
Package ‘svMisc’
June 30, 2018

Type Package

Version 1.1.0

Date 2018-06-10

Title SciViews - Miscellaneous Functions

Description Miscellaneous functions for SciViews or general use: manage a
temporary environment attached to the search path for temporary variables you
do not want to save() or load(), test if Aqua, Mac, Win, ... Show progress
bar, etc.

Maintainer Philippe Grosjean <phgrosjean@sciviews.org>

Depends R (>= 2.13.0)

Imports utils, methods, stats, tools

Suggests rJava, tcltk, covr, knitr, testthat

License GPL-2

URL https://github.com/SciViews/svMisc,

http://www.sciviews.org/SciViews-R

BugReports https://github.com/SciViews/svMisc/issues

RoxygenNote 6.0.1

VignetteBuilder knitr

NeedsCompilation no

Author Philippe Grosjean [aut, cre],
Romain Francois [ctb],
Kamil Barton [ctb]

Repository CRAN

Date/Publication 2018-06-30 17:04:09 UTC

R topics documented:
svMisc-package . 2
about . 3

1

https://github.com/SciViews/svMisc
http://www.sciviews.org/SciViews-R
https://github.com/SciViews/svMisc/issues

2 svMisc-package

add_actions . 4
batch . 5
capture_all . 6
compare_r_version . 8
completion . 8
def . 11
describe_function . 12
file_edit . 14
gui_cmd . 16
Install . 17
is_help . 18
list_methods . 20
obj_browse . 21
package . 24
parse_text . 26
pkgman_describe . 27
progress . 29
search_web . 32
source_clipboard . 33
subsettable . 34
system_file . 35
temp_env . 36
temp_var . 39
to_rjson . 39

Index 42

svMisc-package SciViews - Miscellaneous functions

Description

Miscellaneous functions for SciViews or general use. The svMisc package collects together a series
of functions that are shared with svXXX packages.

Important functions

• temp_env() for unsing a temporary environment attached to the search path,

• temp_var() create the name of temporary variables,

• capture_all() to capture R output, errors, warnings and messages,

• parse_text() to parse any R expression, including partial or incorrect ones (fails gracefully).

about 3

about Get information and help about R objects

Description

Help obtained with this function is wider than with help(). If a man page is not found, it suggests
related topics. If an object is an S3 generic function, it also lists all its known methods. Also,
one can track the help page of an object even if its name is changed, by using the src or srcfile
attribute of the object’s comment. By the way, if the object has a comment, it is also displayed. This
can be used as a quick and dirty way to provide short hints to custom objects. Finally, it is possible
to track down the source of an object into a file with the srcfile attribute of its comment. In this
case, it is the source file that is displayed. So, you can also further document your custom objects
easily in their source files!

Usage

about(topic, ...)

"?"(type, topic)

Arguments

topic The name of an object, or the topic to search for, if this is not the name of a
known object.

... Further arguments passed to help().

type First argument to ?. If it is a dot, like .?topic, the second argument is a topic
passed to the about() function. Otherwise, it is the first argument to restrict
help pages, like class, methods, or method. See examples for how to use it.

Value

A string with the location of all objects named topic are found is returned invisibly.

See Also

help(), help.search(), apropos()

Examples

about("nonexisting") # Not found on search path, but help pages
about("htgdsfgfdsgf") # Not found anywhere
#library(tidyverse)
#about("group_by") # Just one page
#about("filter") # Several items
about("stats::filter") # OK
#about("dplyr::filter") # OK too
about("base::filter") # Not found there
Objects with comment: print comment

4 add_actions

vec <- structure(1:10, comment = "A simple vector")
about("vec")
If there is a srcfile attribute in the comment, also display the file
Hint: integrate some help in the header!
#library(data)
#(iris <- read(data_example("iris.csv")))
#about("iris")
If the comment has a src attribute, change the topic to that one
#urchin <- read("urchin_bio", package = "data")
#about("urchin")
.?filter
.?stats::filter

add_actions Add GUI elements like actions (menu items), icons, or methods in a
predefined list

Description

Manage lists of GUI actions, icons and methods.

Usage

add_actions(obj = get_actions(), text = NULL, code = NULL, state = NULL,
options = NULL, replace = TRUE)

get_actions()

add_icons(obj = ".svIcons", icons, replace = TRUE)

add_methods(methods)

addActions(obj = get_actions(), text = NULL, code = NULL, state = NULL,
options = NULL, replace = TRUE)

addIcons(obj = ".svIcons", icons, replace = TRUE)

addMethods(methods)

Arguments

obj The name of the object in SciViews:TempEnv to manipulate.

text The text of actions to add (label on first line, tip on other lines).

code The R code of actions to add.

state The default (intial) state of an action, as a succession of letters: c = checked, u =
unchecked (default); d = disabled, e = enabled (default); h = hidden, v = visible
(default). Default values are facultative. Ex: udv means: unchecked - disabled -
visible and it equals to simply d, given the defaults for the other properties.

batch 5

options A character vector with other options to pass to the graphical toolkit for this
action.

replace Do we replace existing items in ’x’?

icons The description of the icons to add.

methods The list of methods to add (character string).

Value

The modified object is returned invisibly.

See Also

add_items(), obj_menu(), temp_env()

Examples

This is useful to add actions, icons, descriptions, shortcuts or methods
TODO: examples and use for functions add_actions(), add_icons() and
add_methods()

batch Run a function in batch mode

Description

A function can be run in batch mode if it never fails (replace errors by warnings) and returns TRUE
in case of success, or FALSE otherwise.

Usage

batch(items, fun, ..., show.progress = !is_aqua() && !is_jgr(),
suppress.messages = show.progress, verbose = TRUE)

Arguments

items The items (usually, arguments vector of character strings) on which to apply fun
sequentially.

fun The function to run (must return TRUE or FALSE and issue only warnings or
messages to be a good candidate, batchable, function).

... Further arguments to pass the fun.

show.progress Do we show progression as item x on y... message? This uses the progress()
function.

suppress.messages

Are messages from the batcheable function suppressed? Only warnings will be
issued. Recommended if show.progress = TRUE.

verbose Display start and end messages if TRUE (default).

6 capture_all

Value

Returns invisibly the number of items that were correctly processed with attributes items and ok
giving more details.

See Also

progress()

Examples

Here is a fake batcheable process
fake_process <- function(file) {

message("Processing ", file, "...")
flush.console()
Sys.sleep(0.5)
if (runif(1) > 0.7) { # Fails
warning("fake_process was unable to process ", file)
invisible(FALSE)

} else invisible(TRUE)
}

Run it in batch mode on five items
files <- paste0("file", 1:5)
batch(files, fake_process)

capture_all Run an R expression and capture output and messages in a similar
way as it would be done at the command line

Description

This function captures results of evaluating one or several R expressions the same way as it would
be issued at the prompt in a R console. The result is returned in a character string. Errors, warn-
ings and other conditions are treated as usual, including the delayed display of the warnings if
options(warn = 0).

Usage

capture_all(expr, split = TRUE, echo = TRUE, file = NULL,
markStdErr = FALSE)

captureAll(expr, split = TRUE, echo = TRUE, file = NULL,
markStdErr = FALSE)

capture_all 7

Arguments

expr A valid R expression to evaluate (names and calls are also accepted).

split Do we split output, that is, do we also issue it at the R console too, or do we
only capture it silently?

echo Do we echo each expression in front of the results (like in the console)? In
case the expression spans on more than 7 lines, only first and last three lines are
echoed, separated by [...].

file A file, or a valid opened connection where output is sinked. It is closed at the
end, and the function returns NULL in this case. If file = NULL (by default), a
textConnection() captures the output and it is returned as a character string
by the function.

markStdErr If TRUE, stderr is separated from sddout by STX/ETX characters.

Value

Returns a string with the result of the evaluation done in the user workspace.

