Package ‘tidytidbits’

April 15, 2020

Type Package

Title A Collection of Tools and Helpers Extending the Tidyverse
Version 0.2.2

Author Marcel Wiesweg [aut, cre]

Maintainer Marcel Wiesweg <marcel.wiesweg@uk-essen.de>

Description
A selection of various tools to extend a data analysis workflow based on the 'tidyverse' packages.
This includes high-
level data frame editing methods (in the style of 'mutate'/'mutate_at'), some methods in the style of
"‘purrr' and 'forcats', 'lookup' methods for dict-
like lists, a generic method for lumping a data frame by a given count,
various low-level methods for special treatment of 'NA' values, 'python'-style tuple-
assignment and 'truthy'/'falsy' checks,
saving to PDF and PNG from a pipe and various small utilities.

License GPL-3
Encoding UTF-8
LazyData true

Imports utils, stats, grDevices, methods, rlang (>= 0.2.0), dplyr (>=
0.8.0), forcats, grid, purrr, stringr, tibble, tidyr,
tidyselect, extrafont, magrittr

Suggests survival

RoxygenNote 7.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-15 14:50:02 UTC

R topics documented:

add_prop_test e 3
add_summary e 4
add_summary_by 5

R topics documented:

all_or_all_ na e 5
any_or_all_ma e 6
append_object e 6
ATE_LTUE v o e e e e e e e e e 7
as_formatted_number L. e 7
as_formatted_p_value L 8
as_percentage_label 9
COUNE_At . . v v v v o o o e e e e e e e 9
count_by e e e 11
cross_tabulate L 12
dina e e e 13
equal_including_na L e 14
eval_unquoted L. e 14
execute_if oL L e 15
execute_in_pipeline L. e 16
expression_list e e 16
ArSt_ NON_NAS o o e e 17
Arst_ NON_NAas_at e e e e e e e 18
first_not e e e e e e e e e e e 18
irst_ not_na e e 19
first_ which_non_na_at e e 19
first_which_not_na e 20
format_numbers_at L e e 20
format_p_values_at 21
identity_order L e e e e e 22
interlude e e e e e 23
invalid e e 24
invert_value_and_names e e e 24
local_variables e e e e e e 25
lookup L 26
lookup_function_from_dict oo 27
lump e e e 27
lump_rowso 28
named_palette L 29
orderer_function_from_sorted_vectorso 30
order_factor_by 30
pluck_vector e 31
prepare_direCtoryo e 31
prepare_path e e e e e 32
prepend_object 32
print_deparsed L 33
rename_factor e e e 33
rename_reorder_factor 34
replace_sequential_duplicates L 35
save_pdf 35
SAVE_PNE o v v v e 36
sequential duplicates 36

str_locate_match L e e 37

add_prop_test 3
SYymMbol_as_qUOSUIE v v i it e e e e e e e e e e e e e 38
syntactically_safe L 38
TUE_OF_NA o o o e e e e e e e e e e e e e 39
truthy e 39
tuple_assignment L. e e e e 40
which_non_na. e 40
with_name e e e e 41
with_value_containing 42

Index 43

add_prop_test Title

Description

Title

Usage

add_prop_test(

.df,

X,

n,

p = NULL,

CI_lower_name "CI_lower",
CI_upper_name = "CI_upper”,

n.n

p_name = "p",

alternative = c("two.sided"”, "less"”, "greater"”),

conf.level = 0.95,
correct = TRUE

Arguments

.df A data frame

X

n

p

CI_lower_name, CI_upper_name, p_name

Column names of the added columns
alternative, conf.level, correct

Value

The column/vector with the number of positive results

The column/vector/constant with the number of trials

Assumed proportion: Will add a p-value that the proportion is equal to p (de-

fault: 0.5)

As for prop. test

Data frame with columns added

4 add_summary

See Also

count_by()

Examples

library(magrittr)
if (requireNamespace("survival”, quietly = TRUE))
{

survival::aml %>%

count_by(x) %>%

add_prop_test(n, sum(n), rel)

add_summary Add summary to tibble

Description

A verb for a dplyr pipeline: Performs a call to summarise(), but does not reduce the data frame to
one row per group, instead, adds the resulting fields to every row belonging to that group, returning
the original frame with added/changed columns. Effectively, this is like calling summarise(), and
then calling mutate () with all the resulting columns.

Usage

add_summary(.data, .language)

Arguments
.data Data argument, typical "first" argument in dplyr verbs
.language A call to summarise(), or another method performing equivalent aggregation
(potentially wrapping summarise())
Value

The tibble with added columns

add_summary_by 5

add_summary_by Add summary to tibble

Description

A verb for a dplyr pipeline: Groups the frame by ... in addition to the current grouping, then calls
add_summary, then returns the frame with the mutated summarising columns in the same grouping
state as it was before this function was called.

Usage
add_summary_by(.data, .language, ...)
Arguments
.data Data argument, typical "first" argument in dplyr verbs
.language A call to summarise(), or another method performing equivalent aggregation
(potentially wrapping summarise())
Parameters for group_by
Value

The tibble with added columns

all_or_all_na All() giving NA only if all values are NA

Description

All() giving NA only if all values are NA

Usage
all_or_all_na(...)

