
Package ‘synlik’
May 23, 2018

Type Package

Title Synthetic Likelihood Methods for Intractable Likelihoods

Version 0.1.2

Date 2018-05-22

Author Matteo Fasiolo and Simon Wood

Maintainer Matteo Fasiolo <matteo.fasiolo@gmail.com>

Description Framework to perform synthetic likelihood inference
for models where the likelihood function is unavailable or
intractable.

URL http://mfasiolo.github.io/synlik_release

License GPL (>= 2)

Depends R (>= 2.10), Rcpp (>= 0.12.0)

Imports methods, graphics, Matrix, compiler, stats, parallel

Suggests knitr, stabledist

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

RoxygenNote 5.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-05-23 14:05:17 UTC

R topics documented:
synlik-package . 2
ANYOrNULL-class . 4
bf . 5
blowSimul . 6
blow_sl . 7
checkNorm . 8
continue . 10

1

http://mfasiolo.github.io/synlik_release

2 synlik-package

extractCorr . 11
functionOrNULL-class . 11
internal_C . 12
nlar . 12
numericOrNULL-class . 13
orderDist . 13
plot-smcmc . 14
plot-synlik . 15
rickerSimul . 16
ricker_sl . 18
robCov . 19
simulate,synlik-method . 20
slAcf . 21
slice . 22
slik . 23
smcmc . 24
smcmc-class . 25
synlik-class . 27

Index 29

synlik-package Synthetic Likelihood Methods for Intractable Likelihoods

Description

Package that provides Synthetic Likelihood methods for intractable likelihoods. The package is
meant to be as general purpose as possible: as long as you are able to simulate data from your
model you should be able to fit it.

Details

Package: synlik
Type: Package
Version: 0.1.2
Date: 2018-05-22
License: GPL (>=2)

The package allows users to create objects of class synlik (S4), which are essentially constituted of
a simulator function and a function (summaries) that transforms the data into summary statistics.
The simulator can output any kind of data (vector, list, etc) and this will be passed directly to the
summaries function. This allow the package to fit a large variety of models.

Once the model of interest has been set up as a synlik object, it is possible several methods on it.
The function most useful function is slik, which can be used to evaluate the synthetic likelihood.
The slice.synlik function allows to obtain and plot slices of the synthetic likelihood with respect

synlik-package 3

to model parameters. It is possible to simulate data or statistics from the model using the generic
simulate, and to check the normality of the statistics using the checkNorm function. Unknow pa-
rameters can be estimated by MCMC, through the smcmc function. This function will return an
object of class smcmc (S4), which contains all the inputs and results of the MCMC procedure.

Many functions in the package support parallel simulation on multiple cores.

Author(s)

Matteo Fasiolo and Simon N. Wood

Maintainer: Matteo Fasiolo <matteo.fasiolo@gmail.com>

References

Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature,
466(7310):1102–1104, 2010.

See Also

For some examples see the Vignettes (type vignette("synlik")).

Examples

Not run:
Here I put a simple example,
if you want to see more type: vignette("synlik")

End(Not run)

Create synlik object
ricker_sl <- synlik(simulator = rickerSimul,

summaries = rickerStats,
param = c(logR = 3.8, logSigma = log(0.3), logPhi = log(10)),
extraArgs = list("nObs" = 50, "nBurn" = 50),
plotFun = function(input, ...){

plot(drop(input), type = 'l', ylab = "Pop", xlab = "Time", ...)
}

)

Simulate from the object
ricker_sl@data <- simulate(ricker_sl)
ricker_sl@extraArgs$obsData <- ricker_sl@data

Simulate statistics (each row is a vector of statistics)
simulate(ricker_sl, seed = 523, nsim = 10, stats = TRUE)

Plotting the data
plot(ricker_sl)

Checking multivariate normality of the statistics

4 ANYOrNULL-class

checkNorm(ricker_sl)

Evaluate the likelihood
set.seed(4234)
slik(ricker_sl,

param = c(logR = 3.8, logSigma = log(0.3), logPhi = log(10)),
nsim = 1e3)

Plotting a slice of the log-Likelihood possibly using multiple cores
slice(object = ricker_sl,

ranges = list("logR" = seq(3.5, 3.9, by = 0.02),
"logPhi" = seq(2, 2.6, by = 0.02),
"logSigma" = seq(-2, -0.5, by = 0.05)),

param = c(logR = 3.8, logSigma = log(0.3), logPhi = log(10)),
nsim = 500, multicore = FALSE)

MCMC estimation possibly using multiple cores
set.seed(4235)
ricker_sl <- smcmc(ricker_sl,

initPar = c(3.2, -1, 2.6),
niter = 50,
burn = 3,
priorFun = function(input, ...) 0,
propCov = diag(c(0.1, 0.1, 0.1))^2,
nsim = 1e3,
multicore = FALSE)

Continue with additional 50 iterations
ricker_sl <- continue(ricker_sl, niter = 50)

Plotting results on transformed scale (exponential)
trans <- rep("exp", 3)
names(trans) <- names(ricker_sl@param)

plot(ricker_sl)

ANYOrNULL-class Dummy class

Description

Class unions for internal use only

bf 5

bf Nicholson’s 1954 blowfly data

Description

Data from figures 3 and 4 of Nicholson, 1954.

