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tensorBSS-package Blind Source Separation Methods for Tensor-Valued Observations
Description
Contains several utility functions for manipulating tensor-valued data (centering, multiplication
from a single mode etc.) and the implementations of the following blind source separation meth-
ods for tensor-valued data: ‘tPCA’, ‘tFOBI’, ‘tJADE’, ‘k-tJADE’, ‘tgFOBI’, ‘tgJADE’, ‘tSOBI’,
‘INSS.SD’, ‘tNSS.JD’, tNSS.TD.JD’, ‘tPP’ and ‘tTUCKER’.

Details

Package: tensorBSS
Type: Package
Version:  0.3.6
Date: 2020-02-26
License: GPL (>=2)
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Author(s)

Joni Virta, Christoph Koesner, Bing Li, Klaus Nordhausen and Hannu Oja

Maintainer: Joni Virta <joni.virta@outlook.com>

References

Virta, J., Taskinen, S. and Nordhausen, K. (2016), Applying fully tensorial ICA to fMRI data, Signal
Processing in Medicine and Biology Symposium (SPMB), 2016 IEEE, doi: 10.1109/SPMB.2016.7846858

Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), Independent component analysis for tensor-
valued data, Journal of Multivariate Analysis, doi: 10.1016/j.jmva.2017.09.008

Virta, J. and Nordhausen, K., (2017), Blind source separation of tensor-valued time series. Signal
Processing 141, 204-216, doi: 10.1016/j.sigpro.2017.06.008

Virta J., Nordhausen K. (2017): Blind source separation for nonstationary tensor-valued time se-
ries, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP),
doi: 10.1109/MLSP.2017.8168122

Virta J., Li B., Nordhausen K., Oja H. (2018): JADE for tensor-valued observations, Journal of
Computational and Graphical Statistics, Volume 27, p. 628 - 637, doi: 10.1080/10618600.2017.1407324

Virta J., Lietzen N., Ilmonen P, Nordhausen K., (2018), Asymptotically and computationally effi-
cient tensorial JADE, preprint available on arXiv https://arxiv.org/abs/1808.00791.

Koesner, C, Nordhausen, K. and Virta, J. (2019), Estimating the signal tensor dimension using
tensorial PCA. Manuscript.

ggtladleplot Ladle plot for each mode of an object of class tladle using ggplot2

Description

The ladle plot is a measure for deciding about the number of interesting components. Of interest
for the ladle criterion is the minimum. The function here offers however also to plot other criterion
values which are part of the actual ladle criterion.

Usage
ggtladleplot(x, crit = "gn", type="1", ylab = crit,
xlab = "component”, main = deparse(substitute(x)), ...)
Arguments
X an object of class ladle.
crit the criterion to be plotted, options are "gn”, "fn", "phin" and "lambda”.
type plotting type, either lines 1 or points p.
ylab default ylab value.
xlab default xlab value.
main default title.

other arguments for the plotting functions.


https://doi.org/10.1109/SPMB.2016.7846858
https://doi.org/10.1016/j.jmva.2017.09.008
https://doi.org/10.1016/j.sigpro.2017.06.008
https://doi.org/10.1109/MLSP.2017.8168122
https://doi.org/10.1080/10618600.2017.1407324

4 ggtladleplot

Details

The main criterion of the ladle is the scaled sum of the eigenvalues and the measure of variation of
the eigenvectors up to the component of interest.

The sum is denoted "gn” and the individual parts are "fn" for the measure of the eigenvector
variation and "phin” for the scaled eigenvalues. The last option "lambda"” corresponds to the
unscaled eigenvalues yielding then a screeplot.

The plot is drawn separately for each mode of the data.

Author(s)

Klaus Nordhausen, Joni Virta

References

Koesner, C, Nordhausen, K. and Virta, J. (2019), Estimating the signal tensor dimension using
tensorial PCA. Manuscript.

Luo, W. and Li, B. (2016), Combining Eigenvalues and Variation of Eigenvectors for Order Deter-
mination, Biometrika, 103. 875-887. <doi:10.1093/biomet/asw051>

See Also
tPCAladle

Examples

library(ICtest)
n <- 500
sig <- 0.6

Z <- rbind(sqrt(@.7)*rt(n,df=5)*sqrt(3/5),
sqrt(0.3)*runif(n,-sqrt(3),sqrt(3)),
sqrt(0.3)*(rchisq(n,df=3)-3)/sqrt(6),
sqrt(0.9)*x(rexp(n)-1),
sqrt(@.1)*rlogis(n,@,sqrt(3)/pi),
sqrt(0.5)x(rbeta(n,2,2)-0.5)*sqrt(20)

)

dim(Z) <- c(3, 2, n)

Ul <- rorth(12)[,1:3]

U2 <- rorth(8)[,1:2]

U <- list(U1=U1, U2=U2)

Y <- tensorTransform2(Z,U,1:2)

EPS <- array(rnorm(12*8*xn, mean=0, sd=sig), dim=c(12,8,n))
X <-Y + EPS

TEST <- tPCAladle(X, n.boot = 100)
TEST
ggtladleplot(TEST, crit = "gn")
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ggtladleplot(TEST, crit = "fn")
ggtladleplot(TEST, crit = "phin")
ggtladleplot (TEST, crit = "lambda")

k_tJADE k-tJADE for Tensor-Valued Observations

Description

Computes the faster “k”-version of tensorial JADE in an independent component model.

Usage
k_tJADE(x, k = NULL, maxiter = 100, eps = 1e-06)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
k A vector with one less element than dimensions in x. The elements of k give
upper bounds for cumulant matrix indices we diagonalize in each mode. Lower
values mean faster computation times. The default value NULL puts k equal to 1
in each mode (the fastest choice).
maxiter Maximum number of iterations. Passed on to rjd.
eps Convergence tolerance. Passed on to rjd.
Details
It is assumed that S is a tensor (array) of size p; X p2 X ... X p,. with mutually independent
elements and measured on N units. The tensor independent component model further assumes that
the tensors S are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed data X. In R the sample of X is saved as an array of dimensions p1, ps,...,pr, N.

k_tJADE recovers then based on x the underlying independent components .S by estimating the r
unmixing matrices W1, ..., W, using fourth joint moments at the same time in a more efficient way
than tFOBI but also in fewer numbers than tJADE. k_tJADE diagonalizes in each mode only those
cumulant matrices C*/ for which [i — j| < ky,.

If x is a matrix, that is, » = 1, the method reduces to JADE and the function calls k_JADE.

Value

A list with class ’tbss’, inheriting from class "bss’, containing the following components:

S Array of the same size as x containing the independent components.
W List containing all the unmixing matrices

Xmu The data location.

k The used vector of k-values.

datatype Character string with value "iid". Relevant for plot. tbss.



6 k_tJADE

Author(s)

Joni Virta

References

Miettinen, J., Nordhausen, K., Oja, H. and Taskinen, S. (2013), Fast Equivariant JADE, In the
Proceedings of 38th IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP 2013), 6153-6157, doi: 10.1109/ICASSP.2013.6638847

Virta J., Li B., Nordhausen K., Oja H. (2018): JADE for tensor-valued observations, Journal of
Computational and Graphical Statistics, Volume 27, p. 628 - 637, doi: 10.1080/10618600.2017.1407324

Virta J., Lietzen N., Ilmonen P., Nordhausen K., (2018), Asymptotically and computationally effi-
cient tensorial JADE, preprint available on arXiv https://arxiv.org/abs/1808.00791.

See Also

k_JADE, tJADE, JADE

Examples

n <- 1000

S <- t(cbind(rexp(n)-1,
rnorm(n),
runif(n, -sqrt(3), sqrt(3)),
rt(n,5)*sqrt(0.6),
(rchisq(n,1)-1)/sqrt(2),
(rchisq(n,2)-2)/sqrt(4)))

dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)

X <- tensorTransform(X, A2, 2)
k_tjade <- k_tJADE(X)
MD(k_tjade$WL[11]1, A1)
MD(k_tjade$WL[2]1]1, A2)
tMD(k_tjade$W, list(A1, A2))
k_tjade <- k_tJADE(X, k = c(2, 1))
MD(k_tjade$WL[111, A1)

MD(k_tjade$WL[2]1, A2)
tMD(k_tjade$W, list(A1, A2))


https://doi.org/10.1109/ICASSP.2013.6638847
https://doi.org/10.1080/10618600.2017.1407324
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mModeAutoCovariance The m-Mode Autocovariance Matrix

Description
Estimates the m-mode autocovariance matrix from an array of array-valued observations with the
specified lag.

