inflammatory
signaling

enriched in activated
dendritic cells (II)

platelet activation
− actin binding

myeloid cell enriched
receptors and transporters

enriched in
monocytes (II)

enriched in
neutrophils (I)

complement and other
receptors in DCs

antiviral
IFN signature

Monocyte surface
signature

enriched in myeloid
cells and monocytes

DC surface
signature

type I interferon
response

activated
dendritic cells

innate antiviral
response

enriched in

monocytes (IV)

transmembrane and

ion transporters (I)

enriched in

B cells (I)

complement
activation (I)

enriched in
B cells (II)

TBA

TBA

We can now annotate the PCA axes using the tag clouds; however, see below for a shortcut in tmod.

par(mar=c(1,1,1,1))

o3 <- order(abs(pca$rotation[,3]), decreasing=TRUE)

l3 <- Egambia$GENE_SYMBOL[o3]

res3 <- tmodUtest(l3)

layout(matrix(c(3,1,0,2),2,2,byrow=TRUE),

widths=c(1/3, 2/3), heights=c(2/3, 1/3))

col <- mypal[factor(group)]

note -- PC4 is now x axis!!

l <- pcaplot(pca, group=group, components=4:3,

col=col, cex=1.8)

legend("topleft",

as.character(l$groups),

pch=l$pch,

col=l$colors, bty="n")

tagcloud(tags, weights=w, col=c, fvert= 0)

tagcloud(strmultline(res3$Title),

weights=-log10(res3$P.Value),

col=smoothPalette(res3$AUC, min=0.5),

fvert=1)

19

−20 −10 0 10 20 30 40

−
4
0

−
2
0

0
2
0

CTRL
TB

immune activation
− generic cluster

TLR and inflammatory
signaling

enriched in activated
dendritic cells (II)

myeloid cell enriched
receptors and transporters

platelet activation
− actin binding

enriched in
monocytes (II)

enriched in
neutrophils (I)

antiviral
IFN signature

complement and other
receptors in DCs

type I interferon
responseDC surface

signature

innate antiviral
response

enriched in myeloid
cells and monocytes

transmembrane and
ion transporters (I)

enriched in
monocytes (IV)

Monocyte surface

signature

activated

dendritic cells

enriched in
B cells (I) complement

activation (I)enriched in
B cells (II)

TBA

TBA

re
g
u
la

ti
o

n
 o

f
tr

a
n

s
c
ri

p
ti
o

n
,

tr
a
n
s
c
ri

p
ti
o

n
 f
a

c
to

rs
N

K
 c

e
ll

s
u

rf
a

c
e

s
ig

n
a

tu
re

h
e
m

e

b
io

s
y
n
th

e
s
is

 (
I)

tr
a
n
s
m

e
m

b
ra

n
e

tr
a
n
s
p

o
rt

 (
I)

e
n
ri

c
h
e
d
 i
n

d
e
n
d
ri

ti
c
 c

e
lls

c
e
ll

c
y
c
le

,
A
T

P
 b

in
d
in

g

e
n

ri
c
h

e
d

 i
n

N
K

 c
e

lls
 (

II
)

T
B

A
T

B
A

T
B

A
T

B
A T

B
A

T
B

A

T
B

A

T
B

A

As mentioned previously, there is a way of doing it all with tmod much more quickly, in just a few lines of
code:

Note that plot.params are just parameters which will be passed to the pca2d function. However, remember
that is must be a list.

To plot the PCA, tmod uses the function pcaplot(), but you can actually do it yourself by providing tmodPCA
with a suitable function. The only requirement is that the function takes named parameters “pca” and
“components”:

plotf <- function(pca, components) {

id1 <- components[1]

id2 <- components[2]

print(id1)

print(id2)

20

plot(pca$x[,id1], pca$x[,id2])

}

ret <- tmodPCA(pca, genes=Egambia$GENE_SYMBOL,

components=3:4, plotfunc=plotf)

[1] 3

[1] 4

21

regulation of transcription,
transcription factors

inflammasome receptors

and signaling

phosphatidylinositol
signaling systemenriched in

cell cycle
cell cycle,

ATP binding

enriched in
dendritic cells

heme
biosynthesis

intracellular
transport

myeloid cell enriched
receptors and transporters

TLR and inflammatory

signaling

innate activation by
cytosolic DNA sensing

type I interferon
response

platelet activation
− actin binding

innate antiviral
response

activated

dendritic cells

antiviral
IFN signature

chemokines and inflammatory
molecules in myeloid cells

complement and other

receptors in DCs

enriched in
neutrophils

enriched in activated

dendritic cells
enriched in myeloid

cells and monocytes

Monocyte surface

signature

enriched
in B cells immune activation

− generic cluster

AP−1 transcription
factor network

recruitment

of neutrophils

complement

activation

enriched in

monocytes

DC surface
signature

−40 −20 0 20

−
2

0
−

1
0

0
1

0
2

0
3

0
4

0

Alternatively, you can use the function “pca2d” from the pca3d package:

if(require(pca3d)) plotf <- pca2d

ret <- tmodPCA(pca, genes=Egambia$GENE_SYMBOL,

components=3:4, plotfunc=plotf, plot.params=list(group=group))

