Package ‘stsm.class’

February 20, 2015

Version 1.3
Date 2014-07-21
Title Class and Methods for Structural Time Series Models

Description This package defines an S4 class for structural time series models

and provides some basic methods to work with it.

Author Javier Lopez-de-Lacalle <javlacalle@yahoo.es>

Maintainer Javier L6pez-de-Lacalle <javlacalle@yahoo.es>

Depends R (>= 3.0.0), methods

Suggests numDeriv

NeedsCompilation no

Encoding UTF-8

License GPL-2

Repository CRAN

Date/Publication 2014-07-26 15:53:50

R topics documented:

Index

stsm.class-package L L e 2
stsm-char2numeric-methods L 2
stsm-class e e e 5
stsm-get-methods L e 6
stsm-set-methods 9
stsm-show-methods 13
stsm-transPars-methods 13
stsm-validObject-methods L 17
stsmmodel L e e e 18
StSMLSZE . . L e e e e 21

25

2 stsm-char2numeric-methods

stsm.class-package Class and Methods for Structural Time Series Models

Description
This package defines an S4 class for structural time series models and provides some basic methods
to work with it.

Details
The class defined in this package is used by the package stsm as the base framework to implement
statistical algorithms related to structural time series models.

References
Christophe Genolini. A (Not So) Short Introduction to S4. Object Oriented Programming in R.
V0.5.1. August 20, 2008.

Author(s)

Javier Lopez-de-Lacalle <javlacalle@yahoo.es>

stsm-char2numeric-methods
State Space Representation of Objects of Class stsm

Description

This method returns the state space representation of time series models defined in the class stsm.

Usage

S4 method for signature 'stsm'
char2numeric(x, P@cov = FALSE, rescale = FALSE)

Arguments
X an object of class stsm.
Pocov logical. If TRUE the values of the elements outside the diagonal in the initial
covariance matrix of the state vector are set equal to the values in the diagonal.
Otherwise values outside the diagonal are set equal to zero.
rescale logical. If TRUE, relative variance parameters are rescaled into absolute vari-

ances. Otherwise, relative variances are used. Ignored if x@cpar is null.

stsm-char2numeric-methods 3

Details
This method uses the information from the slots pars, nopars and cpar in order to build the nu-
meric representation of the matrices.

For details about the argument rescale see the details section in stsm-get-methods and the ex-
amples below.

A previous version of this method employed the information in the slot ss. This slot contains the
matrices of the state space form of the model but instead of inserting the parameter values, character
strings indicating the location of the parameters are placed in the corresponding cells. This method
performed the mapping from the character to the numeric matrices by means of a internal function
called ss.fill. Currently the slot ss and the matrices are directly built depending on the model that
was selected among those available in stsm.model. The current approach is straightforward and
faster. The previous approach may still be interesting to allow the user to define additional models
just by translating the notation of the model into character matrices. The usefulness of enhancing
this approach will be assessed in future versions of the package.

Value

A list of class stsmSS containing the following numeric matrices and vectors:

observation matrix.
transition matrix.

observation variance.

YA
T
H
R selection matrix.
v state vector variance-covariance matrix.
Q

RVR’.
a0 initial state vector.

Po initial state vector uncertainty matrix.

The list contains also two vectors, Vid and Qid, with the indices of those cells where the variance
parameters are located respectively in the matrices V" and (). The first element in a matrix is indexed
as 0.

State space representation
The general univariate linear Gaussian state space model is defined as follows:
y[t] = Zalt] + e[t], e[t] ~ "N(0, H)
aft + 1) = Talt] + Rw[t],w[t] ~ "N(0,V)
fort = 1,...,n and a[l] ~ "N(a0, P0). Z is a matrix of dimension 1 x m; H is 1 x 1; T is

mxm; Rismxr; Visr xr;a0is m x 1 and PO is m x m, where m is the dimension of the
state vector a and 7 is the number of variance parameters in the state vector.

See Also

stsm-class, stsm.model.

4 stsm-char2numeric-methods

Examples

sample model with arbitrary parameter values
m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("varl1”" = 2, "var2" = 6), nopars = c("var3" = 12))
ss1 <- char2numeric(m)
c(get.pars(m), get.nopars(m), get.cpar(m))
character notation of the covariance matrix of the state vector

m@ss$Q

information from the slots 'pars', 'nopars' and 'cpar'

is used to retrieve the numeric representation of 'm@ss$Q’
ss1$Q

same as above but with P@cov=TRUE

the only change is in the initial covariance matrix of
the state vector 'PO'

ss2 <- char2numeric(m, P@cov = TRUE)

ss1$P0
ss2$P0
if a non-standard parameterization is used,
the values in the slot 'pars' are transformed accordingly
and the actual variance parameters are returned;
notice that the transformation of parameters applies only
to the parameters defined in the slot 'pars'
m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var1" = 2, "var2" = 6), nopars = c("var3" = 12),
transPars = "square")

c(get.pars(m), get.nopars(m), get.cpar(m))[1:3]
ss <- char2numeric(m)

ss$H

ss$Q

model defined in terms of relative variances,

the variances in 'pars' are relative to the scaling parameter 'cpar',

in this example 'cpar' is chosen to be the variance 'varil'

m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var2" = 3, "var3" = 6), cpar = c("var1” = 2),
transPars = NULL)

the state space representation can be done with

relative variances (no rescaling)