Usage

data(bf1)

Arguments

bf1 the dataset name

Details

bf1 is Nisbet and Gurney’s run 1, and Nicholson’s (1954) figure 3 (adult food limitation). The data
are actually from the global population dynamics database at Silwood. They are daily: Nicholson’s
figure 3 plots data every other day, but the text says that measurements were taken daily. How-
ever elsewhere they are reported every other day. Probably best to assume that they have been
interpolated to daily.

bf2 and bf3 are digitized from Nicholson’s (1954) figure 4. bf2 is the upper series: larval food
limitation, with 50g per day of larval food provided. bf3 is the lower series: same set up, half as
much food. These are Nisbet and Gurney’s runs 2 and 3, respectively.

Value

matrix of replicate data series

Author(s)

Simon N. Wood, maintainer Matteo Fasiolo <matteo.fasiolo@@gmail.com>

References

Alexander J Nicholson. An outline of the dynamics of animal populations. Australian Journal of
Zoology, 2(1):9–65, 1954.

See Also

blowfly

6 blowSimul

Examples

library(synlik)
data(bf1)
data(bf2)
data(bf3)
par(mfrow=c(3,1),mar=c(4,4,1,1))
with(bf1,plot(day,pop,type="l"))
with(bf1,points(day,pop,pch=20,cex=.8))
abline(mean(bf1$pop),0,col=2); abline(median(bf1$pop),0,col=3);
with(bf2,plot(day,pop,type="l"))
with(bf2,points(day,pop,pch=20,cex=.8))
abline(mean(bf2$pop),0,col=2); abline(median(bf2$pop),0,col=3);
with(bf3,plot(day,pop,type="l"))
with(bf3,points(day,pop,pch=20,cex=.8))
abline(mean(bf3$pop),0,col=2); abline(median(bf3$pop),0,col=3);

blowSimul Simulates from the blowfly model

Description

Simulator for the blowfly model proposed by Wood (2010).

Usage

blowSimul(param, nsim, extraArgs, ...)

Arguments

param vector of log-parameters: delta, P, N0, var.p, tau and var.d. The interpretation of
these parameters is described in Wood (2010).

nsim Number of simulations from the model.

extraArgs A named list of additional arguments:

• nObs = Length of each simulated time series.
• nBurn = Number of initial steps to be discarded before saving the following
nObs steps.

• steps = Positive integer. If steps == n the observations correspond to n
time steps.

... Need for compatibility with synlik, but not used.

Value

A matrix nsim by nObs, where each row is a simulated path.

Author(s)

Simon Wood and Matteo Fasiolo <matteo.fasiolo@gmail.com>.

blow_sl 7

References

Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature,
466(7310):1102–1104, 2010.

Brillinger, D. R., J. Guckenheimer, P. Guttorp, and G. Oster. 1980. Empirical modelling of popula-
tion time series data: the case of age and density dependent vital rates. Lectures on Mathematics in
the Life Sciences13:65-90.

Nicholson, A. J. 1957. The self-adjustment of populations to change. Cold Spring Harbor Symposia
on Quantitative Biology22:153-173.

See Also

blow_sl

Examples

tmp <- blowSimul(param = log(c("delta" = 0.16, "P" = 6.5, "N0" = 400,
"var.p" = 0.1, "tau" = 14, "var.d" = 0.1)),

nsim = 2,
extraArgs = list("nObs" = 200, "nBurn" = 1000, "steps" = 2))

matplot(t(tmp), type = 'l', ylab = "Y", xlab = "Time")

blow_sl Blowfly model

Description

synlik object containing the blowfly model proposed by Wood (2010). The main components are
the simulator blowSimul and the statistics blowStats, described in the same reference.

Author(s)

Simon Wood and Matteo Fasiolo <matteo.fasiolo@gmail.com>.

References

Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature,
466(7310):1102–1104, 2010.

