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stringdist-package A package for string distance calculation and approximate string
matching.

Description

The stringdist package offers fast and platform-independent string metrics. Its main purpose is to
compute various string distances and to do approximate text matching between character vectors.
As of version 0.9.3, it is also possible to compute distances between sequences represented by
integer vectors.

Details

A typical use is to match strings that are not precisely the same. For example

amatch(c("hello","g'day"),c("hi","hallo","ola"),maxDist=2)

returns c(2,NA) since "hello" matches closest with "hallo", and within the maximum (optimal
string alignment) distance. The second element, "g'day", matches closest with "ola" but since the
distance equals 4, no match is reported.

A second typical use is to compute string distances. For example

stringdist(c("g'day"),c("hi","hallo","ola"))
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Returns c(5,5,4) since these are the distances between "g'day" and respectively "hi", "hallo",
and "ola".

A third typical use would be to compute a dist object. The command

stringdistmatrix(c("foo","bar","boo","baz"))

returns an object of class dist that can be used by clustering algorithms such as stats::hclust.

A fourth use is to compute string distances between general sequences, represented as integer vec-
tors (which must be stored in a list):

seq_dist( list(c(1L,1L,2L)),list(c(1L,2L,1L),c(2L,3L,1L,2L)) )

The above code yields the vector c(1,2) (the first shorter first argument is recycled over the longer
second argument)

Besides documentation for each function, the main topics documented are:

• stringdist-metrics – string metrics supported by the package

• stringdist-encoding – how encoding is handled by the package

• stringdist-parallelization – on multithreading

Acknowledgements

• The code for the full Damerau-Levenshtein distance was adapted from Nick Logan’s public
github repository.

• C code for converting UTF-8 to integer was copied from the R core for performance reasons.

• The code for soundex conversion and string similarity was kindly contributed by Jan van der
Laan.

Citation

If you would like to cite this package, please cite the R Journal Paper:

• M.P.J. van der Loo (2014). The stringdist package for approximate string matching. R
Journal 6(1) pp 111-122

Or use citation('stringdist') to get a bibtex item.

afind Stringdist-based fuzzy text search

Description

afind slides a window of fixed width over a string x and computes the distance between the each
window and the sought-after pattern. The location, content, and distance corresponding to the
window with the best match is returned.

https://github.com/ugexe/Text--Levenshtein--Damerau--XS/blob/master/damerau-int.c
https://github.com/ugexe/Text--Levenshtein--Damerau--XS/blob/master/damerau-int.c
https://journal.r-project.org/archive/2014-1/loo.pdf
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Usage

afind(
x,
pattern,
window = NULL,
value = TRUE,
method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "running_cosine",

"jaccard", "jw", "soundex"),
useBytes = FALSE,
weight = c(d = 1, i = 1, s = 1, t = 1),
q = 1,
p = 0,
bt = 0,
nthread = getOption("sd_num_thread")

)

grab(x, pattern, maxDist = Inf, value = FALSE, ...)

grabl(x, pattern, maxDist = Inf, ...)

extract(x, pattern, maxDist = Inf, ...)

Arguments

x strings to search in
pattern strings to find (not a regular expression). For grab, grabl, and extract this

must be a single string.
window width of moving window.
value toggle return matrix with matched strings.
method Matching algorithm to use. See stringdist-metrics.
useBytes Perform byte-wise comparison. See stringdist-encoding.
weight For method='osa' or 'dl', the penalty for deletion, insertion, substitution and

transposition, in that order. When method='lv', the penalty for transposition is
ignored. When method='jw', the weights associated with characters of a, char-
acters from b and the transposition weight, in that order. Weights must be posi-
tive and not exceed 1. weight is ignored completely when method='hamming',
'qgram', 'cosine', 'Jaccard', 'lcs', or 'soundex'.

q q-gram size, only when method is 'qgram', 'jaccard', or 'cosine'.
p Winklers ’prefix’ parameter for Jaro-Winkler distance, with 0 ≤ p ≤ 0.25. Only

when method is 'jw'
bt Winkler’s boost threshold. Winkler’s prefix factor is only applied when the Jaro

distance is larger than bt. Applies only to method='jw' and p>0.
nthread Number of threads used by the underlying C-code. A sensible default is chosen,

see stringdist-parallelization.
maxDist Only windows with distance <= maxDist are considered a match.
... passed to afind.
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Details

Matching is case-sensitive. Both x and pattern are converted to UTF-8 prior to search, unless
useBytes=TRUE, in which case the distances are measured bytewise.

Code is parallelized over the x variable: each value of x is scanned for every element in pattern
using a separate thread (when nthread is larger than 1).

The functions grab and grabl are approximate string matching functions that somewhat resemble
base R’s grep and grepl. They are implemented as convenience wrappers of afind.

Value

For afind: a list of three matrices, each with length(x) rows and length(pattern) columns.
In each matrix, element (i, j) corresponds to x[i] and pattern[j]. The names and description of
each matrix is as follows.

• location. [integer], location of the start of best matching window. When useBytes=FALSE,
this corresponds to the location of a UTF code point in x, possibly after conversion from its
original encoding.

• distance. [character], the string distance between pattern and the best matching window.

• match. [character], the first, best matching window.

