
Package ‘svmplus’
April 25, 2018

Type Package

Title Implementation of Support Vector Machines Plus (SVM+)

Date 2018-04-25

Version 1.0.1

Author Niharika Gauraha and Ola Spjuth

Maintainer Niharika Gauraha <niharika.gauraha@farmbio.uu.se>

Description Implementation of Support Vector Machines Plus (SVM+) for classification prob-
lems. See (Vladimir et. al, 2009, <doi:10.1016/j.neunet.2009.06.042>) for theoretical de-
tails and see (Li et. al, 2016, <https://github.com/okbalefthanded/svmplus_matlab>) for imple-
mentation details in 'MATLAB'.

Depends R (>= 2.15.0), quadprog, methods, Matrix, MASS

License GPL-3

Encoding UTF-8

NeedsCompilation no

LazyData true

RoxygenNote 6.0.1

Repository CRAN

Date/Publication 2018-04-25 14:21:48 UTC

R topics documented:

SVMP . 2
svmplus . 4

Index 6

1

2 SVMP

SVMP Creates and returns an instance of the class specified in the svm_type.

Description

Creates and returns an instance of the class specified in the svm_type. In future, the current solver
used for quadratic programming (quadprog) will be replaced by the equivaent quadprog solver
defined in CVXR package. Also, LIBSVM and LIBLINEAR based faster implementaions are
planned to be supported.

Usage

SVMP(cost = 1, gamma = 1, kernel_x = "rbf", degree_x = 3,
gamma_x = 0.001, kernel_xstar = "rbf", degree_xstar = 3,
gamma_xstar = 0.001, tol = 1e-05, svm_type = "QP")

Arguments

cost cost of constraints violation

gamma parameter needed for priviledged information

kernel_x the kernel used for standard training data

degree_x parameter needed for polynomial kernel for training data

gamma_x parameter needed for rbf kernel for training data

kernel_xstar the kernel used for priviledged information (PI)

degree_xstar parameter needed for polynomial kernel for PI

gamma_xstar parameter needed for rbf kernel for PI

tol tolerance of dual variables

svm_type optimization techiniques used: QP, LibSVM, LibLinear etc. Currently it sup-
ports only QP.

Value

an instance of the class specified in the svm_type. Currently it suports only "QP", hence returns
instance of the class QPSvmPlus. The return instance can be used to call fit, project and predict
methods of the QPSvmPlus.

Author(s)

Niharika Gauraha and Ola Spjuth

SVMP 3

Examples

This example is similar to the example given in the section 3.3 of the article:
https://doi.org/10.1007/s10472-017-9541-2

#Generate train data
mean1 = rep(0, 2)
mean2 = rep(1, 2)
cov2 = cov1 = .5 * diag(2)
n = 20
X1 = mvrnorm(n, mean1, Sigma = cov1)
X2 = mvrnorm(n, mean2, Sigma = cov2)
X_train = rbind(X1, X2)
y_train = matrix(c(rep(1, n), rep(-1, n)), 2*n, 1)

geberate privileged information data
X1Star = matrix(0, n, 2)
X2Star = matrix(0, n, 2)
for(i in 1:n)
{
X1Star[i, 1] = norm(X1[i,] - mean1, type = "2")
X1Star[i, 2] = norm(X2[i,] - mean2, type = "2")

}
for(i in 1:n)
{

X2Star[i, 1] = norm(X1[i,] - mean2, type = "2")
X2Star[i, 2] = norm(X2[i,] - mean1, type = "2")

}
XStar = rbind(X1Star, X2Star)

generate test data
n_test = 10
X1 = mvrnorm(n_test, mean1, Sigma = cov1)
X2 = mvrnorm(n_test, mean2, Sigma = cov2)
X_test = rbind(X1, X2)
y_test = matrix(c(rep(1, n_test), rep(-1, n_test)), 2*n_test, 1)

create instance of the class type QP, using RBF kernel
qp = SVMP(cost = 100, gamma = .01,

kernel_x = "rbf", gamma_x = .001,
kernel_xstar = "rbf", gamma_xstar = .001,
tol = .00001, svm_type = "QP")

call the fit function
qp$fit(X_train, XStar, y_train)

call the predict function
y_predict = qp$predict(X_test)
print(length(y_predict[y_predict == y_test]))
print("correct classification out of 20")

