
Package ‘textrecipes’
July 8, 2020

Title Extra 'Recipes' for Text Processing

Version 0.3.0

Description Converting text to numerical features requires
specifically created procedures, which are implemented as steps
according to the 'recipes' package. These steps allows for
tokenization, filtering, counting (tf and tfidf) and feature hashing.

License MIT + file LICENSE

URL https://github.com/tidymodels/textrecipes,

https://textrecipes.tidymodels.org

BugReports https://github.com/tidymodels/textrecipes/issues

Depends R (>= 2.10), recipes (>= 0.1.4)

Imports dplyr, generics, magrittr, Matrix, purrr, Rcpp, rlang,
SnowballC, stringr, tibble, tidyr, tokenizers, vctrs

Suggests covr, knitr, modeldata, rmarkdown, spacyr, stopwords,
testthat (>= 2.1.0), text2vec, textfeatures (>= 0.3.3), stringi

LinkingTo Rcpp

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

SystemRequirements GNU make, C++11

NeedsCompilation yes

Author Emil Hvitfeldt [aut, cre] (<https://orcid.org/0000-0002-0679-1945>)

Maintainer Emil Hvitfeldt <emilhhvitfeldt@gmail.com>

Repository CRAN

Date/Publication 2020-07-08 21:50:02 UTC

1

https://github.com/tidymodels/textrecipes
https://textrecipes.tidymodels.org
https://github.com/tidymodels/textrecipes/issues

2 rcpp_ngram

R topics documented:

rcpp_ngram . 2
step_lda . 3
step_lemma . 5
step_ngram . 7
step_pos_filter . 9
step_sequence_onehot . 10
step_stem . 12
step_stopwords . 14
step_textfeature . 17
step_texthash . 19
step_text_normalization . 21
step_tf . 23
step_tfidf . 25
step_tokenfilter . 27
step_tokenize . 30
step_tokenmerge . 32
step_untokenize . 34
step_word_embeddings . 36
tokenlist . 38

Index 40

rcpp_ngram ngram generator

Description

ngram generator

Usage

rcpp_ngram(x, n, n_min, delim)

Arguments

x list of character vectors

n number of grams

n_min minimum number of grams

delim delimiter

step_lda 3

step_lda Calculates lda dimension estimates

Description

step_lda creates a specification of a recipe step that will return the lda dimension estimates of a
text variable.

Usage

step_lda(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
lda_models = NULL,
num_topics = 10,
prefix = "lda",
skip = FALSE,
id = rand_id("lda")

)

S3 method for class 'step_lda'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_lda, this indicates
the variables to be encoded into a tokenlist. See recipes::selections() for
more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

lda_models A WarpLDA model object from the text2vec package. If left to NULL, the
default, will it train its model based on the training data. Look at the examples
for how to fit a WarpLDA model.

num_topics integer desired number of latent topics.

prefix A prefix for generated column names, default to "lda".

4 step_lda

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it

x A step_lda object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Source

https://arxiv.org/abs/1301.3781

See Also

Other character to numeric steps: step_sequence_onehot(), step_textfeature()

Examples

if (requireNamespace("text2vec", quietly = TRUE)) {

library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_lda(essay0)

okc_obj <- okc_rec %>%
prep()

juice(okc_obj) %>%
slice(1:2)

tidy(okc_rec, number = 1)
tidy(okc_obj, number = 1)

Changing the number of topics.
recipe(~ ., data = okc_text) %>%

step_lda(essay0, essay1, num_topics = 20) %>%
prep() %>%
juice() %>%
slice(1:2)

Supplying A pre-trained LDA model trained using text2vec
library(text2vec)
tokens <- word_tokenizer(tolower(okc_text$essay5))
it <- itoken(tokens, ids = seq_along(okc_text$essay5))
v <- create_vocabulary(it)

https://arxiv.org/abs/1301.3781

step_lemma 5

dtm <- create_dtm(it, vocab_vectorizer(v))
lda_model <- LDA$new(n_topics = 15)

recipe(~ ., data = okc_text) %>%
step_lda(essay0, essay1, lda_models = lda_model) %>%
prep() %>%
juice() %>%
slice(1:2)

}

step_lemma Lemmatization of tokenlist variables

Description

step_lemma creates a specification of a recipe step that will extract the lemmatization of a tokenlist.

Usage

step_lemma(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("lemma")

)

S3 method for class 'step_lemma'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_lemma, this indi-
cates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

6 step_lemma

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_lemma object.