Arguments

Values

Value

NA if and only if all ... are NA, else all(...), ignoring NA values

append_object

any_or_all_na

Any() giving NA only if all values are NA

Description

Any() giving NA only if all values are NA

Usage

any_or_all_na(...)

Arguments

Value

Values

NA if and only if all ... are NA, else any(...), ignoring NA values

append_object

Appending in a pipe, never unlisting

Description

Append to a given list, while considering as a single object and not unlisting as base::append does.
Argument order is reversed compared to base::append to allow a different pattern of use in a pipe.

Usage

append_object(x, .1, name = NULL)

Arguments

X

.1

name

Value

Object to append. If the object is a list, then it is appended as-is, and not unlisted.

The list to append to. Special case handling applies if .1 does not exist: then an
empty list is used. This alleviates the need for an initial mylist <- list()

Will be used as name of the object in the list

The list .1 with x appended

are_true 7

Examples

library(magrittr)
results <- list(first=c(3,4), second=1list(5,6))
list(7,8) %>%
append_object(results, "third result”) ->
results
results has length 1, containing one list named "first”

are_true Vectorised conversion to logical, treating NA as False

Description

Vectorised conversion to logical, treating NA as False

Usage

are_true(x)

Arguments

X A vector

Value

A logical vector of same size as X which is true where X is true (rlang: :as_logical) and not NA

as_formatted_number Format numeric value for output

Description

Vectorised conversion

Usage

as_formatted_number(x, decimal_places = 1, remove_trailing_zeroes = T)

Arguments

X Numeric vector

decimal_places Decimal places to display
remove_trailing_zeroes

If the required decimal places are less than decimal places, should resulting
trailing zeros be removed?

8 as_formatted_p_value

Value

Character vector

Examples

as_formatted_number(@.74167, 2) # gives "0.74"

as_formatted_p_value Formatting p values

Description

Vectorised conversion

Usage
as_formatted_p_value(
X’
decimal_places = 3,
prefix = "p",

less_than_cutoff = 0.001,
remove_trailing_zeroces =T,

alpha = 0.05,
ns_replacement = NULL
)
Arguments
X Numeric vector

decimal_places Decimal places to display

prefix Prefix to prepend (default "p=")
less_than_cutoff

Cut-off for small p values. Values smaller than this will be displayed like "p<..."
remove_trailing_zeroes

If the required decimal places are less than decimal places, should resulting
trailing zeros be removed?

alpha Cut-off for assuming significance, usually 0.05

ns_replacement If p value is not significant (is > alpha), it will be replace by this string (e.g.
"n.s.") If NULL (default), no replacement is performed.

Vectorised (in parallel) over x, prefix, less_than_cutoff, alpha and ns_replacement.

Value

Character vector

as_percentage_label 9

Examples

as_formatted_p_value(0.02) # "p=0.02"
as_formatted_p_value(0.00056) # "p<0.001"

as_percentage_label Format as percentage for output

Description

Vectorised conversion

Usage

as_percentage_label(x, decimal_places = 1, include_plus_sign = F)

Arguments

X Numeric vector

decimal_places Decimal places to display

include_plus_sign
prepend a "+" to the output if positive (if negative, a
course)

non

must be prepended of

Value

Character vector

Examples

as_percentage_label (0.746) # gives "74.6%"

count_at Count by multiple variables

Description

Count by multiple variables

10 count_at

Usage

count_at(
.thl,
.vars,
.grouping = vars(),
label_style = "long”,

long_label_column_names = c("variable"”, "category"),
column_names = c("n", "rel”, "percent”),
na_label = "missing”,

percentage_label_decimal_places = 1,
add_grouping =T,

na.rm = F
)
Arguments
.tbl A data frame
.vars A list of variables (created using vars()) for which count_by is to be called
.grouping Additional grouping to apply prior to counting
label_style Character vector containing one of "wide" and "long" or both.

¢ "wide": Include labels in wide format, i.e., for each variable one column
named as variable and giving the label for the corresponding count, but NA
for all rows from different variables
* "long": Include two meta columns, one giving the variable that is counted
(value from .vars), the second giving the label (which value/category of the
variable is counted?).
long_label_column_names
Character vector of size 2: If label_style contains "long", the names for the
additional meta columns for variable and category

column_names vector if size 1 to 3, giving the names of (in order if unnamed, or named with
n, rel, percent) the column containing the count, the relative proportion, and the
latter formatted as a percent label. If a name is not contained, it will not be
added.

na_label If na.rm=F;, label to use for counting NA values

percentage_label_decimal_places
Decimal precision of the percent label

add_grouping Shall a pre-existing grouping be preserved for counting (adding the newly spec-
ified grouping)? Default is yes, which differs from group_by.

na.rm Shall NA values be removed prior to counting?

Value

A data frame concatenated from individual count_by results, with labels as per label_style.

count_by 11

Examples

library(magrittr)

library(datasets)

library(dplyr)

mtcars %>% count_at(vars(gear, cyl))

count_by Count according to grouping

Description

Similar to dplyr::count(), but also adds the relative proportion and a percent-formatted string of
the relative proportion, and allows to specify the column names.

