
Package ‘surveysd’
February 5, 2020

Type Package

Title Survey Standard Error Estimation for Cumulated Estimates and
their Differences in Complex Panel Designs

Version 1.2.0

Maintainer Johannes Gussenbauer <Johannes.Gussenbauer@statistik.gv.at>

Description Calculate point estimates and their standard errors in complex household surveys us-
ing bootstrap replicates. Bootstrapping considers survey design with a rotating panel. A compre-
hensive description of the methodology can be found un-
der <https://statistikat.github.io/surveysd/articles/methodology.html>.

Encoding UTF-8

LazyData true

License GPL (>= 2)

Imports Rcpp (>= 0.12.12),data.table,matrixStats, ggplot2, laeken,
methods, dplyr

LinkingTo Rcpp

URL https://github.com/statistikat/surveysd

BugReports https://github.com/statistikat/surveysd/issues

RoxygenNote 7.0.2

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Johannes Gussenbauer [aut, cre],
Alexander Kowarik [aut] (<https://orcid.org/0000-0001-8598-4130>),
Gregor de Cillia [aut],
Matthias Till [ctb]

Repository CRAN

Date/Publication 2020-02-05 14:40:02 UTC

1

https://github.com/statistikat/surveysd
https://github.com/statistikat/surveysd/issues

2 calc.stError

R topics documented:
calc.stError . 2
computeLinear . 9
cpp_mean . 10
demo.eusilc . 11
draw.bootstrap . 12
generate.HHID . 15
ipf . 17
ipf_step . 21
kishFactor . 22
plot.surveysd . 23
PointEstimates . 25
print.surveysd . 25
recalib . 26
rescaled.bootstrap . 28

Index 31

calc.stError Calcualte point estimates and their standard errors using bootstrap
weights.

Description

Calculate point estimates as well as standard errors of variables in surveys. Standard errors are
estimated using bootstrap weights (see draw.bootstrap and recalib). In addition the standard error of
an estimate can be calcualted using the survey data for 3 or more consecutive periods, which results
in a reduction of the standard error.

Usage

calc.stError(
dat,
weights = attr(dat, "weights"),
b.weights = attr(dat, "b.rep"),
period = attr(dat, "period"),
var,
fun = weightedRatio,
national = FALSE,
group = NULL,
fun.adjust.var = NULL,
adjust.var = NULL,
period.diff = NULL,
period.mean = NULL,
bias = FALSE,
size.limit = 20,
cv.limit = 10,

calc.stError 3

p = NULL,
add.arg = NULL

)

Arguments

dat either data.frame or data.table containing the survey data. Surveys can be a
panel survey or rotating panel survey, but does not need to be. For rotating panel
survey bootstrap weights can be created using draw.bootstrap and recalib.

weights character specifying the name of the column in dat containing the original sam-
ple weights. Used to calculate point estimates.

b.weights character vector specifying the names of the columns in dat containing boot-
strap weights. Used to calculate standard errors.

period character specifying the name of the column in dat containing the sample peri-
ods.

var character vector containing variable names in dat on which fun shall be applied
for each sample period.

fun function which will be applied on var for each sample period. Predefined func-
tions are weightedRatio, weightedSum, but can also take any other function
which returns a double or integer and uses weights as its second argument.

national boolean, if TRUE point estimates resulting from fun will be divided by the point
estimate at the national level.

group character vectors or list of character vectors containig variables in dat. For each
list entry dat will be split in subgroups according to the containing variables
as well as period. The pointestimates are then estimated for each subgroup
seperately. If group=NULL the data will split into sample periods by default.

fun.adjust.var can be either NULL or a function. This argument can be used to apply a function
for each period and bootstrap weight to the data. The resulting estimates will
be passed down to fun. See details for more explanations.

adjust.var can be either NULL or a character specifying the first argument in fun.adjust.var.

period.diff character vectors, defining periods for which the differences in the point esti-
mate as well it’s standard error is calculated. Each entry must have the form of
"period1 -period2". Can be NULL

period.mean odd integer, defining the range of periods over which the sample mean of point
estimates is additionally calcualted.

bias boolean, if TRUE the sample mean over the point estimates of the bootstrap
weights is returned.

size.limit integer defining a lower bound on the number of observations on dat in each
group defined by period and the entries in group. Warnings are returned if the
number of observations in a subgroup falls below size.limit. In addition the
concerned groups are available in the function output.

cv.limit non-negativ value defining a upper bound for the standard error in relation to the
point estimate. If this relation exceed cv.limit, for a point estimate, they are
flagged and available in the function output.

4 calc.stError

p numeric vector containing values between 0 and 1. Defines which quantiles for
the distribution of var are additionally estimated.

add.arg additional arguments which will be passed to fun. Can be either a named list or
vector. The names of the object correspond to the function arguments and the
values to column names in dat, see also examples.

Details

calc.stError takes survey data (dat) and returns point estimates as well as their standard Errors
defined by fun and var for each sample period in dat. dat must be household data where household
members correspond to multiple rows with the same household identifier. The data should at least
contain the following columns:

• Column indicating the sample period;

• Column indicating the household ID;

• Column containing the household sample weights;

• Columns which contain the bootstrap weights (see output of recalib);

• Columns listed in var as well as in group

For each variable in var as well as sample period the function fun is applied using the original as
well as the bootstrap sample weights.
The point estimate is then selected as the result of fun when using the original sample weights and
it’s standard error is estimated with the result of fun using the bootstrap sample weights.

fun can be any function which returns a double or integer and uses sample weights as it’s sec-
ond argument. The predifined options are weightedRatio and weightedSum.

For the option weightedRatio a weighted ratio (in \ calculated for var equal to 1, e.g sum(weight[var==1])/sum(weight[!is.na(var)])*100.
Additionally using the option national=TRUE the weighted ratio (in \ divided by the weighted ratio
at the national level for each period.
If group is not NULL but a vector of variables from dat then fun is applied on each subset of dat
defined by all combinations of values in group.
For instance if group = "sex" with "sex" having the values "Male" and "Female" in dat the point
estimate and standard error is calculated on the subsets of dat with only "Male" or "Female" value
for "sex". This is done for each value of period. For variables in group which have NAs in dat the
rows containing the missings will be discarded.
When group is a list of character vectors, subsets of dat and the following estimation of the point
estimate, including the estimate for the standard error, are calculated for each list entry.