Usage

mModeAutoCovariance(x, m, lag, center = TRUE)

Arguments
X Array of order higher than two with the last dimension corresponding to the
sampling units.
m The mode with respect to which the autocovariance matrix is to be computed.
lag The lag with respect to which the autocovariance matrix is to be computed.
center Logical, indicating whether the observations should be centered prior to com-
puting the autocovariance matrix. Default is TRUE.
Details

The m-mode autocovariance matrix provides a higher order analogy for the ordinary autocovariance
matrix of a random vector and is computed for a random tensor X; of size p; X pa X ... X p,

as Covpr (X;) = E(Xt(m)Xt(fT)T)/(pl e Pm—1Pmil - - - Dr), Where Xt(m) is the centered m-
flattening of X; and 7 is the desired 1lag. The algorithm computes the estimate of this based on
the sample x.

Value

The m-mode autocovariance matrix of x with respect to lag having the size p,, X pp,.

Author(s)

Joni Virta

References
Virta, J. and Nordhausen, K., (2017), Blind source separation of tensor-valued time series, Signal

Processing, 141, 204-216, doi: 10.1016/j.sigpro.2017.06.008

See Also

mModeCovariance


https://doi.org/10.1016/j.sigpro.2017.06.008
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Examples
n <- 1000
S <- t(cbind(as.vector(arima.sim(n = n, list(ar = 0.9))),

n
as.vector(arima.sim(n = n, list(ar = -0.9))),
as.vector(arima.sim(n = n, list(ma = c(0.5, -0.5)))),
as.vector(arima.sim(n = n, list(ar = c(-0.5, -0.3)))),
as.vector(arima.sim(n = n, list(ar = c(0.5, -0.3, 0.1, -0.1), ma=c(0.7, -0.3)))),
as.vector(arima.sim(n =n, list(ar = c(-0.7, 0.1), ma=c(0.9, 0.3, 0.1, -0.1))))))
dim(S) <- c(3, 2, n)

mModeAutoCovariance(S, m = 1, lag = 1)
mModeAutoCovariance(S, m = 4)

I
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mModeCovariance The m-Mode Covariance Matrix

Description

Estimates the m-mode covariance matrix from an array of array-valued observations.

Usage

mModeCovariance(x, m, center = TRUE)

Arguments
X Array of order higher than two with the last dimension corresponding to the
sampling units.
m The mode with respect to which the covariance matrix is to be computed.
center Logical, indicating whether the observations should be centered prior to com-
puting the covariance matrix. Default is TRUE.
Details

The m-mode covariance matrix provides a higher order analogy for the ordinary covariance matrix
of a random vector and is computed for a random tensor X of size p; X pa X ... X p, as Cov,, (X) =
E(XM XY /(py .. D 1Dms1 - - - Pr), where X (™) is the centered m-flattening of X. The
algorithm computes the estimate of this based on the sample x.

Value

The m-mode covariance matrix of x having the size p,,, X pp,.

Author(s)

Joni Virta
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References

Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), Independent component analysis for tensor-
valued data, Journal of Multivariate Analysis, doi: 10.1016/j.jmva.2017.09.008

See Also

mModeAutoCovariance

Examples

## Generate sample data.

n <- 100

x <= t(cbind(rnorm(n, mean = @),
rnorm(n, mean = 1),
rnorm(n, mean = 2),
rnorm(n, mean = 3),
rnorm(n, mean = 4),
rnorm(n, mean = 5)))

dim(x) <- c(3, 2, n)
# The m-mode covariance matrices of the first and second modes

mModeCovariance(x, 1)
mModeCovariance(x, 2)

plot.tbss Plot an Object of the Class tbss

Description

Plots the most interesting components (in the sense of extreme kurtosis) obtained by a tensor blind
source separation method.

Usage

## S3 method for class 'tbss'
plot(x, first = 2, last = 2, datatype = NULL,

main = "The components with most extreme kurtoses”, ...)
Arguments
X Object of class tbss.
first Number of components with maximal kurtosis to be selected.

See selectComponents for details.

last Number of components with minimal kurtosis to be selected.
See selectComponents for details.

main The title of the plot.


https://doi.org/10.1016/j.jmva.2017.09.008
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datatype Parameter for choosing the type of plot, either NULL, "iid" or "ts". The default
NULL means the value from the tbss object x is taken.

Further arguments to be passed to the plotting functions, see details.

Details

The function plot.tbss first selects the most interesting components using selectComponents
and then plots them either as a matrix of scatter plots using pairs (datatype = "iid") or as a time
series plot using plot. ts (datatype ="ts"). Note that for tSOBI this criterion might not necessarily
be meaningful as the method is based on second moments only.

Author(s)

Joni Virta

Examples

data(zip.train)
X <= zip.train

rows <- which(x[, 1] == 0 | x[, 11 == 1)
x@ <- x[rows, 2:257]

yo <- x[rows, 1] + 1

X0 <- t(x0)
dim(x@) <- c(16, 16, 2199)

tfobi <- tFOBI(x0)
plot(tfobi, col=y@)

library("stochvol™)

n <- 1000

S <- t(cbind(svsim(n, mu = -10, phi = 0.98, sigma = 0.2, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.98, sigma = 0.2, nu = 10)%y,
svsim(n, mu = =10, phi = .70, sigma = 0.7, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.70, sigma = 0.7, nu = 10)%$y,

svsim(n, mu = -9, phi = 0.20, sigma = .01, nu = Inf)$y,
svsim(n, mu = -9, phi = -0.20, sigma = 0.01, nu = 10)%y))
dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tgfobi <- tgFOBI(X)
plot(tgfobi, 1, 1)
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print.tladle Printing an object of class tladle

Description

Prints an object of class tladle.

Usage

## S3 method for class 'tladle'
## S3 method for class 'tladle'’

print(x, ...)
Arguments
X object of class tladle.
further arguments to be passed to or from methods.
Author(s)

Klaus Nordhausen

selectComponents Select the Most Informative Components

Description
Takes an array of observations as an input and outputs a subset of the components having the most
extreme kurtoses.

Usage

selectComponents(x, first = 2, last = 2)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
first Number of components with maximal kurtosis to be selected. Can equal zero
but the total number of components selected must be at least two.
last Number of components with minimal kurtosis to be selected. Can equal zero

but the total number of components selected must be at least two.
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Details

In independent component analysis (ICA) the components having the most extreme kurtoses are of-

ten thought to be also the most informative. With this viewpoint in mind the function selectComponents
selects from x first components having the highest kurtosis and 1ast components having the low-

est kurtoses and outputs them as a standard data matrix for further analysis.

Value

Data matrix with rows corresponding to the observations and the columns correponding to the
first + last selected components in decreasing order with respect to kurtosis. The names of the
components in the output matrix correspond to the indices of the components in the original array
X.

Author(s)

Joni Virta

Examples

data(zip.train)
X <- zip.train

rows <- which(x[, 11 ==0 | x[, 1] == 1)
X0 <- x[rows, 2:257]

X0 <- t(x0)
dim(x@) <- c(16, 16, 2199)

tfobi <- tFOBI(x)
comp <- selectComponents(tfobi$s)
head(comp)

tensorBoot Bootstrapping or Permuting a Data Tensor

Description

The function takes bootstrap samples or permutes its content along the last dimension of the tensor.

Usage

tensorBoot(x, replace = TRUE)

Arguments

X Array of an order of at least two with the last dimension corresponding to the
sampling units.

replace Logical. Should sampling be performed with or without replacement.
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Details

Assume an array of dimension r + 1, where the last dimension represents the n sampling units and
the first 7 dimensions the data per unit. The function then returns an array of the same dimension
as x where either n bootstraps samples are selected or the units are permuted.