Usage

count_by(
.tbl,
column_names = c("n", "rel”, "percent”),
percentage_label_decimal_places = 1,
add_grouping =T,
na.rm = F

Arguments

.thl A data frame
Columns / expressions by which to group / which shall be used for counting.

column_names vector if size 1 to 3, giving the names of (in order if unnamed, or named with
n, rel, percent) the column containing the count, the relative proportion, and the
latter formatted as a percent label. If a name is not contained, it will not be
added.

percentage_label_decimal_places
Decimal precision of the percent label

add_grouping Shall a pre-existing grouping be preserved for counting (adding the newly spec-
ified grouping)? Default is yes, which differs from group_by.

na.rm Shall NA values be removed prior to counting?

Value

The counted data frame

12 cross_tabulate

Examples

library(magrittr)
if (requireNamespace(”survival”, quietly = TRUE))
{

survival::aml %>%

count_by(x)

cross_tabulate Create cross table from a tibble

Description

A wrapper of table() for convenient use in a dplyr pipeline: Pass the factors to tabulate as symbols
or expressions like you would in mutate(). useNA and dnn are passed to table().

Usage
cross_tabulate(.df, ..., useNA = c("no”, "ifany", "always"), dnn = NULL)
Arguments
.df A data frame
Factors to tabulate by: symbolic column names / language
useNA, dnn passed to table()
Value

Result from a call to table()

Examples

library(magrittr)
if (requireNamespace("survival”, quietly = TRUE))
{
survival::bladderl %>%
cross_tabulate(treatment, recur) %>%
chisqg.test()

dina 13

dina The DIN A paper formats

Description

The DIN A paper formats

Usage

dinAFormat ()
dinA_format ()
dinA(n)

dinAWidth(n)
dinA_width(n)
dinAHeight(n)

dinA_height(n)

Arguments

n DIN A paper format index (0-10)

Value

A named list (0-10) of named vectors (long, short) of unit objects with the size in inches of the DIN
A paper formats

named unit vector (long, short) with the size in inches of the requested DIN A paper format
the long side / width in landscape as a unit object in inches

the short side / height in landscape as a unit object in inches

See Also

unit

14

eval_unquoted

equal_including_na Compare vectors, treating NA like a value

Description

Compare vectors, treating NA like a value

Usage

equal_including_na(v1l, v2)

Arguments

vl, v2 Vectors of equal size

Value

Returns a logical vector of the same size as vl and v2, TRUE wherever elements are the same. NA

is treated like a value level, i.e., NA == NA is true, NA == 1 is false.

eval_unquoted Execute code after tidy evaluation

Description

This function takes R code as arguments and executes this code in the calling environment. All
quoted variables (using rlang’s quasiquotation, !! or !!!) will be unquoted prior to evaluation. This
results in executed in code in which the variable is replaced verbatim by its value, as if you had typed
the variable’s value. This is particularly useful for functions using base R’s substitute() approach,
such as functions taking formulas, and you have built the formula dynamically. It is unnecessary

for all functions based on tidy_eval (dplyr).

Usage

eval_unquoted(...)

Arguments

R code snippets

Value

The value of the last evaluated expression.

execute_if 15

Examples

library(rlang)

Note that evaluation takes place in the calling environment!
1 <- quo(l <- 1) # 1 is a quosure in our env
eval_unquoted(!!1)

1 ==1#TRUE: 1 is now a vector

execute_if Conditional execution in a pipeline

Description

A verb for a magrittr pipeline: execute_if_else: The language is executed only if .predicate is true.

Usage

execute_if(.data, .predicate, .language)

execute_if_else(.data, .predicate, .language_true, .language_false)

Arguments
.data Data argument, typical "first" argument in dplyr verbs
.predicate Evaluated to boolean. If true, executes and returns language; otherwise, returns
untouched .data
.language Language call to execute. Write is just as if you would without the execute_if:

Will be used as the right-hand side of "%>%" with all possible options of magrittr.

.language_true Execute if predicate it TRUE
.language_false
Execute if predicate it FALSE

Value

Result of .language

Examples

library(magrittr)
library(dplyr)
library(tibble)
library(stringr)
convert_to_quartiles <- TRUE
tibble(score=c(1,2,3,4,1,2,3,4,2,3,2,3,4,3,3)) %>%
mutate(do_something=1) %>%
execute_if(convert_to_quartiles,
mutate(score = cut(score, 4, labels = str_c("Quartile ", 1:4)))) %%
filter(score > 2)

16 expression_list

execute_in_pipeline Executing language as if in a pipeline

Description

Executes the given language as if it was part of a magrittr pipeline

... %>% .language

while .data is the lhs value provided to .language as parameter by magrittr.
Usage

execute_in_pipeline(.data, .language)

Arguments
.data A data frame
.language Language
Details

Note that language is evaluated as a quosure in its captured environment. This is fine if this method
is called as a secondary helper and .language is already a quosure; otherwise you may want to
explicitly set the quosure’s environment to your caller’s env.