The optional parameters fun.adjust.var and adjust.var can be used if the values in var are
dependent on the weights. As is for instance the case for the poverty thershhold calculated from
EU-SILC. In such a case an additional function can be supplied using fun.adjust.var as well as
its first argument adjust.var, which needs to be part of the data set dat. Then, before applying fun
on variable var for all period and groups, the function fun.adjust.var is applied to adjust.var
using each of the bootstrap weights seperately (NOTE: weight is used as the second argument of
fun.adjust.var). Thus creating i=1,...,length(b.weights) additional variables. For applying
fun on var the estimates for the bootstrap replicate will now use each of the corresponding new

calc.stError 5

additional variables. So instead of

fun(var, weights, ...), fun(var, b.weights[1], ...), fun(var, b.weights[2], ...), ...

the function fun will be applied in the way

fun(var, weights, ...), fun(var.1, b.weights[1], ...), fun(var.2, b.weights[2], ...), ...

where var.1, var.2, ... correspond to the estimates resulting from fun.adjust.var and adjust.var.
NOTE: This procedure is especially usefull if the var is dependent on weights and fun is applied
on subgroups of the data set. Then it is not possible to capture this procedure with fun and var, see
examples for a more hands on explanation.
When defining period.diff the difference of point estimates between periods as well their stan-
dard errors are calculated.
The entries in period.diff must have the form of "period1 -period2" which means that the re-
sults of the point estimates for period2 will be substracted from the results of the point estimates
for period1.

Specifying period.mean leads to an improvement in standard error by averaging the results for
the point estimates, using the bootstrap weights, over period.mean periods. Setting, for instance,
period.mean = 3 the results in averaging these results over each consecutive set of 3 periods.
Estimating the standard error over these averages gives an improved estimate of the standard error
for the central period, which was used for averaging.
The averaging of the results is also applied in differences of point estimates. For instance defining
period.diff = "2015-2009" and period.mean = 3 the differences in point estimates of 2015 and
2009, 2016 and 2010 as well as 2014 and 2008 are calcualated and finally the average over these
3 differences is calculated. The periods set in period.diff are always used as the middle periods
around which the mean over period.mean years is build.
Setting bias to TRUE returns the calculation of a mean over the results from the bootstrap replicates.
In the output the corresponding columns is labeled _mean at the end.

If fun needs more arguments they can be supplied in add.arg. This can either be a named list
or vector.

The parameter size.limit indicates a lower bound of the sample size for subsets in dat created
by group. If the sample size of a subset falls below size.limit a warning will be displayed.
In addition all subsets for which this is the case can be selected from the output of calc.stError
with $smallGroups.
With the parameter cv.limit one can set an upper bound on the coefficient of variantion. Esti-
mates which exceed this bound are flagged with TRUE and are available in the function output with
$cvHigh. cv.limit must be a positive integer and is treated internally as \ for cv.limit=1 the
estimate will be flagged if the coefficient of variantion exceeds 1\
When specifying period.mean, the decrease in standard error for choosing this method is internally
calcualted and a rough estimate for an implied increase in sample size is available in the output with
$stEDecrease. The rough estimate for the increase in sample size uses the fact that for a sample of
size n the sample estimate for the standard error of most point estimates converges with a factor
1/
√
n against the true standard error σ.

Value

Returns a list containing:

6 calc.stError

• Estimates: data.table containing period differences and/or k period averages for estimates of
fun applied to var as well as the corresponding standard errors, which are calculated using
the bootstrap weights. In addition the sample size, n, and poplutaion size for each group is
added to the output.

• smallGroups: data.table containing groups for which the number of observation falls below
size.limit.

• cvHigh: data.table containing a boolean variable which indicates for each estimate if the
estimated standard error exceeds cv.limit.

• stEDecrease: data.table indicating for each estimate the theoretical increase in sample size
which is gained when averaging over k periods. Only returned if period.mean is not NULL.

Author(s)

Johannes Gussenbauer, Alexander Kowarik, Statistics Austria

See Also

draw.bootstrap
recalib

Examples

Import data and calibrate

set.seed(1234)
eusilc <- demo.eusilc(n = 4,prettyNames = TRUE)
dat_boot <- draw.bootstrap(eusilc, REP = 3, hid = "hid", weights = "pWeight",

strata = "region", period = "year")
dat_boot_calib <- recalib(dat_boot, conP.var = "gender", conH.var = "region")

estimate weightedRatio for povertyRisk per period

err.est <- calc.stError(dat_boot_calib, var = "povertyRisk",
fun = weightedRatio)

err.est$Estimates

calculate weightedRatio for povertyRisk and fraction of one-person
households per period

dat_boot_calib[, onePerson := .N == 1, by = .(year, hid)]
err.est <- calc.stError(dat_boot_calib, var = c("povertyRisk", "onePerson"),

fun = weightedRatio)
err.est$Estimates

estimate weightedRatio for povertyRisk per period and gender

group <- "gender"
err.est <- calc.stError(dat_boot_calib, var = "povertyRisk",

fun = weightedRatio, group = group)
err.est$Estimates

calc.stError 7

estimate weightedRatio for povertyRisk per period and gender, region and
combination of both

group <- list("gender", "region", c("gender", "region"))
err.est <- calc.stError(dat_boot_calib, var = "povertyRisk",

fun = weightedRatio, group = group)
err.est$Estimates

use average over 3 periods for standard error estimation

err.est <- calc.stError(dat_boot_calib, var = "povertyRisk",
fun = weightedRatio, period.mean = 3)

err.est$Estimates

get estimate for difference of period 2011 and 2012

period.diff <- c("2012-2011")
err.est <- calc.stError(

dat_boot_calib, var = "povertyRisk", fun = weightedRatio,
period.diff = period.diff, period.mean = 3)

err.est$Estimates

use add.arg-argument
fun <- function(x, w, b) {

sum(x*w*b)
}
add.arg = list(b="onePerson")

err.est <- calc.stError(dat_boot_calib, var = "povertyRisk", fun = fun,
period.mean = 0, add.arg=add.arg)

err.est$Estimates
compare with direkt computation
compare.value <- dat_boot_calib[,fun(povertyRisk,pWeight,b=onePerson),

by=c("year")]
all((compare.value$V1-err.est$Estimates$val_povertyRisk)==0)

use a function from an other package that has sampling weights as its
second argument
for example gini() from laeken

library(laeken)

set up help function that returns only the gini index
help_gini <- function(x, w) {
return(gini(x, w)$value)