Value

The bootstrapped or permuted samples in an array with the same dimension as x.

Author(s)

Christoph Koesner

Examples

x <- array(1:50, c(2, 5, 5))
X

tensorBoot (x)

tensorBoot(x, replace = FALSE)

x <- array(1:100, c(2, 5, 2, 5))
X
tensorBoot (x)

tensorCentering Center an Array of Observations

Description
Centers an array of array-valued observations by substracting a location array (the mean array by
default) from each observation.

Usage

tensorCentering(x, location = NULL)

Arguments
X Array of order at least two with the last dimension corresponding to the sampling
units.
location The location to be used in the centering. Either NULL, defaulting to the mean
array, or a user-specified p; X pa X ... X p.-dimensional array.
Details

Centers a p; X pa X ... X p, X n-dimensional array by substracting the p; X ps2 X. .. X p,.-dimensional
location from each of the observed arrays.
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Value

Array of centered observations with the same dimensions as the input array. The used location is
returned as attribute "location”.

Author(s)

Joni Virta

Examples

## Generate sample data.

n <- 1000

x <= t(cbind(rnorm(n, mean = @),
rnorm(n, mean = 1),
rnorm(n, mean = 2),
rnorm(n, mean = 3),
rnorm(n, mean = 4),
rnorm(n, mean = 5)))

dim(x) <- c(3, 2, n)

## Centered data
xcen <- tensorCentering(x)

## Check the means of individual cells
apply(xcen, 1:2, mean)

tensorStandardize Standardize an Observation Array

Description

Standardizes an array of array-valued observations simultaneously from each mode. The method
can be seen as a higher-order analogy for the regular multivariate standardization of random vectors.

Usage

tensorStandardize(x, location = NULL, scatter = NULL)

Arguments
X Array of an order higher than two with the last dimension corresponding to the
sampling units.
location The location to be used in the standardizing. Either NULL, defaulting to the mean
array, or a user-specified p; X p2 X ... X p.-dimensional array.
scatter The scatter matrices to be used in the standardizing. Either NULL, defaulting

to the m-mode covariance matrices, or a user-specified list of length r of p; X
D1, - -.,Pr X pr-dimensional symmetric positive definite matrices.
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Details

The algorithm first centers the n observed tensors X; using location (either the sample mean, or
a user-specified location). Then, if scatter = NULL, it estimates the mth mode covariance matrix
Covp(X) = BE(XM™ XY /(py ... ppu_1Pms1 - - - pr)> where X ™) is the centered m-flattening
of X, for each mode, and transforms the observations with the inverse square roots of the covariance
matrices from the corresponding modes. If, instead, the user has specified a non-NULL value for
scatter, the inverse square roots of those matrices are used to transform the centered data.

Value

A list containing the following components:

X Array of the same size as x containing the standardized observations. The used
location and scatters are returned as attributes "location” and "scatter”.

S List containing inverse square roots of the covariance matrices of different modes.

Author(s)

Joni Virta

Examples

# Generate sample data.

n <- 100

x <= t(cbind(rnorm(n, mean = @),
rnorm(n, mean = 1),
rnorm(n, mean = 2),
rnorm(n, mean = 3),
rnorm(n, mean = 4),
rnorm(n, mean = 5)))

dim(x) <- c(3, 2, n)

# Standardize
z <- tensorStandardize(x)$x

# The m-mode covariance matrices of the standardized tensors
mModeCovariance(z, 1)
mModeCovariance(z, 2)

tensorTransform Linear Transformation of Tensors from mth Mode

Description

Applies a linear transformation to the mth mode of each individual tensor in an array of tensors.
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Usage

tensorTransform(x, A, m)

Arguments
X Array of an order at least two with the last dimension corresponding to the sam-
pling units.
A Matrix corresponding to the desired linear transformation with the number of
columns equal to the size of the mth dimension of x.
m The mode from which the linear transform is to be applied.
Details

Applies the linear transformation given by the matrix A of size q,;, X p,,, to the mth mode of each of
the n observed tensors X in the given p; X p2 X . .. X p, X n-dimensional array x. This is equivalent
to separately applying the linear transformation given by A to each m-mode vector of each X;.

Value

Array of size p1 X P2 X ... X D1 X @ X D41 X - X Pp XN

Author(s)

Joni Virta

Examples

# Generate sample data.

n<-10

x <= t(cbind(rnorm(n, mean = @),
rnorm(n, mean = 1),
rnorm(n, mean = 2),
rnorm(n, mean = 3),
rnorm(n, mean = 4),
rnorm(n, mean = 5)))

dim(x) <- c(3, 2, n)

# Transform from the second mode
A <- matrix(c(2, 1, 0, 3), 2, 2)
z <- tensorTransform(x, A, 2)

# Compare
z[, , 1]
x[, , 11%x%t(A)
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tensorTransform2 Linear Transformations of Tensors from Several Modes

Description

Applies a linear transformation to user selected modes of each individual tensor in an array of
tensors. The function is a generalization of tensorTransform which only transforms one specific
mode.

Usage

tensorTransform2(x, A, mode, transpose = FALSE)

Arguments
X Array of order r+1 >= 2 where the last dimension corresponds to the sampling
units.
A A list of r matrices to apply linearly to the corresponding mode.
mode subsetting vector indicating which modes should be linearly transformed by
multiplying them with the corresponding matrices from A.
transpose logical. Should the matrices in A be transposed before the mode wise transfor-
mations or not.
Details
For the modes i1, . . ., i, specified via mode, the function applies the linear transformation given by

the matrix A% of size qi; X ps; to the i;th mode of each of the n observed tensors X, in the given
Pp1 X p2 X ... X pr X n-dimensional array x.

Value

Array with r+1 dimensions where the dimensions specfied via mode are transformed.

Author(s)

Klaus Nordhausen

See Also

tensorTransform
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Examples

n<-5

x <- array(rnorm(5x6*7), dim = c(7, 6, 5))
Al <= matrix(runif(14), ncol = 7)

A2 <- matrix(rexp(18), ncol = 6)

A <= list(A1 = A1, A2 = A2)

At <- list(tAl = t(A1), tA2 = t(A2))

x1 <- tensorTransform2(x, A, 1)
x2 <- tensorTransform2(x, A, -2)
x3 <- tensorTransform(x, A1, 1)

x1 == x2
x1 == x3
x4 <- tensorTransform2(x,At,-2, TRUE)
x1 == x4

x5 <- tensorTransform2(x, A, 1:2)

tensorVectorize Vectorize an Observation Tensor

Description

Vectorizes an array of array-valued observations into a matrix so that each column of the matrix
corresponds to a single observational unit.

Usage
tensorVectorize(x)
Arguments
X Array of an order at least two with the last dimension corresponding to the sam-
pling units.
Details

Vectorizes a p; X py X ... X p, X n-dimensional array into a p1ps . .. p, X n-dimensional matrix,
each column of which then corresponds to a single observational unit. The vectorization is done so
that the rth index goes through its cycle the fastest and the first index the slowest.

Note that the output is a matrix of the size "number of variables" x "number of observations", that
is, a transpose of the standard format for a data matrix.

Value

Matrix whose columns contain the vectorized observed tensors.

Author(s)

Joni Virta
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Examples

# Generate sample data.

n <- 100

x <= t(cbind(rnorm(n, mean = @),
rnorm(n, mean = 1),
rnorm(n, mean = 2),
rnorm(n, mean = 3),
rnorm(n, mean = 4),
rnorm(n, mean = 5)))

dim(x) <- c(3, 2, n)

# Matrix of vectorized observations.
vecx <- tensorVectorize(x)

# The covariance matrix of individual tensor elements
cov(t(vecx))

tFOBI FOBI for Tensor-Valued Observations

Description

Computes the tensorial FOBI in an independent component model.