Value

Result of the executed language

expression_list Extract symbols from an expression of symbols and operators

Description

Extract symbols from an expression of symbols and operators

Usage
expression_list(expr, seps = "+")
quosure_list(expr, seps = "+", env = caller_env())

symbol_string_list(expr, seps = "+")

first_non_nas 17

Arguments
expr A language expression
seps Operators to consider as separators
env Environment for the created quosure
Value

A list of all symbols in the expression, as symbol, quosure or text.

Examples

expression_list(a+b+c+d)

first_non_nas Row-wise first value which is not NA

Description

This is useful in conjunction with dplyr’s mutate to condense multiple columns to one, where in each
sample typically only one of n columns has a value, while the others are NA. Returns one vector
of the same length as each input vector containing the result. Note that factors will be converted to
character vectors (with a warning).

Usage

first_non_nas(...)

Arguments

multiple vectors of same type and size, regarded as columns

Value

Returns a vector of type and size as any of the given vectors (vectors regarded a column, number
of rows is size of each vectors) For each "row", returns the first value that is not NA, or NA iff all
values in the row are NA.

Examples

library(tibble)

library(magrittr)

library(dplyr)

Creates a column containing (4, 2, 2)

tibble(a=c(NA, NA, 2), b=c(4, NA, 5), c=c(1, 2, 3)) %%
mutate(essence=first_non_nas(a, b, c))

18

first_not

first_non_nas_at Row-wise first value that is not NA

Description

Row-wise first value that is not NA

Usage
first_non_nas_at(.tbl, ...)
Arguments
.thl A data frame
A column selection, as for dplyr: :select
Value

A vector of length nrow(.tbl) containing the first found non-na value

first_not First argument that does not equal a given value

Description

First argument that does not equal a given value

Usage
first_not(not, ...)
Arguments
not Value: we look for the first value not equal to this one
Values
Value

The first value that does not equal "not", or NA iff all equal "not"

Examples

#5
first_not(1, 1,1,1,5)

first_not_na 19

first_not_na First argument that is not NA

Description

First argument that is not NA

Usage

first_not_na(...)

Arguments

Values

Value

The first argument that is not NA, or NA iff all are NA

first_which_non_na_at Row-wise first index of column that is not NA

Description

Row-wise first index of column that is not NA

Usage
first_which_non_na_at(.thl, ...)
Arguments
.tbl A data frame
A column selection, as for dplyr: :select
Value

A numeric vector of length nrow(.tbl) containing the index of the first found non-na value in the
given columns. Possible values are NA (all values in that row are NA), and 1 ... number of columns
in selection

20 format_numbers_at

first_which_not_na First which() is not na

Description

First which() is not na

Usage

first_which_not_na(...)

Arguments

Values; concatenated as given. Intended use is with one vector of length > 1 or
multiple single arguments.

Value

The index of the first value which is not NA, or NA iff all elements are NA.

Examples

4
first_which_not_na(NA, NA, NA, 56)

format_numbers_at Format numeric columns for display

Description

Combines mutate_at() and as_formatted_number ()

Usage

format_numbers_at(.tbl, .vars, decimal_places = 1, remove_trailing_zeroes = T)

Arguments
.tbl A data frame
.vars A vars() list of symbolic columns

decimal_places Decimal places to display
remove_trailing_zeroes

If the required decimal places are less than decimal places, should resulting
trailing zeros be removed?

format_p_values_at

Value

Value of mutate_at

See Also

format_p_values_at

Examples

library(tibble)

library(magrittr)

library(dplyr)

tibble(a=c(0.1, 0.238546)) %>%
format_numbers_at(vars(a))

21

format_p_values_at Format numeric columns for display

Description

Combines mutate_at() and as_formatted_p_value()

Usage
format_p_values_at(
.tbl,
.vars,
decimal_places = 3,
prefix = "p",

less_than_cutoff = 0.001,
remove_trailing_zeroces =T,

alpha = 0.05,
ns_replacement = NULL
)
Arguments
.tbl A data frame
.vars A vars() list of symbolic columns

decimal_places Decimal places to display

prefix Prefix to prepend (default "p=")
less_than_cutoff

Cut-off for small p values. Values smaller than this will be displayed like "p<..."

remove_trailing_zeroes

If the required decimal places are less than decimal places, should resulting

trailing zeros be removed?

22 identity_order

alpha Cut-off for assuming significance, usually 0.05

ns_replacement If p value is not significant (is > alpha), it will be replace by this string (e.g.
"n.s.") If NULL (default), no replacement is performed.

Vectorised (in parallel) over x, prefix, less_than_cutoff, alpha and ns_replacement.

Value

Value of mutate_at

See Also

format_numbers_at

Examples

library(tibble)
library(magrittr)
library(dplyr)
tibble(p=c(0.05, 0.0001)) %>%
format_numbers_at(vars(p))

identity_order Ordering function: identity order

Description

This can be used in a place where a function with a signature like order is required. It simply
retains the original order.

