Package 'tidyMicro'

March 28, 2020

Title A Pipeline for Microbiome Analysis and Visualization

Version 1.43

Date 2020-03-17

Maintainer Charlie Carpenter <charles.carpenter@cuanschutz.edu>

Description A reliable alternative to popular microbiome analysis R packages. We provide standard tools as well as novel extensions on standard analyses to improve interpretability and the analyst's ability to communicate results, all while maintaining object malleability to encourage open source collaboration.

Depends R (>= 3.5.0), tidyverse (>= 1.3.0)

Imports magrittr (>= 1.5.0), ggrepel (>= 0.8.1), MASS (>= 7.3-51.4), VGAM (>= 1.1-2), rlang (>= 0.3.4), car (>= 3.0-3), lme4 (>= 1.1-21), vegan (>= 2.5-5), Matrix (>= 1.2-17), cowplot (>= 0.9.4), lsr (>= 0.5), shapes (>= 1.2.4), Evomorph (>= 0.9), ThreeWay (>= 1.1.3), factoextra (>= 1.0.5), ade4 (>= 1.7-13), scatterplot3d (>= 0.3-41), gridExtra (>= 2.3), plotly (>= 4.9.0), png (>= 0.1-7), latex2exp(>= 0.4.0), broom (>= 0.5.0), plyr (>= 1.8.0), dplyr (>= 0.8.0), ggplot2 (>= 3.2.0), purrr (>= 0.3.0), stringr (>= 1.4.0), tibble (>= 2.1.0), tidyr (>= 1.0.0), scales (>= 1.1.0)

Suggests knitr, markdown, roxygen2, rmarkdown

Encoding UTF-8

License GPL-3

LazyData true

RoxygenNote 7.1.0

BugReports https://github.com/CharlieCarpenter/tidyMicro

VignetteBuilder knitr

NeedsCompilation no

Author Charlie Carpenter [aut, cre], Dan Frank [aut], Kayla Williamson [aut], Rachel Johnson [ctb] Repository CRAN Date/Publication 2020-03-28 14:20:02 UTC

R topics documented:

alpha_div	2
bb_bars	4
bb_mods	5
beta_div	7
beta_heatmap	8
cla	9
clin	10
cor_heatmap	11
cor_rocky_mtn	12
fam	14
micro_alpha_reg	14
micro_chisq	15
micro_forest	16
micro_heatmap	17
micro_pca	19
micro_PERMANOVA	21
micro_rank_sum	22
micro_rocky_mtn	23
nb_bars	24
nb_mods	26
ord	28
otu_filter	28
pca_3d	29
phy	31
ra bars	32
taxa boxplot	33
taxa summary	34
three mode	35
	37
	39

Index

alpha_div

Alpha Diversity Calculations for tidy_micro

Description

A wrapper function to calculate Sobs, Choa1, Goods, Shannon's diversity and evenness, and Simpson's diversity and evenness alpha diversities for your micro_set. Estimates are calculated based on rarefied bootstrapped samples

alpha_div

Usage

alpha_div(micro_set, table = NULL, iter = 100, min_depth = 0, min_goods = 0)

Arguments

micro_set	A tidy_micro data set
table	OTU table of interest
iter	The number of bootstrap resamples used for estimation
min_depth	Filter out libraries with sequencing depth (Total) below min_depth
min_goods	Filter out libraries Good's coverage below min_goods

Details

If you have multiple otu tables, you can specify the table you'd like to use to calculate your alpha diversities using the table option. We highly recommend using the lowest taxonomic rank available to calculate your alpha diversity. If you would like to calculate alpha diversities for each otu table in your micro_set, you can leave the table option as NULL and the function will calculate the alpha diversity for each table. The function will append the estimated alpha diversities to the tidy_micro supplied. The alpha diversity columns will be just before your clinical data. Since alpha diversity is estimated for each individual library (Lib), it will be repeated within each taxa block.

Value

A tidy_micro set with alpha diversity columns added in to the left of clinical data

Note

Be aware of your minimal sequencing depth as this will be the size of all bootstrapped resamples (rarefied).

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
```

```
## calculate alpha diversity for every table
set_alpha <- set %>% alpha_div(min_depth = 5000, min_goods = 90)
```

calculate alpha diversity for a specific table
set_fam_alpha <- set %>% alpha_div(table = "Family", min_depth = 5000, min_goods = 90)

```
bb_bars
```

Description

bb_bars takes the output from bb_mods and creates stacked bar charts of the estimated relative abundance for each taxa. The benefit of modeling each taxa before created stacked bar charts is the ability to control for potential confounders. The function will facet wrap interaction terms. Currently, only quant_style = "discrete" can be used for an interaction between two quantitative variables

Usage

```
bb_bars(
  modsum,
  ...,
  range,
  quant_style = c("continuous", "discrete"),
  top_taxa = 0,
  RA = 0,
  specific_taxa,
  lines = TRUE,
  xaxis,
  main,
  subtitle,
  xlab,
  ylab = "Relative Abundance (%)",
  facet_labels,
  facet_layout = 1
)
```

Arguments

modsum	The output from bb_mods
	The covariate you'd like to plot. Can be an interaction term or main effect, but must be in the models created by bb_mods
range	The range you'd like to plot over for a quantitative variable. Will default to the first and third quartiles
quant_style	"continuous" will plot over the entire range specified; "discrete" will plot only the endpoints of the range specified. "continuous" by default. This option is ignored without a quantitative variable
top_taxa	Only plot X taxa with the highest relative abundance. The rest will be aggregated into an "Other" category
RA	Only plot taxa with a relative abundance higher than X. The rest will be aggregated into an "Other" category

bb_mods

<pre>specific_taxa</pre>	Character; Plot these specific taxa even if it doesn't meet the top_taxa or RA requirements
lines	Logical; Add outlines around the different taxa colors in the stacked bar charts
xaxis	Labels for the x-axis ticks. Most useful for categorical variables and defaults to the levels of the variable
main	Plot title
subtitle	Subtitle for the plot
xlab	x-axis label
ylab	y-axis label
facet_labels	Labels for the facets created for interaction terms
facet_layout	Rearrange the facets created for interaction terms

Value

Returns a ggplot that you can add geoms to if you'd like

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
## Creating beta binomial models on filtered tidy_micro set
bb_phy <- set %>%
otu_filter(ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
bb_mods(table = "Phylum", bpd1)
bb_phy %>%
bb_bars(bpd1, top_taxa = 4, xlab = "BPD Severity")
```