ss <- char2numeric(m, rescale = FALSE)

ss$H

ss$Q

or with absolute variances (rescaling)

ss <- char2numeric(m, rescale = TRUE)

ss$H

ss$Q

in a model where the parameters are the relative variances

and with non-null 'transPars', the transformation is applied to

the relative variances, not to the absolute variances, i.e.,

the relative variances are first transformed and afterwards they are

stsm-class 5

rescaled back to absolute variances if requested

m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var2" = 3, "var3"” = 6), cpar = c("varl” = 2),
transPars = "square")

the state space representation can be done with
relative variances (no rescaling)

ss <- char2numeric(m, rescale = FALSE)

ss$H

ss$Q

or with absolute variances (rescaling)

ss <- char2numeric(m, rescale = TRUE)

ss$H

ss$Q

stsm-class Class stsm for Structural Time Series Models

Description

This class defines a structural time series model.

Slots

call Object of class call. Call to stsm.model.

model Object of class character. Name or label for the selected model (see stsm.model for
available models).

y Object of class ts. Original time series.

diffy Object of class ts. Differenced series y. The differencing operator that renders stationarity
in the model is applied to the series y.

xreg An optinal matrix or numeric vector of external regressors.

fdiff Object of class function. Function with arguments x: a ts object, s: periodicity of the
data. This function applies the differencing operator that renders stationarity in the model to a
ts object passed to it.

ss Object of class 1ist. Matrices of the state space form of the structural model.
pars Object of class numeric. Named vector with the parameters of the model.

nopars Optional object of class numeric. An optional named vector with the remaining param-
eters of the model not included in pars. This slot is not affected by the transformation of
parameters transPars. These parameters are considered fixed in the optimization procedures
implemented in package stsm.

cpar Optional object of class numeric. Named vector of length one containing the parameter that
is concentrated out of the likelihood function (if any).

lower Object of class numeric. Named vector with the lower bounds for pars.
upper Object of class numeric. Named vector with the upper bounds for pars.

transPars Character string referring to the parameterization of the model, see transPars.

6 stsm-get-methods

ssd Optional object of class numeric. Sample spectral density (periodogram) of the differenced
series diffy.

sgfc Optional object of class matrix. Constant elements in the spectral generating function of the
model (for pure variance models).

Methods

char2numeric Return a list containing the matrices of the state space representation of the model.
The matrices are the same as those in the slot ss but the characters are replaced by the corre-
sponding numeric values defined in pars, nopars and cpar.

checkbounds Check whether the values of pars lie within the lower and upper bounds.

get.pars Return the slot pars, the parameters of the model. If the model is parameterized in terms
of a set of auxiliar parameters such as those considered in transPars, then the transformed
parameters are returned. Thus, when the slot transPars is not NULL x@pars will not be equal
to get.pars(x).

get.cpar Return the slot cpar.

get.nopars Return the slot nopars.

set.cpar Set or modify the value of the slot cpar

set.nopars Set or modify the value of the slot nopars.

set.pars Set or modify the value of the slot pars.

set.sgfc Compute and set the value of the slot sgfc.

set.xreg Set or modify the value of the slot xreg.

setValidity Check the validity of the arguments passed to the function.

show Show a brief summary of the object.

transPars Transform the parameters of the model according to the parameterization defined in the
slot transPars.

See Also

stsm.model.

stsm-get-methods Getter Methods for Class stsm

Description

Get access to the information stored in the slots cpar, nopars and pars in objects of class stsm.

Usage

S4 method for signature 'stsm'
get.cpar(x, rescale = FALSE)

S4 method for signature 'stsm
get.nopars(x, rescale = FALSE)
S4 method for signature 'stsm
get.pars(x, rescale = FALSE)

stsm-get-methods 7

Arguments
X an object of class stsm.
rescale logical. If TRUE, relative variance parameters are rescaled into absolute vari-
ances. Ignored if x@cpar is null.
Details

Transformation of the parameters of the model. The method transPars allows parameterizing the
model in terms of an auxiliar vector of parameters. The output of get.pars is returned in terms
of the actual parameters of the model, i.e., the variances and the autoregressive coefficients if they
are part of the model. With the standard parameterization, x@transPars = NULL, get.pars(x)
returns the output stored in x@pars. When the model is parameterized in terms of an auxiliar set
of parameters 6, get.pars return the variance parameters instead of the values of § that are stored
in x@pars. For example, with x@transPars = "square” (where the variances are 6%), ger.pars
returns 62 while x@pars contains the vector 6.

Absolute and relative variances.

The model can be defined in terms of relative variances. In this case, the variance that acts as
a scaling parameter is stored in the slot cpar. Otherwise, cpar is null and ignored. Typically,
the scaling parameter will be chosen to be the variance parameter that is concentrated out of the
likelihood function.

If rescale = TRUE, the relative variance parameters are rescaled into absolute variance parameters
(i.e., they are multiplied by x@cpar) and then returned by these methods. If rescale = FALSE,
relative variance parameters are returned, that is, the variances divided by the scaling parameter
cpar. Since the scaling parameter is one of the variances, the relative variance stored in cpar is 1
(the parameter divided by itself).

