Package 'tiger'

February 20, 2015

Type Package

Title TIme series of Grouped ERrors

Version 0.2.3.1

Date 2013-08-09

Author Dominik Reusser

Maintainer Dominik Reusser <reusser@pik-potsdam.de>

Description Temporally resolved groups of typical differences (errors) between two time series are determined and visualized

Depends R (>= 2.10.0), e1071, hexbin, qualV, klaR, som

Imports lattice

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2014-08-10 19:06:53

R topics documented:

iger-package	2
hange.order.clusters	3
olor.factor	4
orrelated	4
count.diff.direction.error	6
liagnostic	7
D	9
xample.peaks	10
nclude.others	10
_hyd	11
_rel	12
agtime	13
nashS	14
lots	15
ynth.peak.error	18

tiger-package

validityIndex	24
to.uniform	23
tiger.res	22
tiger	20

Index

tiger-package

TIme series of Grouped ERrors

Description

About fifty performance measures are calculated for a gliding window, comparing two time series. The resulting matrix is clustered, such that each time window can be assigned to an error type cluster. The mean performance measures for each cluster can be used to give meaning to each cluster. Additionally, synthetic peaks are used to better characterize the clusters. The package provides functions to calculate and visualize these results.

Details

Use tiger to perform the calculations. See the package vignette for an example, how to perform calculations and how to evaluate information

Author(s)

Dominik Reusser

Maintainer: Dominik Reusser <dreusser@uni-potsdam.de>

References

Reusser, D. E., Blume, T., Schaefli, B., and Zehe, E.: Analysing the temporal dynamics of model performance for hydrological models, Hydrol. Earth Syst. Sci. Discuss., 5, 3169-3211, 2008.

```
data(tiger.example)
modelled <- tiger.single$modelled
measured <- tiger.single$measured
peaks <- synth.peak.error(rise.factor=2, recession.const=0.02, rise.factor2=1.5)
## Not run: result2 <- tiger(modelled=modelled, measured=measured, window.size=240, synthetic.errors=peaks)
errors.in.time(d.dates, result2, solution=6, show.months=TRUE)
## End(Not run)</pre>
```

change.order.clusters Change numbering of clusters

Description

Changes the cluster numbering in an fuzzy clustering object.

Usage

```
change.order.clusters(clustering, new.order)
```

Arguments

clustering	Object returned from cmeans
new.order	Vector with new cluster numbering.

Details

Cluster 1 from the old object is assigned the number stored in the frist position in new.order, Cluster 2 the number on the second position and so on.

Value

Identical object as clustering except the cluster numbering is changed

Author(s)

Dominik Reusser

References

Reusser, D. E., Blume, T., Schaefli, B., and Zehe, E.: Analysing the temporal dynamics of model performance for hydrological models, Hydrol. Earth Syst. Sci. Discuss., 5, 3169-3211, 2008.

See Also

cmeans for the fuzzy clustering

Examples

data(tiger.example)

new.order <- c(6,3,2,5,4,1)

cmeans.result <- tiger.single\$cluster.assignment[[6]]
str(cmeans.result)
cmeans.result2 <- change.order.clusters(cmeans.result, new.order)</pre>

color.factor

Description

Create colors with intensity according to the magnitude of a value

Usage

```
color.factor(color, value, max)
```

Arguments

color	The base color(s) to use
value	A vector of values
max	The maximum value represented by full intensity

Value

A vector of colors, one entry for each value

Author(s)

Dominik Reusser

Examples

```
data <- 1:10
cols=color.factor("red", data, max=10)
plot(data, col=cols)</pre>
```

cols=color.factor(c("red","green","blue"), data, max=10)
plot(data, col=cols)

correlated

```
Calculate\ correlation\ structure
```

Description

Calculate the correlation structure between multiple performance measures

Usage

```
correlated(result, limit = 0.85, plot.scatter = FALSE, keep = NA)
correl(measures, limit = 0.85, plot.scatter = FALSE, keep = NA)
```

correlated

Arguments

result	object returned from tiger
measures	data.frame for which to determine correlation structure
limit	Limit for absolute correlation, above which data is considered to be correlated
plot.scatter	Boolean, indicating whether to show pairwise plots for correlated measures
keep	Vector with names of measures that must not be excluded because of correlation with other measures