bb_mods

Fit beta binomial models to each taxa within an OTU table

Description

Fit beta binomial models to each taxa within an OTU table through vglm in the VGAM package. Summaries for models or confidence intervals that fail to converge will not be returned, but taxa summaries will be provided in the output. Rank-Sum tests or presence/absence tests can be run on these taxa using tidi_rank_sum or tidi_chisq, respectively

Usage

```
bb_mods(
  micro_set,
  table,
   ...,
  CI_method = c("wald", "profile"),
  SS_type = c(2, 3, "II", "III"),
  trace = FALSE
)
```

Arguments

micro_set	A tidy_micro data set
table	OTU table of interest
	Covariates of interest. Can be interactions such as Group*Age
CI_method	Character indicating the type of method used for confidence interval estimation. Wald intervals are the current default. Abbreviations allowed. See confintvglm for more details
SS_type	Type of sums of squares calculated in anova.vglm. Either type II (2) or type III (3) sums of squares. Type II is the default
trace	Print messages of model fitting proceedure

Details

Models containing only fixed effects are fit using vglm in the VGAM package. ANOVA / ANCOVA tests are conducted using a Likelihood Ratio test

Value

A list containing several different model components and summaries

Convergend_Summary		
	A data.frame of model summaries from convergent models. Includes the Taxa name, the model coefficient, the estimated beta, the beta's 95 percent confidence interval, Z score, p_value, false discovery rate p-value, and p-value from likelihood ratio test	
Estimate_Summar	^y	
	A data.frame of model estimates from convergent models intended to be ready for export for publications. Includes the Taxa name, the model coefficient, the estimated Rate Ratio, the Wald 95 percent confidence interval, the Z-score, and false discovery rate p-value	
RA_Summary	A data.frame of taxa summaries. Includes the Taxa name, grouping variables (each factor variable in your models), sample size (n), percent of 0 counts, basic summaries of relative abundance, percentiles of relative abundance, and a logical indicator of whether or not the model converged	
formula	The formula used in the model	
Model_Coef	Model coefficients (used in plotting funcitons)	
Model_Covs	Model covariates (used in plotting functions)	

6

beta_div

Note

False Discovery Rate p-values are calculated using p.adjust. Estimated rate ratios and confidence intervals for interactions in the Estimate_Summary table include all main effects. It is not simply the exponentiated interaction beta, it is the interaction of the sum of the intercept, corresponding main effect betas, and interaction betas

References

anova.vglm, vglm, betabinomial

Examples

beta_div

Beta Diversity Calculations for tidy_micro

Description

Calculate beta diversities of your tidy_micro set. This function reformats the data into the original OTU table and then feeds that into the vegdist function

Usage

```
beta_div(micro_set, table, method = "bray")
```

Arguments

micro_set	A tidy_micro data set
table	Table you'd like to use when calculating alpha diversity. Your lowest level is recommended
method	A dissimilarity method compatible with vegdist

Value

A symmetrix distance matrix

References

vegdist

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

```
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
```

```
## Bray-Curtis beta diversity
bray <- set %>% beta_div(table = "Family")
```

```
## Morisita-Horn beta diversity
horn <- set %>% beta_div(table = "Family", method = "horn")
```

beta_heatmap

Create heatmaps of the supplied dissimilarity matrices

Description

Create heatmaps of the supplied dissimilarity matrices ordered by supplied grouping variables

Usage

```
beta_heatmap(
    beta_div,
    micro_set,
    ...,
    low_grad,
    high_grad,
    main = NULL,
    xlab = NULL,
    ylab = NULL,
    subtitle = NULL,
```

cla

```
natural_order = TRUE,
legend_title = "Dissimilarity"
)
```

Arguments

beta_div	A dissimilarity matrix calculated by beta_div
micro_set	A tidy_micro data set
	Variables for ordering
low_grad	Colors for the corelation magnitude. Will be fed into scale_fill_gradient
high_grad	Colors for the corelation magnitude. Will be fed into scale_fill_gradient
main	Plot title
xlab	x-axis label
ylab	y-axis label
subtitle	Plot label
natural_order	Keep order of axes in the conventional order for dissimilarity matrices
legend_title	Title for the legend

Value

Returns a ggplot that you can add geoms to if you'd like

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
```

```
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
```

```
## Bray-Curtis beta diversity
bray <- set %>% beta_div(table = "Family")
```

```
bray %>% beta_heatmap(micro_set = set, bpd1)
```

cla

```
An OTU table of class level taxa counts
```

Description

Infants who required mechanical ventilation had tracheal aspirates samples collected at 7, 14, and 21 days of age (+/- 48 hours). Infants who were mechanically ventilated and had at least one tracheal aspirate collected were included in this study. Subjects were required to be enrolled within 7 days of age. Bacterial profiles were determined by broad-range amplification and sequence analysis of 16S rRNA genes.

Usage

cla

Format

A 34x75 data.frame

OTU_Name A character vector of class level OTU names

Lib names The following columns are the sequencing counts for each library with library names

Source

https://doi.org/10.1371/journal.pone.0170120

clin

A data set containing the clinical data of the subjects sequenced

Description

Infants who required mechanical ventilation had tracheal aspirates samples collected at 7, 14, and 21 days of age (+/- 48 hours). Infants who were mechanically ventilated and had at least one tracheal aspirate collected were included in this study. Subjects were required to be enrolled within 7 days of age. Bacterial profiles were determined by broad-range amplification and sequence analysis of 16S rRNA genes

Usage

clin

Format

A 74x8 data.frame

study_id A character vector of study IDs

weight A numeric vector of infant birth weights (Kg)

sex A factor; infant sex

gestational_age A numeric vector of gestational age in weeks

mom_ethncty A factor; maternal ethnicity

bpd1 A factor; BPD severity

day A numeric vector; days of life at time of sequencing

Lib A character vector of sequencing library names

Source

https://doi.org/10.1371/journal.pone.0170120

cor_heatmap

Description

Calculated the correlation between a specified continuous variable and some taxa measure. Correlation type and taxa measure (count, relative abundance, etc.) can be specified by the user but is "spearman" and relative abundance, respectively, by default

Usage