Transformation of parameters in a model defined in terms of relative variances. When a model is
defined so that the parameters are the relative variances (cpar is not null) and a parameterization
transPars is also specified, then the transformation of parameters is applied to the relative vari-
ances, not to the absolute variances. The relative variances are first transformed and afterwards
they are rescaled back to absolute variances if requested by setting rescale = TRUE. The trans-
formation transPars is applied to the parameters defined in pars; cpar is assumed to be chosen
following other rationale; usually, it is the value that maximizes the likelihood since one of the
variance parameters can be concentrated out of the likelihood function.

Note. When cpar is not null, it is more convenient to store in the slots pars and nopars the values
of the relative variances, while the slot cpar stores the value of the scaling parameter rather than
the relative variance (which will be 1). If the relative values were stored, then the scaling parameter
would need to be recomputed each time the value is requested by get.cpar. Assuming that cpar
is the parameter that is concentrated out of the likelihood function, the expression that maximizes
the likelihood should be evaluated whenever the value is requested to be printed or to do any other
operation. To avoid this, the scaling value is directly stored. This approach makes also sense with
the way the method set.cpar works.

Note for users. For those users that are not familiar with the design and internal structure of the
stsm.class package, it is safer to use the get and set methods rather than retrieving or modifying the
contents of the slots through the @ and @<- operators.

8 stsm-get-methods

Value

get.cpar named numeric of length one.
get.nopars named numeric vector.

get.pars named numeric vector.

See Also

stsm-class.

Examples

sample models with arbitrary parameter values

model in standard parameterization
internal parameter values are the same as the model parameter

m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var1” = 2, "var2" =15, "var3"” = 30))
m@pars

get.pars(m)

model parameterized, the variances are the square
of an auxiliar vector of parameters

m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,

pars = c("var1” = 2, "var2" = 15, "var3"” = 30), transPars = "square")
auxiliar vector of parameters
m@pars

parameters of the model, variances
get.pars(m)

model rescaled, variances are relative to 'varl'

m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var2" = 15, "var3" = 30), cpar = c("varl” = 2))

internal values

m@pars

m@cpar

relative variances

get.pars(m)

get.cpar(m)

absolute variances

get.pars(m, rescale = TRUE)

get.cpar(m, rescale = TRUE)

model defined in terms of relative variances

and with the parameterization \code{transPars="square};

the transformation is applied to the relative variances,
the relative variances are first transformed and afterwards
they are rescaled back to absolute variances if requested
<- stsm.model(model = "llm+seas”, y = JohnsonJohnson,

pars = c("var2" = 3, "var3" = 6), cpar = c("varl” = 2),
transPars = "square")

c(get.cpar(m, rescale = FALSE), get.pars(m, rescale = FALSE))

EEEE R

stsm-set-methods 9

c(get.cpar(m, rescale = TRUE), get.pars(m, rescale = TRUE))

when 'cpar' is defined, 'nopars' is also interpreted as a relative variance
and therefore it is rescaled if absolute variances are requested
m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var2" = 3), cpar = c("var1” = 2), nopars = c("var3"” = 6),
transPars = NULL)
v <- c(get.cpar(m, rescale = FALSE), get.pars(m, rescale = FALSE), get.nopars(m, rescale = FALSE))

vlc("var1”, "var2", "var3")]
v <- c(get.cpar(m, rescale = TRUE), get.pars(m, rescale = TRUE), get.nopars(m, rescale = TRUE))
vlc("var1”, "var2", "var3")]

'nopars' is rescaled as shown in the previous example
but it is not affected by the parameterization chosen for 'pars'

m <- stsm.model(model = "llm+seas"”, y = JohnsonJohnson,
pars = c("var2" = 3), cpar = c("var1” = 2), nopars = c("var3" = 6),
transPars = "square")
v <- c(get.cpar(m, rescale = FALSE), get.pars(m, rescale = FALSE), get.nopars(m, rescale = FALSE))
vlc("var1”, "var2", "var3")]
v <- c(get.cpar(m, rescale = TRUE), get.pars(m, rescale = TRUE), get.nopars(m, rescale = TRUE))
vlc("var1”, "var2", "var3")]
stsm-set-methods Setter Methods for Class stsm
Description

Setter or modifier methods for objects of class stsm.

Usage

S4 method for signature 'stsm'

set.cpar(x, value, check = TRUE, inplace = FALSE)
S4 method for signature 'stsm'

set.nopars(x, v, check = TRUE, inplace = FALSE)
S4 method for signature 'stsm'

set.pars(x, v, check = TRUE, inplace = FALSE)

S4 method for signature 'stsm'

set.sgfc(x, inplace = FALSE)

S4 method for signature 'stsm'

set.xreg(x, xreg, coefs = NULL)

Arguments
X an object of class stsm.
value a numeric value.

\ a numeric vector.

10 stsm-set-methods

check logical. If TRUE, the resulting model is checked for consistency with the defini-
tion of the stsm object.

inplace logical. If TRUE, the input object x is modified in place instead of returning the
whole object.

xreg a matrix or numeric vector of external regressors. The number of rows or length
of the vector must be equal to the length of x@y. If column names are specified
they are used to name the parameters in the slot pars.

coef's an optional vector containing the value of the coefficients related to the regres-
sors xreg. If the elements of the vector do not contain names they are assumed
to be defined in the same order as the columns in the matrix xreg.