22

inflammasome receptors

heme
biosynthesis

myeloid cell enriched
receptors and transporters

TLR and inflammatory

signaling

innate activation by
cytosolic DNA sensing

type I interferon
response

platelet activation
− actin binding

innate antiviral
response

activated

dendritic cells

antiviral
IFN signature

chemokines and inflammatory
molecules in myeloid cells

complement and other

receptors in DCs

enriched in
neutrophils

enriched in activated

dendritic cells
enriched in myeloid

cells and monocytes

Monocyte surface

signature

enriched
in B cells

immune activation
− generic cluster

AP−1 transcription
factor network

recruitment

of neutrophils

complement

activation

enriched in

monocytes

DC surface
signature

−40

−
2

0
−

1
0

0
1

0
2

0
3

0
4

0

Permutation tests

The GSEA approach (Subramanian et al. 2005) is based on similar premises as the other approaches described
here. In principle, GSEA is a combination of an arbitrary scoring of a sorted list of genes and a permutation
test. Although the GSEA approach has been criticized from statistical standpoint (Damian and Gorfine
2004), it remains one of the most popular tools to analyze gene sets amongst biologists. In the following, it
will be shown how to use a permutation-based test with tmod.

A permutation test is based on a simple principle. The labels of observations (that is, their group assignments)
are permutated and a statistic si is calculated for each i-th permutation. Then, the same statistic so is
calculated for the original data set. The proportion of the permutated sets that yielded a statistic si equal to
or higher than so is the p-value for a statistical hypothesis test.

First, we will set up a function that creates a permutation of the Egambia data set and repeats the limma
procedure for this permutation, returning the ordering of the genes.

permset <- function(data, design) {

require(limma)

data <- data[, sample(1:ncol(data))]

fit <- eBayes(lmFit(data, design))

tt <- topTable(fit, coef=2, number=Inf, sort.by="n")

order(tt$P.Value)

23

}

In the next step, we will generate 100 random permutations. The sapply function will return a matrix with
a column for each permutation and a row for each gene. The values indicate the order of the genes in each
permutation. We then use the tmod function tmodAUC to calculate the enrichment of each module for each
permutation.

same design as before

design <- cbind(Intercept=rep(1, 30),

TB=rep(c(0,1), each= 15))

E <- as.matrix(Egambia[,-c(1:3)])

N <- 250 # small number for the sake of example

set.seed(54321)

perms <- sapply(1:N, function(x) permset(E, design))

pauc <- tmodAUC(Egambia$GENE_SYMBOL, perms)

dim(perms)

[1] 5547 250

We can now calculate the true values of the AUC for each module and compare them to the results of the
permutation. The parameters “order.by” and “qval” ensure that we will calculate the values for all the
modules (even those without any genes in our gene list!) and in the same order as in the perms variable.

fit <- eBayes(lmFit(E, design))

tt <- topTable(fit, coef=2, number=Inf,

genelist=Egambia[,1:3])

res <- tmodCERNOtest(tt$GENE_SYMBOL, qval=Inf, order.by="n")

all(res$ID == rownames(perms))

[1] TRUE

fnsum <- function(m) sum(pauc[m,] >= res[m,"AUC"])

sums <- sapply(res$ID, fnsum)

res$perm.P.Val <- sums / N

res$perm.P.Val.adj <- p.adjust(res$perm.P.Val)

res <- res[order(res$AUC, decreasing=T),]

head(res[order(res$perm.P.Val),

c("ID", "Title", "AUC", "adj.P.Val", "perm.P.Val.adj")])

ID Title AUC adj.P.Val perm.P.Val.adj

LI.M16 LI.M16 TLR and inflammatory signaling 0.9790500 7.192190e-05 0

LI.M59 LI.M59 CCR1, 7 and cell signaling 0.9771973 5.751429e-02 0

LI.M67 LI.M67 activated dendritic cells 0.9714730 8.363690e-05 0

LI.M150 LI.M150 innate antiviral response 0.9498859 9.956972e-03 0

LI.M127 LI.M127 type I interferon response 0.9455715 1.163487e-02 0

LI.S4 LI.S4 Monocyte surface signature 0.8974252 1.852319e-06 0

Although the results are based on a small number of permutations, the results are nonetheless strikingly
similar. For more permutations, they improve further. The table below is a result of calculating 100,000
permutations.

ID Title AUC adj.P.Val

LI.M37.0 immune activation - generic cluster 0.7462103 0.00000

LI.M11.0 enriched in monocytes (II) 0.7766542 0.00000

LI.M112.0 complement activation (I) 0.8455773 0.00000

LI.M37.1 enriched in neutrophils (I) 0.8703781 0.00000

LI.M105 TBA 0.8949512 0.00000

LI.S4 Monocyte surface signature 0.8974252 0.00000

24

LI.M150 innate antiviral response 0.9498859 0.00000

LI.M67 activated dendritic cells 0.9714730 0.00000

LI.M16 TLR and inflammatory signaling 0.9790500 0.00000

LI.M118.0 enriched in monocytes (IV) 0.8774710 0.00295

LI.M75 antiviral IFN signature 0.8927741 0.00295

LI.M127 type I interferon response 0.9455715 0.00295

LI.S5 DC surface signature 0.6833387 0.02336

LI.M188 TBA 0.8684647 0.09894

LI.M165 enriched in activated dendritic cells (II) 0.7197180 0.11600

LI.M240 chromosome Y linked 0.8157171 0.11849

LI.M20 AP-1 transcription factor network 0.8763327 0.12672

LI.M81 enriched in myeloid cells and monocytes 0.7562851 0.13202

LI.M3 regulation of signal transduction 0.7763995 0.14872

LI.M4.3 myeloid cell enriched receptors and transporters 0.8859573 0.15675

Unfortunately, the permutation approach has two main drawbacks. Firstly, it requires a sufficient number
of samples – for example, with three samples in each group there are only 6! = 720 possible permutations.
Secondly, the computational load is substantial.

