It parses a fitted 'R' model object, and returns a formula in 'Tidy Eval' code that calculates the predictions. It works with several databases back-ends because it leverages 'dplyr' and 'dbplyr' for the final 'SQL' translation of the algorithm. It currently supports lm(), glm(), randomForest(), ranger(), earth(), xgb.Booster.complete(), cubist(), and ctree() models.
Version: | 0.4.6 |
Depends: | R (≥ 3.1) |
Imports: | dplyr (≥ 0.7), rlang, purrr, knitr, generics, tibble |
Suggests: | dbplyr, testthat (≥ 2.1.0), randomForest, ranger, earth, rmarkdown, nycflights13, RSQLite, methods, DBI, covr, xgboost, Cubist, mlbench, partykit, yaml, parsnip |
Published: | 2020-07-23 |
Author: | Max Kuhn [aut, cre] |
Maintainer: | Max Kuhn <max at rstudio.com> |
BugReports: | https://github.com/tidymodels/tidypredict/issues |
License: | GPL-3 |
URL: | https://tidypredict.tidymodels.org, https://github.com/tidymodels/tidypredict |
NeedsCompilation: | no |
Materials: | README NEWS |
In views: | ModelDeployment |
CRAN checks: | tidypredict results |
Reference manual: | tidypredict.pdf |
Vignettes: |
cubist glm lm mars non-r ranger regression rf save randomForest tree xgboost |
Package source: | tidypredict_0.4.6.tar.gz |
Windows binaries: | r-devel: tidypredict_0.4.6.zip, r-release: tidypredict_0.4.6.zip, r-oldrel: tidypredict_0.4.6.zip |
macOS binaries: | r-release: tidypredict_0.4.6.tgz, r-oldrel: tidypredict_0.4.6.tgz |
Old sources: | tidypredict archive |
Reverse imports: | modeldb |
Please use the canonical form https://CRAN.R-project.org/package=tidypredict to link to this page.