Package 'stylest'

September 16, 2018

September 10, 2016
Version 0.1.0
Title Estimating Speaker Style Distinctiveness
Depends R (>= 2.10)
Imports corpus, Matrix, stats
Suggests knitr, rmarkdown, testthat, kableExtra
Description Estimates distinctiveness in speakers' (authors') style. Fits models that can be used for predicting speakers of new texts. Methods developed in Spirling et al (2018) <doi:10.2139 ssrn.3235506=""> (working paper).</doi:10.2139>
License GPL-3
<pre>URL https://github.com/leslie-huang/stylest</pre>
BugReports https://github.com/leslie-huang/stylest/issues
LazyData true
Encoding UTF-8
VignetteBuilder knitr, rmarkdown
RoxygenNote 6.0.1.9000
NeedsCompilation no
Author Leslie Huang [aut, cph, cre], Patrick O. Perry [aut, cph], Arthur Spirling [aut, cph]
Maintainer Leslie Huang <lesliehuang@nyu.edu></lesliehuang@nyu.edu>
Repository CRAN
Date/Publication 2018-09-16 18:10:03 UTC
R topics documented:
fit_term_usage

2 novels_excerpts

Index		9
	stylest_term_influence	8
	stylest_terms	
	stylest_select_vocab	6
	stylest_predict	5
	stylest_odds	5
	stylest_fit	4

fit_term_usage

Computes speakers' term usage rates

Description

Computes speakers' term usage rates

Usage

```
fit_term_usage(x, speaker, terms, smooth)
```

Arguments

x Text vector. May be a corpus_frame object

speaker Vector of speaker labels. Should be the same length as x

terms Vocabulary for document term matrix

smooth Numeric value used smooth term frequencies

Value

named list of terms, vector of num tokens uttered by each speaker, smoothing value, and (smoothed) term usage rate matrix

novels_excerpts

Excerpts from English novels

Description

A dataset of text from English novels by Jane Austen, George Eliot, and Elizabeth Gaskell.

Usage

novels_excerpts

print.stylest_model 3

Format

A dataframe with 21 rows and 3 variables:

title Title

author Author

text Excerpt of text in complete sentences from the first 1,000 chars of the novel.

Source

Novel excerpts obtained from Project Gutenberg full texts in the public domain in the USA. http://gutenberg.org

print.stylest_model

Custom print method for stylest_model

Description

Custom print method for stylest_model

Usage

```
## S3 method for class 'stylest_model'
print(x, ...)
```

Arguments

x 'stylest_model' object

... Additional arguments

Value

Prints summary information about the 'stylest_model' object

```
data(novels_excerpts)
speaker_mod <- stylest_fit(novels_excerpts$text, novels_excerpts$author)
print(speaker_mod)</pre>
```

4 stylest_fit

stylest stylest: A package for estimating textual distinctiveness	
---	--

Description

stylest provides a set of functions for fitting a model of speaker distinctiveness, including tools for selecting the optimal vocabulary for the model and predicting the most likely speaker (author) of a new text.

stylest_fit Fit speaker_model to a corpus

Description

The main function in stylest, stylest_fit fits a model using a corpus of texts labeled by speaker.

Usage

```
stylest_fit(x, speaker, terms = NULL, filter = NULL, smooth = 0.5)
```

Arguments

Х	Text vector. May be a corpus_frame object
speaker	Vector of speaker labels. Should be the same length as x
terms	If not NULL, terms to be used in the model. If NULL, use all terms
filter	If not NULL, a text filter to specify the tokenization. See corpus for more information about specifying filter
smooth	Numeric value used smooth term frequencies instead of the default of 0.5

Details

The user may specify only one of terms or cutoff. If neither is specified, all terms will be used.

Value

A S3 stylest_model object containing: speakers Vector of unique speakers, filter text_filter used, terms terms used in fitting the model, ntoken Vector of number of tokens per speaker, smooth Smoothing value, rate Matrix of speaker rates for each term in vocabulary

```
data(novels_excerpts)
speaker_mod <- stylest_fit(novels_excerpts$text, novels_excerpts$author)</pre>
```

stylest_odds 5

stylest_odds	Pairwise prediction of the most likely speaker of texts

Description

Computes the mean log odds of the most likely speaker of each text over pairs of the speaker of a text and every other speaker in the stylest_model.

