R library for working with Table Schema.
Table class for working with data and schemaSchema class for working with schemasField class for working with schema fieldsvalidate function for validating schema descriptorsinfer function that creates a schema based on a data sampleIn order to install the latest distribution of R software to your computer you have to select one of the mirror sites of the Comprehensive R Archive Network, select the appropriate link for your operating system and follow the wizard instructions.
For windows users you can:
(Mac) OS X and Linux users may need to follow different steps depending on their system version to install R successfully and it is recommended to read the instructions on CRAN site carefully.
Even more detailed installation instructions can be found in R Installation and Administration manual.
To install RStudio, you can download RStudio Desktop with Open Source License and follow the wizard instructions:
To install the tableschema library it is necessary to install first devtools library to make installation of github libraries available.
Install tableschema.r
# from CRAN version
install.packages("tableschema.r")
# or install the development version from github
devtools::install_github("frictionlessdata/tableschema-r")# Install devtools package if not already
# install.packages("jsonlite")
library(jsonlite)
# Install devtools package if not already
# install.packages("future")
library(future)
# load the library using
library(tableschema.r)Jsonlite package is internally used to convert json data to list objects. The input parameters of functions could be json strings, files or lists and the outputs are in list format to easily further process your data in R environment and exported as desired. The examples below show how to use jsonlite package to convert the output back to json adding indentation whitespace. More details about handling json you can see jsonlite documentation or vignettes here.
Moreover future package is also used to load and create Table and Schema classes asynchronously. To retrieve the actual result of the loaded Table or Schema you have to use value(...) to the variable you stored the loaded Table/Schema. More details about future package and sequential and parallel processing you can find here.
A table is a core concept in a tabular data world. It represents a data with a metadata (Table Schema). Let’s see how we could use it in practice.
Consider we have some local csv file. It could be inline data or remote link - all supported by Table class (except local files for in-brower usage of course). But say it’s data.csv for now:
data/cities.csv
city,location
london,"51.50,-0.11"
paris,"48.85,2.30"
rome,N/A
Let’s create and read a table. We use static Table.load method and table.read method with a keyed option to get list of keyed rows:
def = Table.load('inst/extdata/data.csv')
table = value(def)
# add indentation whitespace to JSON output with jsonlite package
toJSON(table$read(keyed = TRUE), pretty = TRUE) # function from jsonlite package## [
## {
## "city": ["london"],
## "location": ["\"51.50 -0.11\""]
## },
## {
## "city": ["paris"],
## "location": ["\"48.85 2.30\""]
## },
## {
## "city": ["rome"],
## "location": ["N/A"]
## }
## ]
## [[1]]
## [1] "city"
##
## [[2]]
## [1] "location"
As we could see our locations are just a strings. But it should be geopoints. Also Rome’s location is not available but it’s also just a N/A string instead of null. First we have to infer Table Schema:
# add indentation whitespace to JSON output with jsonlite package
toJSON(table$infer(), pretty = TRUE) # function from jsonlite package## {
## "fields": [
## {
## "name": ["city"],
## "type": ["string"],
## "format": ["default"]
## },
## {
## "name": ["location"],
## "type": ["string"],
## "format": ["default"]
## }
## ],
## "missingValues": [
## [""]
## ]
## }
## {
## "fields": [
## {
## "name": ["city"],
## "type": ["string"],
## "format": ["default"]
## },
## {
## "name": ["location"],
## "type": ["string"],
## "format": ["default"]
## }
## ],
## "missingValues": [
## [""]
## ]
## }
Let’s fix not available location. There is a missingValues property in Table Schema specification. As a first try we set missingValues to N/A in table$schema$descriptor. Schema descriptor could be changed in-place but all changes should be commited by table$schema$commit():
## [1] TRUE
## [1] FALSE
## [[1]]
## [1] "Descriptor validation error:\n data.missingValues - is the wrong type"
As a good citiziens we’ve decided to check out schema descriptor validity. And it’s not valid! We sould use an list for missingValues property. Also don’t forget to have an empty string as a missing value:
## [1] TRUE
## [1] TRUE
All good. It looks like we’re ready to read our data again:
Now we see that:
locations are lists with numeric lattide and longitude
Rome’s location is null
And because there are no errors on data reading we could be sure that our data is valid againt our schema. Let’s save it:
Our data.csv looks the same because it has been stringified back to csv format. But now we have schema.json:
{
"fields": [
{
"name": "city",
"type": "string",
"format": "default"
},
{
"name": "location",
"type": "geopoint",
"format": "default"
}
],
"missingValues": [
"",
"N/A"
]
}If we decide to improve it even more we could update the schema file and then open it again. But now providing a schema path.
