
Package ‘tinytest’
June 18, 2020

Maintainer Mark van der Loo <mark.vanderloo@gmail.com>

License GPL-3

Title Lightweight and Feature Complete Unit Testing Framework

LazyData no

Type Package

LazyLoad yes

Description Provides a lightweight (zero-dependency) and easy to use
unit testing framework. Main features: install tests with
the package. Test results are treated as data that can be stored and
manipulated. Test files are R scripts interspersed with test commands, that
can be programmed over. Fully automated build-install-test sequence for
packages. Skip tests when not run locally (e.g. on CRAN). Flexible and
configurable output printing. Compare computed output with output stored
with the package. Run tests in parallel. Extensible by other packages.
Report side effects.

Version 1.2.2

URL https://github.com/markvanderloo/tinytest

BugReports https://github.com/markvanderloo/tinytest/issues

Imports parallel, utils

RoxygenNote 7.1.0

Encoding UTF-8

NeedsCompilation no

Author Mark van der Loo [aut, cre] (<https://orcid.org/0000-0002-9807-4686>)

Repository CRAN

Date/Publication 2020-06-18 19:30:02 UTC

R topics documented:
at_home . 2
build_install_test . 2

1

https://github.com/markvanderloo/tinytest
https://github.com/markvanderloo/tinytest/issues

2 build_install_test

exit_file . 4
expect_equal . 4
expect_equal_to_reference . 7
format.tinytest . 8
get_call_wd . 8
ignore . 9
register_tinytest_extension . 10
report_side_effects . 11
run_test_dir . 12
run_test_file . 14
setup_tinytest . 16
summary.tinytests . 17
test_package . 19
using . 20

Index 21

at_home Detect not on CRANity

Description

Detect whether we are running at home (i.e. not on CRAN, BioConductor, ...)

Usage

at_home()

Examples

test will run locally, but not on CRAN
if (at_home()){

expect_equal(2, 1+1)
}

build_install_test build, install and test

Description

Builds and installs the package in pkgdir under a temporary directory. Next, loads the package in
a fresh R session and runs all the tests. For this function to work the following system requirements
are necessary.

• R CMD build is available on your system

• Rscript is available on your system

build_install_test 3

Usage

build_install_test(
pkgdir = "./",
testdir = "tinytest",
pattern = "test_.+[rR]$",
at_home = TRUE,
verbose = getOption("tt.verbose", 2),
ncpu = 1,
remove_side_effects = TRUE,
side_effects = FALSE,
lc_collate = getOption("tt.collate", NA),
keep_tempdir = FALSE

)

Arguments

pkgdir [character] Package directory
testdir [character] Name of directory under pkgdir/inst containing test files.
pattern [character] A regular expression that is used to find scripts in dir containing

tests (by default .R or .r files starting with test).
at_home [logical] toggle local tests.
verbose [logical] toggle verbosity during execution
ncpu [numeric] number of CPUs to use during the testing phase.
remove_side_effects

[logical] toggle remove user-defined side effects? See section on side effects.
side_effects [logical|list] Either a logical, or a list of arguments to pass to report_side_effects.
lc_collate [character] Locale setting used to sort the test files into the order of execution.

The default NA ensures current locale is used. Set this e.g. to "C" to ensure
bytewise and more platform-independent sorting (see details in run_test_dir.

keep_tempdir [logical] keep directory where the pkg is installed and where tests are run? If
TRUE, the directory is not deleted and it’s location is printed.

Value

A tinytests object.

See Also

Other test-files: exit_file(), run_test_dir(), run_test_file(), summary.tinytests(), test_package()

Examples

Not run:
If your package source directory is "./pkg" you can run
build_install_test("pkg")

End(Not run)

4 expect_equal

exit_file Stop testing

Description

Call this function to exit a test file.

Usage

exit_file(msg = "")

Arguments

msg [character] An optional message to print after exiting.

Value

The exit message

See Also

Other test-files: build_install_test(), run_test_dir(), run_test_file(), summary.tinytests(),
test_package()

Examples

exit_file("I'm too tired to test")

expect_equal Express expectations

Description

Express expectations

Usage

expect_equal(
current,
target,
tolerance = sqrt(.Machine$double.eps),
info = NA_character_,
...

)

expect_equal 5

expect_identical(current, target, info = NA_character_)

expect_equivalent(
current,
target,
tolerance = sqrt(.Machine$double.eps),
info = NA_character_,
...