Accessing the tmod data

The tmod package stores its data in two data frames and two lists. This object is contained in a list called
tmod, which is loaded with data("tmod"). The names mimick the various environments from Annotation.dbi
packages, but currently the objects are just two lists and two data frames.

• tmod$MODULES is a data frame which contains general module information as defined in the supplementary
materials for Li et al. (S. Li et al. 2014) and Chaussabel et al. (Chaussabel et al. 2008)

• tmod$GENES is a data frame which contains general gene information, including columns with HGNC
(“primary”), as well as ENTREZ and REFSEQ identifiers.

• tmod$MODULES2GENES is a list with module IDs (same as in the “ID” column of tmod$MODULES) as
names. Every element of the list is a character vector with IDs (“primary” column of tmod$GENES) of
the genes which are included in this module.

• tmod$GENES2MODULES is a list with gene IDs (same as in the “primary” column of tmod$GENES) as
names. Every element of the list is a character vector with IDs of the modules in which the gene is
found.

Using these variables, one can apply any other tool for the analysis of enriched module sets available, for
example, the geneSetTest function from the limma package (Smyth et al. (Smyth 2005)). We will first
run tmodUtest setting the qval to Inf to get p-values for all modules. Then, we apply the geneSetTest

function to each module:

data(tmod)

res <- tmodUtest(tt$GENE_SYMBOL, qval=Inf)

gstest <- function(x) {

sel <- tt$GENE_SYMBOL %in% tmod$MODULES2GENES[[x]]

geneSetTest(sel, tt$logFC)

}

gst <- sapply(res$ID, gstest)

Are the results of both statistical approaches similar? tmod uses a very simple statistical test. The approach
from geneSetTest is more complex, but similar in principle.

plot(res$P.Value, gst,

log="xy", pch=19,

col="#33333366",

25

xlab="P Values from tmod",

ylab="P Values from geneSetTest")

abline(0,1)

abline(h=0.01, col="grey")

abline(v=0.01, col="grey")

1e−17 1e−13 1e−09 1e−05 1e−01

1
e

−
1

6
1

e
−

1
2

1
e

−
0

8
1

e
−

0
4

1
e

+
0

0

P Values from tmod

P
 V

a
lu

e
s
 f

ro
m

 g
e

n
e

S
e

tT
e

s
t

On the plot above, the p-values from tmod are plotted against the p-values from geneSetTest. As you can
see, in this particular example, both methods give very similar results.

Using and creating custom sets of modules

It is possible to use any kind of arbitrary or custom gene set definitions. These custom definition of gene sets
takes form of a list which is then provided as the mset parameter to the test functions. The list in question
must have the following members:

• MODULES A data frame which contains at least the columns “ID” and “Title”. The IDs must correspond
to the names of the MODULES2GENES list.

• GENES (optional) A data frame which contains at least the column “ID”. The gene IDs must correspond
to the gene IDs used in MODULES2GENES.

• MODULES2GENES A list. The names of the list are the IDs from the MODULES data frame. The items
in the list are character vectors with names of the genes that are associated with each module.

26

• GENES2MODULES (optional) A list with the reverse mapping from genes to modules. Names on that
list must correspond to GENES$ID, and the character vector members of the list must correspond to
MODULES$ID.

tmod will accept a simple list that contains the above fields. However, the function makeTmod can be used
conveniently to create a tmod object.

Here is a minimal definition of such a set:

mymset <- makeTmod(

modules=data.frame(ID=c("A", "B"),

Title=c("A title",

"B title")),

modules2genes=list(

A=c("G1", "G2"),

B=c("G3", "G4"))

)

mymset

An object of class "tmod"

2 modules, 4 genes

Both GENES and GENES2MODULES will be automatically created by makeTmod.

Whether the gene IDs are Entrez, or something else entirely does not matter, as long as they matched the
provided input to the test functions.

MSigDB

The MSigDB database from the Broad institute is an interesting collection of gene sets (actually, multiple
collections). Unfortunately, MSigDB cannot be distributed or even accessed without a free registration, which
imposes a heavy limination on third party tools such as tmod. Use the following guide to download and parse
the database such that you can use it with R and tmod.

First, you will need to download the MSigDB in XML format5. This file can be accessed at the
URL http://software.broadinstitute.org/gsea/msigdb/download_file.jsp?filePath=/resources/msigdb/6.1/
msigdb_v6.1.xml – follow the link, register and log in, and save the file on your disk (roughly 113 MB).

Importing MSigDB is easy – tmod has a function specifically for that purpose. Once you have downloaded
the MSigDB file, you can create the tmod-compatible R object with one command6. However, the tmod
function tmodImportMsigDB() can also use this format, look up the manual page:

msig <- tmodImportMSigDB("msigdb_v5.0.xml")

msig

An object of class "tmod"

8430 modules, 32233 genes

That’s it – now you can use the full MSigDB for enrichment tests:

res <- tmodCERNOtest(tt$GENE_SYMBOL, mset=msig)

head(res)

ID Title

M3408 M3408 GSE1432 ctrl vs ifng 24h microglia dn

M3010 M3010 Hecker ifnb1 targets

M3286 M3286 GSE13485 ctrl vs day3 yf17d vaccine pbmc dn

5Note that even if you register with MSig, it is not possible to download the database directly from R in the XML format.
6MSigDB gene sets can be also downloaded as “GMT” files. This format contains less information and is therefore less usable.