Usage

```
stylest_odds(model, text, speaker, prior = NULL)
```

Arguments

model stylest_model object

text Text vector. May be a corpus_frame object

speaker Vector of speaker labels. Should be the same length as x prior Prior probability of speakers. Uses equal prior if NULL

Value

A S3 stylest_odds object containing: a stylest_model object; vector of mean log odds that each actual speaker (compared with other speakers in the corpus) spoke their corresponding texts in the corpus; vector of SEs of the log odds

Examples

```
data(novels_excerpts)
speaker_mod <- stylest_fit(novels_excerpts$text, novels_excerpts$author)
stylest_odds(speaker_mod, novels_excerpts$text, novels_excerpts$author)</pre>
```

stylest_predict

Predict the most likely speaker of a text

Description

Use a fitted stylest_model to predict the most likely speaker of a text. This function may be used on in-sample or out-of-sample texts.

Usage

```
stylest_predict(model, text, prior = NULL)
```

6 stylest_select_vocab

Arguments

model	stylest_model object
-------	----------------------

text Text vector. May be a corpus_frame object

prior Prior probability, defaults to NULL

Value

stylest_predict object containing: model the fitted stylest_model object used in prediction, predicted the predicted speaker, log_probs matrix of log probabilities, log_prior matrix of log prior probabilities

Examples

```
data(novels_excerpts)
speaker_mod <- stylest_fit(novels_excerpts$text, novels_excerpts$author)
stylest_predict(speaker_mod, "This is an example text, who wrote it?")</pre>
```

stylest_select_vocab Select vocabulary using cross-validated out-of-sample prediction

Description

Selects optimal vocabulary quantile(s) for model fitting using performance on predicting out-of-sampletexts.

Usage

```
stylest_select_vocab(x, speaker, filter = NULL, smooth = 0.5,
  nfold = 5, cutoff_pcts = c(50, 60, 70, 80, 90, 99))
```

Arguments

X	Corpus as text vector. May be a corpus_frame object
speaker	Vector of speaker labels. Should be the same length as x

filter if not NULL, a corpus text_filter smooth value for smoothing. Defaults to 0.5

nfold Number of folds for cross-validation. Defaults to 5

cutoff_pcts Vector of cutoff percentages to test. Defaults to c(50, 60, 70, 80, 90, 99)

Value

List of: best cutoff percent with the best speaker classification rate; cutoff percentages that were tested; matrix of the mean percentage of incorrectly identified speakers for each cutoff percent and fold; and the number of folds for cross-validation

stylest_terms 7

Examples

```
## Not run:
data(novels_excerpts)
stylest_select_vocab(novels_excerpts$text, novels_excerpts$author, cutoff_pcts = c(50, 90))
## End(Not run)
```

stylest_terms

Use vocab cutoff to select terms for fitting the model

Description

The same text, speaker, and filter should be used in this model as in fit_speaker to select the terms for the latter function.

Usage

```
stylest_terms(x, speaker, vocab_cutoff, filter = NULL)
```

Arguments

x Corpus as text vector. May be a corpus_frame object

speaker Vector of speaker labels. Should be the same length as x

vocab_cutoff Quantile cutoff for the vocabulary in (0, 100]

filter if not NULL, a corpus filter

Value

list of terms

```
data(novels_excerpts)
stylest_terms(novels_excerpts$text, novels_excerpts$author, vocab_cutoff = 50)
```

```
stylest\_term\_influence
```

Compute the influence of terms

Description

Compute the influence of terms

Usage

```
stylest_term_influence(model, text, speaker)
```

Arguments

model stylest_model object

text Text vector. May be a corpus_frame object

speaker Vector of speaker labels. Should be the same length as x

Value

data. frame with columns representing terms, their mean influence, and their maximum influence

```
data(novels_excerpts)
speaker_mod <- stylest_fit(novels_excerpts$text, novels_excerpts$author)
stylest_term_influence(speaker_mod, novels_excerpts$text, novels_excerpts$author)</pre>
```

Index

```
*Topic datasets
novels_excerpts, 2

fit_term_usage, 2

novels_excerpts, 2

print.stylest_model, 3

stylest, 4

stylest_fit, 4

stylest_odds, 5

stylest_predict, 5

stylest_select_vocab, 6

stylest_term_influence, 8

stylest_terms, 7
```