)

expect_true(current, info = NA_character_)

expect_false(current, info = NA_character_)

expect_silent(current, quiet = TRUE, info = NA_character_)

expect_null(current, info = NA_character_)

expect_error(current, pattern = ".*", class = "error", info = NA_character_)

expect_warning(
current,
pattern = ".*",
class = "warning",
info = NA_character_

)

expect_message(
current,
pattern = ".*",
class = "message",
info = NA_character_

)

expect_stdout(current, pattern = ".*", info = NA_character_)

Arguments

current [R object or expression] Outcome or expression under scrutiny.

target [R object or expression] Expected outcome

tolerance [numeric] Test equality to machine rounding. Passed to all.equal (tolerance)

info [character] scalar. Optional user-defined message. Must be a single character
string. Multiline comments may be separated by "\n".

... Passed to all.equal

quiet [logical] suppress output printed by the current expression (see examples)

pattern [character] A regular expression to match the message.

6 expect_equal

class [character] For condition signals (error, warning, message) the class from
which the condition should inherit.

Details

expect_equivalent calls expect_equal with the extra arguments check.attributes=FALSE and
use.names=FALSE

expect_silent fails when an error or warning is thrown.

expect_stdout Expects that output is written to stdout, for example using cat or print. Use
pattern to specify a regular expression matching the output.

Value

A tinytest object. A tinytest object is a logical with attributes holding information about the
test that was run

More information and examples

• An overview of tinytest can be found in vignette("using_tinytest").

• Examples of how tinytest is used in practice can be found in vignette("tinytest_examples")

Note

Each expect_haha function can also be called as checkHaha. Although the interface is not entirely
the same, it is expected that this makes migration from the RUnit framework a little easier, for those
who wish to do so.

See Also

Other test-functions: expect_equal_to_reference(), ignore()

Examples

expect_equal(1 + 1, 2) # TRUE
expect_equal(1 - 1, 2) # FALSE
expect_equivalent(2, c(x=2)) # TRUE
expect_equal(2, c(x=2)) # FALSE

expect_silent(1+1) # TRUE
expect_silent(1+"a") # FALSE
expect_silent(print("hihi")) # TRUE, nothing goes to screen
expect_silent(print("hihi", quiet=FALSE)) # FALSE, and printed

expect_equal_to_reference 7

expect_equal_to_reference

Compare object with object stored in a file

Description

Compares the current value with a value stored to file with saveRDS. If the file does not exist, the
current value is stored into file, and the test returns expect_null(NULL).

Usage

expect_equal_to_reference(current, file, ...)

expect_equivalent_to_reference(current, file, ...)

Arguments

current [R object or expression] Outcome or expression under scrutiny.

file [character] File where the target is stored. If file does not exist, current
will be stored there.

... passed to expect_equal, respectively expect_equivalent.

Note

Be aware that on CRAN it is not allowed to write data to user space. So make sure that the file is
either stored with your tests, or generated with tempfile, or the test is skipped on CRAN, using
at_home.

Also note that build_install_test clones the package and builds and tests it in a separate R
session in the background. This means that if you create a file located at tempfile() during the
run, this file is destroyed when the separate R session is closed.

See Also

Other test-functions: expect_equal(), ignore()

Examples

filename <- tempfile()
this gives TRUE: the file does not exist, but is created now.
expect_equal_to_reference(1, file=filename)
this gives TRUE: the file now exists, and its contents is equal
to the current value
expect_equal_to_reference(1, file=filename)
this gives FALSE: the file exists, but is contents is not equal
to the current value
expect_equal_to_reference(2, file=filename)

8 get_call_wd

format.tinytest Print a tinytest object

Description

Print a tinytest object

Usage

S3 method for class 'tinytest'
format(x, type = c("long", "short"), ...)

S3 method for class 'tinytest'
print(x, ...)

Arguments

x A tinytest object

type [logical] Toggle format type

... passed to format.tinytest

Value

A character string

Examples

tt <- expect_equal(1+1, 3)
format(tt,"long")
format(tt,"short")
print(expect_equal(1+1, 2))
print(expect_equal(1+1, 3), type="long")

get_call_wd Get workding dir from where a test was initiated

Description

A test runner, like run_test_file changes R’s working directory to the location of the test file
temporarily while the tests run. This function can be used from within the test file to get R’s
working directory at the time run_test_file (or one of it’s siblings) was called.