```
cor_heatmap(
  micro_set,
  table,
   ...,
  y = clr,
  method = c("pearson", "kendall", "spearman"),
  main = NULL,
  xlab = NULL,
  ylab = NULL,
  subtitle = NULL,
  legend_title = NULL,
  low_grad,
  high_grad
)
```

Arguments

micro_set	A tidy_micro data set
table	The OTU table
	Continuous variables of interest
У	The taxa information: cts, ra, etc. The centered log ratio (clr) is recommended.
method	Correlation type; must be supported by cor. By default it is "spearman" to use with clr. If you'd like to use taxa ra, it is recommend you switch to Kendall's correlation to account for the large number of ties common in taxa ra (lots of 0s)
main	Plot title
xlab	x-axis label
ylab	y-axis label
subtitle	Plot label
legend_title	Title for the legend
low_grad	Colors for the corelation magnitude. Will be fed into scale_fill_gradient
high_grad	Colors for the corelation magnitude. Will be fed into scale_fill_gradient

Details

The output will give gray columns if there are missing values in the supplied continuous variable

Value

Returns a ggplot that you can add geoms to if you'd like

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
set %>% cor_heatmap(table = "Class", gestational_age, weight)
```

cor_rocky_mtn	Create Rocky Mountai	n plots from taxe	a relative	abundance	correla-
	tions				

Description

Calculate the correlation between the relative abundance of each taxa within a specified table and a continuous variable of interest. Correlation is calculated by cor. By default, Kendall's correlation is used to account for the prevalence of ties that often occur (lots of 0s)

Usage

```
cor_rocky_mtn(
 micro_set,
  table,
  х,
  y = clr,
  method = "spearman",
 main = NULL,
  xlab = NULL,
  ylab = NULL,
  subtitle = NULL,
  cut_lines = TRUE,
  line_text = TRUE,
  sig_text = TRUE,
  1wd = 1,
  cor_label = 0.5,
  breaks = c(-0.6, -0.5, -0.3, 0.3, 0.5, 0.6)
)
```

cor_rocky_mtn

Arguments

micro_set	A tidy_micro data set
table	OTU table of interest
x	Continuous variable of interest
У	The taxa information. The centered log ratio (clr) is recommended.
method	Correlation type; must be supported by cor. By default it is "spearman" to use with clr. If you'd like to use taxa ra, it is recommend you switch to Kendall's correlation to account for the large number of ties common in taxa ra (lots of 0s)
main	Plot title
xlab	Lable for x-axis
ylab	Label for y-axis
subtitle	Plot subtitle
cut_lines	Add lines for p-value cutoffs
line_text	Label p-value cut-offs
sig_text	Label taxa with correlations greater than cor_label in magnitude
lwd	line width for cut_lines
cor_label	Cutoff for correlations to be labeled
breaks	Where to place cut_lines along y-axis

Value

A ggplot you can add geoms to if you'd like

Author(s)

Charlie Carpenter, Dan Frank

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
```

```
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
```

```
set %>% cor_rocky_mtn(table = "Family", weight, cor_label = 0.3)
```

Description

Infants who required mechanical ventilation had tracheal aspirates samples collected at 7, 14, and 21 days of age (+/- 48 hours). Infants who were mechanically ventilated and had at least one tracheal aspirate collected were included in this study. Subjects were required to be enrolled within 7 days of age. Bacterial profiles were determined by broad-range amplification and sequence analysis of 16S rRNA genes.

Usage

fam

Format

A 116x75 data.frame

OTU_Name A character vector of family level OTU names

Lib names The following columns are the sequencing counts for each library with library names

Source

https://doi.org/10.1371/journal.pone.0170120

micro_alpha_reg Linear regression on alpha diversities within a micro_set

Description

A simple wrapper to run standard linear regression though the lm function. Will only use alpha diversities distinct libraries (Lib) from the specified table as to not inflate the sample size

Usage

```
micro_alpha_reg(alpha_set, table, ...)
```

Arguments

alpha_set	A tidy_micro data set with alpha diversities calculated by alpha_div
table	OTU table of interest
	Covariates of interest. Can include interaction terms such as ${\tt Group*Age}$

fam

micro_chisq

Value

A data frame containing the model estimates for each alpha diversity

Note

Be aware of your minimal sequencing depth as this will be the size of all bootstrapped resamples (rarefied).

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs <- list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including first week
```

```
set_fam_alpha <- set %>% alpha_div(table = "Family", min_depth = 5000, min_goods = 90)
set_fam_alpha %>% micro_alpha_reg(table = "Family", bpd1)
```

micro_chisq

```
Run Chi-Squared tests for each taxa
```

Description

Run Chi-Squared tests for presence / absence of each taxa in you data set, or each taxa that didn't converge in negative binomial models

Usage

```
micro_chisq(micro_set, table, grp_var, y = bin, mod = NULL, ...)
```

Arguments

micro_set	A tidy_micro data set
table	The OTU table you'd like to test
grp_var	Grouping variable for chi-squared test
У	Response variable for chi-squared test. Default is presence / absence (bin)
mod	The output from mods if you'd like to only run on taxa that did not converge
	Options to be passed to chisq.test

Details

If the taxa are present or absent in every subject the chi-sqared test will not but run. The returned chi-sqared stat will either be "All Absent" or "All Present." This will be clear in the output

Value

A data from containing the taxa, the chi-squared statistic, and the p-value of the test.