Value

correl returns:

pairs	Matrix with indices of pairwise correlated measures
pairs.by.name	Matrix with measure names of pairwise correlated measures
possible.exclus	sion
	List indicating which measures might be removed to end up with no strongly correlated measures. The list also indicates, which measure is correlated to the removed measures
to.drop	List of indices for measures to drop (according to previous list)
to.drop.by.name	2
	List of measure names (of the previous list)

correlated returns a list of two correl results, one for the original performance measures and one for the transformed measures from a result from tiger.

Author(s)

Dominik Reusser

See Also

This method helps to reduce the amount of data to be analyzed from an evaluation using tiger

```
data(tiger.example)
correlated <- correlated(tiger.single, keep=c("CE","RMSE" ))</pre>
```

count.diff.direction.error

Compare sign of derivatives

Description

Counts the number of elements for which two vectors show different signs in the derivative.

Usage

```
count.diff.direction.error(x, y)
```

Arguments

х	First vector
У	Second vector

Value

sum((diff(x) / diff(y))<0, na.rm=T)</pre>

Author(s)

Dominik Reusser

See Also

diagnostic_dawson

Examples

#All different
count.diff.direction.error(1:10,10:1)

```
#One different
count.diff.direction.error(1:10,c(1:9, 8))
```

diagnostic

Description

diagnostic_dawson take two vectors (assumed to be time series) and calculates the following objective functions to compare them: correlation, Nash Sutcliffe efficiency, ratio of the integral, lagtime (maximum of the cross correlation), the number of timesteps with opposite sign of the derivative, the highest ratio between recession coefficients and the root mean square error, as well as the ones listed in Dawson 2007.

diagnostic_window calcualtes these measures for a part of the time series only. It is used internally by

diagnostic_series takes this a step further by calculating the above measures for a gliding window along the time series and calculating additional measures. Similar to diagnostic, the function takes two vectors (assumed to be time series) and calculates a number of objectives compare them. In contrast to the more simple diagnostic, the same objectives are applied to a gliding window and a few additional objectives are calculated: the ratio of the derivatives, the ratio of the recession coefficients for each time step and the current quantile of the residuals.

Usage

```
diagnostic_window(position, window.size, measured,
modelled, use_qualV = FALSE,
diff.ecdf=NA)
diagnostic_series(measured, modelled, window.size,
step.size = 1, integral_correction = FALSE,
use_qualV = FALSE)
diagnostic_dawson(modelled, measured, p=NA, m=NA, additional=TRUE,
use_qualV=FALSE, diff.ecdf=NA )
```

Arguments

modelled	Modelled time series or array with dimension c(number_series, dim(measured))
measured	Measured time series
position	Index from where to start the calculation
window.size	Number of time steps to include
step.size	Size of the steps defining the number of scores to be calculating along the time series. For example, with a value of 5 every fifth value is included
integral_correc	tion
	Boolean. If true, the ratio of the integrals is divided by the total ratio of the entire integral. This way, relative integral errors can be detected.
р	The number of free parameters in each model - required to calculate AIC and BIC
m	The number of data points that were used in the model calibration - required to calculate AIC and BIC

diagnostic

additional	Boolean, indicating whether to calculate additional measures to the ones defined in Dawson 2007
use_qualV	Boolean, indicating whether to calculate the additional measures defined in Jachner 2007
diff.ecdf	ecdf-function of the bias (measured-modelled)

Details

For more details on the objectives, see the see-also-section

Value

A data frame with the described objectives

Author(s)

Dominik Reusser

References

Dawson, C. W.; Abrahart, R. J. & See, L. M. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts Environmental Modelling & Software, 2007, 22, 1034-1052

Jachner, S.; van den Boogaart, K. G. & Petzoldt, T. Statistical Methods for the Qualitative Assessment of Dynamic Models with Time Delay (R Package qualV) Journal of Statistical Software, 2007, 22, 1-30