Usage

get_call_wd()

ignore 9

Value

[character] A path.

Examples

get_call_wd()

ignore Ignore the output of an expectation

Description

Ignored expectations are not reported in the test results. Ignoring is only useful for test files, and not
for use directly at the command-line. See also the package vignette: vignette("using_tinytest").

Usage

ignore(fun)

Arguments

fun [function] An expect_ function

Value

An ignored function

Details

ignore is a higher-order function: a function that returns another function. In particular, it accepts
a function and returns a function that is almost identical to the input function. The only difference
is that the return value of the function returned by ignore is not caught by run_test_file and
friends. For example, ignore(expect_true) is a function, and we can use it as ignore(expect_true)(
1 == 1). The return value of ignore(expect_true)(1==1) is exactly the same as that for expect_true(1==1).

See Also

Other test-functions: expect_equal_to_reference(), expect_equal()

Examples

The result of 'expect_warning' is not stored in the test result when
this is run from a file.
expect_true(ignore(expect_warning)(warning("foo!")))
Note the placement of the brackets in ignore(expect_warning)(...).

10 register_tinytest_extension

register_tinytest_extension

Register or unregister extension functions

Description

Functions to use in .onLoad and .onUnload by packages that extend tinytest.

Usage

register_tinytest_extension(pkg, functions)

Arguments

pkg [character] scalar. Name of the package providing extensions.
functions [character] vector. Name of the functions in the package that must be added.

The tinytest API

Packages can extend tinytest with expectation functions if and only if the following requirements
are satisfied.

1. The extending functions return a tinytest object. This can be created by calling tinytest()
with the arguments (defaults, if any, are in brackets):

• result: A logical scalar: TRUE or FALSE (not NA)
• call: The call to the expectation function. Usually the result of sys.call(sys.parent(1))
• diff (NA_character_): A character scalar, with a long description of the difference.

Sentences may be separated by "\n".
• short (NA_character_): Either "data", if the difference is in the data. "attr" when

attributes differ or "xcpt" when an expectation about an exception is not met. If there
are differences in data and in attributes, the attributes take precedence.

• info (NA_character_): A user-defined message.
Observe that this requires the extending package to add tinytest to the Imports field in the
package’s DESCRIPTION file (this also holds for the following requirement).

2. Functions are registered in .onLoad() using register_tinytest_extension(). Functions
that are already registered, including tinytest functions will be overwritten.

It is recommended to:

1. Follow the syntax conventions of tinytest so expectation functions start with expect_.
2. Explain to users of the extension package how to use the extension (see using).
3. include an info argument to expect_ functions that is passed to tinytest().

Minimal example packages

• Extending tinytest: tinytest.extension.
• Using a tinytest extension: using.tinytest.extension.

https://github.com/markvanderloo/tinytest.extension
https://github.com/markvanderloo/uses.tinytest.extension

report_side_effects 11

See Also

Other extensions: tinytest(), using()

report_side_effects Report side effects for expressions in test files

Description

Call this function from within a test file to report side effects.

Usage

report_side_effects(
report = TRUE,
envvar = report,
pwd = report,
files = report

)

Arguments

report [logical] report all side-effects

envvar [logical] changes in environment variables

pwd [logical] changes in working directory

files [logical] changes in files in the directory where the test file lives. Also
watches subdirectories.

Value

A named logical, indicating which aspects of the environment are tracked, invisibly.

Details

A side effect causes a change in an external variable outside of the scope of a function, or test file.
This includes environment variables, global options, global R variables, creating files or directories,
and so on.

If this function is called in a test file, side effects are monitored from that point in the file and only
for that file. The state of the environment before and after running every expression in the file are
compared.

There is some performance penalty in tracking external variables especially those that require a
system call.

Note

There could be side-effects that are untrackable by tinytest. This includes packages that use a global
internal state within their namespace or packages that use a global state within compiled code.

12 run_test_dir

Examples

switch on
report_side_effects()
switch off
report_side_effects(FALSE)

only report changes in environment variables
report_side_effects(report=FALSE, envvar=TRUE)

run_test_dir Run all tests in a directory

Description

run_test_dir runs all test files in a directory.

test_all is a convenience function for package development, that wraps run_test_dir. By de-
fault, it runs all files starting with test in ./inst/tinytest/. It is assumed that all functions to be
tested are loaded.