Usage

tFOBI(x, norm = NULL)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
norm A Boolean vector with number of entries equal to the number of modes in a
single observation. The elements tell which modes use the “normed” version of
tensorial FOBI. If NULL then all modes use the non-normed version.
Details
It is assumed that S is a tensor (array) of size p; X p2 X ... X p, with mutually independent
elements and measured on NV units. The tensor independent component model further assumes that
the tensors S are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed data X. In R the sample of X is saved as an array of dimensions p1,pa,...,p,, IN.

tFOBI recovers then based on x the underlying independent components S’ by estimating the r
unmixing matrices Wy, ..., W, using fourth joint moments.

The unmixing can in each mode be done in two ways, using a ‘“non-normed” or “normed” method
and this is controlled by the argument norm. The authors advocate the general use of non-normed
version, see the reference below for their comparison.
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If x is a matrix, that is, » = 1, the method reduces to FOBI and the function calls FOBI.

For a generalization for tensor-valued time series see tgFOBI.

Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S Array of the same size as x containing the independent components.

W List containing all the unmixing matrices.

norm The vector indicating which modes used the “normed” version.

Xmu The data location.

datatype Character string with value "iid". Relevant for plot. tbss.
Author(s)

Joni Virta
References

Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), Independent component analysis for tensor-
valued data, Journal of Multivariate Analysis, doi: 10.1016/j.jmva.2017.09.008

See Also
FOBI, tgFOBI

Examples

n <- 1000

S <- t(cbind(rexp(n)-1,
rnorm(n),
runif(n, -sqrt(3), sqrt(3)),
rt(n,5)*sqrt(0.6),
(rchisq(n,1)-1)/sqrt(2),
(rchisq(n,2)-2)/sqrt(4)))

dim(S) <- ¢c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tfobi <- tFOBI(X)
MD(tfobi$WL[11]1, A1)

MD(tfobi$W[[211, A2)
tMD(tfobi$W, list(Al, A2))


https://doi.org/10.1016/j.jmva.2017.09.008
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# Digit data example

data(zip.train)
x <- zip.train

rows <- which(x[, 11 == 0 | x[, 1] == 1)
X0 <- x[rows, 2:257]
y0 <- x[rows, 1] + 1

x0 <- t(x0)
dim(x@) <- c(16, 16, 2199)

tfobi <- tFOBI(x0)
plot(tfobi, col=y@)

tgFOBI gFOBI for Tensor-Valued Time Series

Description
Computes the tensorial gFOBI for time series where at each time point a tensor of order r is ob-
served.

Usage

tgFOBI(x, lags = ©:12, maxiter = 100, eps = 1e-06)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the time.
lags Vector of integers. Defines the lags used for the computations of the autocovari-
ances.
maxiter Maximum number of iterations. Passed on to rjd.
eps Convergence tolerance. Passed on to rjd.
Details
It is assumed that S is a tensor (array) of size p; X p2 X ... X p, measured at time points 1,...,7T.
The assumption is that the elements of S are mutually independent, centered and weakly stationary
time series and are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed time series X . In R the sample of X is saved as an array of dimensions py,p2,...,pr, 1.

tgFOBI recovers then based on x the underlying independent time series S by estimating the 7
unmixing matrices W7, ..., W, using the lagged fourth joint moments specified by lags. This re-
liance on higher order moments makes the method especially suited for stochastic volatility models.

If x is a matrix, that is, » = 1, the method reduces to gFOBI and the function calls gFOBI.
If 1ags = 0 the method reduces to tFOBI.
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Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S Array of the same size as x containing the estimated uncorrelated sources.
W List containing all the unmixing matrices
Xmu The data location.
datatype Character string with value "ts". Relevant for plot. tbss.
Author(s)
Joni Virta
References

Virta, J. and Nordhausen, K., (2017), Blind source separation of tensor-valued time series. Signal
Processing 141, 204-216, doi: 10.1016/].sigpro.2017.06.008

See Also

gFOBI, rjd, tFOBI

Examples

library("stochvol™)

n <- 1000

S <- t(cbind(svsim(n, mu = -10, phi = 0.98, sigma = 0.2, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.98, sigma = 0.2, nu = 10)%$y,
svsim(n, mu = =10, phi = .70, sigma = 0.7, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.70, sigma = 0.7, nu = 10)$y,

svsim(n, mu = -9, phi = 0.20, sigma = .01, nu = Inf)$y,
svsim(n, mu = -9, phi = -0.20, sigma = 0.01, nu = 10)3%y))
dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tgfobi <- tgFOBI(X)
MD(tgfobi$WLL[111, A1)

MD(tgfobi$WL[2]], A2)
tMD(tgfobis$W, list(A1, A2))


https://doi.org/10.1016/j.sigpro.2017.06.008
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gJADE for Tensor-Valued Time Series

Description

Computes the tensorial gJADE for time series where at each time point a tensor of order 7 is ob-

served.

Usage

tgJADE(x, lags = 0:12, maxiter = 100, eps = 1e-06)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the time.
lags Vector of integers. Defines the lags used for the computations of the autocovari-
ances.
maxiter Maximum number of iterations. Passed on to rjd.
eps Convergence tolerance. Passed on to rjd.
Details
It is assumed that S is a tensor (array) of size p; X p2 X ... X p, measured at time points 1,... 7.
The assumption is that the elements of S are mutually independent, centered and weakly stationary
time series and are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed time series X . In R the sample of X is saved as an array of dimensions p1, p2,...,pr, T.

tgJADE recovers then based on x the underlying independent time series S by estimating the r
unmixing matrices W1, ..., W, using the lagged fourth joint moments specified by lags. This re-
liance on higher order moments makes the method especially suited for stochastic volatility models.

If x is a matrix, that is, 7 = 1, the method reduces to gJADE and the function calls gJADE.
If 1ags = 0 the method reduces to tJADE.

Value

A list with class ’tbss’, inheriting from class ’bss’, containing the following components:

S
W
Xmu

datatype

Author(s)

Joni Virta

Array of the same size as x containing the estimated uncorrelated sources.
List containing all the unmixing matrices
The data location.

Character string with value "ts". Relevant for plot. tbss.
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References
Virta, J. and Nordhausen, K., (2017), Blind source separation of tensor-valued time series. Signal
Processing 141, 204-216, doi: 10.1016/j.sigpro.2017.06.008

See Also
gJADE, rjd, tJADE

Examples
library("stochvol”)
n <- 1000
S <- t(cbind(svsim(n, mu = -10, phi = 0.98, sigma = 0.2, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.98, sigma = 0.2, nu = 10)%y,
svsim(n, mu = -10, phi = 0.70, sigma = 0.7, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.70, sigma = 0.7, nu = 10)$y,

svsim(n, mu = -9, phi = 0.20, sigma = 0.01, nu = Inf)$y,
svsim(n, mu = -9, phi = -0.20, sigma = 0.01, nu = 10)3%y))
dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tgjade <- tgJADE(X)
MD(tgjade$WLL[11]1, A1)

MD(tgjade$W[[2]], A2)
tMD(tgjadesW, Llist(A1, A2))

tJADE tJADE for Tensor-Valued Observations

Description

Computes the tensorial JADE in an independent component model.

Usage

tJADE(x, maxiter = 100, eps = 1e-06)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
maxiter Maximum number of iterations. Passed on to rjd.

eps Convergence tolerance. Passed on to rjd.


https://doi.org/10.1016/j.sigpro.2017.06.008
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Details

It is assumed that S is a tensor (array) of size p; X p2 X ... X p, with mutually independent
elements and measured on N units. The tensor independent component model further assumes that
the tensors S are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed data X. In R the sample of X is saved as an array of dimensions p1, ps,...,pr, N.

tJADE recovers then based on x the underlying independent components S by estimating the r
unmixing matrices Wi, ..., W, using fourth joint moments in a more efficient way than tFOBI.

If x is a matrix, that is, » = 1, the method reduces to JADE and the function calls JADE.

For a generalization for tensor-valued time series see tgJADE.