References

help(chisq.test)

Examples

data(cla); data(clin)

set <- tidy_micro(otu_tabs = cla, tab_names = "Class", clinical = clin, prev_cutoff = 5, ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>% filter(day == 7) ## Only including the first week

```
## Chi-squared test on every taxa's presence/absence
set %>% micro_chisq(table = "Class", grp_var = bpd1,
simulate.p.value = TRUE)
```

Chi-squared test on every taxa whose model didn't converge
nb_cla <- set %>% nb_mods(table = "Class", bpd1)

```
micro_chisq(micro_set = set, table = "Class", grp_var = bpd1,
mod = nb_cla, simulate.p.value = TRUE)
```

micro_forest	Create fores	t plots from	negative	binomial	taxa models
--------------	--------------	--------------	----------	----------	-------------

Description

Create forest plots for specified coefficients in negative binomial taxa models. Plots estimated beta coefficients and confidence intervals

Usage

```
micro_forest(
   modsum,
   ...,
   main,
   ylab,
   xlab,
   subtitle,
   legend_title,
   legend_labs
)
```

micro_heatmap

Arguments

modsum	The output from nb_mods
	The covariate you'd like to plot. Must be in the models created by nb_mods
main	The title for your plot
ylab	The label for the y-axis; default is "Taxa"
xlab	The label for the x-axis; default is output from function "TeX"
subtitle	The plot subtitle
legend_title	The title of the plot's legend
legend_labs	The names of the elements within the legend

Value

Returns a ggplot that you can add geoms to if you'd like

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

```
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
```

```
## Creating negative binomial models on filtered tidi_micro set
nb_fam <- set %>%
otu_filter(prev_cutoff = 5, ra_cutoff = 0.1,
exclude_taxa = c("Unclassified", "Bacteria")) %>%
nb_mods(table = "Family", bpd1)
```

```
nb_fam %>% micro_forest(bpd1)
```

micro_heatmap	Create	heatmaps	of	estiamted	coefficients	from	negative	binomial
	models							

Description

A function to create heatmaps of estimated beta coefficients from each model fit by nb_mods

Usage

```
micro_heatmap(
   modsum,
   low_grad,
   high_grad,
   mid_grad,
   midpoint = 0,
```

```
top_taxa = 10,
low_lim,
high_lim,
mute_cols = T,
alpha = 0.05,
dot_size = 2,
dot_shape = 8,
main = NULL,
xlab = NULL,
ylab = NULL,
subtitle = NULL,
subtitle = NULL,
legend_title = NULL,
caption = NULL
```

Arguments

modsum	The output from nb_mods
low_grad	The low gradient colors for the coefficient magnitude. Will be fed into scale_fill_gradient
high_grad	The high gradient colors for the coefficient magnitude. Will be fed into scale_fill_gradient
mid_grad	The medium gradient colors for the coefficient magnitude. Will be fed into scale_fill_gradient
midpoint	Midpoint for coefficient magnitude in legend
top_taxa	Only plot X taxa with the largest magnitude beta coefficients
low_lim	Lower limits of the fill gradient. Will default to the largest magnitude effect size
high_lim	Upper limits of the fill gradient. Will default to the largest magnitude effect size
<pre>mute_cols</pre>	Mute the colors of the fill gradients
alpha	Mark beta coefficient cells with p-values below this cutoff
dot_size	size of marker in cells
dot_shape	shape of marker in cells
main	Plot title
xlab	x-axis label
ylab	y-axis label
subtitle	Plot label
xaxis	Labels for the x-axis ticks
legend_title	Title of figure legend
caption	plot caption to be displayed at the bottom of plot

Details

The output will give gray columns if there are missing values in the supplied continuous variable

18

micro_pca

Value

Returns a ggplot that you can add geoms to if you'd like

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
```

```
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
```

```
## Creating negative binomial models on filtered tidy_micro set
nb_fam <- set %>%
mutate(bpd1 = factor(bpd1)) %>% ## making bpd1 a factor
otu_filter(ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
nb_mods(table = "Family", bpd1)
```

nb_fam %>% micro_heatmap

micro_pca

Calculate and plot principle components

Description

Principle components are calculated on the centerted log ratio tranformation of the OTU table using the prcomp function from the stats package. Scaling the OTU table to a unit variance is the default option, and recommended, but this can be changed using scaled = F.

Usage

```
micro_pca(
  micro_set,
  table = NULL,
  dist = NULL,
  grp_var,
  y = clr,
  scale = TRUE,
  axes_arrows = F,
  main = NULL,
  subtitle = NULL,
  legend_title = NULL
)
```

Arguments

micro_set	A tidy_micro data set
table	OTU table of interest

dist	A distance matrix, such as a beta diversity. If supplied a PCoA plot will be returned
grp_var	Categorical grouping variable for color
У	Value to calculate principle components or coordinates on. Default is centered log ratio (recommended)
scale	Logical. Indicating whether the variables should be scaled to have unit variance before the analysis takes place
axes_arrows	Logical. Plot component axes arrows
main	Plot title
subtitle	Plot subtitle
legend_title	Legend title

Details

PCA calculation is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using eigen on the covariance matrix. This is generally the preferred method for numerical accuracy. Calculations are accomplished through the prcomp function, and the plot is created through internal code based on the ggbiplot function https://github.com/vqv/ggbiplot.

Value

A ggplot you can add geoms to if you'd like

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

Mardia, K. V., J. T. Kent, and J. M. Bibby (1979) Multivariate Analysis, London: Academic Press. Venables, W. N. and B. D. Ripley (2002) Modern Applied Statistics with S, Springer-Verlag. Vincent Q. Vu (2011). ggbiplot: A ggplot2 based biplot. https://github.com/vqv/ggbiplot

Examples

data(phy); data(cla); data(ord); data(fam); data(clin)