Usage

run_test_dir(
dir = "inst/tinytest",
pattern = "^test.*\\.[rR]$",
at_home = TRUE,
verbose = getOption("tt.verbose", 2),
color = getOption("tt.pr.color", TRUE),
remove_side_effects = TRUE,
cluster = NULL,
lc_collate = getOption("tt.collate", NA),
...

)

test_all(pkgdir = "./", testdir = "inst/tinytest", ...)

Arguments

dir [character] path to directory

pattern [character] A regular expression that is used to find scripts in dir containing
tests (by default .R or .r files starting with test).

at_home [logical] toggle local tests.

verbose [logical] toggle verbosity during execution

color [logical] toggle colorize output

run_test_dir 13

remove_side_effects

[logical] toggle remove user-defined side effects. Environment variables (Sys.setenv())
and options (options()) defined in a test file are reset before running the next
test file (see details).

cluster A makeCluster object.

lc_collate [character] Locale setting used to sort the test files into the order of execution.
The default NA ensures current locale is used. Set this e.g. to "C" to ensure
bytewise and more platform-independent sorting (see details).

... Arguments passed to run_test_file

pkgdir [character] scalar. Root directory of the package (i.e. direcory where DESCRIPTION
and NAMESPACE reside).

testdir [character] scalar. Subdirectory where test files are stored.

Value

A tinytests object

Details

We cannot guarantee that files will be run in any particular order accross all platforms, as it de-
pends on the available collation charts (a chart that determines how alphabets are sorted). For this
reason it is a good idea to create test files that run independent of each other so their order of ex-
ecution does not matter. In tinytest, test files cannot share variables. The default behavior of test
runners further discourages interdependence by resetting environment variables and options that
are set in a test file after the file is executed. If an environment variable needs to survive a sin-
gle file, use base::Sys.setenv() explicitly. Similarly, if an option setting needs to survive, use
base::options()

Parallel tests

If inherits(cluster,"cluster") the tests are paralellized over a cluster of worker nodes. tinytest
will be loaded onto each cluster node. All other preparation, including loading code from the tested
package, must be done by the user. It is also up to the user to clean up the cluster after running tests.
See the ’using tinytest’ vignette for examples: vignette("using_tinytest").

See Also

makeCluster, clusterEvalQ, clusterExport

Other test-files: build_install_test(), exit_file(), run_test_file(), summary.tinytests(),
test_package()

Examples

create a test file in tempdir
tests <- "
addOne <- function(x) x + 2

expect_true(addOne(0) > 0)

14 run_test_file

expect_equal(2, addOne(1))
"
testfile <- tempfile(pattern="test_", fileext=".R")
write(tests, testfile)

extract testdir
testdir <- dirname(testfile)
run all files starting with 'test' in testdir
out <- run_test_dir(testdir)
print(out)
dat <- as.data.frame(out)

run_test_file Run an R file containing tests; gather results

Description

Run an R file containing tests; gather results

Usage

run_test_file(
file,
at_home = TRUE,
verbose = getOption("tt.verbose", 2),
color = getOption("tt.pr.color", TRUE),
remove_side_effects = TRUE,
side_effects = FALSE,
set_env = list(),
...

)

Arguments

file [character] File location of a .R file.

at_home [logical] toggle local tests.

verbose [integer] verbosity level. 0: be quiet, 1: print status per file, 2: print status
and increase counter after each test expression.

color [logical] toggle colorize counts in verbose mode (see Note)
remove_side_effects

[logical] toggle remove user-defined side effects? See section on side effects.

side_effects [logical|list] Either a logical, or a list of arguments to pass to report_side_effects.

set_env [named list]. Key=value pairs of environment variables that will be set before
the test file is run and reset afterwards. These are not counted as side effects of
the code under scrutiny.

... Currently unused

run_test_file 15

Details

In tinytest, a test file is just an R script where some or all of the statements express an expectation.
run_test_file runs the file while gathering results of the expectations in a tinytests object.

The graphics device is set to pdf(file=tempfile()) for the run of the test file.

Value

A list of class tinytests, which is a list of tinytest objects.

Side-effects caused by test code

All calls to Sys.setenv and options defined in a test file are captured and undone once the test
file has run, if remove_side_effects is set to TRUE.

Tracking side effects

Certain side effects can be tracked, even when they are not explicitly evoked in the test file. See
report_side_effects for side effects tracked by tinytest. Calls to report_side_effects within
the test file overrule settings provided with this function.