For grab, an integer vector, indicating in which elements of x a match was found with a distance
<= maxDist. The matched values when value=TRUE (equivalent to grep).

For grabl, a logical vector, indicating in which elements of x a match was found with a distance
<= maxDist. (equivalent to grepl).

For extract, a character matrix with length(x) rows and length(pattern) columns. If match
was found, element (i, j) contains the match, otherwise it is set to NA.

Running cosine distance

This algorithm gains efficiency by using that two consecutive windows have a large overlap in their
q-gram profiles. It gives the same result as the "cosine" distance, but much faster.

See Also

Other matching: amatch()

Examples

texts = c("When I grow up, I want to be"
, "one of the harvesters of the sea"
, "I think before my days are gone"
, "I want to be a fisherman")

patterns = c("fish", "gone","to be")

afind(texts, patterns, method="running_cosine", q=3)

grabl(texts,"grew", maxDist=1)
extract(texts, "harvested", maxDist=3)
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amatch Approximate string matching

Description

Approximate string matching equivalents of R’s native match and %in%.

Usage

amatch(
x,
table,
nomatch = NA_integer_,
matchNA = TRUE,
method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw",

"soundex"),
useBytes = FALSE,
weight = c(d = 1, i = 1, s = 1, t = 1),
maxDist = 0.1,
q = 1,
p = 0,
bt = 0,
nthread = getOption("sd_num_thread")

)

ain(x, table, ...)

Arguments

x elements to be approximately matched: will be coerced to character unless it
is a list consisting of integer vectors.

table lookup table for matching. Will be coerced to character unless it is a list
consting of integer vectors.

nomatch The value to be returned when no match is found. This is coerced to integer.
matchNA Should NA’s be matched? Default behaviour mimics the behaviour of base

match, meaning that NA matches NA (see also the note on NA handling below).
method Matching algorithm to use. See stringdist-metrics.
useBytes Perform byte-wise comparison. See stringdist-encoding.
weight For method='osa' or 'dl', the penalty for deletion, insertion, substitution and

transposition, in that order. When method='lv', the penalty for transposition is
ignored. When method='jw', the weights associated with characters of a, char-
acters from b and the transposition weight, in that order. Weights must be posi-
tive and not exceed 1. weight is ignored completely when method='hamming',
'qgram', 'cosine', 'Jaccard', 'lcs', or 'soundex'.
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maxDist Elements in x will not be matched with elements of table if their distance is
larger than maxDist. Note that the maximum distance between strings depends
on the method: it should always be specified.

q q-gram size, only when method is 'qgram', 'jaccard', or 'cosine'.

p Winklers ’prefix’ parameter for Jaro-Winkler distance, with 0 ≤ p ≤ 0.25. Only
when method is 'jw'

bt Winkler’s boost threshold. Winkler’s prefix factor is only applied when the Jaro
distance is larger than bt. Applies only to method='jw' and p>0.

nthread Number of threads used by the underlying C-code. A sensible default is chosen,
see stringdist-parallelization.

... parameters to pass to amatch (except nomatch)

Details

ain is currently defined as

ain(x,table,...) <-function(x,table,...) amatch(x,table,nomatch=0,...) > 0

Value

amatch returns the position of the closest match of x in table. When multiple matches with the
same smallest distance metric exist, the first one is returned. ain returns a logical vector of length
length(x) indicating wether an element of x approximately matches an element in table.

Note on NA handling

R’s native match function matches NA with NA. This may feel inconsistent with R’s usual NA han-
dling, since for example NA==NA yields NA rather than TRUE. In most cases, one may reason about
the behaviour under NA along the lines of “if one of the arguments is NA, the result shall be NA”,
simply because not all information necessary to execute the function is available. One uses special
functions such as is.na, is.null etc. to handle special values.

The amatch function mimics the behaviour of match by default: NA is matched with NA and with
nothing else. Note that this is inconsistent with the behaviour of stringdist since stringdist
yields NA when at least one of the arguments is NA. The same inconsistency exists between match
and adist. In amatch this behaviour can be controlled by setting matchNA=FALSE. In that case, if
any of the arguments in x is NA, the nomatch value is returned, regardless of whether NA is present
in table. In match the behaviour can be controlled by setting the incomparables option.

See Also

Other matching: afind()

Examples

# lets see which sci-fi heroes are stringdistantly nearest
amatch("leia",c("uhura","leela"),maxDist=5)

# we can restrict the search



8 phonetic

amatch("leia",c("uhura","leela"),maxDist=1)

# we can match each value in the find vector against values in the lookup table:
amatch(c("leia","uhura"),c("ripley","leela","scully","trinity"),maxDist=2)

# setting nomatch returns a different value when no match is found
amatch("leia",c("uhura","leela"),maxDist=1,nomatch=0)

# this is always true if maxDist is Inf
ain("leia",c("uhura","leela"),maxDist=Inf)

# Let's look in a neighbourhood of maximum 2 typo's (by default, the OSA algorithm is used)
ain("leia",c("uhura","leela"), maxDist=2)

phonetic Phonetic algorithms

Description

Translate strings to phonetic codes. Similar sounding strings should get similar or equal codes.