See Also

blowSimul

8 checkNorm

Examples

data(blow_sl)

plot(blow_sl)
simulate(blow_sl, stats = TRUE)

slik(blow_sl,
param = log(c("delta" = 0.16, "P" = 6.5, "N0" = 400,

"var.p" = 0.1, "tau" = 14, "var.d" = 0.1)),
nsim = 1e3)

Using Nicholson's data
data(bf1)

plot(blow_sl)

blow_sl@data <- bf1$pop
blow_sl@extraArgs$obsData <- bf1$pop #Important: blow_sl@blowStats uses the observed data

slik(blow_sl,
param = log(c("delta" = 0.16, "P" = 6.5, "N0" = 400,

"var.p" = 0.1, "tau" = 14, "var.d" = 0.1)),
nsim = 1e3)

checkNorm Checking the multivariate normal approximation.

Description

Given an object of class synlik this routine provides a graphical check of whether the distribution
of the random summary statistics is multivariate normal.

Usage

checkNorm(object, param = object@param, nsim = 1000, observed = NULL,
cex.axis = 1, cex.lab = 1, ...)

Arguments

object An object of class synlik or a matrix where each row is a random vector.

param A vector of model’s parameters at which the summary statistics will be simu-
lated.

nsim number of summary statistics to be simulated if object is of class synlik, oth-
erwise it is not used.

observed A vector of observed summary statistics. By default NULL, so object@data will
be used as observed statistics. It will be looked at only if object is a matrix.

cex.axis Axis scale expansion factor.

checkNorm 9

cex.lab Axis label expansion factor.

... additional arguments to be passed to object@simulator and object@summaries.
In general I would avoid using it and including in object@extraArgs every-
thing they need.

Details

The method is from section 7.5 of Krzanowski (1988). The replicate vectors of summary statistic
S are transformed to variables which should be univariate chi squared r.v.s with DoF given by the
number of rows of S. An appropriate QQ-plot is produced, and the proportion of the data differing
substantially from the ideal line is reported. Deviations at the right hand end of the plot indicate
that the tail behaviour of the Normal approximation is poor: in the context of synthetic likelihood
this is of little consequence. Secondly, s is transformed to a vector which should be i.i.d. N(0,1)
under multivariate normality, and a QQ plot is produced. Unfortunately this approach is not very
useful unless the dimension of s is rather large. In simulations, perfectly MVN data produce highly
variable results, so that the approach lacks any real power.

Value

Mainly produces plots and prints output. Also an array indicating proportion of simulated statistics
smaller than observed.

Author(s)

Simon N. Wood, maintained by Matteo Fasiolo <matteo.fasiolo@gmail.com>.

References

Krzanowski, W.J. (1988) Principles of Multivariate Analysis. Oxford.

Examples

Create Object
data(ricker_sl)

Simulate from the object
ricker_sl@data <- simulate(ricker_sl)
ricker_sl@extraArgs$obsData <- ricker_sl@data

Checking multivariate normality
checkNorm(ricker_sl)

With matrix input
checkNorm(matrix(rnorm(200), 100, 2))

10 continue

continue Continuing estimation.

Description

Generic function, that given the results of an estimation procedure (ex. MCMC or maximum likeli-
hood optimization) continues the procedure for some more iterations.

Usage

continue(object, ...)

S4 method for signature 'smcmc'
continue(object, niter = object@niter, nsim = object@nsim,
propCov = object@propCov, targetRate = object@targetRate,
recompute = object@recompute, multicore = object@multicore,
ncores = object@ncores, cluster = NULL, control = object@control, ...)

Arguments

object An object representing the results of an estimation procedure which we wish to
continue. For example it might represents an MCMC chain.

... additional arguments to be passed to slik function, see slik.

niter see smcmc-class.

nsim see smcmc-class.

propCov see smcmc-class.

targetRate see smcmc-class.

recompute see smcmc-class.

multicore see smcmc-class.

ncores see smcmc-class.

cluster an object of class c("SOCKcluster", "cluster"). This allowes the user to
pass her own cluster, which will be used if multicore == TRUE. The user has
to remember to stop the cluster.

control see smcmc-class.

Details

When is("smcmc", object) == TRUE continues MCMC estimation of an object of class smcmc.
All input parameters are defaulted to the corresponding slots in the input object, with the exception
of cluster. The chain restarts were it ended, burn-in is set to zero, the same prior (if any) is used.

Value

An object of the same class as object, where the results of the estimation have been updated.

extractCorr 11

See Also

For examples, see smcmc-class.

extractCorr Extracting correlations from a covariance matrix

Description

Extracting correlations from a covariance matrix

Usage

extractCorr(mat)

Arguments

mat A covariance matrix.

Value

The correlation matrix embedded in mat.

Examples

2 dimensional case
d <- 2
tmp <- matrix(rnorm(d^2), d, d)
mcov <- tcrossprod(tmp, tmp)

Covariance matrix
mcov

Correlation matrix
extractCorr(mcov)

functionOrNULL-class Dummy class

Description

Class unions for internal use only

12 nlar

internal_C Internal C and C++ function

Description

This functions are for internal use only.

