
Package ‘tergm’
June 12, 2019

Version 3.6.1

Date 2019-06-12

Title Fit, Simulate and Diagnose Models for Network Evolution Based on
Exponential-Family Random Graph Models

Depends ergm (>= 3.10.1), network (>= 1.15), networkDynamic (>=
0.10.0)

Imports robustbase (>= 0.93.5), coda (>= 0.19.2), nlme (>= 3.1.139),
MASS (>= 7.3.51.4), statnet.common (>= 4.2.0)

LinkingTo ergm

Suggests lattice (>= 0.20.38), parallel, rmarkdown (>= 1.12), knitr
(>= 1.22)

BugReports https://github.com/statnet/tergm/issues

Description An integrated set of extensions to the 'ergm' package to analyze and simulate net-
work evolution based on exponential-family random graph mod-
els (ERGM). 'tergm' is a part of the 'statnet' suite of packages for network analysis.

License GPL-3 + file LICENSE

URL http://www.statnet.org

VignetteBuilder rmarkdown, knitr

RoxygenNote 6.1.1

Encoding UTF-8

Collate 'InitConstraint.R' 'InitErgmTerm.duration.R'
'InitMHP.DynMLE.R' 'InitMHP.DynMLE.blockdiag.R'
'InitMHP.DynMoME.R' 'coef.stergm.R' 'combine.networks.R'
'control.logLik.stergm.R' 'control.simulate.stergm.R'
'control.stergm.R' 'ergm.godfather.R' 'gof.stergm.R'
'impute.network.list.R' 'is.lasttoggle.R' 'logLik.stergm.R'
'mcmc.diagnostics.stergm.R' 'print.stergm.R'
'simulate.stergm.R' 'stergm.CMLE.R' 'stergm.EGMME.GD.R'
'stergm.EGMME.R' 'stergm.EGMME.SA.R'
'stergm.EGMME.initialfit.R' 'stergm.R' 'tergm-deprecated.R'
'stergm.getMCMCsample.R' 'stergm.utils.R'

1

https://github.com/statnet/tergm/issues
http://www.statnet.org

2 tergm-package

'summary.statistics.networkDynamic.R' 'summary.stergm.R'
'zzz.R'

NeedsCompilation yes

Author Pavel N. Krivitsky [aut, cre] (<https://orcid.org/0000-0002-9101-3362>),
Mark S. Handcock [aut, ths],
David R. Hunter [ctb],
Steven M. Goodreau [ctb, ths],
Martina Morris [ctb, ths],
Nicole Bohme Carnegie [ctb],
Carter T. Butts [ctb],
Ayn Leslie-Cook [ctb],
Skye Bender-deMoll [ctb],
Li Wang [ctb],
Kirk Li [ctb]

Maintainer Pavel N. Krivitsky <pavel@uow.edu.au>

Repository CRAN

Date/Publication 2019-06-12 10:10:18 UTC

R topics documented:

tergm-package . 2
coef.stergm . 4
control.simulate.network . 8
control.stergm . 10
control.tergm.godfather . 17
ergm-constraints . 17
ergm-terms . 18
gof.stergm . 20
impute.network.list . 22
logLik.stergm . 23
mcmc.diagnostics.stergm . 24
simulate.stergm . 25
summary_formula.networkDynamic . 30
tergm.godfather . 31
tergm_proposals . 33

Index 35

tergm-package Fit, Simulate and Diagnose Dynamic Network Models derived from
Exponential-Family Random Graph Models

tergm-package 3

Description

tergm is a collection of extensions to the ergm package to fit, diagnose, and simulate models for
dynamic networks — networks that evolve over time — based on exponential-family random graph
models (ERGMs). For a list of functions type help(package='tergm')

When publishing results obtained using this package, please cite the original authors as described
in citation(package="tergm").

All programs derived from this package must cite it.

Details

An exponential-family random graph model (ERGM) postulates an exponential family over the
sample space of networks of interest, and ergm package implements a suite of tools for modeling
single networks using ERGMs.

More recently, there has been a number of extensions of ERGMs to model evolution of networks,
including the temporal ERGM (TERGM) of Hanneke et al. (2010) and the separable termporal
ERGM (STERGM) of Krivitsky and Handcock (2013). The latter model allows familiar ERGM
terms and statistics to be reused in a dynamic context, interpreted in terms of formation and dis-
solution of ties. Krivitsky (2012) suggested a method for fitting dyanmic models when only a
cross-sectional network is available, provided some temporal information for it is available as well.

This package aims to implement these and other ERGM-based models for network evoluation. At
this time, it implements, via the stergm function, the STERGMs, both a conditional MLE (CMLE)
fitting to a series of networks and an Equilibrium Generalized Method of Moments Estimation
(EGMME) for fitting to a single network with temporal information. For further development, see
the referenced papers.

For detailed information on how to download and install the software, go to the Statnet project
website: statnet.org. A tutorial, support newsgroup, references and links to further resources are
provided there.

Author(s)

Pavel N. Krivitsky <krivitsky@stat.psu.edu> and
Mark S. Handcock <handcock@stat.ucla.edu>,
with contributions from
David R. Hunter <dhunter@stat.psu.edu>,
Steven M. Goodreau <goodreau@u.washington.edu>,
Martina Morris <morrism@u.washington.edu>,
Nicole Bohme Carnegie <nicole.carnegie@nyu.edu>, and
Ayn Leslie-Cook <aynlc3@uw.edu>

Maintainer: Pavel N. Krivitsky <krivitsky@stat.psu.edu>

References

• Hanneke S, Fu W, and Xing EP (2010). Discrete Temporal Models of Social Networks. Elec-
tronic Journal of Statistics, 2010, 4, 585-605. doi:10.1214/09-EJS548

• Krivitsky PN, Handcock MS (2013). A Separable Model for Dynamic Networks. Journal of
the Royal Statistical Society, Series B, In Press. http://arxiv.org/abs/1011.1937

statnet.org
http://dx.doi.org/10.1214/09-EJS548
http://arxiv.org/abs/1011.1937

4 coef.stergm

• Krivitsky, P.N. (2012). Modeling of Dynamic Networks based on Egocentric Data with Dura-
tional Information. Pennsylvania State University Department of Statistics Technical Report,
2012(2012-01). http://stat.psu.edu/research/technical-report-files/2012-technical-reports/
modeling-of-dynamic-networks-based-on-egocentric-data-with-durational-information

• Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statis-
tical Software, 24(2). http://www.jstatsoft.org/v24/i02/.

• Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial.
Journal of Statistical Software, 24(8). http://www.jstatsoft.org/v24/i08/.

• Handcock MS, Hunter DR, Butts CT, Goodreau SM, Krivitsky P, and Morris M (2012). ergm:
A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Statnet
Project, Seattle, WA. Version 3, statnet.org.

• Handcock MS, Hunter DR, Butts CT, Goodreau SM, Krivitsky P, Morris M (2012). statnet:
Software Tools for the Statistical Modeling of Network Data. Statnet Project, Seattle, WA.
Version 3, statnet.org.

• Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for
networks, Journal of Computational and Graphical Statistics, 15: 565-583

• Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical
Software, 24(3). http://www.jstatsoft.org/v24/i03/.

• Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random
Graph Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4).
http://www.jstatsoft.org/v24/i04/.

coef.stergm Separable Temporal Exponential Family Random Graph Models

Description

stergm is used for finding Separable Temporal ERGMs’ (STERGMs) Conditional MLE (CMLE)
(Krivitsky and Handcock, 2010) and Equilibrium Generalized Method of Moments Estimator (EGMME)
(Krivitsky, 2009).

Usage

S3 method for class 'stergm'
coef(object, ...)

S3 method for class 'stergm'
coefficients(object, ...)

S3 method for class 'stergm'
print(x, digits = max(3, getOption("digits") - 3), ...)

stergm(nw, formation, dissolution, constraints = ~., estimate,
times = NULL, offset.coef.form = NULL, offset.coef.diss = NULL,

http://stat.psu.edu/research/technical-report-files/2012-technical-reports/modeling-of-dynamic-networks-based-on-egocentric-data-with-durational-information
http://stat.psu.edu/research/technical-report-files/2012-technical-reports/modeling-of-dynamic-networks-based-on-egocentric-data-with-durational-information
http://www.jstatsoft.org/v24/i02/
http://www.jstatsoft.org/v24/i08/
statnet.org
statnet.org
http://www.jstatsoft.org/v24/i03/
http://www.jstatsoft.org/v24/i04/

coef.stergm 5

targets = NULL, target.stats = NULL,
eval.loglik = NVL(getOption("tergm.eval.loglik"),
getOption("ergm.eval.loglik")), control = control.stergm(),
verbose = FALSE, ...)

S3 method for class 'stergm'
summary(object, ...)

Arguments

object A stergm fit.