Usage

phonetic(x, method = c("soundex"), useBytes = FALSE)

Arguments

x a character vector whose elements are phonetically encoded.

method name of the algorithm used. The default is "soundex".

useBytes Perform byte-wise comparison. useBytes=TRUE is faster but may yield dif-
ferent results depending on character encoding. For more information see the
documentation of stringdist.

Details

Currently, only the soundex algorithm is implemented. Note that soundex coding is only meaningful
for characters in the ranges a-z and A-Z. Soundex coding of strings containing non-printable ascii
or non-ascii characters may be system-dependent and should not be trusted. If non-ascii or non-
printable ascii charcters are encountered, a warning is emitted.

Value

The returns value depends on the method used. However, all currently implemented methods return
a character vector of the same length of the input vector. Output characters are in the system’s native
encoding.
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References

• The Soundex algorithm implemented is the algorithm used by the National Archives. This
algorithm differs slightly from the original algorithm patented by R.C. Russell (US patents
1261167 (1918) and 1435663 (1922)).

See Also

printable_ascii, stringdist-package

Examples

# The following examples are from The Art of Computer Programming (part III, p. 395)
# (Note that our algorithm is specified different from the one in TACP, see references.)
phonetic(c('Euler','Gauss','Hilbert','Knuth','Lloyd','Lukasiewicz','Wachs'),method='soundex')

printable_ascii Detect the presence of non-printable or non-ascii characters

Description

Detect the presence of non-printable or non-ascii characters

Usage

printable_ascii(x)

Arguments

x a character vector

Details

Printable ASCII characters consist of space, A-Z, a-z, 0-9 and the characters

! "" # $ % & ' ( ) * + ,. / : ; < = > ? @ [ ] \ ^ _ ` { | } ~ -

Note that this excludes tab (as it is a control character).

Value

A logical indicating which elements consist solely of printable ASCII characters.

http://www.archives.gov/research/census/soundex.html
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Examples

# define o-umlaut
ouml <- intToUtf8("0x00F6")
x <- c("Motorhead", paste0("Mot",ouml,"rhead"))
# second element contains a non-ascii character
printable_ascii(x)

# Control characters (like carriage return) are also excluded
printable_ascii("abc\r")

qgrams Get a table of qgram counts from one or more character vectors.

Description

Get a table of qgram counts from one or more character vectors.

Usage

qgrams(..., .list = NULL, q = 1L, useBytes = FALSE, useNames = !useBytes)

Arguments

... any number of (named) arguments, that will be coerced to character with as.character.

.list Will be concatenated with the ... argument(s). Useful for adding character
vectors named 'q' or 'useNames'.

q size of q-gram, must be non-negative.

useBytes Determine byte-wise qgrams. useBytes=TRUE is faster but may yield different
results depending on character encoding. For ASCII it is identical. See also
stringdist under Encoding issues.

useNames Add q-grams as column names. If useBytes=useNames=TRUE, the q-byte se-
quences are represented as 2 hexadecimal numbers per byte, separated by a ver-
tical bar (|).

Value

A table with q-gram counts. Detected q-grams are column names and the argument names as row
names. If no argument names were provided, they will be generated.

Details

The input is converted to character. If useBytes=TRUE, each element is converted to utf8 and
then to integer as in stringdist. Next,the data is passed to the underlying routine.

Strings with less than q characters and elements containing NA are skipped. Using q=0 therefore
counts the number of empty strings "" occuring in each argument.
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See Also

stringdist, amatch

Examples

qgrams('hello world',q=3)

# q-grams are counted uniquely over a character vector
qgrams(rep('hello world',2),q=3)

# to count them separately, do something like
x <- c('hello', 'world')
lapply(x,qgrams, q=3)

# output rows may be named, and you can pass any number of character vectors
x <- "I will not buy this record, it is scratched"
y <- "My hovercraft is full of eels"
z <- c("this", "is", "a", "dead","parrot")
qgrams(A = x, B = y, C = z,q=2)

# a tonque twister, showing the effects of useBytes and useNames
x <- "peter piper picked a peck of pickled peppers"
qgrams(x, q=2)
qgrams(x, q=2, useNames=FALSE)
qgrams(x, q=2, useBytes=TRUE)
qgrams(x, q=2, useBytes=TRUE, useNames=TRUE)

seq_amatch Approximate matching for integer sequences.

Description

For a list of integer vectors x, find the closest matches in a list of integer or numeric vectors in
table.

Usage

seq_amatch(
x,
table,
nomatch = NA_integer_,
matchNA = TRUE,
method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw"),
weight = c(d = 1, i = 1, s = 1, t = 1),
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maxDist = 0.1,
q = 1,
p = 0,
bt = 0,
nthread = getOption("sd_num_thread")

)

seq_ain(x, table, ...)

