Package ‘svem’

February 20, 2015

Type Package

Title 2d and 3d Space-Varying Coefficient Models
Version 0.1.2

Date 2007-04-19

Author Susanne Heim, with support from Paul Eilers, Thomas Kneib, and
Michael Kobl

Maintainer Susanne Heim <susanneheim@gmx.net>

Description 2d and 3d space-varying coefficient models are fitted to
regular grid data using either a full B-spline tensor product
approach or a sequential approximation. The latter one is
computationally more efficient. Resolution increment is
enabled.

License GPL (>=2)

Depends R (>=2.4.0), Matrix, splines
LazyLoad yes

LazyData yes

URL http://www.statistik.lmu.de/~heim
Repository CRAN
Date/Publication 2009-06-14 19:13:12

NeedsCompilation yes

R topics documented:

svem-package L e e e e e
brain2d L e
brain3d e e
cleversearch
resolution e

Index

http://www.statistik.lmu.de/~heim

2 svem-package

svcm-package 2d and 3d Space-Varying Coefficient Models

Description

2d and 3d space-varying coefficient models are fitted to regular grid data using either a full B-spline
tensor product approach or a sequential approximation. The latter one is computationally more
efficient. Resolution increment is enabled.

Details
Package: svem
Type: Package
Version: 0.1.2
Date: 2007-04-19
License: GPL version 2 or newer

Depends: R (>=2.4.0), Matrix, splines
LazyLoad: yes

LazyData: yes

URL: http://www.statistik.Imu.de/~heim

Originally, VCMs have been suggested by Hastie and Tibshirani (1993) for regressions with coef-
ficients varying smoothly over a one-dimensional continuous variable such as time-varying effects.
This package provides extensions to two- and three-dimensional space-varying coefficients surfaces
for regularly gridded data without missings. Such a SVCM takes into account spatial correlation.
The use of spline-basis functions serves to model the spatial coefficient field. As a consequence,
estimates are accessible at any arbitrary position, not only on the original grid of voxels. Resolution
can be easily increased and moreover penalized for possible initial anisotropy of the voxel size.

Two techniques are implemented. The multidimensional smoothing approach takes advantage of
the sparsity of the spatial arrays involved. The second sequential one basically adapts the *new
smoothing spline’ in Dierckx (1982), thus reducing the 3d (or higher-dimensional) problem to a
sequence of one-dimensional smoothers.

The 2d and 3d examples have been chosen from the field of human brain imaging.

Author(s)

Susanne Heim, with support from Paul Eilers, Thomas Kneib, and Michael Kobl

Maintainer: Susanne Heim <susanneheim @ gmx.net>

References

Dierckx P. (1982) A fast algorithm for smoothing data on a rectangular grid while using spline
functions. SIAM Journal on Numerical Analysis 19(6), 1286-1304.

brain2d 3

Hastie T. and Tibshirani R. (1993) Varying-Coefficient Models (with discussion). Journal of the
Royal Statistical Society B 55, 757-796.

Heim S., Fahrmeir L., Eilers P. H. C. and Marx B. D. (2006) Space-Varying Coefficient Models for
Brain Imaging. Ludwig-Maximilians-University, SFB 386, Discussion Paper 455.

brain2d Two-dimensional Diffusion Weighted Dataset

Description

The data set consists of six transformed diffusion weighted images (DWI) showing a representative
axial slice of the human brain. The stored values can directly be passed to estimate the diffusion
tensor elements (regression coefficients) using a transform of the applied gradients as regressors.

Usage

data(brain2d)

Format

The first two dimensions provide the transformed signal intensities of one brain slice sized 90 x
75 voxels. The third dimension encodes for the direction of the six applied diffusion weighting
gradients.

Details

The present DTI data set was acquired at 1.5 T (Signa Echospeed; GE Medical Systems) using
a spin-echo echo-planar sequence with TR/TE = 4200ms/120ms and diffusion gradients in a six
noncollinear directions with a b-value of 880 s/mm”2. One axial slice was selected from a volume
of six DWI (b = 880 s/mm”?2) and one reference image (b = 0 s/mm”?2). In-plane resolution amounts
to 1.875 x 1.875 mm”"2.