Details

Models parameterized with non-null transPars. If the model is parameterized according to a
non-null value of the slot transPars, the argument v must contain the values of the auxiliar set
of parameters 6 rather than the actual parameters (variances and autoregressive coefficients). For
example, with x@transPars = "square” the variances are #2. Although this design may seem to
disagree with the getter methods stsm-get-methods, the relevant input for the setter methods is
actually the auxiliar values 6. Be aware that if transPars is not null the parameters are transformed
by get.pars according to the selected parameterization. Therefore, v must be referred to the non-
transformed parameters.

The previous comment does not apply to the argument value since cpar is not affected by transPars.

Setter methods are safer. For those users that are not familiar with the design and internal structure
of the stsm.class package, it is safer to use setter methods rather than modifying the contents of the
slots through the @<- operator. See the examples below.

Modifying the input object in-place. Instead of returning the whole object and create a new one
or overwrite the original, it is possible to modify just the desired slot in the original object that is
passed as input. In the former case the stsm object returned by the method must be assigned to
another object using the usual operator <-. In the latter approach, the stsm object that is passed as
argument is modified in-place. See the example below. The solution to modify an object in-place
is taken from this post. This option is not a customary solution in R, however, it seems suitable in
this context. The real benefit of this approach would depend on how R deals with objects that are
returned from functions. If assigning the output to a new object involves making copies of all the
slots, then modifying the object in-place would most likely be more efficient since the desired slot
is directly modified avoiding copying the whole object.

After R version 3.1 this issue may become less critical. One of the new features reported in the
release of R 3.1 states: Avoid duplicating the right hand side values in complex assignments when
possible. This reduces copying of replacement values in expressions such as Z$a <- a0. A related
discussion for S4 classes can be found in this post.

Constant terms in the spectral generating function. In pure variance models, some elements of the
spectral generating function (s.g.f.) do not depend on the parameters and can be stored as constants.
The method set.sgfc computes and stores those elements as a matrix in the slot sgfc. This is
useful for example when working with maximum likelihood methods in the frequency domain. In
that context, the spectral generating function has to be updated several times for different parameter
values. Having the information about the constant terms in the slot sgfc saves several computations
whenever the s.g.f. is requested. For details about the s.g.f see stsm.sgf.

http://tolstoy.newcastle.edu.au/R/help/04/02/0966.html
http://stackoverflow.com/questions/22448198/does-r-copy-unevaluated-slots-in-s4-classes-on-assignment/

stsm-set-methods 11

Further setter methods. Future versions may include additional setter methods, for example to
change the slot model or to modify the time series x@y. The latter would also require updating
the slots diffy and ssd if requested. Additional methods are not available in the current version
because defining a new object by means of stsm.model will often be better than modifying one of
those slots that do not have a setter method.

Value

If the slot is modified in place, inplace=TRUE, nothing is returned, the corresponding slot of the
object m passed as argument is modified in place.

If inplace=FALSE, a new stsm object is returned. It contains the same information as the input
object m except for the slot that has been modified.

See Also

stsm-class, stsm. sgf.

Examples

sample models with arbitrary parameter values

m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var1” = 2, "var2" =15, "var3" = 30))

get.pars(m)

correct modification

ml <- set.pars(m, c(1, 2, 3))
get.pars(ml)

ml <- set.pars(m, c(varl = 11))
get.pars(ml)

correct but error prone

mi@pars[] <- c(4, 22, 33)

get.pars(ml)

ml@pars <- c(varl =1, var2 = 2, var3 = 3)
get.pars(ml)

inconsistent assignment (error returned)

'var4' is not a parameter of model 'llm+seas'
try(ml <- set.pars(m, c(var4 = 4)))

inconsistent assignment (no error returned)
the error is not noticed at this point

unless 'validObject' is called

ml <-m

mi@pars["var4"] <- 4

get.pars(ml)

try(validObject(m1))

modify only one element

ml <- set.pars(m, v=c(var1=22))

get.pars(ml)

wrong assignment, the whole vector in the slot is overwritten
no error returned at the time of doing the assignment

12

mi@pars <- c(varl = 1)
get.pars(ml)
try(validObject(m1))

consistent assignment but maybe not really intended
all the elements are set equal to 12

ml <-m

ml@pars[] <- 12

get.pars(ml)

warning returned by 'set.pars'

m2 <- set.pars(m, 12)

get.pars(m2)

wrong value unnoticed (negative variance)
ml <-m

mi@pars[] <- c(-11, 22, 33)

get.pars(ml)

negative sign detected by 'set.pars'
try(ml <- set.pars(m, c(-11, 22, 33)))

inplace = FALSE

the whole object 'm' is assigned to a new object,

which will probably involve making a copy of all the slots
m <- set.pars(m, c(1,2,3), inplace = FALSE)

get.pars(m)

inplace = TRUE
the output is not assigned to a new object
the only operation is the modification of the slot 'pars'

stsm-set-methods

no apparent additional internal operations such as copying unmodified slots

get.pars(m)
set.pars(m, c(11,22,33), inplace = TRUE)
get.pars(m)

set a matrix of regressors

xreg <- cbind(xregl = seq_len(84), xreg2 = c(rep(@, 40), rep(1, 44)))
m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson, xreg = xreg)

m
set a new matrix of regressors to an existing
xreg3 <- seq(length(m@y))

m2 <- set.xreg(m, xreg3)

m2

remove the external regressors

m3 <- set.xreg(m, NULL)

m3

m3@xreg

initialize the coefficients to some values

m <- stsm.class::stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("xregl” = 10), xreg = xreg)

m

m <- stsm.class::stsm.model(model = "llm+seas”, y = JohnsonJohnson,

pars = c("xreg2" = 20, "xregl" = 10), xreg = xreg)

stsm-show-methods 13

stsm-show-methods Display an Object of Class stsm

Description

This method displays summary information about an object of class stsm.