Details

This stem doesn’t perform lemmatization by itself, but rather lets you extract the lemma attribute
of the tokenlist. To be able to use step_lemma you need to use a tokenization method that includes
lemmatization. Currently using the "spacyr" engine in step_tokenize() provides lemmatization
and works well with step_lemma.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_tokenize() to turn character into tokenlist.

Other tokenlist to tokenlist steps: step_ngram(), step_pos_filter(), step_stem(), step_stopwords(),
step_tokenfilter(), step_tokenmerge()

Examples

Not run:
library(recipes)

short_data <- data.frame(text = c("This is a short tale,",
"With many cats and ladies."))

okc_rec <- recipe(~ text, data = short_data) %>%
step_tokenize(text, engine = "spacyr") %>%
step_lemma(text) %>%
step_tf(text)

okc_obj <- prep(okc_rec)

juice(okc_obj)

End(Not run)

step_ngram 7

step_ngram Generate ngrams from tokenlist

Description

step_ngram creates a specification of a recipe step that will convert a tokenlist into a list of ngram
of tokens.

Usage

step_ngram(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
num_tokens = 3L,
min_num_tokens = 3L,
delim = "_",
skip = FALSE,
id = rand_id("ngram")

)

S3 method for class 'step_ngram'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_ngram, this indi-
cates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

num_tokens The number of tokens in the n-gram. This must be an integer greater than or
equal to 1. Defaults to 3.

min_num_tokens The minimum number of tokens in the n-gram. This must be an integer greater
than or equal to 1 and smaller than n. Defaults to 3.

delim The separator between words in an n-gram. Defaults to "_".

8 step_ngram

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_ngram object.

Details

The use of this step will leave the ordering of the tokens meaningless. If min_num_tokens <
num_tokens then the tokens order in increasing fashion with respect to the number of tokens in
the n-gram. If min_num_tokens = 1 and num_tokens = 3 then the output contains all the 1-grams
followed by all the 2-grams followed by all the 3-grams.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_tokenize() to turn character into tokenlist.

Other tokenlist to tokenlist steps: step_lemma(), step_pos_filter(), step_stem(), step_stopwords(),
step_tokenfilter(), step_tokenmerge()

Examples

library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_ngram(essay0)

okc_obj <- okc_rec %>%
prep()

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

step_pos_filter 9

step_pos_filter Part of speech filtering of tokenlist variables

Description

step_pos_filter creates a specification of a recipe step that will filter a tokenlist based on part of
speech tags.

Usage

step_pos_filter(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
keep_tags = "NOUN",
skip = FALSE,
id = rand_id("pos_filter")

)

S3 method for class 'step_pos_filter'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_pos_filter, this
indicates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

keep_tags Character variable of part of speech tags to keep. See details for complete list of
tags. Defaults to "NOUN".

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_pos_filter object.

10 step_sequence_onehot

Details

Possible part of speech tags for spacyr engine are: "ADJ", "ADP", "ADV", "AUX", "CONJ",
"CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ",
"SYM", "VERB", "X" and "SPACE". For more information look here https://spacy.io/api/
annotation#pos-tagging.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_tokenize() to turn character into tokenlist.

Other tokenlist to tokenlist steps: step_lemma(), step_ngram(), step_stem(), step_stopwords(),
step_tokenfilter(), step_tokenmerge()

Examples

Not run:
library(recipes)

short_data <- data.frame(text = c("This is a short tale,",
"With many cats and ladies."))

okc_rec <- recipe(~ text, data = short_data) %>%
step_tokenize(text, engine = "spacyr") %>%
step_pos_filter(text, keep_tags = "NOUN") %>%
step_tf(text)

okc_obj <- prep(okc_rec)

juice(okc_obj)

End(Not run)

step_sequence_onehot Generate the basic set of text features

Description

step_sequence_onehot creates a specification of a recipe step that will take a string and do one
hot encoding for each character by position.

https://spacy.io/api/annotation#pos-tagging
https://spacy.io/api/annotation#pos-tagging

step_sequence_onehot 11

Usage

step_sequence_onehot(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
string_length = 100,
integer_key = letters,
prefix = "seq1hot",
skip = FALSE,
id = rand_id("sequence_onehot")

)

S3 method for class 'step_sequence_onehot'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_sequence_onehot,
this indicates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.
columns A list of tibble results that define the encoding. This is NULL until the step is

trained by recipes::prep.recipe().
string_length A numeric, number of characters to keep before discarding. Defaults to 100.
integer_key A character vector, characters to be mapped to integers. Characters not in the

integer_key will be encoded as 0. Defaults to letters.
prefix A prefix for generated column names, default to "seq1hot".
skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?

