
Package ‘testthat’
March 2, 2020

Title Unit Testing for R

Version 2.3.2

Description Software testing is important, but, in part because it is
frustrating and boring, many of us avoid it. 'testthat' is a testing framework
for R that is easy to learn and use, and integrates with your existing 'workflow'.

License MIT + file LICENSE

URL http://testthat.r-lib.org, https://github.com/r-lib/testthat

BugReports https://github.com/r-lib/testthat/issues

Depends R (>= 3.1)

Imports cli, crayon (>= 1.3.4), digest, ellipsis, evaluate, magrittr,
methods, pkgload, praise, R6 (>= 2.2.0), rlang (>= 0.4.1),
withr (>= 2.0.0)

Suggests covr, curl (>= 0.9.5), devtools, knitr, rmarkdown, usethis,
vctrs (>= 0.1.0), xml2

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.0.2

Collate 'auto-test.R' 'capture-condition.R' 'capture-output.R'
'colour-text.R' 'compare.R' 'compare-character.R'
'compare-numeric.R' 'compare-time.R' 'context.R' 'describe.R'
'evaluate-promise.R' 'example.R' 'expect-comparison.R'
'expect-condition.R' 'expect-equality.R' 'expect-inheritance.R'
'expect-invisible.R' 'expect-known.R' 'expect-length.R'
'expect-logical.R' 'expect-messages.R' 'expect-named.R'
'expect-null.R' 'expect-output.R' 'reporter.R'
'expect-self-test.R' 'expect-setequal.R' 'expect-silent.R'
'expect-that.R' 'expect-vector.R' 'expectation.R'
'expectations-matches.R' 'make-expectation.R' 'mock.R'
'old-school.R' 'praise.R' 'quasi-label.R' 'recover.R'
'reporter-check.R' 'reporter-debug.R' 'reporter-fail.R'
'reporter-junit.R' 'reporter-list.R' 'reporter-location.R'
'reporter-minimal.R' 'reporter-multi.R' 'stack.R'

1

http://testthat.r-lib.org
https://github.com/r-lib/testthat
https://github.com/r-lib/testthat/issues

2 R topics documented:

'reporter-progress.R' 'reporter-rstudio.R' 'reporter-silent.R'
'reporter-stop.R' 'reporter-summary.R' 'reporter-tap.R'
'reporter-teamcity.R' 'reporter-zzz.R' 'skip.R' 'source.R'
'teardown.R' 'test-compiled-code.R' 'test-directory.R'
'test-example.R' 'test-files.R' 'test-path.R' 'test-that.R'
'try-again.R' 'utils-io.R' 'utils.R' 'verify-output.R'
'watcher.R'

NeedsCompilation yes

Author Hadley Wickham [aut, cre],
RStudio [cph, fnd],
R Core team [ctb] (Implementation of utils::recover())

Maintainer Hadley Wickham <hadley@rstudio.com>

Repository CRAN

Date/Publication 2020-03-02 15:40:02 UTC

R topics documented:
auto_test . 3
auto_test_package . 4
CheckReporter . 5
comparison-expectations . 5
DebugReporter . 6
describe . 6
equality-expectations . 7
expect . 10
expect_error . 11
expect_invisible . 13
expect_length . 14
expect_match . 14
expect_message . 16
expect_named . 18
expect_null . 19
expect_output . 20
expect_setequal . 21
expect_silent . 22
expect_vector . 23
fail . 24
FailReporter . 24
inheritance-expectations . 25
JunitReporter . 26
ListReporter . 26
LocationReporter . 27
logical-expectations . 27
MinimalReporter . 28
MultiReporter . 29
ProgressReporter . 29

auto_test 3

RstudioReporter . 29
SilentReporter . 30
skip . 30
StopReporter . 32
SummaryReporter . 32
TapReporter . 33
TeamcityReporter . 33
teardown . 34
test_dir . 34
test_file . 37
test_path . 38
test_that . 38
use_catch . 39
verify_output . 41

Index 44

auto_test Watches code and tests for changes, rerunning tests as appropriate.

Description

The idea behind auto_test() is that you just leave it running while you develop your code. Ev-
erytime you save a file it will be automatically tested and you can easily see if your changes have
caused any test failures.

Usage

auto_test(
code_path,
test_path,
reporter = default_reporter(),
env = test_env(),
hash = TRUE

)

Arguments

code_path path to directory containing code

test_path path to directory containing tests

reporter test reporter to use

env environment in which to execute test suite.

hash Passed on to watch(). When FALSE, uses less accurate modification time
stamps, but those are faster for large files.

4 auto_test_package

Details

The current strategy for rerunning tests is as follows:

• if any code has changed, then those files are reloaded and all tests rerun

• otherwise, each new or modified test is run

In the future, auto_test() might implement one of the following more intelligent alternatives:

• Use codetools to build up dependency tree and then rerun tests only when a dependency
changes.

• Mimic ruby’s autotest and rerun only failing tests until they pass, and then rerun all tests.

See Also

auto_test_package()

auto_test_package Watches a package for changes, rerunning tests as appropriate.

Description

Watches a package for changes, rerunning tests as appropriate.

Usage

auto_test_package(pkg = ".", reporter = default_reporter(), hash = TRUE)

Arguments

pkg path to package

reporter test reporter to use

hash Passed on to watch(). When FALSE, uses less accurate modification time
stamps, but those are faster for large files.

See Also

auto_test() for details on how method works

CheckReporter 5

CheckReporter Check reporter: 13 line summary of problems

Description
R CMD check displays only the last 13 lines of the result, so this report is design to ensure that you
see something useful there.

See Also

Other reporters: DebugReporter, FailReporter, ListReporter, LocationReporter, MinimalReporter,
MultiReporter, ProgressReporter, Reporter, RstudioReporter, SilentReporter, StopReporter,
SummaryReporter, TapReporter, TeamcityReporter

comparison-expectations

Expectation: is returned value less or greater than specified value?

Description

Expectation: is returned value less or greater than specified value?

Usage

expect_lt(object, expected, label = NULL, expected.label = NULL)

expect_lte(object, expected, label = NULL, expected.label = NULL)

expect_gt(object, expected, label = NULL, expected.label = NULL)

expect_gte(object, expected, label = NULL, expected.label = NULL)

Arguments

object Computation and value to compare it to.
Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

expected Single numeric value to compare.

label Used to customise failure messages. For expert use only.

expected.label Used to customise failure messages. For expert use only.