... Additional arguments, to be passed to lower-level functions.

x A stergm object.

digits Significant digits for coefficients

nw A network object (for EGMME); or networkDynamic object, a network.list
object, or a list containing networks (for CMLE and CMPLE).
stergm understands the lasttoggle "API".

formation, dissolution

One-sided ergm-style formulas for the formation and dissolution models, re-
spectively.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being modeled, using syntax similar to the formula
argument. Multiple constraints may be given, separated by “+” operators. To-
gether with the model terms in the formula and the reference measure, the con-
straints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly by passing a string with
the function’s name. In that case, arguments to the proposal should be specified
through the prop.args argument to control.ergm.
The default is ~., for an unconstrained model.
See the ERGM constraints documentation for the constraints implemented in
the ergm package. Other packages may add their own constraints.
For STERGMs in particular, the constraints apply to the post-formation and
the post-dissolution network, rather than the final network. This means, for
example, that if the degree of all vertices is constrained to be less than or equal
to three, and a vertex begins a time step with three edges, then, even if one of
its edges is dissolved during its time step, it won’t be able to form another edge
until the next time step. This behavior may change in the future.
Note that not all possible combinations of constraints are supported.

estimate One of "EGMME" for Equilibrium Generalized Method of Moments Estima-
tion, based on a single network with some temporal information and making
an assumption that it is a product of a STERGM process running to its station-
ary (equilibrium) distribution; "CMLE" for Conditional Maximum Likelihood
Estimation, modeling a transition between two networks, or "CMPLE" for Con-
ditional Maximum PseudoLikelihood Estimation, using MPLE instead of MLE.
CMPLE is extremely inaccurate at this time.

6 coef.stergm

times For CMLE and CMPLE estimation, times or indexes at which the networks
whose transition is to be modeled are observed. Default to c(0,1) if nw is a
networkDynamic and to 1:length(nw) (all transitions) if nw is a network.list
or a list. Unused for EGMME. Note that at this time, the selected time points
will be treated as temporally adjacent. Irregluarly spaced time series are not
supported at this time.

offset.coef.form

Numeric vector to specify offset formation parameters.
offset.coef.diss

Numeric vector to specify offset dissolution parameters.

targets One-sided ergm-style formula specifying statistics whose moments are used for
the EGMME. Unused for CMLE and CMPLE. Targets is required for EGMME
estimation. It may contain any valid ergm terms. If specified as "formation" or
"dissolution", it copies the formula from the respective model. Any offset terms
are removed automatically.

target.stats A vector specifying the values of the targets statistics that EGMME will try to
match. Defaults to the statistics of nw. Unused for CMLE and CMPLE.

eval.loglik Whether or not to calculate the log-likelihood of a CMLE STERGM fit. See
ergm for details. Can be set globally via option(tergm.eval.loglik=...),
falling back to getOption("ergm.eval.loglik") if not set.

control A list of control parameters for algorithm tuning. Constructed using control.stergm.

verbose logical or integer; if TRUE or positive, the program will print out progress in-
formation. Higher values result in more output.

Details

Model Terms See ergm and ergm-terms for details. At this time, only linear ERGM terms are
allowed.

• For a brief demonstration, please see the tergm package vignette: browseVignettes(package='tergm')

• A more detailed tutorial is avalible on the statnet wiki: http://statnet.csde.washington.
edu/workshops/SUNBELT/current/tergm/tergm_tutorial.pdf

• For more usage examples, see the wiki page at https://statnet.csde.washington.edu/
trac/wiki/tergmUsage

Value

coef and coefficients methods return parameter estimates extracted from object in the form of
a list with two elements: formation, a vector of formation coefficients and dissolution, a vector
of dissolution coefficients.

stergm returns an object of class stergm that is a list consisting of the following elements:

formation, dissolution

Formation and dissolution formulas, respectively.

targets The targets formula.

target.stats The target statistics.

http://statnet.csde.washington.edu/workshops/SUNBELT/current/tergm/tergm_tutorial.pdf
http://statnet.csde.washington.edu/workshops/SUNBELT/current/tergm/tergm_tutorial.pdf
https://statnet.csde.washington.edu/trac/wiki/tergmUsage
https://statnet.csde.washington.edu/trac/wiki/tergmUsage

coef.stergm 7

estimate The type of estimate.

opt.history A matrix containing the full trace of the EGMME optimization process: coeffi-
cients tried and target statistics simulated.

sample An mcmc object containing target statistics sampled at the estimate.

covar The full estimated variance-covariance matrix of the parameter estimates for
EGMME. (Note that although the CMLE formation parameter estimates are in-
dependent of the dissolution parameter estimates due to the separability assump-
tion, this is not necessarily the case for EGMME.)

formation.fit, dissolution.fit

For CMLE and CMPLE, ergm objects from fitting formation and dissolution,
respectively. For EGMME, stripped down ergm-like lists.

network For estimate=="EGMME", the original network; for estimate=="CMLE" or estimate=="CMPLE",
a network.list (a discrete series of networks) to which the model was fit.

control The control parameters used to fit the model.

See the method print.stergm for details on how an stergm object is printed. Note that the method
summary.stergm returns a summary of the relevant parts of the stergm object in concise summary
format.

Methods (by generic)

• coef: Extract parameter estimates.

• coefficients: An alias for the coef method.

• print: Print the parameter estimates.

• summary: Print the summary of the formation and the dissolution model fits.

References

• Krivitsky PN, Handcock MS (2010). A Separable Model for Dynamic Networks. http:
//arxiv.org/abs/1011.1937

• Krivitsky, P.N. (2012). Modeling of Dynamic Networks based on Egocentric Data with Dura-
tional Information. Pennsylvania State University Department of Statistics Technical Report,
2012(2012-01). http://stat.psu.edu/research/technical-report-files/2012-technical-reports/
modeling-of-dynamic-networks-based-on-egocentric-data-with-durational-information

See Also

ergm, network, %v%, %n%, ergm-terms

Examples

EGMME Example
par(ask=FALSE)
n<-30
g0<-network.initialize(n,dir=FALSE)

http://arxiv.org/abs/1011.1937
http://arxiv.org/abs/1011.1937
http://stat.psu.edu/research/technical-report-files/2012-technical-reports/modeling-of-dynamic-networks-based-on-egocentric-data-with-durational-information
http://stat.psu.edu/research/technical-report-files/2012-technical-reports/modeling-of-dynamic-networks-based-on-egocentric-data-with-durational-information

8 control.simulate.network

edges, degree(1), mean.age
target.stats<-c(n*1/2, n*0.6, 20)

dynfit<-stergm(g0,formation = ~edges+degree(1), dissolution = ~edges,
targets = ~edges+degree(1)+mean.age,
target.stats=target.stats, estimate="EGMME",
control=control.stergm(SA.plot.progress=TRUE))

par(ask=TRUE)
mcmc.diagnostics(dynfit)
summary(dynfit)

CMLE Example
data(samplk)

Fit a transition from Time 1 to Time 2
samplk12 <- stergm(list(samplk1, samplk2),

formation=~edges+mutual+transitiveties+cyclicalties,
dissolution=~edges+mutual+transitiveties+cyclicalties,
estimate="CMLE")

mcmc.diagnostics(samplk12)
summary(samplk12)

Fit a transition from Time 1 to Time 2 and from Time 2 to Time 3 jointly
samplk123 <- stergm(list(samplk1, samplk2, samplk3),

formation=~edges+mutual+transitiveties+cyclicalties,
dissolution=~edges+mutual+transitiveties+cyclicalties,
estimate="CMLE")

mcmc.diagnostics(samplk123)
summary(samplk123)

control.simulate.network

Auxiliary for Controlling Separable Temporal ERGM Simulation

Description

Auxiliary function as user interface for fine-tuning STERGM simulation.

Usage

control.simulate.network(MCMC.burnin.min = 1000,
MCMC.burnin.max = 1e+05, MCMC.burnin.pval = 0.5,
MCMC.burnin.add = 1, MCMC.burnin = NULL, MCMC.burnin.mul = NULL,
MCMC.prop.weights.form = "default", MCMC.prop.args.form = NULL,
MCMC.prop.weights.diss = "default", MCMC.prop.args.diss = NULL,

control.simulate.network 9

MCMC.init.maxedges = 20000, MCMC.packagenames = c(),
term.options = NULL, MCMC.init.maxchanges = 1e+06)

control.simulate.stergm(MCMC.burnin.min = NULL, MCMC.burnin.max = NULL,
MCMC.burnin.pval = NULL, MCMC.burnin.add = NULL,
MCMC.burnin = NULL, MCMC.burnin.mul = NULL,
MCMC.prop.weights.form = NULL, MCMC.prop.args.form = NULL,
MCMC.prop.weights.diss = NULL, MCMC.prop.args.diss = NULL,
MCMC.init.maxedges = NULL, MCMC.packagenames = NULL,
term.options = NULL, MCMC.init.maxchanges = NULL)

Arguments

MCMC.burnin.min, MCMC.burnin.max, MCMC.burnin.pval, MCMC.burnin.add

Number of Metropolis-Hastings steps per phase (formation and dissolution)
per time step used in simulation. By default, this is determined adaptively by
keeping track of increments in the Hamming distance between the transitioned-
from network and the network being sampled (formation network or dissolu-
tion network). Once MCMC.burnin.min steps have elapsed, the increments are
tested against 0, and when their average number becomes statistically indistin-
guishable from 0 (with the p-value being greater than MCMC.burnin.pval), or
MCMC.burnin.max steps are proposed, whichever comes first, the simulation is
stopped after an additional MCMC.burnin.add times the number of elapsed steps
had been taken. (Stopping immediately would bias the sampling.)
To use a fixed number of steps, set both MCMC.burnin.min and MCMC.burnin.max
to the desired number of steps.

MCMC.burnin, MCMC.burnin.mul

No longer used. See MCMC.burnin.min, MCMC.burnin.max, MCMC.burnin.pval,
MCMC.burnin.pval, and MCMC.burnin.add.