Note

If the expression is provided as a character string that should be evaluated, and you need a similar
behaviour as at the prompt for incomplete lines of code (that is, to prompt for more), you should
not parse the expression with parse(text = "<some_code>") because it returns an error instead
of an indication of an incomplete code line. Use parse_text("<some_code>") instead, like in the
examples bellow. Of course, you have to deal with incomplete line management in your GUI/CLI
application... the function only returns NA instead of a character string.

See Also

parse(), expression(), capture.output()

Examples

writeLines(capture_all(expression(1 + 1), split = FALSE))
writeLines(capture_all(expression(1 + 1), split = TRUE))
writeLines(capture_all(parse_text("search()"), split = FALSE))
Not run:
writeLines(capture_all(parse_text('1:2 + 1:3'), split = FALSE))
writeLines(capture_all(parse_text("badname"), split = FALSE))

End(Not run)

Management of incomplete lines
capt_res <- capture_all(parse_text("1 +")) # Clearly an incomplete command
if (is.na(capt_res)) cat("Incomplete line!\n") else writeLines(capt_res)
rm(capt_res)

8 completion

compare_r_version Compare current R version with a specified one

Description

Determine if R is older (return -1), or not (return 0 if equal, or 1 if newer) than a given version
number.

Usage

compare_r_version(version)

compareRVersion(version)

Arguments

version A string defining the version to compare to, like ’2.0.0’ or ’1.9.1’.

Value

-1 if R is older, 0 if equal, 1 if newer. Take care: if you specify version as "2.11", and R is version
"2.11.0", then the function will return 1 (newer)!

See Also

compareVersion(), R.version()

Examples

compare_r_version("2.11.0") # Note that we strongly advise to use R > 2.11.0!

completion Get a completion list for a R code fragment

Description

Returns names of objects/arguments/namespaces matching a code fragment.

Usage

completion(code, pos = nchar(code), min.length = 2, print = FALSE,
types = c("default", "scintilla"), addition = FALSE, sort = TRUE,
what = c("arguments", "functions", "packages"), description = FALSE,
max.fun = 100, skip.used.args = TRUE, sep = "\n", field.sep = "\t")

completion 9

Arguments

code A partial R code to be completed.

pos The position of the cursor in this code.

min.length The minimal length in characters of code required before the completion list is
calculated.

print Logical, print result and return invisibly. See details.

types A named list giving names of types. Set to NA to give only names. See details.

addition Should only addition string be returned?

sort Do we sort the list of completions alphabetically?

what What are we looking for? Allow to restrict search for faster calculation.

description Do we describe items in the completion list (could be slow)?

max.fun In the case where we describe items, the maximum number of functions to pro-
cess (if longer, no description is returned for function) because it can be very
slow otherwise.

skip.used.args Logical, if completion is within function arguments, should the already used
named arguments be omitted?

sep The separator to use between returned items.

field.sep Character string to separate fields for each entry.

Details

The completion list is context-dependent, and it is calculated as if the code was entered at the
command line.

If the code ends with $ or [[, then the function look for items in a list or data.frame whose name is
the last identifier.

If the code ends with @, then the function look for slots of the corresponding S4 object.

If the code ends with ::, then it looks for objects in a namespace.

If the code ends with a partial identifier name, the function returns all matching keywords visible
from .GlobalEnv.

If the code is empty or parses into an empty last token, the list of objects currently in the global
environment is returned.

Value

If types == NA and description = FALSE, a character vector giving the completions, otherwise a
data frame with two columns: ’completion’, and ’type’ when description = FALSE, or with four
columns: ’completion’, ’type’, ’desc’ and ’context’ when description = TRUE.
Attributes:
attr(, "token") - a completed token.
attr(, "triggerPos") - number of already typed characters.
attr(, "fguess") - name of guessed function.
‘attr(, "isFirstArg")“ - is this a first argument?

10 completion

Note

Take care: depending on the context, the completion list could be incorrect (but it should work for
code entered at the command line). For instance, inside a function call, the context is very different,
and arguments and local variables should be returned instead. This may be implemented in the
future, but for now, we focus on completion that should be most useful for novice useRs that are
using R expressions entered one after the other at the R console or in a script (and considering the
script is run or sourced line after line in R).

There are other situations where the completion can be calculated, see the help of rc.settings().

If print == TRUE, results are returned invisibly, and printed in a form: triggerPos<newline>completions
separated by sep.

If types are supplied, a completion will consist of name and type, separated by type.sep. types
may me a vector of length 5, giving the type codes for "function", "variable", "environment", "argu-
ment" and "keyword". If types == "default", above type names are given; types == "scintilla"
will give numeric codes that can be used with "scintilla.autoCShow" function (e.g., with the SciViews-
K Komodo Edit plugin).

Author(s)

Philippe Grosjean phgrosjean@sciviews.org & Kamil Barton kamil.barton@uni-wuerzburg.de

See Also

rc.settings()

Examples

A data frame
data(iris)
completion("item <- iris$")
completion("item <- iris[[")

An S4 object
setClass("track", representation(x = "numeric", y = "numeric"))
t1 <- new("track", x = 1:20, y = (1:20)^2)
completion("item2 <- t1@")

A namespace
completion("utils::", description = TRUE)

A partial identifier
completion("item3 <- va", description = TRUE)

Otherwise, a list with the content of .GlobalEnv
completion("item4 <- ")

TODO: directory and filename completion!
rm(iris, t1)

mailto:phgrosjean@sciviews.org
mailto:kamil.barton@uni-wuerzburg.de

def 11

def Define a vector of a given mode and length (possibly filling it with
default values)

Description

This function makes sure that a vector of a given mode and length is returned. If the value provided
is NULL, or empty, the default value is used instead. If length.out = NULL, the length of the vector
is not constrained, otherwise, it is fixed (possibly cutting or recycling value).

Usage

def(value, default = "", mode = "character", length.out = NULL)

Arguments

value The value to pass with default.

default The default value to use, in case of NULL, or length(value) == 0.

mode The mode of the resulting object: ’character’, ’logical’, ’numeric’ (and, if you
want to be more precise: ’double’, ’integer’ or ’single’) or ’complex’. Although
not being a mode by itself, you can also specify ’factor’ to make sure the result is
a factor (thus, of mode ’numeric’, storage mode ’integer’, with a levels attribute).
Other modes are ignored, and value is NOT coerced (silently) in this case, i.e.,
if you don’t want to force coercion of the resulting object, use anything else.

length.out The desired length of the returned vector; use length.out = NULL (default) if
you don’t want to change the length of the vector.

Value

A vector of given mode and length, with either value or default.

See Also

mode(), rep(), temp_env()

Examples

def(1:3, length.out = 5) # Convert into character and recycle
def(0:2, mode = "logical") # Numbers to logical
def(c("TRUE", "FALSE"), mode = "logical") # Text to logical
def(NULL, "default text") # Default value used
def(character(0), "default text") # Idem
def(NA, 10, mode = "numeric", length.out = 2) # Vector of two numbers

12 describe_function

describe_function Get textual help on function or function arguments, or get a call tip

Description

Textual help on functions or their arguments is extracted for text online help for a given function. By
default, all arguments from the online help are returned for describe_args(). If the file contains
help for several functions, one probably gets also some irrelevant information. Use of ’args’ to
limit result is strongly encouraged. args_tip() provides a human-readable textual description of
function arguments in a better way than args() does. It is primarily intended for code tips in GUIs.
call_tip() has a similar purpose to show how some code could be completed.