See Also

Other expectations: equality-expectations, expect_error(), expect_length(), expect_match(),
expect_message(), expect_named(), expect_null(), expect_output(), expect_silent(),
inheritance-expectations, logical-expectations

6 describe

Examples

a <- 9
expect_lt(a, 10)

Not run:
expect_lt(11, 10)

End(Not run)

a <- 11
expect_gt(a, 10)
Not run:
expect_gt(9, 10)

End(Not run)

DebugReporter Test reporter: start recovery.

Description

This reporter will call a modified version of recover() on all broken expectations.

See Also

Other reporters: CheckReporter, FailReporter, ListReporter, LocationReporter, MinimalReporter,
MultiReporter, ProgressReporter, Reporter, RstudioReporter, SilentReporter, StopReporter,
SummaryReporter, TapReporter, TeamcityReporter

describe describe: a BDD testing language

Description

A simple BDD DSL for writing tests. The language is similiar to RSpec for Ruby or Mocha for
JavaScript. BDD tests read like sentences and it should thus be easier to understand what the
specification of a function/component is.

Usage

describe(description, code)

Arguments

description description of the feature

code test code containing the specs

equality-expectations 7

Details

Tests using the describe syntax not only verify the tested code, but also document its intended
behaviour. Each describe block specifies a larger component or function and contains a set of
specifications. A specification is definied by an it block. Each it block functions as a test and is
evaluated in its own environment. You can also have nested describe blocks.

This test syntax helps to test the intented behaviour of your code. For example: you want to write a
new function for your package. Try to describe the specification first using describe, before your
write any code. After that, you start to implement the tests for each specification (i.e. the it block).

Use describe to verify that you implement the right things and use test_that() to ensure you do
the things right.

Examples

describe("matrix()", {
it("can be multiplied by a scalar", {
m1 <- matrix(1:4, 2, 2)
m2 <- m1 * 2
expect_equivalent(matrix(1:4 * 2, 2, 2), m2)

})
it("can have not yet tested specs")

})

Nested specs:
code
addition <- function(a, b) a + b
division <- function(a, b) a / b

specs
describe("math library", {

describe("addition()", {
it("can add two numbers", {

expect_equivalent(1 + 1, addition(1, 1))
})

})
describe("division()", {

it("can divide two numbers", {
expect_equivalent(10 / 2, division(10, 2))

})
it("can handle division by 0") #not yet implemented

})
})

equality-expectations Expectation: is the object equal to a value?

8 equality-expectations

Description

• expect_identical() compares values with identical().

• expect_equal() compares values with all.equal()

• expect_equivalent() compares values with all.equal() and check.attributes = FALSE

• expect_reference() compares the underlying memory addresses.

Usage

expect_equal(
object,
expected,
...,
info = NULL,
label = NULL,
expected.label = NULL

)

expect_equivalent(
object,
expected,
...,
info = NULL,
label = NULL,
expected.label = NULL

)

expect_identical(
object,
expected,
info = NULL,
label = NULL,
expected.label = NULL,
...

)

expect_reference(
object,
expected,
info = NULL,
label = NULL,
expected.label = NULL

)

Arguments

object, expected

Computation and value to compare it to.

equality-expectations 9

Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

... For expect_equal() and expect_equivalent(), passed on compare(), for
expect_identical() passed on to identical(). Used to control the details
of the comparison.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label, expected.label

Used to customise failure messages. For expert use only.

See Also

expect_setequal() to test for set equality.

Other expectations: comparison-expectations, expect_error(), expect_length(), expect_match(),
expect_message(), expect_named(), expect_null(), expect_output(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

a <- 10
expect_equal(a, 10)

Use expect_equal() when testing for numeric equality
sqrt(2) ^ 2 - 1
expect_equal(sqrt(2) ^ 2, 2)
Neither of these forms take floating point representation errors into
account
Not run:
expect_true(sqrt(2) ^ 2 == 2)
expect_identical(sqrt(2) ^ 2, 2)

End(Not run)

You can pass on additional arguments to all.equal:
Not run:
Test the ABSOLUTE difference is within .002
expect_equal(10.01, 10, tolerance = .002, scale = 1)

End(Not run)

Test the RELATIVE difference is within .002
x <- 10
expect_equal(10.01, expected = x, tolerance = 0.002, scale = x)

expect_equivalent ignores attributes
a <- b <- 1:3
names(b) <- letters[1:3]
expect_equivalent(a, b)

10 expect

expect The building block of all expect_ functions

Description

Call expect() when writing your own expectations. See vignette("custom-expectation") for
details.

Usage

expect(ok, failure_message, info = NULL, srcref = NULL, trace = NULL)

Arguments

ok TRUE or FALSE indicating if the expectation was successful.
failure_message

Message to show if the expectation failed.

info Character vector continuing additional information. Included for backward com-
patibility only and new expectations should not use it.

srcref Location of the failure. Should only needed to be explicitly supplied when you
need to forward a srcref captured elsewhere.

trace An optional backtrace created by rlang::trace_back(). When supplied, the
expectation is displayed with the backtrace.

Details

While expect() creates and signals an expectation in one go, exp_signal() separately signals an
expectation that you have manually created with new_expectation(). Expectations are signalled
with the following protocol:

• If the expectation is a failure or an error, it is signalled with base::stop(). Otherwise, it is
signalled with base::signalCondition().

• The continue_test restart is registered. When invoked, failing expectations are ignored and
normal control flow is resumed to run the other tests.

Value

An expectation object. Signals the expectation condition with a continue_test restart.

See Also

exp_signal()

expect_error 11

expect_error Expectation: does code throw error or other condition?

Description

expect_error() and expect_condition() check that code throws an error or condition with a
message that matches regexp, or a class that inherits from class. See below for more details.

Usage

expect_error(
object,
regexp = NULL,
class = NULL,
...,
info = NULL,
label = NULL

)

expect_condition(
object,
regexp = NULL,
class = NULL,
...,
info = NULL,
label = NULL

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

regexp Regular expression to test against.

• A character vector giving a regular expression that must match the error
message.

• If NULL, the default, asserts that there should be a error, but doesn’t test for
a specific value.

• If NA, asserts that there should be no errors.

class Instead of supplying a regular expression, you can also supply a class name.
This is useful for "classed" conditions.

... Arguments passed on to expect_match

all Should all elements of actual value match regexp (TRUE), or does only
one need to match (FALSE)

perl logical. Should Perl-compatible regexps be used?

