Version 2.2.1
Date 2020-07-22

Package ‘tergmlLite’

July 22, 2020

Title Fast Simulation of Simple Temporal Exponential Random Graph

Models

Description Provides functions for the computationally efficient simulation of
dynamic networks estimated with the statistical framework of temporal
exponential random graph models, implemented in the 'tergm' package.

Depends R (>=3.2.0)

License GPL-3

Imports ergm (>= 3.10.4), statnet.common (>= 4.3.0), tergm (>= 3.6.1),

network (>= 1.

16.0), Rcpp

Suggests testthat, EpiModel (>= 1.8.0)

LinkingTo Rcpp, ergm

LazyData true
RoxygenNote 7.1.1
Encoding UTF-8

NeedsCompilation yes

Author Samuel M. Jenness [aut, cre],
Chad Klumb [aut]

Maintainer Samuel M. Jenness <samuel.m. jenness@emory.edu>

Repository CRAN

Date/Publication 2020-07-22 16:50:03 UTC

R topics documented:

tergmLite-package L e
add_vertices e
delete _VErtiCes o . e e e

ergm_prep

get_vertex_attribute L.

2 tergmLite-package

init_tergmLite e e e 7
networkLite e 8
networkLitemethods 9
network_initialize e 10
set_vertex_attribute L L L e 11
simulate_ergm e e e e e e e e e e e 12
simulate_network e 13
SEIZMLPIED . « « . v v v v e e e e e e e e e e e e 15
updateModelTermInputso 16
Index 19
tergmLite-package Fast Simulation of Simple Temporal Exponential Random Graph Mod-
els
Description
Package: tergmLite
Type: Package
Version: 2.2.1
Date: 2020-07-22

License: GPL-3
LazyLoad: yes

Details

The statistical framework of temporal exponential random graph models (TERGMs) provides a
rigorous, flexible approach to estimating generative models for dynamic networks and simulating
from them for the purposes of modeling infectious disease transmission dynamics. TERGMs are
used within the EpiModel software package to do just that. While estimation of these models is
relatively fast, the resimulation of them using the tools of the tergm package is computationally
burdensome, requiring hours to days to iteratively resimulate networks with co-evolving demo-
graphic and epidemiological dynamics. The primary reason for the computational burden is the use
of the network class of object (designed within the package of the same name); these objects have
tremendous flexibility in the types of networks they represent but at the expense of object size. Con-
tinually reading and writing larger-than-necessary data objects has the effect of slowing the iterative
dynamic simulations.

The tergmLite package reduces that computational burden by representing networks less flexi-
bly, but much more efficiently. For epidemic models, the only types of networks that we typically
estimate and simulate from are undirected, binary edge networks with no missing data (as it is
simulated). Furthermore, the network history (edges or node attributes) does not need to be stored
for research-level applications in which summary epidemiological statistics (e.g., disease preva-
lence, incidence, and variations on those) at the population-level are the standard output metrics for

add_vertices 3

epidemic models. Therefore, the network may be stored as a cross-sectional edgelist, which is a
two-column matrix of current edges between one node (in column one) and another node (in col-
umn two). Attributes of the edges that are called within ERGMs may be stored separately in vector
format, as they are in EpiModel. With this approach, the simulation time is sped up by a factor of
25-50 fold, depending on the specific research application.

add_vertices Fast Version of network::add.vertices for Edgelist-formated Network

Description

This function performs a simple operation of updating the edgelist attribute n that tracks the total
network size implicit in an edgelist representation of the network.

Usage

add_vertices(el, nv)

Arguments
el A two-column matrix of current edges (edgelist) with an attribute variable n
containing the total current network size.
nv A integer equal to the number of nodes to add to the network size at the given
time step.
Details

This function is used in EpiModel modules to add vertices (nodes) to the edgelist object to account
for entries into the population (e.g., births and in-migration)

Value

Returns the updated the attribute containing the population size on the edgelist, el, based on the
number of new vertices specified to be added in nv.