Usage

describe_function(fun, package, lib.loc = NULL)

describe_args(fun, args = NULL, package = NULL, lib.loc = NULL)

args_tip(name, only.args = FALSE, width = getOption("width"))

call_tip(code, only.args = FALSE, location = FALSE, description = FALSE,
methods = FALSE, width = getOption("width"))

descFun(fun, package, lib.loc = NULL)

descArgs(fun, args = NULL, package = NULL, lib.loc = NULL)

argsTip(name, only.args = FALSE, width = getOption("width"))

callTip(code, only.args = FALSE, location = FALSE, description = FALSE,
methods = FALSE, width = getOption("width"))

Arguments

fun A character string with the name of a function (several functions accepted too
for describe_function().

package A character string with the name of the package that contains fun, or NULL for
searching in all loaded packages.

lib.loc A character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

args Either NULL (by default) to return the description of all arguments from the corre-
sponding man page, or a character vector with names of the arguments to search
for.

name A string with the name of a function.

describe_function 13

only.args Do we return only arguments of the function (arg1, arg2 = TRUE, ...), or
the full call, like (myfun(arg1, arg2 = TRUE, ...)).

width Reformat the tip to fit to fit in that width, except if width = NULL.

code A fraction of R code ending with the name of a function, eventually followed by
’(’.

location If TRUE then the location (in which package the function resides) is appended to
the calltip between square brackets.

description If TRUE then a short description of the function is added to the call_tip (in fact,
the title of the corresponding help page, if it exists).

methods If TRUE then a short message indicating if this is a generic function and that lists,
in this case, available methods.

Value

A string with the description of the function or of its arguments, or the calling syntax of the function,
plus additional information depending on the flags used. If the man page is not found, a vector of
empty strings is returned. Empty strings are also returned for arguments that are not found in the
man page.

Note

args_tip() is supposed to display S3 and S4 methods, and primitives adequately,... but this is not
implemented yet in the current version! For call_tip(), the use of methods = TRUE slows down
the execution of the function, especially for generic functions that have many methods like print()
or summary().

See Also

completion(), args(), argsAnywhere()

Examples

describe_function("ls", "base")
describe_function("library", "base")
describe_function("descFun", "svMisc")
describe_function("descArgs")

describe_args("ls")
describe_args("library", args = c("package", "pos"))

args_tip("ls")

call_tip("myvar <- lm(")

14 file_edit

file_edit Invoke an external text editor for a file

Description

Edit a text file using an external editor. Possibly wait for the end of the program and care about
creating the file (from a template) if it does not exists yet.

Usage

file_edit(..., title = files, editor = getOption("fileEditor"),
file.encoding = "", template = NULL, replace = FALSE, wait = FALSE)

fileEdit(..., title = files, editor = getOption("fileEditor"),
file.encoding = "", template = NULL, replace = FALSE, wait = FALSE)

Arguments

... Path to one or more files to edit.

title The title of the editor window (not honoured by all editors, most external editors
only display the file name or path).

editor Editor to use. Either the name of the program, or a string containing the com-
mand to run, using %s as replacement tag where to place the filename in the
command, or a function with ’file’, ’title’ and ’wait’ arguments to delegate pro-
cess of the files.

file.encoding Encoding of the files. If "" or native.enc, the files are considered as being
already in the right encoding.

template One or more files to use as template if files must be created. If NULL, an empty
file is created. This argument is recycled for all files to edit.

replace Force replacement of files if template= is not null.

wait Wait for edition to complete. If more than one file is edited, the program waits
sequentially for each file to be edited in turn (with a message in the R console).

Value

The function returns TRUE if it was able to edit the files or FALSE otherwise, invisibly. Encountered
errors are reported as warnings.

Note

The default editor program, or the command to run is in the fileEditor option (use getOption("fileEditor")
to retrieve it, and options(fileEditor = "<my_own_editor>") to change it). Default values are
determined automatically.

On Unixes, "gedit", "kate" and "vi" are looked for in that order. Note that there is a gedit plugin to
submit code directly to R: http://rgedit.sourceforge.net/. Since, gedit natively supports a lot

http://rgedit.sourceforge.net/

file_edit 15

of different syntax highlighting, including R, and is lightweight but feature rich, it is recommended
as default text editor for file_edit() on Unixes. If JGR is run and the editor is "vi" or "internal",
then the internal JGR editor is used, otherwise, the provided editor is choosen.

On MacOS, if the "bbedit" program exists, it is used (it is the command line program installed by
BBEdit, see http://www.barebones.com/products/, a much more capables text editor than the
default TextEdit program), otherwise, the default text editor used by MacOS is choosen (default
usually to TextEdit). BBEdit can be configured to highlight and submit R code.It features also
several tools that makes it a much better choice than TextEdit for file_edit() on MacOS. Specify
"bbedit" to force using it. The default value is "textedit", the MacOS default text editor, but on
R.app, and with wait = FALSE, the internal R.app editor is used instead in that case. If RStudio or
JGR is run, and the editor is "textedit", "internal" or "vi", then, the RStuiod or JGR internal editor
is used instead. If wait = TRUE with an RStudio editor, it is enough to switch to another editor to
continue.

On Windows, if Notepad++ is installed in its default location, it is used, otherwise, the default
"notepad" is used in Rterm and the internal editors are choosen for Rgui. Notepad++ is a free
text editor that is much better suited to edit code or text files that the default Windows’ notepad
application, in particular because it can handle various line end types (Unix, Mac or Windows) and
encodings. It also supports syntax highlighting, code completion and much more. So, it is strongly
recommended to install it (see http://notepad-plus-plus.org/) and use it with file-edit().
There is also a plugin to submit code to R directly from Notepad++: http://sourceforge.net/
projects/npptor/.

Of course, you can use your own text editor, just indicate it in the fileEditor option. Note, how-
ever, that you should use only lighweight and fast starting programs. Also, for the wait = TRUE
argument of file_edit(), you must check that R waits for the editor to be closed before further
processing code. In some cases, a little command line program is used to start a larger application
(like for Komodo Edit/IDE), or the program delegates to an existing instances and exits immedi-
atelly, even if the file is still edited. Such editors are not recommended at all for file_edit().

If you want to use files that are compatibles between all platforms supported by R itself, you should
think about using ASCII encoding as much as possible and the Windows style of line-ending. That
way, you ensure that all the default editors will handle those files correctly, including the broken
default editor on Windows, notepad, which does not understand at all MacOS or Unix line ending
characters!

See Also

system_file(), file.path(), file.edit()

Examples

Not run:
Create a template file in the tempdir...
template <- tempfile("template", fileext = ".txt")
cat("Example template file to be used with file_edit()", file = template)

... and edit a new file, starting from that template:
new_file <- tempfile("test", fileext = ".txt")
file_edit(new_file, template = template, wait = TRUE)

http://www.barebones.com/products/
http://notepad-plus-plus.org/
http://sourceforge.net/projects/npptor/
http://sourceforge.net/projects/npptor/

16 gui_cmd

message("Your file contains:")
readLines(new_file)

Eliminate both the file and template
unlink(new_file)
unlink(template)

End(Not run)

gui_cmd Execute a command in the GUI client

Description

This function is not intended to be used at the command line (except for debugging purposes). It
executes a command string to a (compatible) GUI client.

Usage

gui_cmd(command, ...)

gui_load(...)

gui_source(...)

gui_save(...)

gui_import(...)

gui_export(...)

gui_report(...)

gui_setwd(...)

guiCmd(command, ...)

guiLoad(...)

guiSource(...)

guiSave(...)

guiImport(...)

guiExport(...)

guiReport(...)

Install 17

guiSetwd(...)

Arguments

command The command string to execute in the GUI client.

... Parameters provided for the command to execute in the GUI client.

Details

You must define a function .guiCmd() in the SciViews:TempEnv environment that will take first
argument as the name of the command to execute (like source, save, import, etc.), and ... with
arguments to the command to send. Depending on your GUI, you should have code that delegates
the GUI elements (ex: display a dialog asking for a .Rdata file to source) and then, execute the
command in R with the selected file as attribute.

Value

The result of the command if it succeed, or NULL if the command cannot be run (i.e., .guiCmd() is
not defined in SciViews:TempEnv).

See Also

get_temp()

Install An easy package installation function that pairs with package()

Description

This is similar to install.packages(), except it takes by default the list of packages from .packages_to_install
in SciViews:TempEnv. That list is populated automatically by unfructuous calls to package(), so
that just a call to install() without arguments is generaly sufficient.

Usage

Install(pkgs = get_temp(".packages_to_install"), ..., ask = TRUE)

Arguments

pkgs The list of packages to install (character vector). If missing, the list is read from
packages_to_install, which is cleared on success.