```
otu_tabs <- list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including first week
```

```
## PCA Plot
set %>% micro_pca(table = "Family", grp_var = bpd1)
## PCoA Plot (Recommended for p > n)
bray_beta <- set %>% beta_div(table = "Family")
set %>%
micro_pca(dist = bray_beta, grp_var = bpd1)
```

micro_PERMANOVA

Description

A wrapper function to call adonis2 from the vegan package. PERMANOVA is a method for partitioning distance matrices among sources of variation and fitting linear models (e.g., factors, polynomial regression) to distance matrices; uses a permutation test with pseudo-F ratios

Usage

```
micro_PERMANOVA(micro_set, beta_div, method, ..., nperm = 999)
```

Arguments

micro_set	A tidy_micro data set
beta_div	A dissimilarity matrix calculated by beta_div
method	A character string indicating the method used to calculated dissimilarity
	Covariates of interest
nperm	Number of permutations

Details

The function adonis2 is based on the principles of McArdle & Anderson (2001) and can perform sequential, marginal and overall tests. Function adonis2 also allows using additive constants or squareroot of dissimilarities to avoid negative eigenvalues

References

vegdist adonis2

See Also

adonis

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
```

```
## Bray-Curtis beta diversity
bray <- set %>% beta_div(table = "Family")
```

```
set %>% micro_PERMANOVA(bray, method = "bray", bpd1)
```

micro_rank_sum

Description

Runs a rank sum test for each taxa within an OTU table or each taxa that didn't converge in nb_mods or bb_mods

Usage

```
micro_rank_sum(micro_set, table, grp_var, y = ra, mod = NULL, ...)
```

Arguments

micro_set	A tidy_micro data set
table	OTU table of interest
grp_var	A factor variable for grouping
У	A continuous response variable. Taxa relative abundance (ra) is recommended
mod	The output from nb_mods or bb_mods if desired
	Options to be passed to wilcox.test or kruskal.test

Details

The grp_var must have a least 2 levels. For a 2 level factor a Mann-Whitney test will be calculated through wilcox.test, and for 3 or more levels a Kruskal-Wallis test will be run throuh kruskal.test

Value

A data frame containing the p-value for each taxa's rank sum test.

References

kruskal.test and wilcox.test

Examples

data(cla); data(clin)

```
set <- tidy_micro(otu_tabs = cla, tab_names = "Class", clinical = clin,
prev_cutoff = 5, ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
filter(day == 7) ## Only including the first week
```

```
## Rank sum test on every taxa's relative abundance
set %>% micro_rank_sum(table = "Class", grp_var = bpd1)
```

Rank sum test on every taxa whose model didn't converge

```
nb_cla <- nb_mods(set, table = "Class", bpd1)
micro_rank_sum(micro_set = set, table = "Class",
grp_var = bpd1, mod = nb_cla)</pre>
```

micro_rocky_mtn Create Rocky Mountain plots from negative binomial taxa models

Description

Display the magnitude of log p-values for each of the taxa in nb_mods as vertical bars next to each other along the x-axis. The direction of the bars will be determined by the direction of the estimated relationship. The taxa will be color coded by the phylum they belong to, and taxa that have FRD adjusted p-values below your desired significance cutoff for the specified covariate will be labeled

Usage

```
micro_rocky_mtn(
   modsum,
   ...,
   main = NULL,
   ylab = NULL,
   subtitle = NULL,
   pval_lines = TRUE,
   pval_text = TRUE,
   facet_labels = NULL,
   alpha = 0.05,
   lwd = 2,
   lty = 1
)
```

Arguments

modsum	The output from nb_mods
	The covariate you'd like to plot. Must be in the models created by nb_mods
main	Plot title
ylab	y-axis labels
subtitle	Plot subtitle
pval_lines	Logical; include horizonal dashed lines at corresponding p-values
<pre>pval_text</pre>	Logical; label the y-axis with corresponding p-values
sig_text	Logical; label the taxa with p-values below specified alpha
facet_labels	Labels for different facets if covariate has more than 1 beta coefficient
alpha	Significance cutoff
lwd	Line width for pval_lines
lty	Line type for pval_lines

A ggplot you can add geoms to if you'd like

Author(s)

Charlie Carpenter, Rachel Johnson, Dan Frank

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
## Creating negative binomial models on filtered tidy_micro set
nb_fam <- set %>%
```

```
otu_filter(ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
nb_mods(table = "Family", bpd1)
```

```
nb_fam %>% micro_rocky_mtn(bpd1)
```

nb_bars

Create stacked bar charts based on negative binomial model estimates

Description

nb_bars takes the output from nb_mods and creates stacked bar charts of the estimated relative abundance for each taxa. The benefit of modeling each taxa before created stacked bar charts is the ability to control for potential confounders. The function will facet wrap interaction terms. Currently, only quant_style "discrete" can be used for an interaction between two quantitative variables

Usage

```
nb_bars(
  modsum,
   ...,
  range,
  quant_style = c("continuous", "discrete"),
  top_taxa = 0,
  RA = 0,
  specific_taxa = NULL,
  lines = TRUE,
  xaxis,
  main,
  subtitle,
  xlab,
  ylab,
```

nb_bars