Usage
identity_order(x, ...)
Arguments
X a vector
Effectively ignored
Value

An integer vector

interlude 23

interlude An interlude in a magrittr pipeline

Description

The given language is executed, with the pronoun "." set to .df (usually the data frame sent through
the pipeline), but the results are ignored, and the next line in the pipeline gets the unchanged data.
Any executed code is allowed to edit variables which already exist in the calling environment. This
is useful to store intermediate results.

Usage

interlude(.df, .language)

Arguments
.df Data argument, typical "first" argument in dplyr verbs
.language Language

Details

Note: Detection of the calling environment is not solved cleanly; it cannot be excluded that it fails
under specific circumstances.

Value

Unchanged .df

Examples

library(tibble)
library(magrittr)
library(dplyr)
x <= c() # now x exists in the calling env
tibble(a=1, b=2) %>%
mutate(b=a+3) %>%
interlude(x <- .$b) %>%
mutate(a=a+1)
x is set to 4

24 invert_value and_names

invalid A notion of valid and invalid

Description

An object is valid if it is not null, not missing (NA), and is not an empty vector. Note that this is per
se not vectorised, because a non-empty list or vector is valid as such.

Usage

invalid(x)

valid(x)

Arguments

X Any object, value or NULL

Value

logical

Functions

e valid: x is not invalid

invert_value_and_names
Inverting name and value

Description

Inverting name and value

Usage

invert_value_and_names(v)

Arguments

v A named vector

Value

A vector where names(v) are the values and the values of v are the names

local_variables 25

local_variables "Variable generating" functions

Description

A pair of functions that allows a "variable generating" function and read this function’s local vars
into the environment of the caller.

Usage

local_variables(env = parent.frame())
localVariables(env = parent.frame())
source_variables(localVars)

sourceVariables(localVars)

Arguments

env Parent environment

localvars Result of function call exporting an environment
Value

Named vector of created local variables

The updated environment

Examples

myVariableGeneratingFunction <- function()

{
X <=]
y <=2
local_variables()
3
myMainFunction <- function()
{

source_variables(myVariableGeneratingFunction())
print(c(x, y))
}

26 lookup

lookup Lookup in a dictionary

Description

Looks up all values as keys of the dictionary and returns the values.

Usage
lookup(dict, ..., default = NA, dict_key_is_regex = F, key_is_regex = F)
lookup_int(dict, ..., default = NA, dict_key_is_regex = F, key_is_regex = F)
lookup_chr(dict, ..., default = NA, dict_key_is_regex = F, key_is_regex = F)
lookup_lgl(dict, ..., default = NA, dict_key_is_regex = F, key_is_regex = F)
lookup_dbl(dict, ..., default = NA, dict_key_is_regex = F, key_is_regex = F)
lookup_num(dict, ..., default = NA, dict_key_is_regex = F, key_is_regex = F)
Arguments
dict A dictionaryish vector (named: key -> value)
Keys to lookup in the dictionary
default Default value to return if key is not found. Can be a value or function (called

with the key). Note: default is to return NA; another very intuitive case is to

return the key itself. To achieve this, pass default = identity.
dict_key_is_regex

Should the dictionary keys, the names of dict, be regarded as regular expres-

sions? (excludes key_is_regex)

key_is_regex Should the keys to lookup be regarded as regular expressions? (excludes dict_key_is_regex)

Value

A list of the same size as ..., containing the lookup results. For the type-specific functions, returns a
vector typed as requested, requiring all lookup results to have matching type.

Examples

a <= list("x", "y", "z")
dict <- c(x="xc", y="yv")

returns c("xc", "yv", na_chr)
lookup_chr(dict, a)#'
returns c("xc", "yv", "z")

lookup_chr(dict, "x", "y", "z", default=identity)

lookup_function_from_dict 27

lookup_function_from_dict
Creating a lookup function from dictionary

Description

Creating a lookup function from dictionary

Usage

lookup_function_from_dict(dict, default = identity, dict_key_is_regex = F)

Arguments
dict A dictionaryish character vector (named: key -> value)
default Value to return if key is not found, or function to evaluate with key as argument

dict_key_is_regex
If True, treats dictionary keys are regular expressions when matching

Value

A function which can be called with keys and performs the described lookup, returning the value
(string)

lump Generic lumping

Description

Takes levels (labels, factor levels) and corresponding counts and "lumps" according to specified
criteria (either n or prop), i.e. preserves some rows and summarises the rest in a single "Other" row

Usage

Tump(
levels,
count,
n,
prop,
other_level = "Other",
ties.method = c("min"”, "average”, "first”, "last”, "random”, "max")

28

Arguments

levels
count

n

prop
other_level

ties.method

Value

Vector of levels

Vector of corresponding counts

If specified, n rows shall be preserved.

If specified, rows shall be preserved if their count >= prop
Name of the "other" level to be created from lumped rows

Method to apply in case of ties

A dictionary (named vector) of levels -> new levels

lump_rows

lump_rows

Lump rows of a tibble

Description

A verb for a dplyr pipeline: In the given data frame, take the .level column as a set of levels and the
.count column as corresponding counts. Return a data frame where the rows are lumped according
to levels/counts using the parameters n, prop, other_level, ties.method like for Lump (). The resulting
row for other_level has level=other level, count=sum(count of all lumped rows). For the
remaining columns, either a default concatenation is used, or you can provide custom summarising
statements via the summarising_statements parameter. Provide a list named by the column you
want to summarize, giving statements wrapped in quo(), using syntax as you would for a call to

summarise().