... Further arguments passed to install.packages().

ask If TRUE and pkgs is missing, ask first to install the packages.

18 is_help

Value

Returns TRUE in case of success, FALSE otherwise. The function is invoked for its side-effect of
installing R packages.

See Also

package()

is_help Check for the existence of an help file, or some context

Description

For is_help(), determine if ’topic’ has a help file and example to run. For is_win() and is_mac(),
determine if the platform is Windows or MacOS. For is_aqua(), is the R UI is AQUA, the standard
R GUI under Macintosh? For is_rgui(), determine if the default Rgui under Windows is in use,
and with is_sdi() in this case, you can check if it is in SDI (single-document interface) versus
MDI (multi-document interface, by default). is_rstudio() and is_rstudio_server() check if
R is run under RStudio (server), and is_jgr() indicate if the R GUI is JGR.

Usage

is_help(topic, package = NULL, lib.loc = NULL)

is_win()

is_rgui()

is_sdi()

is_mac()

is_aqua()

is_rstudio()

is_rstudio_desktop()

is_rstudio_server()

is_jgr()

isHelp(topic, package = NULL, lib.loc = NULL)

isWin()

isRgui()

is_help 19

isSDI()

isMac()

isAqua()

isJGR()

Arguments

topic Name or literal character string: the online help topic to look for.

package A character vector giving the package names to look into for help or example
code, or NULL. By default, all packages in the search path are used.

lib.loc A character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

Value

All these functions return either TRUE or FALSE depending on the tested item, except for is_help(),
which returns a logical vector with two elements. The first one indicating if there is a help file, and
the second one indicating if there are examples associated with this help file.

Note

The code of is_help() is largely inspired from the first part of example().

Under Rgui, to switch fro MDI to SDI more, go to the menu entry ’Edit’ -> ’GUI preferences’
to change the Rgui mode, or start Rgui with the ’–SDI’ argument line parameter. Under another
platform than Windows or if it is not Rgui, then is_sdi() always returns FALSE.‘

See Also

example(), help(), capabilities()

Examples

is_help("help") # Help and example
is_help("Rtangle") # Help but no example
is_help("notopic") # No help or example

is_win()
is_mac()

is_aqua()
is_rgui()
is_sdi()
is_rstudio()
is_rstudio_desktop()
is_rstudio_server()

20 list_methods

is_jgr()

list_methods List all methods associated with a generic function or a class, or all
types associated with a method

Description

List all S3 and/or S4 methods for a generic function or for a class. List all types for a method; types
are variants for a given method defined in a way it is easy to add other variants dynamically (on the
contrary to a usual type = or which = argument, like in plot.ts() or plot.lm(), respectively.

Usage

list_methods(f = character(), class = NULL, S3 = TRUE, S4 = TRUE,
mixed = TRUE, filter = getOption("svGUI.methods"))

list_types(method, class = "default", strict = FALSE)

listMethods(f = character(), class = NULL, S3 = TRUE, S4 = TRUE,
mixed = TRUE, filter = getOption("svGUI.methods"))

listTypes(method, class = "default", strict = FALSE)

Arguments

f The name of the generic function (character string), used only when class = NULL.

class The name of a class.

S3 If TRUE, list of S3 methods.

S4 If TRUE, list of S4 methods.

mixed If TRUE, S3 and S4 methods are mixed together in a character vector, otherwise,
S3 and S4 methods are reported separately in a list.

filter A list of methods to consider when listing class methods. Only classes in this
list that are defined for the class are returned. Store the list of methods you want
in the options "svGUI.methods". The package proposes a reasonable starting
point on loading if this option is not defined yet.

method The method name.

strict Do we list only types for the class (TRUE), or all possible types, including for
inherited objects, and default ones FALSE, by default)?

obj_browse 21

Value

For list_methods(), if mixed = TRUE, a list with components:

• S3 The S3 methods for the generic function or the class, or character(0) if none

• S4 The S4 methods for the generic function or the class, or character(0) if none.

Otherwise, a character vector with the requested methods.

For list_types(), a vector with character strings with methods’ type names.

Note

list_types() is only useful for special generic functions with type argument like view, copy or
export. These functions offer a mechanism to easily add custom types, and the present function
list them. For S3 objects a type is simply a function whose name is : <method>_<type>.<class>.
So, adding new <type>s for <method> is very easy to implement.

See Also

obj_menu()

Examples

Generic functions
list_methods("t.test") # S3
list_methods("show", mixed = FALSE) # S4
list_methods("ls") # None, not a generic function!

Classes
Only the following methods are considered
getOption("gui.methods")
list_methods(class = "data.frame")
list_methods(class = "lm")

List method types
list_types("view") # All default view types currently defined
list_types("view", "data.frame")
list_types("view", "data.frame", TRUE) # None, except if you defined custom views!

obj_browse Functions to implement an object browser

Description

These functions provide features required to implement a complete object browser in a GUI client.

22 obj_browse

Usage

obj_browse(id = "default", envir = .GlobalEnv, all.names = NULL,
pattern = NULL, group = NULL, sep = "\t", path = NULL,
regenerate = FALSE)

obj_clear(id = "default")

obj_dir()

obj_info(id = "default", envir = .GlobalEnv, object = "", path = NULL)

obj_list(id = "default", envir = .GlobalEnv, object = NULL,
all.names = FALSE, pattern = "", group = "", all.info = FALSE,
sep = "\t", path = NULL, compare = TRUE, ...)

write.objList(x, path, sep = "\t", ...)

S3 method for class 'objList'
print(x, sep = NA, eol = "\n", header = !attr(x,
"all.info"), raw.output = !is.na(sep), ...)

obj_search(sep = "\t", path = NULL, compare = TRUE)

obj_menu(id = "default", envir = .GlobalEnv, objects = "", sep = "\t",
path = NULL)

objBrowse(id = "default", envir = .GlobalEnv, all.names = NULL,
pattern = NULL, group = NULL, sep = "\t", path = NULL,
regenerate = FALSE)

objClear(id = "default")

objDir()

objInfo(id = "default", envir = .GlobalEnv, object = "", path = NULL)

objList(id = "default", envir = .GlobalEnv, object = NULL,
all.names = FALSE, pattern = "", group = "", all.info = FALSE,
sep = "\t", path = NULL, compare = TRUE, ...)

objSearch(sep = "\t", path = NULL, compare = TRUE)

objMenu(id = "default", envir = .GlobalEnv, objects = "", sep = "\t",
path = NULL)

obj_browse 23

Arguments

id The id of the object browser (you can run several ones concurrently, providing
you give them different ids).

envir An environment, or the name of the environment, or the position in the search()
path.

all.names Do we display all names (including hidden variables starting with ’.’)?

pattern A pattern to match for selecting variables.

group A group to filter.

sep Separator to use between items (if path is not NULL).

path The path where to write a temporary file with the requested information. Set to
NULL (default) if you don’t pass this data to your GUI client by mean of a file.

regenerate Do we force to regenerate the information?

object Name of the object selected in the object browser, components/arguments of
which should be listed.

all.info Do we return all the information (envir as first column or not (by default).

compare If TRUE, result is compared with last cached value and the client is updated only
if something changed.

... Further arguments, passed to write.table().

x Object returned by obj_list().

eol Separator to use between object entries, default is to list each item in a separate
line.

header If TRUE, two-line header is printed, of the form:
Environment = environment name
Object = object name
Default is not to print header if all.info == TRUE.

raw.output If TRUE, a compact, better suited for parsing output is produced.

objects A list with selected items in the object browser.

Details

obj_browse() does the horsework. obj_dir() gets the temporary directory where exchange files
with the GUI client are stored, in case you exchange data through files. You can use a better way to
communicate with your GUI (you have to provide your code) and disable writing to files by using
path = NULL.

obj_list() lists objects in a given environment, elements of a recursive object or function argu-
ment.

obj_search() lists the search path.

obj_clear() clears any reference to a given object browser.

obj_info() computes a tooltip info for a given object.

obj_menu()‘ computes a context menu for selected object(s) in the object explorer managed by the
GUI client.

print.objList() print method for objList objects.