}

make sure povertyRisk get coerced to a numeric in order to work with the
external functions
invisible(dat_boot_calib[, povertyRisk := as.numeric(povertyRisk)])

err.est <- calc.stError(
dat_boot_calib, var = "povertyRisk", fun = help_gini, group = group,

8 calc.stError

period.diff = period.diff, period.mean = 3)
err.est$Estimates

using fun.adjust.var and adjust.var to estimate povmd60 indicator
for each period and bootstrap weight before applying the weightedRatio
point estimate

this function estimates the povmd60 indicator with x as income vector
and w as weight vector
povmd <- function(x, w) {
md <- laeken::weightedMedian(x, w)*0.6
pmd60 <- x < md
return(as.integer(pmd60))

}

set adjust.var="eqIncome" so the income vector ist used to estimate
the povmd60 indicator for each bootstrap weight
and the resultung indicators are passed to function weightedRatio

err.est <- calc.stError(
dat_boot_calib, var = "povertyRisk", fun = weightedRatio, group = group,
fun.adjust.var = povmd, adjust.var = "eqIncome", period.mean = 3)

err.est$Estimates

why fun.adjust.var and adjust.var are needed (!!!):
one could also use the following function
and set fun.adjust.var=NULL,adjust.var=NULL
and set fun = povmd, var = "eqIncome"

povmd2 <- function(x, w) {
md <- laeken::weightedMedian(x, w)*0.6
pmd60 <- x < md
weighted ratio is directly estimated inside my function
return(sum(w[pmd60])/sum(w)*100)

}

but this results in different results in subgroups
compared to using fun.adjust.var and adjust.var

err.est.different <- calc.stError(
dat_boot_calib, var = "eqIncome", fun = povmd2, group = group,
fun.adjust.var = NULL, adjust.var = NULL, period.mean = 3)

err.est.different$Estimates

results are equal for yearly estimates
all.equal(err.est.different$Estimates[is.na(gender) & is.na(region)],

err.est$Estimates[is.na(gender)&is.na(region)],
check.attributes = FALSE)

but for subgroups (gender, region) results vary
all.equal(err.est.different$Estimates[!(is.na(gender) & is.na(region))],

err.est$Estimates[!(is.na(gender) & is.na(region))],
check.attributes = FALSE)

computeLinear 9

computeLinear Numerical weighting functions

Description

Customize weight-updating within factor levels in case of numerical calibration. The functions
described here serve as inputs for ipf.

Usage

computeLinear(curValue, target, x, w, boundLinear = 10)

computeLinearG1(curValue, target, x, w, boundLinear = 10)

computeFrac(curValue, target, x, w)

Arguments

curValue Current summed up value. Same as sum(x*w)
target Target value. An element of conP in ipf
x Vector of numeric values to be calibrated against
w Vector of weights
boundLinear The output f will satisfy 1/boundLinear <= f <= boundLinear. See bound in ipf

Details

computeFrac provides the "standard" IPU updating scheme given as

f = target/curV alue

which means that each weight inside the level will be multtiplied by the same factor when doing
the actual update step (w := f*w). computeLinear on the other hand calculates f as

fi = axi + b

where a and b are chosen, so f satisfies the following two equations.∑
fi ∗ wi ∗ xi = target∑
fi ∗ wi =

∑
wi

computeLinearG1 calculates f in the same way as computeLinear, but if f_i*w_i<1 f_i will be
set to 1/w_i.

Value

A weight multiplier f

10 cpp_mean

cpp_mean Calculate mean by factors

Description

These functions calculate the arithmetic and geometric mean of the weight for each class. geometric_mean
and arithmetic_mean return a numeric vector of the same length as w which stores the averaged
weight for each observation. geometric_mean_reference returns the same value by reference, i.e.
the input value w gets overwritten by the updated weights. See examples.

Usage

geometric_mean_reference(w, classes)

Arguments

w An numeric vector. All entries should be positive.

classes A factor variable. Must have the same length as w.

Examples

Not run:

create random data
nobs <- 10
classLabels <- letters[1:3]
dat = data.frame(

weight = exp(rnorm(nobs)),
household = factor(sample(classLabels, nobs, replace = TRUE))

)
dat

calculate weights with geometric_mean
geom_weight <- geometric_mean(dat$weight, dat$household)
cbind(dat, geom_weight)

calculate weights with arithmetic_mean
arith_weight <- arithmetic_mean(dat$weight, dat$household)
cbind(dat, arith_weight)

calculate weights "by reference"
geometric_mean_reference(dat$weight, dat$household)
dat

End(Not run)

demo.eusilc 11

demo.eusilc Generate multiple years of EU-SILC data

Description

Create a dummy dataset to be used for demonstrating the functionalities of the surveysd package
based on laeken::eusilc. Please refer to the documentation page of the original data for details about
the variables.

Usage

demo.eusilc(n = 8, prettyNames = FALSE)

Arguments

n Number of years to generate. Should be at least 1

prettyNames Create easy-to-read names for certain variables. Recommended for demonstra-
tion purposes. Otherwise, use the original codes documented in laeken::eusilc.

Details

If prettyNames is TRUE, the following variables will be available in an easy-to-read manner.

• hid Household id. Consistent with respect to the reference period (year)

• hsize Size of the household. derived from hid and period

• region Federal state of austria where the household is located

• pid Personal id. Consistent with respect to the reference period (year)

• age Age-class of the respondent

• gender A persons gender ("male", "Female")

• ecoStat Ecnomic status ("part time", "full time", "unemployed", ...)

• citizenship Citizenship ("AT", "EU", "other")

• pWeight Personal sample weight inside the reference period

• year. Simulated reference period

• povertyRisk. Logical variable determining whether a respondent is at risk of poverty

Examples

demo.eusilc(n = 1, prettyNames = TRUE)[, c(1:8, 26, 28:30)]

12 draw.bootstrap

draw.bootstrap Draw bootstrap replicates

Description

Draw bootstrap replicates from survey data with rotating panel design. Survey information, like ID,
sample weights, strata and population totals per strata, should be specified to ensure meaningfull
survey bootstraping.