27

http://software.broadinstitute.org/gsea/msigdb/download_file.jsp?filePath=/resources/msigdb/6.1/msigdb_v6.1.xml
http://software.broadinstitute.org/gsea/msigdb/download_file.jsp?filePath=/resources/msigdb/6.1/msigdb_v6.1.xml

M3288 M3288 GSE13485 ctrl vs day7 yf17d vaccine pbmc dn

M3311 M3311 GSE13485 pre vs post yf17d vaccination pbmc dn

M3347 M3347 GSE14000 unstim vs 4h lps dc dn

cerno N1 AUC cES P.Value

M3408 239.0983 39 0.8014227 3.065363 2.967858e-18

M3010 244.1219 43 0.8459807 2.838626 4.555892e-17

M3286 247.0915 45 0.7293732 2.745461 1.408943e-16

M3288 272.2570 54 0.7222067 2.520898 3.626792e-16

M3311 229.4948 41 0.7272625 2.798718 6.715323e-16

M3347 272.0698 55 0.7334883 2.473362 9.792737e-16

adj.P.Val

M3408 2.501904e-14

M3010 1.920308e-13

M3286 3.959129e-13

M3288 7.643464e-13

M3311 1.132204e-12

M3347 1.375880e-12

The results are quite typical for MSigDB, which is quite abundant with similar or overlapping gene sets. As
the first results, we see, again, interferon response, as well as sets of genes which are significantly upregulated
after yellow fever vaccination – and which are also interferon related. We might want to limit our analysis
only to the 50 “hallmark” module categories:

sel <- msig$MODULES$Category == "H"

tmodCERNOtest(tt$GENE_SYMBOL, mset=msig[sel])

ID Title

M5913 M5913 Hallmark interferon gamma response

M5921 M5921 Hallmark complement

M5911 M5911 Hallmark interferon alpha response

M5946 M5946 Hallmark coagulation

M5890 M5890 Hallmark tnfa signaling via nfkb

M5930 M5930 Hallmark epithelial mesenchymal transition

M5932 M5932 Hallmark inflammatory response

M5953 M5953 Hallmark kras signaling up

M5892 M5892 Hallmark cholesterol homeostasis

cerno N1 AUC cES P.Value

M5913 221.68317 41 0.7786936 2.703453 8.505170e-15

M5921 217.81028 56 0.6979148 1.944735 8.607634e-09

M5911 108.39559 20 0.7563566 2.709890 3.192325e-08

M5946 179.24580 50 0.6779481 1.792458 1.966824e-06

M5890 148.95123 47 0.6484665 1.584588 2.657694e-04

M5930 212.53461 73 0.6371808 1.455717 2.701053e-04

M5932 184.53035 62 0.6206393 1.488148 3.457724e-04

M5953 221.76208 82 0.6046637 1.352208 1.790956e-03

M5892 49.14641 14 0.6138968 1.755229 8.040562e-03

adj.P.Val

M5913 4.252585e-13

M5921 2.151909e-07

M5911 5.320542e-07

M5946 2.458530e-05

M5890 2.250878e-03

M5930 2.250878e-03

M5932 2.469803e-03

M5953 1.119347e-02

28

M5892 4.466979e-02

We see both – the prominent interferon response and the complement activation. Also, in addition, TNF-α
signalling via NF-κβ.

Manual creation of tmod module objects: MSigDB

For the purposes of an example, the code below shows how to parse the XML MSigDB file using the R
package XML. Essentially, this is the same code that tmodImportMsigDB is using:

library(XML)

foo <- xmlParse("/home/january/Projects/R/pulemodule/vignette/msigdb_v5.0.xml")

foo2 <- xmlToList(foo)

There are over 10,000 “gene sets” (equivalent to modules in tmod) defined. Each member of foo2 is a named
character vector:

path1 <- foo2[[1]]

class(path1)

[1] "character"

names(path1)

[1] "STANDARD_NAME" "SYSTEMATIC_NAME"

[3] "HISTORICAL_NAMES" "ORGANISM"

[5] "PMID" "AUTHORS"

[7] "GEOID" "EXACT_SOURCE"

[9] "GENESET_LISTING_URL" "EXTERNAL_DETAILS_URL"

[11] "CHIP" "CATEGORY_CODE"

[13] "SUB_CATEGORY_CODE" "CONTRIBUTOR"

[15] "CONTRIBUTOR_ORG" "DESCRIPTION_BRIEF"

[17] "DESCRIPTION_FULL" "TAGS"

[19] "MEMBERS" "MEMBERS_SYMBOLIZED"

[21] "MEMBERS_EZID" "MEMBERS_MAPPING"

[23] "FOUNDER_NAMES" "REFINEMENT_DATASETS"

[25] "VALIDATION_DATASETS"

For our example analysis, we will use only human gene sets. We further need to make sure there are no
NULLs in the list.

orgs <- sapply(foo2, function(x) x["ORGANISM"])

unique(orgs)

foo3 <- foo2[orgs == "Homo sapiens"]

foo3 <- foo3[! sapply(foo3, is.null)]

Next, construct the MODULES data frame. We will use four named fields for each vector, which contain the
ID (systematic name), description, category and subcategory:

modules <- t(sapply(foo3,

function(x)

x[c("SYSTEMATIC_NAME", "STANDARD_NAME", "CATEGORY_CODE", "SUBCATEGORY_CODE")]))

colnames(modules) <- c("ID", "Title", "Category", "Subcategory")

modules <- data.frame(modules, stringsAsFactors=FALSE)

Then, we create the modules to genes mapping and the GENES data frame. For this, we use the
MEMBERS_SYMBOLIZED field, which is a comma separated list of gene symbols belonging to a particular

29

module:

m2g <- lapply(foo3,

function(x) strsplit(x["MEMBERS_SYMBOLIZED"], ",")[[1]])

names(m2g) <- modules$ID

msig <- makeTmod(modules=modules, modules2genes=m2g)

From now on, you can use msig with tmod.