See Also

qualVcor, nashS,lagtime,count.diff.direction.error,k_rel

```
data(example.peaks,package="tiger")
plot(reference.peak, type="1")
lines(example.peaks[1,], lty=2)
diagnostic_dawson(measured = reference.peak, modelled = example.peaks[1,])
#first half only
diagnostic_window(measured=reference.peak, modelled=example.peaks[1,],
position = 1, window.size = 45 )
#gliding window for 20 time steps
diagnostic_series(measured=reference.peak, modelled=example.peaks[1,],
window.size = 20 )
```

Description

Calculate the euclidean distance for multiple vectors

Usage

eD(x, y)

Arguments

х	matrix with first set of vectors.
У	matrix with second set of vectors.

Details

x and y need the following structure to compare multiple vectors at once:

rows contain the k vectors

columns the n coordinates in the n-space

str(x) == matrix [1:k, 1:n]

Value

vector with the euclidean distance for each pair

Author(s)

Dominik Reusser

Examples

eD(1:3, 2:4)

еD

example.peaks

Description

A number of synthetic peak errors used for testing performance measures and similar

Usage

data(example.peaks)

Format

The format for example.peaks is: num [1:12, 1:91] 0.1346 0.1346 0.1846 0.0846 0.1346 ... The format for the reference.peak is: num [1:91] 0.135 0.134 0.134 0.134 0.134 ...

Examples

```
data(example.peaks)
str(example.peaks)
str(reference.peak)
plot(reference.peak,type="line")
lines(example.peaks[,1], lty=2)
diagnostic_dawson(measured = reference.peak, modelled = example.peaks[1,])
## maybe str(peaks) ; plot(peaks) ...
```

include.others Internal Function: evaluate box plot

Description

Find clusters with a comparable position on the box plot with respect to the best value. Comparable position means the median of one set of values falls within the interquartile range of the reference set of values

Usage

```
include.others(selected, center, stats, best = FALSE)
```

Arguments

selected	index of the best value set.
center	where is the best value within the
stats	stats element of a boxplot result
best	are we comparing against the best set?

k_hyd

Value

Vector of indizes for which elements are comparable

Author(s)

Dominik Reusser

See Also

box.plots

k_hyd

Hydrological recession constant

Description

This function calculates the local hydrological recession constant for each point in a time series. The function returns NA for periods with increasing discharge.

Usage

k_hyd(x)

Arguments

x discharge time serie

Details

The function returns -dx/dt*1/x if dx/dt is larger than 0 and x is not 0. For the other cases, NA is returned.

Value

Vector of recession constants.

Author(s)

Dominik Reusser

References

Blume Recession Paper

See Also

diagnostic_dawson

```
data(example.peaks,package="tiger")
```

k_hyd(reference.peak)

k_rel	Mean ratio of hydrological recession constants of two discharge time
	series

Description

This function calculates the mean ratio between local hydrological recession constant for each point in two discharge time series.

Usage

k_rel(x, y)

Arguments

х	discharge time serie
У	discharge time serie

Value

A scalar with the mean ratio

Author(s)

Dominik Reusser

See Also

k_hyd, diagnostic_dawson

Examples

data(example.peaks,package="tiger")

k_rel(reference.peak, example.peaks[1,])

lagtime

Description

This function calculates the lagtime between x and y, defined as the shift resulting in the maximum cross correlation.

Usage

lagtime(x, y)

Arguments

х	Time series
У	Time series

Value

The lagtime as scalar. Positive if x is shifted towards later times.

Author(s)

Dominik Reusser

See Also

ccf,diagnostic_dawson

```
data(example.peaks,package="tiger")
plot(reference.peak, type="1")
lines(example.peaks[7,], lty=2)
lagtime(reference.peak, example.peaks[7,])
```

nashS

Description

Calculates the Nash Suttcliffe Efficiency coefficient.

Usage

```
nashS(modelled, measured, weigth = NA)
nashS_HF(modelled, measured, weigth = NA)
```

Arguments

modelled	Vector with modeled data
measured	Vector with measured data
weigth	If this vector is supplied, each data point is weighted accordingly

Details

The weighting corresponds to the value in the empirical cumulative distribution function.