MCMC.prop.weights.form, MCMC.prop.weights.diss

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm for formation and dissolution, respectively. Possible choices are "TNT"
or "random"; the "default". The TNT (tie / no tie) option puts roughly equal
weight on selecting a dyad with or without a tie as a candidate for toggling,
whereas the random option puts equal weight on all possible dyads, though the
interpretation of random may change according to the constraints in place. When
no constraints are in place, the default is TNT, which appears to improve Markov
chain mixing particularly for networks with a low edge density, as is typical of
many realistic social networks.

MCMC.prop.args.form, MCMC.prop.args.diss

An alternative, direct way of specifying additional arguments to proposals.
MCMC.init.maxedges

Maximum number of edges expected in network.
MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

10 control.stergm

term.options A list of additional arguments to be passed to term initializers. It can also be set
globally via option(ergm.term=list(...)).

MCMC.init.maxchanges

Maximum number of toggles changes for which to allocate space.

Details

This function is only used within a call to the simulate function. See the usage section in
simulate.stergm for details.

Value

A list with arguments as components.

See Also

simulate.stergm, simulate.formula. control.stergm performs a similar function for stergm.

control.stergm Auxiliary for Controlling Separable Temporal ERGM Fitting

Description

Auxiliary function as user interface for fine-tuning ’stergm’ fitting.

Usage

control.stergm(init.form = NULL, init.diss = NULL,
init.method = NULL, force.main = FALSE,
MCMC.prop.weights.form = "default", MCMC.prop.args.form = NULL,
MCMC.prop.weights.diss = "default", MCMC.prop.args.diss = NULL,
MCMC.init.maxedges = 20000, MCMC.init.maxchanges = 20000,
MCMC.packagenames = c(), CMLE.MCMC.burnin = 1024 * 16,
CMLE.MCMC.interval = 1024, CMLE.control = NULL,
CMLE.control.form = control.ergm(init = init.form, MCMC.burnin =
CMLE.MCMC.burnin, MCMC.interval = CMLE.MCMC.interval, MCMC.prop.weights =
MCMC.prop.weights.form, MCMC.prop.args = MCMC.prop.args.form,
MCMC.init.maxedges = MCMC.init.maxedges, MCMC.packagenames =
MCMC.packagenames, parallel = parallel, parallel.type = parallel.type,
parallel.version.check = parallel.version.check, force.main =
force.main), CMLE.control.diss = control.ergm(init = init.diss,
MCMC.burnin = CMLE.MCMC.burnin, MCMC.interval = CMLE.MCMC.interval,
MCMC.prop.weights = MCMC.prop.weights.diss, MCMC.prop.args =
MCMC.prop.args.diss, MCMC.init.maxedges = MCMC.init.maxedges,
MCMC.packagenames = MCMC.packagenames, parallel = parallel, parallel.type
= parallel.type, parallel.version.check = parallel.version.check,
force.main = force.main), CMLE.NA.impute = c(),

control.stergm 11

CMLE.term.check.override = FALSE,
EGMME.main.method = c("Gradient-Descent"),
EGMME.MCMC.burnin.min = 1000, EGMME.MCMC.burnin.max = 1e+05,
EGMME.MCMC.burnin.pval = 0.5, EGMME.MCMC.burnin.add = 1,
MCMC.burnin = NULL, MCMC.burnin.mul = NULL, SAN.maxit = 4,
SAN.nsteps.times = 8, SAN.control = control.san(term.options =
term.options, SAN.maxit = SAN.maxit, SAN.prop.weights =
MCMC.prop.weights.form, SAN.prop.args = MCMC.prop.args.form,
SAN.init.maxedges = MCMC.init.maxedges, SAN.max.maxedges = Inf,
SAN.nsteps = round(sqrt(EGMME.MCMC.burnin.min * EGMME.MCMC.burnin.max)) *
SAN.nsteps.times, SAN.packagenames = MCMC.packagenames, parallel =
parallel, parallel.type = parallel.type, parallel.version.check =
parallel.version.check), SA.restarts = 10, SA.burnin = 1000,
SA.plot.progress = FALSE, SA.max.plot.points = 400,
SA.plot.stats = FALSE, SA.init.gain = 0.1, SA.gain.decay = 0.5,
SA.runlength = 25, SA.interval.mul = 2, SA.init.interval = 500,
SA.min.interval = 20, SA.max.interval = 500, SA.phase1.minruns = 4,
SA.phase1.tries = 20, SA.phase1.jitter = 0.1,
SA.phase1.max.q = 0.1, SA.phase1.backoff.rat = 1.05,
SA.phase2.levels.max = 40, SA.phase2.levels.min = 4,
SA.phase2.max.mc.se = 0.001, SA.phase2.repeats = 400,
SA.stepdown.maxn = 200, SA.stepdown.p = 0.05, SA.stop.p = 0.1,
SA.stepdown.ct = 5, SA.phase2.backoff.rat = 1.1, SA.keep.oh = 0.5,
SA.keep.min.runs = 8, SA.keep.min = 0, SA.phase2.jitter.mul = 0.2,
SA.phase2.maxreljump = 4, SA.guard.mul = 4, SA.par.eff.pow = 1,
SA.robust = FALSE, SA.oh.memory = 1e+05, SA.refine = c("mean",
"linear", "none"), SA.se = TRUE, SA.phase3.samplesize.runs = 10,
SA.restart.on.err = TRUE, term.options = NULL, seed = NULL,
parallel = 0, parallel.type = NULL, parallel.version.check = TRUE)

Arguments

init.form, init.diss

numeric or NA vector equal in length to the number of parameters in the forma-
tion/dissolution model or NULL (the default); the initial values for the estimation
and coefficient offset terms. If NULL is passed, all of the initial values are com-
puted using the method specified by control$init.method. If a numeric vector
is given, the elements of the vector are interpreted as follows:

• Elements corresponding to terms enclosed in offset() are used as the
fixed offset coefficients. These should match the offset values given in
offset.coef.form.

• Elements that do not correspond to offset terms and are not NA are used as
starting values in the estimation.

• Initial values for the elements that are NA are fit using the method specified
by control$init.method.

Passing control.ergm(init=coef(prev.fit)) can be used to "resume" an
uncoverged stergm run, but see enformulate.curved.

12 control.stergm

init.method Estimation method used to acquire initial values for estimation. If NULL (the de-
fault), the initial values are computed using the edges dissolution approximation
(Carnegie et al.) when appropriate. If set to "zeros", the initial values are set to
zeros.

force.main Logical: If TRUE, then force MCMC-based estimation method, even if the exact
MLE can be computed via maximum pseudolikelihood estimation.

MCMC.prop.weights.form, MCMC.prop.weights.diss

Specifies the method to allocate probabilities of being proposed to dyads in the
formation/dissolution phase. Defaults to "default", which picks a reasonable
default for the specified constraint. Possible values include "TNT", "random",
though not all values may be used with all possible constraints.

MCMC.prop.args.form, MCMC.prop.args.diss

An alternative, direct way of specifying additional arguments to the proposal in
the formation/dissolution phase.

MCMC.init.maxedges

Maximum number of edges for which to allocate space.
MCMC.init.maxchanges

Maximum number of changes in dynamic network simulation for which to allo-
cate space.

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

CMLE.MCMC.burnin

Maximum number of Metropolis-Hastings steps per phase (formation and dis-
solution) per time step used in CMLE fitting.

CMLE.MCMC.interval

Number of Metropolis-Hastings steps between successive draws when running
MCMC MLE.

CMLE.control A convenience argument for specifying both CMLE.control.form and CMLE.control.diss
at once. See control.ergm.

CMLE.control.form, CMLE.control.diss

Control parameters used to fit the CMLE for the formation/dissolution ERGM.
See control.ergm.

CMLE.NA.impute In STERGM CMLE, missing dyads in transitioned-to networks are accommo-
dated using methods of Handcock and Gile (2009), but a similar approach to
transitioned-from networks requires much more complex methods that are not,
currently, implemented. CMLE.NA.impute controls how missing dyads in transitioned-
from networks are be imputed. See argument imputers of impute.network.list
for details.
By default, no imputation is performed, and the fitting stops with an error if any
transitioned-from networks have missing dyads.

CMLE.term.check.override

The method stergm{stergm} uses at this time to fit a series of more than two
networks requires certain assumptions to be made about the ERGM terms being
used, which are tested before a fit is attempted. This test sometimes fails despite

control.stergm 13

the model being amenable to fitting, so setting this option to TRUE overrides the
tests.

EGMME.main.method

Estimation method used to find the Equilibrium Generalized Method of Mo-
ments estimator. Currently only "Gradient-Descent" is implemented.

EGMME.MCMC.burnin.min, EGMME.MCMC.burnin.max,

Number of Metropolis-Hastings steps per phase (formation and dissolution) per
time step used in EGMME fitting. By default, this is determined adaptively by
keeping track of increments in the Hamming distance between the transitioned-
from network and the network being sampled (formation network or dissolution
network). Once EGMME.MCMC.burnin.min steps have elapsed, the increments
are tested against 0, and when their average number becomes statistically indis-
tinguishable from 0 (with the p-value being greater than EGMME.MCMC.burnin.pval),
or EGMME.MCMC.burnin.max steps are proposed, whichever comes first, the sim-
ulation is stopped after an additional EGMME.MCMC.burnin.add times the num-
ber of elapsed steps had been taken. (Stopping immediately would bias the
sampling.)
To use a fixed number of steps, set both EGMME.MCMC.burnin.min and EGMME.MCMC.burnin.max
to the desired number of steps.

