
streamMOA: Interface to Algorithms from MOA for

stream

Michael Hahsler
Southern Methodist University

John Forrest
Microsoft

Matthew Bolaños
Microsoft

Abstract

This packages provides an interface for several algorithms from the Massive Online
Analysis (MOA) framework to be used in stream. This vignette contains some examples.

Keywords: data stream, data mining, clustering, MOA.

1. Introduction

Please refer to the vignette in package stream for an introduction to data stream mining
in R. In this vignette we give two examples that show how to use the stream framework
being used from start to finish. The examples encompasses the creation of data streams,
preparation of data stream clustering algorithms, the online clustering of data points into
micro-clusters, reclustering and finally evaluation. The first example shows how compare a
set of data stream clustering algorithms on a static data set. The second example shows how
to perform evaluation on a data stream with concept drift (clusters evolve over time).

2. Experimental Comparison on Static Data

First, we set up a static data set. We extract 1500 data points from the Bars and Gaussians
data stream generator with 5% noise and put them in a DSD_Memory. The wrapper is used to
replay the same part of the data stream for each algorithm. We will use the first 1000 points
to learn the clustering and the remaining 500 points for evaluation.

R> library("stream")

R> stream <- DSD_Memory(DSD_BarsAndGaussians(noise=0.05), n=5500)

R> stream

Memory Stream Interface

Class: DSD_Memory, DSD_R, DSD_data.frame, DSD

With 4 clusters in 2 dimensions

Contains 5500 data points - currently at position 1 - loop is FALSE



2 Introduction to streamMOA

−5 0 5

−
5

0
5

x

y

Figure 1: Bar and Gaussians data set.

R> plot(stream)

Figure 6 shows the structure of the data set. It consists of four clusters, two Gaussians and
two uniformly filled rectangular clusters. The Gaussian and the bar to the right have 1/3 the
density of the other two clusters.

We initialize four algorithms from stream. We choose the parameters experimentally so that
the algorithm produce each (approximately) 100 micro-clusters.

R> sample <- DSC_TwoStage(micro=DSC_Sample(k=100), macro=DSC_Kmeans(k=4))

R> window <- DSC_TwoStage(micro=DSC_Window(horizon=100), macro=DSC_Kmeans(k=4))

R> dstream <- DSC_DStream(gridsize=.7)

R> dbstream <- DSC_DBSTREAM(r=.45)

We will also use two MOA-based algorithms available in package streamMOA.

R> library("streamMOA")

R> denstream <- DSC_DenStream_MOA(epsilon=.5, mu=1)

R> clustream <- DSC_CluStream_MOA(m=100, k=4)

We store the algorithms in a list for easier handling and then cluster the same 1000 data points
with each algorithm. Note that we have to reset the stream each time before we cluster.

R> algorithms <- list(Sample=sample, Window=window, 'D-Stream'=dstream,

+ DBSTREAM=dbstream, DenStream_MOA=denstream, CluStream_MOA=clustream)

R> for(a in algorithms) {

+ reset_stream(stream)

+ update(a, stream, 5000)

+ }



Matthew Bolanos, John Forrest, Michael Hahsler 3

We use nclusters() to inspect the number of micro-clusters.

R> sapply(algorithms, nclusters, type="micro")

Sample Window D-Stream DBSTREAM DenStream_MOA

100 100 98 161 144

CluStream_MOA

100

All algorithms except DenStream produce around 100 micro-clusters. We were not able to
adjust DenStream to produce more than around 50 micro-clusters for this data set.

To inspect micro-cluster placement, we plot the calculated micro-clusters and the original
data.

R> op <- par(no.readonly = TRUE)

R> layout(mat=matrix(1:6, ncol=2))

R> for(a in algorithms) {

+ reset_stream(stream)

+ plot(a, stream, main=description(a), type="micro")

+ }

R> par(op)

Figure 2 shows the micro-cluster placement by the different algorithms. Micro-clusters are
shown as red circles and the size is proportional to each cluster’s weight. Reservoir sampling
and the sliding window randomly place the micro-clusters and also a few noise points (shown
as grey dots). Clustream also does not suppress noise and places even more micro-clusters on
noise points since it tries to represent all data as faithfully as possible. D-Stream, DenStream
and DBSTREAM all suppress noise and concentrate the micro-clusters on the real clusters. D-
Stream is grid-based and thus the micro-clusters are regularly spaced. DBSTREAM produces
a similar, almost regular pattern. DenStream produces one heavy micro-cluster on one cluster,
while using a large number of micro clusters for the others. It also has problems with detecting
the rectangular low-density cluster.

