Rectangling is the art and craft of taking a deeply nested list (often sourced from wild caught JSON or XML) and taming it into a tidy data set of rows and columns. There are three functions from tidyr that are particularly useful for rectangling:
unnest_longer()
takes each element of a list-column and makes a new row.unnest_wider()
takes each element of a list-column and makes a new column.unnest_auto()
guesses whether you want unnest_longer()
or unnest_wider()
.hoist()
is similar to unnest_wider()
but only plucks out selected components, and can reach down multiple levels.A very large number of data rectangling problems can be solved by combining these functions with a splash of dplyr (largely eliminating prior approaches that combined mutate()
with multiple purrr::map()
s).
To illustrate these techniques, we’ll use the repurrrsive package, which provides a number deeply nested lists originally mostly captured from web APIs.
We’ll start with gh_users
, a list which contains information about six GitHub users. To begin, we put the gh_users
list into a data frame:
This seems a bit counter-intuitive: why is the first step in making a list simpler to make it more complicated? But a data frame has a big advantage: it bundles together multiple vectors so that everything is tracked together in a single object.
Each user
is a named list, where each element represents a column.
names(users$user[[1]])
#> [1] "login" "id" "avatar_url"
#> [4] "gravatar_id" "url" "html_url"
#> [7] "followers_url" "following_url" "gists_url"
#> [10] "starred_url" "subscriptions_url" "organizations_url"
#> [13] "repos_url" "events_url" "received_events_url"
#> [16] "type" "site_admin" "name"
#> [19] "company" "blog" "location"
#> [22] "email" "hireable" "bio"
#> [25] "public_repos" "public_gists" "followers"
#> [28] "following" "created_at" "updated_at"
There are two ways to turn the list components into columns. unnest_wider()
takes every component and makes a new column:
users %>% unnest_wider(user)
#> # A tibble: 6 x 30
#> login id avatar_url gravatar_id url html_url followers_url following_url
#> <chr> <int> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 gabo… 6.60e5 https://a… "" http… https:/… https://api.… https://api.…
#> 2 jenn… 5.99e5 https://a… "" http… https:/… https://api.… https://api.…
#> 3 jtle… 1.57e6 https://a… "" http… https:/… https://api.… https://api.…
#> 4 juli… 1.25e7 https://a… "" http… https:/… https://api.… https://api.…
#> 5 leep… 3.51e6 https://a… "" http… https:/… https://api.… https://api.…
#> 6 masa… 8.36e6 https://a… "" http… https:/… https://api.… https://api.…
#> # … with 22 more variables: gists_url <chr>, starred_url <chr>,
#> # subscriptions_url <chr>, organizations_url <chr>, repos_url <chr>,
#> # events_url <chr>, received_events_url <chr>, type <chr>, site_admin <lgl>,
#> # name <chr>, company <chr>, blog <chr>, location <chr>, email <chr>,
#> # public_repos <int>, public_gists <int>, followers <int>, following <int>,
#> # created_at <chr>, updated_at <chr>, bio <chr>, hireable <lgl>
But in this case, there are many components and we don’t need most of them so we can instead use hoist()
. hoist()
allows us to pull out selected components using the same syntax as purrr::pluck()
:
users %>% hoist(user,
followers = "followers",
login = "login",
url = "html_url"
)
#> # A tibble: 6 x 4
#> followers login url user
#> <int> <chr> <chr> <list>
#> 1 303 gaborcsardi https://github.com/gaborcsardi <named list [27]>
#> 2 780 jennybc https://github.com/jennybc <named list [27]>
#> 3 3958 jtleek https://github.com/jtleek <named list [27]>
#> 4 115 juliasilge https://github.com/juliasilge <named list [27]>
#> 5 213 leeper https://github.com/leeper <named list [27]>
#> 6 34 masalmon https://github.com/masalmon <named list [27]>
hoist()
removes the named components from the user
list-column, so you can think of it as moving components out of the inner list into the top-level data frame.