While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it
x A step_sequence_onehot object.

Details

The string will be capped by the string_length argument, strings shorter then string_length will
be padded with empty characters. The encoding will assign a integer to each character in the
integer_key, and will encode accordingly. Characters not in the integer_key will be encoded as 0.

12 step_stem

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Source

https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.
pdf

See Also

Other character to numeric steps: step_lda(), step_textfeature()

Examples

library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_sequence_onehot(essay0)

okc_obj <- okc_rec %>%
prep()

juice(okc_obj)

tidy(okc_rec, number = 1)
tidy(okc_obj, number = 1)

step_stem Stemming of tokenlist variables

Description

step_stem creates a specification of a recipe step that will convert a tokenlist to have its tokens
stemmed.

Usage

step_stem(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
options = list(),
custom_stemmer = NULL,

https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf

step_stem 13

skip = FALSE,
id = rand_id("stem")

)

S3 method for class 'step_stem'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_stem, this indi-
cates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

options A list of options passed to the stemmer function.

custom_stemmer A custom stemming function. If none is provided it will default to "SnowballC".

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_stem object.

Details

Words tend to have different forms depending on context, such as organize, organizes, and organiz-
ing. In many situations it is beneficial to have these words condensed into one to allow for a smaller
pool of words. Stemming is the act of choping off the end of words using a set of heuristics.

Note that the steming will only be done at the end of the word and will therefore not work reliably
on ngrams or sentences.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_tokenize() to turn character into tokenlist.

Other tokenlist to tokenlist steps: step_lemma(), step_ngram(), step_pos_filter(), step_stopwords(),
step_tokenfilter(), step_tokenmerge()

14 step_stopwords

Examples

library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_stem(essay0)

okc_obj <- okc_rec %>%
prep()

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

Using custom stemmer. Here a custom stemmer that removes the last letter
if it is a "s".
remove_s <- function(x) gsub("s$", "", x)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_stem(essay0, custom_stemmer = remove_s)

okc_obj <- okc_rec %>%
prep()

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

step_stopwords Filtering of stopwords from a tokenlist variable

Description

step_stopwords creates a specification of a recipe step that will filter a tokenlist for stopwords(keep
or remove).

step_stopwords 15

Usage

step_stopwords(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
language = "en",
keep = FALSE,
stopword_source = "snowball",
custom_stopword_source = NULL,
skip = FALSE,
id = rand_id("stopwords")

)

S3 method for class 'step_stopwords'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_stopwords, this
indicates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

language A character to indicate the language of stopwords by ISO 639-1 coding scheme.

keep A logical. Specifies whether to keep the stopwords or discard them.

stopword_source

A character to indicate the stopwords source as listed in stopwords::stopwords_getsources.

custom_stopword_source

A character vector to indicate a custom list of words that cater to the users spe-
cific problem.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_stopwords object.

16 step_stopwords

Details

Stop words are words which sometimes are remove before natural language processing tasks. While
stop words usually refers to the most common words in the language there is no universal stop word
list.

The argument custom_stopword_source allows you to pass a character vector to filter against.
With the keep argument one can specify to keep the words instead of removing thus allowing you
to select words with a combination of these two arguments.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_tokenize() to turn character into tokenlist.

Other tokenlist to tokenlist steps: step_lemma(), step_ngram(), step_pos_filter(), step_stem(),
step_tokenfilter(), step_tokenmerge()

Examples

library(recipes)
library(modeldata)
data(okc_text)

if (requireNamespace("stopwords", quietly = TRUE)) {
okc_rec <- recipe(~ ., data = okc_text) %>%

step_tokenize(essay0) %>%
step_stopwords(essay0)

okc_obj <- okc_rec %>%
prep()

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)
}

With a custom stopwords list

okc_rec <- recipe(~ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_stopwords(essay0, custom_stopword_source = c("twice", "upon"))

okc_obj <- okc_rec %>%
prep(traimomg = okc_text)

step_textfeature 17

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

step_textfeature Generate the basic set of text features

Description

step_textfeature creates a specification of a recipe step that will extract a number of numeric
features of a text column.