Value

Returns a scalar between -Inf and 1 corresponding to the agreement between measured and modelled data. 0 means the model agrees equally well as the mean value.

Author(s)

Dominik Reusser

References

http://en.wikipedia.org/wiki/Nash-Sutcliffe_efficiency_coefficient

```
ref.peak <- synth.peak(rise.factor=2, recession.const=0.02)
peak <- synth.peak(rise.factor=2, recession.const=0.03)
nashS(modelled=peak, measured=ref.peak)</pre>
```

Evaluation plots for temporal dynamics of model performance

Description

Create various plot to understand the temporal dynamics of model performance

Usage

```
box.plots(result, solution, show.measures = 1:num.measures,
             new.order = 1:solution, show.synthetic.peaks = FALSE,
             synthetic.peaks.col = c(2:8, 2:8), show.timestep = NA,
     show.cell = NA,
                 ref = NULL, ref.new.order = new.order, ref.solutions =
                 solution, col.best.match = "black",
                 clusterPalette = rainbow(solution))
errors.in.time(xval, result, solution, rain.data = NULL, show.months
                 = FALSE, new.order = 1:solution, x.range =
                 1:length(xval), pmax = max(c(result$measured,
                 result$modelled), na.rm = TRUE), data.colors =
                 data.frame(measured = c("grey"), modelled =
                 c("black"), rain = c("black")), clusterPalette =
                 rainbow(solution), color.cut.off = 0, frac.max = 0.7,
                 frac.min = 0.4, grid.nx = 0, legend.pos = "topleft",
                 show.data = TRUE, show.errors = TRUE, show.data.model
                 = show.data, show.data.measured = show.data, ...)
peaks.in.clusters(result, solution, new.order = 1:solution)
peaks.on.som(result, solution, clusterPalette=rainbow(solution),
cell.size = 0.9, mfrow=c(2,ceiling(n.errors/2)),
new.order=1:solution)
peaks.measures(result, show.measures = 1:num.measures,
                 synthetic.peaks.col = c(2:8, 2:8), mfrow = c(2, 3),
                 col.best.match = "black", do.out = rep(TRUE,
                 length(show.measures)), single.errors = FALSE,
                 show.legend = TRUE, show.main = TRUE, y.range = NULL)
scatterplot(measures, show.measures=1:num.measures)
p.validityIndex(result, validity.max)
```

Arguments

result	object returned from tiger
measures	data.frame from which to create a scatter plot. e.g. result\\$measures.uniform
solution	number of clusters to use for further evaluations (see also validityIndex)
single.errors	Boolean, indicating weather different synthetic errors should be combined into a single plot or shown in multiple plots
show.legend	Boolean, indicating whether to show the legend

plots

show.main	Boolean, indicating whether to show performance measure names as plot title
show.measures	vector of indices indicating for which performance measures to show the plots
new.order	New numbering to assign to clusters. See also change.order.clusters
show.synthetic.	peaks
	Show values of the synthetic peaks on top of the box plots.
synthetic.peaks	Colore to use for sumthatic masks
da	Colors to use for synthetic peaks.
do.out	vector of booleans indicating whether to exclude outliers when showing the plot
cell.size	fraction of the cell square to be filled with color
show.cell	plot (see examples)
x.range	Indizes of x-values to be plotted
y.range	Range for y axis
pmax	maximum discharge for definition of the plot range
frac.min	minimum of the y-range covered by color bars for cluster occurence
frac.max	maximum of the y-range covered by color bars for cluster occurence
clusterPalette	colors to use for the clusters
color.cut.off	Value of cluster occurence below which the color bar is set to transparent (for better readability)
legend.pos	Position of the legend
data.colors	Color definition for rainfall and runoff
show.timestep	timestep for which the values for the performance measures are to be plotted as black lines in the box plot
xval	Values to be plotted on the x-axis (e.g. POSIX-date)
show.months	Boolean indicating whether to add month ticks to x axis
mfrow	see par
ref	Reference solution to be ploted in grey on the box plot
ref.new.order	New numbering to assign to clusters for reference solution on the box plot
ref.solutions	Number of clusters for reference solution for which to plot the box plot
validity.max	Do not plot solutions with cluster numbers resulting above in a validty index above validity.max
col.best.match	Color to use for plotting the line indicating the position of the best match
rain.data	vector with rainfall data
show.data	boolean, indicating whether to show discharge data
show.data.measu	ired
	boolean, indicating whether to show measured discharge data
show.data.model	
- h	boolean, indicating whether to show modeled discharge data
snow.errors	boolean, indicating whether to show error type bars
grid.nx	number of grid lines to be ploted (see grid)
• • •	additional parameters passed to plot