Usage
S4 method for signature 'stsm'
show(object)

Arguments

object an object of class stsm.

Details

A succinct summary of the object (name of the model and parameter values) is printed.

Value

Invisible NULL.

See Also

stsm-class.

Examples

m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var1” = 2, "var2" =15, "var3"” = 30))

show(m)

or just

m

stsm-transPars-methods
Parameterization of Models Defined in the Class stsm

Description

This method provides different transformations of the parameters of a structural time series model.

14 stsm-transPars-methods

Usage

S4 method for signature 'generic'

transPars(x,
type = c("square”, "StructTS", "exp”, "exp10sq”),
gradient = FALSE, hessian = FALSE,

rp, sclrho = 1.7, sclomega = 1.7, ftrans = NULL, ...)
S4 method for signature 'numeric'
transPars(x,

type = eval(formals(stsm.class::transPars)$type),
gradient = FALSE, hessian = FALSE,

rp, sclrho = 1.7, sclomega = 1.7, ftrans = NULL, ...)
S4 method for signature 'stsm'
transPars(x, type = NULL,
gradient = FALSE, hessian = FALSE,
rp, sclrho = 1.7, sclomega = 1.7, ftrans = NULL, ...)
Arguments
X an object of class stsm.
type a character string indicating the type of transformation. Ignored if x is of class
stsm. See details.
gradient logical. If TRUE, first order derivatives of the transformation function with re-
spect to the parameters in the slot pars are returned.
hessian logical. If TRUE, second order derivatives of the transformation function with
respect to the parameters in the slot pars is returned.
rp numeric value. Regularization parameter used with type = StrucTS. By default
it is the variance of the data x@y divided by 100.
sclrho numeric value. Currently ignored.
sclomega numeric value. Currently ignored.
ftrans a function defining an alternative transformation of the parameters. Ignored if x
is of class stsm. See example below.
additional arguments to be passed to ftrans.
Details

Rather than using the standard parameterization of the model (in terms of variances and autoregres-
sive coefficients if they are part of the model), it can be parameterized in terms of an auxiliar set
of parameters 6. This may be useful for example when the parameters of the model are selected
by means of a numerical optimization algorithm. Choosing a suitable parameterization ensures
that the solution returned by the algorithm meets some constraints such as positive variances or
autoregressive coefficients within the region of stationarity.

The method transPars can be applied both on a named vector of parameters, e.g. x@pars or on a
model of class stsm.

When the slot transPars is not null, the model is parameterized in terms of §. The following
transformation of parameters can be considered:

stsm-transPars-methods 15

e "square": the variance parameters are the square of 6.
e "StructTS": transformation used in the function StructTS of the stats package.
» "exp": the variance parameters are the exponential of 6.

* "exp1@sq”: the variance parameters are (ezp(—0)/10)2.

In the model trend+ar2 defined in stsm.model, the autoregressive coefficients, ¢, are transformed
to lie in the region of stationarity: given z1 = ¢ /(1 + |$1]), 22 = ¢2/(1 + |¢2]), the transformed
coefficients are ¢7 = 21 + 22 and ¢po = —21 - 22.

Other transformations can be defined through the argument ftrans, which can also be defined in the
slot transPars of a stsm object. ftrans must be a function returning a list containing an element
called pars and two other optional elements called gradient and hessian. The parameters to
be transformed are identified by their names. The variances follow the naming convention of the
regular expression “var\d{1,2}$”, e.g. var1, var2,... The variances of the initial state vector may
also be transformed if they are included in the slot pars; their names follow a similar naming
convention, P@1, P@2,... An example of ftrans is given below.

Note: If a transformation is defined by means of ftrans the user may need to update the slots lower

and upper if some bounds are still applied to the auxiliar parameters. For example, transPars="StructTS"
does not always yield positive variances and hence lower bounds equal to @ are needed. By default

lower and upper bounds are not considered if ftrans is used.

The output of get.pars is given in terms of the actual parameters of the model. For example, if the
model is parameterized so that 2 are the variances of the model and @ are the auxiliar parameters
then, the slot pars contains the values of § and ger . pars returns 2.

The transformation transPars is applied to the parameters included in the slot pars. The transfor-
mation does not affect nopars and cpar. The former slot is considered fixed while the latter will
in practice be set equal to a particular value, for example the value that maximizes the concentrated
likelihood function, for which a specific expression can be obtained.

Value

A list containing a named numeric vector with the values of the transformed parameters. If re-
quested, the gradient and Hessian of the transformation function with respect to the parameters are
returned.

See Also

stsm-class, get.pars.