Value

A list with class ’tbss’, inheriting from class ’bss’, containing the following components:

S Array of the same size as x containing the independent components.
W List containing all the unmixing matrices
Xmu The data location.
datatype Character string with value "iid". Relevant for plot. tbss.
Author(s)
Joni Virta
References

Virta J., Li B., Nordhausen K., Oja H. (2018): JADE for tensor-valued observations, Journal of
Computational and Graphical Statistics, Volume 27, p. 628 - 637, doi: 10.1080/10618600.2017.1407324

See Also

JADE, tgJADE

Examples

n <- 1000

S <- t(cbind(rexp(n)-1,
rnorm(n),
runif(n, -sqrt(3), sqrt(3)),
rt(n,5)xsqrt(0.6),
(rchisq(n,1)-1)/sqrt(2),
(rchisq(n,2)-2)/sqrt(4)))

dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)


https://doi.org/10.1080/10618600.2017.1407324
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tjade <- tJADE(X)

MD(tjade$WL[1]1]1, A1)
MD(tjade$WL[211, A2)
tMD(tjade$W, list(Al, A2))

## Not run:
# Digit data example
# Running will take a few minutes

data(zip.train)
x <- zip.train

rows <- which(x[, 11 == 0 | x[, 1] == 1)
X0 <- x[rows, 2:257]

yo <- x[rows, 1] + 1

x0 <- t(x0)
dim(x@) <- c(16, 16, 2199)

tjade <- tJADE(x®)
plot(tjade, col=y0)

## End(Not run)

tMD Minimum Distance Index of a Kronecker Product

Description
A shortcut function for computing the minimum distance index of a tensorial ICA estimate on the
Kronecker product “scale” (the vectorized space).

Usage
tMD(W.hat, A)

Arguments
W.hat A list of r unmixing matrix estimates, W_1, W_2, ..., W_r.
A A list of r mixing matrices, A_1, A_2, ..., A_T.
Details
The function computes the minimum distance index between W.hat[[r]] %x% ... %x% W.hat[[1]1]
and A[[r]] %x% ... %x% A[L[1]]. The index is useful for comparing the performance of a tensor-

valued ICA method to that of a method using first vectorization and then some vector-valued ICA
method.
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Value

The value of the MD index of the Kronecker product.

Author(s)

Joni Virta

References

Ilmonen, P, Nordhausen, K., Oja, H. and Ollila, E. (2010), A New Performance Index for ICA:
Properties, Computation and Asymptotic Analysis. In Vigneron, V., Zarzoso, V., Moreau, E.,
Gribonval, R. and Vincent, E. (editors) Latent Variable Analysis and Signal Separation, 229-236,
Springer.

Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), Independent component analysis for tensor-
valued data, Journal of Multivariate Analysis, doi: 10.1016/j.jmva.2017.09.008

See Also

MD

Examples

n <- 1000

S <- t(cbind(rexp(n)-1,
rnorm(n),
runif(n, -sqrt(3), sqrt(3)),
rt(n,5)*sqrt(0.6),
(rchisq(n,1)-1)/sqrt(2),
(rchisq(n,2)-2)/sqrt(4)))

dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tfobi <- tFOBI(X)

MD(tfobi$WL[2]] %x% tfobi$W[[111, A2 %x% A1)
tMD(list(tfobi$WL[2]1]), list(A2))


https://doi.org/10.1016/j.jmva.2017.09.008
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tNSS.JD NSS-JD Method for Tensor-Valued Time Series

Description

Estimates the non-stationary sources of a tensor-valued time series using separation information
contained in several time intervals.

Usage
tNSS.JD(x, K = 12, n.cuts = NULL, eps = 1e-06, maxiter = 100, ...)
Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
K The number of equisized intervals into which the time range is divided. If the
parameter n.cuts is non-NULL it takes preference over this argument.
n.cuts Either a interval cutoffs (the cutoffs are used to define the two intervals that are
open below and closed above, e.g. (a,b]) or NULL (the parameter K is used to
define the the amount of intervals).
eps Convergence tolerance for rjd.
maxiter Maximum number of iterations for rjd.
Further arguments to be passed to or from methods.
Details

Assume that the observed tensor-valued time series comes from a tensorial BSS model where the
sources have constant means over time but the component variances change in time. Then TNSS-
JD first standardizes the series from all modes and then estimates the non-stationary sources by
dividing the time scale into K intervals and jointly diagonalizing the covariance matrices of the K
intervals within each mode.

Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S Array of the same size as X containing the independent components.
W List containing all the unmixing matrices.

K The number of intervals.

n.cuts The interval cutoffs.

Xmu The data location.

datatype Character string with value "ts". Relevant for plot. tbss.
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Author(s)

Joni Virta

References

Virta J., Nordhausen K. (2017): Blind source separation for nonstationary tensor-valued time se-
ries, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP),
doi: 10.1109/MLSP.2017.8168122

See Also

NSS.SD, NSS.JD, NSS.TD. JD, tNSS.SD, tNSS.TD.JD

Examples

# Create innovation series with block-wise changing variances

nl <- 200
n2 <- 500
n3 <- 300

n <-nl+n2+n3
innov1l <- c(rnorm(nl, @, 1), rnorm(n2, @, 3), rnorm(n3, @, 5))
innov2 <- c(rnorm(nl, @, 1), rnorm(n2, @, 5), rnorm(n3, @, 3))
innov3 <- c(rnorm(n1, @, 5), rnorm(n2, @, 3), rnorm(n3, @, 1))
innov4 <- c(rnorm(nl, @, 5), rnorm(n2, @, 1), rnorm(n3, @, 3))

# Generate the observations

vecx <- cbind(as.vector(arima.sim(n = n, list(ar = 0.8), innov = innovl)),
as.vector(arima.sim(n = n, list(ar = c(0.5, 0.1)), innov = innov2)),
as.vector(arima.sim(n = n, list(ma = -0.7), innov = innov3)),
as.vector(arima.sim(n = n, list(ar = 0.5, ma = -0.5), innov = innov4)))

# Vector to tensor

tenx <- t(vecx)

dim(tenx) <- c(2, 2, n)

# Run TNSS-JD

res <- tNSS.JD(tenx, K = 6)

ressw

res <- tNSS.JD(tenx, K = 12)

ressw

tNSS.SD NSS-SD Method for Tensor-Valued Time Series
Description

Estimates the non-stationary sources of a tensor-valued time series using separation information
contained in two time intervals.


https://doi.org/10.1109/MLSP.2017.8168122
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Usage

tNSS.SD(x, n.cuts = NULL)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
n.cuts Either a 3-vector of interval cutoffs (the cutoffs are used to define the two inter-
vals that are open below and closed above, e.g. (a, b]) or NULL (the time range is
sliced into two parts of equal size).
Details

Assume that the observed tensor-valued time series comes from a tensorial BSS model where the
sources have constant means over time but the component variances change in time. Then TNSS-
SD estimates the non-stationary sources by dividing the time scale into two intervals and jointly
diagonalizing the covariance matrices of the two intervals within each mode.

Value

A list with class ’tbss’, inheriting from class "bss’, containing the following components:

S Array of the same size as x containing the independent components.

W List containing all the unmixing matrices.

EV Eigenvalues obtained from the joint diagonalization.

n.cuts The interval cutoffs.

