Markdown Test Output

Lukas Burk

2020-06-01 UTC

Descriptives

tadaa_nom(ngo$geschl, ngo$abschalt, print = "markdown")
\(\chi^2\) Cramer’s V \(\lambda_x\) \(\lambda_y\) \(\lambda_{xy}\) c
5.35 0.15 0.15 0.03 0.09 0.15



tadaa_ord(ngo$urteil, ngo$leistung, print = "markdown")
\(\gamma\) \(D_x\) \(D_y\) \(D_{xy}\) \(\tau_A\) \(\tau_B\) \(\tau_C\)
0.65 0.51 0.51 0.51 0.39 0.51 0.43



Omnibus Tests

tadaa_aov

One-Way

tadaa_aov(deutsch ~ jahrgang, data = ngo, type = 1, print = "markdown")

Table 5: One-Way ANOVA: Using Type I Sum of Squares

Term df SS MS F p \(\eta^2\) Cohen’s f
jahrgang 2 52.57 26.28 6.54 < .01 0.05 0.23
Residuals 247 993.23 4.02
Total 249 1045.8 30.3



tadaa_aov(deutsch ~ jahrgang, data = ngo, type = 2, print = "markdown")

Table 6: One-Way ANOVA: Using Type II Sum of Squares

Term df SS MS F p \(\eta^2\) Cohen’s f
jahrgang 2 52.57 26.28 6.54 < .01 0.05 0.23
Residuals 247 993.23 4.02
Total 249 1045.8 30.3



tadaa_aov(deutsch ~ jahrgang, data = ngo, type = 3, print = "markdown")

Table 7: One-Way ANOVA: Using Type III Sum of Squares

Term df SS MS F p \(\eta^2\) Cohen’s f
jahrgang 2 52.57 26.28 6.54 < .01 0.05 0.23
Residuals 247 993.23 4.02
Total 249 1045.8 30.3



Two-Way

tadaa_aov(deutsch ~ jahrgang * geschl, data = ngo, type = 1, print = "markdown")

Table 8: Two-Way ANOVA: Using Type I Sum of Squares

Term df SS MS F p \(\eta_\text{part}^2\) Cohen’s f
geschl 1 66.56 66.56 18.09 < .001 0.07 0.27
jahrgang 2 52.57 26.28 7.14 < .001 0.06 0.24
jahrgang:geschl 2 28.85 14.42 3.92 < .05 0.03 0.18
Residuals 244 897.82 3.68
Total 249 1045.8 110.95



tadaa_aov(deutsch ~ jahrgang * geschl, data = ngo, type = 2, print = "markdown")

Table 9: Two-Way ANOVA: Using Type II Sum of Squares

Term df SS MS F p \(\eta_\text{part}^2\) Cohen’s f
geschl 1 66.56 66.56 18.09 < .001 0.07 0.27
jahrgang 2 52.57 26.28 7.14 < .001 0.06 0.24
jahrgang:geschl 2 28.85 14.42 3.92 < .05 0.03 0.18
Residuals 244 897.82 3.68
Total 249 1045.8 110.95



tadaa_aov(deutsch ~ jahrgang * geschl, data = ngo, type = 3, print = "markdown")

Table 10: Two-Way ANOVA: Using Type III Sum of Squares

Term df SS MS F p \(\eta_\text{part}^2\) Cohen’s f
geschl 1 71.4 71.4 19.41 < .001 0.07 0.28
jahrgang 2 52.57 26.28 7.14 < .001 0.06 0.24
jahrgang:geschl 2 28.85 14.42 3.92 < .05 0.03 0.18
Residuals 244 897.82 3.68
Total 249 1050.63 115.79



Testing term sort order

set.seed(0)
data.frame(A = rnorm(100, mean = c(25, 30, 45)),
           G = c(rep("a", 50), rep("b", 50)),
           R = sample(letters[3:6], size = 100, TRUE),
           Z = sample(letters[7:8], size = 100, TRUE)) %>%
  tadaa_aov(data = ., formula = A ~ G * R * Z, type = 3, print = "markdown")
## Warning in tadaa_aov(data = ., formula = A ~ G * R * Z, type = 3, print =
## "markdown"): Some independent variables are not factors, auto-converting...
## Warning in tadaa_aov(data = ., formula = A ~ G * R * Z, type = 3, print =
## "markdown"): Converting G to factor, please check your results
## Warning in tadaa_aov(data = ., formula = A ~ G * R * Z, type = 3, print =
## "markdown"): Converting R to factor, please check your results
## Warning in tadaa_aov(data = ., formula = A ~ G * R * Z, type = 3, print =
## "markdown"): Converting Z to factor, please check your results