EGMME.MCMC.burnin.pval, EGMME.MCMC.burnin.add

Number of Metropolis-Hastings steps per phase (formation and dissolution) per
time step used in EGMME fitting. By default, this is determined adaptively by
keeping track of increments in the Hamming distance between the transitioned-
from network and the network being sampled (formation network or dissolution
network). Once EGMME.MCMC.burnin.min steps have elapsed, the increments
are tested against 0, and when their average number becomes statistically indis-
tinguishable from 0 (with the p-value being greater than EGMME.MCMC.burnin.pval),
or EGMME.MCMC.burnin.max steps are proposed, whichever comes first, the sim-
ulation is stopped after an additional EGMME.MCMC.burnin.add times the num-
ber of elapsed steps had been taken. (Stopping immediately would bias the
sampling.)
To use a fixed number of steps, set both EGMME.MCMC.burnin.min and EGMME.MCMC.burnin.max
to the desired number of steps.

MCMC.burnin, MCMC.burnin.mul

No longer used. See EGMME.MCMC.burnin.min, EGMME.MCMC.burnin.max, EGMME.MCMC.burnin.pval,
EGMME.MCMC.burnin.pval, EGMME.MCMC.burnin.add and CMLE.MCMC.burnin
and CMLE.MCMC.interval.

SAN.maxit When target.stats argument is passed to ergm(), the maximum number of
attempts to use san to obtain a network with statistics close to those specified.

SAN.nsteps.times

Multiplier for SAN.nsteps relative to MCMC.burnin. This lets one control the
amount of SAN burn-in (arguably, the most important of SAN parameters) with-
out overriding the other SAN.control defaults.

SAN.control SAN control parameters. See control.san

SA.restarts Maximum number of times to restart a failed optimization process.
SA.burnin Number of time steps to advance the starting network before beginning the op-

timization.

14 control.stergm

SA.plot.progress, SA.plot.stats

Logical: Plot information about the fit as it proceeds. If SA.plot.progress==TRUE,
plot the trajectories of the parameters and target statistics as the optimization
progresses. If SA.plot.stats==TRUE, plot a heatmap reprsenting correlations
of target statistics and a heatmap representing the estimated gradient.
Do NOT use these with non-interactive plotting devices like pdf. (In fact, it will
refuse to do that with a warning.)

SA.max.plot.points

If SA.plot.progress==TRUE, the maximum number of time points to be plot-
ted. Defaults to 400. If more iterations elapse, they will be thinned to at most
400 before plotting.

SA.init.gain Initial gain, the multiplier for the parameter update size. If the process initially
goes crazy beyond recovery, lower this value.

SA.gain.decay Gain decay factor.

SA.runlength Number of parameter trials and updates per C run.
SA.interval.mul

The number of time steps between updates of the parameters is set to be this
times the mean duration of extant ties.

SA.init.interval

Initial number of time steps between updates of the parameters.
SA.min.interval, SA.max.interval

Upper and lower bounds on the number of time steps between updates of the
parameters.

SA.phase1.minruns

Number of runs during Phase 1 for estimating the gradient, before every gradient
update.

SA.phase1.tries

Number of runs trying to find a reasonable parameter and network configuration.
SA.phase1.jitter

Initial jitter standard deviation of each parameter.
SA.phase1.max.q

Q-value (false discovery rate) that a gradient estimate must obtain before it is
accepted (since sign is what is important).

SA.phase1.backoff.rat, SA.phase2.backoff.rat

If the run produces this relative increase in the approximate objective function,
it will be backed off.

SA.phase2.levels.min, SA.phase2.levels.max

Range of gain levels (subphases) to go through.
SA.phase2.max.mc.se

Approximate precision of the estimates that must be attained before stopping.
SA.phase2.repeats, SA.stepdown.maxn,

A gain level may be repeated multiple times (up to SA.phase2.repeats) if
the optimizer detects that the objective function is improving or the estimating
equations are not centered around 0, so slowing down the parameters at that
point is counterproductive. To detect this it looks at the the window controlled
by SA.keep.oh, thinning objective function values to get SA.stepdown.maxn,

control.stergm 15

and 1) fitting a GLS model for a linear trend, with AR(2) autocorrelation and
2) conductiong an approximate Hotelling’s T^2 test for equality of estimating
equation values to 0. If there is no significance for either at SA.stepdown.p
SA.stepdown.ct runs in a row, the gain level (subphase) is allowed to end.
Otherwise, the process continues at the same gain level.

SA.stepdown.p, SA.stepdown.ct

A gain level may be repeated multiple times (up to SA.phase2.repeats) if
the optimizer detects that the objective function is improving or the estimating
equations are not centered around 0, so slowing down the parameters at that
point is counterproductive. To detect this it looks at the the window controlled
by SA.keep.oh, thinning objective function values to get SA.stepdown.maxn,
and 1) fitting a GLS model for a linear trend, with AR(2) autocorrelation and
2) conductiong an approximate Hotelling’s T^2 test for equality of estimating
equation values to 0. If there is no significance for either at SA.stepdown.p
SA.stepdown.ct runs in a row, the gain level (subphase) is allowed to end.
Otherwise, the process continues at the same gain level.

SA.stop.p At the end of each gain level after the minimum, if the precision is sufficiently
high, the relationship between the parameters and the targets is tested for evi-
dence of local nonlinearity. This is the p-value used.
If that test fails to reject, a Phase 3 run is made with the new parameter values,
and the estimating equations are tested for difference from 0. If this test fails to
reject, the optimization is finished.
If either of these tests rejects, at SA.stop.p, optimization is continued for an-
other gain level.

SA.keep.oh, SA.keep.min, SA.keep.min.runs

Parameters controlling how much of optimization history to keep for gradient
and covariance estimation.
A history record will be kept if it’s at least one of the following:

• Among the last SA.keep.oh (a fraction) of all runs.
• Among the last SA.keep.min (a count) records.
• From the last SA.keep.min.runs (a count) optimization runs.

SA.phase2.jitter.mul

Jitter standard deviation of each parameter is this value times its standard devi-
ation without jitter.

SA.phase2.maxreljump

To keep the optimization from "running away" due to, say, a poor gradient es-
timate building on itself, if a magnitude of change (Mahalanobis distance) in
parameters over the course of a run divided by average magnitude of change for
recent runs exceeds this, the change is truncated to this amount times the average
for recent runs.

SA.guard.mul The multiplier for the range of parameter and statistics values to compute the
guard width.

SA.par.eff.pow Because some parameters have much, much greater effects than others, it im-
proves numerical conditioning and makes estimation more stable to rescale the
kth estimating function by sk = (

∑q
i=1 G

2
i,k/Vi,i)

−p/2, where Gi,k is the es-
timated gradient of the ith target statistics with respect to kth parameter. This

16 control.stergm

parameter sets the value of p: 0 for no rescaling, 1 (default) for scaling by root-
mean-square normalized gradient, and greater values for greater penalty.

SA.robust Whether to use robust linear regression (for gradients) and covariance estima-
tion.

SA.oh.memory Absolute maximum number of data points per thread to store in the full opti-
mization history.

SA.refine Method, if any, used to refine the point estimate at the end: "linear" for linear
interpolation, "mean" for average, and "none" to use the last value.

SA.se Logical: If TRUE (the default), get an MCMC sample of statistics at the final es-
timate and compute the covariance matrix (and hence standard errors) of the pa-
rameters. This sample is stored and can also be used by mcmc.diagnostics.stergm
to assess convergence.

SA.phase3.samplesize.runs

This many optimization runs will be used to determine whether the optimization
has converged and to estimate the standard errors.

SA.restart.on.err

Logical: if TRUE (the default) an error somewhere in the optimization process
will cause it to restart with a smaller gain value. Otherwise, the process will
stop. This is mainly used for debugging

term.options A list of additional arguments to be passed to term initializers. It can also be set
globally via option(ergm.term=list(...)).

seed Seed value (integer) for the random number generator. See set.seed

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package default.

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

Details

This function is only used within a call to the stergm function. See the usage section in stergm
for details.

Value

A list with arguments as components.

References

• Boer, P., Huisman, M., Snijders, T.A.B., and Zeggelink, E.P.H. (2003), StOCNET User’s
Manual. Version 1.4.

• Firth (1993), Bias Reduction in Maximum Likelihood Estimates. Biometrika, 80: 27-38.

• Hunter, D. R. and M. S. Handcock (2006), Inference in curved exponential family models for
networks. Journal of Computational and Graphical Statistics, 15: 565-583.

control.tergm.godfather 17

• Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2010), A Steplength Algorithm for
Fitting ERGMs, Penn State Department of Statistics Technical Report.

See Also

stergm. The control.simulate.stergm function performs a similar function for simulate.stergm.

control.tergm.godfather

Control parameters for tergm.godfather().

Description

Returns a list of its arguments.

Usage

control.tergm.godfather(GF.init.maxedges.mul = 5)

Arguments

GF.init.maxedges.mul

How much space is allocated for the edgelist of the final network. It is used
adaptively, so should not be greater than 10.

ergm-constraints Formation and Dissolution Constraints for Exponential Family Ran-
dom Graph Models

Description

This page describes the network sample space constraints that are included with the tergm package.
For more information, and instructions for using constraints, see ergm-constraints and ergm.

Constraints implemented in the tergm package

atleast(nw) The Formation Constraint: Preserve all ties in network nw. Only dyads that are not
ties in nw may be changed.

atmost(nw) The Dissolution Constraint: Prevent all nonties in network nw. Only dyads that have
ties in nw may be changed.