Xmu The data location.

datatype Character string with value "ts". Relevant for plot. tbss.
Author(s)

Joni Virta
References

Virta J., Nordhausen K. (2017): Blind source separation for nonstationary tensor-valued time se-
ries, 2017 1IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP),
doi: 10.1109/MLSP.2017.8168122

See Also

NSS.SD, NSS.JD, NSS.TD. JD, tNSS.JD, tNSS.TD.JD


https://doi.org/10.1109/MLSP.2017.8168122
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Examples

# Create innovation series with block-wise changing variances

# 9 smooth variance structures
var_1 <- function(n){

t <- 1:n

return(l + cos((2*pixt)/n)*sin((2x150%t)/(nxpi)))
3

var_2 <- function(n){

t <- 1:n

return(1 + sin((2*pixt)/n)*cos((2*x150*t)/(nxpi)))
3

var_3 <- function(n){

t <- 1:n

return(0.5 + 8*exp((n+1)"2/(4*t*x(t - n - 1))))
3

var_4 <- function(n){

t <- 1:n

return(3.443 - 8*xexp((n+1)*2/(4*tx(t - n - 1))))
3

var_5 <- function(n){

t <- 1:n

return(@.5 + @.5xgamma(10)/(gamma(7)*gamma(3))*(t/(n + 1))*(7 - 1)*(1 - t/(n + 1))*(3 - 1))
3

var_6 <- function(n){
t <- 1:n
res <- var_5(n)
return(rev(res))

}

var_7 <- function(n){
t <- 1:n
return(@.2+2xt/(n + 1))
3

var_8 <- function(n){

t <- 1:n

return(@.2+2x(n + 1 - t)/(n + 1))
3

var_9 <- function(n){

t <- 1:n

return(1.5 + cos(4*pi*xt/n))
3

# Innovation series
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n <- 1000

innov1l <- c(rnorm(n,
innov2 <- c(rnorm(n,
innov3 <- c(rnorm(n,
innov4 <- c(rnorm(n,
innov5 <- c(rnorm(n,
innov6 <- c(rnorm(n,
innov7 <- c(rnorm(n,
innov8 <- c(rnorm(n,
innov9 <- c(rnorm(n,

sqrt(var_1(n))))
sqrt(var_2(n))))
sqrt(var_3(n))))
sqrt(var_4(n))))
sqrt(var_5(n))))
sqrt(var_6(n))))
sqrt(var_7(n))))
sqrt(var_8(n))))
sqrt(var_9(n))))

[SENSEESEES IS B IS E SIS

# Generate the observations

vecx <- cbind(as.vector(arima.sim(n = n, list(ar = 0.9), innov = innovl)),
as.vector(arima.sim(n = n, list(ar = c(0, 0.2, 0.1, -0.1, 0.7)),
innov = innov2)),
as.vector(arima.sim(n = n, list(ar = c(0.5, 0.3, -0.2, 0.1)),
innov = innov3)),
as.vector(arima.sim(n = n, list(ma = -0.5), innov = innov4)),
as.vector(arima.sim(n = n, list(ma = c(0.1, 0.1, 0.3, 0.5, 0.8)),
innov = innovb)),
as.vector(arima.sim(n = n, list(ma = c(0.5, -0.5, 0.5)), innov = innov6)),
as.vector(arima.sim(n = n, list(ar = c(-0.5, -0.3), ma = c(-0.2, 0.1)),
innov = innov7)),

as.vector(arima.sim(n =n, list(ar = c(@, -0.1, -0.2, 0.5), ma=c(@, 0.1, 0.1, 0.6)),

innov = innov8)),
as.vector(arima.sim(n = n, list(ar = c(0.8), ma = c(0.7, 0.6, 0.5, 0.1)),
innov = innov9)))

# Vector to tensor
tenx <- t(vecx)
dim(tenx) <- c(3, 3, n)

# Run TNSS-SD
res <- tNSS.SD(tenx)
res$w

tNSS.TD.JD TNSS-TD-JD Method for Tensor-Valued Time Series

Description
Estimates the non-stationary sources of a tensor-valued time series using separation information
contained in several time intervals and lags.

Usage

tNSS.TD.JD(x, K = 12, lags = 0:12, n.cuts = NULL, eps = 1e-06, maxiter = 100, ...)
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Arguments

X

lags

n.cuts

eps

maxiter

Details

33

Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.

The number of equisized intervals into which the time range is divided. If the
parameter n.cuts is non-NULL it takes preference over this argument.

The lag set for the autocovariance matrices.

Either a interval cutoffs (the cutoffs are used to define the two intervals that are
open below and closed above, e.g. (a,b]) or NULL (the parameter K is used to
define the the amount of intervals).

Convergence tolerance for rjd.
Maximum number of iterations for rjd.

Further arguments to be passed to or from methods.

Assume that the observed tensor-valued time series comes from a tensorial BSS model where the
sources have constant means over time but the component variances change in time. Then TNSS-
TD-JD first standardizes the series from all modes and then estimates the non-stationary sources
by dividing the time scale into K intervals and jointly diagonalizing the autocovariance matrices
(specified by lags) of the K intervals within each mode.

Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S

W

K

lags
n.cuts
Xmu

datatype

Author(s)

Joni Virta

References

Array of the same size as x containing the independent components.
List containing all the unmixing matrices.

The number of intervals.

The lag set.

The interval cutoffs.

The data location.

Character string with value "ts". Relevant for plot. tbss.

Virta J., Nordhausen K. (2017): Blind source separation for nonstationary tensor-valued time se-
ries, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP),
doi: 10.1109/MLSP.2017.8168122

See Also

NSS.SD, NSS.JD, NSS.TD. JD, tNSS.SD, tNSS.JD
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Examples

# Create innovation series with block-wise changing variances

nl <- 200
n2 <- 500
n3 <- 300

n<-nl+n2+n3

innov1l <- c(rnorm(nl, @, 1), rnorm(n2, @, 3), rnorm(n3, @, 5))
innov2 <- c(rnorm(nl, @, 1), rnorm(n2, @, 5), rnorm(n3, @, 3))
innov3 <- c(rnorm(n1, @, 5), rnorm(n2, @, 3), rnorm(n3, @, 1))
innov4 <- c(rnorm(nl, @, 5), rnorm(n2, @, 1), rnorm(n3, @, 3))

# Generate the observations

vecx <- cbind(as.vector(arima.sim(n =
as.vector(arima.sim(n =
as.vector(arima.sim(n =
as.vector(arima.sim(n =

, list(ar = 0.8), innov = innovl)),

, list(ar = ¢c(0.5, @.1)), innov = innov2)),

, list(ma = -0.7), innov = innov3)),

, list(ar = 0.5, ma = -0.5), innov = innov4)))

# Vector to tensor
tenx <- t(vecx)
dim(tenx) <- c(2, 2, n)

# Run TNSS-TD-JD
res <- tNSS.TD.JD(tenx)
res$w

res <- tNSS.TD.JD(tenx, K = 6, lags = 0:6)
res$w

tPCA PCA for Tensor-Valued Observations

Description

Computes the tensorial principal components.

Usage
tPCA(x, p = NULL, d = NULL)

Arguments
X Numeric array of an order at least three. It is assumed that the last dimension
corresponds to the sampling units.
p A vector of the percentages of variation per each mode the principal components
should explain.
d A vector of the exact number of components retained per each mode. At most

one of this and the previous argument should be supplied.
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Details

The observed tensors (array) X of size p; X p2 X ... X p, measured on [V units are projected from
each mode on the eigenspaces of the m-mode covariance matrices of the corresponding modes. As
in regular PCA, by retaining only some subsets of these projections (indices) with respective sizes
di,ds, ...d,, a dimension reduction can be carried out, resulting into observations tensors of size
di; X dg X ... x d,. InR the sample of X is saved as an array of dimensions pi, ps,...,p,, N.

Value

A list containing the following components:

S Array of the same size as x containing the principal components.
u List containing the rotation matrices
D List containing the amounts of variance explained by each index in each mode.
p_comp The percentages of variation per each mode that the principal components ex-
plain.
Xmu The data location.
Author(s)
Joni Virta
References

Virta, J., Taskinen, S. and Nordhausen, K. (2016), Applying fully tensorial ICA to fMRI data, Signal
Processing in Medicine and Biology Symposium (SPMB), 2016 IEEE,
doi: 10.1109/SPMB.2016.7846858

Examples

# Digit data example

data(zip.train)
x <- zip.train

rows <- which(x[, 11 == 0 | x[, 1] == 1)
x0 <- x[rows, 2:257]
y0 <- x[rows, 1] + 1

X0 <- t(x0)
dim(x@) <- c(16, 16, 2199)

tpca <- tPCA(xQ, d = c(2, 2))
pairs(t(apply(tpcas$sS, 3, c)), col=y0)


https://doi.org/10.1109/SPMB.2016.7846858
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tPCAladle

Ladle Estimate for tPCA

Description

For r-dimensional tensors, the Ladle estimate for tPCA assumes that for a given mode m, the last
Pm — k., modewise eigenvalues are equal. Combining information from the eigenvalues and eigen-
vectors of the m-mode covariance matrix the ladle estimator yields estimates for k1, ..., k..