It is also interesting to compare the assignment areas for micro-clusters created by different
algorithms. The assignment area is the area around the center of a micro-cluster in which
points are considered to belong to the micro-cluster. In case that a point is in the assignment
area of several micro-clusters, the closer center is chosen. To show the assignment area we
add assignment=TRUE to plot. We also disable showing micro-cluster weights to make the
plot clearer.

R> op <- par(no.readonly = TRUE)

R> layout(mat=matrix(1:6, ncol=2))

R> for(a in algorithms) {

+ reset_stream(stream)

+ plot(a, stream, main=description(a), assignment=TRUE, weight=FALSE, type="micro")

+ }

R> par(op)



4 Introduction to streamMOA

●

●

●
●

●

●

●

●

●●●●
●

●

●

●

●

●

●

● ●

●●● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

−5 0 5

−
5

0
5

Reservoir sampling + k−Means (weighted)

x

y

●
●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

● ●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●●

●

−5 0 5

−
5

0
5

Sliding window + k−Means (weighted)

x

y

●
●

●
●●
●

●
●
●
●
●

●
●
●

●
●●
●
●

●
●
●
●
●
●
●●
●

●
●
●

●
●
●
●

●
●

●
●

●
●
●

●

●
●
●

●
●
●
●
●
●

●
●
●

●
●●
●
●
●

●

●
●
●●
●
●
●
●

●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●

●

●
●
●
●

●
●
●

●

−5 0 5

−
5

0
5

DStream

x

y

●

●●

●

●

● ●

●
●●

●

●

●

●

●●
●●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

● ●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−5 0 5

−
5

0
5

DBSTREAM

x

y

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
5

0
5

DenStream + Reachability

x

y

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
5

0
5

CluStream + k−Means (weighted)

x

y

Figure 2: Micro-cluster placement for different data stream clustering algorithms.



Matthew Bolanos, John Forrest, Michael Hahsler 5

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

−5 0 5

−
5

0
5

Reservoir sampling + k−Means (weighted)

x

y

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

−5 0 5

−
5

0
5

Sliding window + k−Means (weighted)

x

y

−5 0 5

−
5

0
5

DStream

x

y

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
5

0
5

DBSTREAM

x

y

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
5

0
5

DenStream + Reachability

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
5

0
5

CluStream + k−Means (weighted)

x

y

Figure 3: Micro-cluster assignment areas for different data stream clustering algorithms.



6 Introduction to streamMOA

Figure 3 shows the assignment areas as dotted circles around micro-clusters. Reservoir sam-
pling and sliding window does not provide assignment areas and data points are always
assigned to the nearest micro-cluster. D-Stream is grid-based and shows the assignment area
as grey boxes. DBSTREAM uses the same radius for all micro-clusters, while DenStream and
CluStream calculate the assignment area for each micro-cluster.

To compare the cluster quality, we can check for example the micro-cluster purity, the sum
of squares and the average silhouette coefficient. Note that we reset the stream to position
1001 since we have used the first 1000 points for learning and we want to use data points not
seen by the algorithms for evaluation.

R> sapply(algorithms, FUN=function(a) {

+ reset_stream(stream, 1001)

+ evaluate(a, stream,

+ measure=c("numMicroClusters", "purity", "SSQ", "silhouette"),

+ n=500, assignmentMethod = "auto", type = "micro")

+ })

Sample Window D-Stream DBSTREAM DenStream_MOA

numMicroClusters 100.000 100.000 98.000 161.000 144.0000

purity 0.969 0.960 0.973 0.985 0.9778

SSQ 96.995 100.483 52.673 32.194 66.3886

silhouette 0.167 0.148 0.168 0.236 0.0626

CluStream_MOA

numMicroClusters 100.000

purity 0.959

SSQ 78.497

silhouette 0.162

We need to be careful with the comparison of these numbers, since the depend heavily on the
number of micro-clusters with more clusters leading to a better value. Therefore, a comparison
with DenStream is not valid. We can compare the measures, of the other algorithms since the
number of micro-clusters is close. Sampling and the sliding window produce very good values
for purity, CluStream achieves the highest average silhouette coefficient and DBSTREAM
produces the lowest sum of squares. For better results more data and cross-validation could
be used.

Next, we compare macro-clusters. D-Stream, DenStream, DBSTREAM and CluStream have
built-in reclustering strategies. D-Stream joins adjacent dense grid cells for form macro-
clusters. DenStream and DBSTREAM use the reachability concept (from DBSCAN). CluS-
tream used weighted k-means clustering (note that we used k = 4 when we initialized
DSC_DenStream above). For sampling and window we apply here weighted k-means reclus-
tering with k = 4, the true number of clusters.