18 ergm-terms

References

Krivitsky PN, Handcock MS (2010). A Separable Model for Dynamic Networks. http://arxiv.
org/abs/1011.1937

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). http://www.jstatsoft.org/v24/i08/.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). http://www.jstatsoft.org/v24/i03/.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12-EJS696

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). http://www.
jstatsoft.org/v24/i04/.

ergm-terms Temporally-Sensitive Terms used in Exponential Family Random
Graph Models

Description

Unlike ordinary ergm-terms, which take only a single network as an argument, the terms docu-
mented here also take into account the "ages" of extant ties in the network: the time elapsed since
their formation.

As implemented, many of these terms cannot be used to "drive" the process of network evolution,
but they can be used as target statistics to infer the terms that do. More concretely, they may appear
in targets= or monitor= formulas of stergm, simulate.stergm, or summary.formula (with an
ERGM formula), but they may not appear in their formation= and dissolution= formulas. These
terms are marked with "(target-only)".

All terms listed here are binary.

Terms to represent network statistics included in the tergm package

degrange.mean.age(from, to=+Inf, byarg=NULL, emptyval=0) (target-only) Average age of
ties incident on nodes having degree in a given range: The from and to arguments are vectors
of distinct integers or +Inf, for to. If one of the vectors has length 1, it is recycled to the
length of the other. Otherwise, they must have the same length. This term adds one network
statistic to the model for each element of from (or to); the ith such statistic equals the average,
among all ties incident on nodes with degree greater than or equal to from[i] but strictly less
than to[i], of the amount of time elapsed since the tie’s formation. The optional argument
by is a character string giving the name of an attribute in the network’s vertex attribute list. If
specified, then separate degree statistics are calculated for nodes having each separate value
of the attribute.

http://arxiv.org/abs/1011.1937
http://arxiv.org/abs/1011.1937
http://www.jstatsoft.org/v24/i08/
http://www.jstatsoft.org/v24/i03/
http://dx.doi.org/10.1214/12-EJS696
http://www.jstatsoft.org/v24/i04/
http://www.jstatsoft.org/v24/i04/

ergm-terms 19

Because this average is undefined for a network that does not have any actors with degree in
the specified range, the argument emptyval can be used to specify the value returned if this
is the case. This is, technically, an arbitrary value, but it should not have a substantial effect
unless a non-negligible fraction of networks at the parameter configuration of interest has no
actors with specified degree.

degree.mean.age(d, by=NULL, emptyval=0) (target-only) Average age of ties incident on nodes
having a given degree: The d argument is a vector of distinct integers. This term adds one
network statistic to the model for each element in d; the ith such statistic equals the average,
among all ties incident on nodes with degree exactly d[i], of the amount of time elapsed
since the tie’s formation. The optional argument by is a character string giving the name of an
attribute in the network’s vertex attribute list. If specified, then separate degree statistics are
calculated for nodes having each separate value of the attribute.
Because this average is undefined for a network that does not have any actors with degree
d[i], the argument emptyval can be used to specify the value returned if this is the case.
This is, technically, an arbitrary value, but it should not have a substantial effect unless a non-
negligible fraction of networks at the parameter configuration of interest has no actors with
specified degree.

edges.ageinterval(from, to=+Inf) (dissolution- and target-only) Number of edges with age
falling into a specified range: This term counts the number of edges in the network for which
the time elapsed since formation is greater than or equal to from but strictly less than to. In
other words, it is in the semiopen interval [from, to). from and to may be scalars, vectors
of the same length, or one of them must have length one, in which case it is recycled.
When used in the dissolution formula of a STERGM, it can be used to model a non-Markovian
dissolution process, controlling the hazard function in the interval directly.

edge.ages (target-only) Sum of ages of extant ties: This term adds one statistic equaling sum,
over all ties present in the network, of the amount of time elapsed since formation.
Unlike mean.age, this statistic is well-defined on an empty network. However, if used as a
target, it appears to produce highly biased dissolution parameter estimates if the goal is to get
an intended average duration.

edgecov.ages(x, attrname=NULL) (target-only) Weighted sum of ages of extant ties: This term
adds one statistic equaling sum, over all ties present in the network, of the amount of time
elapsed since formation, multiplied by a dyadic covariate. See the help for the edgecov term
for details for specifying the covariate.
"Weights" can be negative.
Unlike edgecov.mean.age, this statistic is well-defined on an empty network. However, if
used as a target, it appears to produce highly biased dissolution parameter estimates if the goal
is to get an intended average duration.

edgecov.mean.age(x, attrname=NULL, emptyval=0) (target-only) Weighted average age of an
extant tie: This term adds one statistic equaling the average, over all ties present in the net-
work, of the amount of time elapsed since formation, weighted by a (nonnegative) dyadic
covariate. See the help for the edgecov term for details for specifying the covariate.
The behavior when there are negative weights is undefined.
Because this average is undefined for an empty network (or a network all of whose extant
edges have been weighted 0), the argument emptyval can be used to specify the value returned
if this is the case. This is, technically, an arbitrary value, but it should not have a substantial
effect unless a non-negligible fraction of networks at the parameter configuration of interest is
empty and/or if only a few dyads have nonzero weights.

20 gof.stergm

mean.age(emptyval=0) (target-only) Average age of an extant tie: This term adds one statistic
equaling the average, over all ties present in the network, of the amount of time elapsed since
formation.
Because this average is undefined for an empty network, the argument emptyval can be used
to specify the value returned if it is. This is, technically, an arbitrary value, but it should
not have a substantial effect unless a non-negligible fraction of networks at the parameter
configuration of interest is empty.

References

• Handcock M. S., Hunter D. R., Butts C. T., Goodreau S. G., Krivitsky P. N. and Morris M.
(2012). _Fit, Simulate and Diagnose Exponential-Family Models for Networks_. Version 3.1.
Project home page at <URL: http://www.statnet.org>, <URL: CRAN.R-project.org/package=ergm>.

• Krivitsky, P.N. (2012). Modeling of Dynamic Networks based on Egocentric Data with Dura-
tional Information. Pennsylvania State University Department of Statistics Technical Report,
2012(2012-01). http://stat.psu.edu/research/technical-report-files/2012-technical-reports/
modeling-of-dynamic-networks-based-on-egocentric-data-with-durational-information

• Krivitsky, P.N. (2012). Modeling Tie Duration in ERGM-Based Dynamic Network Mod-
els. Pennsylvania State University Department of Statistics Technical Report, 2012(2012-02).
http://stat.psu.edu/research/technical-report-files/2012-technical-reports/
TR1201A.pdf

See Also

ergm-terms (from the ergm package), ergm, network, %v%, %n%

gof.stergm Goodness-of-fit methods for STERGM CMLE and CMPLE fits

Description

For now, these are simple wrappers around gof.ergm, print.gof, summary.gof, and plot.gof,
respectively, to run goodness-of-fit for formation and dissolution models separately. This may
change in the future.

Usage

S3 method for class 'stergm'
gof(object, ...)

S3 method for class 'gof.stergm'
print(x, ...)

S3 method for class 'gof.stergm'
summary(object, ...)

S3 method for class 'gof.stergm'
plot(x, ..., main = "Goodness-of-fit diagnostics")

http://stat.psu.edu/research/technical-report-files/2012-technical-reports/modeling-of-dynamic-networks-based-on-egocentric-data-with-durational-information
http://stat.psu.edu/research/technical-report-files/2012-technical-reports/modeling-of-dynamic-networks-based-on-egocentric-data-with-durational-information
http://stat.psu.edu/research/technical-report-files/2012-technical-reports/TR1201A.pdf
http://stat.psu.edu/research/technical-report-files/2012-technical-reports/TR1201A.pdf

gof.stergm 21

Arguments

object For gof.stergm, stergm conditional MLE (CMLE) or conditional MPLE (CM-
PLE) fit. For the others, a gof.stergm object returned by gof.stergm.

... Additional arguments passed through to the respective functions in the ergm
package.

x A gof.stergm object returned by gof.stergm.

main Gives the title of the goodness-of-fit plots, which will have "Formation:" and
"Dissolution:" prepended to it.

Value

For gof.stergm, an object of class gof.stergm, which is simply a list with two named elements:
formation and dissolution, each of them a gof returned by gof.ergm.

For the others, nothing.

See Also

stergm(), ergm(), simulate.stergm(), ergm::print.gof(), ergm::plot.gof(), summary.gof,
mcmc.diagnostics.ergm

Examples

data(samplk)

Fit a transition from Time 1 to Time 2
samplk12 <- stergm(list(samplk1, samplk2),

formation=~edges+mutual+transitiveties+cyclicalties,
dissolution=~edges+mutual+transitiveties+cyclicalties,
estimate="CMLE")

samplk12.gof <- gof(samplk12)

samplk12.gof

summary(samplk12.gof)

plot(samplk12.gof)

plot(samplk12.gof, plotlogodds=TRUE)

22 impute.network.list

impute.network.list Impute missing dyads in a series of networks

Description

This function takes a list of networks with missing dyads and returns a list of networks with missing
dyads imputed according to a list of imputation directives.

Usage

impute.network.list(nwl, imputers = c(), nwl.prepend = list(),
nwl.append = list())

Arguments

nwl A list of network objects or a network.list object.

imputers A character vector giving one or more methods to impute missing dyads. Cur-
renly implemented methods are as follows:

next Impute the state of the same dyad in the next network in the list (or later,
if that one is also missing). This imputation method is likely to lead to an
underestimation of the formation and dissolution rates. The last network in
the list cannot be imputed this way.

previous Impute the state of the same dyad in the previous network in the list
(or earlier, if that one is also missing). The first network in the list cannot
be imputed this way.

majority Impute the missing dyad with the value of the majority among the
non-missing dyads in that time step’s network. A network that has exactly
the same number of ties as non-missing non-ties cannot be imputed this
way.