Usage

step_textfeature(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
extract_functions = textfeatures::count_functions,
prefix = "textfeature",
skip = FALSE,
id = rand_id("textfeature")

)

S3 method for class 'step_textfeature'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_textfeature,
this indicates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

extract_functions

A named list of feature extracting functions. default to count_functions from
the textfeatures package. See details for more information.

18 step_textfeature

prefix A prefix for generated column names, default to "textfeature".

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it

x A step_textfeature object.

Details

This step will take a character column and returns a number of numeric columns equal to the number
of functions in the list passed to the extract_functions argument. The default is a list of functions
from the textfeatures package.

All the functions passed to extract_functions must take a character vector as input and return a
numeric vector of the same length, otherwise an error will be thrown.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

Other character to numeric steps: step_lda(), step_sequence_onehot()

Examples

if (requireNamespace("textfeatures", quietly = TRUE)) {
library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_textfeature(essay0)

okc_obj <- okc_rec %>%
prep()

juice(okc_obj) %>%
slice(1:2)

juice(okc_obj) %>%
pull(textfeature_essay0_n_words)

tidy(okc_rec, number = 1)
tidy(okc_obj, number = 1)

Using custom extraction functions
nchar_round_10 <- function(x) round(nchar(x) / 10) * 10

step_texthash 19

recipe(~ ., data = okc_text) %>%
step_textfeature(essay0,

extract_functions = list(nchar10 = nchar_round_10)) %>%
prep() %>%
juice()

}

step_texthash Term frequency of tokens

Description

step_texthash creates a specification of a recipe step that will convert a tokenlist into multiple
variables using the hashing trick.

Usage

step_texthash(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
signed = TRUE,
num_terms = 1024,
prefix = "hash",
skip = FALSE,
id = rand_id("texthash")

)

S3 method for class 'step_texthash'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_texthash, this in-
dicates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

20 step_texthash

signed A logical, indicating whether to use a signed hash-function to reduce collisions
when hashing. Defaults to TRUE.

num_terms An integer, the number of variables to output. Defaults to 1024.

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_texthash object.

Details

Feature hashing, or the hashing trick, is a transformation of a text variable into a new set of numeri-
cal variables. This is done by applying a hashing function over the tokens and using the hash values
as feature indices. This allows for a low memory representation of the text. This implementation is
done using the MurmurHash3 method.

The argument num_terms controls the number of indices that the hashing function will map to. This
is the tuning parameter for this transformation. Since the hashing function can map two different
tokens to the same index, will a higher value of num_terms result in a lower chance of collision.

The new components will have names that begin with prefix, then the name of the variable, fol-
lowed by the tokens all separated by -. The variable names are padded with zeros. For example,
if num_terms < 10, their names will be hash1 - hash9. If num_terms = 101, their names will be
hash001 - hash101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

References

Kilian Weinberger; Anirban Dasgupta; John Langford; Alex Smola; Josh Attenberg (2009).

See Also

step_tokenize() to turn character into tokenlist.

Other tokenlist to numeric steps: step_tfidf(), step_tf(), step_word_embeddings()

Examples

if (requireNamespace("text2vec", quietly = TRUE)) {
library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%

step_text_normalization 21

step_tokenize(essay0) %>%
step_tokenfilter(essay0, max_tokens = 10) %>%
step_texthash(essay0)

okc_obj <- okc_rec %>%
prep()

bake(okc_obj, okc_text)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)
}

step_text_normalization

text_normalizationming of tokenlist variables

Description

step_text_normalization creates a specification of a recipe step that will perform Unicode Nor-
malization

Usage

step_text_normalization(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
normalization_form = "nfc",
skip = FALSE,
id = rand_id("text_normalization")

)

S3 method for class 'step_text_normalization'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be transformed.
See recipes::selections() for more details. For the tidy method, these are
not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

22 step_text_normalization

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

normalization_form

A single character string determining the Unicode Normalization. Must be one
of "nfc", "nfd", "nfkd", "nfkc", or "nfkc_casefold". Defaults to "nfc". See
stringi::stri_trans_nfc() for more details.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_text_normalization object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_texthash() for feature hashing.

Examples

if (requireNamespace("stringi", quietly = TRUE)) {
library(recipes)

sample_data <- tibble(text = c("sch\U00f6n", "scho\U0308n"))

okc_rec <- recipe(~ ., data = sample_data) %>%
step_text_normalization(text)

okc_obj <- okc_rec %>%
prep()

juice(okc_obj, text) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(text)

tidy(okc_rec, number = 1)
tidy(okc_obj, number = 1)
}

step_tf 23

step_tf Term frequency of tokens

Description

step_tf creates a specification of a recipe step that will convert a tokenlist into multiple variables
containing the token counts.