The transformation of the raw signal intensities,

1 Si\ .
=——log|=),i=1,...
y b0g<so>7z) 76

is derived from the Stejskal-Tanner equation and is proposed by Papadakis et al.

Source

Diffusion Tensor Imaging was performed at the Max-Planck-Institute of Psychiatry, Munich, Ger-
many.

4 brain3d

References

Basser P. J. and Jones D. K. (2002) Diffusion-tensor MRI: Theory, experimental design and data
analysis — a technical review. NMR in Biomedicine 15, 456-467.

Mori S. and Barker P. B. (1999) Diffusion magnetic resonance imaging: Its principle and applica-
tions. The Anatomical Record 257, 102-109.

Papadakis N. G., Xing D., Huang C. L.-H., Hall L. and Carpenter T. A. (1999). A comparative study
of acquisition schemes for diffusion tensor imaging using MRI. Journal of Magnetic Resonance 137,
67-82.

Stejskal E. O. and Tanner J. E. (1965) Spin diffusion measurements: Spin echoes in the presence of
time-dependent field gradient. The Journal of Chemical Physics 42, 288-292.

Examples

data(brain2d)

dim(brain2d)

old.par <- par(no.readonly=TRUE)

par(pin=c(6, 1.2))

image(t(matrix(brain2d, dim(brain2d)[1], dim(brain2d)[2]*6)), axes=FALSE,
col=grey.colors(256))

title("Six Diffusion Weighted Images”)

par(old.par)

brain3d Three-dimensional Diffusion Weighted Dataset

Description

To keep the computational effort low a volume of 15 x 30 x 6 voxels was chosen from the original
whole brain volume. The extract depicts the posterior part of the lateral ventricles and the corpus
callosum so both areas with low and high signal intensities are contained. The six transformed dif-
fusion weighted images can directly be passed to estimate the diffusion tensor elements (regression
coefficients) using a transform of the applied gradients as regressors.

Usage

data(brain3d)

Format

The first three dimensions of the data array contain the number of voxels in x-, y- and z-direction.
The fourth dimension encodes for the direction of the six applied diffusion weighting gradients.

brain3d 5

Details

The present DTI data set was acquired at 1.5 T (Signa Echospeed; GE Medical Systems) using
a spin-echo echo-planar sequence with TR/TE = 4200ms/120ms and diffusion gradients in a six
noncollinear directions with a b-value of 880 s/mm”2. The extracted volume originates from six
DWI (b = 880 s/mm”2) and one reference image (b = 0 s/mm”2). In-plane resolution amounts to
1.875 x 1.875 mm"2, slice thickness is 4.0 mm.

The transformation of the raw signal intensities,

1 Si\ .
=—21 = =1,...
Yy b0g<so>,z yorey 6

is derived from the Stejskal-Tanner equation and is proposed by Papadakis et al.

Source

Diffusion Tensor Imaging was performed at the Max-Planck-Institute of Psychiatry, Munich, Ger-
many.

References

Basser P. J. and Jones D. K. (2002) Diffusion-tensor MRI: Theory, experimental design and data
analysis — a technical review. NMR in Biomedicine 15, 456-467.

Mori S. and Barker P. B. (1999) Diffusion magnetic resonance imaging: Its principle and applica-
tions. The Anatomical Record 257, 102-109.

Papadakis N. G., Xing D., Huang C. L.-H., Hall L. and Carpenter T. A. (1999). A comparative study
of acquisition schemes for diffusion tensor imaging using MRI. Journal of Magnetic Resonance 137,
67-82.

Stejskal E. O. and Tanner J. E. (1965) Spin diffusion measurements: Spin echoes in the presence of
time-dependent field gradient. The Journal of Chemical Physics 42, 288-292.

Examples

data(brain3d)
dim(brain3d)
old.par <- par(no.readonly = TRUE)
par(pin=c(1.1, 3.4), mfrow=c(1, 6))
for (i in 1:dim(brain3d)[41])
image(matrix(aperm(brain3d[,,,i], c(2,1,3)), nrow=dim(brain3d)[2]),
axes=FALSE, col=grey.colors(256), main=paste("DWI", 1i))
title("6 DWIs of a (15 x 3@ x 6) human brain extract in axial view”,
outer=TRUE, line=-10)
par(old.par)

6 cleversearch

cleversearch Optimization over a parameter grid

Description

This function allows greedy/full grid search in any dimension.