24 package

Value

Depending on the function, a list, a string, a reference to an external, temporary file or TRUE in case
of success or FALSE otherwise is returned invisibly.

Author(s)

Philippe Grosjean phgrosjean@sciviews.org & Kamil Barton kamil.barton@uni-wuerzburg.de

See Also

completion(), call_tip()

Examples

Create various context menus
data(iris)
(obj_info(object = "iris"))
data(trees)
For one object
(obj_menu(objects = "iris"))
For multiple objects
(obj_menu(objects = c("iris", "trees")))
For inexistant object (return "")
(obj_info(object = "noobject"))
(obj_menu(objects = "noobject"))
rm(iris, trees)

For environments
(obj_info(envir = ".GlobalEnv"))
(obj_menu(envir = ".GlobalEnv"))
(obj_info(envir = "SciViews:TempEnv"))
(obj_menu(envir = "SciViews:TempEnv"))
(obj_info(envir = "package:datasets"))
(obj_menu(envir = "package:datasets"))
For an environment that does not exist on the search path (return "")
(obj_info(envir = "noenvir"))
(obj_menu(envir = "noenvir"))

package A (possibly) very silent and multi-package library()/require() function

Description

This function loads one or several R packages as silently as possible (with warn/message = FALSE)
and it returns TRUE only if all packages are loaded successfully. If at least one loading fails, a
short message is printed, by default. For all packages that were not found, an entry is recorded in
.packages_to_install in SciViews:TempEnv, and that list can be automatically used by Install().

mailto:phgrosjean@sciviews.org
mailto:kamil.barton@uni-wuerzburg.de

package 25

Usage

package(..., stop = TRUE, message = stop, warn.conflicts = message,
pos = 2L, lib.loc = NULL, verbose = getOption("verbose"))

Arguments

... The name of one or several R packages to load (character strings).

stop If TRUE, issue an error in case the package(s) cannot be loaded.

message Do we display introductory message of the package? If a package displays such
a message, there is often a good reason. So, it is not a good idea to disable it
in interactive sessions. However, in other contexts, like in non-interactive use,
inside an R Markdown document, etc., it is more convenient not to display it.

warn.conflicts As for library(): "logical. If TRUE, warnings are printed about conflicts from
attaching the new package. A conflict is a function masking a function, or a
non-function masking a non-function.

pos As for library(): "the position on the search list at which to attach the loaded
namespace. Can also be the name of a position on the current search list as
given by search()". Only one position can be provided here, even if several
packages, and they will be all inserted one after the other at the given position.

lib.loc As for library(): "a character vector describing the location of R library trees
to search through, or NULL. The default value of NULL corresponds to all li-
braries currently known to .libPaths(). Non-existent library trees are silently
ignored".

verbose A logical indicating if additional diagnostic messages are printed.

Value

TRUE if all packages are loaded correctly, FALSE otherwise, with a details attribute indicating
which package was loaded or not.

Note

This function is designed to concisely and possibly quietly (with warn = FALSE) load packages and
attach them to the search path. Also, on the contrary to library(), or require(), it is not possible
to use unquoted names of the packages. This is cleaner, and avoids the contrived work-around to
pass name(s) of packages as a variable with an arguments character.only = TRUE!

If several packages are provided, they are loaded and attached in reverse order, so that the order in
the search path is the same one as the order in the provided vector.

The library(help = ...) version is not implemented here.

See Also

require(), library(), Install()

26 parse_text

Examples

This should work...
if (package('tools', 'methods', stop = FALSE)) message("Fine!")
... but this not (note that there are no details here!)
if (!package('tools', 'badname', stop = FALSE)) message("Not fine!")
Not run:
Get an error
package('badname')

End(Not run)

parse_text Parse a character string as if it was a command entered at the com-
mand line

Description

Parse R instructions provided as a string and return the expression if it is correct, or an object of
class ’try-error’ if it is an incorrect code, or NA if the (last) instruction is incomplete.

Usage

parse_text(text, firstline = 1, srcfilename = NULL, encoding = "unknown")

parseText(text, firstline = 1, srcfilename = NULL, encoding = "unknown")

Arguments

text The character string vector to parse into an R expression.

firstline The index of first line being parsed in the file. If this is larger than 1, empty lines
are added in front of text in order to match the correct position in the file.

srcfilename A character string with the name of the source file.

encoding Encoding of ‘text“, as in parse().

Value

Returns an expression with the parsed code or NA if the last instruction is correct but incomplete, or
an object of class’try-error’ with the error message if the code is incorrect.

Note

On the contrary to parse(), parse_text() recovers from incorrect code and also detects incom-
plete code. It is also easier to use in case you pass a character string to it, because you don’t have to
name the argument explicitly (text = ...).

See Also

parse(), capture_all()

pkgman_describe 27

Examples

parse_text("1 + 1")
parse_text("1 + 1; log(10)")
parse_text(c("1 + 1", "log(10)"))

Incomplete instruction
parse_text("log(")

Incomplete strings
parse_text("text <- \"some string")
parse_text("text <- 'some string")

Incomplete names (don't write backtick quoted names on several lines!)
...but just in case
parse_text("`myvar")

Incorrect expression
parse_text("log)")

pkgman_describe Functions to manage R side of the SciViews R package manager

Description

These functions should not be used directly by the end-user. They implement the R-side code for
the SciViews R package manager.

Usage

pkgman_describe(pkgname, print.it = TRUE)

pkgman_get_mirrors()

pkgman_get_available(page = "next", pattern = "", n = 50,
keep = c("Package", "Version", "InstalledVersion", "Status"),
reload = FALSE, sep = ";", eol = "\t\n")

pkgman_get_installed(sep = ";", eol = "\t\n")

pkgman_set_cran_mirror(url)

pkgman_install(pkgs, install.deps = FALSE, ask = TRUE)

pkgman_remove(pkgname)

pkgman_load(pkgname)

pkgman_detach(pkgname)

28 pkgman_describe

pkgManDescribe(pkgname, print.it = TRUE)

pkgManGetMirrors()

pkgManGetAvailable(page = "next", pattern = "", n = 50,
keep = c("Package", "Version", "InstalledVersion", "Status"),
reload = FALSE, sep = ";", eol = "\t\n")

pkgManGetInstalled(sep = ";", eol = "\t\n")

pkgManSetCRANMirror(url)

pkgManInstall(pkgs, install.deps = FALSE, ask = TRUE)

pkgManRemove(pkgname)

pkgManLoad(pkgname)

pkgManDetach(pkgname)

Arguments

pkgname The name of one R package (character string).

print.it Should the result be printed?

page Which page to get?

pattern Selection pattern.

n The number of items to retrieve.

keep The columns to keep in the resulting data frame.

reload Do we force reload of the data and ignore cache version?

sep Field separator to use.

eol End-of-line sequence to use.

url The URL to use for the current CRAN mirror.

pkgs A list of packages to install.

install.deps Do we also install dependencies?

ask Do we prompt the user for package installation?

Value

These functions return data that is intended to be used by the SciViews R package manager.

Author(s)

Kamil Barton kamil.barton@uni-wuerzburg.de

mailto:kamil.barton@uni-wuerzburg.de

progress 29

See Also

package()

progress Display progression of a long calculation at the R console and/or in a
GUI

Description

Display progression level of a long-running task in the console. Two mode can be used: either
percent of achievement (55%), or the number of items or steps done on a total (1 file on 10 done...).
This is displayed either through a message, or through a text-based "progression bar" on the console,
or a true progression bar widget in a GUI.