Table 11: Factorial ANOVA: Using Type III Sum of Squares

Term df SS MS F p \(\eta_\text{part}^2\) Cohen’s f
G 1 66.51 66.51 0.88 .35 0.01 0.1
G:R 3 184.97 61.66 0.82 .488 0.03 0.17
G:R:Z 3 22.77 7.59 0.1 .959 0 0.06
G:Z 1 7.73 7.73 0.1 .75 0 0.03
R 3 687.47 229.16 3.04 < .05 0.1 0.33
R:Z 3 137.54 45.85 0.61 .612 0.02 0.15
Z 1 0.68 0.68 0.01 .925 0 0.01
Residuals 84 6336.13 75.43
Total 99 7443.79 494.59



Kruskal-Wallis

tadaa_kruskal(stunzahl ~ jahrgang, data = ngo, print = "markdown")

Table 12: Kruskal-Wallis Rank Sum Test

\(\chi^2\) df p
20.89 2 < .001



Two-Sample Tests

tadaa_chisq

tadaa_chisq(ngo, abschalt, geschl, print = "markdown")
## Warning: Unknown or uninitialised column: `cramers`.

Table 13: Pearson’s Chi-squared test with Yates’ continuity correction

\(\chi^2\) p df Odds Ratio \(\phi\)
4.77 < .05 1 0.55 0.15



tadaa_t.test

tadaa_t.test(data = ngo, response = deutsch, group = geschl, print = "markdown")

Table 14: Welch Two Sample t-test with alternative hypothesis: \(\mu_1 \neq \mu_2\)

Diff \(\mu_1\) Männlich \(\mu_2\) Weiblich t SE df \(CI_{95\%}\) p Cohen's d
-1.03 7.09 8.12 -4.11 0.25 247.43 (-1.53 - -0.54) < .001 -0.52



tadaa_t.test(data = ngo, response = deutsch, group = geschl, paired = TRUE,
             print = "markdown")

Table 15: Paired t-test with alternative hypothesis: \(\mu_1 \neq \mu_2\)

Diff \(\mu_1\) Männlich \(\mu_2\) Weiblich t SE df \(CI_{95\%}\) p Cohen's d
-1.03 7.09 8.12 -4.21 0.25 124 (-1.52 - -0.55) < .001 -0.38



tadaa_t.test(data = ngo, response = deutsch, group = geschl, var.equal = FALSE,
             print = "markdown")

Table 16: Welch Two Sample t-test with alternative hypothesis: \(\mu_1 \neq \mu_2\)

Diff \(\mu_1\) Männlich \(\mu_2\) Weiblich t SE df \(CI_{95\%}\) p Cohen's d
-1.03 7.09 8.12 -4.11 0.25 247.43 (-1.53 - -0.54) < .001 -0.52



tadaa_t.test(data = ngo, response = deutsch, group = geschl, 
             direction = "less", print = "markdown")

Table 17: Welch Two Sample t-test with alternative hypothesis: \(\mu_1 < \mu_2\)

Diff \(\mu_1\) Männlich \(\mu_2\) Weiblich t SE df \(CI_{95\%}\) p Cohen's d
-1.03 7.09 8.12 -4.11 0.25 247.43 (-Inf - -0.62) < .001 -0.52



tadaa_t.test(data = ngo, response = deutsch, group = geschl, 
             direction = "greater", print = "markdown")

Table 18: Welch Two Sample t-test with alternative hypothesis: \(\mu_1 > \mu_2\)

Diff \(\mu_1\) Männlich \(\mu_2\) Weiblich t SE df \(CI_{95\%}\) p Cohen's d
-1.03 7.09 8.12 -4.11 0.25 247.43 (-1.45 - Inf) > .99 -0.52



tadaa_wilcoxon

tadaa_wilcoxon(ngo, deutsch, geschl, print = "markdown")

Table 19: Wilcoxon rank sum test with continuity correction with alternative hypothesis: \(M_1 \neq M_2\)