Usage

step_tf(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
weight_scheme = "raw count",
weight = 0.5,
vocabulary = NULL,
res = NULL,
prefix = "tf",
skip = FALSE,
id = rand_id("tf")

)

S3 method for class 'step_tf'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_tf, this indicates
the variables to be encoded into a tokenlist. See recipes::selections() for
more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

weight_scheme A character determining the weighting scheme for the term frequency calcula-
tions. Must be one of "binary", "raw count", "term frequency", "log normaliza-
tion" or "double normalization". Defaults to "raw count".

24 step_tf

weight A numeric weight used if weight_scheme is set to "double normalization". De-
faults to 0.5.

vocabulary A character vector of strings to be considered.

res The words that will be used to calculate the term frequency will be stored here
once this preprocessing step has be trained by prep.recipe().

prefix A character string that will be the prefix to the resulting new variables. See notes
below

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_tf object.

Details

It is strongly advised to use step_tokenfilter before using step_tf to limit the number of variables
created, otherwise you might run into memory issues. A good strategy is to start with a low token
count and go up according to how much RAM you want to use.

Term frequency is a weight of how many times each token appear in each observation. There are
different ways to calculate the weight and this step can do it in a couple of ways. Setting the
argument weight_scheme to "binary" will result in a set of binary variables denoting if a token is
present in the observation. "raw count" will count the times a token is present in the observation.
"term frequency" will divide the count with the total number of words in the document to limit the
effect of the document length as longer documents tends to have the word present more times but
not necessarily at a higher percentage. "log normalization" takes the log of 1 plus the count, adding
1 is done to avoid taking log of 0. Finally "double normalization" is the raw frequency divided by
the raw frequency of the most occurring term in the document. This is then multiplied by weight
and weight is added to the result. This is again done to prevent a bias towards longer documents.

The new components will have names that begin with prefix, then the name of the variable, fol-
lowed by the tokens all separated by -. The new variables will be created alphabetically according
to token.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_tokenize() to turn character into tokenlist.

Other tokenlist to numeric steps: step_texthash(), step_tfidf(), step_word_embeddings()

step_tfidf 25

Examples

library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_tf(essay0)

okc_obj <- okc_rec %>%
prep()

bake(okc_obj, okc_text)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

step_tfidf Term frequency-inverse document frequency of tokens

Description

step_tfidf creates a specification of a recipe step that will convert a tokenlist into multiple vari-
ables containing the term frequency-inverse document frequency of tokens.

Usage

step_tfidf(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
vocabulary = NULL,
res = NULL,
smooth_idf = TRUE,
norm = "l1",
sublinear_tf = FALSE,
prefix = "tfidf",
skip = FALSE,
id = rand_id("tfidf")

)

S3 method for class 'step_tfidf'
tidy(x, ...)

26 step_tfidf

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_tfidf, this indi-
cates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

vocabulary A character vector of strings to be considered.

res The words that will be used to calculate the term frequency will be stored here
once this preprocessing step has be trained by prep.recipe().

smooth_idf TRUE smooth IDF weights by adding one to document frequencies, as if an
extra document was seen containing every term in the collection exactly once.
This prevents division by zero.

norm A character, defines the type of normalization to apply to term vectors. "l1" by
default, i.e., scale by the number of words in the document. Must be one of
c("l1", "l2", "none").

sublinear_tf A logical, apply sublinear term-frequency scaling, i.e., replace the term fre-
quency with 1 + log(TF). Defaults to FALSE.

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_tfidf object.

Details

It is strongly advised to use step_tokenfilter before using step_tfidf to limit the number of variables
created; otherwise you may run into memory issues. A good strategy is to start with a low token
count and increase depending on how much RAM you want to use.

Term frequency-inverse document frequency is the product of two statistics: the term frequency
(TF) and the inverse document frequency (IDF).

Term frequency measures how many times each token appears in each observation.

Inverse document frequency is a measure of how informative a word is, e.g., how common or rare
the word is across all the observations. If a word appears in all the observations it might not give
that much insight, but if it only appears in some it might help differentiate between observations.

step_tokenfilter 27

The IDF is defined as follows: idf = log(1 + (# documents in the corpus) / (# documents where the
term appears))

The new components will have names that begin with prefix, then the name of the variable, fol-
lowed by the tokens all separated by -. The new variables will be created alphabetically according
to token.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_tokenize() to turn character into tokenlist.