Arguments

x (list of) integer or numeric vector(s) to be approximately matched. Will be
converted with as.integer.

table (list of) integer or numeric vector(s) serving as lookup table for matching.
Will be converted with as.integer.

nomatch The value to be returned when no match is found. This is coerced to integer.

matchNA Should NA’s be matched? Default behaviour mimics the behaviour of base
match, meaning that NA matches NA. With NA, we mean a missing entry in the
list, represented as NA_integer_. If one of the integer sequences stored in the
list has an NA entry, this is just treated as another integer (the representation of
NA_integer_).

method Matching algorithm to use. See stringdist-metrics.

weight For method='osa' or 'dl', the penalty for deletion, insertion, substitution and
transposition, in that order. When method='lv', the penalty for transposition
is ignored. When method='jw', the weights associated with integers in ele-
ments of a, integers in elements of b and the transposition weight, in that order.
Weights must be positive and not exceed 1. weight is ignored completely when
method='hamming', 'qgram', 'cosine', 'Jaccard', or 'lcs'.

maxDist Elements in x will not be matched with elements of table if their distance is
larger than maxDist. Note that the maximum distance between strings depends
on the method: it should always be specified.

q q-gram size, only when method is 'qgram', 'jaccard', or 'cosine'.

p Winkler’s prefix parameter for Jaro-Winkler distance, with 0 ≤ p ≤ 0.25. Only
when method is 'jw'

bt Winkler’s boost threshold. Winkler’s prefix factor is only applied when the Jaro
distance is larger than bt. Applies only to method='jw' and p>0.

nthread Number of threads used by the underlying C-code. A sensible default is chosen,
see stringdist-parallelization.

... parameters to pass to seq_amatch (except nomatch)

Value

seq_amatch returns the position of the closest match of x in table. When multiple matches with
the same minimal distance metric exist, the first one is returned. seq_ain returns a logical vector
of length length(x) indicating wether an element of x approximately matches an element in table.
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Notes

seq_ain is currently defined as

seq_ain(x,table,...) <-function(x,table,...) amatch(x,table,nomatch=0,...) > 0

All input vectors are converted with as.integer. This causes truncation for numeric vectors (e.g.
pi will be treated as 3L).

See Also

seq_dist, seq_sim, seq_qgrams

Examples

x <- list(1:3,c(3:1),c(1L,3L,4L))
table <- list(

c(5L,3L,1L,2L)
,1:4

)
seq_amatch(x,table,maxDist=2)

# behaviour with missings
seq_amatch(list(c(1L,NA_integer_,3L),NA_integer_), list(1:3),maxDist=1)

## Not run:
# Match sentences based on word order. Note: words must match exactly or they
# are treated as completely different.
#
# For this example you need to have the 'hashr' package installed.
x <- "Mary had a little lamb"
x.words <- strsplit(x,"[[:blank:]]+")
x.int <- hashr::hash(x.words)
table <- c("a little lamb had Mary",

"had Mary a little lamb")
table.int <- hashr::hash(strsplit(table,"[[:blank:]]+"))
seq_amatch(x.int,table.int,maxDist=3)

## End(Not run)

seq_dist Compute distance metrics between integer sequences

Description

seq_dist computes pairwise string distances between elements of a and b, where the argument
with less elements is recycled. seq_distmatrix computes the distance matrix with rows according
to a and columns according to b.
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Usage

seq_dist(
a,
b,
method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw"),
weight = c(d = 1, i = 1, s = 1, t = 1),
q = 1,
p = 0,
bt = 0,
nthread = getOption("sd_num_thread")

)

seq_distmatrix(
a,
b,
method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw"),
weight = c(d = 1, i = 1, s = 1, t = 1),
q = 1,
p = 0,
bt = 0,
useNames = c("names", "none"),
nthread = getOption("sd_num_thread")

)

Arguments

a (list of) integer or numeric vector(s). Will be converted with as.integer
(target)

b (list of) integer or numeric vector(s). Will be converted with as.integer
(source). Optional for seq_distmatrix.

method Distance metric. See stringdist-metrics

weight For method='osa' or 'dl', the penalty for deletion, insertion, substitution and
transposition, in that order. When method='lv', the penalty for transposition is
ignored. When method='jw', the weights associated with characters of a, char-
acters from b and the transposition weight, in that order. Weights must be posi-
tive and not exceed 1. weight is ignored completely when method='hamming',
'qgram', 'cosine', 'Jaccard', or 'lcs'

q Size of the q-gram; must be nonnegative. Only applies to method='qgram',
'jaccard' or 'cosine'.

p Prefix factor for Jaro-Winkler distance. The valid range for p is 0 <= p <= 0.25.
If p=0 (default), the Jaro-distance is returned. Applies only to method='jw'.

bt Winkler’s boost threshold. Winkler’s prefix factor is only applied when the Jaro
distance is larger than bt Applies only to method='jw' and p>0.

nthread Maximum number of threads to use. By default, a sensible number of threads is
chosen, see stringdist-parallelization.

useNames label the output matrix with names(a) and names(b)?
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Value

seq_dist returns a numeric vector with pairwise distances between a and b of length max(length(a),length(b).

For seq_distmatrix there are two options. If b is missing, the dist object corresponding to the
length(a) X length(a) distance matrix is returned. If b is specified, the length(a) X length(b)
distance matrix is returned.

If any element of a or b is NA_integer_, the distance with any matched integer vector will result
in NA. Missing values in the sequences themselves are treated as a number and not treated specially
(Also see the examples).

Notes

Input vectors are converted with as.integer. This causes truncation for numeric vectors (e.g. pi
will be treated as 3L).