0 Assume missing dyads are all non-ties.
1 Assume missing dyads are all ties.

If length(imputers)>1 the specified imputation methods will be applied in
succession. For example, imputers=c("next","previous","majority","0")
would first try to impute a missing dyad with the next time step’s value. If it,
and all of the later values for that dyad are missing, it will try to impute it with
the previous time step’s value. If it, and all of the earlier values for that dyad
are missing as well, it will try to impute it with the value of the majority of
non-missing dyads for that time step. If there is an exact tie, it will impute 0.

nwl.prepend An optional list of networks to treat as preceding those in nwl. They will not
be imputed or returned, but they can be useful for imputing dyads in the first
network in nwl, when using "previous" imputer.

nwl.append An optional list of networks to treat as following those in nwl. They will not
be imputed or returned, but they can be useful for imputing dyads in the last
network in nwl, when using "next" imputer.

logLik.stergm 23

Value

A list of networks with missing dyads imputed.

See Also

network, is.na

logLik.stergm A logLik method for stergm.

Description

Functions to return the log-likelihood associated with a stergm CMLE fit, evaluating it if necessary.
See logLik.ergm documentation for details and caveats.

logLikNull method computes the null model likelihood. See ergm::logLikNull().

Usage

S3 method for class 'stergm'
logLik(object, add = FALSE, force.reeval = FALSE,
eval.loglik = add || force.reeval, control = control.logLik.stergm(),
...)

S3 method for class 'stergm'
logLikNull(object, control = control.logLik.stergm(),
...)

Arguments

object A stergm fit, returned by stergm, for estimate="CMLE".

add Logical: If TRUE, instead of returning the log-likelihood, return object with
log-likelihood value set.

force.reeval Logical: If TRUE, reestimate the log-likelihood even if object already has an
estiamte.

eval.loglik Logical: If TRUE, evaluate the log-likelihood if not set on object.

control A list of control parameters for algorithm tuning. Constructed using control.logLik.ergm.

... Other arguments to the likelihood functions.

Details

If the log-likelihood was not computed for object, produces an error unless eval.loglik=TRUE

Value

For logLik.stergm, add=FALSE (the default), a logLik object. If add=TRUE (the default), an ergm
object or a stergm object with the log-likelihood set. For logLikNull.stergm, a logLik object.

24 mcmc.diagnostics.stergm

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

See Also

logLik, ergm.bridge.llr, ergm.bridge.dindstart.llk

mcmc.diagnostics.stergm

Conduct MCMC diagnostics on an ergm or stergm fit

Description

This function prints diagnistic information and creates simple diagnostic plots for the MCMC sam-
pled statistics produced from a stergm fit.

Usage

S3 method for class 'stergm'
mcmc.diagnostics(object, center = TRUE, esteq = TRUE,
vars.per.page = 3, ...)

Arguments

object A stergm object. See documentation for stergm.

center Logical: If TRUE, ; center the samples on the observed statistics.

esteq Logical: If TRUE, summarize the estimating equation values (evaluated at the
MLE of any non-linear parameters), rather than their canonical components.

vars.per.page Number of rows (one variable per row) per plotting page. Ignored if latticeExtra
package is not installed.

... Additional arguments, to be passed to plotting functions.

Details

The plots produced are a trace of the sampled output and a density estimate for each variable in the
chain. The diagnostics printed include correlations and convergence diagnostics.

In fact, an object contains the matrix of statistics from the MCMC run as component $sample.
This matrix is actually an object of class mcmc and can be used directly in the coda package to as-
sess MCMC convergence. Hence all MCMC diagnostic methods available in coda are available di-
rectly. See the examples and http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
coda-readme/.

More information can be found by looking at the documentation of stergm.

http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/coda-readme/
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/coda-readme/

simulate.stergm 25

Value

mcmc.diagnostics.ergm returns some degeneracy information, if it is included in the original
object. The function is mainly used for its side effect, which is to produce plots and summary
output based on those plots.

References

Raftery, A.E. and Lewis, S.M. (1995). The number of iterations, convergence diagnostics and
generic Metropolis algorithms. In Practical Markov Chain Monte Carlo (W.R. Gilks, D.J. Spiegel-
halter and S. Richardson, eds.). London, U.K.: Chapman and Hall.

This function is based on the coda package It is based on the the R function raftery.diag in
coda. raftery.diag, in turn, is based on the FORTRAN program gibbsit written by Steven
Lewis which is available from the Statlib archive.

See Also

ergm, stergm,network package, coda package, summary.ergm

simulate.stergm Draw from the distribution of an Separable Temporal Exponential
Family Random Graph Model

Description

simulate is used to draw from separable temporal exponential family random network models in
their natural parameterizations. See stergm for more information on these models.

Usage

S3 method for class 'stergm'
simulate(object, nsim = 1, seed = NULL,
coef.form = object$formation.fit$coef,
coef.diss = object$dissolution.fit$coef,
constraints = object$constraints, monitor = object$targets,
time.slices = 1, time.start = NULL, time.burnin = 0,
time.interval = 1, control = control.simulate.stergm(),
statsonly = NULL, output = c("networkDynamic", "stats", "changes",
"final"), nw.start = NULL, stats.form = FALSE, stats.diss = FALSE,
duration.dependent = NULL, verbose = FALSE, ...)

S3 method for class 'network'
simulate(object, nsim = 1, seed = NULL, formation,
dissolution, coef.form, coef.diss, constraints = ~., monitor = NULL,
time.slices = 1, time.start = NULL, time.burnin = 0,
time.interval = 1, time.offset = 1,
control = control.simulate.network(), statsonly = NULL,

26 simulate.stergm

output = c("networkDynamic", "stats", "changes", "final"),
stats.form = FALSE, stats.diss = FALSE, duration.dependent = NULL,
verbose = FALSE, ...)

S3 method for class 'networkDynamic'
simulate(object, nsim = 1, seed = NULL,
formation = attr(object, "formation"), dissolution = attr(object,
"dissolution"), coef.form = attr(object, "coef.form"),
coef.diss = attr(object, "coef.diss"), constraints = NVL(attr(object,
"constraints"), ~.), monitor = attr(object, "monitor"),
time.slices = 1, time.start = NULL, time.burnin = 0,
time.interval = 1, time.offset = 1,
control = control.simulate.network(), statsonly = NULL,
output = c("networkDynamic", "stats", "changes"), stats.form = FALSE,
stats.diss = FALSE, duration.dependent = NULL, verbose = FALSE,
...)

Arguments

object an object of type stergm giving a model fit or of type network giving the initial
network.
simulate.network understands the lasttoggle "API".

nsim Number of replications (separate chains of networks) of the process to run and
return. The networkDynamic method only supports nsim=1.

seed Random number integer seed. See set.seed.

coef.form Parameters for the model from which the post-formation network is drawn.

coef.diss As coef.form, but for the post-dissolution network.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being modeled, using syntax similar to the formula
argument. Multiple constraints may be given, separated by “+” operators. To-
gether with the model terms in the formula and the reference measure, the con-
straints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly by passing a string with
the function’s name. In that case, arguments to the proposal should be specified
through the prop.args argument to control.ergm.
The default is ~., for an unconstrained model.
See the ERGM constraints documentation for the constraints implemented in
the ergm package. Other packages may add their own constraints.
For STERGMs in particular, the constraints apply to the post-formation and
the post-dissolution network, rather than the final network. This means, for
example, that if the degree of all vertices is constrained to be less than or equal
to three, and a vertex begins a time step with three edges, then, even if one of
its edges is dissolved during its time step, it won’t be able to form another edge
until the next time step. This behavior may change in the future.
Note that not all possible combinations of constraints are supported.

simulate.stergm 27

monitor Either a one-sided formula specifying one or more terms whose value is to be
monitored, or a string containing "formation" or "dissolution", to monitor
their respective terms, or "all" to monitor distinct terms from both.

time.slices Number of time slices (or statistics) to return from each replication of the dy-
namic process. See below for return types. Defaults to 1, which, if time.burnin==0
and time.interval==1 (the defaults), advances the process one time step.

time.start An optional argument specifying the time point at which the simulation is to
start. See Details for further information.

time.burnin Number of time steps to discard before starting to collect network statistics.
Actual network will only be returned if time.burnin==0.

time.interval Number of time steps between successive recordings of network statistics. Ac-
tual network will only be returned if time.interval==1.

control A list of control parameters for algorithm tuning. Constructed using control.simulate.stergm
or control.simulate.network.

statsonly Deprecated in favor of output.
output A character vector specifying output type: one of "networkDynamic" (the de-

fault), "stats", and "changes", with partial matching allowed. See Value section
for details.

nw.start A specification for the starting network to be used by simulate.stergm, op-
tional for EGMME fits, but required for CMLE and CMPLE fits:
a numeric index use ith time-point’s network, where the first network in the

series used to fit the model is defined to be at the first time point;
i use ith time-point’s network, where the first network in the series used to fit

the model is defined to be at the first time point;
"first" or "last" the first or last time point used in fitting the model; or
network specify the network directly.
networkDynamics cannot be used as starting networks for simulate.stergm at
this time. (They can be used as starting networks for simulate.networkDynamic,
of course.)

stats.form, stats.diss

Logical: Whether to return formation/dissolution model statistics. This is not
the recommended method: use monitor argument instead.

duration.dependent

Logical: Whether the model terms in formula or model are duration dependent.
E.g., if a duration-dependent term is used in estimation/simulation model, the
probability of forming or dissolving a tie may dependent on the age the dyad
status.

verbose Logical: If TRUE, extra information is printed as the Markov chain progresses.
... Further arguments passed to or used by methods.
formation, dissolution

One-sided ergm-style formulas for the formation and dissolution models, re-
spectively.

time.offset Argument specifying the offset between the point when the state of the net-
work is sampled (time.start) and the the beginning of the spell that should be
recorded for the newly simulated network state.

