Package ‘timetk’

July 18, 2020
Type Package
Title A Tool Kit for Working with Time Series in R
Version 2.2.0

Description Easy visualization, wrangling, and feature engineering of time series data for
forecasting and machine learning prediction.
Methods discussed herein are commonplace in machine learning, and have been cited
in various literature. Refer to *"Calendar Effects" in papers such as
Taieb, Souhaib Ben. ““Machine learning strategies for multi-step-ahead time series
forecasting." Universit Libre de Bruxelles, Belgium (2014): 75-86.
<http://souhaib-bentaieb.com/pdf/2014_phd.pdf>.

URL https://github.com/business-science/timetk

BugReports https://github.com/business-science/timetk/issues
License GPL (>=3)

Encoding UTF-8

LazyData true

Depends R (>=3.3.0)

Imports recipes (>= 0.1.4), rsample, dplyr (>= 1.0.0), ggplot2,
forcats, stringr, plotly, lazyeval (>= 0.2.0), lubridate (>=
1.6.0), padr (>=0.5.2), purrr (>= 0.2.2), readr (>= 1.3.0),
stringi (>= 1.4.6), tibble (>= 3.0.3), tidyr (>= 1.1.0), xts
(>=0.9-7), zoo (>= 1.7-14), rlang (>= 0.4.7), tidyselect (>=
1.1.0), slider, anytime, timeDate, forecast, hms, assertthat

Suggests tidyquant, tidymodels, modeltime, workflows, parsnip, tune,
yardstick, tidyverse, knitr, rmarkdown, robets, broom, scales,
testthat, fracdiff, timeSeries, tseries, roxygen2

RoxygenNote 7.1.1
VignetteBuilder knitr
NeedsCompilation no

Author Matt Dancho [aut, cre],
Davis Vaughan [aut]

https://github.com/business-science/timetk
https://github.com/business-science/timetk/issues

2 R topics documented:

Maintainer Matt Dancho <mdancho@business-science.io>
Repository CRAN
Date/Publication 2020-07-18 06:00:02 UTC

R topics documented:

between_time e e e e 4
bike_sharing_daily e 6
DOX_COX_VEC . . v v v e o e e e e e e e s 7
diff_vec e 9
filter_by_time e e 11
fourier_vec e e 13
future_frame s 15
is_date_class e e e e e e e e e 17
lag_vec e 18
log_interval_vec e 19
md_daily e 21
md_hourly 22
m4_monthlyo 22
mé_quarterly e 23
md_weekly e e e 24
ma_yearly L e e e 25
mutate_by_time e e e e e 25
normalize_VEC e e e e 27
pad_by_time 29
parse_date2 L. e e e e 31
plot_acf_diagnostics e e 32
plot_anomaly_diagnostics 35
plot_seasonal_diagnostics Lo 38
plot_stl_diagnostics e e e e 41
plot_time_Series e e 43
plot_time_series_cv_plan Lo e 47
plot_time_Series_regresSiono i e e e e e e e e e e e e e 48
set_tk_time_scale_template L 50
slidify e 51
slidify_vec e e 55
SMOOLN_VEC o e e e e 58
standardize _VEC L e, 61
SEP_DOX_COX . . v v v e e e e e e e 62
step_diffo 65
step_fourier L. 67
step_holiday_signature e e 70
step_slidify e e e 73
step_smooth e 76
step_timeseries_Signatureo e 80
step_ts_clean L e e e 82

SEP_LS_IMPULE o o v o e e e e e e e e e e e e e 85

R topics documented: 3

Index

step_ts_pad e e e e e 88
summarise_by_time e e e e e e 90
taylor_30_min. L e e e 93
timetk e e e e 94
time_arithmetic e e 94
ME_SETIES_CV « . v v v v v e e e e e e e e e e e e e e e e e e e 96
time_series_Split e e e e 98
tk_acf_diagnostics 100
tk_anomaly_diagnostics L. L 102
tk_augment_differences Lo 105
tk_augment_fourier L 106
tk_augment_holiday 107
tk_augment_lags L. 109
tk_augment_slidify 111
tk_augment_timeseries et e e 113
tk_get_frequency 114
tk_get_holiday 116
tk_@et_timMeSEries o v v e e e 118
tk_get_timeseries_unit_frequencyo oo 119
tk_get_timeseries_variables oL 120
tkoindex . . . L L e 120
tk_make_future_timeseries e e e 122
tk_make_holiday_sequence 124
tk_make _tiImeSEries e e e e 127
tk_seasonal_diagnostics e 130
tk_stl_diagnostics e e 132
tk_summary_diagnostics L. e e 134
tk_tbl . . e e 135
tk_time_series_cv_plan L. 137
K S o e e e 138
tk_ts_.data.frame e e e 140
KOXES o . s 142
tk_Z0O . . . e e 143
tk_zooreg e 145
tS_Clean _VEC e e 148
tS_IMPULE_VEC o o o e e e e e e e 149
walmart_sales_weekly L L 151
wikipedia_traffic_daily 152

154

4 between_time

between_time Between (For Time Series): Range detection for date or date-time se-
quences

Description

The easiest way to filter time series date or date-time vectors. Returns a logical vector indicating
which date or date-time values are within a range. See filter_by_time() for the data.frame
(tibble) implementation.

Usage

between_time(index, start_date = "start”, end_date = "end")
Arguments

index A date or date-time vector.

start_date The starting date

end_date The ending date
Details

Pure Time Series Filtering Flexibilty
The start_date and end_date parameters are designed with flexibility in mind.
Each side of the time_formula is specified as the character ' YYYY-MM-DD HH:MM:SS', but powerful
shorthand is available. Some examples are:
¢ Year: start_date = '2013', end_date = 2015’
¢ Month: start_date = '2013-01', end_date = '2016-06'
* Day: start_date = 2013-01-05', end_date = "2016-06-04'
e Second: start_date = '2013-01-05 10:22:15', end_date = '2018-06-03 12:14:22'
* Variations: start_date = 2013, end_date = '2016-06'

Key Words: '"'start" and "end"

Use the keywords "start" and "end" as shorthand, instead of specifying the actual start and end
values. Here are some examples:

¢ Start of the series to end of 2015: start_date = 'start', end_date = '2015'
« Start of 2014 to end of series: start_date = '2014', end_date = 'end'

Internal Calculations

All shorthand dates are expanded:

* The start_date is expanded to be the first date in that period
* The end_date side is expanded to be the last date in that period

between_time 5

This means that the following examples are equivalent (assuming your index is a POSIXct):

e start_date = '2015" is equivalent to start_date = '2015-01-01 + 00:00:00"'
* end_date = '2016' is equivalent to 2016-12-31 + 23:59:59'

Value

A logical vector the same length as index indicating whether or not the timestamp value was
within the start_date and end_date range.

References

 This function is based on the tibbletime::filter_time() function developed by Davis
Vaughan.

See Also
Other Time-Based dplyr functions:

* summarise_by_time() - Easily summarise using a date column.
e filter_by_time() - Quickly filter using date ranges.

* between_time() - Range detection for date or date-time sequences.

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

index_daily <- tk_make_timeseries(”2016-01-01", "2017-01-01", by = "day")
index_min <- tk_make_timeseries(”2016-01-01", "2017-01-01", by = "min"

How it works

- Returns TRUE/FALSE length of index

- Use sum() to tally the number of TRUE values
index_daily %>% between_time("start”, "2016-01") %>% sum()

---- INDEX SLICING ----

Daily Series: Month of January 2016
index_daily[index_daily %>% between_time("start”, "2016-01")]

Daily Series: March 1st - June 15th, 2016
index_daily[index_daily %>% between_time("2016-03", "2016-06-15")]

Minute Series:
index_min[index_min %>% between_time("2016-02-01 12:00", "2016-02-01 13:00")]

---- FILTERING WITH DPLYR ----
FANG %>%
group_by(symbol) %>%

6 bike_sharing_daily
filter(date %>% between_time("2016-01", "2016-01"))
bike_sharing_daily Daily Bike Sharing Data
Description
This dataset contains the daily count of rental bike transactions between years 2011 and 2012 in
Capital bikeshare system with the corresponding weather and seasonal information.
Usage
bike_sharing_daily
Format

A tibble: 731 x 16

instant: record index

dteday : date

season : season (1:winter, 2:spring, 3:summer, 4:fall)

yr: year (0: 2011, 1:2012)

mnth : month (1 to 12)

hr : hour (0 to 23)

holiday : weather day is holiday or not

weekday : day of the week

workingday : if day is neither weekend nor holiday is 1, otherwise is 0.

weathersit :

1: Clear, Few clouds, Partly cloudy, Partly cloudy
2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist

3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered
clouds

4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

temp : Normalized temperature in Celsius. The values are derived via (t-t_min)/(t_max-
t_min), t_min=-8, t_max=+39 (only in hourly scale)

atemp: Normalized feeling temperature in Celsius. The values are derived via (t-t_min)/(t_max-
t_min), t_min=-16, t_max=+50 (only in hourly scale)

hum: Normalized humidity. The values are divided to 100 (max)
windspeed: Normalized wind speed. The values are divided to 67 (max)
casual: count of casual users

registered: count of registered users

cnt: count of total rental bikes including both casual and registered

box_cox_vec 7

References
Fanaee-T, Hadi, and Gama, Joao, *Event labeling combining ensemble detectors and background

knowledge’, Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg.

Examples

bike_sharing_daily

box_cox_vec Box Cox Transformation

Description
This is mainly a wrapper for the BoxCox transformation from the forecast R package. The

box_cox_vec() function performs the transformation. The box_cox_inv_vec() inverts the trans-
formation. The auto_lambda() helps in selecting the optimal 1ambda value.

Usage

box_cox_vec(x, lambda = "auto"”, silent = FALSE)
box_cox_inv_vec(x, lambda)

auto_lambda(

X ’
method = c("guerrero”, "loglik"),
lambda_lower = -1,
lambda_upper = 2
)
Arguments
X A numeric vector.
lambda The box cox transformation parameter. If set to "auto", performs automated
lambda selection using auto_lambda().
silent Whether or not to report the automated lambda selection as a message.
method The method used for automatic 1ambda selection. Either "guerrero” or "loglik".

lambda_lower A lower limit for automatic 1ambda selection

lambda_upper An upper limit for automatic lambda selection

8 box_cox_vec

Details

The Box Cox transformation is a power transformation that is commonly used to reduce variance
of a time series.

Automatic Lambda Selection
If desired, the 1ambda argument can be selected using auto_lambda(), a wrapper for the Forecast
R Package’s forecast: :BoxCox.lambda() function. Use either of 2 methods:

1. "guerrero" - Minimizes the non-seasonal variance

2. "loglik" - Maximizes the log-likelihood of a linear model fit to x

References

* Forecast R Package
* Forecasting: Principles & Practices: Transformations & Adjustments

* Guerrero, V.M. (1993) Time-series analysis supported by power transformations. Journal of
Forecasting, 12, 37-48.

¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()

* Loess Smoothing Transformation: smooth_vec()

¢ Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Other common transformations to reduce variance: 1log(), loglp() and sqrt()

Examples

library(dplyr)
library(timetk)

d10_daily <- m4_daily %>% filter(id == "D10")
--- VECTOR ----

value_bc <- box_cox_vec(d10_daily$value)
value <- box_cox_inv_vec(value_bc, lambda = 1.25119350454964)

--- MUTATE ----
m4_daily %>%

group_by(id) %>%
mutate(value_bc = box_cox_vec(value))

https://github.com/robjhyndman/forecast
https://otexts.com/fpp2/transformations.html

diff_vec 9

diff_vec Differencing Transformation

Description

diff_vec() applies a Differencing Transformation. diff_inv_vec() inverts the differencing trans-
formation.

Usage

diff_vec(
X,
lag = 1,
difference = 1,
log = FALSE,
initial_values = NULL,
silent = FALSE

)

diff_inv_vec(x, lag = 1, difference = 1, log = FALSE, initial_values = NULL)

Arguments
X A numeric vector to be differenced or inverted.
lag Which lag (how far back) to be included in the differencing calculation.
difference The number of differences to perform.
* 1 Difference is equivalent to measuring period change.
* 2 Differences is equivalent to measuring period acceleration.
log If log differences should be calculated. Note that difference inversion of a log-

difference is approximate.

initial_values Only used in the diff_vec_inv() operation. A numeric vector of the initial
values, which are used to invert differences. This vector is the original values
that are the length of the NA missing differences.

silent Whether or not to report the initial values used to invert the difference as a
message.
Details
Benefits:

This function is NA padded by default so it works well with dplyr: :mutate() operations.
Difference Calculation

Single differencing, diff_vec(x_t) is equivalent to: x_t -x_t1, where the subscript _t1 indicates
the first lag. This transformation can be interpereted as change.

Double Differencing Calculation

10 diff _vec

Double differencing, diff_vec(x_t,difference = 2) is equivalent to: (x_t-x_tl)- (x_t-x_tl)_tI,
where the subscript _tl indicates the first lag. This transformation can be interpereted as accelera-
tion.

Log Difference Calculation

Log differencing, diff_vec(x_t,log = TRUE) is equivalent to: log(x_t) -log(x_t1) = log(x_t
/ x_t1), where x_t is the series and x_t1 is the first lag.

The st difference diff_vec(difference = 1, log = TRUE) has an interesting property where diff_vec(difference
=1,log = TRUE) %>% exp() is approximately / + rate of change.
Value

A numeric vector

See Also
Advanced Differencing and Modeling:

* step_diff() - Recipe for tidymodels workflow
e tk_augment_differences() - Adds many differences to a data.frame (tibble)

Additional Vector Functions:

¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()
* Loess Smoothing Transformation: smooth_vec()
e Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

library(dplyr)
library(timetk)

--- USAGE ----

diff_vec(1:10, lag = 2, difference = 2) %>%
diff_inv_vec(lag = 2, difference = 2, initial_values = 1:4)

--- VECTOR ----

Get Change
1:10 %>% diff_vec()

Get Acceleration
1:10 %>% diff_vec(difference = 2)

filter_by_time 11

Get approximate rate of change
1:10 %>% diff_vec(log = TRUE) %>% exp() - 1

--- MUTATE ----

m4_daily %>%

group_by(id) %>%

mutate(difference = diff_vec(value, lag = 1)) %>%

mutate(

difference_inv = diff_inv_vec(

difference,
lag = 1,
Add initial value to calculate the inverse difference
initial_values = value[1]

filter_by_time Filter (for Time-Series Data)

Description
The easiest way to filter time-based tibbles using shorthand timeseries notation. See between_time ()
for the date and date-time vector implementation.

Usage

filter_by_time(.data, .date_var, .start_date = "start”, .end_date = "end")

Arguments
.data A tibble with a time-based column.
.date_var A column containing date or date-time values to filter. If missing, attempts to
auto-detect date column.
.start_date The starting date for the filter sequence
.end_date The ending date for the filter sequence
Details

Pure Time Series Filtering Flexibilty
The .start_date and .end_date parameters are designed with flexibility in mind.

Each side of the time_formula is specified as the character ' YYYY-MM-DD HH:MM:SS', but powerful
shorthand is available. Some examples are:

12 filter_by_time

¢ Year: .start_date = 2013, .end_date = '2015'

e Month: .start_date = '2013-01', .end_date = '2016-06'

* Day: .start_date = 2013-01-05', .end_date = '2016-06-04"

¢ Second: .start_date ='2013-01-05 10:22:15', .end_date = '2018-06-03 12:14:22
e Variations: .start_date = '2013', .end_date = '2016-06'

Key Words: '"start'" and "end"
Use the keywords "start" and "end" as shorthand, instead of specifying the actual start and end
values. Here are some examples:

¢ Start of the series to end of 2015: .start_date = 'start’, .end_date = '2015'

e Start of 2014 to end of series: .start_date = '2014', .end_date = 'end’

Internal Calculations

All shorthand dates are expanded:

* The .start_date is expanded to be the first date in that period
* The .end_date side is expanded to be the last date in that period

This means that the following examples are equivalent (assuming your index is a POSIXct):

* .start_date = '2015" is equivalent to .start_date = '2015-01-01 + 00:00:00"'
* .end_date = '2016" is equivalent to 2016-12-31 + 23:59:59'

References

* This function is based on the tibbletime::filter_time() function developed by Davis
Vaughan.

See Also
Other Time-Based dplyr functions:

e summarise_by_time() - Easily summarise using a date column.

e filter_by_time() - Quickly filter using date ranges.

* between_time() - Range detection for date or date-time sequences.

* pad_by_time() - Insert time series rows with regularly spaced timestamps
* slidify() - Turn any function into a sliding (rolling) function

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

Filter values in January 1st through end of February, 2013

FANG %>%
group_by(symbol) %>%
filter_by_time(.start_date = "start”, .end_date = "2013-02") %>%
plot_time_series(date, adjusted, .facet_ncol = 2, .interactive = FALSE)

fourier_vec 13

fourier_vec Fourier Series

Description

fourier_vec() calculates a Fourier Series from a date or date-time index.

Usage
fourier_vec(x, period, K = 1, type = c("sin”, "cos"))
Arguments
X A date, POSIXct, yearmon, yearqtr, or numeric sequence (scaled to difference 1
for period alignment) to be converted to a fourier series.
period The number of observations that complete one cycle.
K The fourier term order.
type Either "sin" or "cos" for the appropriate type of fourier term.
Details
Benefits:

This function is NA padded by default so it works well with dplyr: :mutate() operations.
Fourier Series Calculation

The internal calculation is relatively straightforward: fourier(x) = sin(2 * pi * term * x) or cos(2 * pi * term * x),
where term =K / period.

Period Alignment, period

The period alignment with the sequence is an essential part of fourier series calculation.

* Date, Date-Time, and Zoo (yearqtr and yearmon) Sequences - Are scaled to unit difference
of 1. This happens internally, so there’s nothing you need to do or to worry about. Future time
series will be scaled appropriately.

* Numeric Sequences - Are not scaled, which means you should transform them to a unit
difference of 1 so that your x is a sequence that increases by 1. Otherwise your period and
fourier order will be incorrectly calculated. The solution is to just take your sequence and
divide by the median difference between values.

Fourier Order, K

The fourier order is a parameter that increases the frequency. K = 2 doubles the frequency. It’s
common in time series analysis to add multiple fourier orders (e.g. 1 through 5) to account for
seasonalities that occur faster than the primary seasonality.

Type (Sin/Cos)

The type of the fourier series can be either sin or cos. It’s common in time series analysis to add
both sin and cos series.

14 fourier_vec

Value

A numeric vector

See Also
Fourier Modeling Functions:

» step_fourier() - Recipe for tidymodels workflow

* tk_augment_fourier() - Adds many fourier series to a data. frame (tibble)
Additional Vector Functions:

¢ Fourier Series: fourier_vec()

¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()
* Loess Smoothing Transformation: smooth_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

library(tidyverse)
library(timetk)

options(max.print = 50)

date_sequence <- tk_make_timeseries("2016-01-01", "2016-01-31", by = "hour")

--- VECTOR ---
fourier_vec(date_sequence, period = 7 * 24, K = 1, type = "sin")
--- MUTATE ---

tibble(date = date_sequence) %>%
Add cosine series that oscilates at a 7-day period
mutate(
C1_7 = fourier_vec(date, period = 7*24, K = 1, type = "cos"),

C2_7 = fourier_vec(date, period = 7*24, K = 2, type = "cos")
) %%
Visualize
pivot_longer(cols = contains(”_"), names_to = "name”, values_to = "value") %>%

plot_time_series(
date, value, .color_var = name,
.smooth = FALSE,
.interactive = FALSE,
.title = "7-Day Fourier Terms"

future_frame 15

future_frame Make future time series from existing

Description

Make future time series from existing

Usage

future_frame(
.data,
.date_var,
.length_out,
.inspect_weekdays = FALSE,
.inspect_months = FALSE,
.skip_values = NULL,
.insert_values = NULL

)
Arguments
.data A data.frame or tibble
.date_var A date or date-time variable.
.length_out Number of future observations. Can be numeric number or a phrase like "1

year".
.inspect_weekdays

Uses a logistic regression algorithm to inspect whether certain weekdays (e.g.
weekends) should be excluded from the future dates. Default is FALSE.
.inspect_months

Uses a logistic regression algorithm to inspect whether certain days of months
(e.g. last two weeks of year or seasonal days) should be excluded from the future
dates. Default is FALSE.

.skip_values A vector of same class as idx of timeseries values to skip.

.insert_values A vector of same class as idx of timeseries values to insert.

Details

This is a wrapper for tk_make_future_timeseries() that works on data.frames. It respects dplyr
groups.

Specifying Length of Future Observations

The argument . length_out determines how many future index observations to compute. It can be
specified as:

16 future_frame

¢ A numeric value - the number of future observations to return.

— The number of observations returned is always equal to the value the user inputs.
— The end date can vary based on the number of timestamps chosen.

* A time-based phrase - The duration into the future to include (e.g. "6 months" or "30 min-
utes").

— The duration defines the end date for observations.

— The end date will not change and those timestamps that fall within the end date will be
returned (e.g. a quarterly time series will return 4 quarters if . length_out = "1 year").

— The number of observations will vary to fit within the end date.

Weekday and Month Inspection
The .inspect_weekdays and .inspect_months arguments apply to "daily" (scale = "day") data
(refer to tk_get_timeseries_summary() to get the index scale).

* The . inspect_weekdays argument is useful in determining missing days of the week that oc-
cur on a weekly frequency such as every week, every other week, and so on. It’s recommended
to have at least 60 days to use this option.

* The .inspect_months argument is useful in determining missing days of the month, quarter
or year; however, the algorithm can inadvertently select incorrect dates if the pattern is erratic.
Skipping / Inserting Values
The .skip_values and .insert_values arguments can be used to remove and add values into the
series of future times. The values must be the same format as the idx class.
* The .skip_values argument useful for passing holidays or special index values that should
be excluded from the future time series.

e The .insert_values argument is useful for adding values back that the algorithm may have
excluded.
Value

A tibble that has been extended with future date, date-time timestamps.

See Also

* Making Future Time Series: tk_make_future_timeseries() (Underlying function)

Examples

library(dplyr)
library(tidyquant)
library(timetk)

30-min interval data
taylor_30_min %>%
future_frame(date, .length_out = "1 week")

Daily Data (Grouped)
m4_daily %>%

is_date_class

group_by(id) %>%
future_frame(date, .length_out = "6 weeks")

Specify how many observations to project into the future
m4_daily %>%

group_by(id) %>%

future_frame(date, .length_out = 100)

Remove Non-Working Days (Weekends & Holidays)
holidays <- tk_make_holiday_sequence(
start_date = "2017-01-01",
end_date = "2017-12-31",
calendar = "NYSE")

FANG %>%
group_by(symbol) %>%
future_frame(.length_out "1 year"”,
.inspect_weekdays = TRUE,
.skip_values holidays)

is_date_class Check if an object is a date class

Description

Check if an object is a date class

Usage

is_date_class(x)

Arguments

X A vector to check

Value

Logical (TRUE/FALSE)
Examples
library(dplyr)
tk_make_timeseries("2011") %>% is_date_class()

letters %>% is_date_class()

18 lag_vec

lag_vec Lag Transformation

Description

lag_vec() applies a Lag Transformation.

Usage
lag_vec(x, lag = 1)

Arguments
X A numeric vector to be lagged.
lag Which lag (how far back) to be included in the differencing calculation. Nega-
tive lags are leads.
Details
Benefits:

This function is NA padded by default so it works well with dplyr::mutate() operations. The
function allows both lags and leads (negative lags).

Lag Calculation
A lag is an offset of 1ag periods. NA values are returned for the number of 1ag periods.
Lead Calculation

A negative lag is considered a lead.

Value

A numeric vector

See Also

Modeling and Advanced Lagging:

* recipes::step_lag() - Recipe for adding lags in tidymodels modeling
* tk_augment_lags() - Add many lags group-wise to a data.frame (tibble)

Vectorized Transformations:

¢ Box Cox Transformation: box_cox_vec()
* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

log_interval_vec 19

* Rolling Window Transformation: slidify_vec()
* Loess Smoothing Transformation: smooth_vec()
* Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

library(dplyr)
library(timetk)

--- VECTOR ----

Lag
1:10 %>% lag_vec(lag

D)
Lead

1:10 %>% lag_vec(lag = -1)
--- MUTATE ----
m4_daily %>%

group_by(id) %>%
mutate(lag_1 = lag_vec(value, lag = 1))

log_interval_vec Constrained Interval Transformation

Description

The log_interval_vec() transformation constrains a forecast to an interval specified by an upper_limit
and a lower_limit.

Usage

log_interval_vec(
X,
limit_lower "auto”,
limit_upper = "auto”,
offset = 0,
silent = FALSE

log_interval_inv_vec(x, limit_lower, limit_upper, offset = 0)

20

Arguments

X

limit_lower

limit_upper

offset

silent

Details

log_interval_vec

A positive numeric vector.

A lower limit. Must be less than the minimum value. If set to "auto", selects a
value that is 10% greater than the maximum value.

An upper limit. Must be greater than the maximum value. If set to "auto", selects
Zero.

An offset to include in the log transformation. Useful when the data contains
values less than or equal to zero.

Whether or not to report the parameter selections as a message.