Usage

tPCAladle(x, n.boot = 200, ncomp = NULL)

Arguments

X

n.boot

ncomp

Details

array of an order at least two with the last dimension corresponding to the sam-
pling units.

number of bootstrapping samples to be used.

vector giving the number of components among which the ladle estimator is to
be searched for each mode. The default follows the recommendation of Luo and
Li 2016.

The model here assumes that the eigenvalues of the m-mode covariance matrix are of the form
Mm = oo 2 Aeoom > Akytl,m = ... = Ap,,.m and the goal is to estimate the value of k,,, for all
modes. The ladle estimate for this purpose combines the values of the scaled eigenvalues and the
variation of the eigenvectors based on bootstrapping. The idea there is that for distinct eigenvales
the variation of the eigenvectors is small and for equal eigenvalues the corresponding eigenvectors
have large variation.

This measure is then computed assuming k,,,=0,..., ncomp[m] and the ladle estimate for k,, is the
value where the measure takes its minimum.

Value

A list of class ‘tladle‘ containing:

u
D
S
ResMode

list containing the modewise rotation matrices.

list containing the modewise eigenvalues.

array of the same size as x containing the principal components.
a list with the modewise results which are lists containing:

mode label for the mode.
k the estimated value of k.

fn vector giving the measures of variation of the eigenvectors using the boot-
strapped eigenvectors for the different number of components.
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phin normalized eigenvalues.
lambda the unnormalized eigenvalues used to compute phin.

gn the main criterion for the ladle estimate - the sum of fn and phin. k is the
value where gn takes its minimum.

comp vector from O to the number of dimensions to be evaluated.

Xxmu the data location
data.name string with the name of the input data
method string tPCA.

Author(s)

Klaus Nordhausen

References

Koesner, C, Nordhausen, K. and Virta, J. (2019), Estimating the signal tensor dimension using
tensorial PCA. Manuscript.

Luo, W. and Li, B. (2016), Combining Eigenvalues and Variation of Eigenvectors for Order Deter-
mination, Biometrika, 103, 875-887. <doi:10.1093/biomet/asw051>

See Also
tPCA, ggtladleplot

Examples

library(ICtest)
n <- 200
sig <- 0.6

Z <- rbind(sqrt(@.7)*rt(n,df=5)*sqrt(3/5),
sqrt(0.3)xrunif(n,-sqrt(3),sqrt(3)),
sqrt(0.3)*(rchisq(n,df=3)-3)/sqrt(6),
sqrt(0.9)*(rexp(n)-1),
sqrt(@.1)*rlogis(n,@,sqrt(3)/pi),
sqrt(0.5)x(rbeta(n,2,2)-0.5)*sqrt(20)

)

dim(Z) <- c(3, 2, n)

Ul <= rorth(12)[,1:3]

U2 <- rorth(8)[,1:2]

U <- list(ui=U1, U2=U2)

Y <- tensorTransform2(Z,U,1:2)

EPS <- array(rnorm(12x8xn, mean=0, sd=sig), dim=c(12,8,n))
X <-Y + EPS

TEST <- tPCAladle(X)
TEST
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ggtladleplot (TEST)

tPP Projection pursuit for Tensor-Valued Observations

Description

Applies mode-wise projection pursuit to tensorial data with respect to the chosen measure of inter-
estingness.

Usage

tPP(x, nl = "pow3", eps = le-6, maxiter = 100)

Arguments
X Numeric array of an order at least three. It is assumed that the last dimension
corresponds to the sampling units.
nl The chosen measure of interestingness/objective function. Current choices in-
clude pow3 (default) and skew, see the details below
eps The convergence tolerance of the iterative algortihm.
maxiter The maximum number of iterations.
Details

The observed tensors (arrays) X of size p; X ps X ... X p, measured on NV units are standardized
from each mode and then projected mode-wise onto the directions that maximize the Lo-norm of
the vector of the values E[G (u} X XTuy)] — E[G(c?)], where G is the chosen objective function
and c? obeys the chi-squared distribution with ¢ degress of freedom. Currently the function al-
lows the choices G(z) = 22 (pow3) and G(x) = x\/7 (skew), which correspond roughly to the
maximization of kurtosis and skewness, respectively. The algorithm is the multilinear extension of
FastICA, where the names of the objective functions also come from.

Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S Array of the same size as x containing the estimated components.

W List containing all the unmixing matrices.

iter The numbers of iteration used per mode.

Xmu The data location.

datatype Character string with value "iid". Relevant for plot. tbss.
Author(s)

Joni Virta
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References

Nordhausen, K. and Virta, J. (2018), Tensorial projection pursuit, Manuscript in preparation.

Hyvarinen, A. (1999) Fast and robust fixed-point algorithms for independent component analysis,
IEEE transactions on Neural Networks 10.3: 626-634.

See Also

fICA, NGPP

Examples

n <- 1000

S <- t(cbind(rexp(n)-1,
rnorm(n),
runif(n, -sqrt(3), sqrt(3)),
rt(n,5)*sqrt(0.6),
(rchisq(n,1)-1)/sqrt(2),
(rchisq(n,2)-2)/sqrt(4)))

dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tpp <- tPP(X)
MD(tpp$WLL111, A1)

MD(tpp$WLL[21], A2)
tMD(tpp$W, list(Al, A2))

tSIR SIR for Tensor-Valued Observations

Description

Computes the tensorial SIR.

Usage

tSIR(x, y, h =10, ...)
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Arguments
X Numeric array of an order at least three. It is assumed that the last dimension
corresponds to the sampling units.
y A numeric or factor response vector.
h The number of slices. If y is a factor the number of factor levels is automatically
used as the number of slices.
Arguments passed on to quantile.
Details

Computes the mode-wise sliced inverse regression (SIR) estimators for a tensor-valued data set and
a univariate response variable.

Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S Array of the same size as x containing the predictors.

W List containing all the unmixing matrices.

Xmu The data location.

datatype Character string with value "iid". Relevant for plot. tbss.
Author(s)

Joni Virta, Klaus Nordhausen

Examples

data(zip.train)
X <- zip.train

rows <- which(x[, 11 == 0 | x[, 1] == 3)
X0 <- x[rows, 2:257]
y0 <- as.factor(x[rows, 1])

X0 <- t(x0)
dim(x@) <- c(16, 16, length(y@))

res <- tSIR(x@, yo0)
plot(res$S[1, 1, 1, res$S[1, 2, 1, col = y0@)
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tSOBI SOBI for Tensor-Valued Time Series

Description

Computes the tensorial SOBI for time series where at each time point a tensor of order 7 is observed.

Usage
tSOBI(x, lags = 1:12, maxiter = 100, eps = 1e-06)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the time.
lags Vector of integers. Defines the lags used for the computations of the autocovari-
ances.
maxiter Maximum number of iterations. Passed on to rjd.
eps Convergence tolerance. Passed on to rjd.
Details
It is assumed that S is a tensor (array) of size p; X p2 X ... X p, measured at time points 1,... 7.
The assumption is that the elements of S are uncorrelated, centered and weakly stationary time
series and are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed time series X . In R the sample of X is saved as an array of dimensions py, p2,...,pr, 1.

tSOBI recovers then based on x the underlying uncorrelated time series S by estimating the r un-
mixing matrices W1, ..., W, using the lagged joint autocovariances specified by lags.

If x is a matrix, that is, » = 1, the method reduces to SOBI and the function calls SOBI.

Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S Array of the same size as x containing the estimated uncorrelated sources.
W List containing all the unmixing matrices
Xmu The data location.
datatype Character string with value "ts". Relevant for plot. tbss.
Author(s)
Joni Virta
References

Virta, J. and Nordhausen, K., (2017), Blind source separation of tensor-valued time series. Signal
Processing 141, 204-216, doi: 10.1016/j.sigpro.2017.06.008


https://doi.org/10.1016/j.sigpro.2017.06.008
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See Also
SOBI, rjd

Examples

n <- 1000
S <- t(cbind(as.vector(arima.sim(n = n, list(ar = 0.9))),
as.vector(arima.sim(n = n, list(ar = -0.9))),
as.vector(arima.sim(n = n, list(ma = c(0.5, -0.5)))),
as.vector(arima.sim(n = n, list(ar = c(-0.5, -0.3)))),
as.vector(arima.sim(n = n, list(ar = c(0.5, -0.3, 0.1, -0.1), ma=c(0.7, -0.3)))),
as.vector(arima.sim(n =n, list(ar = c(-0.7, 0.1), ma=c(0.9, 0.3, 0.1, -0.1))))))
dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tsobi <- tSOBI(X)
MD(tsobi$WL[111, A1)

MD(tsobi$W[[2]]1, A2)
tMD(tsobi$W, list(A1, A2))

tTUCKER Tucker (2) Transformation for a Tensor

Description

This is a Tucker (2) transformation of a data tensor where the sampling dimension is uncompressed.
The transfromation is known also under many different names like multilinear principal components
analysis or generalized low rank approximation of matrices if the tensorial data is matrixvalued.

Usage

tTUCKER(x, ranks, maxiter = 1000, eps = 1e-06)

Arguments
X array with 4+ 1 dimensions where the last dimension corresponds to the sam-
pling units.
ranks vector of length r giving the dimensions of the compressed core tensor.
maxiter maximum number of iterations for the algorithm.

eps convergence tolerance.
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Details
As initial solution tPCA is used and iterated using an alternating least squares (ALS) approach,
known also as higher order orthogonal iteration (HOOI).

Value

A list containing the following components:

S array of the compressed tensor.
u list containing the rotation matrices.
Xmu the data location.
norm2xc squared norm of the original data tensor after centering.
norm2rxc squared norm of the reconstructed (centered) data tensor.
norm2ratio the ratio norm2rxc/norm2xc.
mEV list containing the eigenvalues from the m-mode covariance matrix when all but
the relevant mode have be compressed.
tPCA The output from tPCA which was used as initial value.
Author(s)

Klaus Nordhausen

References

Lu, H., Plataniotis, K. and Venetsanopoulos, A. (2008), MPCA: Multilinear principal compo-
nent analysis of tensor objects, IEEE Transactions on Neural Networks, 19, 18-39. doi: 10.1109/
TNN.2007.901277

Lietzen, N., Nordhausen, K. and Virta, J. (2019), Statistical analysis of second-order tensor decom-
positions, manuscript.

See Also
tPCA

Examples

data(zip.train)
X <- zip.train

rows <- which(x[, 11 ==0 | x[, 1] == 1)
X0 <- x[rows, 2:257]
y0 <- x[rows, 1] + 1

X0 <- t(x0)
dim(x@) <- c(16, 16, 2199)

tucker <- tTUCKER(xQ, ranks = c(2, 2), eps=1e-03)
pairs(t(apply(tuckers$S, 3, c)), col=ye@)


https://doi.org/10.1109/TNN.2007.901277
https://doi.org/10.1109/TNN.2007.901277
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# To approximate the original data one uses then
x0r <- tensorTransform2(tucker$S, tucker$u)

zip.test Handwritten Digit Recognition Data

Description
This .RD-file and the corresponding data set are originally from the R-package ElemStatlearn
which has now been removed from CRAN.

This example is a character recognition task: classification of handwritten numerals. This problem
captured the attention of the machine learning and neural network community for many years, and
has remained a benchmark problem in the field.

Usage

data(zip.test)

Format

The format is: num [1:2007, 1:257]1963 6600069 ...

Details

Normalized handwritten digits, automatically scanned from envelopes by the U.S. Postal Service.
The original scanned digits are binary and of different sizes and orientations; the images here have
been deslanted and size normalized, resulting in 16 x 16 grayscale images (Le Cun et al., 1990).

The data are in two gzipped files, and each line consists of the digit id (0-9) followed by the 256
grayscale values.

There are 7291 training observations and 2007 test observations, distributed as follows: 01234 5
6 7 8 9 Total Train 1194 1005 731 658 652 556 664 645 542 644 7291 Test 359 264 198 166 200
160 170 147 166 177 2007

or as proportions: 0 1234567 89 Train 0.16 0.14 0.1 0.09 0.09 0.08 0.09 0.09 0.07 0.09 Test
0.18 0.13 0.1 0.08 0.10 0.08 0.08 0.07 0.08 0.09

The test set is notoriously "difficult", and a 2.5 excellent. These data were kindly made available by
the neural network group at AT&T research labs (thanks to Yann Le Cunn).

References

Kjetil B Halvorsen (package maintainer) (2019), R-package ElemStatLearn: Data Sets, Functions
and Examples from the Book: "The Elements of Statistical Learning, Data Mining, Inference, and
Prediction" by Trevor Hastie, Robert Tibshirani and Jerome Friedman
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zip.train Handwritten Digit Recognition Data

Description
This .RD-file and the corresponding data set are originally from the R-package ElemStatl.earn
which has now been removed from CRAN.

This example is a character recognition task: classification of handwritten numerals. This problem
captured the attention of the machine learning and neural network community for many years, and
has remained a benchmark problem in the field.

Usage

data(zip.train)

Format

The format is: num [1:7291, 1:257]6547363101 ...

Details

Normalized handwritten digits, automatically scanned from envelopes by the U.S. Postal Service.
The original scanned digits are binary and of different sizes and orientations; the images here have
been deslanted and size normalized, resulting in 16 x 16 grayscale images (Le Cun et al., 1990).

The data are in two gzipped files, and each line consists of the digit id (0-9) followed by the 256
grayscale values.

There are 7291 training observations and 2007 test observations, distributed as follows: 0 1 23 4 5
6 7 8 9 Total Train 1194 1005 731 658 652 556 664 645 542 644 7291 Test 359 264 198 166 200
160 170 147 166 177 2007

or as proportions: 0 1234567 89 Train 0.16 0.14 0.1 0.09 0.09 0.08 0.09 0.09 0.07 0.09 Test
0.18 0.13 0.1 0.08 0.10 0.08 0.08 0.07 0.08 0.09

The test set is notoriously "difficult”, and a 2.5 excellent. These data were kindly made available by
the neural network group at AT&T research labs (thanks to Yann Le Cunn).

References

Kjetil B Halvorsen (package maintainer) (2019), R-package ElemStatLearn: Data Sets, Functions
and Examples from the Book: "The Elements of Statistical Learning, Data Mining, Inference, and
Prediction" by Trevor Hastie, Robert Tibshirani and Jerome Friedman

Examples

data(zip.train

)

findRows <- function(zip, n) {
# Find n (random) rows with zip representing 0,1,2,...,9
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res <- vector(length=10, mode="list")
names(res) <- 0:9
ind <- zip[,1]
for (j in 0:9) {

res[[j+1]] <- sample( which(ind==j), n ) }
return(res) }

# Making a plot like that on page 4:

digits <- vector(length=10, mode="list")

names(digits) <- 0:9

rows <- findRows(zip.train, 6)

for (j in 0:9)

digits[[j+1]] <- do.call("cbind”, lapply(as.list(rows[[j+11]),

function(x) zip2image(zip.train, x)) )

}

im <- do.call("rbind”, digits)

image(im, col=gray(256:0/256), zlim=c(@,1), xlab="", ylab="" )

zip2image function to convert row of zip file to format used by image()

Description

This .RD-file and the corresponding function are originally from the R-package ElemStatLearn
which has now been removed from CRAN.

This is a utility function converting zip.train/zip.test data to format useful for plotting with the
function image.

Usage

zip2image(zip, line)

Arguments
zip zip.trainor zip. test.
line row of matrix to take
Value

16 x 16 matrix suitable as argument for image.

Author(s)

Kjetil Halvorsen



zip2image 47

References

Kjetil B Halvorsen (package maintainer) (2019), R-package ElemStatLearn: Data Sets, Functions
and Examples from the Book: "The Elements of Statistical Learning, Data Mining, Inference, and
Prediction" by Trevor Hastie, Robert Tibshirani and Jerome Friedman

Examples

## See example section of help file for zip.train
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