See Also

seq_sim, seq_amatch, seq_qgrams

Examples

# Distances between lists of integer vectors. Note the postfix 'L' to force
# integer storage. The shorter argument is recycled over (\code{a})
a <- list(c(102L, 107L)) # fu
b <- list(c(102L,111L,111L),c(102L,111L,111L)) # foo, fo
seq_dist(a,b)

# translate strings to a list of integer sequences
a <- lapply(c("foo","bar","baz"),utf8ToInt)
seq_distmatrix(a)

# Note how missing values are treated. NA's as part of the sequence are treated
# as an integer (the representation of NA_integer_).
a <- list(NA_integer_,c(102L, 107L))
b <- list(c(102L,111L,111L),c(102L,111L,NA_integer_))
seq_dist(a,b)

## Not run:
# Distance between sentences based on word order. Note: words must match exactly or they
# are treated as completely different.
#
# For this example you need to have the 'hashr' package installed.
a <- "Mary had a little lamb"
a.words <- strsplit(a,"[[:blank:]]+")
a.int <- hashr::hash(a.words)
b <- c("a little lamb had Mary",

"had Mary a little lamb")
b.int <- hashr::hash(strsplit(b,"[[:blank:]]+"))
seq_dist(a.int,b.int)

## End(Not run)
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seq_qgrams Get a table of qgram counts for integer sequences

Description

Get a table of qgram counts for integer sequences

Usage

seq_qgrams(..., .list = NULL, q = 1L)

Arguments

... Any number of (named) arguments that will be coerced with as.integer

.list Will be concatenated with the ... argument(s). Useful for adding integer vec-
tors named ’q’.

q The size of q-gramming.

Value

A matrix containing q-gram profiles. Columns 1 to q contain the encountered q-grams. The
ensuing (named) columns contain the q-gram counts per vector. Run the example for a simple
overview.

Missing values in integer sequences are treated as any other number.

See Also

seq_dist, seq_amatch

Examples

# compare the 2-gram overlap between sequences 1:3 and 2:4
seq_qgrams(x = 1:3, y=2:4,q=2)

# behavior when NA's are present.
seq_qgrams(1:3,c(1,NA,2),NA_integer_)
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seq_sim Compute similarity scores between sequences of integers

Description

Compute similarity scores between sequences of integers

Usage

seq_sim(
a,
b,
method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw"),
q = 1,
...

)

Arguments

a list of integer vectors (target)

b list of integer vectors (source). Optional for seq_distmatrix.

method Method for distance calculation. The default is "osa", see stringdist-metrics.

q Size of the q-gram; must be nonnegative. Only applies to method='qgram',
'jaccard' or 'cosine'.

... additional arguments are passed on to seq_dist.

Value

A numeric vector of length max(length(a),length(b)). If one of the entries in a or b is NA_integer_,
all comparisons with that element result in NA. Missings occurring within the sequences are treated
as an ordinary number (the representation of NA_integer_).

See Also

seq_dist, seq_amatch

Examples

L1 <- list(1:3,2:4)
L2 <- list(1:3)
seq_sim(L1,L2,method="osa")

# note how missing values are handled (L2 is recycled over L1)
L1 <- list(c(1L,NA_integer_,3L),2:4,NA_integer_)
L2 <- list(1:3)
seq_sim(L1,L2)
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stringdist Compute distance metrics between strings

Description

stringdist computes pairwise string distances between elements of a and b, where the argument
with less elements is recycled. stringdistmatrix computes the string distance matrix with rows
according to a and columns according to b.

Usage

stringdist(
a,
b,
method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw",

"soundex"),
useBytes = FALSE,
weight = c(d = 1, i = 1, s = 1, t = 1),
q = 1,
p = 0,
bt = 0,
nthread = getOption("sd_num_thread")

)

stringdistmatrix(
a,
b,
method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw",

"soundex"),
useBytes = FALSE,
weight = c(d = 1, i = 1, s = 1, t = 1),
q = 1,
p = 0,
bt = 0,
useNames = c("none", "strings", "names"),
nthread = getOption("sd_num_thread")

)

Arguments

a R object (target); will be converted by as.character

b R object (source); will be converted by as.character This argument is optional
for stringdistmatrix (see section Value).

method Method for distance calculation. The default is "osa", see stringdist-metrics.

useBytes Perform byte-wise comparison, see stringdist-encoding.
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weight For method='osa' or 'dl', the penalty for deletion, insertion, substitution and
transposition, in that order. When method='lv', the penalty for transposition is
ignored. When method='jw', the weights associated with characters of a, char-
acters from b and the transposition weight, in that order. Weights must be posi-
tive and not exceed 1. weight is ignored completely when method='hamming',
'qgram', 'cosine', 'Jaccard', 'lcs', or soundex.

q Size of the q-gram; must be nonnegative. Only applies to method='qgram',
'jaccard' or 'cosine'.

p Prefix factor for Jaro-Winkler distance. The valid range for p is 0 <= p <= 0.25.
If p=0 (default), the Jaro-distance is returned. Applies only to method='jw'.

bt Winkler’s boost threshold. Winkler’s prefix factor is only applied when the Jaro
distance is larger than bt. Applies only to method='jw' and p>0.

nthread Maximum number of threads to use. By default, a sensible number of threads is
chosen, see stringdist-parallelization.

useNames Use input vectors as row and column names?

Value

For stringdist, a vector with string distances of size max(length(a),length(b)).