Log Interval Transformation

The Log Interval Transformation constrains values to specified upper and lower limits. The trans-
formation maps limits to a function:

log(((x + offset) -a)/(b -(x + of fset)))

where a is the lower limit and b is the upper limit

Inverse Transformation

The inverse transformation:

(b-a)*(exp(x)) / (1 +exp(x)) +a -offset

References

» Forecasting: Principles & Practices: Forecasts constrained to an interval

See Also

¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

Rolling Window Transformation: slidify_vec()

* Loess Smoothing Transformation: smooth_vec()

e Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Other common transformations to reduce variance: 1log(), loglp() and sqrt()

Examples

library(dplyr)
library(timetk)

d10_daily <- m4_daily %>% filter(id == "D10")

--- VECTOR ----

https://otexts.com/fpp2/limits.html

m4_daily

21
value_interval <- log_interval_vec(d10_daily$value, limit_lower = @, limit_upper = 2700)
value <- log_interval_inv_vec(value_interval, limit_lower = @, limit_upper = 2700)

m4_daily Sample of 4 Daily Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The compe-
tition included 100,000 time series datasets. This dataset includes a sample of 4 daily time series
from the competition.

Usage

m4_daily

Format

A tibble: 9,743 x 3

 id Factor. Unique series identifier (4 total)
* date Date. Timestamp information. Daily format.

* value Numeric. Value at the corresponding timestamp

Details
This is a sample of 4 daily data sets from the M4 competition
Source
* M4 Competition Website

Examples

m4_daily

https://mofc.unic.ac.cy/m4/

22 m4_monthly

m4_hourly Sample of 4 Hourly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The compe-
tition included 100,000 time series datasets. This dataset includes a sample of 4 hourly time series
from the competition.

Usage
m4_hourly

Format
A tibble: 3,060 x 3

* id Factor. Unique series identifier (4 total)
* date Date-time. Timestamp information. Hourly format.

* value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 hourly data sets from the M4 competition.

Source

* M4 Competition Website

Examples

m4_hourly

m4_monthly Sample of 4 Monthly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The com-
petition included 100,000 time series datasets. This dataset includes a sample of 4 monthly time
series from the competition.

Usage
m4_monthly

https://mofc.unic.ac.cy/m4/

m4_quarterly 23

Format
A tibble: 9,743 x 3

 id Factor. Unique series identifier (4 total)
* date Date. Timestamp information. Monthly format.

* value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Monthly data sets from the M4 competition.

Source

* M4 Competition Website

Examples

m4_monthly

m4_quarterly Sample of 4 Quarterly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The com-
petition included 100,000 time series datasets. This dataset includes a sample of 4 quarterly time
series from the competition.

Usage

m4_quarterly

Format
A tibble: 9,743 x 3

* id Factor. Unique series identifier (4 total)
* date Date. Timestamp information. Quarterly format.

* value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Quarterly data sets from the M4 competition.

Source

* M4 Competition Website

https://mofc.unic.ac.cy/m4/
https://mofc.unic.ac.cy/m4/

24 m4_weekly

Examples

m4_quarterly

m4_weekly Sample of 4 Weekly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The com-
petition included 100,000 time series datasets. This dataset includes a sample of 4 weekly time
series from the competition.

Usage

m4_weekly

Format
A tibble: 9,743 x 3
* id Factor. Unique series identifier (4 total)

* date Date. Timestamp information. Weekly format.

* value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Weekly data sets from the M4 competition.

Source

* M4 Competition Website

Examples

m4_weekly

https://mofc.unic.ac.cy/m4/

m4_yearly 25

m4_yearly Sample of 4 Yearly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The compe-
tition included 100,000 time series datasets. This dataset includes a sample of 4 yearly time series
from the competition.

Usage

m4_yearly

Format

A tibble: 9,743 x 3

* id Factor. Unique series identifier (4 total)
* date Date. Timestamp information. Yearly format.

* value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Yearly data sets from the M4 competition.

Source

* M4 Competition Website

Examples

m4_yearly

mutate_by_time Mutate (for Time Series Data)

Description

mutate_by_time() is a time-based variant of the popular dplyr: :mutate() function that uses
.date_var to specify a date or date-time column and .by to group the calculation by groups like

non

"5 seconds", "week", or "3 months".

https://mofc.unic.ac.cy/m4/

26 mutate_by_time

Usage

mutate_by_time(
.data,
.date_var,
.by = "day”,

.type = c("floor”, "ceiling”, "round")

Arguments

.data A tbl object or data. frame

.date_var A column containing date or date-time values to summarize. If missing, attempts
to auto-detect date column.

.by A time unit to summarise by. Time units are collapsed using lubridate: : floor_date()
or lubridate::ceiling_date().
The value can be:

* second

* minute

* hour

e day

* week

* month

* bimonth

* quarter

* season

* halfyear

* year
Arbitrary unique English abbreviations as in the lubridate: :period() con-
structor are allowed.
Name-value pairs. The name gives the name of the column in the output.

The value can be:

* A vector of length 1, which will be recycled to the correct length.

* A vector the same length as the current group (or the whole data frame if
ungrouped).

¢ NULL, to remove the column.

* A data frame or tibble, to create multiple columns in the output.

.type One of "floor", "ceiling", or "round. Defaults to "floor". See lubridate: :round_date.

Value

A tibble or data.frame

normalize_vec 27

See Also
Time-Based dplyr functions:

* summarise_by_time() - Easily summarise using a date column.

* mutate_by_time() - Easily mutate using a date column.

e filter_by_time() - Quickly filter using date ranges.

* between_time() - Range detection for date or date-time sequences.

* pad_by_time() - Insert time series rows with regularly spaced timestamps

e slidify() - Turn any function into a sliding (rolling) function

Examples

Libraries
library(timetk)
library(dplyr)
library(tidyr)

First value in each month
m4_daily_first_by_month_tbl <- m4_daily %>%
group_by(id) %>%
mutate_by_time(
.date_var = date,

.by = "month"”, # Setup for monthly aggregation
mutate recycles a single value
first_value_by_month = first(value)

)
m4_daily_first_by_month_tbl

Visualize Time Series vs 1st Value Each Month
m4_daily_first_by_month_tbl %>%
pivot_longer(value:first_value_by_month) %>%
plot_time_series(date, value, name,
.facet_scale = "free"”, .facet_ncol = 2,
.smooth = FALSE, .interactive = FALSE)

normalize_vec Normalize to Range (0, 1)

Description

Normalization is commonly used to center and scale numeric features to prevent one from domi-
nating in algorithms that require data to be on the same scale.

Usage

normalize_vec(x, min = NULL, max = NULL, silent = FALSE)

normalize_inv_vec(x, min, max)

28 normalize_vec
Arguments
X A numeric vector.
min The population min value in the normalization process.
max The population max value in the normalization process.
silent Whether or not to report the automated min and max parameters as a message.
Details
Standardization vs Normalization
» Standardization refers to a transformation that reduces the range to mean 0, standard devia-
tion 1
* Normalization refers to a transformation that reduces the min-max range: (0, 1)
See Also
¢ Normalization/Standardization: standardize_vec(), normalize_vec()
¢ Box Cox Transformation: box_cox_vec()
¢ Lag Transformation: lag_vec()
* Differencing Transformation: diff_vec()
* Rolling Window Transformation: slidify_vec()
* Loess Smoothing Transformation: smooth_vec()
 Fourier Series: fourier_vec()
* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()
Examples
library(dplyr)
library(timetk)
d10_daily <- m4_daily %>% filter(id == "D10")
--- VECTOR ----
value_norm <- normalize_vec(d10_daily$value)
value <- normalize_inv_vec(value_norm,
min = 1781.6,
max = 2649.3)
--- MUTATE ----
m4_daily %>%

group_by(id) %>%
mutate(value_norm = normalize_vec(value))

pad_by_time 29

pad_by_time Insert time series rows with regularly spaced timestamps

Description

The easiest way to fill in missing timestamps or convert to a more granular period (e.g. quarter to
month). Wraps the padr: :pad() function for padding tibbles.

Usage

pad_by_time(

.data,

.date_var,

.by = "auto",
.pad_value = NA,
.start_date = NULL,
.end_date = NULL

)
Arguments
.data A tibble with a time-based column.
.date_var A column containing date or date-time values to pad
. by Either "auto", a time-based frequency like "year", "month", "day", "hour", etc,
or a time expression like "5 min", or "7 days". See Details.
.pad_value Fills in padded values. Default is NA.
.start_date Specifies the start of the padded series. If NULL it will use the lowest value of
the input variable.
.end_date Specifies the end of the padded series. If NULL it will use the highest value of
the input variable.
Details

Padding Missing Observations

The most common use case for pad_by_time() is to add rows where timestamps are missing. This
could be from sales data that have missing values on weekends and holidays. Or it could be high
frequency data where observations are irregularly spaced and should be reset to a regular frequency.

Going from Low to High Frequency

The second use case is going from a low frequency (e.g. day) to high frequency (e.g. hour). This is
possible by supplying a higher frequency to pad_by_time().

Interval, .by

Padding can be applied in the following ways:

* .by ="auto"” - pad_by_time() will detect the time-stamp frequency and apply padding.
* The eight intervals in are: year, quarter, month, week, day, hour, min, and sec.
* Intervals like 5 minutes, 6 hours, 10 days are possible.

30 pad_by_time

References

* This function wraps the padr: : pad() function developed by Edwin Thoen.

See Also
Imputation:
* ts_impute_vec() - Impute missing values for time series.
Additional Time-Based dplyr-style functions:

* summarise_by_time() - Easily summarise using a date column.

e filter_by_time() - Quickly filter using date ranges.

* between_time() - Range detection for date or date-time sequences.

* pad_by_time() - Insert time series rows with regularly spaced timestamps

* slidify() - Turn any function into a sliding (rolling) function

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

Create a quarterly series with 1 missing value

missing_data_tbl <- tibble(
date = tk_make_timeseries(”2014-01-01", "2015-01-01", by = "quarter”),
value = 1:5

) %>%
slice(-4) # Lose the 4th quarter on purpose

missing_data_tbl

Detects missing quarter, and pads the missing regularly spaced quarter with NA
missing_data_tbl %>% pad_by_time(date, .by = "quarter")

Can specify a shorter period. This fills monthly.
missing_data_tbl %>% pad_by_time(date, .by = "month")

Can let pad_by_time() auto-detect date and period
missing_data_tbl %>% pad_by_time()

Can specify a .pad_value
missing_data_tbl %>% pad_by_time(date, .by = "quarter"”, .pad_value = 0)

Can then impute missing values

missing_data_tbl %>%
pad_by_time(date, .by = "quarter") %>%
mutate(value = ts_impute_vec(value, period = 1))

Can specify a custom .start_date and .end_date
missing_data_tbl %>%

parse_date2 31

pad_by_time(date, .by = "quarter"”, .start_date = "2013", .end_date = "2015-07-01")

--- GROUPS ----

FANG %>%
group_by(symbol) %>%
pad_by_time(.by = "day")

parse_date2 Fast, flexible date and datetime parsing

Description

Significantly faster time series parsing than readr: :parse_date, readr: :parse_datetime, lubridate: :as_date(),
and lubridate::as_datetime(). Uses anytime package, which relies on Boost.Date_Time C++
library for date/datetime parsing.

Usage
parse_date2(x, ..., silent = FALSE)
parse_datetime2(x, tz = "UTC", tz_shift = FALSE, ..., silent = FALSE)
Arguments
X A character vector
Additional parameters passed to anytime() and anydate()
silent If TRUE, warns the user of parsing failures.
tz Datetime only. A timezone (see 01senNames()).
tz_shift Datetime only. If FALSE, forces the datetime into the time zone. If TRUE,
offsets the datetime from UTC to the new time zone.
Details

Parsing Formats
» Date Formats: Must follow a Year, Month, Day sequence. (e.g. parse_date2(”2011 June")
is OK, parse_date2("June 2011") is NOT OK).
* Date Time Formats: Must follow a YMD HMS sequence.

Refer to lubridate: :mdy() for Month, Day, Year and additional formats.
Time zones (Datetime)

Time zones are handled in a similar way to lubridate::as_datetime() in that time zones are
forced rather than shifted. This is a key difference between anytime: :anytime(), which shifts
datetimes to the specified timezone by default.

32

References

* This function wraps the anytime: :anytime() and anytime
by Dirk Eddelbuettel.

Examples

Fast date parsing
parse_date2("2011")
parse_date2(”2011 June 3rd")

Fast datetime parsing
parse_datetime2(”2011")
parse_datetime2(”2011 Jan 1 12:35:21")

Time Zones (datetime only)
parse_datetime2("”2011 Jan 1 12:35:21", tz = "GB")

plot_acf_diagnostics

: :anydate functions developed

plot_acf_diagnostics Visualize the ACF, PACF, and CCFs for One or More Time Series

Description

Returns the ACF and PACEF of a target and optionally CCF’s of one or more lagged predictors
in interactive plotly plots. Scales to multiple time series with group_by ().

Usage

plot_acf_diagnostics(
.data,
.date_var,
.value,
.ccf_vars = NULL,
.lags = 1000,
.show_ccf_vars_only = FALSE,
.show_white_noise_bars = FALSE,
.facet_ncol =1,
.facet_scales = "fixed",
.line_color = "#2c3e50",
.line_size = 0.5,
.line_alpha = 1,
.point_color = "#2c3e50",
.point_size = 1,
.point_alpha = 1,
.x_intercept = NULL,
.x_intercept_color = "#E31A1C",
.hline_color = "#2c3e50",

plot_acf_diagnostics 33

.white_noise_line_type = 2,
.white_noise_line_color = "#A6CEE3",
.title = "Lag Diagnostics”,

.x_lab = "Lag",

.y_lab = "Correlation”,

.interactive = TRUE,

.plotly_slider = FALSE

)
Arguments

.data A data frame or tibble with numeric features (values) in descending chronolog-
ical order

.date_var A column containing either date or date-time values

.value A numeric column with a value to have ACF and PACF calculations performed.

.ccf_vars Additional features to perform Lag Cross Correlations (CCFs) versus the . value.
Useful for evaluating external lagged regressors.

.lags A sequence of one or more lags to evaluate.

.show_ccf_vars_only

Hides the ACF and PACF plots so you can focus on only CCFs.
.show_white_noise_bars

Shows the white noise significance bounds.
.facet_ncol Facets: Number of facet columns. Has no effect if using grouped_df.
.facet_scales Facets: Options include "fixed", "free", "free_y", "free_x"
.line_color Line color. Use keyword: "scale_color" to change the color by the facet.
.line_size Line size
.line_alpha Line opacity. Adjust the transparency of the line. Range: (0, 1)
.point_color Point color. Use keyword: "scale_color" to change the color by the facet.
.point_size Point size
.point_alpha Opacity. Adjust the transparency of the points. Range: (0, 1)
.x_intercept Numeric lag. Adds a vertical line.
.X_intercept_color

Color for the x-intercept line.
.hline_color Color for the y-intercept = O line.
.white_noise_line_type

Line type for white noise bars. Set to 2 for "dashed" by default.
.white_noise_line_color

Line color for white noise bars. Set to tidyquant::palette_light() "steel
blue" by default.

.title Title for the plot

.x_lab X-axis label for the plot

.y_lab Y-axis label for the plot

.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
alization

.plotly_slider If TRUE, returns a plotly x-axis range slider.

34 plot_acf_diagnostics

Details
Simplified ACF, PACF, & CCF

We are often interested in all 3 of these functions. Why not get all 3+ at once? Now you can.

* ACF - Autocorrelation between a target variable and lagged versions of itself

* PACF - Partial Autocorrelation removes the dependence of lags on other lags highlighting key
seasonalities.

* CCF - Shows how lagged predictors can be used for prediction of a target variable.

Lag Specification
Lags (. lags) can either be specified as:

* A time-based phrase indicating a duraction (e.g. 2 months)
* A maximum lag (e.g. .1lags = 28)

* A sequence of lags (e.g. .lags =7:28)

Scales to Multiple Time Series with Groups

The plot_acf_diagnostics() works with grouped_df’s, meaning you can group your time series
by one or more categorical columns with dplyr: :group_by () and then apply plot_acf_diagnostics()
to return group-wise lag diagnostics.

Special Note on Groups

Unlike other plotting utilities, the . facet_vars arguments is NOT included. Use dplyr: :group_by ()
for processing multiple time series groups.

Calculating the White Noise Significance Bars

The formula for the significance bars is +2/sqrt(T) and -2/sqrt(T) where T is the length of the
time series. For a white noise time series, 95% of the data points should fall within this range.
Those that don’t may be significant autocorrelations.

Value

A static ggplot2 plot or an interactive plotly plot

See Also
¢ Visualizing ACF, PACF, & CCF: plot_acf_diagnostics()

* Visualizing Seasonality: plot_seasonal_diagnostics()

¢ Visualizing Time Series: plot_time_series()

Examples

library(tidyverse)
library(timetk)

Apply Transformations
- Differencing transformation to identify ARIMA & SARIMA Orders

plot_anomaly_diagnostics

m4_hourly %>%
group_by(id) %>%
plot_acf_diagnostics(
date, value, # ACF & PACF
.lags = "7 days”, # 7-Days of hourly lags
.interactive = FALSE
)

Apply Transformations

- Differencing transformation to identify ARIMA & SARIMA Orders

m4_hourly %>%
group_by(id) %>%
plot_acf_diagnostics(

date,
diff_vec(value, lag = 1), # Difference the value column
.lags = 0:(24%7), # 7-Days of hourly lags

.interactive = FALSE
) +
ggtitle("ACF Diagnostics”, subtitle = "1st Difference"”)

CCFs Too!

walmart_sales_weekly %>%
select(id, Date, Weekly_Sales, Temperature, Fuel_Price) %>%
group_by(id) %>%
plot_acf_diagnostics(

Date, Weekly_Sales, # ACF & PACF
.ccf_vars = c(Temperature, Fuel_Price), # CCFs
.lags = "3 months”, # 3 months of weekly lags

.interactive = FALSE

35

plot_anomaly_diagnostics

Visualize Anomalies for One or More Time Series

Description

An interactive and scalable function for visualizing anomalies in time series data. Plots are available

in interactive plotly (default) and static ggplot2 format.

Usage

plot_anomaly_diagnostics(
.data,
.date_var,
.value,
.facet_vars = NULL,
.frequency = "auto”,

36 plot_anomaly_diagnostics

.trend = "auto”,

.alpha = 0.05,
.max_anomalies = 0.2,
.message = TRUE,
.facet_ncol =1,
.facet_scales = "free",
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha =1
.anom_color ="
.anom_alpha 1,
.anom_size = 1.5,
.ribbon_fill = "grey20",
.ribbon_alpha = 0.2,
.legend_show = TRUE,

e3lalc”,

.title = "Anomaly Diagnostics”,
.x_lab = "",
.y_lab = "",
.color_lab = "Anomaly”,
.interactive = TRUE
)
Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can
be selected using tidyselect() helpers (e.g contains()).

.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to tk_get_frequency().

.trend Controls the trend component. For STL, trend controls the sensitivity of the
LOESS smoother, which is used to remove the remainder. Refer to tk_get_trend().

.alpha Controls the width of the "normal" range. Lower values are more conservative
while higher values are less prone to incorrectly classifying "normal" observa-
tions.

.max_anomalies The maximum percent of anomalies permitted to be identified.

.message A boolean. If TRUE, will output information related to automatic frequency and
trend selection (if applicable).

.facet_ncol Number of facet columns.

.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
"free_x"

.line_color Line color.

.line_size
.line_type
.line_alpha
.anom_color
.anom_alpha
.anom_size
.ribbon_fill
.ribbon_alpha
.legend_show
.title
.x_lab
.y_lab
.color_lab

.interactive

Details

plot_anomaly_diagnostics 37

Line size.

Line type.

Line alpha (opacity). Range: (0, 1).

Color for the anomaly dots

Opacity for the anomaly dots. Range: (0, 1).
Size for the anomaly dots

Fill color for the acceptable range

Fill opacity for the acceptable range. Range: (0, 1).
Toggles on/off the Legend

Plot title.

Plot x-axis label

Plot y-axis label

Plot label for the color legend

If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
plot.

The plot_anomaly_diagnostics() is a visualtion wrapper for tk_anomaly_diagnostics() group-
wise anomaly detection, implements a 2-step process to detect outliers in time series.

Step 1: Detrend & Remove Seasonality using STL Decomposition

The decomposition separates the "season" and "trend" components from the "observed" values leav-
ing the "remainder” for anomaly detection.

The user can control two parameters: frequency and trend.

1. .frequency: Adjusts the "season" component that is removed from the "observed" values.

2. .trend: Adjusts the trend window (t.window parameter from stats: :stl() that is used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or
numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the
scale of the time series using the tk_time_scale_template().

Step 2: Anomaly Detection

Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "re-
mainder". Anomalies are identified, and boundaries (recomposed_I1 and recomposed_12) are de-

termined.

The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.

IOR Adjustment, alpha parameter

With the default alpha = @.05, the limits are established by expanding the 25/75 baseline by an
IQR Factor of 3 (3X). The IQR Factor = 0.15 / alpha (hence 3X with alpha = 0.05):

* To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more
difficult to be an outlier.

* Increase alpha to make it easier to be an outlier.

38 plot_seasonal_diagnostics

¢ The IQR outlier detection method is used in forecast: : tsoutliers().
* A similar outlier detection method is used by Twitter’s AnomalyDetection package.

* Both Twitter and Forecast tsoutliers methods have been implemented in Business Science’s
anomalize package.

Value

A plotly or ggplot?2 visualization

References

1. CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E., AND TERPENNING, I. STL: A
Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, Vol.
6, No. 1 (1990), pp. 3-73.

2. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). A Novel Technique for
Long-Term Anomaly Detection in the Cloud. Twitter Inc.

See Also

e tk_anomaly_diagnostics(): Group-wise anomaly detection

Examples

library(tidyverse)
library(timetk)

walmart_sales_weekly %>%
group_by(id) %>%
plot_anomaly_diagnostics(Date, Weekly_Sales,
.message = FALSE,
.facet_ncol = 3,
.ribbon_alpha = 0.25,
.interactive = FALSE)

plot_seasonal_diagnostics
Visualize Multiple Seasonality Features for One or More Time Series

Description

An interactive and scalable function for visualizing time series seasonality. Plots are available in
interactive plotly (default) and static ggplot2 format.

plot_seasonal_diagnostics 39

Usage
plot_seasonal_diagnostics(
.data,
.date_var,
.value,
.facet_vars = NULL,
.feature_set = "auto",
.geom = c("boxplot”, "violin"),
.geom_color = "#2c3e50",
.geom_outlier_color = "#2c3e50",
.title = "Seasonal Diagnostics”,
.x_lab = "",
.y_lab = "",
.interactive = TRUE
)
Arguments
.data A tibble or data.frame with a time-based column
.date_var A column containing either date or date-time values
.value A column containing numeric values
.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can

be selected using tidyselect() helpers (e.g contains()).
.feature_set One or multiple selections to analyze for seasonality. Choices include:
* "auto" - Automatically selects features based on the time stamps and length
of the series.
* "second" - Good for analyzing seasonality by second of each minute.
* "minute" - Good for analyzing seasonality by minute of the hour
* "hour" - Good for analyzing seasonality by hour of the day

* "wday.lbl" - Labeled weekdays. Good for analyzing seasonality by day of
the week.

* "week" - Good for analyzing seasonality by week of the year.

* "month.lbl" - Labeled months. Good for analyzing seasonality by month of
the year.

* "quarter" - Good for analyzing seasonality by quarter of the year
* "year" - Good for analyzing seasonality over multiple years.

.geom Either "boxplot" or "violin"
.geom_color Geometry color. Line color. Use keyword: "scale_color" to change the color by
the facet.

.geom_outlier_color
Color used to highlight outliers.

.title Plot title.
.x_lab Plot x-axis label
.y_lab Plot y-axis label

.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
plot.

40 plot_seasonal_diagnostics

Details

Automatic Feature Selection
Internal calculations are performed to detect a sub-range of features to include useing the following
logic:
* The minimum feature is selected based on the median difference between consecutive times-
tamps
* The maximum feature is selected based on having 2 full periods.
Example: Hourly timestamp data that lasts more than 2 weeks will have the following features:
"hour", "wday.lbl", and "week".
Scalable with Grouped Data Frames
This function respects grouped data. frame and tibbles that were made with dplyr: :group_by().

For grouped data, the automatic feature selection returned is a collection of all features within the
sub-groups. This means extra features are returned even though they may be meaningless for some
of the groups.

Transformations

The . value parameter respects transformations (e.g. .value = log(sales)).

Value

A plotly or ggplot?2 visualization

Examples

library(dplyr)
library(timetk)

---- MULTIPLE FREQUENCY ----
Taylor 30-minute dataset from forecast package
taylor_30_min

Visualize series
taylor_30_min %>%
plot_time_series(date, value, .interactive = FALSE)

Visualize seasonality
taylor_30_min %>%
plot_seasonal_diagnostics(date, value, .interactive = FALSE)

---- GROUPED EXAMPLES ----
m4 hourly dataset
m4_hourly

Visualize series
m4_hourly %>%
group_by(id) %>%
plot_time_series(date, value, .facet_scales = "free", .interactive = FALSE)

plot_stl_diagnostics 41

Visualize seasonality
m4_hourly %>%
group_by(id) %>%
plot_seasonal_diagnostics(date, value, .interactive = FALSE)

plot_stl_diagnostics Visualize STL Decomposition Features for One or More Time Series

Description

An interactive and scalable function for visualizing time series STL Decomposition. Plots are
available in interactive plotly (default) and static ggplot2 format.

Usage

plot_stl_diagnostics(
.data,
.date_var,
.value,
.facet_vars = NULL,
.feature_set = c("observed”, "season", "trend”, "remainder”, "seasadj"),
.frequency = "auto”,
.trend = "auto”,
.message = TRUE,
.facet_scales = "free",
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.title = "STL Diagnostics”,

.x_lab = "",
. y_lab — nn ,
.interactive = TRUE
)
Arguments
.data A tibble or data.frame with a time-based column
.date_var A column containing either date or date-time values
.value A column containing numeric values
.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can

be selected using tidyselect() helpers (e.g contains()).