Author(s)

Simon Wood and Matteo Fasiolo <matteo.fasiolo@gmail.com>.

nlar Estimate non-linear autoregressive coefficients

Description

Function that, give time series data, transforms them into summary statistics using polynomial
autoregression.

Usage

nlar(x, lag, power)

Arguments

x a matrix. Each column contains a replicate series.

lag vector of lags, for rhs terms.

power vector of powers, for rhs terms.

Value

a matrix where each column contains the coefficients for a different replicate.

Author(s)

Simon N. Wood, maintainer Matteo Fasiolo <matteo.fasiolo@gmail.com>.

numericOrNULL-class 13

Examples

library(synlik)
set.seed(10)
x <- matrix(runif(200),100,2)
beta <- nlar(x,lag=c(1,1),power=c(1,2))
y <- x[,1]
y <- y - mean(y)
z <- y[1:99];y <- y[2:100]
lm(y~z+I(z^2)-1)
beta

NA testing
x[5,1] <- x[45,2] <- NA
beta <- nlar(x,lag=c(1,1),power=c(1,2))
y <- x[,1]
y <- y - mean(y,na.rm=TRUE)
z <- y[1:99];y <- y[2:100]
lm(y~z+I(z^2)-1)
beta

higher order...
set.seed(10)
x <- matrix(runif(100),100,2)
beta <- nlar(x,lag=c(6,6,6,1,1),power=c(1,2,3,1,2))
k <- 2
y <- x[,k]
y <- y - mean(y)
ind <- (1+6):100
y6 <- y[ind-6];y1 <- y[ind-1];y <- y[ind]
beta0 <- coef(lm(y~y6+I(y6^2)+I(y6^3)+y1+I(y1^2)-1))
as.numeric(beta[,k]);beta0;beta0-as.numeric(beta[,k])

numericOrNULL-class Dummy class

Description

Class unions for internal use only

orderDist Summarize marginal distribution of (differenced) series.

Description

Summarizes (difference) distribution of replicate series, by regressing ordered differenced series on
a reference series (which might correspond to observed data).

14 plot-smcmc

Usage

orderDist(x, z, np = 3, diff = 1)

Arguments

x a matrix. Each column contains a replicate series.

z vector of lags, for rhs terms.

np maximum power on rhs of regression.

diff order of differencing (zero for none).

Value

a matrix where each column contains the coefficients for a different replicate.

Author(s)

Simon N. Wood, maintainer Matteo Fasiolo <matteo.fasiolo@gmail.com>.

Examples

library(synlik)
set.seed(10)
n <- 100;nr <- 3
x <- matrix(runif(n*nr),n,nr)
z <- runif(n)
beta <- orderDist(x,z,np=3,diff=1)

zd <- z;xd <- x[,3]
zd <- diff(zd,1);xd <- diff(xd,1)
zd <- sort(zd);zd <- zd - mean(zd)
xd <- sort(xd);xd <- xd - mean(xd)
lm(xd~zd+I(zd^2)+I(zd^3)-1)

plot-smcmc Plotting objects of class smcmc.

Description

Method for plotting an object of class smcmc.

Usage

S4 method for signature 'smcmc,missing'
plot(x, trans = NULL, addPlot1 = NULL,
addPlot2 = NULL, ...)

plot-synlik 15

Arguments

x An object of class smcmc.

trans Name list or vector containing names of transforms for some parameters (ex:
list("par1" = "exp", "par2" = "log")). The transformations will be
applied before plotting.

addPlot1 Name of additional plotting function that will be call after the MCMC chain
have been plotted. It has to have prototype fun(nam, ...) where nam will be
the parameter name. See "examples".

addPlot2 Name of additional plotting function that will be call after the histograms have
been plotted. It has to have prototype fun(nam, ...) where nam will be the
parameter name. See "examples".

... additional arguments to be passed to the plotting functions.

See Also

smcmc-class, plot.

Examples

data(ricker_smcmc)

Functions for additional annotations (true parameters)
addline1 <- function(parNam, ...){

abline(h = exp(ricker_smcmc@param[parNam]), lwd = 2, lty = 2, col = 3)
}

addline2 <- function(parNam, ...){
abline(v = exp(ricker_smcmc@param[parNam]), lwd = 2, lty = 2, col = 3)
}

Transformations (exponentials)
trans <- rep("exp", 3)
names(trans) <- names(ricker_smcmc@param)

plot(ricker_smcmc,
trans = trans,
addPlot1 = "addline1",
addPlot2 = "addline2")

plot-synlik Method for plotting an object of class synlik.

Description

It basically calls the slot object@plotFun with input object@data, if it has been provided by the
user. Otherwise it tries to use the plot(x = object@data, y, ...) generic.