28 simulate.stergm

Details

The dynamic process is run forward and the results are returned. For the method for networkDynamic,
the simulation is resumed from the last generated time point of object, by default with the same
model and parameters.

The starting network for the stergm object method (simulate.stergm) is determined by the nw.start
argument.

• If time.start is specified, it is used as the initial time index of the simulation.

• If time.start is not specified (is NULL), then if the object carries a time stamp from which
to start or resume the simulation, either in the form of a "time" network attribute (for the
network method — see the lasttoggle "API") or in the form of an net.obs.period net-
work attribute (for the networkDynamic method), this attribute will be used. (If specified,
time.start will override it with a warning.)

• Othewise, the simulation starts at 0.

Value

Depends on the output argument:

"stats" If stats.form==FALSE and stats.diss==FALSE, an mcmc matrix with moni-
tored statistics, and if either of them is TRUE, a list containing elements stats for
statistics specified in the monitor argument, and stats.form and stats.diss
for the respective formation and dissolution statistics. If stats.form==FALSE
and stats.diss==FALSE and no monitored statistics are specified, an empty list
is returned, with a warning. When nsim>1, an mcmc.list (or list of them) of
the statistics is returned instead.

"networkDynamic"

A networkDynamic object representing the simulated process, with ties present
in the initial network having onset -Inf and ties present at the end of the simula-
tion having terminus +Inf. The method for networkDynamic returns the initial
networkDynamic with simulated changes applied to it. The net.obs.period
network attribute is updated (or added if not existing) to reflect the time pe-
riod that was simulated. If the network does not have any persistent.ids
defined for vertices, a vertex.pid will be attached in a vertex attribute named
'tergm_pid' to facilitate ’bookkeeping’ between the networkDynamic argu-
ment and the simulated network time step. Additionally, attributes (attr, not
network attributes) are attached as follows:

formation, dissolution, monitor: Formation, dissolution, and monitoring for-
mulas used in the simulation, respectively.

stats, stats.form, stats.diss: Network statistics as above.
coef.form, coef.diss: Coefficients used in the simulation.
changes: A four-column matrix summarizing the changes in the "changes"

output. (This may be removed in the future.)

When nsim>1, a network.list of these networkDynamics is returned.

"changes" An integer matrix with four columns (time, tail, head, and to), giving the
time-stamped changes relative to the current network. to is 1 if a tie was formed

simulate.stergm 29

and 0 if a tie was dissolved. The convention for time is that it gives the time
point during which the change is effective. For example, a row c(5,2,3,1) in-
dicates that between time 4 and 5, a tie from node 2 to node 3 was formed, so that
it was absent at time point 4 and present at time point 5; while a row c(5,2,3,0)
indicates that in that time, that tie was dissolved, so that it is was present at time
point 4 and absent at time point 5. Additionally, same attributes (attr, not
network attributes) as with output=="networkDynamic" are attached. When
nsim>1, a list of these change matrices is returned.

"final" A network object representing the last network in the series generated. This
is not implemented in the method for networkDynamic. lasttoggle attributes
are also included. Additionally, attributes (attr, not network attributes) are
attached as follows:

formation, dissolution, monitor: Formation, dissolution, and monitoring for-
mulas used in the simulation, respectively.

stats, stats.form, stats.diss: Network statistics as above.
coef.form, coef.diss: Coefficients used in the simulation.
changes A four-column matrix summarizing the changes in the "changes" out-

put. (This may be removed in the future.)

When nsim>1, a network.list of these networks is returned.

Examples

logit<-function(p)log(p/(1-p))
coef.form.f<-function(coef.diss,density) -log(((1+exp(coef.diss))/(density/(1-density)))-1)

Construct a network with 20 nodes and 20 edges
n<-20
target.stats<-edges<-20
g0<-network.initialize(n,dir=TRUE)
g1<-san(g0~edges,target.stats=target.stats,verbose=TRUE)

S<-10

To get an average duration of 10...
duration<-10
coef.diss<-logit(1-1/duration)

To get an average of 20 edges...
dyads<-network.dyadcount(g1)
density<-edges/dyads
coef.form<-coef.form.f(coef.diss,density)

... coefficients.
print(coef.form)
print(coef.diss)

Simulate a networkDynamic
dynsim<-simulate(g1,formation=~edges,dissolution=~edges,

coef.form=coef.form,coef.diss=coef.diss,

30 summary_formula.networkDynamic

time.slices=S,verbose=TRUE)

"Resume" the simulation.
dynsim2<-simulate(dynsim,time.slices=S,verbose=TRUE)

summary_formula.networkDynamic

Calculation of networkDynamic statistics.

Description

A method for summary_formula to calculate the specified statistics for an observed networkDynamic
at the specified time point(s). See ergm-terms for more information on the statistics that may be
specified.

Usage

S3 method for class 'networkDynamic'
summary_formula(object, at, ..., basis = NULL)

Arguments

object An formula object with a networkDynamic as its LHS. (See summary_formula
for more details.)

at A vector of time points at which to calculate the statistics.
... Further arguments passed to or used by methods.
basis An optional networkDynamic object relative to which the statistics should be

calculated.

Value

A matrix with length(at) rows, one for each time point in at, and columns for each term of the
formula, containing the corresponding statistics measured on the network.

See Also

ergm(), networkDynamic, ergm-terms, summary.formula

Examples

create a toy dynamic network
my.nD <- network.initialize(100,directed=FALSE)
activate.vertices(my.nD, onset=0, terminus = 10)
add.edges.active(my.nD,tail=1:2,head=2:3,onset=5,terminus=8)

use a summary formula to display number of isolates and edges
at discrete time points
summary(my.nD~isolates+edges, at=1:10)

tergm.godfather 31

tergm.godfather A function to apply a given series of changes to a network.

Description

Gives the network a series of timed proposals it can’t refuse. Returns the statistics of the network,
and, optionally, the final network.

Usage

tergm.godfather(formula, changes = NULL, toggles = changes[, -4, drop =
FALSE], start = NULL, end = NULL, end.network = FALSE,
stats.start = FALSE, verbose = FALSE,
control = control.tergm.godfather())

Arguments

formula An summary.formula-style formula, with either a network or a networkDynamic
as the LHS and statistics to be computed on the RHS. If LHS is a networkDynamic,
it will be used to derive the changes to the network whose statistics are wanted.
Otherwise, either changes or toggles must be specified, and the LHS network
will be used as the starting network.

changes A matrix with four columns: time, tail, head, and new value, describing the
changes to be made. Can only be used if LHS of formula is not a networkDynamic.

toggles A matrix with three columns: time, tail, and head, giving the dyads which had
changed. Can only be used if LHS of formula is not a networkDynamic.

start Time from which to start applying changes. Note that the first set of changes will
take effect at start+1. Defaults to the time point 1 before the earliest change
passed.

end Time from which to finish applying changes. Defaults to the last time point at
which a change occurs.

end.network Whether to return a network that results. Defaults to FALSE.

stats.start Whether to return the network statistics at start (before any changes are ap-
plied) as the first row of the statistics matrix. Defaults to FALSE, to produce out-
put similar to that of simulate for STERGMs when output="stats", where
initial network’s statistics are not returned.

verbose Whether to print progress messages.

control A control list generated by control.tergm.godfather.

Value

If end.network==FALSE (the default), an mcmc object with the requested network statistics associed
with the network series produced by applying the specified changes. Its mcmc attributes encode the
timing information: so start(out) gives the time point associated with the first row returned, and
end(out) out the last. The "thinning interval" is always 1.

32 tergm.godfather

If end.network==TRUE, return a network object with lasttoggle "extension", representing the
final network, with a matrix of statistics described in the previous paragraph attached to it as an
attr-style attribute "stats".