Note

Not all terminals support ansi escape characters, so colorized output can be switched off. This can
also be done globally by setting options(tt.pr.color=FALSE). Some terminals that do support
ansi escape characters may contain bugs. An example is the RStudio terminal (RStudio 1.1) running
on Ubuntu 16.04 (and possibly other OSs).

See Also

ignore

Other test-files: build_install_test(), exit_file(), run_test_dir(), summary.tinytests(),
test_package()

Examples

create a test file, in temp directory
tests <- "
addOne <- function(x) x + 2

Sys.setenv(lolz=2)

expect_true(addOne(0) > 0)
expect_equal(2, addOne(1))

Sys.unsetenv('lolz')
"
testfile <- tempfile(pattern="test_", fileext=".R")
write(tests, testfile)

run test file

16 setup_tinytest

out <- run_test_file(testfile,color=FALSE)
out
print everything in short format, include passes in print.
print(out, nlong=0, passes=TRUE)

run test file, track supported side-effects
run_test_file(testfile, side_effects=TRUE)

run test file, track only changes in working directory
run_test_file(testfile, side_effects=list(pwd=TRUE, envvar=FALSE))

setup_tinytest Add tinytest to package source directory

Description

Creates inst/tinytest, and an example test file in that directory. Creates tests/tinytest.R so
the package is tested with R CMD check. Adds tinytests as a suggested package to the DESCRIPTION.

Usage

setup_tinytest(pkgdir, force = FALSE, verbose = TRUE)

Arguments

pkgdir [character] Package source directory

force [logical] Toggle overwrite existing files? (not folders)

verbose [logical] Toggle print progress

Value

NULL, invisibly.

Note on DESCRIPTION

Fails when it does not exist. It is assumed that the package is named in the DESCRIPTION.

Examples

Not run:
an easy way to set up a package 'haha' that passes
R CMD check
pkgKitten::kitten("haha")
tinytest::setup_tinytest("haha")

End(Not run)

summary.tinytests 17

summary.tinytests Tinytests object

Description

An object of class tinytests (note: plural) results from running multiple tests from script. E.g. by
running run_test_file.

Usage

S3 method for class 'tinytests'
summary(object, ...)

all_pass(x)

any_pass(x)

all_fail(x)

any_fail(x)

S3 method for class 'tinytests'
x[i]

S3 method for class 'tinytests'
print(
x,
passes = getOption("tt.pr.passes", FALSE),
sidefx = getOption("tt.pr.sidefx", TRUE),
limit = getOption("tt.pr.limit", 7),
nlong = getOption("tt.pr.nlong", 3),
...

)

S3 method for class 'tinytests'
as.data.frame(x, ...)

Arguments

object a tinytests object

... passed to format.tinytest

x a tinytests object

i an index

passes [logical] Toggle: print passing tests?

sidefx [logical] Toggle: print side effects?

18 summary.tinytests

limit [numeric] Max number of results to print

nlong [numeric] First nlong results are printed in long format.

Value

For summary a table object

For all_pass, any_pass, all_fail, any_fail: a single logical

For `[.tinytests` a tinytests object.

For as.data.frame. a data frame.

Details

By default, the first 3 failing test results are printed in long form, the next 7 failing test results are
printed in short form and all other failing tests are not printed. These defaults can be changed by
passing options to print.tinytest, or by setting one or more of the following global options:

• tt.pr.passes Set to TRUE to print output of non-failing tests.

• tt.pr.limit Max number of results to print (e.g. Inf)

• tt.pr.nlong The number of results to print in long format (e.g. Inf).

For example, set options(tt.pr.limit=Inf) to print all test results. Furthermore, there is the
option

• tt.pr.color,

which determines whether colored output is printed. If R is running in a dumb terminal (detected
by comparing environment variable "TERM" to "dumb"), then this option is set to FALSE when the
package is loaded.

See Also

Other test-files: build_install_test(), exit_file(), run_test_dir(), run_test_file(),
test_package()

Examples

create a test file in tempdir
tests <- "
addOne <- function(x) x + 2

expect_true(addOne(0) > 0)
expect_equal(2, addOne(1))
"
testfile <- tempfile(pattern="test_", fileext=".R")
write(tests, testfile)

extract testdir
testdir <- dirname(testfile)
run all files starting with 'test' in testdir
out <- run_test_dir(testdir)

test_package 19

#
print results
print(out)
summary(out)
dat <- as.data.frame(out)
out[1]

test_package Test a package during R CMD check or after installation

Description

Run all tests in an installed package. Throw an error and print all failed test results when one or
more tests fail if not in interactive mode (e.g. when R CMD check tests a package). This function
is intended to be used by R CMD check or by a user that installed a package that uses the tinytest test
infrastructure.