16 rickerSimul

Usage

S4 method for signature 'synlik,missing'
plot(x, y, ...)

Arguments

x An object of class synlik.

y Useless argument, only here for compatibility reasons.

... additional arguments to be passed to object@plotFun.

Author(s)

Matteo Fasiolo <matteo.fasiolo@gmail.com>

See Also

synlik-class, plot.

Examples

data(ricker_sl)

Using ricker_sl@plotFun
plot(ricker_sl)

Using generic plot, doesn't work well because object@data is a matrix.
ricker_sl@plotFun <- NULL
plot(ricker_sl)

rickerSimul Simulates from the ricker model

Description

Simulator for the stochastic Ricker model, as described by Wood (2010). The observations are Y_t
~ Pois(Phi * N_t), and the dynamics of the hidden state are given by N_t = r * N_{t-1} * exp(
-N_{t-1} + e_t), where e_t ~ N(0, Sigma^2).

Usage

rickerSimul(param, nsim, extraArgs, ...)

rickerSimul 17

Arguments

param vector of log-parameters: logR, logSigma, logPhi. Alternatively a matrix nsim
by 3 were each row is a different parameter vector.

nsim Number of simulations from the model.

extraArgs A named list of additional arguments:

• nObs = Length of each simulated time series.
• nBurn = Number of initial steps to be discarded before saving the following
nObs steps.

• randInit = if TRUE (default) the initial state N0 is runif(0, 1), otherwise
it is equal to extraArgs$initVal.

• initVal = initial value N0, used only if extraArgs$randInit == TRUE.

... Need for compatibility with synlik, but not used.

Value

A matrix nsim by nObs, where each row is a simulated path.

Author(s)

Simon Wood and Matteo Fasiolo <matteo.fasiolo@gmail.com>.

References

Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature,
466(7310):1102–1104, 2010.

See Also

ricker_sl

Examples

tmp <- rickerSimul(c(3.8, -1.2, 2.3), nsim = 2, extraArgs = list("nObs" = 50, "nBurn" = 200))
matplot(t(tmp), type = 'l', ylab = "Y", xlab = "Time")

parMat <- rbind(c(3.8, -1.2, 2.3), # Chaotic
c(2.5, -1.2, 2.3)) # Not Chaotic

par(mfrow = c(2, 1))
tmp <- rickerSimul(parMat, nsim = 2, extraArgs = list("nObs" = 50, "nBurn" = 200))
plot(tmp[1,], type = 'l', ylab = "Y", xlab = "Time")
plot(tmp[2,], type = 'l', ylab = "Y", xlab = "Time")

18 ricker_sl

ricker_sl Ricker model

Description

ricker_sl is synlik object containing the stochastic Ricker model, ricker_smcmc is a smcmc ob-
ject which also contains the results of some MCMC iterations. The model is described rickerSimul
and in Wood (2010). The main components of the object are the simulator rickerSimul and the
statistics rickerStats, described in the same reference.

Author(s)

Simon Wood and Matteo Fasiolo <matteo.fasiolo@gmail.com>.

References

Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature,
466(7310):1102–1104, 2010.

See Also

rickerSimul

Examples

data(ricker_sl)

plot(ricker_sl)
simulate(ricker_sl, stats = TRUE)

slik(ricker_sl,
param = c(logR = 3.8, logSigma = log(0.3), logPhi = log(10)),
nsim = 1e3)

Using Nicholson's data
data(ricker_smcmc)

plot(ricker_smcmc)

robCov 19

robCov Robust covariance matrix estimation

Description

Obtains a robust estimate of the covariance matrix of a sample of multivariate data, using Camp-
bell’s (1980) method as described on p231-235 of Krzanowski (1988).

Usage

robCov(sY, alpha = 2, beta = 1.25)

Arguments

sY A matrix, where each column is a replicate observation on a multivariate r.v.
alpha tuning parameter, see details.
beta tuning parameter, see details.

Details

Campbell (1980) suggests an estimator of the covariance matrix which downweights observations at
more than some Mahalanobis distance d.0 from the mean. d.0 is sqrt(nrow(sY))+alpha/sqrt(2).
Weights are one for observations with Mahalanobis distance, d, less than d.0. Otherwise weights
are d.0*exp(-.5*(d-d.0)^2/beta)/d. The defaults are as recommended by Campbell. This rou-
tine also uses pre-conditioning to ensure good scaling and stable numerical calculations.

Value

A list where:

• Ea square root of the inverse covariance matrix. i.e. the inverse cov matrix is t(E)%*%E;
• half.ldet.VHalf the log of the determinant of the covariance matrix;
• mYThe estimated mean;
• sdThe estimated standard deviations of each variable.

Author(s)

Simon N. Wood, maintained by Matteo Fasiolo <matteo.fasiolo@gmail.com>.