Usage

Lump_rows(
.df,
.level,
.count,

summarising_statements = quos(),

n,
prop,

remaining_levels,
other_level = "Other”,

ties.method = c("min"”, "average”, "first”, "last”, "random”, "max")

named_palette 29

Arguments
.df A data frame
.level Column name (symbolic) containing a set of levels
.count Column name (symbolic) containing counts of the levels

summarising_statements
The "lumped" rows need to have all their columns summarised into one row.
This parameter is a vars() list of arguments as if used in a call to summarise(),
name is column name, value is language. If not provided for a column, a default
summary will be used which takes the sum if numeric, concatenates text, or uses

any() if logical.
n If specified, n rows shall be preserved.
prop If specified, rows shall be preserved if their count >= prop

remaining_levels

Levels that should explicitly not be lumped
other_level Name of the "other" level to be created from lumped rows
ties.method Method to apply in case of ties

Value

The lumped data frame

See Also

Lump

named_palette Named color palette

Description
Returns the palette named by names. This is useful to pick only a few specific colors from a larger
palette.

Usage

named_palette(palette, names, color_order = NULL)

Arguments

palette Colors

names Names

color_order If specified, will reorder palette by this ordering vector
Value

A named palette. If the palette is longer than names, will only use the first n entries. If names is
longer than palette, will recycle colors.

30 order_factor_by

orderer_function_from_sorted_vectors
Orderer function for complex sorting

Description
If you want to order by multiple features and have sorted vectors for each feature which describe
the intended order

Usage

orderer_function_from_sorted_vectors(...)

Arguments

k sorted vectors, in order of priority

Value

A function which takes (at least) k vectors This function will return an order for these vectors
determined by the sorted vectors

order_factor_by Reorder a factor

Description

Makes f a factor ordered according to ... (which is passed to order)

Usage
order_factor_by(.f, ...)
Arguments
.f A factor
Passed to order (). Should be vectors of the same size as .f.
Details
This is a thin wrapper around forcats: : fct_reorder (), which is unintuitive in conjunction with
order().
Value

Reordered factor

pluck_vector

See Also

31

rename_reorder_factor, rename_factor, forcats: :fct_reorder

pluck_vector

Pluck with simplified return value

Description

Like purrr: :pluck(), but will return simplify()’

Usage

pluck_vector(.x, ..., .default = NULL)

Arguments
.X Container object
Accessor specification
.default Default value
Value

Result of purrr: :pluck(), transformed y purrr

ed as a vector

cisimplify()

prepare_directory Directory creation

Description

Creates directory if it does not yet exist

Usage

prepare_directory(folder)

Arguments

folder Folder path

Value

Folder path

32 prepend_object

prepare_path Directory creation and file path concatenation

Description

Given a folder, file base name and suffix, ensures the directory exists, and returns the ready file path.

Usage
prepare_path(folder, fileBaseName, fileSuffix)

Arguments

folder Folder path, without trailing slash

fileBaseName File base name, excluding trailing dot

fileSuffix File suffix without leading dot (e.g., "png", "pdf")
Value

Complete file path

prepend_object Prepending in a pipe, never unlisting

Description

Prepend to a given list, while considering as a single object and not unlisting. Argument order is
reversed compared to base::append or purrr::prepend to allow a different pattern of use in a pipe.

Usage
prepend_object(x, .1, name = NULL, before = 1)

Arguments
X Object to prepend. If the object is a list, then it is appended as-is, and not
unlisted.
.1 The list to append to. Special case handling applies if .1 does not exist: then an
empty list is used. This alleviates the need for an initial mylist <- list()
name Will be used as name of the object in the list
before Prepend before this index
Value

The list .1 with x prepended

print_deparsed 33

Examples

#' library(tibble)
library(magrittr)
library(dplyr)
results <- list(second=1list(1,2), third=1list(3))
list(-1, 1) %>%
prepend_object(results, "first") ->
results
results has length 3, containing three lists

print_deparsed Print deparsed language

Description

Prints deparsed R language tree of given expression

Usage

print_deparsed(language)

Arguments

language R language

Value

Invisible null

rename_factor Rename a factor.

Description

Renames the levels of a factor.

Usage
rename_factor(.f, ..., reorder = F)
Arguments
.f A factor or vector (if .f is not yet a factor, it is made one)
Dictionaryish arguments, named by old level, value is new level ("old level" =
"new level"). You can pass single named arguments, or named vectors or named
lists, which will be spliced.
reorder Logical: If True, the levels will additionally be reordered in the order of first

appearance in the arguments

34 rename_reorder_factor

Value

A renamed and reordered factor

See Also

rename_reorder_factor, order_factor_by, forcats::fct_recode, forcats::fct_relevel

rename_reorder_factor Rename and reorder a factor.

Description

The factor will be recoded according to value_label_dict and, if requested, also reordered by the
order of this vector. Secondly, the vector will be reordered according to reorder_vector, if given.