Usage

draw.bootstrap(
dat,
REP = 1000,
hid = NULL,
weights,
period = NULL,
strata = NULL,
cluster = NULL,
totals = NULL,
single.PSU = c("merge", "mean"),
boot.names = NULL,
split = FALSE,
pid = NULL,
new.method = FALSE

)

Arguments

dat either data.frame or data.table containing the survey data with rotating panel
design.

REP integer indicating the number of bootstrap replicates.

hid character specifying the name of the column in dat containing the household id.
If NULL (the default), the household structure is not regarded.

weights character specifying the name of the column in dat containing the sample weights.

period character specifying the name of the column in dat containing the sample peri-
ods. If NULL (the default), it is assumed that all observations belong to the same
period.

strata character vector specifying the name(s) of the column in dat by which the pop-
ulation was stratified. If strata is a vector stratification will be assumed as
the combination of column names contained in strata. Setting in addition
cluster not NULL stratification will be assumed on multiple stages, where
each additional entry in strata specifies the stratification variable for the next
lower stage. see Details for more information.

cluster character vector specifying cluster in the data. If not already specified in cluster
household ID is taken es the lowest level cluster.

draw.bootstrap 13

totals character specifying the name of the column in dat containing the the totals
per strata and/or cluster. Is ONLY optional if cluster is NULL or equal hid
and strata contains one columnname! Then the households per strata will be
calcualted using the weights argument. If clusters and strata for multiple stages
are specified totals needs to be a vector of length(strata) specifying the
column on dat that contain the total number of PSUs at each stage. totals is
interpreted from left the right, meaning that the first argument corresponds to
the number of PSUs at the first and the last argument to the number of PSUs at
the last stage.

single.PSU either "merge" or "mean" defining how single PSUs need to be dealt with. For
single.PSU="merge" single PSUs at each stage are merged with the strata or
cluster with the next least number of PSUs. If multiple of those exist one will be
select via random draw. For single.PSU="mean" single PSUs will get the mean
over all bootstrap replicates at the stage which did not contain single PSUs.

boot.names character indicating the leading string of the column names for each bootstrap
replica. If NULL defaults to "w".

split logical, if TRUE split households are considered using pid, for more informa-
tion see Details.

pid column in dat specifying the personal identifier. This identifier needs to be
unique for each person throught the whole data set.

new.method logical, if TRUE bootstrap replicates will never be negative even if in some strata
the whole population is in the sample. WARNING: This is still experimental and
resulting standard errors might be underestimated! Use this if for some strata the
whole population is in the sample!

Details

draw.bootstrap takes dat and draws REP bootstrap replicates from it. dat must be household data
where household members correspond to multiple rows with the same household identifier. For
most practical applications, the following columns should be available in the dataset and passed via
the corresponding parameters:

• Column indicating the sample period (parameter period).

• Column indicating the household ID (parameter hid)

• Column containing the household sample weights (parameter weights);

• Columns by which population was stratified during the sampling process (parameter: strata).

For single stage sampling design a column the argument totals is optional, meaning that a column
of the number of PSUs at the first stage does not need to be supplied. For this case the number
of PSUs is calculated and added to dat using strata and weights. By setting cluster to NULL
single stage sampling design is always assumed and if strata contains of multiple column names
the combination of all those column names will be used for stratification.

In the case of multi stage sampling design the argument totals needs to be specified and needs to
have the same number of arguments as strata.

If cluster is NULL or does not contain hid at the last stage, hid will automatically be used as the
final cluster. If, besides hid, clustering in additional stages is specified the number of column names

14 draw.bootstrap

in strata and cluster (including hid) must be the same. If for any stage there was no clustering
or stratification one can set "1" or "I" for this stage.

For example strata=c("REGION","I"),cluster=c("MUNICIPALITY","HID") would speficy a 2 stage
sampling design where at the first stage the municipalities where drawn stratified by regions and at
the 2nd stage housholds are drawn in each municipality without stratification.

Bootstrap replicates are drawn for each survey period (period) using the function rescaled.bootstrap.
Afterwards the bootstrap replicates for each household are carried forward from the first period the
household enters the survey to all the censecutive periods it stays in the survey.

This ensures that the bootstrap replicates follow the same logic as the sampled households, making
the bootstrap replicates more comparable to the actual sample units.

If split ist set to TRUE and pid is specified, the bootstrap replicates are carried forward using
the personal identifiers instead of the houshold identifier. This takes into account the issue of a
houshold splitting up. Any person in this new split household will get the same bootstrap replicate
as the person that has come from an other household in the survey. People who enter already
existing households will also get the same bootstrap replicate as the other households members had
in the previous periods.

Value

the survey data with the number of REP bootstrap replicates added as columns.

Returns a data.table containing the original data as well as the number of REP columns containing
the bootstrap replicates for each repetition.
The columns of the bootstrap replicates are by default labeled "wNumber" where Number goes from
1 to REP. If the column names of the bootstrap replicates should start with a different character or
string the parameter boot.names can be used.

Author(s)

Johannes Gussenbauer, Alexander Kowarik, Statistics Austria

See Also

data.table for more information on data.table objects.

Examples

Not run:
eusilc <- demo.eusilc(prettyNames = TRUE)

draw sample without stratification or clustering
dat_boot <- draw.bootstrap(eusilc, REP = 10, weights = "pWeight",

period = "year")

use stratification w.r.t. region and clustering w.r.t. households
dat_boot <- draw.bootstrap(

eusilc, REP = 10, hid = "hid", weights = "pWeight",
strata = "region", period = "year")

use multi-level clustering

generate.HHID 15

dat_boot <- draw.bootstrap(
eusilc, REP = 10, hid = "hid", weights = "pWeight",
strata = c("region", "age"), period = "year")

create spit households
eusilc[, pidsplit := pid]
year <- eusilc[, unique(year)]
year <- year[-1]
leaf_out <- c()
for(y in year) {

split.person <- eusilc[
year == (y-1) & !duplicated(hid) & !(hid %in% leaf_out),
sample(pid, 20)