def = Table.load('inst/extdata/data.csv', schema = 'inst/extdata/schema.json')
table = value(def)
table## <Table>
## Public:
## clone: function (deep = FALSE)
## headers: active binding
## infer: function (limit = 100)
## initialize: function (src, schema = NULL, strict = FALSE, headers = 1)
## iter: function (keyed, extended, cast = TRUE, relations = FALSE, stream = FALSE)
## read: function (keyed = FALSE, extended = FALSE, cast = TRUE, relations = FALSE,
## save: function (connection)
## schema: active binding
## Private:
## createRowStream_: function (src)
## createUniqueFieldsCache: function (schema)
## currentStream_: NULL
## headers_: NULL
## headersRow_: 1
## rowNumber_: 0
## schema_: Schema, R6
## src: inst/extdata/data.csv
## strict_: FALSE
## uniqueFieldsCache_: list
It was only basic introduction to the Table class. To learn more let’s take a look on Table class API reference.
A model of a schema with helpful methods for working with the schema and supported data. Schema instances can be initialized with a schema source as a url to a JSON file or a JSON object. The schema is initially validated (see validate below). By default validation errors will be stored in schema$errors but in a strict mode it will be instantly raised.
Let’s create a blank schema. It’s not valid because descriptor$fields property is required by the Table Schema specification:
## [1] FALSE
## [[1]]
## [1] "Descriptor validation error:\n data.fields - is required"
To do not create a schema descriptor by hands we will use a schema$infer method to infer the descriptor from given data:
toJSON(
schema$infer(helpers.from.json.to.list('[
["id", "age", "name"],
["1","39","Paul"],
["2","23","Jimmy"],
["3","36","Jane"],
["4","28","Judy"]
]')), pretty = TRUE) # function from jsonlite package## {
## "fields": [
## {
## "name": ["id"],
## "type": ["integer"]
## },
## {
## "name": ["age"],
## "type": ["integer"]
## },
## {
## "name": ["name"],
## "type": ["string"]
## }
## ]
## }
## [1] TRUE
## {
## "fields": [
## {
## "name": ["id"],
## "type": ["integer"],
## "format": ["default"]
## },
## {
## "name": ["age"],
## "type": ["integer"],
## "format": ["default"]
## },
## {
## "name": ["name"],
## "type": ["string"],
## "format": ["default"]
## }
## ],
## "missingValues": [
## [""]
## ]
## }
Now we have an inferred schema and it’s valid. We could cast data row against our schema. We provide a string input by an output will be cast correspondingly:
toJSON(
schema$castRow(helpers.from.json.to.list('["5", "66", "Sam"]')),
pretty = TRUE, auto_unbox = TRUE) # function from jsonlite package## [
## 5,
## 66,
## "Sam"
## ]
But if we try provide some missing value to age field cast will fail because for now only one possible missing value is an empty string. Let’s update our schema:
## Error in schema$castRow(helpers.from.json.to.list("[\"6\", \"N/A\", \"Walt\"]")): There are 1 cast errors (see following - Wrong type for header: age and value: N/A
## [1] TRUE
## [[1]]
## [1] 6
##
## [[2]]
## NULL
##
## [[3]]
## [1] "Walt"
We could save the schema to a local file. And we could continue the work in any time just loading it from the local file:
It was only basic introduction to the Schema class. To learn more let’s take a look on Schema class API reference.
Class represents field in the schema.
Data values can be cast to native R types. Casting a value will check the value is of the expected type, is in the correct format, and complies with any constraints imposed by a schema.
{
"name": "birthday",
"type": "date",
"format": "default",
"constraints": {
"required": true,
"minimum": "2015-05-30"
}
}Following code will not raise the exception, despite the fact our date is less than minimum constraints in the field, because we do not check constraints of the field descriptor
field = Field$new(helpers.from.json.to.list('{"name": "name", "type": "number"}'))
dateType = field$cast_value('12345') # cast
dateType # print the result## [1] 12345
And following example will raise exception, because we set flag ‘skip constraints’ to false, and our date is less than allowed by minimum constraints of the field. Exception will be raised as well in situation of trying to cast non-date format values, or empty values
tryCatch(
dateType = field$cast_value(value = '2014-05-29', constraints = FALSE),
error = function(e){# uh oh, something went wrong
})## Error in private$castValue(...): Field character(0) can't cast value 2014-05-29 for type number with format default
Values that can’t be cast will raise an Error exception. Casting a value that doesn’t meet the constraints will raise an Error exception.