plots

Details

box.plots: for each performance measure, a box plot is created showing the values for each cluster

errors.in.time: occurence of the errors cluster along the time dimension

peaks.in.clusters: table of the position of the synthetic peak errors in the clusters.

peaks.measures: responce of the performance measures to the synthetic peak errors.

scatterplot: scatter plot of the performance measures

See package vignette for further details about which plot does what.

Value

used for the side effect of plotting results

Author(s)

Dominik Reusser

References

Reusser, D. E., Blume, T., Schaefli, B., and Zehe, E.: Analysing the temporal dynamics of model performance for hydrological models, Hydrol. Earth Syst. Sci. Discuss., 5, 3169-3211, 2008.

See Also

The package vignette

```
data(tiger.example)
new.order <- c(6,3,2,5,4,1)
correlated <- correlated(tiger.single, keep=c("CE","RMSE" ))
opar <- par(mfrow=c(3,5))
box.plots(tiger.single, solution=6, new.order=new.order, show.synthetic.peaks=TRUE)
box.plots(tiger.single, solution=6, new.order=new.order, show.cell=data.frame(x=1,y=1))
par(opar)
errors.in.time(xval=d.dates, result= tiger.single, solution=6,
show.months=TRUE, new.order=new.order)
peaks.in.clusters(tiger.single, solution=6, new.order=new.order)
peaks.measures(tiger.single, show.measures=correlated$measures.uniform$to.keep)
scatterplot(tiger.single$measures.uniform, show.measures=correlated$measures.uniform$to.keep)</pre>
```

```
synth.peak.error
```

Description

These functions allow generation of synthetic hydrologic peaks generated from a combination of exponetial functions. Also, synthetic errors for the reproduction of a reference peak can be generated in order to subsequentially test the behaviour of performance measures with respect to these errors.

Usage

```
synth.peak(base = 0.07, base.time = 6, rise.time = 5, rise.factor,
recession.const = 0.2, length.out = 240, rez.time = length.out -
ceiling(base.time) - ceiling(rise.time))
synth.peak.error(base = 0.07, base.time = 6, rise.time = 5,
rise.factor, rise.factor2, recession.const = 0.2, length.out = 240,
rez.time = length.out - base.time - rise.time, err1.factor = c(1.2,
1.4, 1.6), err2.factor = c(0.01, 0.02, 0.04), err3.factor = c(2, 4, 0.02)
8), err4.factor = c(9, 18, 27), err5.factor = c(0.1, 0.2, 0.4),
err6.factor = c(1.5, 2, 3),
err9.factor = c(2, 3, 4.5))
p.synth.peak.error(peaks, y.max = (max(peaks, na.rm = TRUE)),
                 peak.cluster = NULL, peak.palette = grey(c(0, 0.6,
                 0.8)), use.layout = TRUE, show.errors = 1:n.errors,
                 peak.lty = rep(1, n.errors), mfrow = c(2, 
                 ceiling(length(show.errors)/2)), plot.legend = TRUE,
                 print.error.nr = TRUE)
```