]
overwrite.person <- eusilc[

(year == (y)) & !duplicated(hid) & !(hid %in% leaf_out),
.(pid = sample(pid, 20))

]
overwrite.person[, c("pidsplit", "year_curr") := .(split.person, y)]

eusilc[overwrite.person, pidsplit := i.pidsplit,
on = .(pid, year >= year_curr)]

leaf_out <- c(leaf_out,
eusilc[pid %in% c(overwrite.person$pid,

overwrite.person$pidsplit),
unique(hid)])

}

dat_boot <- draw.bootstrap(
eusilc, REP = 10, hid = "hid", weights = "pWeight",
strata = c("region", "age"), period = "year", split = TRUE,
pid = "pidsplit")

split households were considered e.g. household and
split household were both selected or not selected
dat_boot[, data.table::uniqueN(w1), by = pidsplit][V1 > 1]

End(Not run)

generate.HHID Generate new houshold ID for survey data with rotating panel design
taking into account split households

Description

Generating a new houshold ID for survey data using a houshold ID and a personal ID. For surveys
with rotating panel design containing housholds, houshold members can move from an existing
household to a new one, that was not originally in the sample. This leads to the creation of so
called split households. Using a peronal ID (that stays fixed over the whole survey), an indicator for

16 generate.HHID

different time steps and a houshold ID, a new houshold ID is assigned to the original and the split
household.

Usage

generate.HHID(dat, period = "RB010", pid = "RB030", hid = "DB030")

Arguments

dat data table of data frame containing the survey data

period column name of dat containing an indicator for the rotations, e.g years, quarters,
months, ect...

pid column name of dat containing the personal identifier. This needs to be fixed
for an indiviual throught the whole survey

hid column name of dat containing the household id. This needs to for a household
throught the whole survey

Value

the survey data dat as data.table object containing a new and an old household ID. The new house-
hold ID which considers the split households is now named hid and the original household ID has
a trailing "_orig".

Examples

Not run:
library(surveysd)
library(laeken)
library(data.table)

eusilc <- surveysd:::demo.eusilc(n=4)

create spit households
eusilc[,rb030split:=rb030]
year <- eusilc[,unique(year)]
year <- year[-1]
leaf_out <- c()
for(y in year) {

split.person <- eusilc[year==(y-1)&!duplicated(db030)&!db030%in%leaf_out,
sample(rb030,20)]

overwrite.person <- eusilc[year==(y)&!duplicated(db030)&!db030%in%leaf_out,
.(rb030=sample(rb030,20))]

overwrite.person[,c("rb030split","year_curr"):=.(split.person,y)]

eusilc[overwrite.person,
rb030split:=i.rb030split,on=.(rb030,year>=year_curr)]

leaf_out <- c(
leaf_out,
eusilc[rb030%in%c(overwrite.person$rb030,overwrite.person$rb030split),
unique(db030)])

}

ipf 17

pid which are in split households
eusilc[,.(uniqueN(db030)),by=list(rb030split)][V1>1]

eusilc.new <- generate.HHID(eusilc, period = "year", pid = "rb030split",
hid = "db030")

no longer any split households in the data
eusilc.new[,.(uniqueN(db030)),by=list(rb030split)][V1>1]

End(Not run)

ipf Iterative Proportional Fitting

Description

Adjust sampling weights to given totals based on household-level and/or individual level con-
straints.

Usage

ipf(
dat,
hid = NULL,
conP = NULL,
conH = NULL,
epsP = 1e-06,
epsH = 0.01,
verbose = FALSE,
w = NULL,
bound = 4,
maxIter = 200,
meanHH = TRUE,
allPthenH = TRUE,
returnNA = TRUE,
looseH = FALSE,
numericalWeighting = computeLinear,
check_hh_vars = TRUE,
conversion_messages = FALSE,
nameCalibWeight = "calibWeight"

)

Arguments

dat a data.table containing household ids (optionally), base weights (optionally),
household and/or personal level variables (numerical or categorical) that should
be fitted.

18 ipf

hid name of the column containing the household-ids within dat or NULL if such a
variable does not exist.

conP list or (partly) named list defining the constraints on person level. The list ele-
ments are contingency tables in array representation with dimnames correspond-
ing to the names of the relevant calibration variables in dat. If a numerical vari-
able is to be calibrated, the respective list element has to be named with the name
of that numerical variable. Otherwise the list element shoud NOT be named.

conH list or (partly) named list defining the constraints on household level. The list
elements are contingency tables in array representation with dimnames corre-
sponding to the names of the relevant calibration variables in dat. If a numeri-
cal variable is to be calibrated, the respective list element has to be named with
the name of that numerical variable. Otherwise the list element shoud NOT be
named.

epsP numeric value or list (of numeric values and/or arrays) specifying the conver-
gence limit(s) for conP. The list can contain numeric values and/or arrays which
must appear in the same order as the corresponding constraints in conP. Also,
an array must have the same dimensions and dimnames as the corresponding
constraint in conP.

epsH numeric value or list (of numeric values and/or arrays) specifying the conver-
gence limit(s) for conH. The list can contain numeric values and/or arrays which
must appear in the same order as the corresponding constraints in conH. Also,
an array must have the same dimensions and dimnames as the corresponding
constraint in conH.

verbose if TRUE, some progress information will be printed.
w name if the column containing the base weights within dat or NULL if such a

variable does not exist. In the latter case, every observation in dat is assigned a
starting weight of 1.

bound numeric value specifying the multiplier for determining the weight trimming
boundary if the change of the base weights should be restricted, i.e. if the
weights should stay between 1/bound*w and bound*w.

maxIter numeric value specifying the maximum number of iterations that should be per-
formed.

meanHH if TRUE, every person in a household is assigned the mean of the person weights
corresponding to the household. If "geometric", the geometric mean is used
rather than the arithmetic mean.

allPthenH if TRUE, all the person level calibration steps are performed before the houshold
level calibration steps (and meanHH, if specified). If FALSE, the houshold level
calibration steps (and meanHH, if specified) are performed after everey person
level calibration step. This can lead to better convergence properties in certain
cases but also means that the total number of calibration steps is increased.

returnNA if TRUE, the calibrated weight will be set to NA in case of no convergence.
looseH if FALSE, the actual constraints conH are used for calibrating all the hh weights.

