
Package ‘svGUI’
April 23, 2018

Type Package

Version 1.0.0

Date 2018-04-02

Title SciViews - Manage GUIs in R

Description The SciViews svGUI package eases the management of Graphical User
Interfaces (GUI) in R. It is independent from any particular GUI widgets (Tk,
Gtk2, native, ...). It centralizes info about GUI elements currently used,
and it dispatches GUI calls to the particular toolkits in use in function of
the context (is R run at the terminal, within a Tk application, a HTML page?).

Maintainer Philippe Grosjean <phgrosjean@sciviews.org>

Depends R (>= 2.6.0)

Suggests covr, knitr, testthat

License GPL-2

URL https://github.com/SciViews/svGUI,

http://www.sciviews.org/SciViews-R

BugReports https://github.com/SciViews/svGUI/issues

RoxygenNote 6.0.1

VignetteBuilder knitr

NeedsCompilation no

Author Philippe Grosjean [aut, cre]

Repository CRAN

Date/Publication 2018-04-23 11:33:04 UTC

R topics documented:
svGUI-package . 2
dont_ask . 3
gui . 4
gui_add . 5
setUI . 6

1

https://github.com/SciViews/svGUI
http://www.sciviews.org/SciViews-R
https://github.com/SciViews/svGUI/issues

2 svGUI-package

Index 9

svGUI-package SciViews - Manage GUIs in R

Description

The SciViews svGUI package eases the management of Graphical User Interfaces (GUI) in R. It is
independent from any particular GUI widgets (Tk, Gtlk2, native, ...). It centralizes info about GUI
elements currently used, and it dispatches GUI calls to the particular toolkits in use in function of
the context (is R run at the terminal, within a Tk application, a HTML page?).

Details

The gui object defines a succession of GUI (or non-GUI) widgets to use. These could be tcltk
(with the tcltk or tcltk2 R packages), gtk2 (with the RGtk2 R package), shiny, etc. You are in
charge of managing these different variants of your GUI. The gui object just defines the order of
preference for those different variants, and to get a fallback mechanism in case your GUI is not im-
plemented with given widgets. .GUI uses, by default, widgets = c("nativeGUI", "textCLI").
"nativeGUI" is, as you figure it out, a native version of the GUI element. A good example is
base::file.choose() that displays a native dialog box to select a file. "textCLI" is not a GUI
version, but a way to ask the same information to the user at the terminal (or Command Line, CLI).
In the example, it could be base::readline("File to use? "). You GUI should consider the
proposed widgets in turn and use the first one on the list that is implemented. It is advised to
implement also a version of "textCLI", in case R is run in a text-only context. Finally, if none of
the widgets can be run, your code should fall back to use a default value for the file, or to stop
gracefully. This is required for non-interactive use or testing of your code, are when your GUI ask
is set to FALSE.

Basic GUI items, like message boxes, input box, file or directory selectors, etc. could easily be
implemented with different widgets and in a "textCLI" version (see the svDialogs package). So, if
your GUI uses the present mechanisms, your end-user could choose the version of the dialog boxes
he prefers to use, given the context (R run at the terminal, in R Gui, in RStudio or RStudio Server;
under Windows, Mac OS, or Linux, ...). The choice is easy: just change the sequence of widgets
in the corresponding gui object. Of course, several gui objects can live together at the same time,
providing different and independent contexts (say, one GUI build with RGtk2 would favor "gtk2",
but another GUI using tcltk would either favor "tcltk" of course, or c("nativeGUI", "tcltk")
just because native dialog boxes may look better, for instance, under macOS or Linux.

Finally, the gui object is basically a separate environment where you could also store various GUI-
related objects. On one hand, it does not "pollute" other environments (the worse practice being to
put tcltk-related variables in the global environment), and on the other hand, it is very easy to get
rid of all the GUI-related objects, just by gui_remove("myGUI"). Also, GUI-related items should
not be save.image()d and reload()ed with the other objects, and the gui, being located outside
of .GlobalEnv prevents it.