We start off gh_repos
similarly, by putting it in a tibble:
repos <- tibble(repo = gh_repos)
repos
#> # A tibble: 6 x 1
#> repo
#> <list>
#> 1 <list [30]>
#> 2 <list [30]>
#> 3 <list [30]>
#> 4 <list [26]>
#> 5 <list [30]>
#> 6 <list [30]>
This time the elements of user
are a list of repositories that belong to that user. These are observations, so should become new rows, so we use unnest_longer()
rather than unnest_wider()
:
repos <- repos %>% unnest_longer(repo)
repos
#> # A tibble: 176 x 1
#> repo
#> <list>
#> 1 <named list [68]>
#> 2 <named list [68]>
#> 3 <named list [68]>
#> 4 <named list [68]>
#> 5 <named list [68]>
#> 6 <named list [68]>
#> # … with 170 more rows
Then we can use unnest_wider()
or hoist()
:
repos %>% hoist(repo,
login = c("owner", "login"),
name = "name",
homepage = "homepage",
watchers = "watchers_count"
)
#> # A tibble: 176 x 5
#> login name homepage watchers repo
#> <chr> <chr> <chr> <int> <list>
#> 1 gaborcsardi after <NA> 5 <named list [65]>
#> 2 gaborcsardi argufy <NA> 19 <named list [65]>
#> 3 gaborcsardi ask <NA> 5 <named list [65]>
#> 4 gaborcsardi baseimports <NA> 0 <named list [65]>
#> 5 gaborcsardi citest <NA> 0 <named list [65]>
#> 6 gaborcsardi clisymbols "" 18 <named list [65]>
#> # … with 170 more rows
Note the use of c("owner", "login")
: this allows us to reach two levels deep inside of a list. An alternative approach would be to pull out just owner
and then put each element of it in a column:
repos %>%
hoist(repo, owner = "owner") %>%
unnest_wider(owner)
#> # A tibble: 176 x 18
#> login id avatar_url gravatar_id url html_url followers_url following_url
#> <chr> <int> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 gabo… 660288 https://a… "" http… https:/… https://api.… https://api.…
#> 2 gabo… 660288 https://a… "" http… https:/… https://api.… https://api.…
#> 3 gabo… 660288 https://a… "" http… https:/… https://api.… https://api.…
#> 4 gabo… 660288 https://a… "" http… https:/… https://api.… https://api.…
#> 5 gabo… 660288 https://a… "" http… https:/… https://api.… https://api.…
#> 6 gabo… 660288 https://a… "" http… https:/… https://api.… https://api.…
#> # … with 170 more rows, and 10 more variables: gists_url <chr>,
#> # starred_url <chr>, subscriptions_url <chr>, organizations_url <chr>,
#> # repos_url <chr>, events_url <chr>, received_events_url <chr>, type <chr>,
#> # site_admin <lgl>, repo <list>
Instead of looking at the list and carefully thinking about whether it needs to become rows or columns, you can use unnest_auto()
. It uses a handful of heuristics to figure out whether unnest_longer()
or unnest_wider()
is appropriate, and tells you about its reasoning.
tibble(repo = gh_repos) %>%
unnest_auto(repo) %>%
unnest_auto(repo)
#> Using `unnest_longer(repo)`; no element has names
#> Using `unnest_wider(repo)`; elements have 68 names in common
#> # A tibble: 176 x 67
#> id name full_name owner private html_url description fork url
#> <int> <chr> <chr> <lis> <lgl> <chr> <chr> <lgl> <chr>
#> 1 6.12e7 after gaborcsa… <nam… FALSE https:/… Run Code i… FALSE http…
#> 2 4.05e7 argu… gaborcsa… <nam… FALSE https:/… Declarativ… FALSE http…
#> 3 3.64e7 ask gaborcsa… <nam… FALSE https:/… Friendly C… FALSE http…
#> 4 3.49e7 base… gaborcsa… <nam… FALSE https:/… Do we get … FALSE http…
#> 5 6.16e7 cite… gaborcsa… <nam… FALSE https:/… Test R pac… TRUE http…
#> 6 3.39e7 clis… gaborcsa… <nam… FALSE https:/… Unicode sy… FALSE http…
#> # … with 170 more rows, and 58 more variables: forks_url <chr>, keys_url <chr>,
#> # collaborators_url <chr>, teams_url <chr>, hooks_url <chr>,
#> # issue_events_url <chr>, events_url <chr>, assignees_url <chr>,
#> # branches_url <chr>, tags_url <chr>, blobs_url <chr>, git_tags_url <chr>,
#> # git_refs_url <chr>, trees_url <chr>, statuses_url <chr>,
#> # languages_url <chr>, stargazers_url <chr>, contributors_url <chr>,
#> # subscribers_url <chr>, subscription_url <chr>, commits_url <chr>,
#> # git_commits_url <chr>, comments_url <chr>, issue_comment_url <chr>,