If TRUE, only the weights for which the lower and upper thresholds defined by
conH and epsH are exceeded are calibrated. They are however not calibrated
against the actual constraints conH but against these lower and upper thresholds,
i.e. conH-conH*epsH and conH+conH*epsH.

ipf 19

numericalWeighting

See numericalWeighting

check_hh_vars If TRUE check for non-unique values inside of a household for variables in house-
hold constraints

conversion_messages

show a message, if inputs need to be reformatted. This can be useful for speed
optimizations if ipf is called several times with similar inputs (for example boot-
strapping)

nameCalibWeight

character defining the name of the variable for the newly generated calibrated
weight.

Details

This function implements the weighting procedure described here. Usage examples can be found
in the corresponding vignette (vignette("ipf")).

conP and conH are contingency tables, which can be created with xtabs. The dimnames of those
tables should match the names and levels of the corresponding columns in dat.

maxIter, epsP and epsH are the stopping criteria. epsP and epsH describe relative tolerances in the
sense that

1− epsP <
wi+1

wi
< 1 + epsP

will be used as convergence criterium. Here i is the iteration step and wi is the weight of a specific
person at step i.

The algorithm performs best if all varables occuring in the constraints (conP and conH) as well as the
household variable are coded as factor-columns in dat. Otherwise, conversions will be necessary
which can be monitored with the conversion_messages argument. Setting check_hh_vars to
FALSE can also incease the performance of the scheme.

Value

The function will return the input data dat with the calibrated weights calibWeight as an additional
column as well as attributes. If no convergence has been reached in maxIter steps, and returnNA
is TRUE (the default), the column calibWeights will only consist of NAs. The attributes of the table
are attributes derived from the data.table class as well as the following.

converged Did the algorithm converge in maxIter steps?
iterations The number of iterations performed.
conP, conH, epsP, epsH See Arguments.
conP_adj, conH_adj Adjusted versions of conP and conH
formP, formH Formulas that were used to calculate conP_adj and conH_adj based on the output table.

Author(s)

Alexander Kowarik, Gregor de Cillia

https://doi.org/10.17713/ajs.v45i3.120

20 ipf

Examples

Not run:

load data
eusilc <- demo.eusilc(n = 1, prettyNames = TRUE)

personal constraints
conP1 <- xtabs(pWeight ~ age, data = eusilc)
conP2 <- xtabs(pWeight ~ gender + region, data = eusilc)
conP3 <- xtabs(pWeight*eqIncome ~ gender, data = eusilc)

household constraints
conH1 <- xtabs(pWeight ~ hsize + region, data = eusilc)

simple usage --

calibweights1 <- ipf(
eusilc,
conP = list(conP1, conP2, eqIncome = conP3),
bound = NULL,
verbose = TRUE

)

compare personal weight with the calibweigth
calibweights1[, .(hid, pWeight, calibWeight)]

advanced usage --

use an array of tolerances
epsH1 <- conH1
epsH1[1:4,] <- 0.005
epsH1[5,] <- 0.2

create an initial weight for the calibration
eusilc[, regSamp := .N, by = region]
eusilc[, regPop := sum(pWeight), by = region]
eusilc[, baseWeight := regPop/regSamp]

calibweights2 <- ipf(
eusilc,
conP = list(conP1, conP2),
conH = list(conH1),
epsP = 1e-6,
epsH = list(epsH1),
bound = 4,
w = "baseWeight",
verbose = TRUE

)

show an adjusted version of conP and the original
attr(calibweights2, "conP_adj")
attr(calibweights2, "conP")

ipf_step 21

End(Not run)

ipf_step Perform one step of iterative proportional updating

Description

C++ routines to invoke a single iteration of the Iterative proportional updating (IPU) scheme. Tar-
gets and classes are assumed to be one dimensional in the ipf_step functions. combine_factors
aggregates several vectors of type factor into a single one to allow multidimensional ipu-steps. See
examples.

Usage

ipf_step_ref(w, classes, targets)

ipf_step(w, classes, targets)

ipf_step_f(w, classes, targets)

combine_factors(dat, targets)

Arguments

w a numeric vector of weights. All entries should be positive.

classes a factor variable. Must have the same length as w.

targets key figure to target with the ipu scheme. A numeric verctor of the same length as
levels(classes). This can also be a table produced by xtabs. See examples.

dat a data.frame containing the factor variables to be combined.

Details

ipf_step returns the adjusted weights. ipf_step_ref does the same, but updates w by reference
rather than returning. ipf_step_f returns a multiplicator: adjusted weights divided by unadjusted
weights. combine_factors is designed to make ipf_step work with contingency tables produced
by xtabs.

Examples

############# one-dimensional ipu ##############

create random data
nobs <- 10
classLabels <- letters[1:3]
dat = data.frame(

22 kishFactor

weight = exp(rnorm(nobs)),
household = factor(sample(classLabels, nobs, replace = TRUE))

)
dat

create targets (same lenght as classLabels!)
targets <- 3:5

calculate weights
new_weight <- ipf_step(dat$weight, dat$household, targets)
cbind(dat, new_weight)

check solution
xtabs(new_weight ~ dat$household)

calculate weights "by reference"
ipf_step_ref(dat$weight, dat$household, targets)
dat

############# multidimensional ipu ##############

load data
factors <- c("time", "sex", "smoker", "day")
tips <- data.frame(sex=c("Female","Male","Male"), day=c("Sun","Mon","Tue"),
time=c("Dinner","Lunch","Lunch"), smoker=c("No","Yes","No"))
tips <- tips[factors]

combine factors
con <- xtabs(~., tips)
cf <- combine_factors(tips, con)
cbind(tips, cf)[sample(nrow(tips), 10, replace = TRUE),]

adjust weights
weight <- rnorm(nrow(tips)) + 5
adjusted_weight <- ipf_step(weight, cf, con)

check outputs
con2 <- xtabs(adjusted_weight ~ ., data = tips)
sum((con - con2)^2)

kishFactor Kish Factor

Description

Compute the kish factor for a specific weight vector

Usage

kishFactor(w)

plot.surveysd 23

Arguments

w a numeric vector with weights

Value

The function will return the the kish factor

Author(s)

Alexander Kowarik

Examples

kishFactor(rep(1,10))
kishFactor(rlnorm(10))

plot.surveysd Plot surveysd-Objects

Description

Plot results of calc.stError()

Usage

S3 method for class 'surveysd'
plot(
x,
variable = x$param$var[1],
type = c("summary", "grouping"),
groups = NULL,
sd.type = c("dot", "ribbon"),
...