Note that it is not necessary to create the members GENES and GENES2MODULES manually. The reverse
mapping from genes to modules, GENES2MODULES, will be automatically inferred from MODULES2GENES.
If no meta-information on genes is provided in GENES, then a minimal data frame will be created with one
column only (ID).

Case study: Metabolic profiling of TB patients

Introduction

One of the main objectives in writing tmod was the ability to analyse metabolic profiling data and other
uncommon data sets. In 2012, we have analysed metabolic profiles of serum collected from patients suffering
from tuberculosis (TB) and healthy controls (Weiner 3rd et al. 2012). It turned out that there are huge
differences between these two groups of individuals, involving amino acid metabolism, lipid metabolism and
many others. In the course of the analysis, we found correlations between the metabolites which are not
explained fully by the metabolic pathways. For example, cortisol is correlated with kynurenine due to the
immunoactive function of these molecules indicating an activation of the immune system, and not because
these two molecules are linked by a synthesis process. Vice versa, kynurenine and tryptophan were not
directly correlated, even though these molecules are clearly linked by a metabolic process, because tryptophan
is not an immune signalling molecule, while kynurenine is.

The tmod package includes both, the data set used in the Weiner et al. paper and the cluster definitions
(modules) published therein. In the following, we will use these modules to analyse the metabolic profiles7.

First, we load the data modules and the data set to analyse.

data(modmetabo) ## modules

data(tbmprof)

ids <- rownames(tbmprof)

tb <- factor(gsub("\\..*", "", ids))

sex <- factor(gsub(".*\\.([MF])\\..*", "\\1", ids))

table(tb, sex)

sex

tb F M

HEALTHY 58 34

TB 25 19

Differential analysis

The metabolic profiling data has not exactly a normal distribution, but that varies from one compound to
another. It is possible to normalize it by ranking, but we can simply use the wilcoxon test to see differences
between males and females as well as TB patients and healthy individuals.

7Formally, this is not correct, as the modules were derived from the data set that we are going to analyse, however it serves
for demonstration purposes

30

wcx.tb <- apply(tbmprof, 2, function(x) wilcox.test(x ~ tb, conf.int=T))

wcx.tb <- t(sapply(wcx.tb, function(x) c(x$estimate, x$p.value)))

wcx.sex <- apply(tbmprof, 2, function(x) wilcox.test(x ~ sex, conf.int=T))

wcx.sex <- t(sapply(wcx.sex, function(x) c(x$estimate, x$p.value)))

wcx <- data.frame(ID=colnames(tbmprof),

E.tb=wcx.tb[,1], pval.tb=wcx.tb[,2],

E.sex=wcx.sex[,1], pval.sex=wcx.sex[,2],

row.names=colnames(tbmprof))

The data frame contains the results of all tests. We can now test both the healthy/tb comparison and
the male/female comparison for enrichment in metabolic profiling modules. Instead ordering the feature
identifiers, we use the option “input.order” to determine the sorting.

ids <- wcx$ID

res <- list()

res$tb <- tmodCERNOtest(ids[order(wcx$pval.tb)], mset=modmetabo)

res$tb

ID Title cerno N1 AUC cES P.Value

ME.107 ME.107 Amino acids cluster 104.64470 18 0.8824576 2.906797 1.283792e-08

ME.37 ME.37 Kynurenines, taurocholates and cortisol cluster 116.88147 25 0.8837093 2.337629 2.816098e-07

MP.2 MP.2 Amino Acid 99.16212 28 0.7060786 1.770752 3.357995e-04

res$sex <- tmodCERNOtest(ids[order(wcx$pval.sex)], mset=modmetabo)

res$sex

ID Title cerno N1 AUC cES P.Value adj.P.Val

ME.26 ME.26 Hormones cluster 62.47927 10 0.9198068 3.123963 2.923803e-06 0.0001227997

MS.1 MS.1 Steroid 60.98935 11 0.8732115 2.772243 1.593507e-05 0.0003346365

ME.69 ME.69 Cholesterol cluster 45.14144 11 0.8190623 2.051883 2.546330e-03 0.0356486262

Both these result tables are concordant with previous findings. The enriched modules in male vs. female
comparison are what one would expect. In TB, a cluster consisting of kynurenine, bile acids and cortisol is
up-regulated, while amino acids go down. We can take a closer look at it using the evidencePlot function.