Examples

sample models with arbitrary parameter values

model in standard parameterization
ower bounds imposed on the variance parameters
m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var1” = 2, "var2" =15, "var3"” = 30), transPars = NULL)
get.pars(m)
m@lower

16

stsm-transPars-methods

square transformation

negative values are allowed in 'pars' since

the square will yield positive variances

in fact no lower bounds need to be imposed on the auxiliar parameters
m

<- stsm.model(model = "llm+seas”, y = JohnsonJohnson,

pars = c("var1” = -2, "var2" = -5, "var3" = 10), transPars = "square")
validObject(m)
m@lower
m@pars

get.pars(m)

'ftrans', alternative transformation of parameters;

the following parameterization is sometimes found:

variance = exp(-theta) / 10

the function 'ftrans' following the rules given in the details
above can be defined as follows:

% o

ftrans <- function(x, gradient = FALSE, hessian = FALSE)
{
tpars <- x
p <- length(x)
nmspars <- names(x)
idvar <- grep("*var|PO\\d{1,2}$", nmspars, value = FALSE)

if (gradient) {
d1l <- rep(NA, p)
names(d1) <- nmspars
} else d1 <- NULL
if (hessian) {
d2 <- matrix(@, p, p)
rownames(d2) <- colnames(d2) <- nmspars
} else d2 <- NULL

if (length(idvar) > 0) {
tpars[idvar] <- exp(-x[idvar]l) / 10
} else warning(”"No changes done by 'transPars'.")

if (gradient)
{
if (length(idvar) > @)
di[idvar] <- -tpars[idvar]
3
if (hessian) {
diag(d2)[idvar] <- tpars[idvar]
}

list(pars = tpars, gradient = d1, hessian = d2)

now 'ftrans' can be passed to 'transPars' and be applied
on a named vector of parameters or on a 'stsm' object
transPars(c("var1” = 2, "var2” = 15, "var3" = 30),

ftrans = ftrans, gradient = TRUE, hessian = TRUE)

stsm-validObject-methods 17

m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var1”" = 2, "var2" = 15, "var3" = 30), transPars = ftrans)
get.pars(m)

stsm-validObject-methods
Check the Validity of an Object of Class stsm

Description

Methods to check the validity of an object of class stsm.

Usage

S4 method for signature 'stsm'
check.bounds(x)
S4 method for signature 'stsm'

validObject(object)
Arguments
X an object of class stsm.
object an object of class stsm.
Details

check.bounds checks that the values in the slot pars lie within the lower and upper bounds. These
bounds are stored in the slots lower and upper. Default values or specific values can be given when
creating the object by means of stsm.model.

check.bounds is called by validObject. In some settings it may be required to check only that
the parameters are within the required bounds.

validObject checks additional requirements: e.g. all the parameters taking part in the selected
model are either in the slots pars, nopars or cpar;

it is also checked that the parameters are no duplicated in those slots.

This method is called by stsm-set-methods defined for the slots pars, nopars or cpar. That’s
why it is safer to use the setter methods instead of a direct modification through the operator @<-.
Value
If the input object is valid according to the class definition, the logical TRUE is returned. Otherwise,
an error message is returned.
See Also

stsm-class and examples in stsm-set-methods.

18 stsm.model

Examples
m <- stsm.model(model = "llm+seas"”, y = JohnsonJohnson,
pars = c("var1” = 2, "var2" =15, "var3"” = 30))
validObject(m)

force a wrong value (negative variance)
m@pars[1] <- -1

try(validObject(m))

try(check.bounds(m))

duplicates not allowed
m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var1” = 2, "var2" = 15, "var3" = 30))
try to define 'varl', already in 'pars', in the slot 'nopars
try(m <- set.nopars(m, c(vari=22)))
force a duplicate
m@nopars <- c(m@nopars, varl = 22)
try(validObject(m))

stsm.model Wrapper for Constructor of Objects of Class stsm

Description

Interface to define an object of class stsm. This is a wrapper function to constructor new.

Usage

stsm.model (model = c("local-level”, "local-trend”, "BSM",
"llm+seas"”, "trend+ar2"),
y, pars = NULL, nopars = NULL, cpar = NULL, xreg = NULL,
lower = NULL, upper = NULL, transPars = NULL,
ssd = FALSE, sgfc = FALSE)

Arguments

model a character selecting the structural time series model.

y a univariate time series, ts.

pars initial values for the parameters of the model. It must be a named vector.

nopars optional named numeric containing the remaining parameters of the model not
included in pars and cpar.

cpar optional named numeric of length one. See details.

xreg optional matrix or numeric vector of external regressors.

lower optional named vector setting lower bounds to some parameters of the model.

The names must follow the same same labelling as pars.

stsm.model 19

upper optional named vector setting upper bounds to some parameters of the model.
The names must follow the same same labelling as pars.

transPars optional character choosing one of the parameterizations defined in transPars
or a function defining an alternative parameterization.

ssd logical. If TRUE, the sample spectral density (periodogram) of the stationary
transformation of the data is computed and stored in the slot ssd. Otherwise, it
is ignored.
sgfc logical. If TRUE, constants terms of the spectral generating function related to
the chosen model are computed and stored in the slot sgfc. Otherwise, it is
ignored.
Details

Slot pars and nopars. In some situations it is convenient to split the vector of parameters in two
vectors, the slot pars and the slot nopars. For example, when the parameters are to be estimated by
an optimization algorithm, only the parameters in pars are allowed to change while the parameters
in nopars are considered fixed.

Scaling parameter cpar. The model can be defined in terms of relative variances. In this case,
the variance that acts as a scaling parameter is stored in the slot cpar. Otherwise, cpar is null
and ignored. Typically, the scaling parameter will be chosen to be the variance parameter that is
concentrated out of the likelihood function.