Methods for gui objects can dispatch as usual using amethod(...., gui = agui) but note that
these methods do not dispatch on the first provided argument, but to the named argument gui. There
is another way to call gui methods: agui$amethod(...). This may be a convenient alternative for
those who prefer this style of calling object’s methods (also used in reference classes, proto or R6
objects).

dont_ask 3

Methods

svGUI implements four methods for the S3 gui object:

print() Give information about the current state of the GUI

$ Give access to various GUI properties or objects.

startUI() Start an UI action that requires to interrupt R (for instance, display an input dialog box)
and manage to inform the gui object about it.

setUI() Change the status of the UI action currently running.

Important functions

gui_add() and gui_change() for construction and management of guis, gui_remove() to cleanly
eliminate all GUI elements, gui_list() to list all gui objects currently loaded in the R session,
gui_widgets() to manage the widgets this GUI can use, and in which order, gui_ask() allows to
(temporarilly) disable UI actions to avoid any code that would require input from the user (e.g., to
run in batch mode), dont_ask() to determine if the GUI cannot interrupt R to ask something to the
user, and should proceed differently (say, just use a defaut value for an input).

dont_ask Can we interrupt R to ask something to the user though the GUI?

Description

Determine if R code execution can be interrupted by the GUI, e.g., using a modal dialog box. It
depends both on R being in interactive() mode and the ask flag of the GUI being set to TRUE.

Usage

dont_ask(gui = .GUI)

dontAsk(gui = .GUI)

Arguments

gui A gui object.

Details

dontAsk and dont_ask are aliases.

Value

TRUE if the GUI cannot interrupt R. The function triggering the dialog box should then not be
displayed and it should return the default value as the result. The function returns TRUE if R is run
in a non interactive session, or if ask is set to FALSE for the GUI, or if it is not specified (ask is
NULL) then getOptions("gui.ask") is used.

4 gui

See Also

gui_ask(), gui

Examples

What is the current state for the default GUI?
dont_ask()

gui A GUI object.

Description

The gui object contains and manages GUI-related data.

Usage

S3 method for class 'gui'
gui$x

S3 method for class 'gui'
print(x, ...)

is.gui(x)

Arguments

gui A gui object..
x An object or a function for $.
... Further arguments (not used yet).

See Also

gui_add()

Examples

Create a GUI
gui_add("myGUI")
is.gui(myGUI)
myGUI
Put an object in the GUI environment (fake button)
myGUI$button <- "my_button"
Retrieve it
myGUI$button
Get the curent status of the GUI
myGUI$status
Eliminate this GUI and all its objects
gui_remove("myGUI")

gui_add 5

gui_add Creation and management of GUI objects.

Description

Create and manipulate gui objects to manage SciViews-compatible GUIs (Graphical User Inter-
faces).

Usage

gui_add(gui.name = ".GUI", widgets = c("nativeGUI", "textCLI"), ask)

guiAdd(gui.name = ".GUI", widgets = c("nativeGUI", "textCLI"), ask)

gui_change(gui.name = ".GUI", widgets = c("nativeGUI", "textCLI"),
reset = FALSE, ask)

guiChange(gui.name = ".GUI", widgets = c("nativeGUI", "textCLI"),
reset = FALSE, ask)

gui_remove(gui.name)

guiRemove(gui.name)

gui_list()

guiList()

gui_widgets(gui, gui.name = ".GUI")

guiWidgets(gui, gui.name = ".GUI")

gui_widgets(x, reset = FALSE) <- value

guiWidgets(x, reset = FALSE) <- value

gui_ask(gui.or.name, ask)

guiAsk(gui.or.name, ask)

gui_ask(x) <- value

guiAsk(x) <- value

Arguments

gui.name The name of the GUI. It is also the name of the object stored in SciViews:TempEnv
where you can access it.

6 setUI

widgets The list of widgets that GUI uses, listed in a priority order.

ask Logical indicating if modal dialog boxes should be display (ask = TRUE), or
if those dialog boxes are by-passed, using default values to simulate script run-
ning in non interactive mode, or to test scripts without interruption, using only
provided default values (useful for automated tests).

reset Should the GUI’s main parameters (widgets, ask) be reset to default values?

gui A gui object. If provided, it supersedes any value provided in gui.name.

x A gui object.

value The list of widgets to add to this GUI, in priority order, or should we change ask
to TRUE, FALSE or NULL (then, use the default value stored in getOption("gui.ask")).

gui.or.name A gui object or its name.