```
facet_labels = NULL,
facet_layout = 1
)
```

Arguments

modsum	The output from nb_mods
	The covariate you'd like to plot. Can be an interaction term or main effect, but must be in the models created by nb_mods
range	The range you'd like to plot over for a quantitative variable. Will default to the IQR
quant_style	"continuous" will plot over the entire range specified; "discrete" will plot only the endpoints of the range specified. "continuous" by default. This option is ignored without a quantitative variable
top_taxa	Only plot X taxa with the highest relative abundance. The rest will be aggregated into an "Other" category
RA	Only plot taxa with a relative abundance higher than X. The rest will be aggregated into an "Other" category
specific_taxa	Plot this specific taxa even if it doesn't meet the top_taxa or RA requirements
lines	Logical; Add outlines around the different taxa colors in the stacked bar charts
xaxis	Labels for the x-axis ticks. Most useful for categorical variables and defaults to the levels
main	Plot title
subtitle	Subtitle for the plot
xlab	x-axis label
ylab	y-axis label
facet_labels	Labels for the facets created for interaction terms
facet_layout	Rearrange the facets created for interaction terms

Value

Returns a ggplot that you can add geoms to if you'd like

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
```

```
## Creating negative binomial models on filtered tidy_micro set
nb_fam <- set %>%
otu_filter(ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
nb_mods(table = "Family", bpd1)
nb_fam %>%
```

```
nb_bars(bpd1, top_taxa = 9, xlab = "BPD Severity")
```

nb_mods

Description

Fit negative binomial models to each taxa within an OTU table through glm.nb in the MASS package. Models can include a random effect if desired. Modesl will then be fit through glmer.nb in the lmer package. Summaries for models or confidence intervals that fail to converge will not be returned, but taxa summaries will be provided in the output. Rank-Sum tests or presence/absence tests can be run on these taxa using tidi_rank_sum or tidi_chisq, respectively

Usage

```
nb_mods(
 micro_set,
 table,
 ...,
 Offset = TRUE,
 ref = NULL,
 SS_type = c(2, 3, "II", "III")
)
```

Arguments

micro_set	A tidy_micro data set
table	OTU table of interest
	Covariates of interest. Can be interactions such as Group*Age
Offset	Logical; include subject sequencing depth as an offset for negative binomial models. This is highly recommended
ref	A character vector of the desired reference levels for each factor covariate. The order of the specifed references must match the order for the corresponding covariates specified in ''
SS_type	Type of sums of squares calculated in Anova. Either type II (2) or type III (3) sums of squares

Details

Models containing only fixed effects are fit using glm.nb in the MASS package and models containing random effects are fit using glmer.nb. ANOVA / ANCOVA tests are conducted using a Likelihood Ratio test for fixed effects models and Chi-Squared tests for random effect models.

Value

A list containing several different model components and summaries

nb_mods

Convergend_Sum	nary
	A data.frame of model summaries from convergent models. Includes the Taxa name, the model coefficient, the estimated beta, the beta's 95 percent confidence interval, Z score, p_value, false discovery rate p-value, and p-value from likelihood ratio test
Estimate_Summa	ry
	A data.frame of model estimates from convergent models intended to be ready for export for publications. Includes the Taxa name, the model coefficient, the estimated Rate Ratio, the Wald 95 percent confidence interval, the Z-score, and false discovery rate p-value
RA_Summary	A data.frame of taxa summaries. Includes the Taxa name, grouping variables (each factor variable in your models), sample size (n), percent of 0 counts, basic summaries of relative abundance, percentiles of relative abundance, and a logical indicator of whether or not the model converged
formula	The formula used in the model
Model_Coef	Model coefficients (used in plotting funcitons)
Model_Covs	Model covariates (used in plotting functions)

Note

False Discovery Rate p-values are calculated using p.adjust. Estimated rate ratios and confidence intervals for interactions in the Estimate_Summary table include all main effects. It is not simply the exponentiated interaction beta, it is the interaction of the sum of the intercept, corresponding main effect betas, and interaction betas

References

Anova, glm.nb, glmer.nb

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
```

```
otu_tabs <- list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7)
```

```
nb_fam <- set %>%
otu_filter(prev_cutoff = 5, ra_cutoff = 0.1, exclude_taxa = c("Unclassified", "Bacteria")) %>%
nb_mods(table = "Family", bpd1)
```

names(nb_fam)
nb_fam\$Estimate_Summary

Description

Infants who required mechanical ventilation had tracheal aspirates samples collected at 7, 14, and 21 days of age (+/- 48 hours). Infants who were mechanically ventilated and had at least one tracheal aspirate collected were included in this study. Subjects were required to be enrolled within 7 days of age. Bacterial profiles were determined by broad-range amplification and sequence analysis of 16S rRNA genes.

Usage

ord

Format

A 62x75 data.frame

OTU_Name A character vector of ord level OTU names

Lib names The following columns are the sequencing counts for each library with library names

Source

https://doi.org/10.1371/journal.pone.0170120

otu_filter	A function to aggregate low prevalence, abundance, or unwanted taxa
	together

Description

Will take a tidi_micro set and aggregate the raw counts of taxa with a low prevalence and/or abundance into a new "Other" taxa. Can also find specific taxa you'd like to include in the "Other" taxa counts. Once the counts are aggregated taxa relative abundance, centered log ratio (CLR) transformations, and presence will be recalculated. This recalculation will only change the "Other" category

Usage

```
otu_filter(
  micro_set,
  prev_cutoff = 0,
  ra_cutoff = 0,
  exclude_taxa = NULL,
  filter_summary = T
)
```

ord

pca_3d

Arguments

micro_set	A tidy_micro data set
prev_cutoff	Minimum percent of subjects with OTU counts above 0
ra_cutoff	At leat one subject must have RA above this subject
exclude_taxa	A character vector of OTU names that you would like filter into your "Other" category
filter_summary	Logical; print out summaries of filtering steps

Details

 $\frac{1}{T_{otal}}$ will be added to each taxa count for CLR transformations in order to avoid issues with log(0)

Value

Returns a tidy_micro set

Author(s)

Charlie Carpenter and Dan Frank

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
filter_set <- set %>%
otu_filter(prev_cutoff = 5, ## 5% of subjects must have this bug, or it is filtered
  ra_cutoff = 1, ## At least 1 subject must have RA of 1, or it is filtered
  exclude_taxa = c("Unclassified", "Bacteria") ## Unclassified taxa we don't want
)
```

pca_3d

Create 3d PCA plots

Description

Create three dimensional PCA plots from longitudinal data or multiple omics data sets.