)

Arguments

x object of class ’surveysd’ output of function calc.stError
variable Name of the variable for which standard errors have been calcualated in dat

type can bei either "summary" or "grouping", default value is "summary". For
"summary" a barplot is created giving an overview of the number of estimates
having the flag smallGroup, cvHigh, both or none of them. For ’grouping’
results for point estimate and standard error are plotted for pre defined groups.

groups If type='grouping' variables must be defined by which the data is grouped.
Only 2 levels are supported as of right now. If only one group is defined the
higher group will be the estimate over the whole period. Results are plotted for
the first argument in groups as well as for the combination of groups[1] and
groups[2].

24 plot.surveysd

sd.type can bei either 'ribbon' or 'dot' and is only used if type='grouping'. Default
is "dot" For sd.type='dot' point estimates are plotted and flagged if the corre-
sponding standard error and/or the standard error using the mean over k-periods
exceeded the value cv.limit (see calc.stError). For sd.type='ribbon' the
point estimates including ribbons, defined by point estimate +- estimated stan-
dard error are plotted. The calculated standard errors using the mean over k peri-
ods are plotted using less transparency. Results for the higher level (~groups[1])
are coloured grey.

... additional arguments supplied to plot.

Examples

library(surveysd)
library(laeken)
library(data.table)

eusilc <- demo.eusilc(n = 4, prettyNames = TRUE)

dat_boot <- draw.bootstrap(eusilc, REP = 3, hid = "hid", weights = "pWeight",
strata = "region", period = "year")

calibrate weight for bootstrap replicates
dat_boot_calib <- recalib(dat_boot, conP.var = "gender", conH.var = "region")

estimate weightedRatio for povmd60 per period
group <- list("gender", "region", c("gender", "region"))
err.est <- calc.stError(dat_boot_calib, var = "povertyRisk",

fun = weightedRatio,
group = group , period.mean = NULL)

plot(err.est)

plot results for gender
dotted line is the result on the national level
plot(err.est, type = "grouping", groups = "gender")

plot results for gender
with standard errors as ribbons
plot(err.est, type = "grouping", groups = "gender", sd.type = "ribbon")

plot results for rb090 in each db040
plot(err.est, type = "grouping", groups = c("gender", "region"))

plot results for db040 in each rb090 with standard errors as ribbons
plot(err.est,type = "grouping", groups = c("gender", "region"))

PointEstimates 25

PointEstimates Weighted Point Estimates

Description

Predefined functions for weighted point estimates in package surveysd.

Usage

weightedRatio(x, w)

weightedSum(x, w)

Arguments

x numeric vector

w weight vector

Details

Predefined functions are weighted ratio and weighted sum.

Value

Each of the functions return a single numeric value

Examples

x <- 1:10
w <- 10:1
weightedRatio(x,w)
x <- 1:10
w <- 10:1
weightedSum(x,w)

print.surveysd Print function for surveysd objects

Description

Prints the results of a call to calc.stError. Shows used variables and function, number of point
estiamtes as well as properties of the results.

Usage

S3 method for class 'surveysd'
print(x, ...)

26 recalib

Arguments

x an object of class 'surveysd'
... additonal parameters

recalib Calibrate weights

Description

Calibrate weights for bootstrap replicates by using iterative proportional updating to match popula-
tion totals on various household and personal levels.

Usage

recalib(
dat,
hid = attr(dat, "hid"),
weights = attr(dat, "weights"),
b.rep = attr(dat, "b.rep"),
period = attr(dat, "period"),
conP.var = NULL,
conH.var = NULL,
epsP = 0.01,
epsH = 0.02,
...

)

Arguments

dat either data.frame or data.table containing the sample survey for various periods.
hid character specifying the name of the column in dat containing the household

ID.
weights character specifying the name of the column in dat containing the sample weights.
b.rep character specifying the names of the columns in dat containing bootstrap weights

which should be recalibratet
period character specifying the name of the column in dat containing the sample pe-

riod.
conP.var character vector containig person-specific variables to which weights should be

calibrated or a list of such character vectors. Contingency tables for the popula-
tion are calculated per period using weights.

conH.var character vector containig household-specific variables to which weights should
be calibrated or a list of such character vectors. Contingency tables for the
population are calculated per period using weights.

epsP numeric value specifying the convergence limit for conP.var or conP, see ipf().
epsH numeric value specifying the convergence limit for conH.var or conH, see ipf().
... additional arguments passed on to function ipf() from this package.

recalib 27

Details

recalib takes survey data (dat) containing the bootstrap replicates generated by draw.bootstrap
and calibrates weights for each bootstrap replication according to population totals for person- or
household-specific variables.
dat must be household data where household members correspond to multiple rows with the same
household identifier. The data should at least containt the following columns:

• Column indicating the sample period;

• Column indicating the household ID;

• Column containing the household sample weights;

• Columns which contain the bootstrap replicates (see output of draw.bootstrap);

• Columns indicating person- or household-specific variables for which sample weight should
be adjusted.

For each period and each variable in conP.var and/or conH.var contingency tables are estimated
to get margin totals on personal- and/or household-specific variables in the population.
Afterwards the bootstrap replicates are multiplied with the original sample weight and the resulting
product ist then adjusted using ipf() to match the previously calcualted contingency tables. In this
process the columns of the bootstrap replicates are overwritten by the calibrated weights.

Value

Returns a data.table containing the survey data as well as the calibrated weights for the bootstrap
replicates. The original bootstrap replicates are overwritten by the calibrated weights. If calibration
of a bootstrap replicate does not converge the bootsrap weight is not returned and numeration of the
returned bootstrap weights is reduced by one.

Author(s)

Johannes Gussenbauer, Alexander Kowarik, Statistics Austria

See Also

ipf() for more information on iterative proportional fitting.