References

Krzanowski, W.J. (1988) Principles of Multivariate Analysis. Oxford. Campbell, N.A. (1980)
Robust procedures in multivariate analysis I: robust covariance estimation. JRSSC 29, 231-237.

Examples

p <- 5;n <- 100
Y <- matrix(runif(p*n),p,n)
robCov(Y)

20 simulate,synlik-method

simulate,synlik-method

Simulate data or statistics from an object of class synlik.

Description

Simulate data or statistics from an object of class synlik.

Usage

S4 method for signature 'synlik'
simulate(object, nsim, seed = NULL, param = object@param,
stats = FALSE, clean = TRUE, verbose = TRUE, ...)

Arguments

object An object of class synlik.

nsim Number of simulations from the model.

seed Random seed to be used. It is not passed to the simulator, but simply passed to
set.seed() from within simulate.synlik.

param Vector of parameters passed to object@simulator.

stats If TRUE the function trasforms the simulated data into statistics using object@summaries.

clean If TRUE the function tries to clean the statistics from NaNs or non-finite values.
Given that object@summaries has to returns a numeric vector or a matrix where
each row is a simulation, rows containing non-finite values will be discarded.

verbose If TRUE the function will complain if, for instance, the simulations contain lots
of non-finite values.

... additional arguments to be passed to object@simulator and object@summaries.
In general I would avoid using it and including object@extraArgs everything
they need.

Value

If stats == FALSE the output will that of object@simulator, which depends on the simulator
used by the user. If stats == TRUE the output will be a matrix where each row is vector of
simulated summary statistics.

Author(s)

Matteo Fasiolo <matteo.fasiolo@gmail.com>

See Also

synlik-class, simulate.

slAcf 21

Examples

data(ricker_sl)

Simulate data
simulate(ricker_sl, nsim = 2)

Simulate statistics
simulate(ricker_sl, nsim = 2, stats = TRUE)

slAcf Estimate auto-covariances for multiple datasets.

Description

Function that, give time series data, transforms them into auto-covariances with different lags.

Usage

slAcf(x, max.lag = 10)

Arguments

x a matrix. Each column contains a replicate series.

max.lag How many lags to use.

Value

a matrix where each column contains the coefficients for a different replicate. The first coefficient
corresponds to lag == 0, hence it is the variance, the second is the covariance one step ahead and so
on.

Author(s)

Simon N. Wood, maintainer Matteo Fasiolo <matteo.fasiolo@gmail.com>.

Examples

library(synlik)
set.seed(10)
x <- matrix(runif(1000),100,10)
acf <- slAcf(x)

22 slice

slice Plot slices of the synthetic log-likelihood.

Description

Plot slices of the synthetic log-likelihood.

Usage

slice(object, ranges, nsim, param = object@param, pairs = FALSE,
draw = TRUE, trans = NULL, multicore = FALSE, ncores = detectCores() -
1, cluster = NULL, ...)

Arguments

object synlik object.

ranges ranges of values along which we want the slices. If length(parName) == 1
than range has a vector, while if length(parName) == 2 it have to be a named
list of 2 vectors (ex: list("alpha" = 1:10, "beta" = 10:1)).

nsim Number of simulations used to evaluate the synthetic likelihood at each location.

param Named vector containing the value of the ALL parameters (including the sliced
one). Parameters that are not in parName will be fixed to the values in param.

pairs if TRUE the function will produce a 2D slice for every pair of parameters in
ranges. FALSE by default.

draw If TRUE the slice will be plotted.

trans Named vector or list of transformations to be applied to the parameters in parName
before plotting ex: trans = c(s = "exp", d = "exp")/

multicore If TRUE the object@simulator and object@summaries functions will be exe-
cuted in parallel. That is the nsim simulations will be divided in multiple cores.

ncores Number of cores to use if multicore == TRUE.

cluster An object of class c("SOCKcluster", "cluster"). This allowes the user to
pass her own cluster, which will be used if multicore == TRUE. The user has
to remember to stop the cluster.

... additional arguments to be passed to slik(), see slik.

Value

Either a vector or matrix of log-synthetic likelihood estimates, depending on whether length(parNames) ==
1 or 2. These are returned invisibly.

Author(s)

Matteo Fasiolo <matteo.fasiolo@gmail.com>

slik 23

Examples

data(ricker_sl)

Plotting slices of the logLikelihood
slice(object = ricker_sl,

ranges = list("logR" = seq(3.5, 3.9, by = 0.01),
"logPhi" = seq(2, 2.6, by = 0.01),
"logSigma" = seq(-2, -0.5, by = 0.01)),

param = c(logR = 3.8, logSigma = log(0.3), logPhi = log(10)),
nsim = 500)

Not run:
Plotting a contour of the logLikelihood
slice(object = ricker_sl,

ranges = list("logR" = seq(3.5, 3.9, by = 0.01),
"logPhi" = seq(2, 2.6, by = 0.01),
"logSigma" = seq(-2, -0.5, by = 0.04)),

pairs = TRUE,
param = c(logR = 3.8, logSigma = log(0.3), logPhi = log(10)),
nsim = 500, multicore = TRUE)

End(Not run)

slik Evaluates the synthetic log-likelihood.