Usage

```
pca_3d(
 micro_set,
  table,
  time_var,
 subject,
 y = clr,
 modes = c("AC", "BA", "CB"),
 dist_method = "euclidean",
  type = "PCoA",
  plot_scores = FALSE,
 n_compA,
 n_compB,
 n_compC,
  cex.axis = 1,
 cex.lab = 1,
 main = NULL,
 subtitle = NULL,
 scalewt = TRUE
)
```

Arguments

micro_set	A tidy_micro data set
table	OTU table of interest
time_var	The time point variable column name in your tidi_MIBI set
subject	The subject variable column name in your tidi_MIBI set
У	Value to calculate principle components or coordinates on. Default is centered log ratio (recommended)
modes	Components of the data to focus on: time, subjects, bacteria, etc. "AC" by default
dist_method	Dissimilartiy method to be calculated by vegdist. Euclidean by default
type	"PCA" for principle components or "PCoA" to calculated dissimilarity matrix using vegdist
plot_scores	Plot the scores instead of the principle components
n_compA	The number of components along first axis. See details
n_compB	The number of components along second axis. See details
n_compC	The number of components along third axis. See details
cex.axis	Options for scatterplot3d
cex.lab	Options for scatterplot3d
main	Plot title
subtitle	Plot subtitle
scalewt	Logical; center and scale OTU table, recommended

30

phy

Details

Requires that you have columns for subject name and time point. Data must be complete across time points. The function will filter out inconsistent subjects

When type = "PCoA" the component matrices must be specified prior to the optimization. This is handled automatically.

If n_compA, n_compB, and n_compC aren't specified they will default to the number of complete subjects, the number of taxa, and the number of time points, respectively. This slows down performance slightly, but will not change the results.

Author(s)

Charlie Carpenter, Kayla Williamson

References

vegdist

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin)</pre>
```

```
set %>% pca_3d(table = "Family", time_var = day, subject = study_id)
```

phy

An OTU table of phylum level taxa counts

Description

Infants who required mechanical ventilation had tracheal aspirates samples collected at 7, 14, and 21 days of age (+/- 48 hours). Infants who were mechanically ventilated and had at least one tracheal aspirate collected were included in this study. Subjects were required to be enrolled within 7 days of age. Bacterial profiles were determined by broad-range amplification and sequence analysis of 16S rRNA genes.

Usage

phy

Format

A 15x75 data.frame

OTU_Name A character vector of phylum level OTU names

Lib names The following columns are the sequencing counts for each library with library names

Source

https://doi.org/10.1371/journal.pone.0170120

ra_bars

Function to make stacked bar charts of taxa relative abundance

Description

A function to make stacked bar charts of taxa relative abuncance with the choice to stratify by a variable of interest

Usage

```
ra_bars(
  micro_set,
  table,
  ...,
  top_taxa = 0,
  RA = 0,
  specific_taxa,
  main,
  subtitle,
  ylab,
  xlab,
  xaxis,
  lines = TRUE
)
```

```
.
```

Arguments

A tidy_micro data set
OTU table you'd like to use when calculating alpha diversity. Your lowest level is recommended
A categorical variable by which you'd like to stratify your relative abundances
Only plot X taxa with the highest relative abundance. The rest will be aggregated into an "Other" category.
Only plot taxa with a relative abundance higher than X. The rest will be aggregated into an "Other" category.
Plot this specific taxa even if it doesn't meet the top_taxa or RA requirements
Plot title
Subtitle for the plot
y-axis label
x-axis label
Labels for the x-axis ticks. Most useful for categorical variables and defaults to the levels
Logical; Add outlines around the different taxa colors in the stacked bar charts

taxa_boxplot

Value

Returns a ggplot that you can add geoms to if you'd like

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
## Full cohort abundance
set %>%
ra_bars(table = "Family", top_taxa = 10)
## Stratified by variable of interest
set %>%
ra_bars(table = "Family", bpd1, top_taxa = 10)
```

taxa_boxplot

Function to make boxplots of taxa counts or relative abundance

Description

A function to make boxplots of one specified taxa relative abundance with the option to stratify by a factor variable

Usage

```
taxa_boxplot(
  micro_set,
  taxa,
   ...,
  y = ra,
  xlab = NULL,
  ylab = NULL,
  main = NULL,
  subtitle = NULL,
  legend_title = NULL
```

)

Arguments

micro_set	A tidy_micro data set
taxa	A character string. The name of the taxa of interest
	The factor variable you'd like to stratify by
у	The taxa information

xlab	x-axis label
ylab	y-axis label
main	Plot title
subtitle	Subtitle for the plot
legend_title	Title of plot legend

Value

A ggplot that you can add geoms to if you'd like

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
filter(day == 7) ## Only including the first week
```

```
set %>%
taxa_boxplot("Firmicutes/Bacilli/Bacillales/Staphylococcaceae", bpd1)
```

taxa_summary Summarize the information

Description

Give taxa summary table stratified by variables of interest and/or OTU tables

Usage

```
taxa_summary(micro_set, ..., table = NULL, obj = ra, taxa = TRUE)
```

Arguments

micro_set	A tidy_micro data set
	Covariates of interest
table	OTU table of interest. If NULL, all tables will be used
obj	The taxonomic information of interest
taxa	Logical; Whether or not to stratify by taxa

Value

A tibble containing columns of stratifying variables and several summary columns

three_mode

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs <- list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin) %>%
mutate(bpd1 = factor(bpd1))
## Summarize each taxa by Table
set %>% taxa_summary
## Summarize each taxa by a categorical variable of interest
set %>% taxa_summary(bpd1)
## Summarize each taxa by a categorical variable of interest within a Table
set %>% taxa_summary(bpd1, table = "Phylum")
## Summarize within group or table only
set %>% taxa_summary(taxa = FALSE)
```

```
three_mode
```