Other tokenlist to numeric steps: step_texthash(), step_tf(), step_word_embeddings()

Examples

library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_tfidf(essay0)

okc_obj <- okc_rec %>%
prep()

bake(okc_obj, okc_text)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

step_tokenfilter Filter the tokens based on term frequency

Description

step_tokenfilter creates a specification of a recipe step that will convert a tokenlist to be filtered
based on frequency.

28 step_tokenfilter

Usage

step_tokenfilter(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
max_times = Inf,
min_times = 0,
percentage = FALSE,
max_tokens = 100,
res = NULL,
skip = FALSE,
id = rand_id("tokenfilter")

)

S3 method for class 'step_tokenfilter'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_tokenfilter,
this indicates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

max_times An integer. Maximal number of times a word can appear before getting re-
moved.

min_times An integer. Minimum number of times a word can appear before getting re-
moved.

percentage A logical. Should max_times and min_times be interpreded as a percentage
instead of count.

max_tokens An integer. Will only keep the top max_tokens tokens after filtering done by
max_times and min_times. Defaults to 100.

res The words that will be keep will be stored here once this preprocessing step has
be trained by prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

step_tokenfilter 29

id A character string that is unique to this step to identify it.

x A step_tokenfilter object.

Details

This step allow you to limit the tokens you are looking at by filtering on their occurrence in the
corpus. You are able to exclude tokens if they appear too many times or too fews times in the
data. It can be specified as counts using max_times and min_times or as percentages by setting
percentage as TRUE. In addition one can filter to only use the top max_tokens used tokens. If
max_tokens is set to Inf then all the tokens will be used. This will generally lead to very large
datasets when then tokens are words or trigrams. A good strategy is to start with a low token count
and go up according to how much RAM you want to use.

It is strongly advised to filter before using step_tf or step_tfidf to limit the number of variables
created.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_tokenize() to turn character into tokenlist.

Other tokenlist to tokenlist steps: step_lemma(), step_ngram(), step_pos_filter(), step_stem(),
step_stopwords(), step_tokenmerge()

Examples

library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_tokenfilter(essay0)

okc_obj <- okc_rec %>%
prep()

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

30 step_tokenize

step_tokenize Tokenization of character variables

Description

step_tokenize() creates a specification of a recipe step that will convert a character predictor into
a tokenlist.

Usage

step_tokenize(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
options = list(),
token = "words",
engine = "tokenizers",
custom_token = NULL,
skip = FALSE,
id = rand_id("tokenize")

)

S3 method for class 'step_tokenize'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_tokenize(), this
indicates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

options A list of options passed to the tokenizer.

token Unit for tokenizing. See details for options. Defaults to "words".

engine Package that will be used for tokenization. See details for options. Defaults to
"tokenizers".

custom_token User supplied tokenizer. Use of this argument will overwrite the token and en-
gine arguments. Must take a character vector as input and output a list of char-
acter vectors.

step_tokenize 31

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it

x A step_tokenize object.

Details

Tokenization is the act of splitting a character string into smaller parts to be further analysed. This
step uses the tokenizers package which includes heuristics to split the text into paragraphs tokens,
word tokens amoug others. textrecipes keeps the tokens in a tokenlist and other steps will do
their tasks on those tokenlists before transforming them back to numeric.

The choice of engine determines the possible choices of token.

If engine = "tokenizers":

• "words" (default)

• "characters"

• "character_shingles"

• "ngrams"

• "skip_ngrams"

• "sentences"

• "lines"

• "paragraphs"

• "regex"

• "tweets"

• "ptb" (Penn Treebank)

• "skip_ngrams"

• "word_stems"

if engine = "spacyr"

• "words"

Working will textrecipes will almost always start by calling step_tokenize followed by mod-
ifying and filtering steps. This is not always the case as you sometimes want to do apply pre-
tokenization steps, this can be done with recipes::step_mutate().

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_untokenize() to untokenize.

32 step_tokenmerge

Examples

library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_tokenize(essay0)

okc_obj <- okc_rec %>%
prep()

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

tidy(okc_rec, number = 1)
tidy(okc_obj, number = 1)

okc_obj_chars <- recipe(~ ., data = okc_text) %>%
step_tokenize(essay0, token = "characters") %>%
prep()

juice(okc_obj_chars) %>%
slice(2) %>%
pull(essay0)

step_tokenmerge Generate the basic set of text features

Description

step_tokenmerge creates a specification of a recipe step that will take multiple tokenlists and
combine them into one tokenlist.