Usage

rename_reorder_factor(
.f,
value_label_dict,
reorder_vector,
reorder_by_value_label_dict = T

)

Arguments

.f A factor or vector (if .f is not yet a factor, it is made one)

value_label_dict
a dictionary (named list or vector) of old->new factor levels

reorder_vector vector of factor levels (the new levels according to value_label_dict). It need not
contain all levels, only those found will be reorderer first

reorder_by_value_label_dict
Should the factor also be reordered following the order of value_label_dict?

Value

A renamed and reordered factor

See Also

rename_factor, order_factor_by, forcats: :fct_recode, forcats::fct_relevel

replace_sequential_duplicates 35

replace_sequential_duplicates
Replace sequential duplicates

Description

Replace sequential duplicates

Usage

replace_sequential_duplicates(strings, replace_with = "" ordering = NULL)
Arguments

strings Character vector

replace_with Replacement string

ordering Optional: treat strings as if ordered like strings[ordering], or, if a function,
strings[ordering(strings)]
Value

A character vector with strings identical to the previous string replaced with replace_with

Examples

returns C(“a"’ HII, Ilbll’ HH’ Illl, Hall)
replace_sequential_duplicates(c("a"”, "a", "b", "b", "b", "a"))

save_pdf Save plot as PDF
Description
Save plot as PDF
Usage
save_pdf(plot, folder, fileBaseName, width, height, ...)
Arguments
plot A plot object that can be printed, e.g. result of ggplot2, plot_grid
folder Destination folder (will be created if it does not exist)

fileBaseName File base name (suffix ".pdf" will be added)

width, height PDF width and height in inches or as grid: :unit. If missing and the plot object
has a "papersize" attribute c(width, height), this will be used.

Further arguments which will be passed to cairo_pdf, e.g. family

36 sequential_duplicates

save_png Save plot as PNG

Description

Save plot as PNG

Usage

save_png(
plot,
folder,
fileBaseName,
width,
height,
dpi = 300,
background = c("white"”, "transparent”),

Arguments

plot A plot object that can be printed, e.g. result of ggplot2, plot_grid
folder Destination folder (will be created if it does not exist)
fileBaseName File base name (suffix ".png" will be added)

width, height PNG width and height in inches or as grid: :unit. If missing and the plot object
has a "papersize" attribute c(width, height), this will be used.

dpi Resolution (determines file size in pixels, as size is given in inches)
background Initial background color, "white" or "transparent”

Further arguments which will be passed to png, e.g. family

Value

invisible NULL

sequential_duplicates Detect sequential duplicates

Description

Detect sequential duplicates

str_locate_match 37

Usage

sequential_duplicates(strings, ordering = NULL)

Arguments
strings Character vector
ordering Optional: treat strings as if ordered like strings[ordering], or, if a function,
strings[ordering(strings)]
Value

A logical vector which indicates if a string is identical to the previous string.

Examples

return c(F, T, F, T, T, F)
sequential_duplicates(c(”a”", "a", "b", "b", "b", "a"))

str_locate_match Combine str_match and str_locate

Description

For every pattern, return the index of the first match of pattern in strings

Usage

str_locate_match(patterns, strings)

Arguments
patterns Character vector of patterns
strings Character vector of strings
Value

Integer vector of length(patterns) where entry i gives the index in strings where pattern i first
matched

38 syntactically_safe

symbol_as_quosure Make quosure from symbol

Description

Make quosure from symbol

Usage

symbol_as_quosure(x, env = caller_env())

Arguments

X Symbol

env Environment for the created quosure
Value

Quosure containing the symbol

syntactically_safe Syntactically safe names

Description

Makes the names syntactically safe by wrapping them in “ if necessary

Usage

syntactically_safe(expr_strings)

Arguments

expr_strings Strings to convert to syntactically safe form

Value

Strings converted to syntactically safe form

true_or_na

39

true_or_na Test for logical true or NA

Description

Test for logical true or NA

Usage

true_or_na(x)

Arguments

X Logical

Value

True if and only if x is TRUE or x is NA, False otherwise.

truthy A python / javascript-like "truthy" notion

Description

Values are truthy that are not null, NA, empty, 0, or FALSE.

Usage

truthy(x)

falsy(x)

Arguments

X Any object, value or NULL

Details

Note that this is per se not vectorised, because a non-empty list or vector is "truthy" as such.

Value

logical

Functions

» falsy: x is not truthy

40 which_non_na

tuple_assignment Infix operator for python-style tuple assignment

Description

Infix operator for python-style tuple assignment

Usage
1 %=%r

g(...)

Arguments

1 left-hand side: "tuple" or variables created by g()
r right-hand side: Vector to assign to left-hand side variable

Left-hand side variables to group

Value

Last assigned value

Examples

g(a,b) %=% c(1,2) # equivalent to a <-1; b <-2

which_non_na Get indices of non-NA values

Description

Get indices of non-NA values

Usage

which_non_na(...)