For stringdistmatrix: if both a and b are passed, a length(a)xlength(b) matrix. If a single
argument a is given an object of class dist is returned.

Distances are nonnegative if they can be computed, NA if any of the two argument strings is NA and
Inf when maxDist is exceeded or, in case of the hamming distance, when the two compared strings
have different length.

See Also

stringsim, qgrams, amatch, afind

Examples

# Simple example using optimal string alignment
stringdist("ca","abc")

# computing a 'dist' object
d <- stringdistmatrix(c('foo','bar','boo','baz'))
# try plot(hclust(d))

# The following gives a matrix
stringdistmatrix(c("foo","bar","boo"),c("baz","buz"))

# An example using Damerau-Levenshtein distance (multiple editing of substrings allowed)
stringdist("ca","abc",method="dl")

# string distance matching is case sensitive:
stringdist("ABC","abc")
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# so you may want to normalize a bit:
stringdist(tolower("ABC"),"abc")

# stringdist recycles the shortest argument:
stringdist(c('a','b','c'),c('a','c'))

# stringdistmatrix gives the distance matrix (by default for optimal string alignment):
stringdist(c('a','b','c'),c('a','c'))

# different edit operations may be weighted; e.g. weighted substitution:
stringdist('ab','ba',weight=c(1,1,1,0.5))

# Non-unit weights for insertion and deletion makes the distance metric asymetric
stringdist('ca','abc')
stringdist('abc','ca')
stringdist('ca','abc',weight=c(0.5,1,1,1))
stringdist('abc','ca',weight=c(0.5,1,1,1))

# Hamming distance is undefined for
# strings of unequal lengths so stringdist returns Inf
stringdist("ab","abc",method="h")
# For strings of eqal length it counts the number of unequal characters as they occur
# in the strings from beginning to end
stringdist("hello","HeLl0",method="h")

# The lcs (longest common substring) distance returns the number of
# characters that are not part of the lcs.
#
# Here, the lcs is either 'a' or 'b' and one character cannot be paired:
stringdist('ab','ba',method="lcs")
# Here the lcs is 'surey' and 'v', 'g' and one 'r' of 'surgery' are not paired
stringdist('survey','surgery',method="lcs")

# q-grams are based on the difference between occurrences of q consecutive characters
# in string a and string b.
# Since each character abc occurs in 'abc' and 'cba', the q=1 distance equals 0:
stringdist('abc','cba',method='qgram',q=1)

# since the first string consists of 'ab','bc' and the second
# of 'cb' and 'ba', the q=2 distance equals 4 (they have no q=2 grams in common):
stringdist('abc','cba',method='qgram',q=2)

# Wikipedia has the following example of the Jaro-distance.
stringdist('MARTHA','MATHRA',method='jw')
# Note that stringdist gives a _distance_ where wikipedia gives the corresponding
# _similarity measure_. To get the wikipedia result:
1 - stringdist('MARTHA','MATHRA',method='jw')

# The corresponding Jaro-Winkler distance can be computed by setting p=0.1
stringdist('MARTHA','MATHRA',method='jw',p=0.1)
# or, as a similarity measure
1 - stringdist('MARTHA','MATHRA',method='jw',p=0.1)
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# This gives distance 1 since Euler and Gauss translate to different soundex codes.
stringdist('Euler','Gauss',method='soundex')
# Euler and Ellery translate to the same code and have distance 0
stringdist('Euler','Ellery',method='soundex')

stringdist-encoding String metrics in stringdist

Description

This page gives an overview of encoding handling in stringst.

Encoding in stringdist

All character strings are stored as a sequence of bytes. An encoding system relates a byte, or a short
sequence of bytes to a symbol. Over the years, many encoding systems have been developed, and
not all OS’s and softwares use the same encoding as default. Similarly, depending on the system R
is running on, R may use a different encoding for storing strings internally.

The stringdist package is designed so users in principle need not worry about this. Strings are
converted to UTF-32 (unsigned integer) by default prior to any further computation. This means
that results are encoding-independent and that strings are interpreted as a sequence of symbols, not
as a sequence of pure bytes. In functions where this is relevant, this may be switched by setting the
useBytes option to TRUE. However, keep in mind that results will then likely depend on the system
R is running on, except when your strings are pure ASCII. Also, for multi-byte encodings, results
for byte-wise computations will usually differ from results using encoded computations.

Prior to stringdist version 0.9, setting useBytes=TRUE could give a significant performance en-
hancement. Since version 0.9, translation to integer is done by C code internal to stringdist and the
difference in performance is now negligible.

Unicode normalisation

In utf-8, the same (accented) character may be represented as several byte sequences. For example,
an u-umlaut can be represented with a single byte code or as a byte code representing 'u' followed
by a modifier byte code that adds the umlaut. The stringi package of Gagolevski and Tartanus offers
unicode normalisation tools.

Some tips on character encoding and transliteration

Some algorithms (like soundex) are defined only on the printable ASCII character set. This excludes
any character with accents for example. Translating accented characters to the non-accented ones
is a form of transliteration. On many systems running R (but not all!) you can achieve this with

https://cran.r-project.org/package=stringi
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iconv(x,to="ASCII//TRANSLIT"),

where x is your character vector. See the documentation of iconv for details.