Usage

test_package(pkgname, testdir = "tinytest", at_home = FALSE, ncpu = NULL, ...)

Arguments

pkgname [character] scalar. Name of the package, as in the DESCRIPTION file.

testdir [character] scalar. Path to installed directory, relative to the working directory
of R CMD check.

at_home [logical] scalar. Are we at home? (see Details)

ncpu A positive integer, or a makeCluster object.

... extra arguments passed to run_test_dir (e.g. ncpu).

Value

If interactive(), a tinytests object. If not interactive(), an error is thrown when at least
one test fails.

Details

We set at_home=FALSE by default so R CMD check will run the same as at CRAN. See the package
vignette (Section 4) for tips on how to set up the package structure. vignette("using_tinytest",package="tinytest").

See Also

setup_tinytest

Other test-files: build_install_test(), exit_file(), run_test_dir(), run_test_file(),
summary.tinytests()

20 using

Examples

Not run:
Create a file with the following content, to use
tinytest as your unit testing framework:

if (requireNamespace("tinytest", quietly=TRUE))
tinytest::test_package("your package name")

End(Not run)

using Use an extension package.

Description

Loads and attaches a package to the search path, and picks up the tinytest extension functions regis-
tered by the package. Package authors must call this function in every test file where an extension is
used, or otherwise results from the extension package are not recorded (without a warning). Calling
using in every file where an extension is used also ensures that tests can be run in parallel.

Usage

using(package, quietly = TRUE)

Arguments

package the name of the extension package, given as name or character string.

quietly Passed to require.

Value

A named list, with the package name and the names of the functions registered by package to
extend tinytest. A message is emitted when the package registers no extension functions.

See Also

Other extensions: register_tinytest_extension(), tinytest()

Examples

Not run:
In interactive session: see which functions are exported
by checkmate.tinytest
out <- using(checkmate.tinytest)
print(out)

End(Not run)

Index

[.tinytests (summary.tinytests), 17

all.equal, 5
all_fail (summary.tinytests), 17
all_pass (summary.tinytests), 17
any_fail (summary.tinytests), 17
any_pass (summary.tinytests), 17
as.data.frame.tinytests

(summary.tinytests), 17
at_home, 2, 7

build_install_test, 2, 4, 7, 13, 15, 18, 19

clusterEvalQ, 13
clusterExport, 13

exit_file, 3, 4, 13, 15, 18, 19
expect_equal, 4, 7, 9
expect_equal_to_reference, 6, 7, 9
expect_equivalent, 7
expect_equivalent (expect_equal), 4
expect_equivalent_to_reference

(expect_equal_to_reference), 7
expect_error (expect_equal), 4
expect_false (expect_equal), 4
expect_identical (expect_equal), 4
expect_message (expect_equal), 4
expect_null (expect_equal), 4
expect_silent (expect_equal), 4
expect_stdout (expect_equal), 4
expect_true (expect_equal), 4
expect_warning (expect_equal), 4
expectation, 15

format.tinytest, 8, 8, 17

get_call_wd, 8

ignore, 6, 7, 9, 15

makeCluster, 13, 19

options, 15

print.tinytest (format.tinytest), 8
print.tinytests (summary.tinytests), 17

register_tinytest_extension, 10, 20
report_side_effects, 3, 11, 14, 15
require, 20
run_test_dir, 3, 4, 12, 15, 18, 19
run_test_file, 3, 4, 8, 9, 13, 14, 17–19

saveRDS, 7
setup_tinytest, 16, 19
summary.tinytests, 3, 4, 13, 15, 17, 19
Sys.setenv, 15

table, 18
tempfile, 7
test_all (run_test_dir), 12
test_package, 3, 4, 13, 15, 18, 19
tinytest, 6, 10, 11, 15, 20
tinytests, 15
tinytests (summary.tinytests), 17

using, 10, 11, 20

21

	at_home
	build_install_test
	exit_file
	expect_equal
	expect_equal_to_reference
	format.tinytest
	get_call_wd
	ignore
	register_tinytest_extension
	report_side_effects
	run_test_dir
	run_test_file
	setup_tinytest
	summary.tinytests
	test_package
	using
	Index