Why is there a module called “Amino acid cluster” and another one called “Amino acid”? The “cluster”
in the name of the module indicates that it has been build by clustering of the profiles, while the other
module has been based on the biochemical classification of the molecules. This information is contained in
the Category column of the MODULES data frame:

modmetabo$MODULES[c("ME.107", "MP.2"),]

ID Title Category

ME.107 ME.107 Amino acids cluster Cluster

MP.2 MP.2 Amino Acid Pathway

To get an overview for both of these comparisons at the same time, we can use the tmodPanelPlot function.
The size of the blobs below corresponds to the AUC values from the tables above.

tmodPanelPlot(res)

31

Amino Acid (MP.2)

Amino acids cluster (ME.107)

Kynurenines, taurocholates and cortisol cluster (ME.37)

Hormones cluster (ME.26)

Steroid (MS.1)

tb s
e
x

Effect size:

P value:

0.5 1

0.01 0.001 10
−4

10
−5

10
−6

This, unfortunately, does not tell us in which group the metabolites from a given modules are higher. For
this, we can use the “estimate” from the wilcox.test above and a parameter for tmodPanelPlot called “pie”.
To create the value for this parameter – a list that describes, for each condition and for each module, how
many metabolites change in one direction, and how many change in the other.

pie.data <- wcx[,c("E.sex", "E.tb")]

colnames(pie.data) <- c("sex", "tb")

pie <- tmodDecideTests(wcx$ID, lfc=pie.data, lfc.thr=0.2, mset=modmetabo)

tmodPanelPlot(res, pie=pie, pie.style="rug", grid="between")

Amino Acid (MP.2)

Amino acids cluster (ME.107)

Kynurenines, taurocholates and cortisol cluster (ME.37)

Hormones cluster (ME.26)

Steroid (MS.1)

tb s
e
x

Effect size:

P value:

0.5 1

0.01 0.001 10
−4

10
−5

10
−6

32

We see now that the cortisol cluster is higher in TB, while amino acids are found at lower concentration in
the patients. Also, we see that most of the steroids found (cluster ME.26 and module MS.1) are lower in
females. The latter is not surprising if we inspect it closely.

wcx <- wcx[order(wcx$pval.sex),]

showModule(wcx[,c("E.sex", "pval.sex")], wcx$ID, "MS.1", mset=modmetabo)

E.sex pval.sex ID Name Pathway

HMDB00493 -0.86999795 3.042745e-06 HMDB00493 5alpha-androstan-3beta,17beta-diol disulfate

HMDB00365 -0.64001269 4.033730e-05 HMDB00365 epiandrosterone sulfate

HMDB02759 -0.61997366 1.072607e-04 HMDB02759 androsterone sulfate

M.37186 -0.49999995 1.486517e-04 M.37186 5alpha-androstan-3alpha,17beta-diol monosulfate (1)

HMDB03818.1 -0.38999920 1.541563e-04 HMDB03818.1 4-androsten-3beta,17beta-diol disulfate (2)

M.32619 -0.35995962 3.418813e-04 M.32619 pregn steroid monosulfate*

HMDB03818 -0.45997259 4.349672e-03 HMDB03818 4-androsten-3beta,17beta-diol disulfate (1)

HMDB01032 -0.27006303 5.284132e-03 HMDB01032 dehydroisoandrosterone sulfate (DHEA-S)

HMDB02802 -0.10000226 8.852221e-02 HMDB02802 cortisone

HMDB00063 -0.11997203 1.552120e-01 HMDB00063 cortisol

HMDB04026 -0.07998115 3.350142e-01 HMDB04026 21-hydroxypregnenolone disulfate

i <- "HMDB00493" # what is it?

modmetabo$GENES[i,]

ID Name Pathway Subpathway HMDB KEGG MetabolonID

HMDB00493 HMDB00493 5alpha-androstan-3beta,17beta-diol disulfate Lipid Steroid HMDB00493 C12525

par(mfrow=c(1,2))

showGene(tbmprof[,i], sex, main=modmetabo$GENES[i, "Name"],

ylab="Relative abundance")

now for cortisol cluster

i <- "HMDB00063"

wcx <- wcx[order(wcx$pval.tb),]

showModule(wcx[,c("E.tb", "pval.tb")], wcx$ID, "ME.37",

mset=modmetabo)[1:10,] # only first 10!

E.tb pval.tb ID Name Pathway

M.47908 -6.999310e-01 2.665735e-14 M.47908 Unknown

M.32599 -7.999872e-01 2.320130e-10 M.32599 glycocholenate sulfate* Lipid Secondary

HMDB00169 -6.299770e-01 5.118925e-09 HMDB00169 mannose Carbohydrate Fructose, Mannose

Mx.22110 -6.448828e-05 1.379682e-08 Mx.22110 3-hydroxykynurenine Amino acid

HMDB00063 -5.399765e-01 1.990892e-08 HMDB00063 cortisol Lipid

HMDB00159 -2.900586e-01 2.491091e-08 HMDB00159 phenylalanine Amino Acid Phenylalanine

M.32807 -1.219964e+00 3.577292e-08 M.32807 taurocholenate sulfate Lipid Secondary

M.46637 -1.030041e+00 6.660175e-08 M.46637 Unknown

M.46652 -8.399503e-01 1.420077e-07 M.46652 Unknown

HMDB00684 -3.100146e-01 1.788895e-07 HMDB00684 kynurenine Amino Acid

showGene(tbmprof[,i], tb, main=modmetabo$GENES[i, "Name"],

ylab="Relative abundance")

33

5alpha−androstan−3beta,17beta−diol disulfate
R

e
la

ti
ve

 a
b
u

n
d

a
n

c
e

0

5

10

15

F M

cortisol

R
e

la
ti
ve

 a
b
u

n
d

a
n

c
e

0.5

1.0

1.5

2.0

2.5

3.0

H
E

A
LT

H
Y

T
B

Functional multivariate analysis

We can practically circumvent a gene-by-gene analysis. In fact, we are rarely interested in the p-values
associated with single genes or metabolites. There is too many of them, and the statistical power is limited
by the sheer number of tests and the requirement of correction for multiple testing. In case you have not
read the part on FMA above, “Functional multivariate analysis”, in its simplest form, is simply combining a
principal component analysis (PCA) with enrichment analysis. PCA lets us explore where the variance in the
data is; enrichment analysis allows us to interprete the principal components in functional terms.