12 expect_error

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all
conflicting arguments.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

Value

If regexp = NA, the value of the first argument; otherwise the captured condition.

Testing message vs class

When checking that code generates an error, it’s important to check that the error is the one you
expect. There are two ways to do this. The first way is the simplest: you just provide a regexp that
match some fragment of the error message. This is easy, but fragile, because the test will fail if the
error message changes (even if its the same error).

A more robust way is to test for the class of the error, if it has one. You can learn more about custom
conditions at https://adv-r.hadley.nz/conditions.html#custom-conditions, but in short,
errors are S3 classes and you can generate a custom class and check for it using class instead of
regexp. Because this is a more reliable check, you expect_error() will warn if the error has a
custom class but you are testing the message. Eliminate the warning by using class instead of
regexp. Alternatively, if you think the warning is a false positive, use class = "error" to suppress
it for any input.

If you are using expect_error() to check that an error message is formatted in such a way that it
makes sense to a human, we now recommend using verify_output() instead.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_length(),
expect_match(), expect_message(), expect_named(), expect_null(), expect_output(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

f <- function() stop("My error!")
expect_error(f())
expect_error(f(), "My error!")

You can use the arguments of grepl to control the matching
expect_error(f(), "my error!", ignore.case = TRUE)

If you are working with classed conditions, it's better to test for
the class name, rather than the error message (which may change over time)
custom_err <- function(var) {

rlang::abort("A special error", var = var, .subclass = "testthat_special")
}
expect_error(custom_err("a"), class = "testthat_special")

Note that `expect_error()` returns the error object so you can test

https://adv-r.hadley.nz/conditions.html#custom-conditions

expect_invisible 13

its components if needed
err <- expect_error(custom_err("a"), class = "testthat_special")
expect_equal(err$var, "a")

expect_invisible Expectation: does expression return visibily or invisibly?

Description

Use this to test whether a function returns a visible or invisible output. Typically you’ll use this to
check that functions called primarily for their side-effects return their data argument invisibly.

Usage

expect_invisible(call, label = NULL)

expect_visible(call, label = NULL)

Arguments

call A function call.

label Used to customise failure messages. For expert use only.

Value

The evaluated call, invisibly.

Examples

expect_invisible(x <- 10)
expect_visible(x)

Typically you'll assign the result of the expectation so you can
also check that the value is as you expect.
greet <- function(name) {

message("Hi ", name)
invisible(name)

}
out <- expect_invisible(greet("Hadley"))
expect_equal(out, "Hadley")

14 expect_match

expect_length Expectation: does a vector have the specified length?

Description

Expectation: does a vector have the specified length?

Usage

expect_length(object, n)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

n Expected length.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_match(),
expect_message(), expect_named(), expect_null(), expect_output(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

expect_length(1, 1)
expect_length(1:10, 10)

Not run:
expect_length(1:10, 1)

End(Not run)

expect_match Expectation: does string match a regular expression?

Description

Expectation: does string match a regular expression?

expect_match 15

Usage

expect_match(
object,
regexp,
perl = FALSE,
fixed = FALSE,
...,
all = TRUE,
info = NULL,
label = NULL

)

Arguments

object Object to test.

Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

regexp Regular expression to test against.

perl logical. Should Perl-compatible regexps be used?

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all conflicting
arguments.

... Arguments passed on to base::grepl

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case
is ignored during matching.

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-
by-character. See ‘Details’.

all Should all elements of actual value match regexp (TRUE), or does only one
need to match (FALSE)

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

Details

expect_match() is a wrapper around grepl(). See its documentation for more detail about the
individual arguments.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_message(), expect_named(), expect_null(), expect_output(), expect_silent(),
inheritance-expectations, logical-expectations

16 expect_message

Examples

expect_match("Testing is fun", "fun")
expect_match("Testing is fun", "f.n")

Not run:
expect_match("Testing is fun", "horrible")

Zero-length inputs always fail
expect_match(character(), ".")

End(Not run)

expect_message Expectation: does code produce warnings or messages?

Description

Use expect_message() and expect_warning() to check if the messages or warnings match the
given regular expression.

Usage

expect_message(
object,
regexp = NULL,
...,
all = FALSE,
info = NULL,
label = NULL

)

expect_warning(
object,
regexp = NULL,
...,
all = FALSE,
info = NULL,
label = NULL

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

regexp Regular expression to test against.

expect_message 17

• A character vector giving a regular expression that must match the mes-
sage/warning

• If NULL, the default, asserts that there should be a messsage/warning, but
doesn’t test for a specific value.

• If NA, asserts that there shouldn’t be any messages or warnings.

... Arguments passed on to expect_match

perl logical. Should Perl-compatible regexps be used?
fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all

conflicting arguments.

all Do messages/warnings need to match the regexp (TRUE), or does only one need
to match (FALSE)?

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

Value

The first argument, invisibly.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_silent(), inheritance-expectations,
logical-expectations

Examples

Messages --

f <- function(x) {
if (x < 0) {
message("*x* is already negative")
return(x)

}

-x
}
expect_message(f(-1))
expect_message(f(-1), "already negative")
expect_message(f(1), NA)

To test message and output, store results to a variable
expect_message(out <- f(-1), "already negative")
expect_equal(out, -1)

You can use the arguments of grepl to control the matching
expect_message(f(-1), "*x*", fixed = TRUE)
expect_message(f(-1), "NEGATIVE", ignore.case = TRUE)

18 expect_named

Warnings --
f <- function(x) {

if (x < 0) {
warning("*x* is already negative")
return(x)

}
-x

}
expect_warning(f(-1))
expect_warning(f(-1), "already negative")
expect_warning(f(1), NA)

To test message and output, store results to a variable
expect_warning(out <- f(-1), "already negative")
expect_equal(out, -1)

You can use the arguments of grepl to control the matching
expect_warning(f(-1), "*x*", fixed = TRUE)
expect_warning(f(-1), "NEGATIVE", ignore.case = TRUE)

expect_named Expectation: does object have names?

Description

You can either check for the presence of names (leaving expected blank), specific names (by
suppling a vector of names), or absence of names (with NULL).