Usage

step_tokenmerge(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
prefix = "tokenmerge",
skip = FALSE,
id = rand_id("tokenmerge")

)

step_tokenmerge 33

S3 method for class 'step_tokenmerge'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_tokenmerge, this
indicates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

prefix A prefix for generated column names, default to "tokenmerge".

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it

x A step_tokenmerge object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_tokenize() to turn character into tokenlist.

Other tokenlist to tokenlist steps: step_lemma(), step_ngram(), step_pos_filter(), step_stem(),
step_stopwords(), step_tokenfilter()

Examples

library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_tokenize(essay0, essay1) %>%
step_tokenmerge(essay0, essay1)

okc_obj <- okc_rec %>%

34 step_untokenize

prep()

juice(okc_obj)

tidy(okc_rec, number = 1)
tidy(okc_obj, number = 1)

step_untokenize Untokenization of tokenlist variables

Description

step_untokenize creates a specification of a recipe step that will convert a tokenlist into a character
predictor.

Usage

step_untokenize(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
sep = " ",
skip = FALSE,
id = rand_id("untokenize")

)

S3 method for class 'step_untokenize'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_untokenize, this
indicates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

sep a character to determine how the tokens should be separated when pasted to-
gether. Defaults to " ".

step_untokenize 35

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_untokenize object.

Details

This steps will turn a tokenlist back into a character vector. This step is calling paste internally to
put the tokens back together to a character.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_tokenize() to turn character into tokenlist.

Examples

library(recipes)
library(modeldata)
data(okc_text)

okc_rec <- recipe(~ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_untokenize(essay0)

okc_obj <- okc_rec %>%
prep()

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

36 step_word_embeddings

step_word_embeddings Pretrained word embeddings of tokens

Description

step_word_embeddings creates a specification of a recipe step that will convert a tokenlist into
word-embedding dimensions by aggregating the vectors of each token from a pre-trained embed-
ding.

Usage

step_word_embeddings(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
embeddings,
aggregation = c("sum", "mean", "min", "max"),
aggregation_default = 0,
prefix = "w_embed",
skip = FALSE,
id = rand_id("word_embeddings")

)

S3 method for class 'step_word_embeddings'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_word_embeddings,
this indicates the variables to be encoded into a tokenlist. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

embeddings A tibble of pre-trained word embeddings, such as those returned by the embed-
ding_glove function function from the textdata package The first column should
contain tokens, and additional columns should contain embeddings vectors.

aggregation A character giving the name of the aggregation function to use. Must be one of
"sum", "mean", "min", and "max". Defaults to "sum".

step_word_embeddings 37

aggregation_default

A numeric denoting the default value for case with no words are matched in
embedding. Defaults to 0.

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_word_embeddings object.

Details

Word embeddings map words (or other tokens) into a high-dimensional feature space. This function
maps pre-trained word embeddings onto the tokens in your data.

The argument embeddings provides the pre-trained vectors. Each dimension present in this tibble
becomes a new feature column, with each column aggregated across each row of your text using
the function supplied in the aggregation argument.

The new components will have names that begin with prefix, then the name of the aggregation
function, then the name of the variable from the embeddings tibble (usually something like "d7").
For example, using the default "word_embeddings" prefix, the "sum" aggregation, and the GloVe
embeddings from the textdata package (where the column names are d1, d2, etc), new columns
would be word_embeddings_sum_d1, word_embeddings_sum_d2, etc.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_tokenize() to turn character into tokenlist.

Other tokenlist to numeric steps: step_texthash(), step_tfidf(), step_tf()

Examples

library(recipes)

embeddings <- tibble(
tokens = c("the", "cat", "ran"),
d1 = c(1, 0, 0),
d2 = c(0, 1, 0),
d3 = c(0, 0, 1)

)

sample_data <- tibble(
text = c(

38 tokenlist

"The.",
"The cat.",
"The cat ran."

),
text_label = c("fragment", "fragment", "sentence")

)

rec <- recipe(text_label ~ ., data = sample_data) %>%
step_tokenize(text) %>%
step_word_embeddings(text, embeddings = embeddings)

obj <- rec %>%
prep()

bake(obj, sample_data)

tidy(rec, number = 2)
tidy(obj, number = 2)

tokenlist Create tokenlist object

Description

A tokenlist object is a thin wrapper around a list of character vectors, with a few attributes.