Table below shows the available types, formats and resultant value of the cast:
| Type | Formats | Casting result |
|---|---|---|
| any | default | Any |
| list | default | |
| boolean | default | Boolean |
| date | default, any | Date |
| datetime | default, any | Date |
| duration | default | Duration |
| geojson | default, topojson | Object |
| geopoint | default, list, object | [Number, Number] |
| integer | default | Number |
| number | default | Number |
| object | default | Object |
| string | default, uri, email, binary | String |
| time | default, any | Date |
| year | default | Number |
| yearmonth | default | [Number, Number] |
validate()validates whether a schema is a validate Table Schema accordingly to the specifications. It does not validate data against a schema.
Given a schema descriptor validate returns a validation object:
## $valid
## [1] TRUE
##
## $errors
## list()
Given data source and headers infer will return a Table Schema as a JSON object based on the data values.
Given the data file, example.csv:
id,age,name
1,39,Paul
2,23,Jimmy
3,36,Jane
4,28,Judy
Call infer with headers and values from the datafile:
The descriptor variable is now a list object that can easily converted to JSON:
## {
## "fields": [
## {
## "name": ["id"],
## "type": ["integer"],
## "format": ["default"]
## },
## {
## "name": ["age"],
## "type": ["integer"],
## "format": ["default"]
## },
## {
## "name": ["name"],
## "type": ["string"],
## "format": ["default"]
## }
## ],
## "missingValues": [
## [""]
## ]
## }
Table representation
List.<string>SchemaAsyncIterator | StreamList.<List> | List.<Object>ObjectBooleanList.<string>Headers
Returns: List.<string> - data source headers
SchemaSchema
Returns: Schema - table schema instance
AsyncIterator | StreamIterate through the table data
And emits rows cast based on table schema (async for loop). With a stream flag instead of async iterator a Node stream will be returned. Data casting can be disabled.
Returns: AsyncIterator | Stream - async iterator/stream of rows: - [value1, value2] - base - {header1: value1, header2: value2} - keyed - [rowNumber, [header1, header2], [value1, value2]] - extended Throws:
TableSchemaError raises any error occurred in this process| Param | Type | Description |
|---|---|---|
| keyed | boolean |
iter keyed rows |
| extended | boolean |
iter extended rows |
| cast | boolean |
disable data casting if false |
| forceCast | boolean |
instead of raising on the first row with cast error return an error object to replace failed row. It will allow to iterate over the whole data file even if it’s not compliant to the schema. Example of output stream: [['val1', 'val2'], TableSchemaError, ['val3', 'val4'], ...] |
| relations | Object |
object of foreign key references in a form of {resource1: [{field1: value1, field2: value2}, ...], ...}. If provided foreign key fields will checked and resolved to its references |
| stream | boolean |
return Node Readable Stream of table rows |
List.<List> | List.<Object>Read the table data into memory
The API is the same as
table.iterhas except for:
Returns: List.<List> | List.<Object> - list of rows: - [value1, value2] - base - {header1: value1, header2: value2} - keyed - [rowNumber, [header1, header2], [value1, value2]] - extended
| Param | Type | Description |
|---|---|---|
| limit | integer |
limit of rows to read |
ObjectInfer a schema for the table.
It will infer and set Table Schema to table.schema based on table data.
Returns: Object - Table Schema descriptor
| Param | Type | Description |
|---|---|---|
| limit | number |
limit rows sample size |
BooleanSave data source to file locally in CSV format with , (comma) delimiter
Returns: Boolean - true on success Throws:
TableSchemaError an error if there is saving problem| Param | Type | Description |
|---|---|---|
| target | string |
path where to save a table data |
TableFactory method to instantiate Table class.
This method is async and it should be used with await keyword or as a Promise. If references argument is provided foreign keys will be checked on any reading operation.