#> # contents_url <chr>, compare_url <chr>, merges_url <chr>, archive_url <chr>,
#> # downloads_url <chr>, issues_url <chr>, pulls_url <chr>,
#> # milestones_url <chr>, notifications_url <chr>, labels_url <chr>,
#> # releases_url <chr>, deployments_url <chr>, created_at <chr>,
#> # updated_at <chr>, pushed_at <chr>, git_url <chr>, ssh_url <chr>,
#> # clone_url <chr>, svn_url <chr>, size <int>, stargazers_count <int>,
#> # watchers_count <int>, language <chr>, has_issues <lgl>,
#> # has_downloads <lgl>, has_wiki <lgl>, has_pages <lgl>, forks_count <int>,
#> # open_issues_count <int>, forks <int>, open_issues <int>, watchers <int>,
#> # default_branch <chr>, homepage <chr>
got_chars
has a similar structure to gh_users
: it’s a list of named lists, where each element of the inner list describes some attribute of a GoT character. We start in the same way, first by creating a data frame and then by unnesting each component into a column:
chars <- tibble(char = got_chars)
chars
#> # A tibble: 30 x 1
#> char
#> <list>
#> 1 <named list [18]>
#> 2 <named list [18]>
#> 3 <named list [18]>
#> 4 <named list [18]>
#> 5 <named list [18]>
#> 6 <named list [18]>
#> # … with 24 more rows
chars2 <- chars %>% unnest_wider(char)
chars2
#> # A tibble: 30 x 18
#> url id name gender culture born died alive titles aliases father
#> <chr> <int> <chr> <chr> <chr> <chr> <chr> <lgl> <list> <list> <chr>
#> 1 http… 1022 Theo… Male "Ironb… "In … "" TRUE <chr … <chr [… ""
#> 2 http… 1052 Tyri… Male "" "In … "" TRUE <chr … <chr [… ""
#> 3 http… 1074 Vict… Male "Ironb… "In … "" TRUE <chr … <chr [… ""
#> 4 http… 1109 Will Male "" "" "In … FALSE <chr … <chr [… ""
#> 5 http… 1166 Areo… Male "Norvo… "In … "" TRUE <chr … <chr [… ""
#> 6 http… 1267 Chett Male "" "At … "In … FALSE <chr … <chr [… ""
#> # … with 24 more rows, and 7 more variables: mother <chr>, spouse <chr>,
#> # allegiances <list>, books <list>, povBooks <list>, tvSeries <list>,
#> # playedBy <list>
This is more complex than gh_users
because some component of char
are themselves a list, giving us a collection of list-columns:
chars2 %>% select_if(is.list)
#> # A tibble: 30 x 7
#> titles aliases allegiances books povBooks tvSeries playedBy
#> <list> <list> <list> <list> <list> <list> <list>
#> 1 <chr [3]> <chr [4]> <chr [1]> <chr [3]> <chr [2]> <chr [6]> <chr [1]>
#> 2 <chr [2]> <chr [11]> <chr [1]> <chr [2]> <chr [4]> <chr [6]> <chr [1]>
#> 3 <chr [2]> <chr [1]> <chr [1]> <chr [3]> <chr [2]> <chr [1]> <chr [1]>
#> 4 <chr [1]> <chr [1]> <NULL> <chr [1]> <chr [1]> <chr [1]> <chr [1]>
#> 5 <chr [1]> <chr [1]> <chr [1]> <chr [3]> <chr [2]> <chr [2]> <chr [1]>
#> 6 <chr [1]> <chr [1]> <NULL> <chr [2]> <chr [1]> <chr [1]> <chr [1]>
#> # … with 24 more rows
What you do next will depend on the purposes of the analysis. Maybe you want a row for every book and TV series that the character appears in:
chars2 %>%
select(name, books, tvSeries) %>%
pivot_longer(c(books, tvSeries), names_to = "media", values_to = "value") %>%
unnest_longer(value)
#> # A tibble: 180 x 3
#> name media value
#> <chr> <chr> <chr>
#> 1 Theon Greyjoy books A Game of Thrones
#> 2 Theon Greyjoy books A Storm of Swords
#> 3 Theon Greyjoy books A Feast for Crows
#> 4 Theon Greyjoy tvSeries Season 1
#> 5 Theon Greyjoy tvSeries Season 2
#> 6 Theon Greyjoy tvSeries Season 3
#> # … with 174 more rows
Or maybe you want to build a table that lets you match title to name:
chars2 %>%
select(name, title = titles) %>%
unnest_longer(title)
#> # A tibble: 60 x 2
#> name title
#> <chr> <chr>
#> 1 Theon Greyjoy Prince of Winterfell
#> 2 Theon Greyjoy Captain of Sea Bitch
#> 3 Theon Greyjoy Lord of the Iron Islands (by law of the green lands)
#> 4 Tyrion Lannister Acting Hand of the King (former)
#> 5 Tyrion Lannister Master of Coin (former)
#> 6 Victarion Greyjoy Lord Captain of the Iron Fleet
#> # … with 54 more rows
(Note that the empty titles (""
) are due to an infelicity in the input got_chars
: ideally people without titles would have a title vector of length 0, not a title vector of length 1 containing an empty string.)