Description

Evaluates the synthetic log-likelihood.

Usage

slik(object, param, nsim, multicore = FALSE, ncores = detectCores() - 1,
cluster = NULL, ...)

Arguments

object An object of class synlik.

param Vector of parameters at which the synthetic likelihood will be evaluated.

nsim Number of simulation from the model.

multicore (logical) if TRUE the object@simulator and object@summaries functions will
be executed in parallel. That is the nsim simulations will be divided in multiple
cores.

ncores (integer) number of cores to use if multicore == TRUE.

cluster an object of class c("SOCKcluster", "cluster"). This allowes the user to
pass her own cluster, which will be used if multicore == TRUE. The user has
to remember to stop the cluster.

24 smcmc

... additional arguments to be passed to object@simulator and object@summaries.
In general I would avoid using it and including object@extraArgs everything
they need.

Value

The estimated value of the synthetic log-likelihood at param.

Author(s)

Matteo Fasiolo <matteo.fasiolo@gmail.com>

References

Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature,
466(7310):1102–1104, 2010.

Examples

data(ricker_sl)
set.seed(643)
slik(ricker_sl, param = c(3.8, -1.2, 2.3), nsim = 500)

smcmc MCMC parameter estimation for objects of class synlik.

Description

MCMC parameter estimation for objects of class synlik.

Usage

smcmc(object, initPar, niter, nsim, propCov, burn = 0,
priorFun = function(param, ...) 0, targetRate = NULL, recompute = FALSE,
multicore = !is.null(cluster), cluster = NULL, ncores = detectCores() -
1, control = list(), ...)

Arguments

object An object of class synlik.

initPar see smcmc-class.

niter see smcmc-class.

nsim see smcmc-class.

propCov see smcmc-class.

burn see smcmc-class.

priorFun see smcmc-class.

smcmc-class 25

targetRate see smcmc-class.

recompute see smcmc-class.

multicore see smcmc-class.

cluster an object of class c("SOCKcluster", "cluster"). This allowes the user to
pass her own cluster, which will be used if multicore == TRUE. The user has
to remember to stop the cluster.

ncores see smcmc-class.

control see smcmc-class.

... additional arguments to be passed to slik function, see slik.

Value

An object of class smcmc.

Author(s)

Matteo Fasiolo <matteo.fasiolo@gmail.com>, code for adaptive step from the adaptMCMC pack-
age.

References

Vihola, M. (2011) Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics
and Computing.

smcmc-class smcmc-class

Description

Object representing the results of MCMC estimation on an object of class synlik, from which it
inherits.

Slots

initPar Vector of initial parameters where the MCMC chain will start (numeric).

niter Number of MCMC iterations (integer).

nsim Number of simulations from the simulator at each step of the MCMC algorithm (integer).

burn Number of initial MCMC iterations that are discarded (integer).

priorFun Function that takes a vector of parameters as input and the log-density of the prior as out-
put. If the output is not finite the proposed point will be discarded. (function). The function
needs to have signature fun(x, ...), where x represents the input parameters (function).

propCov Matrix representing the covariance matrix to be used to perturb the parameters at each
step of the MCMC chain (matrix).

26 smcmc-class

targetRate Target rate for the adaptive MCMC sampler. Should be in (0, 1), default is NULL (no
adaptation). The adaptation uses the approach of Vihola (2011). (numeric)

recompute If TRUE the synthetic likelihood will be evaluated at the current and proposed positions
in the parameter space (thus doubling the computational effort). If FALSE the likelihood of
the current position won’t be re-estimated (logical).

multicore If TRUE the object@simulator and object@summaries functions will be executed in
parallel. That is the nsim simulations will be divided in multiple cores (logical).

ncores Number of cores to use if multicore == TRUE (integer).

accRate Acceptance rate of the MCMC chain, between 0 and 1 (numeric).

chains Matrix of size niter by length(initPar) where the i-th row contains the position of the MCMC
algorithm in the parameter space at the i-th (matrix).

llkChain Vector of niter elements where the i-th element is contains the estimate of the synthetic
likelihood at the i-th iteration (numeric).

control Control parameters used by the MCMC sampler:

• theta = controls the speed of adaption. Should be between 0.5 and 1. A lower gamma
leads to faster adaption.