Usage

expect_named(
object,
expected,
ignore.order = FALSE,
ignore.case = FALSE,
info = NULL,
label = NULL

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

expected Character vector of expected names. Leave missing to match any names. Use
NULL to check for absence of names.

ignore.order If TRUE, sorts names before comparing to ignore the effect of order.

expect_null 19

ignore.case If TRUE, lowercases all names to ignore the effect of case.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_message(), expect_null(), expect_output(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

x <- c(a = 1, b = 2, c = 3)
expect_named(x)
expect_named(x, c("a", "b", "c"))

Use options to control sensitivity
expect_named(x, c("B", "C", "A"), ignore.order = TRUE, ignore.case = TRUE)

Can also check for the absence of names with NULL
z <- 1:4
expect_named(z, NULL)

expect_null Expectation: is an object NULL?

Description

This is a special case because NULL is a singleton so it’s possible check for it either with expect_equal(x,NULL)
or expect_type(x,"NULL").

Usage

expect_null(object, info = NULL, label = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

20 expect_output

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_message(), expect_named(), expect_output(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

x <- NULL
y <- 10

expect_null(x)
show_failure(expect_null(y))

expect_output Expectation: does code print output to the console?

Description

Test for output produced by print() or cat(). This is best used for very simple output; for more
complex cases use verify_output().

Usage

expect_output(
object,
regexp = NULL,
...,
info = NULL,
label = NULL,
width = 80

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

regexp Regular expression to test against.

• A character vector giving a regular expression that must match the output.
• If NULL, the default, asserts that there should output, but doesn’t check for

a specific value.
• If NA, asserts that there should be no output.

... Arguments passed on to expect_match

all Should all elements of actual value match regexp (TRUE), or does only
one need to match (FALSE)

expect_setequal 21

perl logical. Should Perl-compatible regexps be used?
fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all

conflicting arguments.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

width Number of characters per line of output. This does not inherit from getOption("width")
so that tests always use the same output width, minimising spurious differences.

Value

The first argument, invisibly.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_message(), expect_named(), expect_null(), expect_silent(), inheritance-expectations,
logical-expectations

Examples

str(mtcars)
expect_output(str(mtcars), "32 obs")
expect_output(str(mtcars), "11 variables")

You can use the arguments of grepl to control the matching
expect_output(str(mtcars), "11 VARIABLES", ignore.case = TRUE)
expect_output(str(mtcars), "$ mpg", fixed = TRUE)

expect_setequal Expectation: do two vectors contain the same values?

Description

• expect_setequal(x,y) tests that every element of x occurs in y, and that every element of y
occurs in x.

• expect_mapequal(x,y) tests that x and y have the same names, and that x[names(y)] equals
x.

Usage

expect_setequal(object, expected)

expect_mapequal(object, expected)

22 expect_silent

Arguments

object Computation and value to compare it to.
Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

expected Computation and value to compare it to.
Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

Details

Note that expect_setequal() ignores names, and you will be warned if both object and expected
have them.

Examples

expect_setequal(letters, rev(letters))
show_failure(expect_setequal(letters[-1], rev(letters)))

x <- list(b = 2, a = 1)
expect_mapequal(x, list(a = 1, b = 2))
show_failure(expect_mapequal(x, list(a = 1)))
show_failure(expect_mapequal(x, list(a = 1, b = "x")))
show_failure(expect_mapequal(x, list(a = 1, b = 2, c = 3)))

expect_silent Expectation: is the code silent?

Description

Checks that the code produces no output, messages, or warnings.

Usage

expect_silent(object)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

Value

The first argument, invisibly.

expect_vector 23

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_message(), expect_named(), expect_null(), expect_output(), inheritance-expectations,
logical-expectations

Examples

expect_silent("123")

f <- function() {
message("Hi!")
warning("Hey!!")
print("OY!!!")

}
Not run:
expect_silent(f())

End(Not run)

expect_vector Expectation: does the object have vctr properties?

Description

expect_vector() is a thin wrapper around vctrs::vec_assert(), converting the results of that
function in to the expectations used by testthat. This means that it used the vctrs of ptype (proto-
type) and size. See details in https://vctrs.r-lib.org/articles/type-size.html

Usage

expect_vector(object, ptype = NULL, size = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

ptype (Optional) Vector prototype to test against. Should be a size-0 (empty) gener-
alised vector.

size (Optional) Size to check for.

Examples

if (requireNamespace("vctrs") && packageVersion("vctrs") > "0.1.0.9002") {
expect_vector(1:10, ptype = integer(), size = 10)
show_failure(expect_vector(1:10, ptype = integer(), size = 5))
show_failure(expect_vector(1:10, ptype = character(), size = 5))
}

https://vctrs.r-lib.org/articles/type-size.html

24 FailReporter

fail Default expectations that always succeed or fail.

Description

These allow you to manually trigger success or failure. Failure is particularly useful to a pre-
condition or mark a test as not yet implemented.

Usage

fail(message = "Failure has been forced", info = NULL)

succeed(message = "Success has been forced", info = NULL)

Arguments

message a string to display.

info Character vector continuing additional information. Included for backward com-
patibility only and new expectations should not use it.

Examples

Not run:
test_that("this test fails", fail())
test_that("this test succeeds", succeed())

End(Not run)

FailReporter Test reporter: fail at end.

Description

This reporter will simply throw an error if any of the tests failed. It is best combined with another
reporter, such as the SummaryReporter.

See Also

Other reporters: CheckReporter, DebugReporter, ListReporter, LocationReporter, MinimalReporter,
MultiReporter, ProgressReporter, Reporter, RstudioReporter, SilentReporter, StopReporter,
SummaryReporter, TapReporter, TeamcityReporter

inheritance-expectations 25

inheritance-expectations

Expectation: does the object inherit from a S3 or S4 class, or is it a
base type?

Description

See https://adv-r.hadley.nz/oo.html for an overview of R’s OO systems, and the vocabulary
used here.

• expect_type(x,type) checks that typeof(x) is type.

• expect_s3_class(x,class) checks that x is an S3 object that inherits() from class

• expect_s4_class(x,class) checks that x is an S4 object that is() class.

Usage

expect_type(object, type)

expect_s3_class(object, class, exact = FALSE)

expect_s4_class(object, class)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

type String giving base type (as returned by typeof()).

class character vector of class names

exact If FALSE, the default, checks that object inherits from class. If TRUE, checks
that object has a class that’s identical to class.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_message(), expect_named(), expect_null(), expect_output(), expect_silent(),
logical-expectations

Examples

x <- data.frame(x = 1:10, y = "x", stringsAsFactors = TRUE)
A data frame is an S3 object with class data.frame
expect_s3_class(x, "data.frame")
show_failure(expect_s4_class(x, "data.frame"))
A data frame is built from a list:
expect_type(x, "list")

https://adv-r.hadley.nz/oo.html

26 ListReporter

An integer vector is an atomic vector of type "integer"
expect_type(x$x, "integer")
It is not an S3 object
show_failure(expect_s3_class(x$x, "integer"))

Above, we requested data.frame() converts strings to factors:
show_failure(expect_type(x$y, "character"))
expect_s3_class(x$y, "factor")
expect_type(x$y, "integer")

JunitReporter Test reporter: summary of errors in jUnit XML format.