The stringi package (Gagolewski and Tartanus) should work on any system. The command
stringi::stri_trans_general(x,"Latin-ASCII") transliterates character vector x to ASCII.

References

• The help page of Encoding describes how R handles encoding.

• The help page of iconv has a good overview of base R’s encoding conversion options. The
capabilities of iconv depend on the system R is running on. The stringi package offers
platform-independent encoding and normalization tools.

See Also

• Functions using re-encoding: stringdist, stringdistmatrix, amatch, ain, qgrams

• Encoding related: printable_ascii

stringdist-metrics String metrics in stringdist

Description

This page gives an overview of the string dissimilarity measures offered by stringdist.

String Metrics

String metrics are ways of quantifying the dissimilarity between two finite sequences, usually text
strings. Over the years, many such measures have been developed. Some are based on a mathemat-
ical understanding of the set of all strings that can be composed from a finite alphabet, others are
based on more heuristic principles, such as how a text string sounds when pronounced by a native
English speaker.

The terms ’string metrics’ and ’string distance’ are used more or less interchangibly in literature.
From a mathematical point of view, string metrics often do not obey the demands that are usually
required from a distance function. For example, it is not true for all string metrics that a distance of
0 means that two strings are the same (e.g. in the q-gram distance). Nevertheless, string metrics are
very useful in practice and have many applications.

The metric you need to choose for an application strongly depends on both the nature of the string
(what does the string represent?) and the cause of dissimilarities between the strings you are mea-
suring. For example, if you are comparing human-typed names that may contain typo’s, the Jaro-
Winkler distance may be of use. If you are comparing names that were written down after hearing
them, a phonetic distance may be a better choice.

Currently, the following distance metrics are supported by stringdist.

Method name Description
osa Optimal string aligment, (restricted Damerau-Levenshtein distance).
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lv Levenshtein distance (as in R’s native adist).
dl Full Damerau-Levenshtein distance.
hamming Hamming distance (a and b must have same nr of characters).
lcs Longest common substring distance.
qgram q-gram distance.
cosine cosine distance between q-gram profiles
jaccard Jaccard distance between q-gram profiles
jw Jaro, or Jaro-Winker distance.
soundex Distance based on soundex encoding (see below)

A short description of string metrics supported by stringdist

See Van der Loo (2014) for an extensive description and references. The review papers of Navarro
(2001) and Boytsov (2011) provide excellent technical overviews of respectively online and offline
string matching algorithms.

The Hamming distance (method='hamming') counts the number of character substitutions that
turns b into a. If a and b have different number of characters the distance is Inf.

The Levenshtein distance (method='lv') counts the number of deletions, insertions and substitu-
tions necessary to turn b into a. This method is equivalent to R’s native adist function.

The Optimal String Alignment distance (method='osa') is like the Levenshtein distance but also
allows transposition of adjacent characters. Here, each substring may be edited only once. (For
example, a character cannot be transposed twice to move it forward in the string).

The full Damerau-Levenshtein distance (method='dl') is like the optimal string alignment dis-
tance except that it allows for multiple edits on substrings.

The longest common substring (method=’lcs’) is defined as the longest string that can be obtained
by pairing characters from a and b while keeping the order of characters intact. The lcs-distance
is defined as the number of unpaired characters. The distance is equivalent to the edit distance
allowing only deletions and insertions, each with weight one.

A q-gram (method=’qgram’) is a subsequence of q consecutive characters of a string. If x (y) is the
vector of counts of q-gram occurrences in a (b), the q-gram distance is given by the sum over the
absolute differences |xi− yi|. The computation is aborted when q is is larger than the length of any
of the strings. In that case Inf is returned.

The cosine distance (method=’cosine’) is computed as 1 − x · y/(‖x‖‖y‖), where x and y were
defined above.

Let X be the set of unique q-grams in a and Y the set of unique q-grams in b. The Jaccard distance
(method='jaccard') is given by 1− |X ∩ Y |/|X ∪ Y |.
The Jaro distance (method='jw', p=0), is a number between 0 (exact match) and 1 (completely
dissimilar) measuring dissimilarity between strings. It is defined to be 0 when both strings have
length 0, and 1 when there are no character matches between a and b. Otherwise, the Jaro distance
is defined as 1 − (1/3)(w1m/|a| + w2m/|b| + w3(m − t)/m). Here,|a| indicates the number
of characters in a, m is the number of character matches and t the number of transpositions of
matching characters. The wi are weights associated with the characters in a, characters in b and
with transpositions. A character c of a matches a character from b when c occurs in b, and the index
of c in a differs less than max(|a|, |b|)/2− 1 (where we use integer division) from the index of c in
b. Two matching characters are transposed when they are matched but they occur in different order
in string a and b.

https://journal.r-project.org/archive/2014-1/loo.pdf
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The Jaro-Winkler distance (method=jw, 0<p<=0.25) adds a correction term to the Jaro-distance.
It is defined as d − l · p · d, where d is the Jaro-distance. Here, l is obtained by counting, from
the start of the input strings, after how many characters the first character mismatch between the
two strings occurs, with a maximum of four. The factor p is a ’prefix’ factor, which in the work of
Winkler is often chosen 0.1.