Arguments

base	level of the base flow component
base.time	number of time steps before the rise phase starts. May be negative, such that the peak starts outside the window.
rise.time	Number of time steps for the rise phase
rise.factor	The peak maximum is about rise.factor higher than the base flow.
rise.factor2	rise.factor for the "peaks" which only show a recession phase.
recession.cons	t
	Recession constant for the peak.
length.out	Total length of the time series to be returned.
rez.time	Length of the recession phase
err1.factor	Factors to use for the first error type: Over- and underestimation of the peak
err2.factor	Factors to use for the second error type: shifting of the entire time series
err3.factor	Factors to use for the third error type: Recession too fast/too slow

err4.factor	Factors to use for the fourth error type: Lag time
err5.factor	Factors to use for the fifth error type: Correct total volume, but peak over/underestimated
err6.factor	Factors to use for the sixth error type: Peak too wide/too narrow
err9.factor	Factors to use for the ninth error type: Shift during the recession phase
peaks	object returned from synth.peak.error()
y.max	upper limit for the y-axis
peak.cluster	object returned from peaks.in.clusters used for coloring the cluster assignment of synthetic peaks (see examples)
peak.palette	Colors to use if peak.cluster is NULL: first color for reference, second and third for peaks over- and underestimating the reference
use.layout	Boolean, indicating whether to use the predefined layout
plot.legend	Boolean, indicating whether to show the legend
print.error.nr	Boolean, indicating whether to label each subplot with a number
mfrow	mfrow plot parameter (only used, if use.layout=FALSE)
show.errors	Vector with indices indicating which errors to display
peak.lty	Line types for either clusters as defined in peak.cluster or as in peak.palette

Value

synth.peak returns a vector with the synthetic peak according to the provided parameters synth.peak.error returns an array with dimension 3. The first dimension corresponds to the error type. The second dimension to the level of the corresponding error type. The third dimension corresponds to the time.

Author(s)

Dominik Reusser

References

Reusser, D. E., Blume, T., Schaefli, B., and Zehe, E.: Analysing the temporal dynamics of model performance for hydrological models, Hydrol. Earth Syst. Sci. Discuss., 5, 3169-3211, 2008.

See Also

The package vignette

```
ref.peak <- synth.peak(rise.factor=2, recession.const=0.02)
peaks <- synth.peak.error(rise.factor=2, recession.const=0.02, rise.factor2=1.5)
peaks2 <- synth.peak.error(rise.factor=2, recession.const=0.02,
    rise.factor2=1.5, err1.factor=c(1.3,1.5,2.0),
    err2.factor = c(0.02,0.03,0.06),
    err3.factor=c(2,4,10),
    err4.factor = c(9,22,40),
    err5.factor = c(0.2,0.3,0.5),</pre>
```

```
err6.factor =c(2,3,5),
err9.factor=c(1.5,3,6)
)
p.synth.peak.error(peaks)
p.synth.peak.error(peaks2)
data(tiger.example)
peak.cluster <- peaks.in.clusters(result=tiger.single,
solution=5, new.order=c(2,3,5,1,4))
p.synth.peak.error(peaks=tiger.single$synthetic.errors,
peak.cluster=peak.cluster, peak.palette=rainbow(5))
```

tiger

Calculate temporal dynamics of model performance

Description

About fifty performance measures are calculated for a gliding window, comparing two time series. The resulting matrix is clustered, such that each time window can be assigned to an error type cluster. The mean performance measures for each cluster can be used to give meaning to each cluster. Additionally, synthetic peaks are used to better characterize the clusters.

Usage

Arguments

modelled	Time series of modelled data
measured	Time series of measured data
window.size	Size of the moving window
maxc synthetic.error	Maximum number of clusters to be tested s
	Matrix returned from synth.peak.error
result	object returned from tiger
use.som	boolean, indicating whether to use SOM before applying fuzzy clustering
som.dim	Dimension of the Self Organizing Map (SOM) c(x,y)
som.init	Method to initialize the SOM
som.topol	Topology of the SOM
step.size	Size of the steps defining the number of scores to be calculating along the time series. For example, with a value of 5 every fifth value is included

tiger

Details

See the package vignette.