Examples

Not run:

library("EpiModel™)

nw <- network_initialize(100)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, tergmLite = TRUE)

4 delete_vertices

networkLite representation after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)

Check current network size
attributes(dat$el[[1]11)$n

Add 10 vertices
dat$el[[1]] <- add_vertices(dat$el[[1]], 10)

Check new network size
attributes(dat$el[[1]1)$n

End(Not run)

delete_vertices Fast Version of network::delete.vertices for Edgelist-formated Net-
work

Description

Given a current two-column matrix of edges and a vector of IDs to delete from the matrix, this
function first removes any rows of the edgelist in which the IDs are present and then permutes
downward the index of IDs on the edgelist that were numerically larger than the IDs deleted.

Usage

delete_vertices(el, vid)

Arguments
el A two-column matrix of current edges (edgelist) with an attribute variable n
containing the total current network size.
vid A vector of IDs to delete from the edgelist.
Details

This function is used in EpiModel modules to remove vertices (nodes) from the edgelist object to
account for exits from the population (e.g., deaths and out-migration)

Value

Returns a updated edgelist object, el, with the edges of deleted vertices removed from the edgelist
and the ID numbers of the remaining edges permuted downward.

ergm_prep 5

Examples

Not run:

library("EpiModel™)

set.seed(12345)

nw <- network_initialize(100)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, tergmLite = TRUE)

Set seed for reproducibility
set.seed(123456)

networkLite representation structure after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)

Current edges
head(dat$el[[1]1], 20)

Remove nodes 1 and 2
nodes.to.delete <- 1:2

dat$el[[1]1] <- delete_vertices(dat$el[[1]], nodes.to.delete)

Newly permuted edges
head(dat$el[[1]], 20)

End(Not run)

ergm_prep Prepare Network and ERGM Objects for tergmLite

Description

Converts network object, formation and dissolution formulas, formation and dissolution coeffi-
cients, and control settings to a thin list format for ERGM resimulation.

Usage

ergm_prep(
nw,
formation,
coef,
constraints,

6 get_vertex_attribute

control = ergm::control.simulate.ergm()

)
Arguments
nw An object of class network.
formation Right-hand sided formation formula.
coef Vector of coefficients associated with the formation formula
constraints Constraints for the formation model (only bd) constraints currently supported.
control Control settings passed to ergm: : control.simulate.ergm.
Details

This is an internal function used within init_tergmLite. It is not exported from the package but
it is documented here to demonstrate the internal inputs for init_tergmLite.
Value

Returns a list class object with two elements:

e model. form: Model coefficients and data elements.

e MHproposal: Model constraint data elements.

get_vertex_attribute Get Vertex Attribute on Network Object

Description

Gets a vertex attribute from an object of class network, wrapping the related function in the
network package.

Usage

get_vertex_attribute(x, attrname)

Arguments
X An object of class network.
attrname The name of the attribute to get.
Details

This function is used in EpiModel workflows to set vertex attributes on an initialized empty network
object (with network_initialize.

init_tergmLite 7

Value

Returns an object of class network.

Examples

nw <- network_initialize(100)
nw <- set_vertex_attribute(nw, "age"”, runif (100, 15, 65))
get_vertex_attribute(nw, "age")

init_tergmLite Initializes EpiModel netsim Object for tergmLite Simulation

Description

Initializes EpiModel netsim Object for tergmLite Simulation

Usage

init_tergmLite(dat)

Arguments
dat A list object containing a networkDynamic object and other initialization infor-
mation passed from netsim.
Details

This function is typically used within the initialization modules of EpiModel to establish the nec-
essary networkLite infrastructure needed for tergmLite network resimulation. Specifically, this
function converts (and then removes) the network class objects into an edgelist only format and
prepares the ERGM structural information for simulation. The example below demonstrates the
specific information returned.

Value

Returns the list object dat and adds two elements to the objects: el is an edgelist representa-
tion of the network; and p is a list object that contains all the relevant structural information for
ERGM/TERGM simulation. The function also removes the network class object on the dat object,
stored under nw because it is no longer needed.