Usage

progress(value, max.value = NULL, progress.bar = FALSE, char = "|",
init = (value == 0), console = TRUE, gui = TRUE)

Arguments

value Current value of the progression (use a value higher than max.value to dismiss
the progression indication automatically.

max.value Maximum value to be achieved.

progress.bar Should we display a progression bar on the console? If FALSE, a temporary
message is used.

char The character to use to fill the progress bar in the console. not used for the
alternate display, or for GUI display of progression.

init Do we have to initialize the progress bar? It is usually done the first time the
function is used, and the default value init = (value == 0) is correct most
of the time. You must specify init = TRUE in two cases: (1) if the first value
to display is different from zero, and (2) if your code issues some text on screen
during progression display. Hence, you must force redraw of the progression
bar.

console Do we display progression on the console?

gui Do we display progression in a dialog box, or any other GUI widget? See "de-
tails" and "examples" hereunder to know how to implement your own GUI pro-
gression indicator.

30 progress

Details

The function progress() proposes different styles of progression indicators than the standard
txtProgressBar() in package ’utils’.

The function uses backspace (\8) to erase characters at the console.

With gui = TRUE, it looks for all functions defined in the .progress list located in the SciViews:TempEnv
environment. Each function is executed in turn with following call: the_gui_function(value, max.value).
You are responsible to create the_gui_function() and to add it as an element in the .progress
list. See also example (5) hereunder.

If your GUI display of the progression offers the possibility to stop calculation (for instance, using
a ’Cancel’ button), you are responsible to pass this info to your code doing the long calculation and
to stop it there. Example (5) shows how to do this.

Value

This function returns NULL invisibly. It is invoked for its side effects.

See Also

batch(), txtProgressBar()

Examples

1) A simple progress indicator in percent
for (i in 0:101) {

progress(i)
Sys.sleep(0.01)
if (i == 101) message("Done!")

}

2) A progress indicator with 'x on y'
for (i in 0:31) {

progress(i, 30)
Sys.sleep(0.02)
if (i == 31) message("Done!")

}

3) A progress bar in percent
for (i in 0:101) {

progress(i, progress.bar = TRUE)
Sys.sleep(0.01)
if (i == 101) message("Done!")

}

4) A progress indicator with 'x on y'
for (i in 0:21) {

progress(i, 20, progress.bar = TRUE)
Sys.sleep(0.03)
if (i == 21) message("Done!")

}

progress 31

5) A progression dialog box with Tcl/Tk
Not run:
if (require(tcltk)) {

gui_progress <- function(value, max.value) {
Do we need to destroy the progression dialog box?
if (value > max.value) {

try(tkdestroy(get_temp("gui_progress_window")), silent = TRUE)
delete_temp(c("gui_progress_state", "gui_progress_window",

"gui_progress_cancel"))
return(invisible(FALSE))

} else if (exists_temp("gui_progress_window") &&
!inherits(try(tkwm.deiconify(tt <- get_temp("gui_progress_window")),

silent = TRUE), "try-error")) {
The progression dialog box exists
Focus on it and change progress value
tkfocus(tt)
state <- get_temp("gui_progress_state")
tclvalue(state) <- value

} else {
The progression dialog box must be (re)created
First, make sure there is no remaining "gui_progress_cancel"
delete_temp("gui_progress_cancel")
Create a Tcl variable to hold current progression state
state <- tclVar(value)
assign_temp("gui_progress_state", state)
Create the progression dialog box
tt <- tktoplevel()
assign_temp("gui_progress_window", tt)
tktitle(tt) <- "Waiting..."
sc <- tkscale(tt, orient = "h", state = "disabled", to = max.value,

label = "Progress:", length = 200, variable = state)
tkpack(sc)
but <- tkbutton(tt, text = "Cancel", command = function() {

Set a flag telling to stop running calculation
assign_temp("gui_progress_cancel", TRUE) # Content is not important!
tkdestroy(tt)

})
tkpack(but)

}
invisible(TRUE)

}
Register it as function to use in progress()
change_temp(".progress", "gui_progress", gui_progress,

replace.existing = TRUE)
rm(gui_progress) # Don't need this any more
Test it...
for (i in 0:101) {
progress(i) # Could also set console = FALSE for using the GUI only
Sys.sleep(0.05)
The code to stop long calc when user presses "Cancel"
if (exists_temp("gui_progress_cancel")) {

progress(101, console = FALSE) # Make sure to clean up everything
break

32 search_web

}
if (i == 101) message("Done!")

}
Unregister the GUI for progress
change_temp(".progress", "gui_progress", NULL)

}

End(Not run)

search_web Search web documents about R and R functions

Description

Retrieve web documents, or search with Google for what string.

Usage

search_web(what, type = c("R", "google"), browse = TRUE, msg = browse,
...)

helpSearchWeb(what, type = c("R", "google"), browse = TRUE, msg = browse,
...)

Arguments

what The string(s) to search. In case of several strings, or several words, any of these
words are searched.

type The search engine, or location to use.

browse Do we actually show the page in the Web browser? If type = "R", this argument
is ignored and the result is always displayed in the Web browser.

msg Do we issue a message indicating that a page should be displayed shortly in the
Web browser? If type = "R", this argument is ignored and a message is always
displayed.

... Further arguments to format the result page in case of type = "R". These are
the same arguments as for RSiteSearch().

Value

Returns the URL used invisibly (invoked for its side effect of opening the Web browser with the
search result, when browse = TRUE).

Note

The RSiteSearch() function in the ’utils’ package is used when type = "R".

source_clipboard 33

See Also

RSiteSearch(), help.search()

Examples

Not run:
search_web("volatility") # R site search, by default
search_web("volatility", type = "google") # Google search

End(Not run)

source_clipboard Source code from the clipboard

Description

This function reads R code from the clipboard, and then source it. Clipboard is managed correctly
depending on the OS (Windows, MacOS, or *nix)

Usage

source_clipboard(primary = TRUE, ...)

sourceClipboard(primary = TRUE, ...)

Arguments

primary Only valid on *nix: read the primary (or secondary) clipboard.

... Further parameters passed to source().

Value

Same result as source().

See Also

source(), file()

34 subsettable

subsettable Define a function as being ’subsettable’ using $ operator

Description

In case a textual argument allows for selecting the result, for instance, if plot() allows for several
charts that you can choose with a type= or which=, making the function ’subsettable’ also allows
to indicate fun$variant(). See examples.

Usage

S3 method for class 'subsettable_type'
x$name

S3 method for class 'subsettable_which'
x$name

Arguments

x A subsettable_type function.

name The value to use for the type= argument.

Examples

foo <- structure(function(x, type = c("histogram", "boxplot"), ...) {
type <- match.arg(type, c("histogram", "boxplot"))
switch(type,
histogram = hist(x, ...),
boxplot = boxplot(x, ...),
stop("unknow type")

)
}, class = c("function", "subsettable_type"))
foo

This function can be used as usual:
foo(rnorm(50), type = "histogram")
... but also this way:
foo$histogram(rnorm(50))
foo$boxplot(rnorm(50))

system_file 35

system_file Get a system file or directory

Description

Get system files or directories, in R subdirectories, in package subdirectories, or elsewhere on the
disk (including executables that are accessible on the search path).

Usage

system_file(..., exec = FALSE, package = NULL, lib.loc = NULL)

system_dir(..., exec = FALSE, package = NULL, lib.loc = NULL)

systemFile(..., exec = FALSE, package = NULL, lib.loc = NULL)

systemDir(..., exec = FALSE, package = NULL, lib.loc = NULL)

Arguments

... One or several executables if exec = TRUE, or subpath to a file or dir in a
package directory if package != NULL, or a list of paths and subpaths for
testing the existence of a file on disk, or a list of directory components to retrieve
in ’temp’, ’sysTemp’, ’user’, ’home’, ’bin’, ’doc’, ’etc’ and/or ’share’ to retrieve
special system directories.

exec If TRUE (default) search for executables on the search path. It superseedes all
other arguments.

package The name of one package to look for files or subdirs in its main directory (use
exec = FALSE to search inside package dirs).

lib.loc A character vector with path names of R libraries or NULL (search all currently
known libraries in this case).

Value

A string with the path to the directories or files, or "" if they are not found, or of the wrong type (a
dir for system_file() or or a file for system_dir()).