Usage

tokenlist(tokens = list(), lemma = NULL, pos = NULL)

Arguments

tokens List of character vectors

lemma List of character vectors, must be same size and shape as x.

pos List of character vectors, must be same size and shape as x.

Value

a tokenlist object.

Examples

abc <- list(letters, LETTERS)
tokenlist(abc)

unclass(tokenlist(abc))

tibble(text = tokenlist(abc))

tokenlist 39

library(tokenizers)
library(modeldata)
data(okc_text)
tokens <- tokenize_words(okc_text$essay0)

tokenlist(tokens)

Index

∗ character to character steps
step_text_normalization, 21

∗ character to numeric steps
step_lda, 3
step_sequence_onehot, 10
step_textfeature, 17

∗ character to tokenlist steps
step_tokenize, 30

∗ tokenlist to character steps
step_untokenize, 34

∗ tokenlist to numeric steps
step_texthash, 19
step_tf, 23
step_tfidf, 25
step_word_embeddings, 36

∗ tokenlist to tokenlist steps
step_lemma, 5
step_ngram, 7
step_pos_filter, 9
step_stem, 12
step_stopwords, 14
step_tokenfilter, 27
step_tokenmerge, 32

count_functions, 17

prep.recipe(), 24, 26, 28

rcpp_ngram, 2
recipes::bake.recipe(), 4, 6, 8, 9, 11, 13,

15, 18, 20, 22, 24, 26, 28, 31, 33, 35,
37

recipes::prep.recipe(), 3–9, 11, 13, 15,
17–20, 22–24, 26, 28, 30, 31, 33–37

recipes::selections(), 3, 5, 7, 9, 11, 13,
15, 17, 19, 21, 23, 26, 28, 30, 33, 34,
36

recipes::step_mutate(), 31

step_lda, 3, 12, 18

step_lemma, 5, 8, 10, 13, 16, 29, 33
step_ngram, 6, 7, 10, 13, 16, 29, 33
step_pos_filter, 6, 8, 9, 13, 16, 29, 33
step_sequence_onehot, 4, 10, 18
step_stem, 6, 8, 10, 12, 16, 29, 33
step_stopwords, 6, 8, 10, 13, 14, 29, 33
step_text_normalization, 21
step_textfeature, 4, 12, 17
step_texthash, 19, 24, 27, 37
step_texthash(), 22
step_tf, 20, 23, 24, 27, 29, 37
step_tfidf, 20, 24, 25, 26, 29, 37
step_tokenfilter, 6, 8, 10, 13, 16, 24, 26,

27, 33
step_tokenize, 30
step_tokenize(), 6, 8, 10, 13, 16, 20, 24, 27,

29, 30, 33, 35, 37
step_tokenmerge, 6, 8, 10, 13, 16, 29, 32
step_untokenize, 34
step_untokenize(), 31
step_word_embeddings, 20, 24, 27, 36
stringi::stri_trans_nfc(), 22

tidy.step_lda (step_lda), 3
tidy.step_lemma (step_lemma), 5
tidy.step_ngram (step_ngram), 7
tidy.step_pos_filter (step_pos_filter),

9
tidy.step_sequence_onehot

(step_sequence_onehot), 10
tidy.step_stem (step_stem), 12
tidy.step_stopwords (step_stopwords), 14
tidy.step_text_normalization

(step_text_normalization), 21
tidy.step_textfeature

(step_textfeature), 17
tidy.step_texthash (step_texthash), 19
tidy.step_tf (step_tf), 23
tidy.step_tfidf (step_tfidf), 25

40

INDEX 41

tidy.step_tokenfilter
(step_tokenfilter), 27

tidy.step_tokenize (step_tokenize), 30
tidy.step_tokenmerge (step_tokenmerge),

32
tidy.step_untokenize (step_untokenize),

34
tidy.step_word_embeddings

(step_word_embeddings), 36
tokenlist, 3, 5, 7, 9, 11–15, 17, 19, 21, 23,

25–28, 30–36, 38, 38

	rcpp_ngram
	step_lda
	step_lemma
	step_ngram
	step_pos_filter
	step_sequence_onehot
	step_stem
	step_stopwords
	step_textfeature
	step_texthash
	step_text_normalization
	step_tf
	step_tfidf
	step_tokenfilter
	step_tokenize
	step_tokenmerge
	step_untokenize
	step_word_embeddings
	tokenlist
	Index