8 networkL ite

Examples

Not run:

library("EpiModel™)

nw <- network_initialize(100)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, tergmLite = TRUE)

networkLite representation after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)
str(dat, max.level = 1)

networkLite representation used by tergmLite
str(dat$p, max.level = 3)

Elements removed are nw (network class object)
Elements added are el (edgelist representation of network)...

dat$el

... and p (contains all relevant ERGM structural information for simulation)
str(dat$p, max.level = 3)

End(Not run)

networkLite networkLite Constructor Utility

Description

Constructor function for a networkLite object.

Usage

networkLite(el, attr)

Arguments

el an edgelist-formatted network representation, including network attributes.

attr a list of named vertex attributes for the network represented by el.

networkLitemethods 9

Details

This function takes an edge list el with network attributes attached, and a list of vertex attributes
attr, and returns a networkLite object, which is a list with named fields el, attr, and gal, with
each of the first two corresponding to the argument of the same name, and gal being the list of
network attributes (copied from attributes(el)) for compatibility with some network accessors.
Missing attributes directed, bipartite, loops, hyper, and multiple are defaulted to FALSE. The
network size attribute n must not be missing.

This new data structure is then used within the updateModelTermInputs function for updating the
structural information on the network used for ERGM simulation.

Value

A networkLite object with edge list el, vertex attributes attr, and network attributes gal.

Examples

Not run:

library("EpiModel™)

nw <- network_initialize(100)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, tergmLite = TRUE)

networkLite representation after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)

Conversion to networkLite class format
nwl <- networkLite(dat$el[[1]1], dat$attr)

nwl

End(Not run)

networkLitemethods networkLite Methods

Description

S3 methods for networkLite class, for generics defined in network package.

10 network_initialize

Usage
S3 method for class 'networkLite'

as.network(nw, ...)

S3 method for class 'networkLite'
get.vertex.attribute(x, attrname, ...)

S3 method for class 'networkLite'
list.vertex.attributes(x)

Arguments
nw anetworkLite object.
any additional arguments.
X a networkLite object.
attrname the name of a vertex attribute in x.
Details

Allows use of networkLite objects in ergm_model.

network_initialize Initialize Network Object

Description

Initialize an undirected network object for use in EpiModel workflows.

Usage

network_initialize(
n,
directed = FALSE,
hyper = FALSE,
loops = FALSE,
multiple = FALSE,
bipartite = FALSE

)
Arguments
n Network size.
directed logical; should edges be interpreted as directed?
hyper logical; are hyperedges allowed?

loops logical; should loops be allowed?

set_vertex_attribute 11

multiple logical; are multiplex edges allowed?

bipartite count; should the network be interpreted as bipartite? If present (i.e., non-
NULL) it is the count of the number of actors in the first mode of the bipartite
network. In this case, the overall number of vertices is equal to the number of
“actors’ (first mode) plus the number of ‘events’ (second mode), with the ver-
tex.ids of all actors preceeding all events. The edges are then interpreted as
nondirected.

Details
This function is used in EpiModel workflows to initialize an empty network object with the directed
network attribute hard set to FALSE.

Value

Returns an object of class network.

Examples

nw <- network_initialize(100)
nw

set_vertex_attribute Ser Vertex Attribute on Network Object

Description
Set a vertex attribute on an object of class network, wrapping the related function in the network
package.

Usage

set_vertex_attribute(x, attrname, value, v)

Arguments

X An object of class network.

attrname The name of the attribute to set.

value A vector of values of the attribute to be set.

v IDs for the vertices whose attributes are to be altered.
Details

This function is used in EpiModel workflows to set vertex attributes on an initialized empty network
object (with network_initialize.

12 simulate_ergm

Value

Returns an object of class network.