See Also

gui, setUI(), dont_ask()

Examples

A 'gui' object named .GUI is automatically created in 'SciViews:TempEnv'
gui_list()

Create a new GUI object to manage a separate GUI in the same R session
gui_add("myGUI")
gui_list()

Change general properties of this GUI
gui_ask(myGUI) <- FALSE
Add widgets to this GUI (you must provide methods for them)
see the svDialogs package for examples
gui_widgets(myGUI) <- "tcltkWidgets"
gui_widgets(myGUI) # Added to existing ones if reset is FALSE

Remove this new GUI
gui_remove("myGUI")

setUI Set a property in the UI (User Interface), or start an action.

Description

Using setUI() is the preferred way to set a property in a gui object. Similarly, startUI() should
be used to indicate that an UI action requiring user input is initiated (say, a modal input or file
selection dialog box).

setUI 7

Usage

setUI(..., gui = .GUI)

S3 method for class 'gui'
setUI(fun, call, args, res, widgets, status, msg = NULL, ...,
gui = .GUI)

startUI(..., gui = .GUI)

S3 method for class 'gui'
startUI(fun, call, default, widgets = NULL,
status = "busy-modal", msg = "Displaying a modal dialog box",
msg.no.ask = "A modal dialog box was by-passed", ..., gui = .GUI)

Arguments

... Any other property of the GUI, provided as named arguments.

gui A gui object.

fun The name of the calling function. Only required if call is provided.

call The call in the generic as obtained by match.call().

args A list with checked and/or reworked arguments for a method. The generic can
do this work, so that code does not need to be duplicated in all its methods.

res Any data returned by the GUI (the results).

widgets The class name of the current widgets implementation.

status Description of the current GUI status. Could be "ok", "busy", "busy-modal" (a
modal dialog box is currently displayed), "by-passed" (the GUI was by-passed
because dont_ask() returns TRUE), "error", or any other status indicator suitable
for the current state of your GUI.

msg The message expliciting the status. Cannot be provided without status.

default The default value to return if the UI is by-passed because in non interactive
mode, or ask is FALSE.

msg.no.ask The message expliciting the status in case the UI is by-passed.

Methods (by class)

• gui: Set an UI property for a gui object.

• gui: Start an UI for a gui object.

See Also

gui_add(), $.gui()

8 setUI

Examples

Imagine you implement a new input box
In your function, you have this code:
myInput <- function(default = "an answer", gui = .GUI) {

Start a GUI action... or by-pass it!
if (gui$startUI("myInput", call = match.call(), default = default,
msg = "Displaying an input dialog box",
msg.no.ask = "An input dialog box was by-passed")) {

Here the input dialog box is displayed and R waits for user feedback
... [your code here]
res <- "some results" # Imagine this is the text typed in the box

When the input dialog box is closed, the function should do:
setUI(res = res, status = NULL)

}
invisible(gui)

}

Index

∗Topic misc
dont_ask, 3
gui, 4
gui_add, 5
setUI, 6

$.gui (gui), 4
$.gui(), 7

dont_ask, 3
dont_ask(), 3, 6
dontAsk (dont_ask), 3

gui, 4, 4, 6
gui_add, 5
gui_add(), 3, 4, 7
gui_ask (gui_add), 5
gui_ask(), 3, 4
gui_ask<- (gui_add), 5
gui_change (gui_add), 5
gui_change(), 3
gui_list (gui_add), 5
gui_list(), 3
gui_remove (gui_add), 5
gui_remove(), 3
gui_widgets (gui_add), 5
gui_widgets(), 3
gui_widgets<- (gui_add), 5
guiAdd (gui_add), 5
guiAsk (gui_add), 5
guiAsk<- (gui_add), 5
guiChange (gui_add), 5
guiList (gui_add), 5
guiRemove (gui_add), 5
guiWidgets (gui_add), 5
guiWidgets<- (gui_add), 5

is.gui (gui), 4

print.gui (gui), 4

setUI, 6

setUI(), 6
startUI (setUI), 6
svGUI-package, 2

9

	svGUI-package
	dont_ask
	gui
	gui_add
	setUI
	Index