.feature_set The STL decompositions to visualize. Select one or more of "observed", "sea-

non non

son", "trend", "remainder", "seasad;j".

42

plot_stl_diagnostics

.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to tk_get_frequency().

.trend Controls the trend component. For STL, trend controls the sensitivity of the
lowess smoother, which is used to remove the remainder.

.message A boolean. If TRUE, will output information related to automatic frequency and

.facet_scales

trend selection (if applicable).

Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",

"free_x"

.line_color Line color.

.line_size Line size.

.line_type Line type.

.line_alpha Line alpha (opacity). Range: (0, 1).

.title Plot title.

.x_lab Plot x-axis label

.y_lab Plot y-axis label

.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
plot.

Details

The plot_stl_diagnostics() function generates a Seasonal-Trend-Loess decomposition. The
function is "tidy" in the sense that it works on data frames and is designed to work with dplyr
groups.

STL method:

The STL method implements time series decomposition using the underlying stats::st1(). The
decomposition separates the "season" and "trend" components from the "observed" values leaving
the "remainder".

Frequency & Trend Selection
The user can control two parameters: . frequency and . trend.
1. The .frequency parameter adjusts the "season” component that is removed from the "ob-
served" values.
2. The .trend parameter adjusts the trend window (t.window parameter from st1()) that is

used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or
numeric values (e.g. 180) or "auto", which automatically selects the frequency and/or trend based
on the scale of the time series.

Value

A plotly or ggplot?2 visualization

plot_time_series 43

Examples

library(tidyverse)
library(timetk)

---- SINGLE TIME SERIES DECOMPOSITION ----
m4_hourly %>%
filter(id == "H10") %>%
plot_stl_diagnostics(
date, value,
Set features to return, desired frequency and trend

.feature_set = c("observed”, "season”, "trend”, "remainder"),
frequency = "24 hours”

. ’

.trend = "1 week”,

.interactive = FALSE)

---- GROUPS ----
m4_hourly %>%
group_by(id) %>%
plot_stl_diagnostics(
date, value,

.feature_set = c("observed”, "season”, "trend"),
.interactive = FALSE)
plot_time_series Interactive Plotting for One or More Time Series

Description

A workhorse time-series plotting function that generates interactive plotly plots, consolidates 20+
lines of ggplot2 code, and scales well to many time series.

Usage

plot_time_series(
.data,
.date_var,
.value,
.color_var = NULL,
.facet_vars = NULL,
.facet_ncol =1,
.facet_scales = "free_y",
.facet_collapse = TRUE,
.facet_collapse_sep = " ",
.line_color = "#2c3e50",

44

plot_time_series

.line_size
.line_type =1,

.line_alpha = 1,

.y_intercept = NULL,
.y_intercept_color = "#2c3e50",
.smooth = TRUE,

.smooth_period = "auto",
.smooth_message = FALSE,
.smooth_span = NULL,

0.5,

.smooth_degr
.smooth_colo

.smooth_size =

.smooth_alph
.legend_show
.title = "Ti

— nn

.x_lab = R
.y_lab = "",
.color_lab =
.interactive

.plotly_slid

Arguments

.data
.date_var
.value
.color_var

.facet_vars

.facet_ncol

.facet_scales

.facet_collaps

.facet_collaps

.line_color
.line_size
.line_type
.line_alpha

.y_intercept
.y_intercept_c

ee
r =

2,
"#3366FF",
1,
a=1,

TRUE,
me Series Plot",

"Legend”,
TRUE,
er = FALSE

A tibble or data. frame with a time-based column

A column containing either date or date-time values

A column containing numeric values

A categorical column that can be used to change the line color

One or more grouping columns that broken out into ggplot2 facets. These can
be selected using tidyselect() helpers (e.g contains()).

Number of facet columns.

Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",

"free_x"
e
Multiple facets included on one facet strip instead of multiple facet strips.

e_sep
The separator used for collapsing facets.

Line color. Overrided if . color_var is specified.
Line size.

Line type.

Line alpha (opacity). Range: (0, 1).

Value for a y-intercept on the plot

olor
Color for the y-intercept

plot_time_series 45

.smooth Logical - Whether or not to include a trendline smoother. Uses See smooth_vec()
to apply a LOESS smoother.

.smooth_period Number of observations to include in the Loess Smoother. Set to "auto" by
default, which uses tk_get_trend() to determine a logical trend cycle.
.smooth_message
Logical. Whether or not to return the trend selected as a message. Useful for
those that want to see what . smooth_period was selected.

.smooth_span Percentage of observations to include in the Loess Smoother. You can use either
period or span. See smooth_vec().

.smooth_degree Flexibility of Loess Polynomial. Either 0, 1, 2 (0 = lest flexible, 2 = more
flexible).

.smooth_color Smoother line color

.smooth_size Smoother line size

.smooth_alpha Smoother alpha (opacity). Range: (0, 1).
.legend_show Toggles on/off the Legend

.title Title for the plot

.x_lab X-axis label for the plot

.y_lab Y-axis label for the plot

.color_lab Legend label if a color_var is used.

.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
alization

.plotly_slider If TRUE, returns a plotly date range slider.

Details
plot_time_series() is a scalable function that works with both ungrouped and grouped data.frame
objects (and tibbles!).
Interactive by Default

plot_time_series() is built for exploration using:

* Interactive Plots: plotly (default) - Great for exploring!
* Static Plots: ggplot2 (set . interactive = FALSE) - Great for PDF Reports

By default, an interactive plotly visualization is returned.
Scalable with Facets & Dplyr Groups

plot_time_series() returns multiple time series plots using ggplot2 facets:

e group_by() - If groups are detected, multiple facets are returned
* plot_time_series(.facet_vars) - You can manually supply facets as well.

Can Transform Values just like ggplot

The .values argument accepts transformations just like ggplot2. For example, if you want to
take the log of sales you can use a call like plot_time_series(date,log(sales)) and the log
transformation will be applied.

Smoother Period / Span Calculation

The . smooth = TRUE option returns a smoother that is calculated based on either:

46 plot_time_series

1. A .smooth_period: Number of observations

2. A .smooth_span: A percentage of observations

By default, the . smooth_period is automatically calculated using 75% of the observertions. This
is the same as geom_smooth(method = "1oess”, span =0.75).

A user can specify a time-based window (e.g. .smooth_period = "1 year"”) or a numeric value
(e.g. smooth_period = 365).

Time-based windows return the median number of observations in a window using tk_get_trend().

Value

A static ggplot2 plot or an interactive plotly plot

Examples

library(tidyverse)
library(tidyquant)
library(lubridate)
library(timetk)

Works with individual time series
FANG %>%
filter(symbol == "FB") %>%
plot_time_series(date, adjusted, .interactive = FALSE)

Works with groups
FANG %>%
group_by(symbol) %>%
plot_time_series(date, adjusted,
.facet_ncol = 2, # 2-column layout
.interactive = FALSE)

Can also group inside & use .color_var
FANG %>%
mutate(year = year(date)) %>%
plot_time_series(date, adjusted,

.facet_vars = c(symbol, year), # add groups/facets
.color_var = year, # color by year
.facet_ncol = 4,

.facet_scales = "free",

.interactive = FALSE)

Can apply transformations to .value or .color_var

- .value = log(adjusted)

- .color_var = year(date)

FANG %>%

plot_time_series(date, log(adjusted),

.color_var = year(date),
.facet_vars = contains("symbol"),
.facet_ncol = 2,

plot_time_series_cv_plan 47

.facet_scales = "free”,
.y_lab "Log Scale”,
.interactive = FALSE)

plot_time_series_cv_plan
Visualize a Time Series Resample Plan

Description

The plot_time_series_cv_plan() function provides a visualization for a time series resample
specification (rset) of either rolling_origin or time_series_cv class.

Usage

plot_time_series_cv_plan(
.data,
.date_var,
.value,

L

.smooth = FALSE,

.title = "Time Series Cross Validation Plan”
)
Arguments
.data A time series resample specification of of either rolling_originor time_series_cv
class or a data frame (tibble) that has been prepared using tk_time_series_cv_plan().
.date_var A column containing either date or date-time values
.value A column containing numeric values
Additional parameters passed to plot_time_series()
.smooth Logical - Whether or not to include a trendline smoother. Uses See smooth_vec()
to apply a LOESS smoother.
.title Title for the plot
Details

Resample Set

A resample set is an output of the timetk: : time_series_cv() function or the rsample: :rolling_origin()
function.

48 plot_time_series_regression

See Also

e time_series_cv() and rsample::rolling_origin() - Functions used to create time series
resample specfications.

* plot_time_series_cv_plan() - The plotting function used for visualizing the time series
resample plan.

Examples

library(tidyverse)
library(tidyquant)
library(rsample)
library(timetk)

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

resample_spec <- time_series_cv(

FB_tbl,

initial = "1 year”,
assess = "6 weeks",
skip = "3 months”,
lag = "1 month",

cumulative = FALSE,
slice_limit = 6

)
resample_spec %>% tk_time_series_cv_plan()

resample_spec %>%

tk_time_series_cv_plan() %>%

plot_time_series_cv_plan(
date, adjusted, # date variable and value variable
Additional arguments passed to plot_time_series(),
.facet_ncol = 2,
.line_alpha = 0.5,
.interactive = FALSE

plot_time_series_regression
Visualize a Time Series Linear Regression Formula

Description

A wrapper for stats: : 1Im() that overlays a linear regression fitted model over a time series, which
can help show the effect of feature engineering

plot_time_series_regression 49

Usage

plot_time_series_regression(
.data,
.date_var,
.formula,
.show_summary = FALSE,

Arguments
.data A tibble or data.frame with a time-based column
.date_var A column containing either date or date-time values
.formula A linear regression formula. The left-hand side of the formula is used as the

y-axis value. The right-hand side of the formula is used to develop the linear
regression model. See stats::1m() for details.

.show_summary If TRUE, prints the summary.1m(). Only available for non-grouped data.

Additional arguments passed to plot_time_series()

Details

plot_time_series_regression() is a scalable function that works with both ungrouped and
grouped data. frame objects (and tibbles!).

Time Series Formula
The . formula uses stats::1m() to apply a linear regression, which is used to visualize the effect
of feature engineering on a time series.

* The left-hand side of the formula is used as the y-axis value.

* The right-hand side of the formula is used to develop the linear regression model.

Interactive by Default

plot_time_series_regression() is built for exploration using:

* Interactive Plots: plotly (default) - Great for exploring!
* Static Plots: ggplot2 (set . interactive = FALSE) - Great for PDF Reports

By default, an interactive plotly visualization is returned.
Scalable with Facets & Dplyr Groups

plot_time_series_regression() returns multiple time series plots using ggplot2 facets:

* group_by() - If groups are detected, multiple facets are returned

* plot_time_series_regression(.facet_vars) - You can manually supply facets as well.

Value

A static ggplot2 plot or an interactive plotly plot

50 set_tk_time_scale_template

Examples
library(dplyr)
library(lubridate)
---- SINGLE SERIES ----
m4_monthly %>%
filter(id == "M750") %>%
plot_time_series_regression(
.date_var = date,
.formula = log(value) ~ as.numeric(date) + month(date, label = TRUE),
.show_summary = TRUE,
.facet_ncol = 2,
.interactive = FALSE
)
---- GROUPED SERIES ----

m4_monthly %>%
group_by(id) %>%
plot_time_series_regression(

.date_var = date,
.formula = log(value) ~ as.numeric(date) + month(date, label = TRUE),
.facet_ncol = 2,

.interactive = FALSE

set_tk_time_scale_template
Get and modify the Time Scale Template

Description

Get and modify the Time Scale Template
Usage
set_tk_time_scale_template(.data)
get_tk_time_scale_template()
tk_time_scale_template()

Arguments

.data A tibble with a "time_scale", "frequency", and "trend" columns.

slidify 51

Details

Used to get and set the time scale template, which is used by tk_get_frequency() and tk_get_trend()
when period = "auto”.

The predefined template is stored in a function tk_time_scale_template(). This is the default
used by timetk.

Changing the Default Template

* You can access the current template with get_tk_time_scale_template().

* You can modify the current template with set_tk_time_scale_template().

See Also

* Automated Frequency and Trend Calculation: tk_get_frequency(), tk_get_trend()

Examples

get_tk_time_scale_template()

set_tk_time_scale_template(tk_time_scale_template())

slidify Create a rolling (sliding) version of any function

Description

slidify returns a rolling (sliding) version of the input function, with a rolling (sliding) .period
specified by the user.

Usage
slidify(
.f,
.period = 1,
.align = c("center”, "left", "right"),
.partial = FALSE,
.unlist = TRUE
)
Arguments
f A function, formula, or vector (not necessarily atomic).

If a function, it is used as is.

If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

52 slidify

* For a single argument function, use .
* For a two argument function, use .x and .y
* For more arguments, use . .1, ..2, ..3etc

This syntax allows you to create very compact anonymous functions.

If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

.period The period size to roll over
.align One of "center", "left" or "right".
.partial Should the moving window be allowed to return partial (incomplete) windows

instead of NA values. Set to FALSE by default, but can be switched to TRUE to
remove NA’s.

.unlist If the function returns a single value each time it is called, use .unlist = TRUE.
If the function returns more than one value, or a more complicated object (like a
linear model), use .unlist = FALSE to create a list-column of the rolling results.

Details
The s1idify() function is almost identical to tibbletime: :rollify() with 3 improvements:

1. Alignment ("center", "left", "right")
2. Partial windows are allowed
3. Uses slider under the hood, which improves speed and reliability by implementing code at
C++ level
Make any function a Sliding (Rolling) Function

slidify() turns a function into a sliding version of itself for use inside of a call to dplyr: :mutate(),
however it works equally as well when called from purrr: :map().

Because of it’s intended use with dplyr: :mutate(), slidify creates a function that always returns
output with the same length of the input

Alignment
Rolling / Sliding functions generate .period -1 fewer values than the incoming vector. Thus, the
vector needs to be aligned. Alignment of the vector follows 3 types:

* center (default): NA or .partial values are divided and added to the beginning and end of
the series to "Center" the moving average. This is common in Time Series applications (e.g.
denoising).

e left: NA or .partial values are added to the end to shift the series to the Left.
* right: NA or .partial values are added to the beginning to shift the series to the Right. This
is common in Financial Applications (e.g moving average cross-overs).
Allowing Partial Windows

A key improvement over tibbletime: :slidify() isthat timetk: :slidify() implements .partial
rolling windows. Just set . partial = TRUE.

slidify 53

References
» The Tibbletime R Package by Davis Vaughan, which includes the original rollify() Func-
tion
See Also

Transformation Functions:

* slidify_vec() - A simple vectorized function for applying summary functions to rolling
windows.

Augmentation Functions (Add Rolling Multiple Columns):
* tk_augment_slidify() - For easily adding multiple rolling windows to you data
Slider R Package:

e slider::pslide() - The workhorse function that powers timetk: :slidify()

Examples

library(tidyverse)
library(tidyquant)
library(tidyr)
library(timetk)

FB <- FANG %>% filter(symbol == "FB")

--- ROLLING MEAN (SINGLE ARG EXAMPLE) ---

Turn the normal mean function into a rolling mean with a 5 row .period
mean_roll_5 <- slidify(mean, .period =5, .align = "right")

FB %>%
mutate(rolling_mean_5 = mean_roll_5(adjusted))

Use ‘partial = TRUE® to allow partial windows (those with less than the full .period)
mean_roll_5_partial <- slidify(mean, .period = 5, .align = "right”, .partial = TRUE)

FB %>%
mutate(rolling_mean_5 = mean_roll_5_partial(adjusted))

There's nothing stopping you from combining multiple rolling functions with
different .period sizes in the same mutate call

mean_roll_10 <- slidify(mean, .period = 10, .align = "right")

FB %>%
select(symbol, date, adjusted) %>%
mutate(
rolling_mean_5 mean_roll_5(adjusted),
rolling_mean_10 = mean_roll_10(adjusted)

https://business-science.github.io/tibbletime/index.html

54

)

For summary operations like rolling means, we can accomplish large-scale

multi-rolls with tk_augment_slidify()

FB %>%
select(symbol, date, adjusted) %>%
tk_augment_slidify(
adjusted, .period = 5:10, .f = mean, .align = "right",
.names = str_c("MA_", 5:10)

--- GROUPS AND ROLLING ----

One of the most powerful things about this is that it works with
groups since ‘mutate‘ is being used
data(FANG)

mean_roll_3 <- slidify(mean, .period = 3, .align = "right")

FANG %>%
group_by(symbol) %>%
mutate(mean_roll = mean_roll_3(adjusted)) %>%
slice(1:5)

--- ROLLING CORRELATION (MULTIPLE ARG EXAMPLE) ---

With 2 args, use the purrr syntax of ~ and .x, .y
Rolling correlation example
cor_roll <- slidify(~cor(.x, .y), .period = 5, .align = "right")

FB %>%
mutate(running_cor = cor_roll(adjusted, open))

With >2 args, create an anonymous function with >2 args or use
the purrr convention of ..1, ..2, ..3 to refer to the arguments
avg_of_avgs <- slidify(

function(x, y, z) (mean(x) + mean(y) + mean(z)) / 3,

.period = 10,

.align = "right”

Or
avg_of_avgs <- slidify(
~(mean(..1) + mean(..2) + mean(..3)) / 3,

.period = 10,
.align = "right"”
)
FB %>%

mutate(avg_of_avgs = avg_of_avgs(open, high, low))

slidify

slidify_vec

Optional arguments MUST be passed at the creation of the rolling function
Only data arguments that are "rolled over"” are allowed when calling the
rolling version of the function

FB$adjusted[1] <- NA

roll_mean_na_rm <- slidify(~mean(.x, na.rm = TRUE), .period = 5, .align = "right")

FB %>%
mutate(roll_mean = roll_mean_na_rm(adjusted))

—--- ROLLING REGRESSIONS ----

Rolling regressions are easy to implement using ‘.unlist = FALSE"
Im_roll <- slidify(~Im(.x ~ .y), .period = 90, .unlist = FALSE, .align = "right")

FB %>%
drop_na() %>%
mutate(numeric_date = as.numeric(date)) %>%
mutate(rolling_lm = 1m_roll(adjusted, numeric_date)) %>%
filter(!is.na(rolling_1m))

55

slidify_vec Rolling Window Transformation

Description

slidify_vec() applies a summary function to a rolling sequence of windows.

Usage
slidify_vec(
X,
.f,
.period = 1,
.align = c("center”, "left", "right"),
.partial = FALSE
)
Arguments

A vector to have a rolling window transformation applied.

f A summary [function / formula]

56 slidify_vec

* If a function, e.g. mean, the function is used with any additional arguments,

 If aformula, e.g. ~mean(.,na.rm=TRUE), it is converted to a function.
This syntax allows you to create very compact anonymous functions.

Additional arguments passed on to the . f function.

.period The number of periods to include in the local rolling window. This is effectively
the "window size".

.align One of "center", "left" or "right".

.partial Should the moving window be allowed to return partial (incomplete) windows

instead of NA values. Set to FALSE by default, but can be switched to TRUE to
remove NA’s.

Details

The slidify_vec() function is a wrapper for slider::slide_vec() with parameters simplified

non

"center", "left", "right" alignment.
Vector Length In == Vector Length Out

NA values or .partial values are always returned to ensure the length of the return vector is the
same length of the incoming vector. This ensures easier use with dplyr: :mutate().

Alignment
Rolling functions generate .period -1 fewer values than the incoming vector. Thus, the vector

needs to be aligned. Alignment of the vector follows 3 types:

* Center: NA or .partial values are divided and added to the beginning and end of the se-
ries to "Center" the moving average. This is common for de-noising operations. See also
[smooth_vec()] for LOESS without NA values.

e Left: NA or .partial values are added to the end to shift the series to the Left.

* Right: NA or .partial values are added to the beginning to shif the series to the Right. This
is common in Financial Applications such as moving average cross-overs.

Partial Values

* The advantage to using .partial values vs NA padding is that the series can be filled (good
for time-series de-noising operations).

* The downside to partial values is that the partials can become less stable at the regions where
incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is smooth_vec(),

which implements local polynomial regression.

Value

A numeric vector

References

e Slider R Package by Davis Vaughan

https://davisvaughan.github.io/slider/

slidify_vec 57

See Also
Modeling and More Complex Rolling Operations:

* step_slidify() - Roll apply for tidymodels modeling
* tk_augment_slidify() - Add many rolling columns group-wise

* slidify() - Turn any function into a rolling function. Great for rolling cor, rolling regression,
etc.

» For more complex rolling operations, check out the slider R package.
Vectorized Transformation Functions:

¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()
* Loess Smoothing Transformation: smooth_vec()
¢ Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec()

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

Training Data

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

---- FUNCTION FORMAT ----
- The *.f = mean® function is used. Argument ‘na.rm = TRUE' is passed as ...
FB_tbl %>%

mutate(adjusted_30_ma = slidify_vec(

X = adjusted,
.period = 30,

f = mean,

na.rm = TRUE,

.align = "center")) %>%

ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_30_ma), color = "blue")

---- FORMULA FORMAT ----
- Anonymous function *.f = ~ mean(., na.rm = TRUE)"‘ is used
FB_tbl %>%
mutate(adjusted_30_ma = slidify_vec(
X = adjusted,
.period = 30,

58 smooth_vec

f = ~ mean(., na.rm = TRUE),

.align = "center")) %>%

ggplot(aes(date, adjusted)) +

geom_line() +

geom_line(aes(y = adjusted_30_ma), color = "blue")

---- PARTIAL VALUES ----
- set ‘.partial = TRUE®
FB_tbl %>%
mutate(adjusted_30_ma = slidify_vec(

X = adjusted,

f = ~ mean(., na.rm = TRUE),
.period = 30,

.align = "center”,

.partial = TRUE)) %>%

ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_30_ma), color = "blue")

---- Loess vs Moving Average ----
- Loess: Using “.degree = @' to make less flexible. Comperable to a moving average.

FB_tbl %>%
mutate(
adjusted_loess_30 = smooth_vec(adjusted, period = 30, degree = 0),
adjusted_ma_30 slidify_vec(adjusted, .f = AVERAGE,
.period = 30, .partial = TRUE)

) %%
ggplot(aes(date, adjusted)) +
geom_line() +

geom_line(aes(y = adjusted_loess_30), color = "red"”) +
geom_line(aes(y = adjusted_ma_30), color = "blue") +
labs(title = "Loess vs Moving Average")
smooth_vec Smoothing Transformation using Loess
Description

smooth_vec() applies a LOESS transformation to a numeric vector.

Usage

smooth_vec(x, period = 30, span = NULL, degree = 2)

smooth_vec 59

Arguments
X A numeric vector to have a smoothing transformation applied.
period The number of periods to include in the local smoothing. Similar to window
size for a moving average. See details for an explanation period vs span spec-
ification.
span The span is a percentage of data to be included in the smoothing window. Pe-
riod is preferred for shorter windows to fix the window size. See details for an
explanation period vs span specification.
degree The degree of the polynomials to be used. Accetable values (least to most flexi-
ble): 0, 1, 2. Set to 2 by default for 2nd order polynomial (most flexible).
Details
Benefits:

* When using period, the effect is similar to a moving average without creating missing
values.

* When using span, the effect is to detect the trend in a series using a percentage of the total
number of observations.
Loess Smoother Algorithm This function is a simplified wrapper for the stats::loess() with a
modification to set a fixed period rather than a percentage of data points via a span.

Why Period vs Span? The period is fixed whereas the span changes as the number of observations
change.

When to use Period? The effect of using a period is similar to a Moving Average where the
Window Size is the Fixed Period. This helps when you are trying to smooth local trends. If you
want a 30-day moving average, specify period = 30.

When to use Span? Span is easier to specify when you want a Long-Term Trendline where the
window size is unknown. You can specify span = @.75 to locally regress using a window of 75%
of the data.

Value

A numeric vector

See Also
Loess Modeling Functions:
e step_smooth() - Recipe for tidymodels workflow
Additional Vector Functions:

¢ Box Cox Transformation: box_cox_vec()
* Lag Transformation: lag_vec()
* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()

60

* Loess Smoothing Transformation: smooth_vec()

e Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec()

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

Training Data
FB_tbl <- FANG %>%

filter(symbol == "FB") %>%
select(symbol, date, adjusted)

---- PERIOD ----

FB_tbl %>%

mutate(adjusted_30 = smooth_vec(adjusted, period = 30, degree

ggplot(aes(date, adjusted)) +

geom_line() +

geom_line(aes(y = adjusted_30), color = "red")

---- SPAN ----

FB_tbl %>%

mutate(adjusted_30 = smooth_vec(adjusted, span = 0.75, degree = 2)) %>%

ggplot(aes(date, adjusted)) +

geom_line() +

geom_line(aes(y = adjusted_30), color = "red")

---- Loess vs Moving Average ----
- Loess: Using ‘degree = @ to make less flexible. Comperable to a moving average.

FB_tbl %>%
mutate(

adjusted_loess_30
adjusted_ma_30

) %%

smooth_vec(adjusted, period = 30, degree =
= slidify_vec(adjusted, .period = 30,
.f = AVERAGE, .partial = TRUE)

ggplot(aes(date, adjusted)) +

geom_line() +
geom_line(aes(y
geom_line(aes(y

adjusted_loess_30), color = "red") +
adjusted_ma_30), color = "blue") +

labs(title = "Loess vs Moving Average")

2)) %%

0)’

smooth_vec

standardize_vec 61

standardize_vec Standardize to Mean 0, Standard Deviation 1 (Center & Scale)

Description

Standardization is commonly used to center and scale numeric features to prevent one from domi-
nating in algorithms that require data to be on the same scale.