Note

These function aggregate the features of several R functions in package base: system.file(),
R.home(), tempdir(), Sys.which(), and aims to provide a unified and convenient single interface
to all of them. We make sure also to check that returned components are respectively directories
and files for system_dir() and system_file().

See Also

file_edit(), file.path(), file.exists()

36 temp_env

Examples

system_file("INDEX", package = "base")
system_file("help", "AnIndex", package = "splines")
system_file(package = "base") # This is a dir, not a file!
system_file("zip", exec = TRUE)
system_file("ftp", "ping", "zip", "nonexistingexe", exec = TRUE)
system_dir("temp") # The R temporary directory
system_dir("sysTemp") # The system temporary directory
system_dir("user") # The user directory
system_dir("home", "bin", "doc", "etc", "share") # Various R dirs
system_dir("zip", exec = TRUE) # Look for the dir of an executable
system_dir("ftp", "ping", "zip", "nonexistingexe", exec = TRUE)
system_dir(package = "base") # The root of the 'base' package
system_dir(package = "stats") # The root of package 'stats'
system_dir("INDEX", package = "stats") # This is a file, not a dir!
system_dir("help", package = "splines")

temp_env Get an environment dedicated to temporary variables (and create it if
needed)

Description

Create and manage a temporary environment SciViews:TempEnv low enough on the search path so
that all loaded packages (except base) could easily access objects there.

Usage

temp_env()

add_items(x, y, use.names = TRUE, replace = TRUE)

add_temp(x, item, value, use.names = TRUE, replace = TRUE)

assign_temp(x, value, replace.existing = TRUE)

change_temp(x, item, value, replace.existing = TRUE)

exists_temp(x, mode = "any")

get_temp(x, default = NULL, mode = "any", item = NULL)

delete_temp(x)

rm_temp(x)

TempEnv()

temp_env 37

addItems(x, y, use.names = TRUE, replace = TRUE)

addTemp(x, item, value, use.names = TRUE, replace = TRUE)

assignTemp(x, value, replace.existing = TRUE)

changeTemp(x, item, value, replace.existing = TRUE)

existsTemp(x, mode = "any")

getTemp(x, default = NULL, mode = "any", item = NULL)

rmTemp(x)

Arguments

x The vector to add items to for add_items() or any object. for delete_temp(),
it is the name of the variable (character string), or a vector of characters with the
name of all variables to remove from SciViews:TempEnv.

y The vector of which we want to inject missing items in ’x’.

use.names Use names of items to determine which one is unique, otherwise, the selection
is done on the items themselves.

replace Do we replace existing items in ’x’?

item The item to add data to in the list.

value The value to add in the item, it must be a named vector and element matching is
done according to name of items.

replace.existing

Do we replace an existing variable?

mode The mode of the seeked variable

default The default value to return, in case the variable or the item does not exist.

Details

The temporary environment is attached to the search path for easier access to its objects.

Value

The temporary environment for temp-env(), the value assigned, added or changed for assign_temp(),
add_temp(), change_temp(), or get_temp(). TRUE or FALSE for exists_temp(), delete_temp()
or rm_temp().

See Also

assign(), search(), temp_var()

38 temp_env

Examples

ls(temp_env())

I have a vector v1 with this:
v1 <- c(a = "some v1 text", b = "another v1 text")
I want to add items whose name is missing in v1 from v2
v2 <- c(a = "v2 text", c = "the missign item")
add_items(v1, v2, replace = FALSE)
Not the same as
add_items(v1, v2, replace = TRUE)
This yield different result (names not used and lost!)
add_items(v1, v2, use.names = FALSE)

add_temp("tst", "item1", c(a = 1, b = 2))
Retrieve this variable
get_temp("tst")
Add to item1 in this list without replacement
add_temp("tst", "item1", c(a = 45, c = 3), replace = FALSE)
get_temp("tst")
Same but with replacement of existing items
add_temp("tst", "item1", c(a = 45, c = 3), replace = TRUE)
get_temp("tst")
Delete the whole variable
delete_temp("tst")

assign_temp("test", 1:10)
Retrieve this variable
get_temp("test")

change_temp("tst", "item1", 1:10)
Retrieve this variable
get_temp("tst")
Create another item in the list
change_temp("tst", "item2", TRUE)
get_temp("tst")
Change it
change_temp("tst", "item2", FALSE)
get_temp("tst")
Delete it (= assign NULL to the item)
change_temp("tst", "item2", NULL)
get_temp("tst")
Delete the whole variable
delete_temp("tst")

assign_temp("test", 1:10)
Check if this variable exists
exists_temp("test")
Remove it
delete_temp("test")
Does it still exists?
exists_temp("test")

temp_var 39

temp_var Get an arbitrary name for a temporary variable

Description

This function ensures that the variable name is cryptic enough and is not already used.

Usage

temp_var(pattern = ".var")

tempvar(pattern = ".var")

Arguments

pattern The prefix for the variable (the rest is a random number).

Value

A string with the name of a variable.

See Also

tempfile()

Examples

temp_var()

to_rjson Convert R object to and from RJSON specification

Description

RJSON is an object specification that is not unlike JSON, but better adapted to represent R objects
(i.e., richer than JSON). It is also easier to parse and evaluate in both R and JavaScript to render the
objects in both languages. RJSON objects are used by SciViews to exchange data between R and
SciViews GUIs like Komodo/SciViews-K.

40 to_rjson

Usage

to_rjson(x, attributes = FALSE)

eval_rjson(rjson)

list_to_json(x)

toRjson(x, attributes = FALSE)

evalRjson(rjson)

listToJson(x)

Arguments

x Any R object to be converted into RJSON (do not work with objects containing
C pointers, environments, promises or expressions, but should work with almost
all other R objects).

attributes If FALSE (by default), a simple object is created by ignoring all attributes. This
is usally the suitable option to transfer data to another language, like JavaScript
that do not understand R attributes anyway. With attributes = TRUE, the
complete information about the object is written, so that the object could be
recreated (almost) identical when evaluated in R (but prefer save() and load()
to tranfer objects between R sessions!).

rjson A string containing an object specified in RJSON notation. The specification is
evaluated in R... and it can contain also R code. There is no protection provided
against execution of bad code. So, you must trust the source!

Details

JSON (JavaScript Object Notation) allows to specify fairly complex objects that can be rather easily
exchanged between languages. The notation is also human-readable and not too difficult to edit
manually (although not advised, of course). However, JSON has too many limitations to represent
R objects (no NA versus NaN, no infinite numbers, no distinction between lists and objects with
attributes, or S4 objects, etc.). Moreover, JSON is not very easy to interpret in R and the existing
implementations can convert only specified objects (simple objects, lists, data frames, ...).

RJSON slighly modifies and enhances JSON to make it: (1) more complete to represent almost any
R object (except objects with pointers, environments, ..., of course), and (2) to make it very easy to
parse and evaluate in both R and JavaScript (and probably many other) languages.

With attributes = FALSE, factors and Dates are converted to their usual character representation
before encoding the RJSON object. If attributes = TRUE, they are left as numbers and their
attributes (class, -and levels for factor-) completely characterize them (i.e., using eval_rjson()
and such objects recreate factors or Dates, respectively). However, they are probably less easy to
handle in JavaScript of other language where you import the RJSON representation.

Note also that a series of objects are not yet handled correctly. These include: complex numbers,
the different date flavors other that Date, functions, expressions, environments, pointers. Do not use
such items in objects that you want to convert to RJSON notation.

to_rjson 41

A last restriction: you cannot have any special characters like linefeed, tabulation, etc. in names. If
you want to make your names most compatible with JavaScript, note that the dot is not allowed in
syntactically valid names, but the dollar sign is allowed.

Value

For to_rjson(), a character string vector with the RJSON specification of the argument.

For eval_rjson(), the corresponding R object in case of a pure RJSON object specification, or
the result of evaluating the code, if it contains R commands (for instance, a RJSONp -RJSON with
padding- item where a RJSON object is an argument of an R function that is evaluated. In this case,
the result of the evaluation is returned).

For list_to_json(), correct (standard) JSON code is generated if x is a list of character strings,
or lists.