• adaptStart = iteration where the adaption starts. Default 0.
• adaptStop = iteration where the adaption stops. Default burn + niter

• saveFile = path to the file where the intermediate results will be stored (ex: "~/Res.RData").
• saveFreq = frequency with which the intermediate results will be saved on saveFile.

Default 100.
• verbose = if TRUE intermediate posterior means will be printer.
• verbFreq = frequency with which the intermediate posterior means will be printer. De-

fault 500.

Author(s)

Matteo Fasiolo <matteo.fasiolo@gmail.com>

References

Vihola, M. (2011) Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics
and Computing.

Examples

Load "synlik" object
data(ricker_sl)

plot(ricker_sl)

MCMC estimation
set.seed(4235)
ricker_sl <- smcmc(ricker_sl,

initPar = c(3.2, -1, 2.6),
niter = 50,
burn = 3,

synlik-class 27

priorFun = function(input, ...) 1,
propCov = diag(c(0.1, 0.1, 0.1))^2,
nsim = 200,
multicore = FALSE)

Continue with additional 50 iterations
ricker_sl <- continue(ricker_sl, niter = 50)

plot(ricker_sl)

synlik-class synlik-class

Description

Basic class for simulation-based approximate inference using Synthetic Likelihood methods.

Usage

synlik(...)

Arguments

... See section "Slots".

Slots

param Named vector of parameters used by object@simulator (numeric).

simulator Function that simulates from the model (function). It has to have prototype fun(param, nsim, extraArgs, ...).
If summaries() is not specified the simulator() has output a matrix with nsim rows, where
each row is a vector of simulated statistics. Otherwise it can output any kind of object, and
this output will be passed to summaries().

summaries Function that transforms simulated data into summary statistics (function). It has to
have prototype fun(x, extraArgs, ...) and it has to output a matrix with nsim rows,
where each row is a vector of simulated statistics. Parameter x contains the data.

data Object containing the observed data or statistics (ANY).

extraArgs List containing all the extra arguments to be passed to object@simulator and object@summaries
(list).

plotFun Function that will be used to plot object@data. Prototype should be fun(x, ...)
(function).

Author(s)

Matteo Fasiolo <matteo.fasiolo@gmail.com>

28 synlik-class

References

Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature,
466(7310):1102–1104, 2010.

Examples

Create Object
ricker_sl <- synlik(simulator = rickerSimul,

summaries = rickerStats,
param = c(logR = 3.8, logSigma = log(0.3), logPhi = log(10)),
extraArgs = list("nObs" = 50, "nBurn" = 50),
plotFun = function(input, ...)

plot(drop(input), type = 'l', ylab = "Pop", xlab = "Time", ...)
)

Simulate from the object
ricker_sl@data <- simulate(ricker_sl)
ricker_sl@extraArgs$obsData <- ricker_sl@data # Needed by WOOD2010 statistics

plot(ricker_sl)

Index

∗Topic Intractable Likelihood,
Simulation-based inference.

synlik-package, 2

ANYOrNULL-class, 4

bf, 5
bf1 (bf), 5
bf2 (bf), 5
bf3 (bf), 5
blow_sl, 7, 7
blow_smcmc (blow_sl), 7
blowC (internal_C), 12
blowSimul, 6, 7
blowStats (blow_sl), 7

checkBoundsCpp (internal_C), 12
checkNorm, 8
cleanStats (internal_C), 12
continue, 10
continue,smcmc-method (continue), 10

extractCorr, 11

functionOrNULL-class, 11

internal_C, 12

nlar, 12
numericOrNULL-class, 13

order_reg (internal_C), 12
orderDist, 13

plot, 15, 16
plot,smcmc,missing-method (plot-smcmc),

14
plot,synlik,missing-method

(plot-synlik), 15
plot-smcmc, 14
plot-synlik, 15

ricker_sl, 17, 18
ricker_smcmc (ricker_sl), 18
rickerSimul, 16, 18
rickerStats (ricker_sl), 18
robCov, 19

simpleModelsWrap (internal_C), 12
simulate, 20
simulate,synlik-method, 20
slAcf, 21
slacf (internal_C), 12
slice, 22
slik, 10, 22, 23, 25
slnlar (internal_C), 12
smcmc, 24
smcmc-class, 25
synlik (synlik-class), 27
synlik-class, 27
synlik-package, 2

29

	synlik-package
	ANYOrNULL-class
	bf
	blowSimul
	blow_sl
	checkNorm
	continue
	extractCorr
	functionOrNULL-class
	internal_C
	nlar
	numericOrNULL-class
	orderDist
	plot-smcmc
	plot-synlik
	rickerSimul
	ricker_sl
	robCov
	simulate,synlik-method
	slAcf
	slice
	slik
	smcmc
	smcmc-class
	synlik-class
	Index