Difference \(M_1\) Männlich \(M_2\) Weiblich W p
-1 7 8 5620.5 < .001



tadaa_wilcoxon(ngo, deutsch, geschl, 
               direction = "less", print = "markdown")

Table 20: Wilcoxon rank sum test with continuity correction with alternative hypothesis: \(M_1 < M_2\)

Difference \(M_1\) Männlich \(M_2\) Weiblich W p
-1 7 8 5620.5 < .001



tadaa_wilcoxon(ngo, deutsch, geschl, paired = TRUE, print = "markdown")

Table 21: Wilcoxon signed rank test with continuity correction with alternative hypothesis: \(M_1 \neq M_2\)

Difference \(M_1\) Männlich \(M_2\) Weiblich W p
-1 7 8 1527 < .001



tadaa_wilcoxon(ngo, deutsch, geschl, paired = TRUE, 
               direction = "less", print = "markdown")

Table 22: Wilcoxon signed rank test with continuity correction with alternative hypothesis: \(M_1 < M_2\)

Difference \(M_1\) Männlich \(M_2\) Weiblich W p
-1 7 8 1527 < .001



One-Sample Tests

z-Test

# z: known sigma
tadaa_one_sample(data = ngo, x = deutsch, mu = 7.5, sigma = 2, print = "markdown")

Table 23: z-Test with alternative hypothesis: \(\mu_1 \neq\) 7.5

\(\mu_1\) deutsch SE z \(CI_{95\%}\) p Cohen's d
7.6 0.13 0.82 (6.59 - 8.62) .411 0.05



tadaa_one_sample(data = ngo, x = deutsch, mu = 8, sigma = 2, 
                 direction = "less", print = "markdown")

Table 24: z-Test with alternative hypothesis: \(\mu_1 <\) 8

\(\mu_1\) deutsch SE z \(CI_{95\%}\) p Cohen's d
7.6 0.13 -3.13 (6.59 - 8.62) < .001 -0.2



tadaa_one_sample(data = ngo, x = deutsch, mu = 7, sigma = 2, 
                 direction = "greater", print = "markdown")

Table 25: z-Test with alternative hypothesis: \(\mu_1 >\) 7

\(\mu_1\) deutsch SE z \(CI_{95\%}\) p Cohen's d
7.6 0.13 4.78 (6.59 - 8.62) < .001 0.3



t-Test

tadaa_one_sample(data = ngo, x = deutsch, mu = 7.5, print = "markdown")

Table 26: One Sample t-test with alternative hypothesis: \(\mu_1 \neq\) 7.5

\(\mu_1\) deutsch df SE t \(CI_{95\%}\) p Cohen's d
7.6 249 0.13 0.8 (7.35 - 7.86) .423 0.05



tadaa_one_sample(data = ngo, x = deutsch, mu = 8, 
                 direction = "less", print = "markdown")

Table 27: One Sample t-test with alternative hypothesis: \(\mu_1 <\) 8

\(\mu_1\) deutsch df SE t \(CI_{95\%}\) p Cohen's d
7.6 249 0.13 -3.06 (7.35 - 7.86) < .01 -0.19



tadaa_one_sample(data = ngo, x = deutsch, mu = 7, 
                 direction = "greater", print = "markdown")

Table 28: One Sample t-test with alternative hypothesis: \(\mu_1 >\) 7

\(\mu_1\) deutsch df SE t \(CI_{95\%}\) p Cohen's d
7.6 249 0.13 4.66 (7.35 - 7.86) < .001 0.29



Assumptions

Levene

tadaa_levene(ngo, deutsch ~ jahrgang, print = "markdown")

Table 29: Levene's Test for Homogeneity of Variance (Brown-Forsythe Adaption)

Term df F p
jahrgang 2 0.41 0.66
Residuals 247



tadaa_levene(ngo, deutsch ~ jahrgang, center = "mean", print = "markdown")

Table 30: Levene's Test for Homogeneity of Variance

Term df F p
jahrgang 2 0.27 0.76
Residuals 247



tadaa_levene(ngo, deutsch ~ jahrgang * geschl, print = "markdown")

Table 31: Levene's Test for Homogeneity of Variance (Brown-Forsythe Adaption)

Term df F p
jahrgang:geschl 5 0.61 0.69
Residuals 244