See Also

parse_text()

Examples

A complex R object
obj <- structure(list(

a = as.double(c(1:5, 6)),
LETTERS,
c = c(c1 = 4.5, c2 = 7.8, c3 = Inf, c4 = -Inf, NA, c6 = NaN),
c(TRUE, FALSE, NA),
e = factor(c("a", "b", "a")),
f = 'this is a "string" with quote',
g = matrix(rnorm(4), ncol = 2),
`h&$@` = data.frame(x = 1:3, y = rnorm(3),

fact = factor(c("b", "a", "b"))),
i = Sys.Date(),
j = list(1:5, y = "another item")),
comment = "My comment",
anAttrib = 1:10,
anotherAttrib = list(TRUE, y = 1:4))

Convert to simplest RJSON, without attributes
rjson1 <- to_rjson(obj)
rjson1
eval_rjson(rjson1)

More complex RJSON, with attributes
rjson2 <- to_rjson(obj, TRUE)
rjson2
obj2 <- eval_rjson(rjson2)
obj2
Numbers near equivalence comparison (note: identical(Robj, Robj2) is FALSE)
all.equal(obj, obj2)

rm(obj, obj2, rjson1, rjson2)

Index

∗Topic IO
capture_all, 6
parse_text, 26
source_clipboard, 33

∗Topic misc
gui_cmd, 16
obj_browse, 21

∗Topic utilities
about, 3
add_actions, 4
batch, 5
compare_r_version, 8
completion, 8
def, 11
describe_function, 12
file_edit, 14
Install, 17
is_help, 18
list_methods, 20
package, 24
pkgman_describe, 27
progress, 29
search_web, 32
subsettable, 34
system_file, 35
temp_env, 36
temp_var, 39
to_rjson, 39

.libPaths(), 25
? (about), 3
$.subsettable_type (subsettable), 34
$.subsettable_which (subsettable), 34

about, 3
add_actions, 4
add_icons (add_actions), 4
add_items (temp_env), 36
add_items(), 5
add_methods (add_actions), 4
add_temp (temp_env), 36

addActions (add_actions), 4
addIcons (add_actions), 4
addItems (temp_env), 36
addMethods (add_actions), 4
addTemp (temp_env), 36
apropos(), 3
args(), 13
args_tip (describe_function), 12
argsAnywhere(), 13
argsTip (describe_function), 12
assign(), 37
assign_temp (temp_env), 36
assignTemp (temp_env), 36

batch, 5
batch(), 30

call_tip (describe_function), 12
call_tip(), 24
callTip (describe_function), 12
capabilities(), 19
capture.output(), 7
capture_all, 6
capture_all(), 2, 26
captureAll (capture_all), 6
change_temp (temp_env), 36
changeTemp (temp_env), 36
compare_r_version, 8
compareRVersion (compare_r_version), 8
compareVersion(), 8
completion, 8
completion(), 13, 24

def, 11
delete_temp (temp_env), 36
descArgs (describe_function), 12
descFun (describe_function), 12
describe_args (describe_function), 12
describe_function, 12

eval_rjson (to_rjson), 39

42

INDEX 43

evalRjson (to_rjson), 39
example(), 19
exists_temp (temp_env), 36
existsTemp (temp_env), 36
expression(), 7

file(), 33
file.edit(), 15
file.exists(), 35
file.path(), 15, 35
file_edit, 14
file_edit(), 35
fileEdit (file_edit), 14

get_actions (add_actions), 4
get_temp (temp_env), 36
get_temp(), 17
getTemp (temp_env), 36
gui_cmd, 16
gui_export (gui_cmd), 16
gui_import (gui_cmd), 16
gui_load (gui_cmd), 16
gui_report (gui_cmd), 16
gui_save (gui_cmd), 16
gui_setwd (gui_cmd), 16
gui_source (gui_cmd), 16
guiCmd (gui_cmd), 16
guiExport (gui_cmd), 16
guiImport (gui_cmd), 16
guiLoad (gui_cmd), 16
guiReport (gui_cmd), 16
guiSave (gui_cmd), 16
guiSetwd (gui_cmd), 16
guiSource (gui_cmd), 16

help(), 3, 19
help.search(), 3, 33
helpSearchWeb (search_web), 32

Install, 17
Install(), 24, 25
install.packages(), 17
is_aqua (is_help), 18
is_help, 18
is_jgr (is_help), 18
is_mac (is_help), 18
is_rgui (is_help), 18
is_rstudio (is_help), 18
is_rstudio_desktop (is_help), 18

is_rstudio_server (is_help), 18
is_sdi (is_help), 18
is_win (is_help), 18
isAqua (is_help), 18
isHelp (is_help), 18
isJGR (is_help), 18
isMac (is_help), 18
isRgui (is_help), 18
isSDI (is_help), 18
isWin (is_help), 18

library(), 25
list_methods, 20
list_to_json (to_rjson), 39
list_types (list_methods), 20
listMethods (list_methods), 20
listToJson (to_rjson), 39
listTypes (list_methods), 20
load(), 40

mode(), 11

obj_browse, 21
obj_clear (obj_browse), 21
obj_dir (obj_browse), 21
obj_info (obj_browse), 21
obj_list (obj_browse), 21
obj_menu (obj_browse), 21
obj_menu(), 5, 21
obj_search (obj_browse), 21
objBrowse (obj_browse), 21
objClear (obj_browse), 21
objDir (obj_browse), 21
objInfo (obj_browse), 21
objList (obj_browse), 21
objMenu (obj_browse), 21
objSearch (obj_browse), 21

package, 24
package(), 18, 29
parse(), 7, 26
parse_text, 26
parse_text(), 2, 41
parseText (parse_text), 26
pkgman_describe, 27
pkgman_detach (pkgman_describe), 27
pkgman_get_available (pkgman_describe),

27
pkgman_get_installed (pkgman_describe),

27

44 INDEX

pkgman_get_mirrors (pkgman_describe), 27
pkgman_install (pkgman_describe), 27
pkgman_load (pkgman_describe), 27
pkgman_remove (pkgman_describe), 27
pkgman_set_cran_mirror

(pkgman_describe), 27
pkgManDescribe (pkgman_describe), 27
pkgManDetach (pkgman_describe), 27
pkgManGetAvailable (pkgman_describe), 27
pkgManGetInstalled (pkgman_describe), 27
pkgManGetMirrors (pkgman_describe), 27
pkgManInstall (pkgman_describe), 27
pkgManLoad (pkgman_describe), 27
pkgManRemove (pkgman_describe), 27
pkgManSetCRANMirror (pkgman_describe),

27
plot.lm(), 20
plot.ts(), 20
print.objList (obj_browse), 21
progress, 29
progress(), 5, 6

R.home(), 35
R.version(), 8
rc.settings(), 10
rep(), 11
require(), 25
rm_temp (temp_env), 36
rmTemp (temp_env), 36
RSiteSearch(), 32, 33

save(), 40
search(), 23, 25, 37
search_web, 32
source(), 33
source_clipboard, 33
sourceClipboard (source_clipboard), 33
subsettable, 34
svMisc-package, 2
Sys.which(), 35
system.file(), 35
system_dir (system_file), 35
system_file, 35
system_file(), 15
systemDir (system_file), 35
systemFile (system_file), 35

temp_env, 36
temp_env(), 2, 5, 11

temp_var, 39
temp_var(), 2, 37
tempdir(), 35
TempEnv (temp_env), 36
tempfile(), 39
tempvar (temp_var), 39
to_rjson, 39
toRjson (to_rjson), 39
txtProgressBar(), 30

write.objList (obj_browse), 21
write.table(), 23

	svMisc-package
	about
	add_actions
	batch
	capture_all
	compare_r_version
	completion
	def
	describe_function
	file_edit
	gui_cmd
	Install
	is_help
	list_methods
	obj_browse
	package
	parse_text
	pkgman_describe
	progress
	search_web
	source_clipboard
	subsettable
	system_file
	temp_env
	temp_var
	to_rjson
	Index