Naming convention of parameters. The parameters defined in the slots pars, nopars and cpar must
be labelled according to the following naming convention. The variance parameters abide by the
regular expression “*var\d{1,2}$”, e.g. var1, var2,... The variances of the initial state vector, PO,
follow a similar naming convention, PQ1, P@2,... The elements of the initial state vector, a0, are
similarly denoted as a@1, a@2,...

Default values. Default values are assigned to the slots pars, nopars and cpar if they are no defined
in their corresponding arguments passed to stsm.model. By default, the variance parameters are
defined in the slot pars with value 1. The initial state vector is assigned by default to nopars, it
takes on zero values except for the first element that takes the value of the first observation in the
data. The variance of the initial state vector is assigned by default to nopars as well. By default it
takes on the value 10000 times the variance of the data.

If the argument pars is not NULL, no other parameters are stored in the slot pars. If the argument
nopars is not NULL, the parameters in that argument are added to the other default parameters. This
is more convenient in practice. See the examples below.

Alternative parameterizations. See transPars for available parameterizations of the model. The
definition of a function to be defined in the slot transPars is also explained there.

Stationary transformation of the data. The sample spectral density is computed for the differenced
time series y. The differencing filter is chosen so that the data are rendered stationary according to
the selected model. The stationary form of each model is given in stsm. sgf.

Value

An object of class stsm.

20 stsm.model

Available models

The local level model consists of a random walk plus a Gaussian disturbance term.

The measurement equation is:

ylt] = mlt] + e[t], e[t] ~ N(0,07)

The state equation is:
m[t + 1] = m[t] + v[t],v[t] ~ N(0,03)

The local trend model consists of a trend where the slope evolves as a random walk.

The measurement equation is:

ylt] = mt] + eft], e[t] ~ N(0,07)

The state equations are:
m[t + 1] = m[t] + n[t] + v[t],v[t] ~ N(0,03)
nlt + 1] = n[t] + wlt], w[t] ~ N(0,03)
Setting var3 = 0 yields the local level model. The constraint var2 = 0 involves a smooth trend.

The basic structural model consists of a local trend model plus a seasonal component.

The measurement equation is:
ylt] = mt] + s[t] + eft], e[t] ~ N(0,07)
The state equations are the same as the local trend model plus a seasonal component:
sft+1] = —s[t] — ... — s[t — freq + 2] + w[t], w[t] ~ N(0,02)

The restriction 02 = 0 yields a deterministic seasonal pattern.

According to the labelling convention used in the package, the variance parameters o7, 03, o5 and

ai are respectively denoted "var1”, "var2"”, "var3" and "var4".

See Also

stsm-class.

Examples

sample model with arbitrary parameter values
m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var1" = 2, "var2" = 6), nopars = c("var3" = 12))

parameter values
v <= c("var1” =2, "var2" =6, "var3" = 3, "var4" = 12)

define the parameter 'cpar'

stsm.sgf 21

the remaining are defined by default to 'pars' and 'nopars'

m <- stsm.model(model = "BSM", y = JohnsonJohnson,
pars = NULL, nopars = NULL, cpar = v[1])

m@pars

m@nopars

m@cpar

define the slot 'pars', only 'v[1]' is stored in 'pars'
the remaining variances are moved to 'nopars' along
with the initial state vector and its variances

m <- stsm.model(model = "BSM", y = JohnsonJohnson,
pars = v[1])

m@pars

m@nopars

m@cpar

define some of the parameters to be stored in the slot 'npars'

'only 'v[1:2]' is added to the remaining elements in 'nopars' by default
the variances not defined in 'nopars' are assigned to 'pars' with

default value 1

m

<- stsm.model(model = "BSM", y = JohnsonJohnson,
nopars = v[1:2])

m@pars

me@nopars

m@cpar

define the slot 'pars' and set a particular value to

some variances stored in 'nopars', 'v[2:3]'

'var4' takes the default value 1 and is stored in 'nopars'’
since the definition 'pars = v[1]' excludes it form 'pars'
m

<- stsm.model(model = "BSM", y = JohnsonJohnson,
pars = v[1], nopars = v[2:3])

m@pars

me@nopars

m@cpar

define the slots 'pars' and 'cpar'
the remaining parameters are stored in 'nopars' with the
values by default

m <- stsm.model(model = "BSM", y = JohnsonJohnson,
pars = v[2:4], nopars = NULL, cpar = v[1])
m@pars
m@nopars
m@cpar
stsm.sgf Spectral Generating Function of Common Structural Time Series

Models

22 stsm.sgf

Description
Evaluate the spectral generating function of of common structural models: local level model, local
trend model and basic structural model.

Usage
stsm.sgf(x, gradient = FALSE, hessian = FALSE, deriv.transPars = FALSE)

Arguments
X object of class stsm.
gradient logical. If TRUE, the gradient is returned.
hessian logical. If TRUE, hessian the gradient is returned.

deriv.transPars
logical. If TRUE, the gradient and the Hessian are scaled by the gradient of the
function that transforms the parameters. Ignored if x@transPars is null.