Examples

nw <- network_initialize(100)
nw <- set_vertex_attribute(nw, "age"”, runif (100, 15, 65))
nw

simulate_ergm Fast Version of ergm::simulate.ergm for Edgelist-formatted Network

Description

Resimulates a networkLite object given thin network data structure, edgelist, and ERGM model
coefficients.

Usage

simulate_ergm(p, el, coef)

Arguments
p A list of network-related nodal covariates and related terms that is produced with
ergm_prep.
el A two-column matrix of current edges (edgelist) with an attribute variable n
containing the total current network size.
coef Vector of coefficients associated with the formation formula.
Details

This function is used within the network resimulation module in EpiModel to update cross-sectional
ERGMs based on the model coefficients and current network structure. If network structure (e.g.,
number of nodes) or nodal attributes has changed since the last simulation, this network resimulation
should be run only after updateModelTermInputs.

Value

Returns an updated network edgelist object, typically stored on the master dat list object, based on
the model simulation.

simulate_network 13

Examples

Not run:
library("EpiModel™)

Set seed for reproducibility
set.seed(1234)

nw <- network_initialize(100)

nw <- set_vertex_attribute(nw, "group”, rep(1:2, each = 50))

formation <- ~edges + nodefactor("group”)

target.stats <- c(15, 10)

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 1)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.1)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, tergmLite = TRUE)

Full network structure after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)
str(dat, max.level = 1)

Current network structure
dat$ell[[1]]

New network structure (all edges are new)
dat$el[[1]1] <- simulate_ergm(p = dat$p[[1]1],

el = dat$el[[1]],

coef = dat$nwparam[[1]1]$coef.form)
dat$el[[1]1]

End(Not run)

simulate_network Fast Version of tergm::simulate.network for networkLite Object

Description

Resimulates a networkLite object given thin network data structure, edgelist, and STERGM model
coefficients.

Usage

simulate_network(p, el, coef.form, coef.diss, save.changes = FALSE)

14

Arguments

p

el

coef.form
coef.diss

save.changes

Details

simulate_network

A list of network-related nodal covariates and related terms that is produced with
stergm_prep.

A two-column matrix of current edges (edgelist) with an attribute variable n
containing the total current network size.

Vector of coefficients associated with the formation formula.
Vector of coefficients associated with the dissolution formula.

Logical, if TRUE, saves a matrix of changed edges as an attribute of the output
edgelist matrix.

This function is used within the network resimulation module in EpiModel to update temporal
ERGMs based on the model coefficients and current network structure. If network structure (e.g.,
number of nodes) or nodal attributes has changed since the last simulation, this network resimulation
should be run only after updateModelTermInputs.

Value

Returns an updated network edgelist object, typically stored on the master dat list object, based on
the model simulation. If save. changes is TRUE, also returns a list of new edges and disolved edges
with the resimulation.

Examples

Not run:

library("EpiModel™)

Set seed for reproducibility

set.seed(1234)

nw <- network_initialize(100)

nw <- set_vertex_attribute(nw, "group"”, rep(1:2, each = 50))

formation <- ~edges + nodefactor("group”)

target.stats <- c(15, 10)

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.25)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, tergmLite = TRUE)

Full network structure after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)
str(dat, max.level = 1)

Current network structure

dat$ell[[1]]

stergm_prep 15

New network structure

dat$el[[1]1] <- simulate_network(p = dat$p[[1]1],
el = dat$el[[1]],
coef.form = dat$nwparam[[1]]$coef.form,
coef.diss = dat$nwparam[[1]]$coef.diss$coef.adj,
save.changes = TRUE)

dat$el[[1]1]

Specific changes listed under changes list
(new edges: to = 1; dissolved edges: to = 0):

attributes(dat$el[[1]])$changes

End(Not run)

stergm_prep Prepare Network and STERGM Objects for tergmLite

Description

Converts network object, formation and dissolution formulas, formation and dissolution coeffi-
cients, and control settings to a thin list format for STERGM resimulation.