#using polynomial kernel
qp = SVMP(cost = 100, gamma = .01,

kernel_x = "poly", degree_x = 3,
kernel_xstar = "poly", gamma_xstar = 3,
tol = .00001)

4 svmplus

qp$fit(X_train, XStar, y_train)

y_predict = qp$predict(X_test)

print(length(y_predict[y_predict == y_test]))
print("correct classification out of 20")

#using linear kernel
qp = SVMP(cost = 10, gamma = .1,

kernel_x = "linear",
kernel_xstar = "linear",
tol = .00001)

qp$fit(X_train, XStar, y_train)

y_predict = qp$predict(X_test)

print(length(y_predict[y_predict == y_test]))
print("correct classification out of 20")

svmplus Implementation of SVM Plus

Description

Implementation of SVM plus for classification problems.

Details

The classical machine learning paradigm assumes, training examples in the form of iid pair:

(x1, y1), ..., (xl, yl), xi ∈ X, yi ∈ {−1,+1}.

Training examples are represented as features xi and the same feature space is required for predict-
ing future observations. However, this approach does not make use of other useful data that is only
available at training time; such data is referred to as Privileged Information (PI).

Learning Under Privileged Information (LUPI) is a novel machine learning paradigm. It offers
faster convergence of the learning process by exploiting the privileged information. In other words,
“fewer training examples are needed to achieve similar predictive performance" or “the same num-
ber of examples can provide a better predictive performance". In LUPI paradigm, training examples
come in the form of iid triplets

(x1, x
∗
1, y1), ..., (xl, x

∗
l , yl), xi ∈ X, x∗i ∈ X∗, yi ∈ {−1,+1}

where x∗ denotes PI. SVM+ is one realization of LUPI paradigm. In SVM+, privileged information
is used to estimate a linear model of the slack variables, namely

svmplus 5

ξi = (w∗)T z∗i + b∗,

where zi = φ(xi) represents the kernel mapping.

The SVM+ objective function is defined as:

min
w,b

{
1

2
wTw +

γ

2
(w∗)T (w∗) + C

l∑
i=1

[(w∗)T z∗i + b∗]

}

s.t. yi(w
T zi + b) ≥ 1− [(w∗)T z∗i + b∗],

(w∗)T z∗i + b∗ ≥ 0,∀i

The dual SVM+ problem is defined as follow.

max
w,b


l∑

i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjK(xi, xj)−
1

2γ

l∑
i,j=1

(αi + βi − C)(αj + βj − C)K∗(x∗i , x
∗
j)


s.t.

l∑
i=1

αiyi = 0,

l∑
i=1

(αi + βi − C) = 0,

αi ≥ 0, βi ≥ 0

This package offeres a Quadratic Programming (QP) based convex optimization solution for the
dual SVM+ problem. In future, LIBSVM and LibLinear based faster implementaions are planned
to be supported. We refer to [1] for theoretical details of LUPI and SVM+, and we refer to [2] for
implementation details of SVM+ in MATLAB.

References

[1] Vladimir et. al, Neural Networks, 2009, 22, pp 544–557. https://doi.org/10.1016/j.
neunet.2009.06.042

[2] Li et. al, 2016. https://github.com/okbalefthanded/svmplus_matlab

[3] Bendtsen, C., et al., Ann Math Artif Intell, 2017, 81, pp 155–166. https://doi.org/10.1007/
s10472-017-9541-2

https://doi.org/10.1016/j.neunet.2009.06.042
https://doi.org/10.1016/j.neunet.2009.06.042
https://github.com/okbalefthanded/svmplus_matlab
https://doi.org/10.1007/s10472-017-9541-2
https://doi.org/10.1007/s10472-017-9541-2

Index

SVMP, 2
svmplus, 4

6

	SVMP
	svmplus
	Index