Examples

Not run:

eusilc <- demo.eusilc(prettyNames = TRUE)

dat_boot <- draw.bootstrap(eusilc, REP = 10, hid = "hid",
weights = "pWeight",
strata = "region", period = "year")

calibrate weight for bootstrap replicates
dat_boot_calib <- recalib(dat_boot, conP.var = "gender", conH.var = "region",

verbose = TRUE)

28 rescaled.bootstrap

calibrate on other variables
dat_boot_calib <- recalib(dat_boot, conP.var = c("gender", "age"),

conH.var = c("region", "hsize"), verbose = TRUE)

supply contingency tables directly
conP <- xtabs(pWeight ~ age + gender + year, data = eusilc)
conH <- xtabs(pWeight ~ hsize + region + year,

data = eusilc[!duplicated(paste(db030,year))])
dat_boot_calib <- recalib(dat_boot, conP.var = NULL,

conH.var = NULL, conP = list(conP),
conH = list(conH), verbose = TRUE)

End(Not run)

rescaled.bootstrap Draw bootstrap replicates

Description

Draw bootstrap replicates from survey data using the rescaled bootstrap for stratified multistage
sampling, presented by Preston, J. (2009).

Usage

rescaled.bootstrap(
dat,
REP = 1000,
strata = "DB050>1",
cluster = "DB060>DB030",
fpc = "N.cluster>N.households",
single.PSU = c("merge", "mean"),
return.value = c("data", "replicates"),
check.input = TRUE,
new.method = FALSE

)

Arguments

dat either data frame or data table containing the survey sample

REP integer indicating the number of bootstraps to be drawn

strata string specifying the column name in dat that is used for stratification. For mul-
tistage sampling multiple column names can be specified by strata=c("strata1>strata2>strata3").
See Details for more information.

rescaled.bootstrap 29

cluster string specifying the column name in dat that is used for clustering. For in-
stance given a household sample the column containing the household ID should
be supplied. For multistage sampling multiple column names can be specified
by cluster=c("cluster1>cluster2>cluster3"). See Details for more in-
formation.

fpc string specifying the column name in dat that contains the number of PSUs at
the first stage. For multistage sampling the number of PSUs at each stage must
be specified by strata=c("fpc1>fpc2>fpc3").

single.PSU either "merge" or "mean" defining how single PSUs need to be dealt with. For
single.PSU="merge" single PSUs at each stage are merged with the strata or
cluster with the next least number of PSUs. If multiple of those exist one will be
select via random draw. For single.PSU="mean" single PSUs will get the mean
over all bootstrap replicates at the stage which did not contain single PSUs.

return.value either "data" or "replicates" specifying the return value of the function. For
"data" the survey data is returned as class data.table, for "replicates" only the
bootstrap replicates are returned as data.table.

check.input logical, if TRUE the input will be checked before applying the bootstrap proce-
dure

new.method logical, if TRUE bootstrap replicates will never be negative even if in some strata
the whole population is in the sample. WARNING: This is still experimental and
resulting standard errors might be underestimated! Use this if for some strata the
whole population is in the sample!

Details

For specifying multistage sampling designs the column names in strata,cluster and fpc need to
seperated by ">".
For multistage sampling the strings are read from left to right meaning that the column name before
the first ">" is taken as the column for stratification/clustering/number of PSUs at the first and the
column after the last ">" is taken as the column for stratification/clustering/number of PSUs at the
last stage. If for some stages the sample was not stratified or clustered one must specify this by "1"
or "I", e.g. strata=c("strata1>I>strata3") if there was no stratification at the second stage or
cluster=c("cluster1>cluster2>I") if there were no clusters at the last stage.
The number of PSUs at each stage is not calculated internally and must be specified for any sampling
design. For single stage sampling using stratification this can usually be done by adding over all
sample weights of each PSU by each strata-code.
Spaces in each of the strings will be removed, so if column names contain spaces they should be
renamed before calling this procedure!

Value

returns the complete data set including the bootstrap replicates or just the bootstrap replicates, de-
pending on return.value="data" or return.value="replicates" respectively.

Author(s)

Johannes Gussenbauer, Statistics Austria

30 rescaled.bootstrap

References

Preston, J. (2009). Rescaled bootstrap for stratified multistage sampling. Survey Methodology. 35.
227-234.

Examples

data(eusilc, package = "laeken")
data.table::setDT(eusilc)

eusilc[,N.households:=sum(db090[!duplicated(db030)]),by=db040]
eusilc.bootstrap <- rescaled.bootstrap(eusilc,REP=100,strata="db040",

cluster="db030",fpc="N.households")

eusilc[,new_strata:=paste(db040,rb090,sep="_")]
eusilc[,N.housholds:=sum(db090[!duplicated(db030)]),by=new_strata]
eusilc.bootstrap <- rescaled.bootstrap(eusilc,REP=100,strata=c("new_strata"),

cluster="db030",fpc="N.households")

eusilc.bootstrap <- rescaled.bootstrap(eusilc,REP=100,strata=c("new_strata"),
cluster="db030",fpc="N.households")

Index

∗Topic manip
calc.stError, 2

∗Topic survey
calc.stError, 2

calc.stError, 2, 23–25
combine_factors (ipf_step), 21
computeFrac (computeLinear), 9
computeLinear, 9
computeLinearG1 (computeLinear), 9
cpp_mean, 10

data.table, 14
demo.eusilc, 11
draw.bootstrap, 2, 3, 6, 12, 27

generate.HHID, 15
geometric_mean_reference (cpp_mean), 10

ipf, 9, 17
ipf(), 26, 27
ipf_step, 21
ipf_step_f (ipf_step), 21
ipf_step_ref (ipf_step), 21

kishFactor, 22

laeken::eusilc, 11

numericalWeighting, 19
numericalWeighting (computeLinear), 9

plot.surveysd, 23
PointEstimates, 25
print.surveysd, 25

recalib, 2–4, 6, 26
rescaled.bootstrap, 14, 28

weightedRatio, 3
weightedRatio (PointEstimates), 25

weightedSum, 3
weightedSum (PointEstimates), 25

xtabs, 21

31

	calc.stError
	computeLinear
	cpp_mean
	demo.eusilc
	draw.bootstrap
	generate.HHID
	ipf
	ipf_step
	kishFactor
	plot.surveysd
	PointEstimates
	print.surveysd
	recalib
	rescaled.bootstrap
	Index