Usage

cleversearch(fn, lower, upper, ngrid, startvalue, logscale = TRUE,
clever = TRUE, verbose = FALSE)

Arguments
fn a function to be minimized (or maximized), with the only argument being the
parameter over which minimization is to take place. The return value must be
scalar.
lower numeric vector containing the lower bounds on the parameter grid
upper numeric vector containing the upper bounds on the parameter grid
ngrid integer number determining the grid length in every dimension
startvalue optional initial value for the parameter to be optimized over
logscale logical, whether to construct the grid on logarithmic scale
clever logical, whether to perform a greedy grid search with lookup-table or a full grid
evaluation. The latter is only available up to 3d.
verbose logical. Should the search process be monitored?
Details

Unless startvalue is specified, the search starts at the lower bound of the 1d parameter space or
at the middle of the 2d/3d grid.

Value

A list with components

par optimal parameter value that was found.
value fn value corresponding to par.
counts number of calls to ’fn’.
See Also
optim
Examples

simplefun <- function(vec) { return(sum(vec”*2)) }
opt <- cleversearch(simplefun, c(-1, -1), c(1, 1), 51, logscale=FALSE)

resolution 7

resolution Re-scaling resolution of SVCM predictors and effects

Description

This routine serves post-hoc adjustment of the resolution of a space-varying coefficient model esti-
mated by svcm.

Usage

resolution(X, svcmlist, fac)

Arguments
X (r x p)-array of covariates
svemlist return list of function svcm
fac 2d or 3d vector of scaling factors
Details

The basis function approach underlying svcm allows to rescale the original resolution by evaluating
the basis functions at additional points. Assuming that the voxel center is most representative for
the whole voxel, fac-times resolution of 1d data with n voxels sized vsize bases on coordinates

1 i
<i—2)-1};;};€, i=1,...,n- fac.

See also doc file resolution_scheme.pdf.

The formula is applied into x-, y- and z-direction and results in a refined equidistant 2d resp. 3d
grid. It also means that, in general, the resized arrays of predictors and effects do no longer contain
the values at the former coordinates.

Note that memory requirements can be enormous depending on object size and the intended reso-
lution.

Value

A list with components

fitted fitted values at fac-times rescaled resolution.

effects estimated effects at fac-times rescaled resolution.

8 svem

Examples

##DTI data; regressors are given by the diffusion weigthing gradients
data(brain2d)

X <- matrix(c(0.5, 0.

5 ’ ’
, 0, 0.

5, 0

0

Q.
, 0.

’

, 0.
, 0.
) , -1,

, -1,)) , 9,

9, Q, 1, -1, Q, @), nrow = 6)

M <- svcm(brain2d, X, knots=c(60, 50), deg=c(1, 1), vsize=c(1.875,
1.875), search=TRUE, type="SEQ", lambda.init=rep(0.1, 2),
lower=rep(-5, 2), upper=rep(@, 2), ngrid=10)

M2 <- resolution(X, M, fac=c(2, 2))

)

’

S o1 al

, 0.
9.5, 0. 0

’

’ ’

- o oo U
o o Ul U1
o0 Ul Ul
S = o U1\

##show data extract at original and double resolution
extract <- list(M$fit[21:40, 21:60, 1],
M2$Fit[(21%2): (40%2), (21%2):(60%2), 11,
M$eff[21:40, 21:60, 1],
M2$effL(21%2):(40%2), (21%2):(60%*2), 11)
z1iml <- range(extract[[1]], extract[[2]])
z1lim2 <- range(extract[[3]1], extract[[4]])
old.par <- par(no.readonly = TRUE)
par(pin=c(3*1, 3x0.67), mfrow=c(2, 2))
image(t(extract[[1]1]), axes=FALSE, zlim=zlim1, col=grey.colors(256))
title("Fitted Values™)
image(t(extract[[2]]), axes=FALSE, zlim=zlim1, col=grey.colors(256))
title("Fitted Values at Double Resolution”)
image(t(extract[[3]]), axes=FALSE, zlim=zlim2, col=grey.colors(256))
title("Estimated VC Surface (1st DT element)")
image(t(extract[[4]1]), axes=FALSE, zlim=zlim2, col=grey.colors(256))
title("VC Surface at Double Resolution”)
par(old.par)

svem Fitting space-varying coefficient models

Description

’svem’ is used to fit a 2d or 3d space-varying coefficient model or to merely smooth the input
data using penalized B-splines. The smoothing works either sequentially or multidimensionally
involving tensor products. So far, only space-invariant regressors are allowed. Data must be on a
regular grid without missings.