In tmod, it can be done in a few lines of code:

pca <- prcomp(tbmprof, scale.=T)

ret <- tmodPCA(pca, genes=colnames(tbmprof), mset=modmetabo,

plot.params=list(group=tb, legend="topright"))

34

Long chain f

acid cluster

Kynurenines, taurocholates
and cortisol cluster

Long chain fatty

acid cluster

Secondary Bile

Acid Metabolism

Long Chain
Fatty Acid

Polyunsaturated Fatty
Acid (n3 and n6)Lipid

−10 −5

−
1

0
−

5
0

5
1

0
1

5
2

0

The ret object now contains the results of enrichments (in the ret$enrichments member). For each principal
component, there is one element (e.g. ret$enrichments$PC.1) and we can directly throw it on a panel plot:

tmodPanelPlot(ret$enrichments$PC.1)

35

Lysolipid (MS.47)

Polyunsaturated Fatty Acid (n3 and n6) (MS.40)

Long Chain Fatty Acid (MS.36)

Medium−chain fatty acids cluster (ME.6)

Lipid (MP.1)

Long chain fatty acid cluster (ME.2)

Amino acids cluster (ME.107)

Medium Chain Fatty Acid (MS.37)

Carbohydrate (MP.5)

Kynurenines, taurocholates and cortisol cluster (ME.37)

Putative hypoxia−related cluster (ME.66)

u
p

d
o
w

n

a
b

s

Effect size:

P value:

0.5 1

0.01 0.001 10
−4

10
−5

10
−6

OK, but which of the terms are characteristic for TB patients? Which for the healthy controls? In the above,
the enrichments were based on a list sorted by the absolute PCA weights. However, we can split it into a list
ordered by signed weights ordered once from small to large values, and once from large to small values.

pca <- prcomp(tbmprof, scale.=T)

ret <- tmodPCA(pca, genes=colnames(tbmprof), mset=modmetabo,

plot.params=list(group=tb, legend="topright"),

mode="cross")

36

Kynurenines, taurocholates

and cortisol cluster

Putative

hypoxia−related cluster

Pyrophosphates

cluster

Secondary Bile

Acid Metabolism

Carbohydrate

Peptide

Urea cycle; Arginine
and Proline Metabolism

Nicotine
metabolites cluster

Amino acids

cluster

Hippurate

cluster

Amino
Acid

Kynurenines, taurocholates

and cortisol cluster

Long chain f
acid cluster

Secondary Bile
Acid Metabolism

Polyunsaturated Fatty
Acid (n3 and n6)

Long Chain

Fatty Acid

Lipid

−10 −5 0

−
1
0

−
5

0
5

1
0

1
5

2
0

In essence, reading this plot is simple. First, note that this time the tag clouds on the top and the bottom
correspond to the two ends of the vertical, y axis (second component); and the tag clouds at the left and
right correspond to the two ends of the horizontal, x axis (first PCA component).

Now, take the amino acid cluster (bottom of the plot): it is enriched at the lower end of the y axis, which
means, that features in that cluster are higher in the yellow points which are at the bottom of the plot (lower
end of the y). In other words, amino acids are higher in healthy persons – a finding which corroborates the
differential analysis above.

Similarly, “kynurenines” are at the left, lower side of the x axis, which means, that features from this cluster
are at higher levels in TB patients.

What about the male-female differences? They probably can be found in other, less important8 components.
We could look for them manually, but we can also search which of the responses (turned to orthogonal PCA
components) is best predicted by the sex factor.

foo <- summary(lm(pca$x ~ sex))

foo <- t(sapply(foo,

function(x) c(r=x$r.squared, pval=x$coefficients[2,4])))

head(foo[order(foo[,2]),])

r pval

Response PC5 0.24569651 8.485092e-10

Response PC10 0.21456193 1.359253e-08

8That is, components which include a smaller fraction of the total variance in the data set

37

Response PC7 0.03280924 3.482826e-02

Response PC8 0.02213252 8.388780e-02

Response PC107 0.01986978 1.016566e-01

Response PC6 0.01919507 1.077110e-01

We can use the components 1 (which corresponds to TB/healthy) and components 5, which corresponds to
male/female differences, as suggested by the above calculations.

ret <- tmodPCA(pca, genes=colnames(tbmprof), mset=modmetabo,

plot.params=list(group=paste(sex, tb), legend="topright"),

components=c(2,5))

Kynurenines
and cor

Long chain f
Lipid

Lysophosphatidylcholines
and bilirubines cluster

Hormones

cluster

Long Chain
Fatty Acid

Steroid

Lysolipid

Lipid

−10 −5 0

−
1

0
−

5
0

5
1

0

Orange circles and blue triangles are females, located mostly in Q1 and Q2 (top half); this corresponds to
differences on the y axis and the tagcloud next to it (hormone cluster, steroids etc.). On the other hand, TB
patients (blue triangles and yellow circles) are in Q1 and Q4 (right-hand side), which corresponds to the
TB-specific tag cloud below the y axis.