Description

This reporter includes detailed results about each test and summaries, written to a file (or stdout) in
jUnit XML format. This can be read by the Jenkins Continuous Integration System to report on a
dashboard etc. Requires the xml2 package.

Details

To fit into the jUnit structure, context() becomes the <testsuite> name as well as the base of the
<testcase> classname. The test_that() name becomes the rest of the <testcase> classname. The
deparsed expect_that() call becomes the <testcase> name. On failure, the message goes into the
<failure> node message argument (first line only) and into its text content (full message).

Execution time and some other details are also recorded.

References for the jUnit XML format: http://llg.cubic.org/docs/junit/

ListReporter List reporter: gather all test results along with elapsed time and file
information.

Description

This reporter gathers all results, adding additional information such as test elapsed time, and test
filename if available. Very useful for reporting.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, LocationReporter, MinimalReporter,
MultiReporter, ProgressReporter, Reporter, RstudioReporter, SilentReporter, StopReporter,
SummaryReporter, TapReporter, TeamcityReporter

http://llg.cubic.org/docs/junit/

LocationReporter 27

LocationReporter Test reporter: location

Description

This reporter simply prints the location of every expectation and error. This is useful if you’re
trying to figure out the source of a segfault, or you want to figure out which code triggers a C/C++
breakpoint

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, MinimalReporter,
MultiReporter, ProgressReporter, Reporter, RstudioReporter, SilentReporter, StopReporter,
SummaryReporter, TapReporter, TeamcityReporter

logical-expectations Expectation: is the object true/false?

Description

These are fall-back expectations that you can use when none of the other more specific expectations
apply. The disadvantage is that you may get a less informative error message.

Usage

expect_true(object, info = NULL, label = NULL)

expect_false(object, info = NULL, label = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

Details

Attributes are ignored.

28 MinimalReporter

See Also

is_false() for complement

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_message(), expect_named(), expect_null(), expect_output(), expect_silent(),
inheritance-expectations

Examples

expect_true(2 == 2)
Failed expectations will throw an error
Not run:
expect_true(2 != 2)

End(Not run)
expect_true(!(2 != 2))
or better:
expect_false(2 != 2)

a <- 1:3
expect_true(length(a) == 3)
but better to use more specific expectation, if available
expect_equal(length(a), 3)

MinimalReporter Test reporter: minimal.

Description

The minimal test reporter provides the absolutely minimum amount of information: whether each
expectation has succeeded, failed or experienced an error. If you want to find out what the failures
and errors actually were, you’ll need to run a more informative test reporter.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LocationReporter,
MultiReporter, ProgressReporter, Reporter, RstudioReporter, SilentReporter, StopReporter,
SummaryReporter, TapReporter, TeamcityReporter

MultiReporter 29

MultiReporter Multi reporter: combine several reporters in one.

Description

This reporter is useful to use several reporters at the same time, e.g. adding a custom reporter
without removing the current one.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LocationReporter,
MinimalReporter, ProgressReporter, Reporter, RstudioReporter, SilentReporter, StopReporter,
SummaryReporter, TapReporter, TeamcityReporter

ProgressReporter Test reporter: interactive progress bar of errors.

Description

This reporter is a reimagining of SummaryReporter desgined to make the most information available
up front, while taking up less space overall. It is the default reporting reporter used by test_dir()
and test_file().

Details

As an additional benefit, this reporter will praise you from time-to-time if all your tests pass.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, Reporter, RstudioReporter, SilentReporter, StopReporter,
SummaryReporter, TapReporter, TeamcityReporter

RstudioReporter Test reporter: RStudio

Description

This reporter is designed for output to RStudio. It produces results in any easily parsed form.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, Reporter, SilentReporter, StopReporter,
SummaryReporter, TapReporter, TeamcityReporter

30 skip

SilentReporter Test reporter: gather all errors silently.

Description

This reporter quietly runs all tests, simply gathering all expectations. This is helpful for program-
matically inspecting errors after a test run. You can retrieve the results with the expectations()
method.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, Reporter, RstudioReporter, StopReporter,
SummaryReporter, TapReporter, TeamcityReporter

skip Skip a test.

Description

This function allows you to skip a test if it’s not currently available. This will produce an informative
message, but will not cause the test suite to fail.

Usage

skip(message)

skip_if_not(condition, message = deparse(substitute(condition)))

skip_if(condition, message = NULL)

skip_if_not_installed(pkg, minimum_version = NULL)

skip_if_offline(host = "r-project.org")

skip_on_cran()

skip_on_os(os)

skip_on_travis()

skip_on_appveyor()

skip_on_ci()

skip 31

skip_on_covr()

skip_on_bioc()

skip_if_translated(msgid = "'%s' not found")

Arguments

message A message describing why the test was skipped.

condition Boolean condition to check. skip_if_not() will skip if FALSE, skip_if() will
skip if TRUE.

pkg Name of package to check for

minimum_version

Minimum required version for the package

host A string with a hostname to lookup

os Character vector of system names. Supported values are "windows", "mac",
"linux" and "solaris".

msgid R message identifier used to check for translation: the default uses a message
included in most translation packs. See the complete list in R-base.pot.

Details
skip* functions are intended for use within test_that() blocks. All expectations following the
skip* statement within the same test_that block will be skipped. Test summaries that report
skip counts are reporting how many test_that blocks triggered a skip* statement, not how many
expectations were skipped.