Usage

standardize_vec(x, mean = NULL, sd = NULL, silent = FALSE)

standardize_inv_vec(x, mean, sd)

Arguments

X A numeric vector.

mean The mean used to invert the standardization

sd The standard deviation used to invert the standardization process.

silent Whether or not to report the automated mean and sd parameters as a message.
Details

Standardization vs Normalization
» Standardization refers to a transformation that reduces the range to mean 0, standard devia-
tion 1

* Normalization refers to a transformation that reduces the min-max range: (0, 1)

See Also

¢ Normalization/Standardization: standardize_vec(), normalize_vec()
¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()

* Loess Smoothing Transformation: smooth_vec()

 Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

62

Examples

library(dplyr)
library(timetk)

d10_daily <-
--- VECTOR

value_std <-
value <-

--- MUTATE

m4_daily %>%

m4_daily %>% filter(id == "D10")

standardize_vec(d10_daily$value)
standardize_inv_vec(value_std,
mean = 2261.60682492582,
sd 175.603721730477)

group_by(id) %>%
mutate(value_std = standardize_vec(value))

step_box_cox

step_box_cox

Box-Cox Transformation using Forecast Methods

Description

step_box_cox creates a specification of a recipe step that will transform data using a Box-Cox
transformation. This function differs from recipes: :step_BoxCox by adding multiple methods
including Guerrero lambda optimization and handling for negative data used in the Forecast R

Package.

Usage

step_box_cox(

recipe,
method =
limits =

c("guerrero”, "loglik"),
c(-1, 2),

role = NA,
trained = FALSE,
lambdas_trained = NULL,
skip = FALSE,

id = rand_id("box_cox")

S3 method for class 'step_box_cox'

tidy(x,

>

step_box_cox

Arguments

recipe

method

limits

role

trained

lambdas_trained

skip

id

Details

63

A recipe object. The step will be added to the sequence of operations for this
recipe.

One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

One of "guerrero" or "loglik"

A length 2 numeric vector defining the range to compute the transformation
parameter lambda.

Not used by this step since no new variables are created.

A logical to indicate if the quantities for preprocessing have been estimated.

A numeric vector of transformation values. This is NULL until computed by
prep().

A logical. Should the step be skipped when the recipe is baked by bake . recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

A character string that is unique to this step to identify it.

A step_box_cox object.

The step_box_cox() function is designed specifically to handle time series using methods imple-
mented in the Forecast R Package.

Negative Data

This function can be applied to Negative Data.

Lambda Optimization Methods

This function uses 2 methods for optimizing the lambda selection from the Forecast R Package:

1. method = "guerrero”: Guerrero’s (1993) method is used, where lambda minimizes the coef-
ficient of variation for subseries of x.

2. method = loglik: the value of lambda is chosen to maximize the profile log likelihood of a
linear model fitted to x. For non-seasonal data, a linear time trend is fitted while for seasonal
data, a linear time trend with seasonal dummy variables is used.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the lambda estimate).

64 step_box_cox

References

1. Guerrero, V.M. (1993) Time-series analysis supported by power transformations. Journal of
Forecasting, 12, 37-48.

2. Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations. JRSS B 26 211-246.

See Also

Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
* Diffs & Lags step_diff (), recipes::step_lag()

e Smoothing: step_slidify(), step_smooth()

* Variance Reduction: step_box_cox()

* Imputation: step_ts_impute(), step_ts_clean()

» Padding: step_ts_pad()
Transformations to reduce variance:

* recipes::step_log() - Log transformation

* recipes::step_sqrt() - Square-Root Power Transformation
Recipe Setup and Application:

* recipes::recipe()
* recipes::prep()

* recipes::bake()

Examples

library(tidyverse)
library(tidyquant)
library(recipes)
library(timetk)

FANG_wide <- FANG %>%
select(symbol, date, adjusted) %>%
pivot_wider(names_from = symbol, values_from = adjusted)

recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%
step_box_cox(FB, AMZN, NFLX, GOOG) %>%
prep()

recipe_box_cox %>% bake(FANG_wide)

recipe_box_cox %>% tidy(1)

step_diff

65

step_diff

Create a differenced predictor

Description

step_diff creates a specification of a recipe step that will add new columns of differenced data.
Differenced data will include NA values where a difference was induced. These can be removed
with step_naomit().

Usage

step_diff(
recipe,
role = "predictor”,
trained = FALSE,
lag = 1,
difference = 1,
log = FALSE,
prefix = "diff_",

columns = NULL,

skip = FALSE,

id = rand_id("diff")

)

S3 method for class 'step_diff'

tidy(x,

Arguments

recipe

role
trained

lag

difference
log
prefix

columns

A recipe object. The step will be added to the sequence of operations for this
recipe.

One or more selector functions to choose which variables are affected by the
step. See selections() for more details.

Defaults to "predictor”
A logical to indicate if the quantities for preprocessing have been estimated.

A vector of positive integers identifying which lags (how far back) to be included
in the differencing calculation.

The number of differences to perform.
Calculates log differences instead of differences.
A prefix for generated column names, default to "diff_".

A character string of variable names that will be populated (eventually) by the
terms argument.

66 step_diff

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.
X A step_diff object.
Details

The step assumes that the data are already in the proper sequential order for lagging.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also
Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
* Diffs & Lags step_diff(), recipes::step_lag()

* Smoothing: step_slidify(), step_smooth()

¢ Variance Reduction: step_box_cox()

e Imputation: step_ts_impute(), step_ts_clean()

* Padding: step_ts_pad()
Remove NA Values:

* recipes::step_naomit()
Main Recipe Functions:

* recipes::recipe()

* recipes::prep()

* recipes: :bake()

Examples

library(tidyverse)
library(tidyquant)
library(recipes)
library(timetk)

FANG_wide <- FANG %>%
select(symbol, date, adjusted) %>%
pivot_wider(names_from = symbol, values_from = adjusted)

step_fourier

Make and apply recipe ----

recipe_diff <- recipe(~ ., data = FANG_wide) %>%
step_diff(FB, AMZN, NFLX, GOOG, lag = 1:3, difference = 1) %>%

prep()

recipe_diff %>% bake(FANG_wide)

Get information with tidy ----

recipe_diff %>% tidy()

recipe_diff %>% tidy(1)

67

step_fourier

Fourier Features for Modeling Seasonality

Description

step_fourier creates a a specification of a recipe step that will convert a Date or Date-time column
into a Fourier series

Usage

step_fourier(

recipe,
-

period,

K,

role =

trained

columns

"predictor”,

FALSE,
NULL,

scale_factor = NULL,
skip = FALSE,
id = rand_id("fourier")

S3 method for class 'step_fourier'

»)

tidy(x,

Arguments

recipe

A recipe object. The step will be added to the sequence of operations for this

recipe.

A single column with class Date or POSIXct. See recipes::selections() for

more details. For the tidy method, these are not currently used.

68 step_fourier

period The numeric period for the oscillation frequency. See details for examples of
period specification.

K The number of orders to include for each sine/cosine fourier series. More orders
increase the number of fourier terms and therefore the variance of the fitted
model at the expense of bias. See details for examples of K specification.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes: :prep() is used.

scale_factor A factor for scaling the numeric index extracted from the date or date-time fea-
ture. This is a placeholder and will be populated once recipes: :prep() is
used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.
X A step_fourier object.

Details
Date Variable

Unlike other steps, step_fourier does not remove the original date variables. recipes: :step_rm()
can be used for this purpose.

Period Specification

The period argument is used to generate the distance between peaks in the fourier sequence. The
key is to line up the peaks with unique seasonalities in the data.

For Daily Data, typical period specifications are:

* Yearly frequency is 365
* Quarterly frequency is 365 /4 =91.25
* Monthly frequency is 365/ 12 = 30.42

K Specification

The K argument specifies the maximum number of orders of Fourier terms. Examples:

* Specifying period = 365 and K = 1 will return a cos365_K1 and sin365_K1 fourier series

* Specifying period =365 and K = 2 will return a cos365_K1, cos365_K2, sin365_K1 and
sin365_K2 sequence, which tends to increase the models ability to fit vs the K =1 specifi-
cation (at the expense of possibly overfitting).

step_fourier 69

Multiple values of period and K
It’s possible to specify multiple values of period in a single step such as step_fourier(period = c¢(91.25, 365), K=2.
This returns 8 Fouriers series:

* c0s91.25_K1, sin91.25_K1, cos91.25_K2, sin91.25_K2

e cos365_K1, sin365_K1, cos365_K2, sin365_K2

Value

For step_fourier, an updated version of recipe with the new step added to the sequence of ex-
isting steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected), value (the feature names).

See Also
Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
* Diffs & Lags step_diff(), recipes::step_lag()

* Smoothing: step_slidify(), step_smooth()

¢ Variance Reduction: step_box_cox()

* Imputation: step_ts_impute(), step_ts_clean()

» Padding: step_ts_pad()
Main Recipe Functions:

* recipes::recipe()
e recipes: :prep()

* recipes: :bake()

Examples

library(recipes)
library(tidyverse)
library(tidyquant)
library(timetk)

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

Create a recipe object with a timeseries signature step

- 252 Trade days per year

- period = c(252/4, 252): Adds quarterly and yearly fourier series
- K =2: Adds 1st and 2nd fourier orders

rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_fourier(date, period = c(252/4, 252), K = 2)

70 step_holiday_signature

View the recipe object
rec_obj

Prepare the recipe object
prep(rec_obj)

Bake the recipe object - Adds the Fourier Series
bake (prep(rec_obj), FB_tbl)

Tidy shows which features have been added during the 1st step
in this case, step 1 is the step_timeseries_signature step
tidy(prep(rec_obj))

tidy(prep(rec_obj), number = 1)

step_holiday_signature
Holiday Feature (Signature) Generator

Description

step_holiday_signature creates a a specification of a recipe step that will convert date or date-
time data into many holiday features that can aid in machine learning with time-series data. By
default, many features are returned for different holidays, locales, and stock exchanges.

Usage
step_holiday_signature(

recipe,

holiday_pattern = ".",

locale_set = "all”,
exchange_set = "all",
role = "predictor”,

trained = FALSE,
columns = NULL,
features = NULL,

skip = FALSE,
id = rand_id("holiday_signature")
)
S3 method for class 'step_holiday_signature'
tidy(x, ...)
Arguments
recipe A recipe object. The step will be added to the sequence of operations for this

recipe.

step_holiday_signature 71

One or more selector functions to choose which variables that will be used to cre-
ate the new variables. The selected variables should have class Date or POSIXct.
See recipes: :selections() for more details. For the tidy method, these are
not currently used.

holiday_pattern
A regular expression pattern to search the "Holiday Set".

locale_set Return binary holidays based on locale. One of: "all", "none", "World", "US",
"CAII’ IIC}BH7 IIFRII’ "ITII’ ||JP"’ HCH"’ "DE"’

exchange_set Return binary holidays based on Stock Exchange Calendars. One of: "all",
"none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes: :prep() is used.

features A character string of features that will be generated. This field is a placeholder
and will be populated once recipes: :prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.
X A step_holiday_signature object.
Details

Use Holiday Pattern and Feature Sets to Pare Down Features By default, you’re going to get A
LOT of Features. This is a good thing because many machine learning algorithms have regulariza-
tion built in. But, in many cases you will still want to reduce the number of unnecessary features.
Here’s how:

* Holiday Pattern: This is a Regular Expression pattern that can be used to filter. Try holiday_pattern
="(US_Christ) | (US_Thanks)" to return just Christmas and Thanksgiving features.

* Locale Sets: This is a logical as to whether or not the locale has a holiday. For locales outside
of US you may want to combine multiple locales. For example, locale_set = c("World", "GB")
returns both World Holidays and Great Britain.

* Exchange Sets: This is a logical as to whether or not the Business is off due to a holiday.
Different Stock Exchanges are used as a proxy for business holiday calendars. For example,
exchange_set = "NYSE" returns business holidays for New York Stock Exchange.

Removing Unnecessary Features By default, many features are created automatically. Unneces-
sary features can be removed using recipes: :step_rm() and recipes::selections() for more
details.

72 step_holiday_signature

Value

For step_holiday_signature, an updated version of recipe with the new step added to the se-
quence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors
or variables selected), value (the feature names).

See Also

Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
 Diffs & Lags step_diff(), recipes::step_lag()

* Smoothing: step_slidify(), step_smooth()

* Variance Reduction: step_box_cox()

* Imputation: step_ts_impute(), step_ts_clean()

* Padding: step_ts_pad()
Main Recipe Functions:

* recipes::recipe()
* recipes::prep()

* recipes::bake()

Examples

library(recipes)
library(timetk)
library(tidyverse)

Sample Data
dates_in_2017_tbl <- tibble(

index = tk_make_timeseries("”2017-01-01", "2017-12-31", by = "day")
)

Add US holidays and Non-Working Days due to Holidays
- Physical Holidays are added with holiday pattern (individual) and locale_set
rec_holiday <- recipe(~ ., dates_in_2017_tbl) %>%
step_holiday_signature(index,
holiday_pattern = "~US_",
locale_set = "us",
exchange_set = "NYSE")

Not yet prep'ed - just returns parameters selected
rec_holiday %>% tidy(1)

Prep the recipe
rec_holiday_prep <- prep(rec_holiday)

Now prep'ed - returns new features that will be created
rec_holiday_prep %>% tidy(1)

step_slidify 73

Apply the recipe to add new holiday features!
bake(rec_holiday_prep, dates_in_2017_tbl)

step_slidify Rolling Window Transformation

Description

step_slidify creates a a specification of a recipe step that will apply a function to one or more a
Numeric column(s).

Usage
step_slidify(
recipe,
period,
.f,
align = c("center”, "left"”, "right"),
names = NULL,
role = "predictor”,

trained = FALSE,
columns = NULL,
f_name = NULL,

skip = FALSE,
id = rand_id("slidify")
)
S3 method for class 'step_slidify'
tidy(x, ...)
Arguments
recipe A recipe object. The step will be added to the sequence of operations for this
recipe.
One or more numeric columns to be smoothed. See recipes::selections()
for more details. For the tidy method, these are not currently used.
period The number of periods to include in the local rolling window. This is effectively
the "window size".
f A summary formula in one of the following formats:

* mean with no arguments

74

align

names

role

trained
columns

f_name

skip

id

Details

Alignment

step_slidify

e function(x) mean(x,na.rm=TRUE)
e ~mean(.x,na.rm= TRUE), it is converted to a function.

Rolling functions generate period -1 fewer values than the incoming vector.
Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

* Center: NA or .partial values are divided and added to the beginning
and end of the series to "Center" the moving average. This is common
for de-noising operations. See also [smooth_vec()] for LOESS without NA
values.

e Left: NA or .partial values are added to the end to shift the series to the
Left.

* Right: NA or .partial values are added to the beginning to shif the series
to the Right. This is common in Financial Applications such as moving
average Cross-overs.

An optional character string that is the same length of the number of terms se-
lected by terms. These will be the names of the new columns created by the
step.

e If NULL, existing columns are transformed.

e If not NULL, new columns will be created.
For model terms created by this step, what analysis role should they be as-

signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

A logical to indicate if the quantities for preprocessing have been estimated.

A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes: :prep() is used.

A character string for the function being applied. This field is a placeholder and
will be populated during the tidy() step.

A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

A character string that is unique to this step to identify it.

A step_slidify object.

Rolling functions generate period -1 fewer values than the incoming vector. Thus, the vector needs
to be aligned. Alignment of the vector follows 3 types:

* Center: NA or partial values are divided and added to the beginning and end of the se-
ries to "Center" the moving average. This is common for de-noising operations. See also
[smooth_vec()] for LOESS without NA values.

e Left: NA or partial values are added to the end to shift the series to the Left.

step_slidify 75

* Right: NA or partial values are added to the beginning to shif the series to the Right. This is
common in Financial Applications such as moving average cross-overs.

Partial Values
* The advantage to using partial values vs NA padding is that the series can be filled (good for
time-series de-noising operations).
» The downside to partial values is that the partials can become less stable at the regions where

incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is step_smooth(),
which implements local polynomial regression.

Value

For step_slidify, an updated version of recipe with the new step added to the sequence of ex-
isting steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected), value (the feature names).

See Also
Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
* Diffs & Lags step_diff(), recipes::step_lag()

* Smoothing: step_slidify(), step_smooth()

e Variance Reduction: step_box_cox()

* Imputation: step_ts_impute(), step_ts_clean()

» Padding: step_ts_pad()
Main Recipe Functions:

* recipes::recipe()
* recipes::prep()

* recipes: :bake()

Examples

library(recipes)
library(tidyverse)
library(tidyquant)
library(timetk)

Training Data

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

New Data - Make some fake new data next 90 time stamps
new_data <- FB_tbl %>%

76 step_smooth

tail(90) %>%
mutate(date = date %>% tk_make_future_timeseries(length_out = 90))

Create a recipe object with a step_slidify
rec_ma_50 <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_slidify(adjusted, period = 50, .f = ~ AVERAGE(.x))

Bake the recipe object - Applies the Moving Average Transformation
training_data_baked <- bake(prep(rec_ma_50), FB_tbl)

Apply to New Data
new_data_baked <- bake(prep(rec_ma_50), new_data)

Visualize effect
training_data_baked %>%
ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(color = "red”, data = new_data_baked)

---- NEW COLUMNS ----
Use the ‘names" argument to create new columns instead of overwriting existing

rec_ma_30_names <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_slidify(adjusted, period = 30, .f = AVERAGE, names = "adjusted_ma_30")

bake(prep(rec_ma_30_names), FB_tbl) %>%
ggplot(aes(date, adjusted)) +

geom_line(alpha = 0.5) +
geom_line(aes(y = adjusted_ma_30), color = "red", size = 1)
step_smooth Smoothing Transformation using Loess

Description

step_smooth creates a a specification of a recipe step that will apply local polynomial regression
to one or more a Numeric column(s). The effect is smoothing the time series similar to a moving
average without creating missing values or using partial smoothing.

Usage
step_smooth(
recipe,
period = 30,

span = NULL,

step_smooth 77

degree = 2,
names = NULL,
role = "predictor”,

trained = FALSE,
columns = NULL,

skip = FALSE,
id = rand_id("smooth")

)

S3 method for class 'step_smooth'

tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.
One or more numeric columns to be smoothed. See recipes: :selections()
for more details. For the tidy method, these are not currently used.

period The number of periods to include in the local smoothing. Similar to window
size for a moving average. See details for an explanation period vs span spec-
ification.

span The span is a percentage of data to be included in the smoothing window. Pe-
riod is preferred for shorter windows to fix the window size. See details for an
explanation period vs span specification.

degree The degree of the polynomials to be used. Set to 2 by default for 2nd order
polynomial.

names An optional character string that is the same length of the number of terms se-
lected by terms. These will be the names of the new columns created by the
step.

* If NULL, existing columns are transformed.
* If not NULL, new columns will be created.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes: :prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

X A step_smooth object.

78 step_smooth

Details

Smoother Algorithm This function is a recipe specification that wraps the stats: :loess() with
a modification to set a fixed period rather than a percentage of data points via a span.

Why Period vs Span? The period is fixed whereas the span changes as the number of observations
change.

When to use Period? The effect of using a period is similar to a Moving Average where the
Window Size is the Fixed Period. This helps when you are trying to smooth local trends. If you
want a 30-day moving average, specify period = 30.

When to use Span? Span is easier to specify when you want a Long-Term Trendline where the
window size is unknown. You can specify span = @.75 to locally regress using a window of 75%
of the data.

Warning - Using Span with New Data When using span on New Data, the number of observations
is likely different than what you trained with. This means the trendline / smoother can be vastly
different than the smoother you trained with.

Solution to Span with New Data Don’t use span. Rather, use period to fix the window size. This
ensures that new data includes the same number of observations in the local polynomial regression
(loess) as the training data.

Value

For step_smooth, an updated version of recipe with the new step added to the sequence of exist-
ing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected), value (the feature names).

See Also

Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
* Diffs & Lags step_diff(), recipes::step_lag()

* Smoothing: step_slidify(), step_smooth()

¢ Variance Reduction: step_box_cox ()

* Imputation: step_ts_impute(), step_ts_clean()

* Padding: step_ts_pad()
Main Recipe Functions:

* recipes::recipe()
e recipes: :prep()

* recipes::bake()

step_smooth

Examples

library(recipes)
library(tidyverse)
library(tidyquant)
library(timetk)

Training Data

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

New Data - Make some fake new data next 90 time stamps
new_data <- FB_tbl %>%
tail(90) %>%
mutate(date = date %>% tk_make_future_timeseries(length_out = 90))

---- PERIOD ----

Create a recipe object with a step_smooth()
rec_smooth_period <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_smooth(adjusted, period = 30)

Bake the recipe object - Applies the Loess Transformation
training_data_baked <- bake(prep(rec_smooth_period), FB_tbl)

"Period” Effect on New Data
new_data_baked <- bake(prep(rec_smooth_period), new_data)

Smoother's fit on new data is very similar because
30 days are used in the new data regardless of the new data being 90 days
training_data_baked %>%

ggplot(aes(date, adjusted)) +

geom_line() +

geom_line(color = "red"”, data = new_data_baked)

---- SPAN ----

Create a recipe object with a step_smooth
rec_smooth_span <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_smooth(adjusted, span = 0.03)

Bake the recipe object - Applies the Loess Transformation
training_data_baked <- bake(prep(rec_smooth_span), FB_tbl)

"Period" Effect on New Data
new_data_baked <- bake(prep(rec_smooth_span), new_data)

Smoother's fit is not the same using span because new data is only 90 days
and 0.03 x 90 = 2.7 days
training_data_baked %>%

ggplot(aes(date, adjusted)) +

geom_line() +

79

80 step_timeseries_signature

geom_line(color = "red”, data = new_data_baked)

---- NEW COLUMNS ----
Use the ‘names" argument to create new columns instead of overwriting existing

rec_smooth_names <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_smooth(adjusted, period = 30, names = "adjusted_smooth_30") %>%
step_smooth(adjusted, period = 180, names = "adjusted_smooth_180") %>%
step_smooth(adjusted, span = 0.75, names = "long_term_trend")

bake (prep(rec_smooth_names), FB_tbl) %>%
ggplot(aes(date, adjusted)) +

geom_line(alpha = 0.5) +

geom_line(aes(y = adjusted_smooth_30), color = "red", size = 1) +
geom_line(aes(y = adjusted_smooth_180), color = "blue”, size = 1) +
geom_line(aes(y = long_term_trend), color = "orange"”, size = 1)

step_timeseries_signature
Time Series Feature (Signature) Generator

Description

step_timeseries_signature creates a a specification of a recipe step that will convert date or
date-time data into many features that can aid in machine learning with time-series data

Usage

step_timeseries_signature(
recipe,
role = "predictor”,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("timeseries_signature")

S3 method for class 'step_timeseries_signature'
tidy(x, ...)
Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

step_timeseries_signature 81

One or more selector functions to choose which variables that will be used to cre-
ate the new variables. The selected variables should have class Date or POSIXct.
See recipes: :selections() for more details. For the tidy method, these are
not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes: :prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.
X A step_timeseries_signature object.
Details

Date Variable Unlike other steps, step_timeseries_signature does not remove the original date
variables. recipes: :step_rm() can be used for this purpose.

Scaling index.num The index.num feature created has a large magnitude (number of seconds since
1970-01-01). It’s a good idea to scale and center this feature (e.g. use recipes: :step_normalize()).

Removing Unnecessary Features By default, many features are created automatically. Unneces-
sary features can be removed using recipes: :step_rm().

Value

For step_timeseries_signature, an updated version of recipe with the new step added to the
sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors
or variables selected), value (the feature names).

See Also

Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
* Diffs & Lags step_diff(), recipes::step_lag()

* Smoothing: step_slidify(), step_smooth()

* Variance Reduction: step_box_cox()

* Imputation: step_ts_impute(), step_ts_clean()

» Padding: step_ts_pad()

Main Recipe Functions:

82

* recipes::recipe()
* recipes::prep()

e recipes::bake()

Examples

library(recipes)
library(tidyverse)
library(tidyquant)
library(timetk)

FB_tbl <- FANG %>% filter(symbol == "FB")

Create a recipe object with a timeseries signature step
rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_timeseries_signature(date)

View the recipe object
rec_obj

Prepare the recipe object
prep(rec_obj)

Bake the recipe object - Adds the Time Series Signature
bake(prep(rec_obj), FB_tbl)

Tidy shows which features have been added during the 1st step
1in this case, step 1 is the step_timeseries_signature step
tidy(rec_obj)

tidy(rec_obj, number = 1)

step_ts_clean

step_ts_clean Clean Outliers and Missing Data for Time Series

Description

step_ts_clean creates a specification of a recipe step that will clean outliers and impute time

series data.

Usage

step_ts_clean(
recipe,
period = 1,
lambda = "auto”,

step_ts_clean 83

role = NA,
trained = FALSE,
lambdas_trained = NULL,

skip = FALSE,
id = rand_id("ts_clean")
)
S3 method for class 'step_ts_clean'
tidy(x, ...)
Arguments
recipe A recipe object. The step will be added to the sequence of operations for this
recipe.
One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.
period A seasonal period to use during the transformation. If period =1, linear in-
terpolation is performed. If period > 1, a robust STL decomposition is first
performed and a linear interpolation is applied to the seasonally adjusted data.
lambda A box cox transformation parameter. If set to "auto”, performs automated
lambda selection.
role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.

lambdas_trained
A named numeric vector of lambdas. This is NULL until computed by recipes: :prep().
Note that, if the original data are integers, the mean will be converted to an inte-
ger to maintain the same a data type.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.
X A step_ts_clean object.
Details

The step_ts_clean() function is designed specifically to handle time series using seasonal outlier
detection methods implemented in the Forecast R Package.