Appendix: Mathematics behind CERNO test

The CERNO statistic is defined as

38

fCERNO = −2 ·

N
∑

i=1

ln
Ri

Ntot

It is straightforward to show that fCERNO has a χ2 distribution with 2 ·N degrees of freedom. First, note that
a gene rank Ri

Ntot

is the probability that a random gene has equal or better rank and has uniform distribution.

Ri

Ntot

∼ U(0, 1)

Negative natural logarithm of a uniform distribution is an exponential distribution, so

− ln

(

Ri

Ntot

)

∼ Exp(1)

and

−2 · ln

(

Ri

Ntot

)

∼ Exp

(

1

2

)

∼ χ2(2)

Sum of N independent variables each with a χ2(2) distribution is a χ2 distribution with 2 · N degrees of
freedom, and thus

fCERNO = −2 ·

N
∑

i=1

ln

(

Ri

Ntot

)

∼ χ2(2 · N)

The main problem with this approach is the assumption that we are summing independent variables, an
assumption which is obviously violated by the fact that gene expression tends to be correlated.

References

Banchereau, Romain, Alejandro Jordan-Villegas, Monica Ardura, Asuncion Mejias, Nicole Baldwin, Hui
Xu, Elizabeth Saye, et al. 2012. “Host Immune Transcriptional Profiles Reflect the Variability in Clinical
Disease Manifestations in Patients with Staphylococcus Aureus Infections.” PLoS One 7 (4). Public Library
of Science: e34390.

Chaussabel, Damien, Charles Quinn, Jing Shen, Pinakeen Patel, Casey Glaser, Nicole Baldwin, Dorothee
Stichweh, et al. 2008. “A Modular Analysis Framework for Blood Genomics Studies: Application to Systemic
Lupus Erythematosus.” Immunity 29 (1). Elsevier: 150–64.

Damian, Doris, and Malka Gorfine. 2004. “Statistical Concerns About the Gsea Procedure.” Nature Genetics

36 (7). Nature Publishing Group: 663–63.

Li, Shuzhao, Nadine Rouphael, Sai Duraisingham, Sandra Romero-Steiner, Scott Presnell, Carl Davis, Daniel
S Schmidt, et al. 2014. “Molecular Signatures of Antibody Responses Derived from a Systems Biology Study
of Five Human Vaccines.” Nature Immunology 15 (2). Nature Publishing Group: 195–204.

Maertzdorf, Jeroen, Martin Ota, Dirk Repsilber, Hans J Mollenkopf, January Weiner, Philip C Hill, and
Stefan HE Kaufmann. 2011. “Functional Correlations of Pathogenesis-Driven Gene Expression Signatures in
Tuberculosis.” PloS One 6 (10). Public Library of Science: e26938.

Smyth, Gordon K. 2005. “Limma: Linear Models for Microarray Data.” In Bioinformatics and Computational

Biology Solutions Using R and Bioconductor, edited by R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, and

39

W. Huber, 397–420. New York: Springer.

Subramanian, Aravind, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert, Michael A
Gillette, Amanda Paulovich, et al. 2005. “Gene Set Enrichment Analysis: A Knowledge-Based Approach
for Interpreting Genome-Wide Expression Profiles.” Proceedings of the National Academy of Sciences of the

United States of America 102 (43). National Acad Sciences: 15545–50.

Weiner 3rd, January, Shreemanta K Parida, Jeroen Maertzdorf, Gillian F Black, Dirk Repsilber, Anna Telaar,
Robert P Mohney, et al. 2012. “Biomarkers of Inflammation, Immunosuppression and Stress with Active
Disease Are Revealed by Metabolomic Profiling of Tuberculosis Patients.” PloS One 7 (7). Public Library of
Science: e40221.

Weiner, January. 2013. Pca3d: Three Dimensional Pca Plots.

———. 2014. Tagcloud: Tag Clouds.

Wendt, Hans W. 1972. “Dealing with a Common Problem in Social Science: A Simplified Rank-Biserial
Coefficient of Correlation Based on the U Statistic.” European Journal of Social Psychology 2 (4). Wiley
Online Library: 463–65.

Yamaguchi, Ken D, Daniel L Ruderman, Ed Croze, T Charis Wagner, Sharlene Velichko, Anthony T
Reder, and Hugh Salamon. 2008. “IFN-β-Regulated Genes Show Abnormal Expression in Therapy-Naïve
Relapsing–remitting Ms Mononuclear Cells: Gene Expression Analysis Employing All Reported Protein–
protein Interactions.” Journal of Neuroimmunology 195 (1). Elsevier: 116–20.

40

	Important note on terminology
	Basic data analysis
	The Gambia data set
	Transcriptional module analysis

	Working with multiple sets of comparisons
	Working with limma
	Comparing tests across experimental conditions
	Using other sets of modules

	Functional multivariate analysis
	PCA and tag clouds

	Permutation tests
	Accessing the tmod data
	Using and creating custom sets of modules
	MSigDB
	Manual creation of tmod module objects: MSigDB

	Case study: Metabolic profiling of TB patients
	Introduction
	Differential analysis
	Functional multivariate analysis

	Appendix: Mathematics behind CERNO test
	References