Value

maxc	see input parameter		
window.size	see input parameter		
modelled	see input parameter		
measured	see input parameter		
synthetic.error	synthetic.errors		
	see input parameter		
measures.synthetic.peaks			
	matrix of performance measures for synthetic errors		
measures	matrix of performance measures for the gliding time window		
na.rows	vector of boolean, indicating which time windows contain NA values		
names	names of the perfomance measures		
measures.uniform			
	measures, transformed to uniform distribution		
measures.unifor	measures, transformed to uniform distribution m.synthetic.peaks		
measures.unifor	measures, transformed to uniform distribution m.synthetic.peaks measures for synthetic errors, transformed with the corresponding transforma- tion from previous item		
<pre>measures.unifor error.names</pre>	<pre>measures, transformed to uniform distribution m.synthetic.peaks measures for synthetic errors, transformed with the corresponding transforma- tion from previous item names of the synthetic error types</pre>		
<pre>measures.unifor error.names best.value.loca</pre>	measures, transformed to uniform distribution m.synthetic.peaks measures for synthetic errors, transformed with the corresponding transforma- tion from previous item names of the synthetic error types tion		
measures.unifor error.names best.value.loca	<pre>measures, transformed to uniform distribution m.synthetic.peaks measures for synthetic errors, transformed with the corresponding transforma- tion from previous item names of the synthetic error types tion list, indicating what the value for "no error" for each performance measure is</pre>		
<pre>measures.unifor error.names best.value.loca validityMeasure</pre>	measures, transformed to uniform distribution m.synthetic.peaks measures for synthetic errors, transformed with the corresponding transforma- tion from previous item names of the synthetic error types tion list, indicating what the value for "no error" for each performance measure is		
<pre>measures.unifor error.names best.value.loca validityMeasure</pre>	measures, transformed to uniform distribution m.synthetic.peaks measures for synthetic errors, transformed with the corresponding transforma- tion from previous item names of the synthetic error types tion list, indicating what the value for "no error" for each performance measure is vector with validty index for solutions with 2:maxc clusters		
measures.unifor error.names best.value.loca validityMeasure cluster.assignm	<pre>measures, transformed to uniform distribution m.synthetic.peaks measures for synthetic errors, transformed with the corresponding transforma- tion from previous item names of the synthetic error types tion list, indicating what the value for "no error" for each performance measure is vector with validty index for solutions with 2:maxc clusters ent</pre>		

Author(s)

Dominik Reusser

References

Reusser, D. E., Blume, T., Schaefli, B., and Zehe, E.: Analysing the temporal dynamics of model performance for hydrological models, Hydrol. Earth Syst. Sci. Discuss., 5, 3169-3211, 2008.

See Also

The package vignette

tiger.res

Examples

```
data(tiger.example)
modelled <- tiger.single$modelled</pre>
measured <- tiger.single$measured</pre>
peaks <- synth.peak.error(rise.factor=2, recession.const=0.02, rise.factor2=1.5)</pre>
## Not run: result2 <- tiger(modelled=modelled, measured=measured, window.size=240, synthetic.errors=peaks)</pre>
errors.in.time(d.dates, result2, solution=6, show.months=TRUE)
## End(Not run)
peaks2 <- synth.peak.error(rise.factor=2, recession.const=0.02,</pre>
     rise.factor2=1.5, err1.factor=c(1.3,1.5,2.0),
     err2.factor = c(0.02, 0.03, 0.06),
     err3.factor=c(2,4,10),
     err4.factor = c(9, 22, 40),
     err5.factor = c(0.2, 0.3, 0.5),
     err6.factor =c(2,3,5),
     err9.factor=c(1.5,3,6)
   )
## Not run: result3 <- tiger.peaks(result2, peaks2)</pre>
   peaks.in.clusters(result2, solution=6)
   x11()
   peaks.in.clusters(result3, solution=6)
## End(Not run)
```

tiger.res

Example data for TIGER package

Description

Example data for tempperform package

Usage

data(tiger.example)

Format

Object returned from tiger.

Source

Reusser, D. E., Blume, T., Schaefli, B., and Zehe, E.: Analysing the temporal dynamics of model performance for hydrological models, Hydrol. Earth Syst. Sci. Discuss., 5, 3169-3211, 2008.

22

to.uniform

Examples

```
data(tiger.example)
errors.in.time(d.dates, tiger.multi, solution=6, show.months=TRUE)
```

to.uniform

Transform data to uniform distribution

Description

Transform data to uniform distribution. Optionally, a set of values can be transformed against a reference set of data.