Cleaning Outliers

Outliers are replaced with missing values using the following methods:

1. Non-Seasonal (period = 1): Uses stats: :supsmu()

2. Seasonal (period > 1): Uses forecast: :mstl() with robust = TRUE (robust STL decompo-
sition) for seasonal series.

84 step_ts_clean

Imputation using Linear Interpolation

Three circumstances cause strictly linear interpolation:

1. Period is 1: With period = 1, a seasonality cannot be interpreted and therefore linear is used.

2. Number of Non-Missing Values is less than 2-Periods: Insufficient values exist to detect
seasonality.

3. Number of Total Values is less than 3-Periods: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation

For seasonal series with period > 1, a robust Seasonal Trend Loess (STL) decomposition is first
computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal
component is added back.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative
meaning the variance grows exponentially. A Box Cox transformation can be automated by setting
lambda = "auto"” or can be specified by setting lambda = numeric value.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the lambda estimate).

References

* Forecast R Package

* Forecasting Principles & Practices: Dealing with missing values and outliers

See Also
Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
 Diffs & Lags step_diff(), recipes::step_lag()

* Smoothing: step_slidify(), step_smooth()

¢ Variance Reduction: step_box_cox()

* Imputation: step_ts_impute(), step_ts_clean()

* Padding: step_ts_pad()
Examples

library(tidyverse)
library(tidyquant)
library(recipes)
library(timetk)

https://github.com/robjhyndman/forecast
https://otexts.com/fpp2/missing-outliers.html

step_ts_impute 85

Get missing values

FANG_wide <- FANG %>%
select(symbol, date, adjusted) %>%
pivot_wider(names_from = symbol, values_from = adjusted) %>%
pad_by_time()

FANG_wide

Apply Imputation

recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%
step_ts_clean(FB, AMZN, NFLX, GOOG, period = 252) %>%
prep()

recipe_box_cox %>% bake(FANG_wide)

Lambda parameter used during imputation process
recipe_box_cox %>% tidy(1)

step_ts_impute Missing Data Imputation for Time Series

Description

step_ts_impute creates a specification of a recipe step that will impute time series data.

Usage

step_ts_impute(
recipe,
period = 1,
lambda = NULL,
role = NA,
trained = FALSE,
lambdas_trained = NULL,

skip = FALSE,
id = rand_id("ts_impute")
)
S3 method for class 'step_ts_impute'’
tidy(x, ...)
Arguments
recipe A recipe object. The step will be added to the sequence of operations for this

recipe.

86

step_ts_impute

One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

period A seasonal period to use during the transformation. If period =1, linear in-
terpolation is performed. If period > 1, a robust STL decomposition is first
performed and a linear interpolation is applied to the seasonally adjusted data.

lambda A box cox transformation parameter. If set to "auto”, performs automated
lambda selection.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

lambdas_trained

A named numeric vector of lambdas. This is NULL until computed by recipes: :prep().

Note that, if the original data are integers, the mean will be converted to an inte-
ger to maintain the same a data type.

skip A logical. Should the step be skipped when the recipe is baked by bake. recipe()?

While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.
X A step_ts_impute object.
Details

The step_ts_impute() function is designed specifically to handle time series
Imputation using Linear Interpolation

Three circumstances cause strictly linear interpolation:

1. Period is 1: With period = 1, a seasonality cannot be interpreted and therefore linear is used.

2. Number of Non-Missing Values is less than 2-Periods: Insufficient values exist to detect
seasonality.

3. Number of Total Values is less than 3-Periods: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation

For seasonal series with period > 1, a robust Seasonal Trend Loess (STL) decomposition is first
computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal
component is added back.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative
meaning the variance grows exponentially. A Box Cox transformation can be automated by setting
lambda = "auto” or can be specified by setting lambda = numeric value.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the lambda estimate).

step_ts_impute 87

References

* Forecast R Package

* Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
* Diffs & Lags step_diff (), recipes::step_lag()

* Smoothing: step_slidify(), step_smooth()

¢ Variance Reduction: step_box_cox()

e Imputation: step_ts_impute(), step_ts_clean()

* Padding: step_ts_pad()
Recipe Setup and Application:

* recipes::recipe()
* recipes: :prep()

e recipes: :bake()

Examples

library(tidyverse)
library(tidyquant)
library(recipes)
library(timetk)

Get missing values

FANG_wide <- FANG %>%
select(symbol, date, adjusted) %>%
pivot_wider(names_from = symbol, values_from = adjusted) %>%
pad_by_time()

FANG_wide

Apply Imputation

recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%
step_ts_impute(FB, AMZN, NFLX, GOOG, period = 252, lambda = "auto") %>%
prep()

recipe_box_cox %>% bake(FANG_wide)

Lambda parameter used during imputation process
recipe_box_cox %>% tidy(1)

https://github.com/robjhyndman/forecast
https://otexts.com/fpp2/missing-outliers.html

88

step_ts_pad

step_ts_pad

Pad: Add rows to fill gaps and go from low to high frequency

Description

step_ts_pad creates a a specification of a recipe step that will analyze a Date or Date-time column
adding rows at a specified interval.

Usage
step_ts_pad(
recipe,
by = n dayll
pad_value = NA,
role = "predictor”,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("ts_padding")
)
S3 method for class 'step_ts_pad'
tidy(x, ...)
Arguments
recipe A recipe object. The step will be added to the sequence of operations for this
recipe.
A single column with class Date or POSIXct. See recipes: :selections() for
more details. For the tidy method, these are not currently used.
by Either "auto", a time-based frequency like "year", "month", "day", "hour", etc,
or a time expression like "5 min", or "7 days". See Details.
pad_value Fills in padded values. Default is NA.
role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.
trained A logical to indicate if the quantities for preprocessing have been estimated.
columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes: :prep() is used.
skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

step_ts_pad 89

id A character string that is unique to this step to identify it.
X A step_ts_pad object.

Details
Date Variable

* Only one date or date-time variable may be supplied.

* step_ts_pad()) does not remove the original date variables.
Interval Specification (by)
Padding can be applied in the following ways:

* The eight intervals in are: year, quarter, month, week, day, hour, min, and sec.
* Intervals like 30 minutes, 1 hours, 14 days are possible.
Imputing Missing Values
The generic pad_value defaults to NA, which typically requires imputation. Some common strate-
gies include:
* Numeric data: The step_ts_impute() preprocessing step can be used to impute numeric
time series data with or without seasonality

* Nominal data: The step_mode_impute() preprocessing step can be used to replace missing
values with the most common value.
Value

For step_ts_pad, an updated version of recipe with the new step added to the sequence of exist-
ing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected), value (the feature names).

See Also

Padding & Imputation:

e Pad Time Series: step_ts_pad()

* Impute missing values with these: step_ts_impute(), step_ts_clean()
Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
* Diffs & Lags step_diff (), recipes::step_lag()
* Smoothing: step_slidify(), step_smooth()

» Variance Reduction: step_box_cox()
Main Recipe Functions:

* recipes::recipe()
* recipes::prep

* recipes::bake

90 summarise_by_time

Examples

library(recipes)
library(tidyverse)
library(tidyquant)
library(timetk)

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_ts_pad(date, by = "day", pad_value = NA)

View the recipe object
rec_obj

Prepare the recipe object
prep(rec_obj)

Bake the recipe object - Adds the padding
bake (prep(rec_obj), FB_tbl)

Tidy shows which features have been added during the 1st step
in this case, step 1 is the step_timeseries_signature step
tidy(prep(rec_obj))

tidy(prep(rec_obj), number = 1)

summarise_by_time Summarise (for Time Series Data)

Description

summarise_by_time() is a time-based variant of the popular dplyr: :summarise() function that
uses .date_var to specify a date or date-time column and . by to group the calculation by groups

non

like "5 seconds", "week", or "3 months".

summarise_by_time() and summarize_by_time() are synonyms.

Usage

summarise_by_time(
.data,
.date_var,
.by = "day”,

.type = c("floor”, "ceiling”, "round")

summarise_by_time 91

summarize_by_time(

.data,
.date_var,
.by = "day",

.type = c("floor”, "ceiling”, "round")

Arguments

.data A tbl object or data. frame

.date_var A column containing date or date-time values to summarize. If missing, attempts
to auto-detect date column.

.by A time unit to summarise by. Time units are collapsed using lubridate: : floor_date()
or lubridate::ceiling_date().

The value can be:

* second
* minute
* hour

e day

* week

* month

* bimonth
* quarter
* season
e halfyear
* year

Arbitrary unique English abbreviations as in the lubridate: :period() con-
structor are allowed.

Name-value pairs of summary functions. The name will be the name of the
variable in the result.

The value can be:

* A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
* A vector of length n, e.g. quantile().
¢ A data frame, to add multiple columns from a single expression.

.type One of "floor", "ceiling", or "round. Defaults to "floor". See lubridate: :round_date.

Value

A tibble or data.frame

92 summarise_by_time

Useful summary functions

e Sum: sum()

Center: mean(), median()
Spread: sd(), var()

Range: min(), max()

Count: dplyr::n(), dplyr::n_distinct()
Position: dplyr::first(), dplyr::last(), dplyr::nth()

Correlation: cor(), cov()

See Also
Time-Based dplyr functions:

* summarise_by_time() - Easily summarise using a date column.

e filter_by_time() - Quickly filter using date ranges.

* between_time() - Range detection for date or date-time sequences.

* pad_by_time() - Insert time series rows with regularly spaced timestamps

e slidify() - Turn any function into a sliding (rolling) function

Examples

Libraries
library(timetk)
library(dplyr)

First value in each month
m4_daily %>%
group_by(id) %>%
summarise_by_time(
.date_var = date,

.by = "month”, # Setup for monthly aggregation
Summarization
value = first(value)

)

Last value in each month (day is first day of next month with ceiling option)
m4_daily %>%

group_by(id) %>%

summarise_by_time(

. by = "month”,
value = last(value),
.type = "ceiling”

) %>%

Shift to the last day of the month
mutate(date = date %-time% "1 day")

Total each year (.by is set to "year" now)
m4_daily %>%

taylor_30_min 93

group_by(id) %>%
summarise_by_time(

by = "year”,
value = sum(value)
)
taylor_30_min Half-hourly electricity demand
Description

Half-hourly electricity demand in England and Wales from Monday 5 June 2000 to Sunday 27
August 2000. Discussed in Taylor (2003).

Usage

taylor_30_min

Format
A tibble: 4,032 x 2

e date: A date-time variable in 30-minute increments

* value: Electricity demand in Megawatts

Source

James W Taylor

References

Taylor, J.W. (2003) Short-term electricity demand forecasting using double seasonal exponential
smoothing. Journal of the Operational Research Society, 54, 799-805.

Examples

taylor_30_min

94 time_arithmetic

timetk timetk: a toolkit for time series

Description

The timetk package combines a collection of coercion tools for time series analysis.

Details

The timetk package has several benefits:

1. Index extraction: get the time series index from any time series object.

2. Understand time series: create a signature and summary from a time series index.
3. Build future time series: create a future time series from an index.
4.

Coerce between time-based tibbles (tbl) and the major time series data types xts, zoo, zooreg,
and ts: Simplifies coercion and maximizes time-based data retention during coercion to regu-
larized time series (e.g. ts).

To learn more about timetk, start with the vignettes: browseVignettes(package = "timetk")

time_arithmetic Add / Subtract (For Time Series)

Description

The easiest way to add / subtract a period to a time series date or date-time vector.
Usage

add_time(index, period)

subtract_time(index, period)

index %+time% period

index %-time% period

Arguments
index A date or date-time vector. Can also accept a character representation.
period A period to add. Accepts character strings like "5 seconds”, "2 days", and com-

plex strings like "1 month 4 days 34 minutes".

time_arithmetic 95

Details

A convenient wrapper for lubridate: :period(). Adds and subtracts a period from a time-based
index. Great for:

* Finding a timestamp n-periods into the future or past

« Shifting a time-based index. Note that NA values may be present where dates don’t exist.

Period Specification

The period argument accepts complex strings like:

* "1 month 4 days 43 minutes"

* "second = 3, minute = 1, hour = 2, day = 13, week = 1"

Value

A date or datetime (POSIXct) vector the same length as index with the time values shifted +/- a
period.

See Also
Other Time-Based vector functions:
* between_time() - Range detection for date or date-time sequences.
Underlying function:

e lubridate::period()

Examples
library(timetk)
---- LOCATING A DATE N-PERIODS IN FUTURE / PAST ----

Forward (Plus Time)

"2021" %+time% "1 hour 34 seconds”
"2021" %ttime% "3 months”

"2021" %+time% "1 year 3 months 6 days”

Backward (Minus Time)

"2021" %-time% "1 hour 34 seconds”
"2021" %-time% "3 months”

"2021" %-time% "1 year 3 months 6 days”

---- INDEX SHIFTING ----
index_daily <- tk_make_timeseries("2016", "2016-02-01")
ADD TIME

- Note ‘NA‘ values created where a daily dates aren't possible
(e.g. Feb 29 & 30, 2016 doesn't exist).

96 time_series_cv

index_daily %t+time% "1 month”

Subtracting Time
index_daily %-time% "1 month”

time_series_cv Time Series Cross Validation

Description

Create rsample cross validation sets for time series. This function produces a sampling plan starting
with the most recent time series observations, rolling backwards. The sampling procedure is similar
to rsample::rolling_origin(), but places the focus of the cross validation on the most recent
time series data.

Usage

time_series_cv(
data,
date_var = NULL,
initial = 5,
assess = 1,
skip = 1,
lag = 0,
cumulative = FALSE,
slice_limit = n(),

)
Arguments

data A data frame.

date_var A date or date-time variable.

initial The number of samples used for analysis/modeling in the initial resample.

assess The number of samples used for each assessment resample.

skip A integer indicating how many (if any) additional resamples to skip to thin the
total amount of data points in the analysis resample. See the example below.

lag A value to include an lag between the assessment and analysis set. This is useful
if lagged predictors will be used during training and testing.

cumulative A logical. Should the analysis resample grow beyond the size specified by
initial at each resample?.

slice_limit The number of slices to return. Set to dplyr: :n(), which returns the maximum

number of slices.
Not currently used.

time_series_cv 97

Details

Time-Based Specification

The initial, assess, skip, and lag variables can be specified as:

e Numeric: initial = 24
¢ Time-Based Phrases: initial = "2 years”, if the data contains a date_var (date or date-
time)
Initial (Training Set) and Assess (Testing Set)

The main options, initial and assess, control the number of data points from the original data
that are in the analysis (training set) and the assessment (testing set), respectively.

Skip

skip enables the function to not use every data point in the resamples. When skip = 1, the resam-
pling data sets will increment by one position.

Example: Suppose that the rows of a data set are consecutive days. Using skip = 7 will make the
analysis data set operate on weeks instead of days. The assessment set size is not affected by this
option.

Lag

The Lag parameter creates an overlap between the Testing set. This is needed when lagged predic-
tors are used.

Cumulative vs Sliding Window

When cumulative = TRUE, the initial parameter is ignored and the analysis (training) set will
grow as resampling continues while the assessment (testing) set size will always remain static.

When cumulative = FALSE, the initial parameter fixes the analysis (training) set and resampling
occurs over a fixed window.

Slice Limit

This controls the number of slices. If slice_limit =5, only the most recent 5 slices will be re-
turned.

Value

An tibble with classes time_series_cv, rset, tbl_df, tbl, and data. frame. The results include a
column for the data split objects and a column called id that has a character string with the resample
identifier.

See Also

e time_series_cv() and rsample::rolling_origin() - Functions used to create time series
resample specifications.

* plot_time_series_cv_plan() - The plotting function used for visualizing the time series
resample plan.

e time_series_split() - A convenience function to return a single time series split containing
a training/testing sample.

98 time_series_split

Examples

library(tidyverse)
library(timetk)

DATA ----
m750 <- m4_monthly %>% filter(id == "M750")

m750 %>% plot_time_series(date, value)

RESAMPLE SPEC ----
resample_spec <- time_series_cv(data = m750,

initial = "6 years”,
assess = "24 months",
skip = "24 months",

cumulative = FALSE,
slice_limit = 3)

resample_spec
VISUALIZE CV PLAN ----

Select date and value columns from the tscv diagnostic tool
resample_spec %>% tk_time_series_cv_plan()

Plot the date and value columns to see the CV Plan
resample_spec %>% plot_time_series_cv_plan(date, value, .interactive = FALSE)

time_series_split Simple Training/Test Set Splitting for Time Series

Description

time_series_split creates resample splits using time_series_cv() but returns only a single
split. This is useful when creating a single train/test split.

Usage

time_series_split(
data,
date_var = NULL,
initial = 5,
assess = 1,
skip = 1,
lag = 0,
cumulative = FALSE,
slice = 1,

time_series_split 99

Arguments
data A data frame.
date_var A date or date-time variable.
initial The number of samples used for analysis/modeling in the initial resample.
assess The number of samples used for each assessment resample.
skip A integer indicating how many (if any) additional resamples to skip to thin the
total amount of data points in the analysis resample. See the example below.
lag A value to include an lag between the assessment and analysis set. This is useful
if lagged predictors will be used during training and testing.
cumulative A logical. Should the analysis resample grow beyond the size specified by
initial at each resample?.
slice Returns a single slice from time_series_cv
Not currently used.
Details

Time-Based Specification

The initial, assess, skip, and lag variables can be specified as:

e Numeric: initial =24
e Time-Based Phrases: initial = "2 years”, if the data contains a date_var (date or date-
time)
Initial (Training Set) and Assess (Testing Set)

The main options, initial and assess, control the number of data points from the original data
that are in the analysis (training set) and the assessment (testing set), respectively.

Skip

skip enables the function to not use every data point in the resamples. When skip = 1, the resam-
pling data sets will increment by one position.

Example: Suppose that the rows of a data set are consecutive days. Using skip = 7 will make the
analysis data set operate on weeks instead of days. The assessment set size is not affected by this
option.

Lag

The Lag parameter creates an overlap between the Testing set. This is needed when lagged predic-
tors are used.

Cumulative vs Sliding Window

When cumulative = TRUE, the initial parameter is ignored and the analysis (training) set will
grow as resampling continues while the assessment (testing) set size will always remain static.

When cumulative = FALSE, the initial parameter fixes the analysis (training) set and resampling
occurs over a fixed window.

Slice

This controls which slice is returned. If slice = 1, only the most recent slice will be returned.

100 tk_acf_diagnostics

Value

An rsplit object that can be used with the training and testing functions to extract the data in
each split.

See Also

e time_series_cv() and rsample::rolling_origin() - Functions used to create time series
resample specifications.

Examples

library(tidyverse)
library(timetk)

DATA ----
m750 <- m4_monthly %>% filter(id == "M750")

Get the most recent 3 years as testing, and previous 10 years as training
m750 %>%
time_series_split(initial = "10 years"”, assess = "3 years")

Skip the most recent 3 years
m750 %>%
time_series_split(

initial = "10 years”,
assess = "3 years”,
skip = "3 years”,
slice =2 # <- Returns 2nd slice, 3-years back

)

Add 1 year lag for testing overlap
m750 %>%
time_series_split(

initial = "10 years”,

assess = "3 years”,

skip = "3 years”,

slice =2,

lag = "1 year" # <- Overlaps training/testing by 1 year

tk_acf_diagnostics Group-wise ACFE, PACF, and CCF Data Preparation

Description

The tk_acf_diagnostics() function provides a simple interface to detect Autocorrelation (ACF),
Partial Autocorrelation (PACF), and Cross Correlation (CCF) of Lagged Predictors in one tibble.
This function powers the plot_acf_diagnostics() visualization.

tk_acf_diagnostics 101

Usage

tk_acf_diagnostics(.data, .date_var, .value, .ccf_vars = NULL, .lags = 1000)

Arguments
.data A data frame or tibble with numeric features (values) in descending chronolog-
ical order
.date_var A column containing either date or date-time values
.value A numeric column with a value to have ACF and PACF calculations performed.
.ccf_vars Additional features to perform Lag Cross Correlations (CCFs) versus the . value.
Useful for evaluating external lagged regressors.
.lags A segence of one or more lags to evaluate.
Details

Simplified ACF, PACF, & CCF

We are often interested in all 3 of these functions. Why not get all 3 at once? Now you can!

* ACF - Autocorrelation between a target variable and lagged versions of itself

* PACF - Partial Autocorrelation removes the dependence of lags on other lags highlighting key
seasonalities.

* CCF - Shows how lagged predictors can be used for prediction of a target variable.

Lag Specification
Lags (. lags) can either be specified as:

* A time-based phrase indicating a duraction (e.g. 2 months)
* A maximum lag (e.g. .lags = 28)

* A sequence of lags (e.g. .lags =7:28)

Scales to Multiple Time Series with Groupes

The tk_acf_diagnostics() works with grouped_df’s, meaning you can group your time series
by one or more categorical columns with dplyr: :group_by () and then apply tk_acf_diagnostics()
to return group-wise lag diagnostics.

Special Note on Dots (...)

Unlike other plotting utilities, the . .. arguments is NOT used for group-wise analysis. Rather, it’s
used for processing Cross Correlations (CCFs).

Use dplyr: :group_by() for processing multiple time series groups.

See Also
* Visualizing ACF, PACF, & CCF: plot_acf_diagnostics()

* Visualizing Seasonality: plot_seasonal_diagnostics()

¢ Visualizing Time Series: plot_time_series()

102 tk_anomaly_diagnostics

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

ACF, PACF, & CCF in 1 Data Frame

- Get ACF & PACF for target (adjusted)

- Get CCF between adjusted and volume and close
FANG %>%

filter(symbol == "FB") %>%

tk_acf_diagnostics(date, adjusted, # ACF & PACF
.ccf_vars = c(volume, close), # CCFs
.lags = 500)

Scale with groups using group_by()
FANG %>%
group_by(symbol) %>%
tk_acf_diagnostics(date, adjusted,
.ccf_vars = c(volume, close),
.lags = "3 months")

Apply Transformations
FANG %>%
group_by(symbol) %>%
tk_acf_diagnostics(
date, diff_vec(adjusted), # Apply differencing transformation
.lags = 0:500

tk_anomaly_diagnostics
Automatic group-wise Anomaly Detection by STL Decomposition

Description

tk_anomaly_diagnostics() is the preprocessor for plot_anomaly_diagnostics(). It performs
automatic anomaly detection for one or more time series groups.

Usage

tk_anomaly_diagnostics(
.data,
.date_var,
.value,
.frequency = "auto”,
.trend = "auto”,
.alpha = 0.05,

tk_anomaly_diagnostics 103

.max_anomalies = 0.2,
.message = TRUE

S3 method for class 'data.frame'
tk_anomaly_diagnostics(

.data,
.date_var,
.value,
.frequency =

nauton ,

.trend = "auto”,
.alpha = 0.05,
.max_anomalies = 0.2,
.message = TRUE

)

Arguments

.data

.date_var

.value

.frequency

.trend

.alpha

.max_anomalies

.message

Details

A tibble or data.frame with a time-based column
A column containing either date or date-time values
A column containing numeric values

Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to tk_get_frequency().

Controls the trend component. For STL, trend controls the sensitivity of the
LOESS smoother, which is used to remove the remainder. Refer to tk_get_trend().

Controls the width of the "normal" range. Lower values are more conservative
while higher values are less prone to incorrectly classifying "normal" observa-
tions.

The maximum percent of anomalies permitted to be identified.

A boolean. If TRUE, will output information related to automatic frequency and
trend selection (if applicable).

The tk_anomaly_diagnostics() method for anomaly detection that implements a 2-step process
to detect outliers in time series.

Step 1: Detrend & Remove Seasonality using STL Decomposition

The decomposition separates the "season" and "trend" components from the "observed" values leav-
ing the "remainder” for anomaly detection.

The user can control two parameters: frequency and trend.

1. .frequency: Adjusts the "season" component that is removed from the "observed" values.

2. .trend: Adjusts the trend window (t.window parameter from stats: :stl() that is used.

104 tk_anomaly_diagnostics

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or
numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the
scale of the time series using the tk_time_scale_template().

Step 2: Anomaly Detection

Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "re-
mainder". Anomalies are identified, and boundaries (recomposed_I1 and recomposed_12) are de-
termined.

The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.
IOR Adjustment, alpha parameter
With the default alpha = 0.05, the limits are established by expanding the 25/75 baseline by an
IQR Factor of 3 (3X). The IQR Factor = 0.15 / alpha (hence 3X with alpha = 0.05):
* To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more
difficult to be an outlier.
* Increase alpha to make it easier to be an outlier.
¢ The IQR outlier detection method is used in forecast: : tsoutliers().
* A similar outlier detection method is used by Twitter’s AnomalyDetection package.

* Both Twitter and Forecast tsoutliers methods have been implemented in Business Science’s
anomalize package.

Value

A tibble or data.frame with STL Decomposition Features (observed, season, trend, remainder,
seasadj) and Anomaly Features (remainder_l1, remainder_I2, anomaly, recomposed_l1, and recom-
posed_12)

References

1. CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E., AND TERPENNING, I. STL: A
Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, Vol.
6, No. 1 (1990), pp. 3-73.

2. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). A Novel Technique for
Long-Term Anomaly Detection in the Cloud. Twitter Inc.

See Also

* plot_anomaly_diagnostics(): Visual anomaly detection

Examples

library(dplyr)
library(timetk)

walmart_sales_weekly %>%
filter(id %in% c("1_1", "1.3")) %>%
group_by(id) %>%
tk_anomaly_diagnostics(Date, Weekly_Sales)

tk_augment_differences 105

tk_augment_differences
Add many differenced columns to the data

Description

A handy function for adding multiple lagged difference values to a data frame. Works with dplyr
groups too.