Arguments

k vectors of the same length n, regarded as k columns with each n rows

Value

A list of n numerical vectors. Each numerical vector has a size between 0 and k and contains the
indices of the vectors whose elements are not na in the corresponding row.

with_name 41

Examples

library(tibble)

library(magrittr)

library(dplyr)

Creates a list column containing (2,3);(3);(1,2,3)

tibble(a=c(NA, NA, 2), b=c(4, NA, 5), c=c(1, 2, 3)) %>%
mutate(non_na_idc=which_non_na(a, b, c))

with_name Slice by name

Description

Slices of a vector with elements of given name, or containing given patterns. Analogous accessor
functions for purrr: :pluck

Usage

with_name(v, name)
with_name_containing(v, pattern)
named(name)

name_contains(pattern)

Arguments

v A vector

name Name of entry to pluck

pattern Pattern passed to stringr::str_detect
Value

A slice from v containing all elements in v with the given name, or the name of which contains
pattern

42 with_value_containing

with_value_containing Slice by value

Description

Slices of a vector with elements containing given patterns. Analogous accessor function for purrr: :pluck

Usage

with_value_containing(v, pattern)

value_contains(pattern)

Arguments

v A vector

pattern Pattern passed to stringr::str_detect
Value

A slice from v containing all elements in v with the given name, or the name of which contains
pattern

Index

%=% (tuple_assignment), 40

add_prop_test, 3
add_summary, 4, 5
add_summary_by, 5
all_or_all_na, 5
any_or_all_na, 6
append_object, 6
are_true, 7
as_formatted_number, 7, 20
as_formatted_p_value, 8, 21
as_logical, 7
as_percentage_label, 9

cairo_pdf, 35
count, 7/
count_at, 9
count_by, 4, 10, 11
cross_tabulate, 12

dinA (dina), 13

dina, 13

dinA_format (dina), 13
dinA_height (dina), 13
dinA_width (dina), 13
dinAFormat (dina), 13
dinAHeight (dina), 13
dinAWidth (dina), 13

equal_including_na, 14
eval_unquoted, 14
execute_if, 15

execute_if_else (execute_if), 15
execute_in_pipeline, 16
expression_list, 16

falsy (truthy), 39
fct_recode, 34
fct_relevel, 34
fct_reorder, 30, 31
first_non_nas, 17

43

first_non_nas_at, 18
first_not, 18
first_not_na, 19
first_which_non_na_at, 19
first_which_not_na, 20
format_numbers_at, 20, 22
format_p_values_at, 21, 21

g (tuple_assignment), 40

identity_order, 22
interlude, 23

invalid, 24
invert_value_and_names, 24

local_variables, 25
localVariables (local_variables), 25
lookup, 26

lookup_chr (lookup), 26
lookup_dbl (lookup), 26
lookup_function_from_dict, 27
lookup_int (lookup), 26
lookup_1gl (lookup), 26
lookup_num (lookup), 26
lump, 27, 28, 29

lump_rows, 28

mutate_at, 20, 21

name_contains (with_name), 41
named (with_name), 41
named_palette, 29

order, 22, 30
order_factor_by, 30, 34

orderer_function_from_sorted_vectors,

30

pluck, 31,41, 42
pluck_vector, 31
png, 36

44

prepare_directory, 31
prepare_path, 32
prepend_object, 32
print_deparsed, 33
prop.test, 3

quosure_list (expression_list), 16

rename_factor, 31, 33, 34
rename_reorder_factor, 31, 34, 34
replace_sequential_duplicates, 35

save_pdf, 35

save_png, 36

select, I8, 19
sequential_duplicates, 36

simplify, 31

source_variables (local_variables), 25
sourceVariables (local_variables), 25
str_detect, 41, 42
str_locate_match, 37

summarise, 29

symbol_as_quosure, 38
symbol_string_list (expression_list), 16
syntactically_safe, 38

table, 12
true_or_na, 39
truthy, 39
tuple_assignment, 40

unit, 13, 35, 36

valid (invalid), 24
value_contains (with_value_containing),
42

which_non_na, 40

with_name, 41

with_name_containing (with_name), 41
with_value_containing, 42

INDEX

	add_prop_test
	add_summary
	add_summary_by
	all_or_all_na
	any_or_all_na
	append_object
	are_true
	as_formatted_number
	as_formatted_p_value
	as_percentage_label
	count_at
	count_by
	cross_tabulate
	dina
	equal_including_na
	eval_unquoted
	execute_if
	execute_in_pipeline
	expression_list
	first_non_nas
	first_non_nas_at
	first_not
	first_not_na
	first_which_non_na_at
	first_which_not_na
	format_numbers_at
	format_p_values_at
	identity_order
	interlude
	invalid
	invert_value_and_names
	local_variables
	lookup
	lookup_function_from_dict
	lump
	lump_rows
	named_palette
	orderer_function_from_sorted_vectors
	order_factor_by
	pluck_vector
	prepare_directory
	prepare_path
	prepend_object
	print_deparsed
	rename_factor
	rename_reorder_factor
	replace_sequential_duplicates
	save_pdf
	save_png
	sequential_duplicates
	str_locate_match
	symbol_as_quosure
	syntactically_safe
	true_or_na
	truthy
	tuple_assignment
	which_non_na
	with_name
	with_value_containing
	Index