Helpers

skip_if_not() works like stopifnot(), generating a message automatically based on the first
argument.

skip_if_offline() skips tests if an internet connection is not available using curl::nslookup().

skip_on_cran() skips tests on CRAN, using the NOT_CRAN environment variable set by devtools.

skip_on_travis() skips tests on Travis CI by inspecting the TRAVIS environment variable.

skip_on_appveyor() skips tests on AppVeyor by inspecting the APPVEYOR environment variable.

skip_on_ci() skips tests on continuous integration systems by inspecting the CI environment vari-
able.

skip_on_covr() skips tests when covr is running by inspecting the R_COVR environment variable

skip_on_bioc() skips tests on Bioconductor by inspecting the BBS_HOME environment variable.

skip_if_not_installed() skips a tests if a package is not installed or cannot be loaded (useful
for suggested packages). It loads the package as a side effect, because the package is likely to be
used anyway.

https://github.com/wch/r-source/blob/master/src/library/base/po/R-base.pot

32 SummaryReporter

Examples

if (FALSE) skip("No internet connection")

The following are only meaningful when put in test files and
run with `test_file`, `test_dir`, `test_check`, etc.

test_that("skip example", {
expect_equal(1, 1L) # this expectation runs
skip('skip')
expect_equal(1, 2) # this one skipped
expect_equal(1, 3) # this one is also skipped

})

StopReporter Test reporter: stop on error.

Description

The default reporter, executed when expect_that is run interactively. It responds by stop()ping
on failures and doing nothing otherwise. This will ensure that a failing test will raise an error.

Details

This should be used when doing a quick and dirty test, or during the final automated testing of R
CMD check. Otherwise, use a reporter that runs all tests and gives you more context about the
problem.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, Reporter, RstudioReporter, SilentReporter,
SummaryReporter, TapReporter, TeamcityReporter

SummaryReporter Test reporter: summary of errors.

Description

This is a reporter designed for interactive usage: it lets you know which tests have run successfully
and as well as fully reporting information about failures and errors.

Details

You can use the max_reports field to control the maximum number of detailed reports produced
by this reporter. This is useful when running with auto_test()

As an additional benefit, this reporter will praise you from time-to-time if all your tests pass.

TapReporter 33

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, Reporter, RstudioReporter, SilentReporter,
StopReporter, TapReporter, TeamcityReporter

TapReporter Test reporter: TAP format.

Description

This reporter will output results in the Test Anything Protocol (TAP), a simple text-based interface
between testing modules in a test harness. For more information about TAP, see http://testanything.org

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, Reporter, RstudioReporter, SilentReporter,
StopReporter, SummaryReporter, TeamcityReporter

TeamcityReporter Test reporter: Teamcity format.

Description

This reporter will output results in the Teamcity message format. For more information about Team-
city messages, see http://confluence.jetbrains.com/display/TCD7/Build+Script+Interaction+with+TeamCity

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, Reporter, RstudioReporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter

34 test_dir

teardown Run code on setup/teardown

Description

Code in a setup() block is run immediately in a clean environment. Code in a teardown() block
is run upon completion of a test file, even if it exits with an error. Multiple calls to teardown() will
be executed in the order they were created.

Usage

teardown(code, env = parent.frame())

setup(code, env = parent.frame())

Arguments

code Code to evaluate

env Environment in which code will be evaluted. For expert use only.

Examples

Not run:

tmp <- tempfile()
setup(writeLines(tmp, "some test data"))
teardown(unlink(tmp))

End(Not run)

test_dir Run all tests in directory or package

Description

Use test_dir() for a collection of tests in a directory; use test_package() interactively at the
console, and test_check() inside of R CMD check.

In your own code, you can use is_testing() to determine if code is being run as part of a test
and testing_package() to retrieve the name of the package being tested. You can also check the
underlying env var directly identical(Sys.getenv("TESTTHAT"),"true") to avoid creating a
run-time dependency on testthat.

test_dir 35

Usage

test_dir(
path,
filter = NULL,
reporter = default_reporter(),
env = test_env(),
...,
encoding = "unknown",
load_helpers = TRUE,
stop_on_failure = FALSE,
stop_on_warning = FALSE,
wrap = TRUE

)

test_package(
package,
filter = NULL,
reporter = check_reporter(),
...,
stop_on_failure = TRUE,
stop_on_warning = FALSE

)

test_check(
package,
filter = NULL,
reporter = check_reporter(),
...,
stop_on_failure = TRUE,
stop_on_warning = FALSE,
wrap = TRUE

)

is_testing()

testing_package()

Arguments

path Path to directory containing tests.

filter If not NULL, only tests with file names matching this regular expression will be
executed. Matching be performed on the file name after it has been stripped of
"test-" and ".R".

reporter Reporter to use to summarise output. Can be supplied as a string (e.g. "sum-
mary") or as an R6 object (e.g. SummaryReporter$new()).
See Reporter for more details and a list of built-in reporters.

env Environment in which to execute the tests. Expert use only.

36 test_dir

... Additional arguments passed to grepl() to control filtering.
encoding Deprecated. All files now assumed to be UTF-8.
load_helpers Source helper files before running the tests? See source_test_helpers() for

more details.
stop_on_failure

If TRUE, throw an error if any tests fail.
For historical reasons, the default value of stop_on_failure is TRUE for test_package()
and test_check() but FALSE for test_dir(), so if you’re calling test_dir()
you may want to consider explicitly setting stop_on_failure = TRUE.

stop_on_warning

If TRUE, throw an error if any tests generate warnings.
wrap Automatically wrap all code within test_that()? This ensures that all expec-

tations are reported, even if outside a test block.
package Name of installed package.

Value

A list of test results.

Test files

For package code, tests should live in tests/testthat.

There are four classes of .R files that have special behaviour:

• Test files start with test and are executed in alphabetical order.
• Helper files start with helper and are executed before tests are run and from devtools::load_all().
• Setup files start with setup and are executed before tests, but not during devtools::load_all().
• Teardown files start with teardown and are executed after the tests are run.

Environments

Each test is run in a clean environment to keep tests as isolated as possible. For package tests,
that environment that inherits from the package’s namespace environment, so that tests can access
internal functions and objects.

R CMD check

To run testthat automatically from R CMD check, make sure you have a tests/testthat.R that
contains:

library(testthat)
library(yourpackage)

test_check("yourpackage")

Examples

test_dir(testthat_examples(), reporter = "summary")
test_dir(testthat_examples(), reporter = "minimal")

test_file 37

test_file Run all tests in specified file

Description

Execute code in the specified file, displaying results using a reporter. Use this function when you
want to run a single file’s worth of tests. You are responsible for ensuring that the functions to test
are available in the global environment.