Usage

tk_augment_differences(
.data,
.value,
.lags = 1,
.differences = 1,
.log = FALSE,
.names = "auto”

Arguments
.data A tibble.
.value A column to have a difference transformation applied
.lags One or more lags for the difference(s)
.differences The number of differences to apply.
.log If TRUE, applies log-differences.

.names A vector of names for the new columns. Must be of same length as the number
of output columns. Use "auto" to automatically rename the columns.
Details
Benefits

This is a scalable function that is:

* Designed to work with grouped data using dplyr: :group_by ()

* Add multiple differences by adding a sequence of differences using the . lags argument (e.g.
lags =1:20)

Value

Returns a tibble object describing the timeseries.

106 tk_augment_fourier

See Also

Augment Operations:

e tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features
e tk_augment_holiday_signature() - Group-wise augmentation of holiday features

e tk_augment_slidify() - Group-wise augmentation of rolling functions

* tk_augment_lags() - Group-wise augmentation of lagged data

e tk_augment_differences() - Group-wise augmentation of differenced data

e tk_augment_fourier() - Group-wise augmentation of fourier series
Underlying Function:

e diff_vec() - Underlying function that powers tk_augment_differences()

Examples

library(tidyverse)
library(timetk)

m4_monthly %>%
group_by(id) %>%
tk_augment_differences(value, .lags = 1:20)

tk_augment_fourier Add many fourier series to the data

Description

A handy function for adding multiple fourier series to a data frame. Works with dplyr groups too.

Usage

tk_augment_fourier(.data, .date_var, .periods, .K = 1, .names = "auto")
Arguments

.data A tibble.

.date_var A date or date-time column used to calculate a fourier series

.periods One or more periods for the fourier series

.K The maximum number of fourier orders.

.names A vector of names for the new columns. Must be of same length as the number

of output columns. Use "auto" to automatically rename the columns.

tk_augment_holiday 107

Details
Benefits

This is a scalable function that is:

* Designed to work with grouped data using dplyr: :group_by()

* Add multiple differences by adding a sequence of differences using the .periods argument
(e.g. lags =1:20)
Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

* tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features
* tk_augment_holiday_signature() - Group-wise augmentation of holiday features

* tk_augment_slidify() - Group-wise augmentation of rolling functions

* tk_augment_lags() - Group-wise augmentation of lagged data

* tk_augment_differences() - Group-wise augmentation of differenced data

* tk_augment_fourier() - Group-wise augmentation of fourier series
Underlying Function:

* fourier_vec() - Underlying function that powers tk_augment_fourier()

Examples

library(tidyverse)
library(timetk)

m4_monthly %>%
group_by(id) %>%
tk_augment_fourier(date, .periods = c(6, 12), .K = 2)

tk_augment_holiday Add many holiday features to the data

Description

Quickly add the "holiday signature" - sets of holiday features that correspond to calendar dates.
Works with dplyr groups too.

108 tk_augment_holiday

Usage

tk_augment_holiday_signature(
.data,
.date_var = NULL,
.holiday_pattern = ".",
.locale_set = c("all”, "none”, "World”, "US", "CA", "GB", "FR", "IT", "JP", "CH",
"DE"),
.exchange_set = c(”all”, "none”, "NYSE", "LONDON", "NERC", "TSX", "ZURICH")

)
Arguments
.data A time-based tibble or time-series object.
.date_var A column containing either date or date-time values. If NULL, the time-based

column will interpret from the object (tibble).

.holiday_pattern
A regular expression pattern to search the "Holiday Set".

.locale_set Return binary holidays based on locale. One of: "all", "none", "World", "US",
VVCAH’ IIGBH’ HFRII’ "ITII’ ||JPN’ HCHII’ "DEII'

.exchange_set Return binary holidays based on Stock Exchange Calendars. One of: "all",
"none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

Details

tk_augment_holiday_signature adds the holiday signature features. See tk_get_holiday_signature()
(powers the augment function) for a full description and examples for how to use.

1. Individual Holidays

These are single holiday features that can be filtered using a pattern. This helps in identifying
which holidays are important to a machine learning model. This can be useful for example in
e-commerce initiatives (e.g. sales during Christmas and Thanskgiving).

2. Locale-Based Summary Sets

Locale-based holdiay sets are useful for e-commerce initiatives (e.g. sales during Christmas and
Thanskgiving). Filter on a locale to identify all holidays in that locale.

3. Stock Exchange Calendar Summary Sets

Exchange-based holdiay sets are useful for identifying non-working days. Filter on an index to
identify all holidays that are commonly non-working.

Value

Returns a tibble object describing the holiday timeseries.

See Also
Augment Operations:

* tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features

tk_augment_lags 109

e tk_augment_holiday_signature() - Group-wise augmentation of holiday features
e tk_augment_slidify() - Group-wise augmentation of rolling functions

* tk_augment_lags() - Group-wise augmentation of lagged data

* tk_augment_differences() - Group-wise augmentation of differenced data

* tk_augment_fourier() - Group-wise augmentation of fourier series
Underlying Function:

e tk_get_holiday_signature() - Underlying function that powers holiday feature generation

Examples

library(dplyr)
library(timetk)

dates_in_2017_tbl <- tibble(index = tk_make_timeseries("”2017-01-01", "2017-12-31", by = "day"))
Non-working days in US due to Holidays using NYSE stock exchange calendar

dates_in_2017_tbl %>%
tk_augment_holiday_signature(

index,

.holiday_pattern = "*$", # Returns nothing on purpose
.locale_set = "none”,

.exchange_set = "NYSE")

All holidays in US
dates_in_2017_tbl %>%
tk_augment_holiday_signature(

index,

.holiday_pattern = "US_",
.locale_set = "Us",
.exchange_set = "none")

All holidays for World and Italy-specific Holidays
- Note that Italy celebrates specific holidays in addition to many World Holidays
dates_in_2017_tbl %>%
tk_augment_holiday_signature(
index,
.holiday_pattern = "(World) | (IT_)",
.locale_set c("World"”, "IT"),
.exchange_set = "none")

tk_augment_lags Add many lags to the data

110 tk_augment_lags

Description

A handy function for adding multiple lagged columns to a data frame. Works with dplyr groups

too.
Usage

tk_augment_lags(.data, .value, .lags = 1, .names = "auto")
Arguments

.data A tibble.

.value A column to have a difference transformation applied

.lags One or more lags for the difference(s)

.names A vector of names for the new columns. Must be of same length as .lags.
Details

Benefits

This is a scalable function that is:

* Designed to work with grouped data using dplyr: :group_by()
* Add multiple lags by adding a sequence of lags using the . lags argument (e.g. . lags = 1:20)

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

e tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features
* tk_augment_holiday_signature() - Group-wise augmentation of holiday features

* tk_augment_slidify() - Group-wise augmentation of rolling functions

» tk_augment_lags() - Group-wise augmentation of lagged data

* tk_augment_differences() - Group-wise augmentation of differenced data

* tk_augment_fourier() - Group-wise augmentation of fourier series
Underlying Function:

* lag_vec() - Underlying function that powers tk_augment_lags()

tk_augment_slidify

Examples

111

library(tidyverse)

library(timetk)

m4_monthly %>%

group_by(id) %>%
tk_augment_lags(value, .lags = 1:20)

tk_augment_slidify Add many rolling window calculations to the data

Description

Quickly use any function as a rolling function and apply to multiple . periods. Works with dplyr

groups too.

Usage

tk_augment_slidify(

.data,
.value,
.period,
.f,

.align = c("center”, "left", "right"),
.partial = FALSE,

.names = "auto”
)
Arguments

.data A tibble.

.value A numeric column to have a rolling window transformation applied

.period One or more periods for the rolling window(s)

.f A summary [function / formula],
Optional arguments for the summary function

.align Rolling functions generate .period -1 fewer values than the incoming vector.
Thus, the vector needs to be aligned. Select one of "center", "left", or "right".

.partial .partial Should the moving window be allowed to return partial (incomplete)
windows instead of NA values. Set to FALSE by default, but can be switched to
TRUE to remove NA’s.

.names A vector of names for the new columns. Must be of same length as .period.

Default is "auto".

112 tk_augment_slidity

Details

tk_augment_slidify() scales the slidify_vec() function to multiple time series . periods. See
slidify_vec() for examples and usage of the core function arguments.

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

* tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features
* tk_augment_holiday_signature() - Group-wise augmentation of holiday features

e tk_augment_slidify() - Group-wise augmentation of rolling functions

* tk_augment_lags() - Group-wise augmentation of lagged data

e tk_augment_differences() - Group-wise augmentation of differenced data

* tk_augment_fourier() - Group-wise augmentation of fourier series
Underlying Function:

* slidify_vec() - The underlying function that powers tk_augment_slidify()

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

FANG %>%
select(symbol, date, adjusted) %>%
group_by(symbol) %>%
tk_augment_slidify(
.value = adjusted,
Multiple rolling windows
.period = c(10, 30, 60, 90),

f = AVERAGE,
.partial = TRUE,
.names = str_c("MA_", c(10, 30, 60, 90))

tk_augment_timeseries 113

tk_augment_timeseries Add many time series features to the data

Description

Add many time series features to the data

Usage

tk_augment_timeseries_signature(.data, .date_var = NULL)

Arguments
.data A time-based tibble or time-series object.
.date_var For tibbles, a column containing either date or date-time values. If NULL, the
time-based column will interpret from the object (tibble, xts, zoo, etc).
Details

tk_augment_timeseries_signature() adds 25+ time series features including:

e Trend in Seconds Granularity: index.num

* Yearly Seasonality: Year, Month, Quarter

* Weekly Seasonality: Week of Month, Day of Month, Day of Week, and more
¢ Daily Seasonality: Hour, Minute, Second

* Weekly Cyclic Patterns: 2 weeks, 3 weeks, 4 weeks

Value

Returns a tibble object describing the timeseries.

See Also
Augment Operations:
* tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features
* tk_augment_holiday_signature() - Group-wise augmentation of holiday features
e tk_augment_slidify() - Group-wise augmentation of rolling functions
e tk_augment_lags() - Group-wise augmentation of lagged data
* tk_augment_differences() - Group-wise augmentation of differenced data

* tk_augment_fourier() - Group-wise augmentation of fourier series
Underlying Function:

e tk_get_timeseries_signature() - Returns timeseries features from an index

114 tk_get_frequency

Examples

library(dplyr)
library(timetk)

m4_daily %>%
group_by(id) %>%
tk_augment_timeseries_signature(date)

tk_get_frequency Automatic frequency and trend calculation from a time series index

Description

Automatic frequency and trend calculation from a time series index

Usage

tk_get_frequency(idx, period = "auto", message = TRUE)

tk_get_trend(idx, period = "auto", message = TRUE)

Arguments
idx A date or datetime index.
period Either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of
observations per frequency (e.g. 10).
message A boolean. If message = TRUE, the frequency or trend is output as a message
along with the units in the scale of the data.
Details

A frequency is loosely defined as the number of observations that comprise a cycle in a data set.
The trend is loosely defined as time span that can be aggregated across to visualize the central
tendency of the data. It’s often easiest to think of frequency and trend in terms of the time-based
units that the data is already in. This is what tk_get_frequency() and time_trend() enable:
using time-based periods to define the frequency or trend.

Frequency:

As an example, a weekly cycle is often 5-days (for working days) or 7-days (for calendar days).
Rather than specify a frequency of 5 or 7, the user can specify period = "1 week”, and tk_get_frequency ()
will detect the scale of the time series and return 5 or 7 based on the actual data.

The period argument has three basic options for returning a frequency. Options include:
* "auto”: A target frequency is determined using a pre-defined template (see template below).

* time-based duration: (e.g. "1 week" or "2 quarters" per cycle)
* numeric number of observations: (e.g. 5 for 5 observations per cycle)

tk_get_frequency 115

When period = "auto”, the tk_time_scale_template() is used to calculate the frequency.
Trend:

As an example, the trend of daily data is often best aggregated by evaluating the moving average
over a quarter or a month span. Rather than specify the number of days in a quarter or month,
the user can specify "1 quarter” or "1 month", and the time_trend() function will return the cor-
rect number of observations per trend cycle. In addition, there is an option, period = "auto”, to
auto-detect an appropriate trend span depending on the data. The template is used to define the
appropriate trend span.

Time Scale Template

The tk_time_scale_template() is a Look-Up Table used by the trend and period to find the
appropriate time scale. It contains three features: time_scale, frequency, and trend.

The algorithm will inspect the scale of the time series and select the best frequency or trend that
matches the scale and number of observations per target frequency. A frequency is then chosen on
be the best match.

The predefined template is stored in a function tk_time_scale_template(). You can modify the
template with set_tk_time_scale_template().
Value

Returns a scalar numeric value indicating the number of observations in the frequency or trend span.

See Also

* Time Scale Template Modifiers: get_tk_time_scale_template(), set_tk_time_scale_template()

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

idx_FB <- FANG %>%
filter(symbol == "FB") %>%
pull(date)

Automated Frequency Calculation
tk_get_frequency(idx_FB, period = "auto")

Automated Trend Calculation
tk_get_trend(idx_FB, period = "auto")

Manually Override Trend
tk_get_trend(idx_FB, period = "1 year")

116 tk_get_holiday

tk_get_holiday Get holiday features from a time-series index

Description

Get holiday features from a time-series index

Usage

tk_get_holiday_signature(
idx,
holiday_pattern = ".",
locale_set = C(Ilallll’ ”nonell7 “WOI"ld", IIUSII, “CAII’ HGBII, HFRH, IIITII, IIJ'PII, IICHII’
IIDEII)’
exchange_set = c("all”, "none"”, "NYSE", "LONDON", "NERC", "TSX", "ZURICH")
)

tk_get_holidays_by_year(years = year(today()))

Arguments

idx A time-series index that is a vector of dates or datetimes.

holiday_pattern
A regular expression pattern to search the "Holiday Set".

locale_set Return binary holidays based on locale. One of: "all", "none", "World", "US",
YVCAII’ llGBH7 IIFR"’ YVITII’ ||JP"’ HCHII’ "DE"'

exchange_set Return binary holidays based on Stock Exchange Calendars. One of: "all",
"none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

years One or more years to collect holidays for.

Details
Feature engineering holidays can help identify critical patterns for machine learning algorithms.
tk_get_holiday_signature() helps by providing feature sets for 3 types of features:
1. Individual Holidays

These are single holiday features that can be filtered using a pattern. This helps in identifying
which holidays are important to a machine learning model. This can be useful for example in
e-commerce initiatives (e.g. sales during Christmas and Thanskgiving).

2. Locale-Based Summary Sets

Locale-based holdiay sets are useful for e-commerce initiatives (e.g. sales during Christmas and
Thanskgiving). Filter on a locale to identify all holidays in that locale.

3. Stock Exchange Calendar Summary Sets

Exchange-based holdiay sets are useful for identifying non-working days. Filter on an index to
identify all holidays that are commonly non-working.

tk_get_holiday 117

Value

Returns a tibble object describing the timeseries holidays.

See Also

e tk_augment_holiday_signature() - A quick way to add holiday features to a data.frame

* step_holiday_signature() - Preprocessing and feature engineering steps for use with recipes

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

Works with time-based tibbles
idx <- tk_make_timeseries(”2017-01-01", "2017-12-31", by = "day")

--- BASIC USAGE ----

tk_get_holiday_signature(idx)

---- FILTERING WITH PATTERNS & SETS ----

List available holidays - see patterns

tk_get_holidays_by_year(2020) %>%
filter(holiday_name %>% str_detect("US_"))

Filter using holiday patterns

- Get New Years, Christmas and Thanksgiving Features in US
tk_get_holiday_signature(

idx,
holiday_pattern = "(US_NewYears) | (US_Christmas) | (US_Thanks)",
locale_set = "none”,
exchange_set = "none")
---- APPLYING FILTERS ----

Filter with locale sets - Signals all holidays in a locale
tk_get_holiday_signature(

idx,

holiday_pattern = "$*", # Matches nothing on purpose
locale_set = "Us"”,

exchange_set = "none")

Filter with exchange sets - Signals Common Non-Business Days
tk_get_holiday_signature(

idx,
holiday_pattern = "$*" # Matches nothing on purpose
locale_set = "none”,

exchange_set = "NYSE")

118 tk_get_timeseries

tk_get_timeseries Get date features from a time-series index

Description

Get date features from a time-series index

Usage

tk_get_timeseries_signature(idx)

tk_get_timeseries_summary(idx)

Arguments

idx A time-series index that is a vector of dates or datetimes.

Details

tk_get_timeseries_signature decomposes the timeseries into commonly needed features such
as numeric value, differences, year, month, day, day of week, day of month, day of year, hour,
minute, second.

tk_get_timeseries_summary returns the summary returns the start, end, units, scale, and a "sum-
mary" of the timeseries differences in seconds including the minimum, 1st quartile, median, mean,
3rd quartile, and maximum frequency. The timeseries differences give the user a better picture of
the index frequency so the user can understand the level of regularity or irregularity. A perfectly
regular time series will have equal values in seconds for each metric. However, this is not often the
case.

Important Note: These functions only work with time-based indexes in datetime, date, yearmon,
and yearqtr values. Regularized dates cannot be decomposed.

Value

Returns a tibble object describing the timeseries.

See Also

tk_index(), tk_augment_timeseries_signature(), tk_make_future_timeseries()

Examples

library(dplyr)
library(tidyquant)
library(timetk)

Works with time-based tibbles
FB_tbl <- FANG %>% filter(symbol == "FB")
FB_idx <- tk_index(FB_tbl)

tk_get_timeseries_unit_frequency 119

tk_get_timeseries_signature(FB_idx)
tk_get_timeseries_summary(FB_idx)

Works with dates in any periodicity
idx_weekly <- seq.Date(from = ymd("2016-01-01"), by = 'week', length.out = 6)

tk_get_timeseries_signature(idx_weekly)
tk_get_timeseries_summary(idx_weekly)

Works with zoo yearmon and yearqtr classes

idx_yearmon <- seq.Date(from = ymd("2016-01-01"),
by "month”,
length.out = 12) %>%

as.yearmon()

tk_get_timeseries_signature(idx_yearmon)
tk_get_timeseries_summary(idx_yearmon)

tk_get_timeseries_unit_frequency
Get the timeseries unit frequency for the primary time scales

Description

Get the timeseries unit frequency for the primary time scales

Usage

tk_get_timeseries_unit_frequency()

Value

tk_get_timeseries_unit_frequency returns a tibble containing the timeseries frequencies in

"non "non

seconds for the primary time scales including "sec", "min", "hour", "day", "week", "month", "quar-
ter", and "year".

Examples

tk_get_timeseries_unit_frequency()

120 tk_index

tk_get_timeseries_variables
Get date or datetime variables (column names)

Description

Get date or datetime variables (column names)

Usage

tk_get_timeseries_variables(data)

Arguments

data An object of class data. frame

Details

tk_get_timeseries_variables returns the column names of date or datetime variables in a data
frame. Classes that meet criteria for return include those that inherit POSIXt, Date, zoo: : yearmon,
z00: :yearqtr. Function was adapted from padr: : :get_date_variables(). See padr helpers.R

Value

tk_get_timeseries_variables returns a vector containing column names of date-like classes.

Examples

library(tidyquant)
library(timetk)

FANG %>%
tk_get_timeseries_variables()

tk_index Extract an index of date or datetime from time series objects, models,
forecasts

Description

Extract an index of date or datetime from time series objects, models, forecasts

Usage
tk_index(data, timetk_idx = FALSE, silent = FALSE)

has_timetk_idx(data)

https://github.com/EdwinTh/padr/blob/master/R/helpers.R

tk_index 121

Arguments
data A time-based tibble, time-series object, time-series model, or forecast object.
timetk_idx If timetk_idx is TRUE a timetk time-based index attribute is attempted to be
returned. If FALSE the default index is returned. See discussion below for further
details.
silent Used to toggle printing of messages and warnings.
Details

tk_index() is used to extract the date or datetime index from various time series objects, models
and forecasts. The method can be used on tbl, xts, zoo, zooreg, and ts objects. The method can
additionally be used on forecast objects and a number of objects generated by modeling functions
such as Arima, ets, and HoltWinters classes to get the index of the underlying data.

The boolean timetk_idx argument is applicable to regularized time series objects such as ts and
zooreg classes that have both a regularized index and potentially a "timetk index" (a time-based
attribute). When set to FALSE the regularized index is returned. When set to TRUE the time-based
timetk index is returned if present.

has_timetk_idx() is used to determine if the object has a "timetk index" attribute and can thus
benefit from the tk_index(timetk_idx = TRUE). TRUE indicates the "timetk index" attribute is
present. FALSE indicates the "timetk index" attribute is not present. If FALSE, the tk_index()
function will return the default index for the data type.

Important Note: To gain the benefit of timetk_idx the time series must have a timetk index. Use
has_timetk_idx to determine if the object has a timetk index. This is particularly important for
ts objects, which by default do not contain a time-based index and therefore must be coerced from
time-based objects such as tbl, xts, or zoo using the tk_ts() function in order to get the "timetk
index" attribute. Refer to tk_ts() for creating persistent date / datetime index during coercion to
ts.

Value

Returns a vector of date or date times

See Also
tk_ts(), tk_tbl(), tk_xts(), tk_zoo(), tk_zooreg()

Examples

library(timetk)

Create time-based tibble

data_tbl <- tibble::tibble(
date = seq.Date(from = as.Date("2000-01-01"), by = 1, length.out = 5),
X rnorm(5) * 10,
y 5:1

)

tk_index(data_tbl) # Returns time-based index vector

122

Coerce to ts using tk_ts():

data_ts <- tk_ts(data_tbl)
tk_index(data_ts, timetk_idx
tk_index(data_ts, timetk_idx

Coercing back to tbl
tk_tbl(data_ts, timetk_idx =
tk_tbl(data_ts, timetk_idx =

tk_make_future_timeseries

Preserves time-basis
= FALSE) # Returns regularized index

= TRUE) # Returns original time-based index vector

FALSE) # Returns regularized tbl
TRUE) # Returns time-based tbl

tk_make_future_timeseries

Make future time series from existing

Description

Make future time series from existing

Usage
tk_make_future_timeseries(
idx,
length_out,

inspect_weekdays = FALSE,

inspect_months = FALSE,
skip_values = NULL,

insert_values = NULL,
n_future = NULL
)
Arguments
idx A vector of dates
length_out

year".
inspect_weekdays

Number of future observations. Can be numeric number or a phrase like "1

inspect_months

skip_values
insert_values

n_future

Uses a logistic regression algorithm to inspect whether certain weekdays (e.g.
weekends) should be excluded from the future dates. Default is FALSE.

Uses a logistic regression algorithm to inspect whether certain days of months
(e.g. last two weeks of year or seasonal days) should be excluded from the future
dates. Default is FALSE.

A vector of same class as idx of timeseries values to skip.
A vector of same class as idx of timeseries values to insert.

(DEPRECATED) Number of future observations. Can be numeric number or a
phrase like "1 year".

tk_make_future_timeseries 123

Details

Future Sequences

tk_make_future_timeseries returns a time series based on the input index frequency and at-
tributes.

Specifying Length of Future Observations
The argument length_out determines how many future index observations to compute. It can be
specified as:

* A numeric value - the number of future observations to return.

— The number of observations returned is always equal to the value the user inputs.
— The end date can vary based on the number of timestamps chosen.

* A time-based phrase - The duration into the future to include (e.g. "6 months" or "30 min-
utes").

— The duration defines the end date for observations.

— The end date will not change and those timestamps that fall within the end date will be
returned (e.g. a quarterly time series will return 4 quarters if length_out = "1 year"”).

— The number of observations will vary to fit within the end date.
Weekday and Month Inspection
The inspect_weekdays and inspect_months arguments apply to "daily" (scale = "day") data
(refer to tk_get_timeseries_summary() to get the index scale).

* The inspect_weekdays argument is useful in determining missing days of the week that oc-
cur on a weekly frequency such as every week, every other week, and so on. It’s recommended
to have at least 60 days to use this option.

* The inspect_months argument is useful in determining missing days of the month, quarter
or year; however, the algorithm can inadvertently select incorrect dates if the pattern is erratic.
Skipping / Inserting Values
The skip_values and insert_values arguments can be used to remove and add values into the
series of future times. The values must be the same format as the idx class.
» The skip_values argument useful for passing holidays or special index values that should be
excluded from the future time series.