Again, we could rewrite using unnest_auto()
. This is convenient for exploration, but I wouldn’t rely on it in the long term - unnest_auto()
has the undesirable property that it will always succeed. That means if your data structure changes, unnest_auto()
will continue to work, but might give very different output that causes cryptic failures from downstream functions.
tibble(char = got_chars) %>%
unnest_auto(char) %>%
select(name, title = titles) %>%
unnest_auto(title)
#> Using `unnest_wider(char)`; elements have 18 names in common
#> Using `unnest_longer(title)`; no element has names
#> # A tibble: 60 x 2
#> name title
#> <chr> <chr>
#> 1 Theon Greyjoy Prince of Winterfell
#> 2 Theon Greyjoy Captain of Sea Bitch
#> 3 Theon Greyjoy Lord of the Iron Islands (by law of the green lands)
#> 4 Tyrion Lannister Acting Hand of the King (former)
#> 5 Tyrion Lannister Master of Coin (former)
#> 6 Victarion Greyjoy Lord Captain of the Iron Fleet
#> # … with 54 more rows
Next we’ll tackle a more complex form of data that comes from Google’s geocoding service. It’s against the terms of service to cache this data, so I first write a very simple wrapper around the API. This relies on having an Google maps API key stored in an environment; if that’s not available these code chunks won’t be run.
has_key <- !identical(Sys.getenv("GOOGLE_MAPS_API_KEY"), "")
if (!has_key) {
message("No Google Maps API key found; code chunks will not be run")
}
# https://developers.google.com/maps/documentation/geocoding
geocode <- function(address, api_key = Sys.getenv("GOOGLE_MAPS_API_KEY")) {
url <- "https://maps.googleapis.com/maps/api/geocode/json"
url <- paste0(url, "?address=", URLencode(address), "&key=", api_key)
jsonlite::read_json(url)
}
The list that this function returns is quite complex:
houston <- geocode("Houston TX")
str(houston)
#> List of 2
#> $ results:List of 1
#> ..$ :List of 5
#> .. ..$ address_components:List of 4
#> .. .. ..$ :List of 3
#> .. .. .. ..$ long_name : chr "Houston"
#> .. .. .. ..$ short_name: chr "Houston"
#> .. .. .. ..$ types :List of 2
#> .. .. .. .. ..$ : chr "locality"
#> .. .. .. .. ..$ : chr "political"
#> .. .. ..$ :List of 3
#> .. .. .. ..$ long_name : chr "Harris County"
#> .. .. .. ..$ short_name: chr "Harris County"
#> .. .. .. ..$ types :List of 2
#> .. .. .. .. ..$ : chr "administrative_area_level_2"
#> .. .. .. .. ..$ : chr "political"
#> .. .. ..$ :List of 3
#> .. .. .. ..$ long_name : chr "Texas"
#> .. .. .. ..$ short_name: chr "TX"
#> .. .. .. ..$ types :List of 2
#> .. .. .. .. ..$ : chr "administrative_area_level_1"
#> .. .. .. .. ..$ : chr "political"
#> .. .. ..$ :List of 3
#> .. .. .. ..$ long_name : chr "United States"
#> .. .. .. ..$ short_name: chr "US"
#> .. .. .. ..$ types :List of 2
#> .. .. .. .. ..$ : chr "country"
#> .. .. .. .. ..$ : chr "political"
#> .. ..$ formatted_address : chr "Houston, TX, USA"
#> .. ..$ geometry :List of 4
#> .. .. ..$ bounds :List of 2
#> .. .. .. ..$ northeast:List of 2
#> .. .. .. .. ..$ lat: num 30.1
#> .. .. .. .. ..$ lng: num -95
#> .. .. .. ..$ southwest:List of 2
#> .. .. .. .. ..$ lat: num 29.5
#> .. .. .. .. ..$ lng: num -95.8
#> .. .. ..$ location :List of 2
#> .. .. .. ..$ lat: num 29.8
#> .. .. .. ..$ lng: num -95.4
#> .. .. ..$ location_type: chr "APPROXIMATE"