Usage

to.uniform(ref, val = NA)

Arguments

ref	Set of values that determince the transformation
val	Values to be transformed

Details

If values is NA, the reference set itself will be transformed.

Value

Vector with transformed values.

Author(s)

Dominik Reusser

```
a <- rnorm(100)
hist(a)
b <- to.uniform(a)
hist(b)
c <- to.uniform(ref=a, val=c(-0.5,0,0.5))</pre>
```

validityIndex

Description

Calculate the validity index for fuzzy clusters. A validity index below 1 indicates, that in between clusters is larger than within clusters. Evaluating the validity index for various numbers of desired clusters may help to find the minimum.

Usage

```
validityIndex(cclust, values, verbose = FALSE)
```

Arguments

cclust	object returned from cmeans
values	data provided as x to cmeans
verbose	boolean. If true, values for numerator and denominater are printed.

Value

A single number, the validity index.

Author(s)

Dominik Reusser

References

Reusser, D. E., Blume, T., Schaefli, B., and Zehe, E.: Analysing the temporal dynamics of model performance for hydrological models, Hydrol. Earth Syst. Sci. Discuss., 5, 3169-3211, 2008.

Xie, X. and Beni, G.: A validity measure for fuzzy clustering, IEEE T. Pattern Anal., 13, 841-847, 1991. 3181

See Also

cmeans for the fuzzy clustering itself

```
matrix(myOrig[3,], nrow=50, ncol=4, byrow=TRUE)
   )
str(myData)
myData[,1:3] <- myData[,1:3] + rnorm(3*150)*0.3
myData
maxc <- 10
require(e1071)
   validity <- rep(NA, maxc)
   all.cluster.rer <- list()
   for(centers in 2:maxc){
      cluster.rer<-cmeans(x=myData, centers=centers, method="cmeans", m=2)
      validity[centers] <- validityIndex(cluster.rer , myData)
      all.cluster.rer[[centers]] <- cluster.rer
   }
plot(validity, type="1")</pre>
```

Index

*Topic **color** color.factor,4 *Topic datasets example.peaks, 10 tiger.res, 22 *Topic **hplot** plots, 15 synth.peak.error, 18 *Topic **package** tiger-package, 2 *Topic **univar** nashS. 14 *Topic **utilities** change.order.clusters,3 correlated, 4 count.diff.direction.error,6 diagnostic, 7 eD, 9 include.others, 10 k_hyd, 11 k_rel, 12 lagtime, 13 nashS, 14 plots, 15 synth.peak.error, 18 tiger, 20 to.uniform, 23 validityIndex, 24 box.plots, 11 box.plots (plots), 15 ccf, 13 change.order.clusters, 3, 16 cmeans, 3, 21, 24 color.factor,4 cor.8 correl (correlated), 4 correlated, 4

count.diff.direction.error, 6, 8

d.dates(tiger.res), 22 diagnostic, 7 diagnostic_dawson, 6, 11–13 diagnostic_dawson (diagnostic), 7 diagnostic_series (diagnostic), 7 diagnostic_window (diagnostic), 7 ecdf, 8 eD. 9 errors.in.time(plots), 15 example.peaks, 10 grid, 16 include.others, 10 k_hyd, 11, *12* k_rel, 8, 12 lagtime, 8, 13 nashS, 8, 14 nashS_HF (nashS), 14 p.synth.peak.error(synth.peak.error), p.validityIndex (plots), 15 par. 16 peaks.in.clusters, 19 peaks.in.clusters (plots), 15 peaks.measures(plots), 15 peaks.on.som(plots), 15 plots, 15 qualV, 8 reference.peak (example.peaks), 10 scatterplot (plots), 15 synth.peak (synth.peak.error), 18 synth.peak.error, 18, 20

INDEX

```
tiger, 5, 15, 20, 22
tiger-package, 2
tiger.example(tiger.res), 22
tiger.multi(tiger.res), 22
tiger.res, 22
tiger.single(tiger.res), 22
to.uniform, 23
```

validityIndex, 15, 24