Usage

test_file(
path,
reporter = default_reporter(),
env = test_env(),
start_end_reporter = TRUE,
load_helpers = TRUE,
encoding = "unknown",
wrap = TRUE

)

Arguments

path Path to file.

reporter Reporter to use to summarise output. Can be supplied as a string (e.g. "sum-
mary") or as an R6 object (e.g. SummaryReporter$new()).
See Reporter for more details and a list of built-in reporters.

env Environment in which to execute the tests. Expert use only.
start_end_reporter

Should the reporters start_reporter() and end_reporter() methods be called?
For expert use only.

load_helpers Source helper files before running the tests? See source_test_helpers() for
more details.

encoding Deprecated. All files now assumed to be UTF-8.

wrap Automatically wrap all code within test_that()? This ensures that all expec-
tations are reported, even if outside a test block.

Details

Any errors that occur in code run outside of test_that() will generate a test failure and terminate
execution of that test file.

Value

Invisibily, a list with one element for each test.

38 test_that

Examples

path <- testthat_example("success")
test_file(path, reporter = "minimal")

test_file() invisibly returns a list, with one element for each test.
This can be useful if you want to compute on your test results.
out <- test_file(path, reporter = "minimal")
str(out[[1]])

test_path Locate file in testing directory.

Description

This function is designed to work both interatively and during tests, locating files in the tests/testthat
directory

Usage

test_path(...)

Arguments

... Character vectors giving path component.

Value

A character vector giving the path.

test_that Create a test.

Description

A test encapsulates a series of expectations about small, self-contained set of functionality. Each
test is contained in a context and contains multiple expectations.

Usage

test_that(desc, code)

Arguments

desc test name. Names should be kept as brief as possible, as they are often used as
line prefixes.

code test code containing expectations

use_catch 39

Details

Tests are evaluated in their own environments, and should not affect global state.

When run from the command line, tests return NULL if all expectations are met, otherwise it raises
an error.

Examples

test_that("trigonometric functions match identities", {
expect_equal(sin(pi / 4), 1 / sqrt(2))
expect_equal(cos(pi / 4), 1 / sqrt(2))
expect_equal(tan(pi / 4), 1)

})
Failing test:
Not run:
test_that("trigonometric functions match identities", {

expect_equal(sin(pi / 4), 1)
})

End(Not run)

use_catch Use Catch for C++ Unit Testing

Description

Add the necessary infrastructure to enable C++ unit testing in R packages with Catch and testthat.

Usage

use_catch(dir = getwd())

Arguments

dir The directory containing an R package.

Details

Calling use_catch() will:

1. Create a file src/test-runner.cpp, which ensures that the testthat package will under-
stand how to run your package’s unit tests,

2. Create an example test file src/test-example.cpp, which showcases how you might use
Catch to write a unit test,

3. Add a test file tests/testthat/test-cpp.R, which ensures that testthat will run your
compiled tests during invocations of devtools::test() or R CMD check, and

4. Create a file R/catch-routine-registration.R, which ensures that R will automatically
register this routine when tools::package_native_routine_registration_skeleton()
is invoked.

https://github.com/philsquared/Catch

40 use_catch

C++ unit tests can be added to C++ source files within the src directory of your package, with a
format similar to R code tested with testthat. Here’s a simple example of a unit test written with
testthat + Catch:

context("C++ Unit Test") {
test_that("two plus two is four") {
int result = 2 + 2;
expect_true(result == 4);

}
}

When your package is compiled, unit tests alongside a harness for running these tests will be com-
piled into your R package, with the C entry point run_testthat_tests(). testthat will use that
entry point to run your unit tests when detected.

Functions

All of the functions provided by Catch are available with the CATCH_ prefix – see here for a full list.
testthat provides the following wrappers, to conform with testthat’s R interface:

Function Catch Description
context CATCH_TEST_CASE The context of a set of tests.
test_that CATCH_SECTION A test section.
expect_true CATCH_CHECK Test that an expression evaluates to true.
expect_false CATCH_CHECK_FALSE Test that an expression evalutes to false.
expect_error CATCH_CHECK_THROWS Test that evaluation of an expression throws an exception.
expect_error_as CATCH_CHECK_THROWS_AS Test that evaluation of an expression throws an exception of a specific class.

In general, you should prefer using the testthat wrappers, as testthat also does some work to
ensure that any unit tests within will not be compiled or run when using the Solaris Studio compilers
(as these are currently unsupported by Catch). This should make it easier to submit packages to
CRAN that use Catch.

Symbol Registration

If you’ve opted to disable dynamic symbol lookup in your package, then you’ll need to explicitly
export a symbol in your package that testthat can use to run your unit tests. testthat will look
for a routine with one of the names:

C_run_testthat_tests
c_run_testthat_tests
run_testthat_tests

See Controlling Visibility and Registering Symbols in the Writing R Extensions manual for more
information.

https://github.com/philsquared/Catch/blob/master/docs/assertions.md
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Controlling-visibility
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Registering-symbols

verify_output 41

Advanced Usage

If you’d like to write your own Catch test runner, you can instead use the testthat::catchSession()
object in a file with the form:

#define TESTTHAT_TEST_RUNNER
#include <testthat.h>

void run()
{

Catch::Session& session = testthat::catchSession();
// interact with the session object as desired

}

This can be useful if you’d like to run your unit tests with custom arguments passed to the Catch
session.

Standalone Usage

If you’d like to use the C++ unit testing facilities provided by Catch, but would prefer not to use the
regular testthat R testing infrastructure, you can manually run the unit tests by inserting a call to:

.Call("run_testthat_tests", PACKAGE = <pkgName>)

as necessary within your unit test suite.

See Also

Catch, the library used to enable C++ unit testing.

verify_output Verify output

Description

This is a regression test that records interwoven code and output into a file, in a similar way to
kniting an .Rmd (but see caveats below).

verify_output() designed particularly for testing print methods and error messages, where the
primary goal is to ensure that the output is helpful to a human. Obviously, you can’t test that with
code, so the best you can do is make the results explicit by saving them to text file. This makes the
output easy to see in code reviews, and ensures that you don’t change the output accidentally.

verify_output() is designed to be used with git: to see what has changed from the previous run,
you’ll need to use git diff or similar.

https://github.com/philsquared/Catch

42 verify_output

Usage

verify_output(
path,
code,
width = 80,
crayon = FALSE,
unicode = FALSE,
env = caller_env()

)

Arguments

path Path to record results.
This should usually be a call to test_path() to ensures that same path is
used when run interactively (when the working directory is typically the project
root), and when run as an autmated test (when the working directory will be
tests/testthat).

code Code to execute. This will usually be a multiline expression contained within
{} (similarly to test_that() calls).

width Width of console output

crayon Enable crayon package colouring?

unicode Enable cli package UTF-8 symbols? If you set this to TRUE, call skip_if(!cli::is_utf8_output())
to disable the test on your CI platforms that don’t support UTF-8 (e.g. Win-
dows).

env The environment to evaluate code in.