Returns: Table - data table class instance Throws:
TableSchemaError raises any error occurred in table creation process| Param | Type | Description |
|---|---|---|
| source | string |
List.<List> |
| schema | string |
Object |
| strict | boolean |
strictness option to pass to Schema constructor |
| headers | number |
List.<string> |
| parserOptions | Object |
options to be used by CSV parser. All options listed at https://csv.js.org/parse/options/. By default ltrim is true according to the CSV Dialect spec. |
Schema representation
BooleanList.<Error>ObjectList.<string>List.<Object>List.<Field>List.<string>Field | nullFieldField | nullList.<List>ObjectBooleanbooleanBooleanValidation status
It always true in strict mode.
Returns: Boolean - returns validation status
List.<Error>Validation errors
It always empty in strict mode.
Returns: List.<Error> - returns validation errors
ObjectDescriptor
Returns: Object - schema descriptor
List.<string>Primary Key
Returns: List.<string> - schema primary key
List.<Object>Foreign Keys
Returns: List.<Object> - schema foreign keys
List.<Field>Fields
Returns: List.<Field> - schema fields
List.<string>Field names
Returns: List.<string> - schema field names
Field | nullReturn a field
Returns: Field | null - field instance if exists
| Param | Type |
|---|---|
| fieldName | string |
FieldAdd a field
Returns: Field - added field instance
| Param | Type |
|---|---|
| descriptor | Object |
Field | nullRemove a field
Returns: Field | null - removed field instance if exists
| Param | Type |
|---|---|
| name | string |
List.<List>Cast row based on field types and formats.
Returns: List.<List> - cast data row
| Param | Type | Description |
|---|---|---|
| row | List.<List> |
data row as an list of values |
| failFalst | boolean |
ObjectInfer and set schema.descriptor based on data sample.
Returns: Object - Table Schema descriptor
| Param | Type | Description |
|---|---|---|
| rows | List.<List> |
list of lists representing rows |
| headers | integer |
List.<string> |
BooleanUpdate schema instance if there are in-place changes in the descriptor.
Returns: Boolean - returns true on success and false if not modified Throws:
TableSchemaError raises any error occurred in the process| Param | Type | Description |
|---|---|---|
| strict | boolean |
alter strict mode for further work |
Example
descriptor <- '{"fields": [{"name": "field", "type": "string"}]}'
def <- Schema.load(descriptor)
schema <- value(def)
schema$getField('name')## NULL
## [1] "string"
## [1] "number"
## [1] TRUE
booleanSave schema descriptor to target destination.
Returns: boolean - returns true on success Throws:
TableSchemaError raises any error occurred in the process| Param | Type | Description |
|---|---|---|
| target | string |
path where to save a descriptor |
SchemaFactory method to instantiate Schema class.
This method is async and it should be used with await keyword or as a Promise.
Returns: Schema - returns schema class instance Throws:
TableSchemaError raises any error occurred in the process| Param | Type | Description |
|---|---|---|
| descriptor | string |
Object |
| strict | boolean |
flag to alter validation behaviour: - if false error will not be raised and all error will be collected in schema.errors - if strict is true any validation error will be raised immediately |
Field representation
stringstringstringbooleanObjectObjectanybooleanConstructor to instantiate Field class.
Returns: Field - returns field class instance Throws:
TableSchemaError raises any error occured in the process| Param | Type | Description |
|---|---|---|
| descriptor | Object |
schema field descriptor |
| missingValues | List.<string> |
an list with string representing missing values |
stringField name
stringField type
stringField format
booleanReturn true if field is required
ObjectField constraints
ObjectField descriptor
anyCast value
Returns: any - cast value
| Param | Type | Description |
|---|---|---|
| value | any |
value to cast |
| constraints | Object |
false |
booleanCheck if value can be cast
| Param | Type | Description |
|---|---|---|
| value | any |
value to test |
| constraints | Object |
false |
ObjectThis function is async so it has to be used with await keyword or as a Promise.
Returns: Object - returns {valid, errors} object
| Param | Type | Description |
|---|---|---|
| descriptor | string |
Object |
ObjectThis function is async so it has to be used with await keyword or as a Promise.
Returns: Object - returns schema descriptor Throws:
TableSchemaError raises any error occured in the process| Param | Type | Description |
|---|---|---|
| source | string |
List.<List> |
| headers | List.<string> |
list of headers |
| options | Object |
any Table.load options |
The project follows the Open Knowledge International coding standards. There are common commands to work with the project.Recommended way to get started is to create, activate and load the library environment. To install package and development dependencies into active environment:
To make test:
To run tests:
More detailed information about how to create and run tests you can find in testthat package.
In NEWS.md described only breaking and the most important changes. The full changelog could be found in nicely formatted commit history.