Usage

svem(Y, X, vsize = c(1, 1, 1), knots = c(10, 10, 10),
deg = c(1, 1, 1), opd = c(1, 1, 1), search = TRUE,
lambda.init = rep(@.001, 3), method = "grid"”, type = "SEQ", ...)

svem 9

Arguments
Y array of observational data. Last dimension must correspond to the number of
rows of X.
X (r X p)-design matrix
vsize numeric vector of the voxel size
knots vector of the numbers of inner knots in x-, y- (and z-) direction
deg vector of degrees of the basis functions in x-, y- (and z-) direction
opd vector of the order of the difference penalties in x-, y- (and z-) direction
search logical. If TRUE, the smoothing parameter will be optimized using method and
GCV. If FALSE, lambda.init specifies the fixed smoothing parameter.
lambda.init compulsory; initial value of global or dimension-specific smoothing parameter.
See Details.
method optimization method to be used. See Details.
type character. "SEQ" (sequential) or "TP" (tensor product).
parameters to be passed to the optimization algorithm specified by method.
Details

The purpose of lambda.init is three-fold: First, the length determines the use of either global or
dimension-specific penalties. Second, it serves as fixed smoothing parameter if search is deacti-
vated. Third, it is used as initial value from the optim algorithm which runs in case of a multidi-
mensional tuning parameter when no grid search is desired.

Unless method equals "grid”, optimize is called in the case of a global tuning parameter requiring
a specified interval to be passed. While optimize does not take a starting value explicitly, a
startvalue can be passed to cleversearch, e.g. startvalue = lambda.init.

In the case of a dimension-specific tuning parameter, method "grid" evokes a full or greedy grid
search (see cleversearch). Amongst others, simplex method "Nelder-Mead" or quasi-Newton
"L-BFGS-B" with positivity constraint for the smoothing parameter are conceivable, too. For further
specification see optim.

For simple smoothing of Y set X = matrix(1, 1, 1) and ascertain that the last dimension of Y
matches dim(X)[1].

Value

A list with components:

fitted fitted values as array of the same dimension as Y
effects effects of dimension (n.x, n.y, p) resp. (n.x, n.y, n.z, p).
coeff coefficients (amplitudes of the basis functions) of dimension (p, r.X, r.y) resp.

(p, X, 1.y, r.z) with r.x number of basis functions in x-direction.

knots see knots.

10 svem

deg see deg.

opd see opd.

vsize see vsize.

type character describing the SVCM variant used. See type.

call the matched call.

opt a list with components depending on search, i.e. on whether optimization was

performed or not:

time calculation/optimization time

par initial value lambda.init or the best parameter found.
value GCV value corresponding to par.

GCVtab matrix of the search process with values of lambda and corresponding
GCV value.

... further values returned by optim(), optimize()

Warnings

This model assumes the regressors to be space-invariant. Data must be on a regular grid without
missings.

Background

In the general case of 2d mesh data, Dierckx (1982, 1993) demonstrates the equivalence of succes-
sive univariate smoothing with smoothing based on a full bivariate B-spline matrix. However, the
equivalence does no longer hold if penalties are introduced. Dierckx proposes the so-called *new
smoothing spline’ as approximation to the multidimensional penalized smoothing (type = "TP").
While Dierckx determines the penalty structure through the spline degree and the equidistance
between adjacent knots, the present implementation (type = "SEQ") uses penalties of simple dif-
ferences.

The calculation of GCV involves an inversion which is achieved using the recursion formula for
band matrices in Hutchinson/de Hoog (1985). My collegue Thomas Kneib not only recommended
this paper but also provided us with the basic.

Note

The observations in Y are assigned to the center of the respective grid unit sized vsize. Hence the
basis functions are evaluated at these coordinates.