Details
The stationary form of the local level model is (A is the differencing operator):
Aylt] = v[t] + Aelt]
and its spectral generating function at each frequency \[j] = 27j/T for j =0,...,T — 1 is:
g(Ali]) = 03 +2(1 = cosA[j])o}
The stationary form of the local trend model for a time series of frequency S is:
A?y[t] = Av[t] + wit — 1] + A?e[t]
and its spectral generating function is:
g(\7]) = 2(1 = cosA[j])o3 + 0§ + 4(1 — cosA[j])o}
The stationary form of the basic structural model for a time series of frequency p is:
AAPy[t] = APu[t] + S(L)w(t — 1] + A%s[t] + AAPe[t]

and its spectral generating function is:

g\ = 9u(Ai))a3 + guw(Ali])o3 + gs (Ao + ge(Alj])o?
with

go(Alj]) = 2(1 = cos(A[j]p))
guw(Alj]) = (1 = cos(A[jlp))/ (1 — cos(A[5]))

9s(Alj]) = 4(1 = cos(A[5]))?
9e(Alj]) = 4(1 = cos(A[])) (1 — cos(Aljlp))

stsm.sgf 23

Value

A list containing the following results:

sgf spectral generating function of the BSM model at each frequency A[j] for j =
0,...,7T—1.
gradient first order derivatives of the spectral generating function with respect of the pa-

rameters of the model.

hessian second order derivatives of the spsectral generating function with respect of the
parameters of the model.

constants the terms g, (A[j]), gw(AlJ]), gs(A[j]) and g.(A[j]) that do not depend on the
variance parameters.

References

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press.

See Also

set.sgfc, stsm-class, stsm.model.

Examples

spectral generating function of the local level plus seasonal model
m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var1” = 2, "var2" = 15), nopars = c("var3"” = 30))
res <- stsm.sgf(m)
res$sgf
plot(res$sgf)
res$constants
the element 'constants' contains the constant variables
related to each component regardless of whether the
variances related to them are in the slot 'pars' or 'nopars'
names(get.pars(m))
colnames(res$constants)

compare analytical and numerical derivatives

identical values

m <- stsm.model(model = "llm+seas”, y = JohnsonJohnson,
pars = c("var1” = 2, "var2" = 15, "var3" = 30))

res <- stsm.sgf(m, gradient = TRUE)

fcn <= function(x, model = m) {
m <- set.pars(model, x)
res <- stsm.sgf(m)
sum(res$sgf)

3

al <- numDeriv::grad(func = fcn, x = get.pars(m))
a2 <- colSums(res$grad)

24

all.equal(al, a2, check.attributes = FALSE)

analytical derivatives are evaluated faster than numerically
system.time(al <- numDeriv::grad(func = fcn, x = get.pars(m)))
system.time(a2 <- colSums(stsm.sgf(m, gradient = TRUE)$grad))

stsm.sgf

Index

*Topic classes

stsm-class, 5

*Topic methods

stsm-char2numeric-methods, 2
stsm-get-methods, 6
stsm-set-methods, 9
stsm-show-methods, 13
stsm-transPars-methods, 13
stsm-validObject-methods, 17

«Topic package, ts

stsm.class-package, 2

*Topic ts, model

stsm.model, 18

*Topic ts

stsm.sgf, 21

char2numeric

(stsm-char2numeric-methods), 2

char2numeric, stsm-method

(stsm-char2numeric-methods), 2

check.bounds

(stsm-validObject-methods), 17

check.bounds, stsm-method

get.
get.

get.
get.

get.
get.
get.

new,

set.
set.

(stsm-validObject-methods), 17

cpar (stsm-get-methods), 6
cpar,stsm-method
(stsm-get-methods), 6
nopars (stsm-get-methods), 6
nopars, stsm-method
(stsm-get-methods), 6
pars, 15
pars (stsm-get-methods), 6
pars, stsm-method
(stsm-get-methods), 6

18

cpar, 7
cpar (stsm-set-methods), 9

25

set.cpar,stsm-method
(stsm-set-methods), 9
set.nopars (stsm-set-methods), 9
set.nopars, stsm-method
(stsm-set-methods), 9
set.pars (stsm-set-methods), 9
set.pars, stsm-method
(stsm-set-methods), 9
set.sgfc, 23
set.sgfc (stsm-set-methods), 9
set.sgfc,stsm-method
(stsm-set-methods), 9
set.xreg (stsm-set-methods), 9
set.xreg,stsm-method
(stsm-set-methods), 9
show (stsm-show-methods), 13
show, stsm-method (stsm-show-methods), 13
StructTs, 15
stsm, 2,6,7,9,13, 14,17-19, 22
stsm(stsm-class), 5
stsm-char2numeric-methods, 2
stsm-class, 5
stsm-get-methods, 6
stsm-set-methods, 9
stsm-show-methods, 13
stsm-transPars-methods, 13
stsm-validObject-methods, 17
stsm.class-package, 2
stsm.model, 3, 5,6, 11,15,17,18, 23
stsm.sgf, 10, 11, 19, 21

transPars, 5-7, 19

transPars (stsm-transPars-methods), 13

transPars,generic-method
(stsm-transPars-methods), 13

transPars,numeric-method
(stsm-transPars-methods), 13

transPars, stsm-method
(stsm-transPars-methods), 13

ts, I8

26 INDEX

validObject (stsm-validObject-methods),
17

validObject, stsm-method
(stsm-validObject-methods), 17

	stsm.class-package
	stsm-char2numeric-methods
	stsm-class
	stsm-get-methods
	stsm-set-methods
	stsm-show-methods
	stsm-transPars-methods
	stsm-validObject-methods
	stsm.model
	stsm.sgf
	Index