» The insert_values argument is useful for adding values back that the algorithm may have
excluded.
Value

A vector containing future index of the same class as the incoming index idx

See Also

* Making Time Series: tk_make_timeseries()

* Working with Holidays & Weekends: tk_make_holiday_sequence(), tk_make_weekend_sequence(),
tk_make_weekday_sequence()

* Working with Timestamp Index: tk_index(), tk_get_timeseries_summary(), tk_get_timeseries_signature()

124 tk_make_holiday_sequence

Examples

library(dplyr)
library(tidyquant)
library(timetk)

Basic example - By 3 seconds
idx <- tk_make_timeseries("2016-01-01 00:00:00", by = "3 sec”, length_out = 3)
idx

Make next three timestamps in series
idx %>% tk_make_future_timeseries(length_out = 3)

Make next 6 seconds of timestamps from the next timestamp
idx %>% tk_make_future_timeseries(length_out = "6 sec")

Basic Example - By 1 Month

idx <- tk_make_timeseries(”2016-01-01", by = "1 month",
length_out = "12 months")

idx

Make 12 months of timestamps from the next timestamp
idx %>% tk_make_future_timeseries(length_out = "12 months")

--- APPLICATION ---
- Combine holiday sequences with future sequences

Create index of days that FB stock will be traded in 2017 based on 2016 + holidays
FB_tbl <- FANG %>% filter(symbol == "FB")

holidays <- tk_make_holiday_sequence(
start_date = "2017-01-01",
end_date = "2017-12-31",
calendar = "NYSE")

Remove holidays with skip_values, and remove weekends with inspect_weekdays = TRUE
FB_tbl %>%
tk_index() %>%

tk_make_future_timeseries(length_out = "1 year”,
inspect_weekdays = TRUE,
skip_values = holidays)

tk_make_holiday_sequence
Make daily Holiday and Weekend date sequences

tk_make_holiday_sequence 125

Description

Make daily Holiday and Weekend date sequences

Usage

tk_make_holiday_sequence(
start_date,
end_date,
calendar = c(”NYSE", "LONDON", "NERC", "TSX", "ZURICH"),
skip_values = NULL,
insert_values = NULL

)

tk_make_weekend_sequence(start_date, end_date)

tk_make_weekday_sequence(
start_date,
end_date,
remove_weekends = TRUE,
remove_holidays = FALSE,
calendar = c("NYSE", "LONDON", "NERC", "TSX", "ZURICH"),
skip_values = NULL,
insert_values = NULL

)
Arguments

start_date Used to define the starting date for date sequence generation. Provide in "YYY Y-
MM-DD" format.

end_date Used to define the ending date for date sequence generation. Provide in "YYY Y-
MM-DD" format.

calendar The calendar to be used in Date Sequence calculations for Holidays from the
timeDate package. Acceptable values are: "NYSE"”, "LONDON", "NERC", "TSX",
"ZURICH".

skip_values A daily date sequence to skip

insert_values A daily date sequence to insert

remove_weekends
A logical value indicating whether or not to remove weekends (Saturday and
Sunday) from the date sequence

remove_holidays
A logical value indicating whether or not to remove common holidays from the
date sequence

Details
Start and End Date Specification

* Accept shorthand notation (i.e. tk_make_timeseries() specifications apply)

126 tk_make_holiday_sequence

* Only available in Daily Periods.

Holiday Sequences
tk_make_holiday_sequence() is a wrapper for various holiday calendars from the timeDate
package, making it easy to generate holiday sequences for common business calendars:

* New York Stock Exchange: calendar = "NYSE"

* Londo Stock Exchange: "LONDON"

* North American Reliability Council: "NERC"

 Toronto Stock Exchange: "TSX"

 Zurich Stock Exchange: "ZURICH"

Weekend and Weekday Sequences
These simply populate

Value

A vector containing future dates

See Also

Intelligent date or date-time sequence creation: tk_make_timeseries()

Holidays and weekends: tk_make_holiday_sequence(), tk_make_weekend_sequence(),
tk_make_weekday_sequence()

Make future index from existing: tk_make_future_timeseries()

Examples

library(dplyr)
library(tidyquant)
library(timetk)

options(max.print = 50)

---- HOLIDAYS & WEEKENDS ----

Business Holiday Sequence
tk_make_holiday_sequence(”2017-01-01", "2017-12-31", calendar = "NYSE")

tk_make_holiday_sequence(”2017", calendar = "NYSE") # Same thing as above (just shorter)

Weekday Sequence
tk_make_weekday_sequence("2017", "2018", remove_holidays = TRUE)

Weekday Sequence + Removing Business Holidays
tk_make_weekday_sequence("2017", "2018", remove_holidays = TRUE)

tk_make_timeseries 127

---- COMBINE HOLIDAYS WITH MAKE FUTURE TIMESERIES FROM EXISTING ----
- A common machine learning application is creating a future time series data set
from an existing

Create index of days that FB stock will be traded in 2017 based on 2016 + holidays
FB_tbl <- FANG %>% filter(symbol == "FB")

holidays <- tk_make_holiday_sequence(
start_date = "2016",
end_date = "2017",
calendar = "NYSE")

weekends <- tk_make_weekend_sequence(
start_date = "2016",
end_date = "2017")

Remove holidays and weekends with skip_values
We could also remove weekends with inspect_weekdays = TRUE
FB_tbl %>%
tk_index() %>%
tk_make_future_timeseries(length_out = 366,
skip_values c(holidays, weekends))

tk_make_timeseries Intelligent date and date-time sequence creation

Description

Improves on the seq.Date() and seq.POSIXt () functions by simplifying into 1 function tk_make_timeseries().
Intelligently handles character dates and logical assumptions based on user inputs.

Usage

tk_make_timeseries(
start_date,
end_date,
by,
length_out = NULL,
include_endpoints = TRUE,
skip_values = NULL,
insert_values = NULL

Arguments

start_date Used to define the starting date for date sequence generation. Provide in"YYY Y-
MM-DD" format.

128 tk_make_timeseries

end_date Used to define the ending date for date sequence generation. Provide in "YYY Y-
MM-DD" format.
by A character string, containing one of "sec”, "min”, "hour”, "day"”, "week",

"month”, "quarter” or "year"”. You can create regularly spaced sequences
using phrases like by = "1@ min". See Details.

length_out Optional length of the sequence. Can be used instead of one of: start_date,
end_date, or by. Can be specified as a number or a time-based phrase.

include_endpoints

Logical. Whether or not to keep the last value when length_out is a time-based
phrase. Default is TRUE (keep last value).

skip_values A sequence to skip

insert_values A sequence to insert

Details
The tk_make_timeseries() function handles both date and date-time sequences automatically.

* Parses date and date times from character

* Intelligently guesses the sequence desired based on arguments provided

» Handles spacing intelligently

* When both by and length_out are missing, guesses either second or day sequences

* Can skip and insert values if needed.

Start and End Date Specification

Start and end dates can be specified in reduced time-based phrases:

e start_date = "2014": Is converted to "2014-01-01" (start of period)

* end_date = "2014": Is converted to "2014-12-31" (end of period)

* start_date = "2014-03": Is converted to "2014-03-01" (start of period)
* end_date = "2014-03": Is converted to "2014-03-31" (end of period)

A similar process can be used for date-times.

By: Daily Sequences

Make a daily sequence with tk_make_timeseries(by). Examples:
* Every Day: by = "day”
» Every 2-Weeks: by = "2 weeks”
» Every 6-months: by = "6 months”

If missing, will guess by = "day"”

By: Sub-Daily Sequences

Make a sub-daily sequence with tk_make_timeseries(by). Examples:
* Every minute: by = "min”

* Every 30-seconds: by = "30 sec”

tk_make_timeseries 129

* Every 2-hours: by = "2 hours

If missing, will guess by = "sec” if the start or end date is a date-time specification.
Length Out
The length_out can be specified by number of observation or complex time-based expressions.
The following examples are all possible.
* length_out = 12 Creates 12 evenly spaced observations.

* length_out = "12 months" Adjusts the end date so it falls on the 12th month.

Include Endpoint

Sometimes the last date is not desired. For example, if the user specifies length_out = 12 months, the
user may want the last value to be the 12th month and not the 13th. Just toggle, include_endpoint
= FALSE to obtain this behavior.

Skip / Insert Timestamps

Skips and inserts are performed after the sequence is generated. This means that if you use the
length_out parameter, the length may differ than the length_out.
Value

A vector containing date or date-times

See Also

* Intelligent date or date-time sequence creation: tk_make_timeseries()

* Holidays and weekends: tk_make_holiday_sequence(), tk_make_weekend_sequence(),
tk_make_weekday_sequence()

* Make future index from existing: tk_make_future_timeseries()

Examples
library(dplyr)
library(tidyquant)
library(timetk)
options(max.print = 50)

---- DATE ----

Start + End, Guesses by = "day”
tk_make_timeseries("2017-01-01", "2017-12-31")

Just Start
tk_make_timeseries("2017") # Same result

Only dates in February, 2017
tk_make_timeseries("2017-02")

Start + Length Out, Guesses by = "day"

130 tk_seasonal_diagnostics

tk_make_timeseries("2012", length_out = 6) # Guesses by = "day"

Start + By + Length Out, Spacing 6 observations by monthly interval
tk_make_timeseries(”2012", by = "1 month"”, length_out = 6)

Start + By + Length Out, Phrase "1 year 6 months”
tk_make_timeseries(”2012", by = "1 month”,

length_out = "1 year 6 months”, include_endpoints = FALSE)

Going in Reverse, End + Length Out
tk_make_timeseries(end_date = "2012-01-01", by = "1 month",
length_out = "1 year 6 months”, include_endpoints = FALSE)

---- DATE-TIME ----

Start + End, Guesses by second
tk_make_timeseries(”2016-01-01 01:01:02", "2016-01-01 01:01:04")

Date-Time Sequence - By 10 Minutes
- Converts to date-time automatically & applies 10-min interval
tk_make_timeseries(”2017-01-01", "2017-01-02", by = "10 min")

--- REMOVE / INCLUDE ENDPOINTS ----

Last value in this case is desired
tk_make_timeseries(”2017-01-01", by = "30 min", length_out = "6 hours")

Last value in monthly case is not wanted
tk_make_timeseries(”2012-01-01", by = "1 month",
length_out = "12 months”,
include_endpoints = FALSE) # Removes unnecessary last value

---- SKIP & INSERT VALUES ----

tk_make_timeseries(
"2011-01-01", length_out = 5,
skip_values = "2011-01-05",
insert_values = "2011-01-06"

tk_seasonal_diagnostics
Group-wise Seasonality Data Preparation

Description

tk_seasonal_diagnostics() is the preprocessor for plot_seasonal_diagnostics(). It helps
by automating feature collection for time series seasonality analysis.

tk_seasonal_diagnostics 131

Usage

tk_seasonal_diagnostics(.data, .date_var, .value, .feature_set = "auto")
Arguments

.data A tibble or data. frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.feature_set One or multiple selections to analyze for seasonality. Choices include:
* "auto" - Automatically selects features based on the time stamps and length
of the series.
* "second" - Good for analyzing seasonality by second of each minute.
* "minute" - Good for analyzing seasonality by minute of the hour
* "hour" - Good for analyzing seasonality by hour of the day

* "wday.lbl" - Labeled weekdays. Good for analyzing seasonality by day of
the week.

* "week" - Good for analyzing seasonality by week of the year.

* "month.lbl" - Labeled months. Good for analyzing seasonality by month of
the year.

 "quarter" - Good for analyzing seasonality by quarter of the year
* "year" - Good for analyzing seasonality over multiple years.

Details

Automatic Feature Selection
Internal calculations are performed to detect a sub-range of features to include useing the following
logic:
* The minimum feature is selected based on the median difference between consecutive times-
tamps

* The maximum feature is selected based on having 2 full periods.

Example: Hourly timestamp data that lasts more than 2 weeks will have the following features:

"non

"hour", "wday.Ibl", and "week".
Scalable with Grouped Data Frames
This function respects grouped data. frame and tibbles that were made with dplyr: :group_by().

For grouped data, the automatic feature selection returned is a collection of all features within the
sub-groups. This means extra features are returned even though they may be meaningless for some
of the groups.

Transformations

The .value parameter respects transformations (e.g. .value = log(sales)).

Value

A tibble or data. frame with seasonal features

132 tk_stl_diagnostics

Examples

library(dplyr)
library(timetk)

---- GROUPED EXAMPLES ----

Hourly Data

m4_hourly %>%
group_by(id) %>%
tk_seasonal_diagnostics(date, value)

Monthly Data

m4_monthly %>%
group_by(id) %>%
tk_seasonal_diagnostics(date, value)

---- TRANSFORMATION ----

m4_weekly %>%
group_by(id) %>%
tk_seasonal_diagnostics(date, log(value))

---- CUSTOM FEATURE SELECTION ----

m4_hourly %>%
group_by(id) %>%

tk_seasonal_diagnostics(date, value, .feature_set = c("hour”, "week"))
tk_stl_diagnostics Group-wise STL Decomposition (Season, Trend, Remainder)
Description

tk_stl_diagnostics() is the preprocessor for plot_stl_diagnostics(). It helps by automating
frequency and trend selection.

Usage

tk_stl_diagnostics(
.data,
.date_var,
.value,
.frequency = "auto"”,
.trend = "auto”,
.message = TRUE

tk_stl_diagnostics 133

Arguments
.data A tibble or data. frame with a time-based column
.date_var A column containing either date or date-time values
.value A column containing numeric values
.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to tk_get_frequency().
.trend Controls the trend component. For STL, trend controls the sensitivity of the
lowess smoother, which is used to remove the remainder.
.message A boolean. If TRUE, will output information related to automatic frequency and
trend selection (if applicable).
Details

The tk_stl_diagnostics() function generates a Seasonal-Trend-Loess decomposition. The func-
tion is "tidy" in the sense that it works on data frames and is designed to work with dplyr groups.

STL method:

The STL method implements time series decomposition using the underlying stats::stl1(). The
decomposition separates the "season" and "trend" components from the "observed" values leaving
the "remainder".

Frequency & Trend Selection
The user can control two parameters: . frequency and . trend.
1. The .frequency parameter adjusts the "season" component that is removed from the "ob-
served" values.
2. The .trend parameter adjusts the trend window (t.window parameter from st1()) that is

used.

The user may supply both . frequency and .trend as time-based durations (e.g. "6 weeks") or
numeric values (e.g. 180) or "auto", which automatically selects the frequency and/or trend based
on the scale of the time series.

Value

A tibble or data.frame with Observed, Season, Trend, Remainder, and Seasonally-Adjusted
features

Examples

library(dplyr)
library(timetk)

---- GROUPS & TRANSFORMATION ----
m4_daily %>%
group_by(id) %>%
tk_stl_diagnostics(date, box_cox_vec(value))

134 tk_summary_diagnostics

---- CUSTOM TREND ----
m4_weekly %>%
group_by(id) %>%
tk_stl_diagnostics(date, box_cox_vec(value), .trend = "2 quarters”)

tk_summary_diagnostics
Group-wise Time Series Summary

Description

tk_summary_diagnostics() returns the time series summary from one or more timeseries groups
in a tibble.

Usage

tk_summary_diagnostics(.data, .date_var)

Arguments
.data A tibble or data. frame with a time-based column
.date_var A column containing either date or date-time values. If missing, attempts to
auto-detect the date or date-time column.
Details

Applies tk_get_timeseries_summary() group-wise returning the summary of one or more time
series groups.

* Respects dplyr groups

* Returns the time series summary from a time-based feature.

Value

A tibble or data.frame with timeseries summary features

Examples

library(dplyr)
library(timetk)

---- NON-GROUPED EXAMPLES ----

Monthly Data

m4_monthly %>%
filter(id == "M750") %>%
tk_summary_diagnostics()

tk_tbl 135

---- GROUPED EXAMPLES ----

Monthly Data

m4_monthly %>%
group_by(id) %>%
tk_summary_diagnostics()

tk_tbl Coerce time-series objects to tibble.

Description

Coerce time-series objects to tibble.

Usage
tk_tb1(
data,
preserve_index = TRUE,
rename_index = "index",

timetk_idx = FALSE,
silent = FALSE,

Arguments

data A time-series object.
preserve_index Attempts to preserve a time series index. Default is TRUE.
rename_index Enables the index column to be renamed.

timetk_idx Used to return a date / datetime index for regularized objects that contain a
timetk "index" attribute. Refer to tk_index () for more information on returning
index information from regularized timeseries objects (i.e. ts).

silent Used to toggle printing of messages and warnings.

Additional parameters passed to the tibble: :as_tibble() function.

Details

tk_tbl is designed to coerce time series objects (e.g. xts, zoo, ts, timeSeries, etc) to tibble
objects. The main advantage is that the function keeps the date / date-time information from the
underlying time-series object.

When preserve_index = TRUE is specified, a new column, index, is created during object coer-
cion, and the function attempts to preserve the date or date-time information. The date / date-time
column name can be changed using the rename_index argument.

136 tk_tbl

The timetk_idx argument is applicable when coercing ts objects that were created using tk_ts()
from an object that had a time base (e.g. tbl, xts, zoo). Setting timetk_idx = TRUE enables
returning the timetk "index" attribute if present, which is the original (non-regularized) time-based
index.

Value

Returns a tibble object.

See Also

tk_xts(), tk_zoo(), tk_zooreg(), tk_ts()

Examples

library(tidyverse)
library(timetk)

data_tbl <- tibble(
date = seq.Date(from = as.Date("2010-01-01"), by = 1, length.out = 5),
X seq(100, 120, by = 5)

ts to tibble: Comparison between as.data.frame() and tk_tbl()
data_ts <- tk_ts(data_tbl, start = c(2010,1), freq = 365)

No index
as.data.frame(data_ts)

Defualt index returned is regularized numeric index
tk_tbl(data_ts)

Original date index returned (Only possible if original data has time-based index)
tk_tbl(data_ts, timetk_idx = TRUE)
xts to tibble: Comparison between as.data.frame() and tk_tbl()

data_xts <- tk_xts(data_tbl)

Dates are character class stored in row names
as.data.frame(data_xts)

Dates are appropriate date class and within the data frame
tk_tbl(data_xts)
zooreg to tibble: Comparison between as.data.frame() and tk_tb1()

data_zooreg <- tk_zooreg(1:8, start = zoo::yearqtr(2000), frequency = 4)

Dates are character class stored in row names
as.data.frame(data_zooreg)

tk_time_series_cv_plan 137

Dates are appropriate zoo yearqtr class within the data frame
tk_tbl(data_zooreg)

zoo to tibble: Comparison between as.data.frame() and tk_tbl()
data_zoo <- z00::z00(1:12, zoo::yearmon(2016 + seq(@, 11)/12))

Dates are character class stored in row names
as.data.frame(data_zoo)

Dates are appropriate zoo yearmon class within the data frame
tk_tbl(data_zoo)

tk_time_series_cv_plan
Time Series Resample Plan Data Preparation

Description
The tk_time_series_cv_plan() function provides a simple interface to prepare a time series
resample specification (rset) of either rolling_origin or time_series_cv class.

Usage

tk_time_series_cv_plan(.data)

Arguments

.data A time series resample specification of of either rolling_originor time_series_cv
class.

Details

Resample Set

A resample set is an output of the timetk: : time_series_cv() function or the rsample: :rolling_origin()
function.

See Also

e time_series_cv() and rsample::rolling_origin() - Functions used to create time series
resample specfications.

e plot_time_series_cv_plan() - The plotting function used for visualizing the time series
resample plan.

138 tk_ts

Examples

library(tidyverse)
library(tidyquant)
library(rsample)
library(timetk)

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

resample_spec <- time_series_cv(
FB_tbl,
initial = 150, assess = 50, skip = 50,
cumulative = FALSE,
lag = 30,
slice_limit = n())

resample_spec %>% tk_time_series_cv_plan()

tk_ts Coerce time series objects and tibbles with date/date-time columns to
ts.

Description

Coerce time series objects and tibbles with date/date-time columns to ts.

Usage

tk_ts(
data,
select = NULL,
start = 1,
end = numeric(),
frequency = 1,
deltat = 1,
ts.eps = getOption("ts.eps"”),
silent = FALSE

tk_ts_(
data,
select = NULL,
start = 1,
end = numeric(),
frequency = 1,
deltat = 1,

tk_ts 139

ts.eps = getOption("ts.eps"”),

silent = FALSE
)
Arguments
data A time-based tibble or time-series object.
select Applicable to tibbles and data frames only. The column or set of columns to
be coerced to ts class.
start the time of the first observation. FEither a single number or a vector of two
integers, which specify a natural time unit and a (1-based) number of samples
into the time unit. See the examples for the use of the second form.
end the time of the last observation, specified in the same way as start.
frequency the number of observations per unit of time.
deltat the fraction of the sampling period between successive observations; e.g., 1/12
for monthly data. Only one of frequency or deltat should be provided.
ts.eps time series comparison tolerance. Frequencies are considered equal if their ab-
solute difference is less than ts.eps.
silent Used to toggle printing of messages and warnings.
Details

tk_ts() is a wrapper for stats: : ts() that is designed to coerce tibble objects that have a "time-
base" (meaning the values vary with time) to ts class objects. There are two main advantages:

1. Non-numeric columns get removed instead of being populated by NA’s.

2. The returned ts object retains a "timetk index" (and various other attributes) if detected. The

"timetk index" can be used to coerce between tbl, xts, zoo, and ts data types.

The select argument is used to select subsets of columns from the incoming data.frame. Only
columns containing numeric data are coerced. At a minimum, a frequency and a start should be
specified.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using
stats::ts().

tk_ts_ is a nonstandard evaluation method.

Value

Returns a ts object.

See Also

tk_index (), tk_tb1(), tk_xts(), tk_zoo(), tk_zooreg()

140 tk_ts_.data.frame

Examples

library(tidyverse)
library(timetk)

tibble to ts: Comparison between tk_ts() and stats::ts()
data_tbl <- tibble::tibble(
date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
X rep("chr values”, 5),
y = cumsum(1:5),
z cumsum(11:15) * rnorm(1))

as.ts: Character columns introduce NA's; Result does not retain index
stats::ts(data_tbl[,-1], start = 2016)

tk_ts: Only numeric columns get coerced; Result retains index in numeric format
data_ts <- tk_ts(data_tbl, start = 2016)
data_ts

timetk index
tk_index(data_ts, timetk_idx
tk_index(data_ts, timetk_idx

FALSE) # Regularized index returned
TRUE) # Original date index returned

Coerce back to tibble
data_ts %>% tk_tbl(timetk_idx = TRUE)

Using select
tk_ts(data_tbl, select =y)

NSE: Enables programming
select <= "y"
tk_ts_(data_tbl, select = select)

tk_ts_.data.frame Internal Functions Used in timetk

Description

The following are internal functions that are not meant to be used by users.

Usage
tk_ts_.data.frame(data, select, start, end, frequency, deltat, ts.eps, silent)

tk_ts_.default(data, select, start, end, frequency, deltat, ts.eps, silent)

tk_zooreg_.data.frame(

tk_ts_.data.frame

data,
select,
date_var,
start,
end,

frequency,

deltat,
ts.eps,
order.by,
silent

)

141

tk_zooreg_.default(

data,
select,
date_var,
start,
end,

frequency,

deltat,
ts.eps,
order.by,
silent

Arguments

data

select
start
end

frequency
deltat

ts.eps
silent

date_var

order.by

A time-based tibble or time-series object.

Applicable to tibbles and data frames only. The column or set of columns to
be coerced to zooreg class.

the time of the first observation. FEither a single number or a vector of two
integers, which specify a natural time unit and a (1-based) number of samples
into the time unit.

the time of the last observation, specified in the same way as start.

the number of observations per unit of time.

the fraction of the sampling period between successive observations; e.g., 1/12
for monthly data. Only one of frequency or deltat should be provided.

time series comparison tolerance. Frequencies are considered equal if their ab-
solute difference is less than ts.eps.

Used to toggle printing of messages and warnings.

Applicable to tibbles and data frames only. Column name to be used to

order.by. NULL by default. If NULL, function will find the date or date-time
column.

a vector by which the observations in x are ordered. If this is specified the
arguments start and end are ignored and zoo(data, order.by, frequency) is
called. See zoo for more information.

142 tk_xts

tk_xts Coerce time series objects and tibbles with date/date-time columns to
Xts.

Description

Coerce time series objects and tibbles with date/date-time columns to xts.

Usage
tk_xts(data, select = NULL, date_var = NULL, silent = FALSE, ...)
tk_xts_(data, select = NULL, date_var = NULL, silent = FALSE, ...)
Arguments
data A time-based tibble or time-series object.
select Applicable to tibbles and data frames only. The column or set of columns to
be coerced to ts class.
date_var Applicable to tibbles and data frames only. Column name to be used to
order.by. NULL by default. If NULL, function will find the date or date-time
column.
silent Used to toggle printing of messages and warnings.
Additional parameters to be passed to xts: :xts(). Refer to xts: :xts().
Details

tk_xts is a wrapper for xts: :xts() that is designed to coerce tibble objects that have a "time-
base" (meaning the values vary with time) to xts class objects. There are three main advantages:

1. Non-numeric columns that are not removed via select are dropped and the user is warned.
This prevents an error or coercion issue from occurring.

2. The date column is auto-detected if not specified by date_var. This takes the effort off the
user to assign a date vector during coercion.

3. ts objects are automatically coerced if a "timetk index" is present. Refer to tk_ts().

The select argument can be used to select subsets of columns from the incoming data.frame. Only
columns containing numeric data are coerced. The date_var can be used to specify the column
with the date index. If date_var = NULL, the date / date-time column is interpreted. Optionally, the
order.by argument from the underlying xts: :xts() function can be used. The user must pass a
vector of dates or date-times if order.by is used.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using
xts::xts().

tk_xts_ is a nonstandard evaluation method.

tk_zoo 143

Value

Returns a xts object.

See Also
tk_tbl(), tk_zoo(), tk_zooreg(), tk_ts()

Examples

library(tidyverse)
library(timetk)

tibble to xts: Comparison between tk_xts() and xts::xts()
data_tbl <- tibble::tibble(
date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),

X = rep("chr values”, 5),
y = cumsum(1:5),
z = cumsum(11:15) * rnorm(1))

xts: Character columns cause coercion issues; order.by must be passed a vector of dates
xts::xts(data_tbl[,-1], order.by = data_tbl$date)

tk_xts: Non-numeric columns automatically dropped; No need to specify date column
tk_xts(data_tbl)

ts can be coerced back to xts
data_tbl %>%
tk_ts(start = 2016, freq = 365) %>%
tk_xts()

Using select and date_var
tk_xts(data_tbl, select = y, date_var = date)

NSE: Enables programming
date_var <- "date”

select <-"y
tk_xts_(data_tbl, select = select, date_var = date_var)

tk_zoo Coerce time series objects and tibbles with date/date-time columns to
Xts.

Description

Coerce time series objects and tibbles with date/date-time columns to xts.