Usage
stergm_prep(
nw,
formation,
dissolution,
coef.form,
coef.diss,
constraints,
control = control.simulate.network()
)
Arguments
nw An object of class network.
formation Right-hand sided formation formula.
dissolution Right-hand sided dissolution formula.
coef.form Vector of coefficients associated with the formation formula.
coef.diss Vector of coefficients associated with the dissolution formula.
constraints Constraints for the formation model (only bd) constraints currently supported.

control Control settings passed to tergm: :control.simulate.network.

16 updateModel TermInputs

Details

This is an internal function used within init_tergmLite. It is not exported from the package but
it is documented here to demonstrate the internal inputs for init_tergmLite.

Value

Returns a list class object with four elements:

e model. form: Formation model coefficients and data elements.
e model.diss: Dissolution model coefficients and data elements.
* MHproposal. form: Formation model constraint data elements.

* MHproposal.diss: Dissolution model constraint data elements.

updateModelTermInputs Methods for Computing and Updating ERGM/STERGM Term Inputs

Description
Function to appropriately update model inputs based on ERGM model terms when using network-
Lite representation.

Usage

updateModelTermInputs(dat, network = 1)

Arguments

dat EpiModel dat object tracking simulation state

network Numberic number of network location for multi-network simulations.
Details

Calls ergm_model to update model inputs based on potential exogenous changes to network struc-
ture (e.g., number of nodes) or nodal attributes used within ERGM model (see example below). This
function is typically used within EpiModel module for network resimulation, immediately prior to
calling simulate_network or simulate_ergm.

Implemented terms are:

* edges

* nodematch

* nodefactor

* concurrent (including heterogenous by attribute)
* degree (including heterogenous by attribute)

* degrange

updateModelTermInputs 17

* absdiff

* absdiffby (in the EpiModel package)

* nodecov

* nodemix

* absdiffnodemix (in the EpiModel package)
* triangle

e gwesp(fixed=TRUE)

All other ERGM terms will return errors.

Value

Returns an updated dat object with the network list structure inputs used by simulate_network or
simulate_ergm with changes to network size or nodal covariates.

Examples

Not run:
library("EpiModel™)

Set seed for reproducibility
set.seed(1234)

nw <- network_initialize(100)

nw <- set_vertex_attribute(nw, "group”, rep(1:2, each = 50))

formation <- ~edges + nodefactor("group”)

target.stats <- c(15, 10)

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 1)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.1)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, tergmLite = TRUE)

Full network structure after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)
str(dat, max.level = 1)

Examine the network list structure for nodefactor term
dat$p[[1]1]1$model. form$terms[[2]]

inputs vector corresponds to group attribute stored here
dat$attr$group

As example of what could happen in EpiModel: randomly reshuffle group
attribute values of 100 nodes

dat$attr$group <- sample(dat$attr$group)

dat$attr$group

18

updateModel TermInputs

Update network list structure
dat <- updateModelTermInputs(dat)

Check that network list structure for nodefactor term has been updated
dat$p[[1]]1$model. form$terms[[2]]

End(Not run)

Index

* package
tergmLite-package, 2

add_vertices, 3
as.network.networkLite
(networkLitemethods), 9

delete_vertices, 4
ergm_prep, 5, 12

get.vertex.attribute.networkLite
(networkLitemethods), 9
get_vertex_attribute, 6

init_tergmlLite, 6,7, 16

list.vertex.attributes.networkLite
(networkLitemethods), 9

network_initialize, 6, 10, /1
networkLite, 8
networkLitemethods, 9

set_vertex_attribute, 11
simulate_ergm, 12, 16, 17
simulate_network, 13, 16, 17
stergm_prep, 14, 15

tergmLite (tergmLite-package), 2
tergmLite-package, 2

updateModelTermInputs, 9, 12, 14, 16

19

	tergmLite-package
	add_vertices
	delete_vertices
	ergm_prep
	get_vertex_attribute
	init_tergmLite
	networkLite
	networkLitemethods
	network_initialize
	set_vertex_attribute
	simulate_ergm
	simulate_network
	stergm_prep
	updateModelTermInputs
	Index