Create Three Mode PCA and PCoA plots

Description

Three Mode Principal Components, an ordination method that can take into account repeated measure of subjects. These methods have also been extended to other common ecological distance metrics for Three Mode Principal Coordinate Analysis

Usage

```
three_mode(
 micro_set,
  table,
  group,
  time_var,
  subject,
 y = clr,
 modes = c("AC", "BA", "CB"),
  plot_scores = F,
  n_compA,
  n_compB,
  n_compC,
 main = NULL,
  subtitle = NULL,
  legend_title = NULL,
  scalewt = TRUE
)
```

three_mode

Arguments

micro_set	A tidy_micro data set
table	OTU table of interest
group	A categorical variable to color by
time_var	The time point variable column name in your tidi_MIBI set
subject	The subject variable column name in your tidi_MIBI set
У	Value to calculate principle components or coordinates on. Default is centered log ratio (recommended)
modes	Components of the data to focus on: time, subjects, bacteria, etc.
plot_scores	Plot the scores instead of the principle components
n_compA	The number of components along first axis. See details
n_compB	The number of components along second axis. See details
n_compC	The number of components along third axis. See details
main	Plot title
subtitle	Plot subtitle
legend_title	Plot legend title
scalewt	Logical; center and scale OTU table, recommended

Details

Requires that you have columns for subject name and time point. Data must be complete across time points. The function will filter out inconsistent subjects

If n_compA, n_compB, and n_compC aren't specified they will default to the number of complete subjects, the number of taxa, and the number of time points, respectively. This slows down performance slightly, but will not change the results.

Value

A ggplot you can add geoms to if you'd like

Author(s)

Charlie Carpenter, Kayla Williamson

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
otu_tabs = list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin)
set %>% three_mode(table = "Family", group = bpd1, time_var = day, subject = study_id)
```

36

tidy_micro

A function to merge multiple OTU tables and clinical data into a "tidy" format

Description

A function to take any number of OTU tables (or other sequencing data tables), calculate taxa prevalence, relative abundance, and a CLR transformation, and finally merges clinical data

Usage

```
tidy_micro(
   otu_tabs,
   tab_names,
   clinical,
   prev_cutoff = 0,
   ra_cutoff = 0,
   exclude_taxa = NULL,
   library_name = "Lib",
   complete_clinical = T,
   filter_summary = T
)
```

Arguments

otu_tabs	A single table or list of metagenomic sequencing data. Tables should have a first column of OTU Names and following columns of OTU counts. Column names should be sequencing library names
tab_names	names for otu_tabs. These will become the "Tables" column. It is also an option to simply name the OTU tables in the list supplied to otu_tabs
clinical	Sequencing level clinical data. Must have a column with unique names for library (sequencing ID)
prev_cutoff	A prevalence cutoff where X^* percent of libraries must have this taxa or it will be included in the "Other" category
ra_cutoff	A relative abundance (RA) cutoff where at least one library must have a RA above the cutoff or the taxa will be included in the "Other" category
exclude_taxa	A character vector used to specify any taxa that you would like to included in the "Other" category. Taxa specified will be included in "Other" for every OTU table provided
library_name	The column name containing sequencing library names. Should match with column names of supplied OTU tables (after first column)
complete_clinical	
	Logical; only include columns from OTU tables who's library name is in clinical data
filter_summary	Logical; print out summaries of filtering steps

Details

Column names of the OTU tables must be the same for each table, and these should be the the library names inside of your clinical. Please see the vignette for a detailed description.

The CLR transformation adds (1 / sequencing depth) to each OTU count for each library before centering and log transforming in order to avoid issues with 0 counts.

The list of OTU tables are split, manipulated, and stacked into a data frame using the ldply function from the **plyr** package. Names of OTU tables supplied will be the name of their "Table" in the final tidy_micro set

Value

A data.frame in the tidy_micro format

Author(s)

Charlie Carpenter

Examples

```
data(phy); data(cla); data(ord); data(fam); data(clin)
## Multiple OTU tables with named list
otu_tabs <- list(Phylum = phy, Class = cla, Order = ord, Family = fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = clin)</pre>
```

```
## Multiple OTU tables with unnamed list
unnamed_tabs <- list(phy,cla,ord,fam)
set <- tidy_micro(otu_tabs = unnamed_tabs,
tab_names = c("Phylum", "Class", "Order", "Family"), clinical = clin)
```

```
## Single OTU table
set <- tidy_micro(otu_tabs = cla, tab_names = "Class", clinical = clin)</pre>
```

Filtering out low abundance or uninteresting taxa right away ## WARNING: Only do this if you do not want to calculate alpha diversities with this micro_set

38

Index

*Topic datasets cla, 9 clin, 10 fam, 14 ord, 28 phy, 31 adonis, 21 adonis2, 21 alpha_div, 2 Anova, 26, 27 anova.vglm, 6, 7 bb_bars,4 bb_mods, 5, 22 beta_div,7 beta_heatmap, 8 betabinomial, 7 cla, 9 clin, 10 confintvglm, 6 cor, *11–13* cor_heatmap, 11 $\texttt{cor_rocky_mtn}, \texttt{12}$ fam, 14 glm.nb, 26, 27 glmer.nb, 26, 27 kruskal.test, 22 ldply, <u>38</u> lm, <u>14</u> micro_alpha_reg, 14 micro_chisq, 15 micro_forest, 16 micro_heatmap, 17 micro_pca, 19

micro_PERMANOVA, 21 micro_rank_sum, 22 micro_rocky_mtn, 23 nb_bars, 24 nb_mods, 22, 26 ord, 28 otu_filter, 28 p.adjust, 7, 27 pca_3d, 29 phy, 31 prcomp, 19, 20 ra_bars, 32 scatterplot3d, 30 stats, *19* taxa_boxplot, 33 taxa_summary, 34 three_mode, 35 tidy_micro, 37 vegdist, 8, 21, 30, 31 vglm, 5-7 vignette, 38 wilcox.test, 22