#> .. .. ..$ viewport :List of 2
#> .. .. .. ..$ northeast:List of 2
#> .. .. .. .. ..$ lat: num 30.1
#> .. .. .. .. ..$ lng: num -95
#> .. .. .. ..$ southwest:List of 2
#> .. .. .. .. ..$ lat: num 29.5
#> .. .. .. .. ..$ lng: num -95.8
#> .. ..$ place_id : chr "ChIJAYWNSLS4QIYROwVl894CDco"
#> .. ..$ types :List of 2
#> .. .. ..$ : chr "locality"
#> .. .. ..$ : chr "political"
#> $ status : chr "OK"
Fortunately, we can attack the problem step by step with tidyr functions. To make the problem a bit harder (!) and more realistic, I’ll start by geocoding a few cities:
city <- c("Houston", "LA", "New York", "Chicago", "Springfield")
city_geo <- purrr::map(city, geocode)
I’ll put these results in a tibble, next to the original city name:
loc <- tibble(city = city, json = city_geo)
loc
#> # A tibble: 5 x 2
#> city json
#> <chr> <list>
#> 1 Houston <named list [2]>
#> 2 LA <named list [2]>
#> 3 New York <named list [2]>
#> 4 Chicago <named list [2]>
#> 5 Springfield <named list [2]>
The first level contains components status
and result
, which we can reveal with unnest_wider()
:
loc %>%
unnest_wider(json)
#> # A tibble: 5 x 3
#> city results status
#> <chr> <list> <chr>
#> 1 Houston <list [1]> OK
#> 2 LA <list [1]> OK
#> 3 New York <list [1]> OK
#> 4 Chicago <list [1]> OK
#> 5 Springfield <list [1]> OK
Notice that results
is a list of lists. Most of the cities have 1 element (representing a unique match from the geocoding API), but Springfield has two. We can pull these out into separate rows with unnest_longer()
:
loc %>%
unnest_wider(json) %>%
unnest_longer(results)
#> # A tibble: 5 x 3
#> city results status
#> <chr> <list> <chr>
#> 1 Houston <named list [5]> OK
#> 2 LA <named list [5]> OK
#> 3 New York <named list [5]> OK
#> 4 Chicago <named list [5]> OK
#> 5 Springfield <named list [5]> OK
Now these all have the same components, as revealed by unnest_wider()
:
loc %>%
unnest_wider(json) %>%
unnest_longer(results) %>%
unnest_wider(results)
#> # A tibble: 5 x 7
#> city address_componen… formatted_address geometry place_id types status
#> <chr> <list> <chr> <list> <chr> <lis> <chr>
#> 1 Houston <list [4]> Houston, TX, USA <named l… ChIJAYWNSL… <lis… OK
#> 2 LA <list [4]> Los Angeles, CA,… <named l… ChIJE9on3F… <lis… OK
#> 3 New Yo… <list [3]> New York, NY, USA <named l… ChIJOwg_06… <lis… OK
#> 4 Chicago <list [4]> Chicago, IL, USA <named l… ChIJ7cv00D… <lis… OK
#> 5 Spring… <list [5]> Springfield, MO,… <named l… ChIJP5jIRf… <lis… OK
We can find the lat and lon coordinates by unnesting geometry
:
loc %>%
unnest_wider(json) %>%
unnest_longer(results) %>%
unnest_wider(results) %>%
unnest_wider(geometry)
#> # A tibble: 5 x 10
#> city address_compone… formatted_addre… bounds location location_type viewport
#> <chr> <list> <chr> <list> <list> <chr> <list>
#> 1 Hous… <list [4]> Houston, TX, USA <name… <named … APPROXIMATE <named …
#> 2 LA <list [4]> Los Angeles, CA… <name… <named … APPROXIMATE <named …
#> 3 New … <list [3]> New York, NY, U… <name… <named … APPROXIMATE <named …
#> 4 Chic… <list [4]> Chicago, IL, USA <name… <named … APPROXIMATE <named …
#> 5 Spri… <list [5]> Springfield, MO… <name… <named … APPROXIMATE <named …
#> # … with 3 more variables: place_id <chr>, types <list>, status <chr>
And then location:
loc %>%