Syntax

verify_output() can only capture the abstract syntax tree, losing all whitespace and comments.
To mildy offset this limitation:

• Strings are converted to R comments in the output.

• Strings starting with # are converted to headers in the output.

CRAN

On CRAN, verify_output() will never fail, even if the output changes. This avoids false positives
because tests of print methods and error messages are often fragile due to implicit dependencies on
other packages, and failure does not imply incorrect computation, just a change in presentation.

Examples

The first argument would usually be `test_path("informative-name.txt"`)
but that is not permitted in examples
path <- tempfile()
verify_output(path, {

head(mtcars)
log(-10)

verify_output 43

"a" * 3
})
writeLines(readLines(path))

Use strings to create comments in the output
verify_output(tempfile(), {

"Print method"
head(mtcars)

"Warning"
log(-10)

"Error"
"a" * 3

})

Use strings starting with # to create headings
verify_output(tempfile(), {

"# Base functions"
head(mtcars)
log(-10)
"a" * 3

})

Index

∗Topic debugging
auto_test, 3
auto_test_package, 4

all.equal(), 8
auto_test, 3
auto_test(), 4, 32
auto_test_package, 4
auto_test_package(), 4

base::grepl, 15
base::signalCondition(), 10
base::stop(), 10

CheckReporter, 5, 6, 24, 26–30, 32, 33
compare(), 9
comparison-expectations, 5
context, 38
curl::nslookup(), 31

DebugReporter, 5, 6, 24, 26–30, 32, 33
describe, 6

equality-expectations, 7
exp_signal(), 10
expect, 10
expect_condition (expect_error), 11
expect_equal (equality-expectations), 7
expect_equivalent

(equality-expectations), 7
expect_error, 5, 9, 11, 14, 15, 17, 19–21, 23,

25, 28
expect_false (logical-expectations), 27
expect_gt (comparison-expectations), 5
expect_gte (comparison-expectations), 5
expect_identical

(equality-expectations), 7
expect_invisible, 13
expect_length, 5, 9, 12, 14, 15, 17, 19–21,

23, 25, 28
expect_lt (comparison-expectations), 5

expect_lte (comparison-expectations), 5
expect_mapequal (expect_setequal), 21
expect_match, 5, 9, 11, 12, 14, 14, 17, 19–21,

23, 25, 28
expect_message, 5, 9, 12, 14, 15, 16, 19–21,

23, 25, 28
expect_named, 5, 9, 12, 14, 15, 17, 18, 20, 21,

23, 25, 28
expect_null, 5, 9, 12, 14, 15, 17, 19, 19, 21,

23, 25, 28
expect_output, 5, 9, 12, 14, 15, 17, 19, 20,

20, 23, 25, 28
expect_reference

(equality-expectations), 7
expect_s3_class

(inheritance-expectations), 25
expect_s4_class

(inheritance-expectations), 25
expect_setequal, 21
expect_silent, 5, 9, 12, 14, 15, 17, 19–21,

22, 25, 28
expect_true (logical-expectations), 27
expect_type (inheritance-expectations),

25
expect_vector, 23
expect_visible (expect_invisible), 13
expect_warning (expect_message), 16

fail, 24
FailReporter, 5, 6, 24, 26–30, 32, 33

grepl(), 15, 36

identical(), 8, 9
inheritance-expectations, 25
inherits(), 25
is(), 25
is_false(), 28
is_testing (test_dir), 34

JunitReporter, 26

44

INDEX 45

ListReporter, 5, 6, 24, 26, 27–30, 32, 33
LocationReporter, 5, 6, 24, 26, 27, 28–30,

32, 33
logical-expectations, 27

MinimalReporter, 5, 6, 24, 26, 27, 28, 29, 30,
32, 33

MultiReporter, 5, 6, 24, 26–29, 29, 30, 32, 33

new_expectation(), 10

ProgressReporter, 5, 6, 24, 26–29, 29, 30,
32, 33

quasi_label, 5, 9, 11, 12, 14–23, 25, 27

recover(), 6
Reporter, 5, 6, 24, 26–30, 32, 33, 35, 37
rlang::trace_back(), 10
RstudioReporter, 5, 6, 24, 26–29, 29, 30, 32,

33

setup (teardown), 34
SilentReporter, 5, 6, 24, 26–29, 30, 32, 33
skip, 30
skip_if (skip), 30
skip_if_not (skip), 30
skip_if_not_installed (skip), 30
skip_if_offline (skip), 30
skip_if_translated (skip), 30
skip_on_appveyor (skip), 30
skip_on_bioc (skip), 30
skip_on_ci (skip), 30
skip_on_covr (skip), 30
skip_on_cran (skip), 30
skip_on_os (skip), 30
skip_on_travis (skip), 30
source_test_helpers(), 36, 37
stop(), 32
stopifnot(), 31
StopReporter, 5, 6, 24, 26–30, 32, 33
succeed (fail), 24
SummaryReporter, 5, 6, 24, 26–30, 32, 32, 33

TapReporter, 5, 6, 24, 26–30, 32, 33, 33
TeamcityReporter, 5, 6, 24, 26–30, 32, 33, 33
teardown, 34
test_check (test_dir), 34
test_dir, 34
test_dir(), 29

test_file, 37
test_file(), 29
test_package (test_dir), 34
test_path, 38
test_path(), 42
test_that, 38
test_that(), 7, 31, 36, 37
testing_package (test_dir), 34
typeof(), 25

use_catch, 39

vctrs::vec_assert(), 23
verify_output, 41
verify_output(), 12, 20

watch(), 3, 4

	auto_test
	auto_test_package
	CheckReporter
	comparison-expectations
	DebugReporter
	describe
	equality-expectations
	expect
	expect_error
	expect_invisible
	expect_length
	expect_match
	expect_message
	expect_named
	expect_null
	expect_output
	expect_setequal
	expect_silent
	expect_vector
	fail
	FailReporter
	inheritance-expectations
	JunitReporter
	ListReporter
	LocationReporter
	logical-expectations
	MinimalReporter
	MultiReporter
	ProgressReporter
	RstudioReporter
	SilentReporter
	skip
	StopReporter
	SummaryReporter
	TapReporter
	TeamcityReporter
	teardown
	test_dir
	test_file
	test_path
	test_that
	use_catch
	verify_output
	Index

