Overview of the tidyHeatmap package

Stefano Mangiola

2020-06-23

Tidy heatmap. This package is a tidy wrapper of the package ComplexHeatmap. The goal of this package is to interface tidy data frames with this powerful tool.

Some of the advantages are:

Installation

To install the most up-to-date version

devtools::install_github("stemangiola/tidyHeatmap")

To install the most stable version (however please keep in mind that this package is under a maturing lifecycle stage)

install.packages("tidyHeatmap")

Input data frame

mtcars_tidy = 
    mtcars %>% 
    as_tibble(rownames="Car name") %>% 
    
    # Scale
    mutate_at(vars(-`Car name`, -hp, -vs), scale) %>%
    
    # tidyfy
    gather(Property, Value, -`Car name`, -hp, -vs)

mtcars_tidy
## # A tibble: 288 x 5
##    `Car name`           hp    vs Property  Value
##    <chr>             <dbl> <dbl> <chr>     <dbl>
##  1 Mazda RX4           110     0 mpg       0.151
##  2 Mazda RX4 Wag       110     0 mpg       0.151
##  3 Datsun 710           93     1 mpg       0.450
##  4 Hornet 4 Drive      110     1 mpg       0.217
##  5 Hornet Sportabout   175     0 mpg      -0.231
##  6 Valiant             105     1 mpg      -0.330
##  7 Duster 360          245     0 mpg      -0.961
##  8 Merc 240D            62     1 mpg       0.715
##  9 Merc 230             95     1 mpg       0.450
## 10 Merc 280            123     1 mpg      -0.148
## # … with 278 more rows

Plot

For plotting, you simply pipe the input data frame into heatmap, specifying:

mtcars

mtcars_heatmap = 
    mtcars_tidy %>% 
        heatmap(
            `Car name`, 
            Property, 
            Value,
            annotation = hp
        )

mtcars_heatmap

Save

mtcars_heatmap %>%
    save_pdf("mtcars_heatmap.pdf")

Grouping

We can easily group the data (one group per dimension maximum, at the moment only the vertical dimension is supported) with dplyr, and the heatmap will be grouped accordingly

mtcars_tidy %>% 
    group_by(vs) %>%
    heatmap(
        `Car name`, 
        Property, 
        Value,
        annotation = hp
    )

Custom palettes

We can easily use custom palette, using strings, hexadecimal color character vector,

mtcars_tidy %>% 
    heatmap(
        `Car name`, 
        Property, 
        Value,
        palette_value = c("red", "white", "blue")
    )

Or a grid::colorRamp2 functionfor higher flexibility

mtcars_tidy %>% 
    heatmap(
        `Car name`, 
        Property, 
        Value,
        palette_value = circlize::colorRamp2(c(-2, -1, 0, 1, 2), viridis::magma(5))
    )

Multiple groupings and annotations

tidyHeatmap::pasilla %>%
    group_by(location, type) %>%
    heatmap(
            .column = sample,
            .row = symbol,
            .value = `count normalised adjusted`,
            annotation = c(condition, activation)
        )

Annotation types

“tile” (default), “point”, “bar” and “line” are available

# Chreate some more data points
pasilla_plus = 
    tidyHeatmap::pasilla %>%
        dplyr::mutate(act = activation) %>% 
        tidyr::nest(data = -sample) %>%
        dplyr::mutate(size = rnorm(n(), 4,0.5)) %>%
        dplyr::mutate(age = runif(n(), 50, 200)) %>%
        tidyr::unnest(data) 

# Plot
pasilla_plus %>%
        tidyHeatmap::heatmap(
            .column = sample,
            .row = symbol,
            .value = `count normalised adjusted`,
            annotation = c(condition, activation, act, size, age),
            type = c("tile", "point", "tile", "bar", "line")
        )