unnest_wider(json) %>%
unnest_longer(results) %>%
unnest_wider(results) %>%
unnest_wider(geometry) %>%
unnest_wider(location)
#> # A tibble: 5 x 11
#> city address_compone… formatted_addre… bounds lat lng location_type
#> <chr> <list> <chr> <list> <dbl> <dbl> <chr>
#> 1 Hous… <list [4]> Houston, TX, USA <name… 29.8 -95.4 APPROXIMATE
#> 2 LA <list [4]> Los Angeles, CA… <name… 34.1 -118. APPROXIMATE
#> 3 New … <list [3]> New York, NY, U… <name… 40.7 -74.0 APPROXIMATE
#> 4 Chic… <list [4]> Chicago, IL, USA <name… 41.9 -87.6 APPROXIMATE
#> 5 Spri… <list [5]> Springfield, MO… <name… 37.2 -93.3 APPROXIMATE
#> # … with 4 more variables: viewport <list>, place_id <chr>, types <list>,
#> # status <chr>
Again, unnest_auto()
makes this simpler with the small risk of failing in unexpected ways if the input structure changes:
loc %>%
unnest_auto(json) %>%
unnest_auto(results) %>%
unnest_auto(results) %>%
unnest_auto(geometry) %>%
unnest_auto(location)
#> Using `unnest_wider(json)`; elements have 2 names in common
#> Using `unnest_longer(results)`; no element has names
#> Using `unnest_wider(results)`; elements have 5 names in common
#> Using `unnest_wider(geometry)`; elements have 4 names in common
#> Using `unnest_wider(location)`; elements have 2 names in common
#> # A tibble: 5 x 11
#> city address_compone… formatted_addre… bounds lat lng location_type
#> <chr> <list> <chr> <list> <dbl> <dbl> <chr>
#> 1 Hous… <list [4]> Houston, TX, USA <name… 29.8 -95.4 APPROXIMATE
#> 2 LA <list [4]> Los Angeles, CA… <name… 34.1 -118. APPROXIMATE
#> 3 New … <list [3]> New York, NY, U… <name… 40.7 -74.0 APPROXIMATE
#> 4 Chic… <list [4]> Chicago, IL, USA <name… 41.9 -87.6 APPROXIMATE
#> 5 Spri… <list [5]> Springfield, MO… <name… 37.2 -93.3 APPROXIMATE
#> # … with 4 more variables: viewport <list>, place_id <chr>, types <list>,
#> # status <chr>
We could also just look at the first address for each city:
loc %>%
unnest_wider(json) %>%
hoist(results, first_result = 1) %>%
unnest_wider(first_result) %>%
unnest_wider(geometry) %>%
unnest_wider(location)
#> # A tibble: 5 x 11
#> city address_compone… formatted_addre… bounds lat lng location_type
#> <chr> <list> <chr> <list> <dbl> <dbl> <chr>
#> 1 Hous… <list [4]> Houston, TX, USA <name… 29.8 -95.4 APPROXIMATE
#> 2 LA <list [4]> Los Angeles, CA… <name… 34.1 -118. APPROXIMATE
#> 3 New … <list [3]> New York, NY, U… <name… 40.7 -74.0 APPROXIMATE
#> 4 Chic… <list [4]> Chicago, IL, USA <name… 41.9 -87.6 APPROXIMATE
#> 5 Spri… <list [5]> Springfield, MO… <name… 37.2 -93.3 APPROXIMATE
#> # … with 4 more variables: viewport <list>, place_id <chr>, types <list>,
#> # status <chr>
Or use hoist()
to dive deeply to get directly to lat
and lng
:
loc %>%
hoist(json,
lat = list("results", 1, "geometry", "location", "lat"),
lng = list("results", 1, "geometry", "location", "lng")
)
#> # A tibble: 5 x 4
#> city lat lng json
#> <chr> <dbl> <dbl> <list>
#> 1 Houston 29.8 -95.4 <named list [2]>
#> 2 LA 34.1 -118. <named list [2]>
#> 3 New York 40.7 -74.0 <named list [2]>
#> 4 Chicago 41.9 -87.6 <named list [2]>
#> 5 Springfield 37.2 -93.3 <named list [2]>
I’d normally use readr::parse_datetime()
or lubridate::ymd_hms()
, but I can’t here because it’s a vignette and I don’t want to add a dependency to tidyr just to simplify one example.↩︎