References

Dierckx P. (1982) A fast algorithm for smoothing data on a rectangular grid while using spline
functions. SIAM Journal on Numerical Analysis 19(6), 1286-1304.

Dierckx P. (1993) Curve and surface fitting with splines. Oxford: Monographs on Numerical Anal-
ysis, Oxford University Press.

Heim S., Fahrmeir L., Eilers P. H. C. and Marx B. D. (2006) Space-Varying Coefficient Models for
Brain Imaging. Ludwig-Maximilians-University, SFB 386, Discussion Paper 455.

Hutchinson M. F. and de Hoog F. R. (1985) Smoothing noisy data with spline functions. Journal of
Numerical Mathematics 47, 99-106.

svem

See Also

optimize for one-dimensional minimization,
optim here explicitly method "L-BGFS-B",
cleversearch for clever or full grid search.

Examples

2d DT-MRI data
data(brain2d)

X <- matrix(c(0.5, 0.5, 9, 0, 0.5, 0.5,
0, 0, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, Q, 0,
0, 0, 0, 0, 1, -1,
1, -1, 0, 0, Q, 0,
Q, Q, 1, -1, Q, @), nrow = 6)

##2d grid search for lambda; 60*50%x6=18000 parameters (amplitudes) in total
M <- svcm(brain2d, X, knots=c(60, 50), deg=c(1, 1), vsize=c(1.875, 1.875),
type="SEQ", lambda.init=rep(@.1, 2), search=TRUE,
method="grid", lower=rep(-5, 2), upper=rep(@, 2), ngrid=10)
str(M$opt)

show results

zlim <- range(brain2d, M$fit)

old.par <- par(no.readonly=TRUE)

par(pin=c(6, 1.2), mfrow=c(3, 1))

image(t(matrix(brain2d, nrow=dim(brain2d)[1])), axes=FALSE, zlim=zlim,
col=grey.colors(256))

title("Observations: Six Diffusion Weighted Images")

image(t(matrix(M$fitted, nrow=dim(M$fit)[1]1)), axes=FALSE, zlim=zlim,
col=grey.colors(256))

title("Fitted Values")

image(t(matrix(M$effects, nrow=dim(M$eff)[1])), axes=FALSE,
col=grey.colors(256))

title("Estimated Coefficient Surfaces: Six Elements of the Diffusion Tensor")

par(old.par)

3d DT-MRI data; same regressors as in 2d; fixed global smoothing parameter

data(brain3d)

M3d <- svem(brain3d, X, knots=c(5, 1@, 5), deg=c(1, 1, 1), search=FALSE,
vsize=c(1.875, 1.875, 4.0), type="TP", lambda.init=1)

visualize results

zlim <- range(brain3d[,,,1], M3d$fit[,,,1]1)

old.par <- par(no.readonly = TRUE)

par(pin=c(1.8, 5), mfrow=c(1, 3))

image(matrix(aperm(brain3d[,,,1], c(2,1,3)), nrow=dim(brain3d)[2]),
axes=FALSE, zlim=zlim, col=grey.colors(256))

title(”(a) Obs: 1st DWI")

image(matrix(aperm(M3d$fit[,,,1], c(2,1,3)), nrow=dim(brain3d)[2]),
axes=FALSE, zlim=zlim, col=grey.colors(256))

title("(b) Fits of 1st DWI")

12

image(matrix(aperm(M3d$eff[,,,1], c(2,1,3)), nrow=dim(brain3d)[2]),
axes=FALSE, col=grey.colors(256))
title("(c) Effects: 1st DT element”)
title("Six axial slices of the 1st DWI-transform (a) and its fit (b);
\n\n(c) corresponds to the first diffusion tensor component.”,
outer=TRUE, line=-5)
par(old.par)

svem

Index

+Topic datasets
brain2d, 3
brain3d, 4

+Topic optimize
cleversearch, 6

+Topic package
svcm-package, 2

*Topic smooth
resolution, 7
svem, 8

+Topic spatial
cleversearch, 6
resolution, 7
svem, 8

brain2d, 3
brain3d, 4

cleversearch, 6,9, 11

optim, 6,9, 11
optimize, 9, 11

resolution, 7

svem, 7, 8
svcm-package, 2

13

	svcm-package
	brain2d
	brain3d
	cleversearch
	resolution
	svcm
	Index