See Also

simulate.stergm, simulate.network, simulate.networkDynamic

Examples

g1 <- network.initialize(10, dir=FALSE)
g1[1,2] <- 1
g1[3,4] <- 1
g1 %n% "time" <- 0
g1 %n% "lasttoggle" <- -1-rgeom(network.dyadcount(g1),1/4)

dc <- matrix(rnorm(100),10,10); dc <- dc+t(dc)

Simulate a network, tracking its statistics.
simnet <- simulate(g1, formation=~edges, dissolution=~edges, coef.form=-1, coef.diss=1,

time.slices=50, monitor=~degree(1)+mean.age+degree.mean.age(1)+
mean.age(log=TRUE)+degree.mean.age(1,log=TRUE)+
degrange(1,3)+mean.age+degrange.mean.age(1,3)+

mean.age(log=TRUE)+degrange.mean.age(1,3,log=TRUE)+
edge.ages+edgecov(dc)+edgecov.ages(dc),

output="networkDynamic")

sim.stats <- attr(simnet, "stats")

print(head(sim.stats))
sim.stats <- as.matrix(sim.stats)

Replay the simulation using a networkDynamic, monitoring a potentially different set of
statistics (but same in this case).
gf1.stats <- tergm.godfather(simnet~degree(1)+mean.age+degree.mean.age(1)+

mean.age(log=TRUE)+degree.mean.age(1,log=TRUE)+
degrange(1,3)+mean.age+degrange.mean.age(1,3)+
mean.age(log=TRUE)+degrange.mean.age(1,3,log=TRUE)+
edge.ages+edgecov(dc)+edgecov.ages(dc),

start=0, end=50)

print(head(gf1.stats))
gf1.stats <- as.matrix(gf1.stats)

Replay the simulation using the initial network + list of changes.

gf2.stats <- tergm.godfather(g1~degree(1)+mean.age+degree.mean.age(1)+
mean.age(log=TRUE)+degree.mean.age(1,log=TRUE)+
degrange(1,3)+mean.age+degrange.mean.age(1,3)+
mean.age(log=TRUE)+degrange.mean.age(1,3,log=TRUE)+

tergm_proposals 33

edge.ages+edgecov(dc)+edgecov.ages(dc),
start=0, end=50, changes=attr(simnet,"changes"))

print(head(gf2.stats))
gf2.stats <- as.matrix(gf2.stats)

We can also compare them to the network statistics summarized.
summ.stats <- summary(simnet~degree(1)+mean.age+degree.mean.age(1)+

mean.age(log=TRUE)+degree.mean.age(1,log=TRUE)+
degrange(1,3)+mean.age+degrange.mean.age(1,3)+
mean.age(log=TRUE)+degrange.mean.age(1,3,log=TRUE)+
edge.ages+edgecov(dc)+edgecov.ages(dc), at=1:50)

print(head(summ.stats))

tol <- sqrt(.Machine$double.eps)
If they aren't all identical, we are in trouble.
stopifnot(all.equal(sim.stats,gf1.stats),

all.equal(sim.stats,gf2.stats),
all.equal(sim.stats,summ.stats))

tergm_proposals Metropolis-Hastings Proposal Methods for TERGM MCMC

Description

tergm uses a Metropolis-Hastings (MH) algorithm provided by ergm to control the behavior of the
Markov Chain Monte Carlo (MCMC) for sampling networks. The MCMC chain is intended to step
around the sample space of possible networks, selecting a network at regular intervals to evaluate
the statistics in the model. For each MCMC step, n (n = 1 in the simple case) toggles are proposed
to change the dyad(s) to the opposite value. The probability of accepting the proposed change is
determined by the MH acceptance ratio. The role of the different MH methods implemented in
tergm is to vary how the sets of dyads are selected for toggle proposals. This is used in some cases
to improve the performance (speed and mixing) of the algorithm, and in other cases to constrain the
sample space.

Details

MH proposal methods implemented in the tergm package:
TODO: EXPLAIN TERGM PROPOSAL TYPES HERE

• InitErgmProposal.dissolution
• InitErgmProposal.dissolutionTNT
• InitErgmProposal.dissolutionMLE
• InitErgmProposal.dissolutionNonObservedMLE
• InitErgmProposal.formation
• InitErgmProposal.formationMLE

34 tergm_proposals

• InitErgmProposal.formationMLETNT
• InitErgmProposal.formationNonObservedMLE
• InitErgmProposal.formationTNT
• InitErgmProposal.dissolutionMLEblockdiag
• InitErgmProposal.dissolutionNonObservedMLEblockdiag
• InitErgmProposal.formationMLEblockdiag
• InitErgmProposal.formationMLEblockdiagTNT
• InitErgmProposal.formationNonObservedMLEblockdiag
• InitErgmProposal.dissolutionMLETNT
• InitErgmProposal.dissolutionMLEblockdiagTNT
• InitErgmProposal.dissolutionNonObservedMLETNT
• InitErgmProposal.dissolutionNonObservedMLEblockdiagTNT
• InitErgmProposal.formationNonObservedMLETNT
• InitErgmProposal.formationNonObservedMLEblockdiagTNT

References

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). http://www.jstatsoft.org/v24/i08/.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). http://www.jstatsoft.org/v24/i03/.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12-EJS696

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). http://www.
jstatsoft.org/v24/i04/.

See Also

tergm package, ergm, ergm-constraints, and ergm’s ergm_proposal help page

http://www.jstatsoft.org/v24/i08/
http://www.jstatsoft.org/v24/i03/
http://dx.doi.org/10.1214/12-EJS696
http://www.jstatsoft.org/v24/i04/
http://www.jstatsoft.org/v24/i04/

Index

∗Topic manip
impute.network.list, 22

∗Topic models
coef.stergm, 4
control.simulate.network, 8
ergm-constraints, 17
ergm-terms, 18
gof.stergm, 20
logLik.stergm, 23
mcmc.diagnostics.stergm, 24
summary_formula.networkDynamic, 30
tergm-package, 2
tergm_proposals, 33

∗Topic package
tergm-package, 2

∗Topic regression
coef.stergm, 4

%n%, 20
%v%, 20

attr, 28, 29

coef.stergm, 4
coefficients.stergm (coef.stergm), 4
constraints-ergm (ergm-constraints), 17
constraints.ergm (ergm-constraints), 17
control.ergm, 5, 12, 26
control.logLik.ergm, 23
control.san, 13
control.simulate.network, 8, 27
control.simulate.stergm, 17, 27
control.simulate.stergm

(control.simulate.network), 8
control.stergm, 6, 10, 10
control.tergm.godfather, 17, 31
control$init.method, 11

degrange.mean.age (ergm-terms), 18
degree.mean.age (ergm-terms), 18
dissolution=, 18

edge.ages (ergm-terms), 18
edgecov, 19
edgecov.ages (ergm-terms), 18
edgecov.mean.age, 19
edgecov.mean.age (ergm-terms), 18
edges.ageinterval (ergm-terms), 18
end, 31
enformulate.curved, 11
ergm, 3, 5–7, 16, 17, 20, 21, 23, 25–27, 33, 34
ERGM constraints, 5, 26
ergm(), 13, 21, 30
ergm-constraints, 17
ergm-terms, 18
ergm.bridge.dindstart.llk, 24
ergm.bridge.llr, 24
ergm.constraints (ergm-constraints), 17
ergm.terms (ergm-terms), 18
ergm::logLikNull(), 23
ergm::plot.gof(), 21
ergm::print.gof(), 21
ergm_proposal, 34

formation=, 18
formula, 30

gof.ergm, 20, 21
gof.stergm, 20

impute.network.list, 12, 22
InitErgmConstraint.atleast

(ergm-constraints), 17
InitErgmConstraint.atmost

(ergm-constraints), 17
InitErgmProposal (tergm_proposals), 33
InitErgmTerm.degrange.mean.age

(ergm-terms), 18
InitErgmTerm.degree.mean.age

(ergm-terms), 18
InitErgmTerm.edge.ages (ergm-terms), 18
InitErgmTerm.edgecov (ergm-terms), 18

35

36 INDEX

InitErgmTerm.edges.ageinterval
(ergm-terms), 18

InitErgmTerm.mean.age (ergm-terms), 18
is.na, 23

lasttoggle, 5, 26, 28, 29, 32
list, 5, 6
logLik, 23, 24
logLik.ergm, 23
logLik.stergm, 23
logLikNull.stergm (logLik.stergm), 23

mcmc, 7, 28, 31
mcmc.diagnostics.ergm, 25
mcmc.diagnostics.stergm, 16, 24
mcmc.list, 28
mean.age, 19
mean.age (ergm-terms), 18

net.obs.period, 28
network, 5, 20, 22, 23, 26, 28, 29, 31, 32
network.list, 5–7, 22, 28, 29
networkDynamic, 5, 6, 26–31

parallel processing, 16
pdf, 14
persistent.ids, 28
plot.gof, 20
plot.gof.stergm (gof.stergm), 20
print.gof, 20
print.gof.stergm (gof.stergm), 20
print.stergm, 7
print.stergm (coef.stergm), 4
print.summary.stergm (coef.stergm), 4

san, 13
set.seed, 16, 26
simulate, 10, 25, 31
simulate.formula, 10
simulate.network (simulate.stergm), 25
simulate.networkDynamic

(simulate.stergm), 25
simulate.stergm, 10, 17, 18, 25
simulate.stergm(), 21
start, 31
stergm, 3–7, 10–12, 16–18, 21, 23–26, 28
stergm (coef.stergm), 4
stergm(), 21
summary.ergm, 25

summary.formula, 18, 30, 31
summary.formula

(summary_formula.networkDynamic),
30

summary.gof, 20
summary.gof.stergm (gof.stergm), 20
summary.stergm, 7
summary.stergm (coef.stergm), 4
summary_formula, 30
summary_formula.networkDynamic, 30

tergm, 3, 17, 18, 33, 34
tergm (tergm-package), 2
tergm-package, 2
tergm.godfather, 31
tergm.godfather(), 17
tergm_proposals, 33
terms-ergm (ergm-terms), 18
terms.ergm (ergm-terms), 18

	tergm-package
	coef.stergm
	control.simulate.network
	control.stergm
	control.tergm.godfather
	ergm-constraints
	ergm-terms
	gof.stergm
	impute.network.list
	logLik.stergm
	mcmc.diagnostics.stergm
	simulate.stergm
	summary_formula.networkDynamic
	tergm.godfather
	tergm_proposals
	Index