144

tk_zoo

Usage
tk_zoo(data, select = NULL, date_var = NULL, silent = FALSE, ...)
tk_zoo_(data, select = NULL, date_var = NULL, silent = FALSE, ...)
Arguments
data A time-based tibble or time-series object.
select Applicable to tibbles and data frames only. The column or set of columns to
be coerced to ts class.
date_var Applicable to tibbles and data frames only. Column name to be used to
order.by. NULL by default. If NULL, function will find the date or date-time
column.
silent Used to toggle printing of messages and warnings.
Additional parameters to be passed to xts: :xts(). Refer to xts: :xts().
Details

tk_zoo is a wrapper for zoo: :zoo() that is designed to coerce tibble objects that have a "time-
base" (meaning the values vary with time) to zoo class objects. There are three main advantages:

1. Non-numeric columns that are not removed via select are dropped and the user is warned.
This prevents an error or coercion issue from occurring.

2. The date column is auto-detected if not specified by date_var. This takes the effort off the
user to assign a date vector during coercion.

3. ts objects are automatically coerced if a "timetk index" is present. Refer to tk_ts().

The select argument can be used to select subsets of columns from the incoming data.frame. Only
columns containing numeric data are coerced. The date_var can be used to specify the column
with the date index. If date_var = NULL, the date / date-time column is interpreted. Optionally, the
order.by argument from the underlying zoo: : zoo() function can be used. The user must pass a
vector of dates or date-times if order.by is used. Important Note: The ... arguments are passed
to xts: :xts(), which enables additional information (e.g. time zone) to be an attribute of the zoo

object.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using

z00: :z00().

tk_zoo_ is a nonstandard evaluation method.

Value

Returns a zoo object.

See Also

tk_tbl(), tk_xts(), tk_zooreg(), tk_ts()

tk_zooreg

Examples

library(tidyverse)
library(timetk)

tibble to zoo: Comparison between tk_zoo() and zoo::zoo()

data_tbl
date
X

y
z

zoo: Characters will cause error; order.by must be passed a vector of dates

<-

tibble::tibble(

seq.Date(as.Date("2016-01-01"), by = 1, length.out =
rep("chr values”, 5),

cumsum(1:5),

cumsum(11:15) * rnorm(1))

z00::zoo(data_tbl[,-c(1,2)], order.by = data_tbl$date)

5)!

145

tk_zoo: Character columns dropped with a warning; No need to specify dates (auto detected)
tk_zoo(data_tbl)

ts can be coerced back to zoo
data_tbl %>%
tk_ts(start = 2016, freq = 365) %>%
tk_zoo()

#i## Using select and date_var
tk_zoo(data_tbl, select =y, date_var = date)

NSE: Enables programming
date_var <- "date”

select

<-

non

y

tk_zoo_(data_tbl, select = select, date_var = date_var)

tk_zooreg

Coerce time series objects and tibbles with date/date-time columns to

ts.

Description

Coerce time series objects and tibbles with date/date-time columns to ts.

Usage
tk_zooreg(
data,
select = NULL,
date_var = NULL,
start = 1,

end = numeric(),

146

tk_zooreg

frequency = 1,

deltat = 1,

ts.eps = getOption("ts.eps"),
order.by = NULL,
silent = FALSE

)

tk_zooreg_(

data,

select = NULL,

date_var
start = 1,

NULL,

end = numeric(),
frequency = 1,

deltat = 1,
getOption("ts.eps”),

ts.eps

order.by = NULL,
silent = FALSE

Arguments

data

select

date_var

start

end
frequency
deltat

ts.eps

order.by

silent

Details

A time-based tibble or time-series object.

Applicable to tibbles and data frames only. The column or set of columns to
be coerced to zooreg class.

Applicable to tibbles and data frames only. Column name to be used to
order.by. NULL by default. If NULL, function will find the date or date-time
column.

the time of the first observation. Either a single number or a vector of two
integers, which specify a natural time unit and a (1-based) number of samples
into the time unit.

the time of the last observation, specified in the same way as start.
the number of observations per unit of time.

the fraction of the sampling period between successive observations; e.g., 1/12
for monthly data. Only one of frequency or deltat should be provided.

time series comparison tolerance. Frequencies are considered equal if their ab-
solute difference is less than ts.eps.

a vector by which the observations in x are ordered. If this is specified the
arguments start and end are ignored and zoo(data, order.by, frequency) is
called. See zoo for more information.

Used to toggle printing of messages and warnings.

tk_zooreg() is a wrapper for zoo: : zooreg() that is designed to coerce tibble objects that have
a "time-base" (meaning the values vary with time) to zooreg class objects. There are two main

advantages:

tk_zooreg 147

1. Non-numeric columns get removed instead causing coercion issues.

2. If anindex is present, the returned zooreg object retains an index retrievable using tk_index().

The select argument is used to select subsets of columns from the incoming data.frame. The
date_var can be used to specify the column with the date index. If date_var =NULL, the date /
date-time column is interpreted. Optionally, the order . by argument from the underlying xts: : xts()
function can be used. The user must pass a vector of dates or date-times if order.by is used. Only
columns containing numeric data are coerced. Ar a minimum, a frequency and a start should be
specified.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using
z00: :zooreg().

tk_zooreg_ is a nonstandard evaluation method.

Value

Returns a zooreg object.

See Also
tk_tb1(), tk_xts(), tk_zoo(), tk_ts()

Examples

tibble to zooreg: Comparison between tk_zooreg() and zoo::zooreg()
data_tbl <- tibble::tibble(

date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),

X rep("chr values”, 5),

y = cumsum(1:5),

z cumsum(11:15) * rnorm(1))

zoo::zooreg: Values coerced to character; Result does not retain index
data_zooreg <- zoo::zooreg(data_tbl[,-1], start = 2016, freq = 365)
data_zooreg # Numeric values coerced to character
rownames(data_zooreg) # NULL, no dates retained

tk_zooreg: Only numeric columns get coerced; Result retains index as rownames
data_tk_zooreg <- tk_zooreg(data_tbl, start = 2016, freq = 365)
data_tk_zooreg # No inadvertent coercion to character class

timetk index
tk_index(data_tk_zooreg, timetk_idx = FALSE) # Regularized index returned
tk_index(data_tk_zooreg, timetk_idx = TRUE) # Original date index returned

Using select and date_var
tk_zooreg(data_tbl, select =y, date_var = date, start = 2016, freq = 365)

NSE: Enables programming

select <= "y"

date_var <- "date”

tk_zooreg_(data_tbl, select = select, date_var = date_var, start = 2016, freq = 365)

148 ts_clean vec

ts_clean_vec Replace Outliers & Missing Values in a Time Series

Description

This is mainly a wrapper for the outlier cleaning function, tsclean(), from the forecast R pack-
age. The ts_clean_vec() function includes arguments for applying seasonality to numeric vector
(non-ts) via the period argument.

Usage

ts_clean_vec(x, period = 1, lambda = NULL)

Arguments
X A numeric vector.
period A seasonal period to use during the transformation. If period =1, seasonality
is not included and supsmu() is used to fit a trend. If period > 1, a robust
STL decomposition is first performed and a linear interpolation is applied to the
seasonally adjusted data.
lambda A box cox transformation parameter. If set to "auto”, performs automated
lambda selection.
Details

Cleaning Outliers

1. Non-Seasonal (period =1): Uses stats: :supsmu()
2. Seasonal (period > 1): Uses forecast: :mstl() with robust = TRUE (robust STL decompo-
sition) for seasonal series.
To estimate missing values and outlier replacements, linear interpolation is used on the (possibly
seasonally adjusted) series. See forecast::tsoutliers() for the outlier detection method.
Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative
meaning the variance grows exponentially. A Box Cox transformation can be automated by setting
lambda = "auto"” or can be specified by setting lambda = numeric value.

References

* Forecast R Package

* Forecasting Principles & Practices: Dealing with missing values and outliers

https://github.com/robjhyndman/forecast
https://otexts.com/fpp2/missing-outliers.html

ts_impute_vec 149

See Also

¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()

* Loess Smoothing Transformation: smooth_vec()

¢ Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec()

* Qutlier Cleaning for Time Series: ts_clean_vec()

Examples

library(dplyr)
library(timetk)
--- VECTOR ----

values <- c¢(1,2,3, 4%2, 5,6,7, NA, 9,10,11, 12x2)
values

Linear interpolation + Outlier Cleansing
ts_clean_vec(values, period = 1, lambda = NULL)

Seasonal Interpolation: set period = 4
ts_clean_vec(values, period = 4, lambda = NULL)

Seasonal Interpolation with Box Cox Transformation (internal)

ts_clean_vec(values, period = 4, lambda = "auto")
ts_impute_vec Missing Value Imputation for Time Series
Description

This is mainly a wrapper for the Seasonally Adjusted Missing Value using Linear Interpolation
function, na.interp(), from the forecast R package. The ts_impute_vec() function includes
arguments for applying seasonality to numeric vector (non-ts) via the period argument.

Usage

ts_impute_vec(x, period = 1, lambda = NULL)

150 ts_impute_vec

Arguments
X A numeric vector.
period A seasonal period to use during the transformation. If period =1, linear in-
terpolation is performed. If period > 1, a robust STL decomposition is first
performed and a linear interpolation is applied to the seasonally adjusted data.
lambda A box cox transformation parameter. If set to "auto”, performs automated
lambda selection.
Details

Imputation using Linear Interpolation

Three circumstances cause strictly linear interpolation:

1. Period is 1: With period = 1, a seasonality cannot be interpreted and therefore linear is used.

2. Number of Non-Missing Values is less than 2-Periods: Insufficient values exist to detect
seasonality.

3. Number of Total Values is less than 3-Periods: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation

For seasonal series with period > 1, a robust Seasonal Trend Loess (STL) decomposition is first
computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal
component is added back.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative
meaning the variance grows exponentially. A Box Cox transformation can be automated by setting
lambda = "auto” or can be specified by setting lambda = numeric value.

References
* Forecast R Package

* Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

¢ Box Cox Transformation: box_cox_vec()

Lag Transformation: lag_vec()

Differencing Transformation: diff_vec()

Rolling Window Transformation: slidify_vec()

Loess Smoothing Transformation: smooth_vec()

Fourier Series: fourier_vec()

Missing Value Imputation for Time Series: ts_impute_vec()

https://github.com/robjhyndman/forecast
https://otexts.com/fpp2/missing-outliers.html

walmart_sales_weekly 151

Examples

library(dplyr)
library(timetk)
--- VECTOR ----

values <- c(1,2,3, 4%2, 5,6,7, NA, 9,10,11, 12%2)
values

Linear interpolation
ts_impute_vec(values, period = 1, lambda = NULL)

Seasonal Interpolation: set period = 4
ts_impute_vec(values, period = 4, lambda = NULL)

Seasonal Interpolation with Box Cox Transformation (internal)
ts_impute_vec(values, period = 4, lambda = "auto")

walmart_sales_weekly Sample Time Series Retail Data from the Walmart Recruiting Store
Sales Forecasting Competition

Description

The Kaggle "Walmart Recruiting - Store Sales Forecasting" Competition used retail data for com-
binations of stores and departments within each store. The competition began February 20th, 2014
and ended May 5th, 2014. The competition included data from 45 retail stores located in different
regions. The dataset included various external features including Holiday information, Tempera-
ture, Fuel Price, and Markdown. This dataset includes a Sample of 7 departments from the Store
ID 1 (7 total time series).

Usage

walmart_sales_weekly

Format
A tibble: 9,743 x 3

* id Factor. Unique series identifier (4 total)
* Store Numeric. Store ID.

* Dept Numeric. Department ID.

* Date Date. Weekly timestamp.

* Weekly_Sales Numeric. Sales for the given department in the given store.

152 wikipedia_traffic_daily

* IsHoliday Logical. Whether the week is a "special" holiday for the store.
* Type Character. Type identifier of the store.

* Size Numeric. Store square-footage

* Temperature Numeric. Average temperature in the region.

* Fuel_Price Numeric. Cost of fuel in the region.

* MarkDown1, MarkDown2, MarkDown3, MarkDown4, MarkDown5 Numeric. Anonymized data
related to promotional markdowns that Walmart is running. MarkDown data is only available
after Nov 2011, and is not available for all stores all the time. Any missing value is marked
with an NA.

* CPI Numeric. The consumer price index.

* Unemployment Numeric. The unemployment rate in the region.

Details

This is a sample of 7 Weekly data sets from the Kaggle Walmart Recruiting Store Sales Forecasting
competition.

Holiday Features
The four holidays fall within the following weeks in the dataset (not all holidays are in the data):
* Super Bowl: 12-Feb-10, 11-Feb-11, 10-Feb-12, 8-Feb-13
e Labor Day: 10-Sep-10, 9-Sep-11, 7-Sep-12, 6-Sep-13
* Thanksgiving: 26-Nov-10, 25-Nov-11, 23-Nov-12, 29-Nov-13
e Christmas: 31-Dec-10, 30-Dec-11, 28-Dec-12, 27-Dec-13

Source

» Kaggle Competition Website

Examples

walmart_sales_weekly

wikipedia_traffic_daily
Sample Daily Time Series Data from the Web Traffic Forecasting
(Wikipedia) Competition

Description

The Kaggle "Web Traffic Forecasting" (Wikipedia) Competition used Google Analytics Web Traf-
fic Data for 145,000 websites. Each of these time series represent a number of daily views of a
different Wikipedia articles. The competition began July 13th, 2017 and ended November 15th,
2017. This dataset includes a Sample of 10 article pages (10 total time series).

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting

wikipedia_traffic_daily 153

Usage
wikipedia_traffic_daily

Format
A tibble: 9,743 x 3

* Page Character. Page information.
* date Date. Daily timestamp.

* value Numeric. Daily views of the wikipedia article.

Details

This is a sample of 10 Daily data sets from the Kaggle Web Traffic Forecasting (Wikipedia) Com-
petition

Source

» Kaggle Competition Website
Examples

wikipedia_traffic_daily

https://www.kaggle.com/c/web-traffic-time-series-forecasting

Index

x datagen
step_fourier, 67
step_holiday_signature, 70
step_slidify, 73
step_smooth, 76

x datasets
bike_sharing_daily, 6
m4_daily, 21
m4_hourly, 22
m4_monthly, 22
m4_quarterly, 23
m4_weekly, 24
m4_yearly, 25
taylor_30_min, 93
walmart_sales_weekly, 151
wikipedia_traffic_daily, 152

+ dates
step_fourier, 67
step_holiday_signature, 70
step_ts_pad, 88

+x model_specification
step_fourier, 67
step_holiday_signature, 70
step_ts_pad, 88

* moving_windows
step_slidify, 73
step_smooth, 76

* preprocessing
step_fourier, 67
step_holiday_signature, 70
step_slidify, 73
step_smooth, 76
step_ts_pad, 88

* variable_encodings
step_fourier, 67
step_holiday_signature, 70

%ttime% (time_arithmetic), 94

%-time% (time_arithmetic), 94

add_time (time_arithmetic), 94

154

anydate(), 31
anytime(), 31
auto_lambda (box_cox_vec), 7

between_time, 4

between_time(), 5, 11, 12, 27, 30, 92, 95

bike_sharing_daily, 6

box_cox_inv_vec (box_cox_vec), 7

box_cox_vec, 7

box_cox_vec(), 8, 10, 14, 18, 20, 28, 57, 59,
61, 149, 150

cor(), 92
cov(), 92

diff_inv_vec (diff_vec), 9

diff_vec, 9
diff_vec(), 8, 10, 14, 18, 20, 28, 57, 59, 61,
106, 149, 150

dplyr::mutate(), 52

filter_by_time, 11
filter_by_time(), 4, 5, 12,27, 30, 92
fourier_vec, 13
fourier_vec(), 8, 10, 14, 19, 20, 28, 57, 60,

61,107, 149, 150
future_frame, 15

get_tk_time_scale_template
(set_tk_time_scale_template),
50

get_tk_time_scale_template(), /115

has_timetk_idx (tk_index), 120
is_date_class, 17
lag_vec, 18

lag_vec(), 8, 10, 14, 18, 20, 28, 57, 59, 61,
110, 149, 150

INDEX

log_interval_inv_vec
(log_interval_vec), 19

log_interval_vec, 19

lubridate: :period(), 95

m4_daily, 21
m4_hourly, 22
m4_monthly, 22
m4_quarterly, 23
m4_weekly, 24
m4_yearly, 25

max (), 92
mean(), 92
median(), 92
min(), 92
mutate_by_time, 25
mutate_by_time(), 27

normalize_inv_vec (normalize_vec), 27
normalize_vec, 27
normalize_vec(), 28, 61

pad_by_time, 29
pad_by_time(), 12, 27, 30, 92
parse_date2, 31

parse_datetime2 (parse_date2), 31
plot_acf_diagnostics, 32
plot_acf_diagnostics(), 34, 100, 101
plot_anomaly_diagnostics, 35
plot_anomaly_diagnostics(), 104
plot_seasonal_diagnostics, 38
plot_seasonal_diagnostics(), 34, 101
plot_stl_diagnostics, 41
plot_time_series, 43
plot_time_series(), 34,47,49, 101
plot_time_series_cv_plan, 47
plot_time_series_cv_plan(), 48, 97, 137
plot_time_series_regression, 48
purrr::map(), 52

recipes::selections(), 67,71,73,77,81
88

recipes::step_lag(), 18, 66

recipes::step_naomit(), 66

recipes: :step_normalize(), 81

recipes::step_rm(), 68, 71, 81

rsample::rolling_origin(), 48, 97, 100,
137

sd(), 92

155

selections(), 63, 65, 83, 86
set_tk_time_scale_template, 50
set_tk_time_scale_template(), 115
slidify, 51
slidify(Q), 12, 27, 30, 57, 92
slidify_vec, 55
slidify_vec(), 8, 10, 14, 19, 20, 28, 53, 57,
59,61, 112, 149, 150
smooth_vec, 58
smooth_vec(), 8, 10, 14, 19, 20, 28, 45, 47,
56, 57,60, 61, 149, 150
standardize_inv_vec (standardize_vec),
61
standardize_vec, 61
standardize_vec(), 28, 61
stats::1m(), 48, 49
stats::stl(), 37,42, 103, 133
step_box_cox, 62
step_box_cox(), 64, 66, 69, 72,75, 78, 81,
84,87, 89
step_diff, 65
step_diff (), 10, 64, 66, 69, 72, 75, 78, 81,
84,87, 89
step_fourier, 67
step_fourier(), 14, 64, 66, 69, 72,75, 78,
81,84, 87, 89
step_holiday_signature, 70
step_holiday_signature(), 64, 66, 69, 72,
75,78,81,84,87,89,117
step_naomit(), 65
step_slidify, 73
step_slidify(), 57, 64, 66, 69, 72, 75, 78,
81,84,87,89
step_smooth, 76
step_smooth(), 59, 64, 66, 69, 72, 75,78, 81,
84,87, 89
step_timeseries_signature, 80
step_timeseries_signature(), 64, 66, 69,
72,75,78,81, 84,87, 89
step_ts_clean, 82
step_ts_clean(), 64, 66, 69, 72,75, 78, 81,
84,87, 89
step_ts_impute, 85
step_ts_impute(), 64, 66, 69, 72, 75,78, 81,
84,87, 89
step_ts_pad, 88
step_ts_pad(), 64, 66, 69, 72, 75,78, 81, 84,
87,89

156

subtract_time (time_arithmetic), 94

sum(), 92

summarise_by_time, 90

summarise_by_time(), 5, 12, 27, 30, 92

summarize_by_time (summarise_by_time),
90

taylor_30_min, 93
tibble::as_tibble(), 135
tidy.step_box_cox (step_box_cox), 62
tidy.step_diff (step_diff), 65
tidy.step_fourier (step_fourier), 67
tidy.step_holiday_signature
(step_holiday_signature), 70
tidy.step_slidify (step_slidify), 73
tidy.step_smooth (step_smooth), 76
tidy.step_timeseries_signature
(step_timeseries_signature), 80
tidy.step_ts_clean (step_ts_clean), 82
tidy.step_ts_impute (step_ts_impute), 85
tidy.step_ts_pad (step_ts_pad), 88
time_arithmetic, 94
time_series_cv, 96, 99
time_series_cv(), 48, 97, 98, 100, 137
time_series_split, 98
time_series_split(), 97
timetk, 94
timetk_internal (tk_ts_.data.frame), 140
tk_acf_diagnostics, 100
tk_anomaly_diagnostics, 102
tk_anomaly_diagnostics(), 38
tk_augment_differences, 105
tk_augment_differences(), 10, 106, 107,
109,110,112, 113
tk_augment_fourier, 106
tk_augment_fourier(), 14, 106, 107, 109,
110,112, 113
tk_augment_holiday, 107
tk_augment_holiday_signature
(tk_augment_holiday), 107
tk_augment_holiday_signature(), 106,
107,109, 110,112, 113,117
tk_augment_lags, 109
tk_augment_lags(), 18, 106, 107, 109, 110,
112,113
tk_augment_slidify, 111
tk_augment_slidify(), 53, 57, 106, 107,
109, 110,112, 113
tk_augment_timeseries, 113

INDEX

tk_augment_timeseries_signature
(tk_augment_timeseries), 113
tk_augment_timeseries_signature(),
106-108, 110, 112, 113,118
tk_get_frequency, 114
tk_get_frequency(), 36,42, 51, 103, 133
tk_get_holiday, 116
tk_get_holiday_signature
(tk_get_holiday), 116
tk_get_holiday_signature(), 108, 109
tk_get_holidays_by_year
(tk_get_holiday), 116
tk_get_timeseries, 118
tk_get_timeseries_signature
(tk_get_timeseries), 118
tk_get_timeseries_signature(), 113, 123
tk_get_timeseries_summary
(tk_get_timeseries), 118
tk_get_timeseries_summary(), 123, 134
tk_get_timeseries_unit_frequency, 119
tk_get_timeseries_variables, 120
tk_get_trend (tk_get_frequency), 114
tk_get_trend(), 36, 51, 103
tk_index, 120
tk_index(), 118, 123, 135, 139, 147
tk_make_future_timeseries, 122
tk_make_future_timeseries(), 15, 16, 118,
126, 129
tk_make_holiday_sequence, 124
tk_make_holiday_sequence(), 123, 126,
129
tk_make_timeseries, 127
tk_make_timeseries(), 123, 126, 129
tk_make_weekday_sequence
(tk_make_holiday_sequence), 125
tk_make_weekday_sequence(), 123, 126,
129
tk_make_weekend_sequence
(tk_make_holiday_sequence), 125
tk_make_weekend_sequence(), 123, 126,
129
tk_seasonal_diagnostics, 130
tk_stl_diagnostics, 132
tk_summary_diagnostics, 134
tk_tbl, 135
tk_tbl(), 121, 139, 143, 144, 147
tk_time_scale_template
(set_tk_time_scale_template),

INDEX

50
tk_time_scale_template(), 37, 104
tk_time_series_cv_plan, 137
tk_time_series_cv_plan(), 47
tk_ts, 138
tk_ts(), 121, 136, 142—-144, 147
tk_ts_ (tk_ts), 138
tk_ts_.data.frame, 140
tk_ts_.default (tk_ts_.data.frame), 140
tk_xts, 142
tk_xts(), 121, 136, 139, 144, 147
tk_xts_ (tk_xts), 142
tk_zoo, 143
tk_zoo(), 121, 136, 139, 143, 147
tk_zoo_ (tk_zoo0), 143
tk_zooreg, 145
tk_zooreg(), 121, 136, 139, 143, 144
tk_zooreg_ (tk_zooreg), 145
tk_zooreg_.data.frame

(tk_ts_.data.frame), 140
tk_zooreg_.default (tk_ts_.data.frame),

140
ts_clean_vec, 148
ts_clean_vec(), 8, 10, 14, 19, 20, 28, 61, 149
ts_impute_vec, 149
ts_impute_vec(), 8, 10, 14, 19, 20, 28, 30,

57,60, 61, 149, 150

var(), 92

walmart_sales_weekly, 151
wikipedia_traffic_daily, 152

zoo, 141, 146

157

	between_time
	bike_sharing_daily
	box_cox_vec
	diff_vec
	filter_by_time
	fourier_vec
	future_frame
	is_date_class
	lag_vec
	log_interval_vec
	m4_daily
	m4_hourly
	m4_monthly
	m4_quarterly
	m4_weekly
	m4_yearly
	mutate_by_time
	normalize_vec
	pad_by_time
	parse_date2
	plot_acf_diagnostics
	plot_anomaly_diagnostics
	plot_seasonal_diagnostics
	plot_stl_diagnostics
	plot_time_series
	plot_time_series_cv_plan
	plot_time_series_regression
	set_tk_time_scale_template
	slidify
	slidify_vec
	smooth_vec
	standardize_vec
	step_box_cox
	step_diff
	step_fourier
	step_holiday_signature
	step_slidify
	step_smooth
	step_timeseries_signature
	step_ts_clean
	step_ts_impute
	step_ts_pad
	summarise_by_time
	taylor_30_min
	timetk
	time_arithmetic
	time_series_cv
	time_series_split
	tk_acf_diagnostics
	tk_anomaly_diagnostics
	tk_augment_differences
	tk_augment_fourier
	tk_augment_holiday
	tk_augment_lags
	tk_augment_slidify
	tk_augment_timeseries
	tk_get_frequency
	tk_get_holiday
	tk_get_timeseries
	tk_get_timeseries_unit_frequency
	tk_get_timeseries_variables
	tk_index
	tk_make_future_timeseries
	tk_make_holiday_sequence
	tk_make_timeseries
	tk_seasonal_diagnostics
	tk_stl_diagnostics
	tk_summary_diagnostics
	tk_tbl
	tk_time_series_cv_plan
	tk_ts
	tk_ts_.data.frame
	tk_xts
	tk_zoo
	tk_zooreg
	ts_clean_vec
	ts_impute_vec
	walmart_sales_weekly
	wikipedia_traffic_daily
	Index