For the soundex distance (method=’soundex’), strings are translated to a soundex code (see phonetic
for a specification). The distance between strings is 0 when they have the same soundex code,
otherwise 1. Note that soundex recoding is only meaningful for characters in the ranges a-z and
A-Z. A warning is emitted when non-printable or non-ascii characters are encountered. Also see
printable_ascii.

The running_cosine distance is an implementatation of the cosine distance especially meant for
fuzzy text search as in afind. In fuzzy search a window of n characters slides accros a (long) string
while for each position of the window the distance between the part of the string in the window
and a search pattern is computed. The (position of) the window with the shortest distance to the
search pattern is returned. Sliding the window with a single position only affects the q-grams at the
beginning and end of the window, and the ’running cosine’ distance uses this and a few other tricks
to save calculations.

References

• MPJ van der Loo (2014) The stringdist package for approximate string matching. The R
Journal 6(1) 111-122.

• L. Boytsov (2011). Indexing methods for approximate dictionary searching: comparative
analyses. ACM Journal of experimental algorithmics 16 1-88.

• G. Navarro (2001). A guided tour to approximate string matching. ACM Computing Surveys
33 31-88.

See Also

• Functions applying string metrics to text: stringdist, stringdistmatrix, amatch

• Functions applying string metrics to integer sequences: seq_dist, seq_distmatrix, seq_amatch

• Encoding issues: stringdist-encoding

stringdist-parallelization

Multithreading and parallelization in stringdist

Description

This page describes how stringdist uses parallel processing.
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Multithreading and parallelization in stringdist

The core functions of stringdist are implemented in C. On systems where openMP is available,
stringdist will automatically take advantage of multiple cores. The section on OpenMP of the
Writing R Extensions manual discusses on what systems OpenMP is available (at the time of writing
more or less anywhere except on OSX).

By default, the number of threads to use is taken from options('sd_num_thread'). When the
package is loaded, the value for this option is determined as follows:

• If the environment variable OMP_NUM_THREADS is set, this value is taken.

• Otherwise, the number of available cores is determined with parallel::detectCores() If
this fails, the number of threads is set to 1 (with a message). If the nr of detected cores exceeds
three, the number of used cores is set to n− 1.

• If available, the environment variable OMP_THREAD_LIMIT is determined and The number of
threads is set to the lesser of OMP_THREAD_LIMIT and the number of detected cores.

The latter step makes sure that on machines with n > 3 cores, n − 1 cores are used. Some bench-
marking showed that using all cores is often slower in such cases. This is probably because at least
one of the threads will be shared with the operating system.

Functions that use multithreading have an option named nthread that controls the maximum num-
ber of threads to use. If you need to do large calculations, it is probably a good idea to benchmark
the performance on your machine(s) as a function of 'nthread', for example using the microbench-
mark package of Mersmann.

See Also

• Functions running multithreaded: stringdist, stringdistmatrix, amatch, ain

stringdist_api Calling stringdist from C or C++

Description

As of version 0.9.5.0 several C level functions can be linked to and called from C code in other R
packages.

A description of the API can be found in stringdist_api.pdf.

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#OpenMP-support
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://cran.r-project.org/package=microbenchmark
https://cran.r-project.org/package=microbenchmark
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stringsim Compute similarity scores between strings

Description

stringsim computes pairwise string similarities between elements of character vectors a and b,
where the vector with less elements is recycled. stringsimmatrix computes the string similarity
matrix with rows according to a and columns according to b.

Usage

stringsim(
a,
b,
method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw",

"soundex"),
useBytes = FALSE,
q = 1,
...

)

stringsimmatrix(
a,
b,
method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw",

"soundex"),
useBytes = FALSE,
q = 1,
...

)

Arguments

a R object (target); will be converted by as.character.

b R object (source); will be converted by as.character.

method Method for distance calculation. The default is "osa", see stringdist-metrics.

useBytes Perform byte-wise comparison, see stringdist-encoding.

q Size of the q-gram; must be nonnegative. Only applies to method='qgram',
'jaccard' or 'cosine'.

... additional arguments are passed on to stringdist and stringdistmatrix re-
spectively.
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Details

The similarity is calculated by first calculating the distance using stringdist, dividing the distance
by the maximum possible distance, and substracting the result from 1. This results in a score
between 0 and 1, with 1 corresponding to complete similarity and 0 to complete dissimilarity. Note
that complete similarity only means equality for distances satisfying the identity property. This is
not the case e.g. for q-gram based distances (for example if q=1, anagrams are completely similar).
For distances where weights can be specified, the maximum distance is currently computed by
assuming that all weights are equal to 1.

Value

stringsim returns a vector with similarities, which are values between 0 and 1 where 1 corresponds
to perfect similarity (distance 0) and 0 to complete dissimilarity. NA is returned when stringdist
returns NA. Distances equal to Inf are truncated to a similarity of 0. stringsimmatrix works the
same way but, equivalent to stringdistmatrix, returns a similarity matrix instead of a vector.

Examples

# Calculate the similarity using the default method of optimal string alignment
stringsim("ca", "abc")

# Calculate the similarity using the Jaro-Winkler method
# The p argument is passed on to stringdist
stringsim('MARTHA','MATHRA',method='jw', p=0.1)
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