R> op <- par(no.readonly = TRUE)

R> layout(mat=matrix(1:6, ncol=2))

R> for(a in algorithms) {

+ reset_stream(stream)



Matthew Bolanos, John Forrest, Michael Hahsler 7

+ plot(a, stream, main=description(a), type="both")

+ }

R> par(op)

Figure 4 shows the macro-cluster placement. Sample, window and CluStream use k-means
reclustering and therefore produce exactly four clusters. However, the placement is off, split-
ting a true cluster and missing one of the less dense clusters. DenStream, DBSTREAM and
D-Stream identify the two denser clusters correctly, but split the lower density clusters into
multiple pieces.

R> sapply(algorithms, FUN=function(a) {

+ reset_stream(stream, 1001)

+ evaluate(a, stream, measure = c("numMacroClusters","purity", "SSQ", "cRand"),

+ n = 500, assign = "micro", type = "macro")

+ })

Sample Window D-Stream DBSTREAM DenStream_MOA

numMacroClusters 4.000 4.000 7.000 2.000 4.000

purity 0.896 0.823 0.840 0.656 0.778

SSQ 1136.069 1053.646 871.957 2029.569 1851.367

cRand 0.896 0.652 0.855 0.618 0.544

CluStream_MOA

numMacroClusters 4.000

purity 0.832

SSQ 1088.994

cRand 0.714

The evaluation measures at the macro-cluster level reflect the findings from the visual analysis
of the clustering with D-Stream producing the best results.

3. Experimental Comparison using an Evolving Data Stream

In this section we compare different clustering algorithms on an evolving data stream. We use
DSD_Benchmark(1) which creates two clusters moving in two-dimensional space. One moves
from top left to bottom right and the other one moves from bottom left to top right. Both
clusters overlap when they meet exactly in the center of the data space.

R> set.seed(0)

R> stream <- DSD_Memory(DSD_Benchmark(1), 5000)

Figure 5 illustrates the structure of the data stream. Next, we define the clustering algorithms.

R> algorithms <- list(

+ 'Sample' = DSC_TwoStage(micro=DSC_Sample(k=100, biased=TRUE),

+ macro=DSC_Kmeans(k=2)),

+ 'Window' = DSC_TwoStage(micro=DSC_Window(horizon=100, lambda=.01),



8 Introduction to streamMOA

●

●

●
●

●

●

●

●

●●●●
●

●

●

●

●

●

●

● ●

●●● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

−5 0 5

−
5

0
5

Reservoir sampling + k−Means (weighted)

x

y

●
●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

● ●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●●

●

−5 0 5

−
5

0
5

Sliding window + k−Means (weighted)

x

y

●
●

●
●●
●

●
●
●
●
●

●
●
●

●
●●
●
●

●
●
●
●
●
●
●●
●

●
●
●

●
●
●
●

●
●

●
●

●
●
●

●

●
●
●

●
●
●
●
●
●

●
●
●

●
●●
●
●
●

●

●
●
●●
●
●
●
●

●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●

●

●
●
●
●

●
●
●

●

−5 0 5

−
5

0
5

DStream

x

y

●

●●

●

●

● ●

●
●●

●

●

●

●

●●
●●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

● ●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−5 0 5

−
5

0
5

DBSTREAM

x

y

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
5

0
5

DenStream + Reachability

x

y

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
5

0
5

CluStream + k−Means (weighted)

x

y

Figure 4: Macro-cluster placement for different data stream clustering algorithms



Matthew Bolanos, John Forrest, Michael Hahsler 9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
2

Figure 5: Data points from DSD_Benchmark(1) at the beginning of the stream. The two
arrows are added to highlight the direction of movement.

+ macro=DSC_Kmeans(k=2)),

+

+ 'D-Stream' = DSC_DStream(gridsize=.1, lambda=.01),

+ 'DBSTREAM' = DSC_DBSTREAM(r=.05, lambda=.01),

+ 'DenStream' = DSC_DenStream_MOA(epsilon=.1, lambda=.01),

+ 'CluStream' = DSC_CluStream_MOA(m=100, k=2)

+ )

We perform the evaluation using evaluate_cluster which performs clustering and evaluates
clustering quality every horizon=250 data points. For sampling and window we have to
specify a macro-clustering algorithm. We use k-means with the true number of clusters
k = 2.

R> n <- 5000

R> horizon <- 250

R> reset_stream(stream)

R> evaluation <- lapply(algorithms, FUN=function(a) {

+ reset_stream(stream)

+ evaluate_cluster(a, stream,

+ type="macro", assign="micro",

+ measure=c("numMicro","numMacro","SSQ", "cRand"),

+ n=n, horizon=horizon)

+ })

First, we look at the development of the corrected Rand index over time.



10 Introduction to streamMOA

R> Position <- evaluation[[1]][,"points"]

R> cRand <- sapply(evaluation, FUN=function(x) x[,"cRand"])

R> cRand

Sample Window D-Stream DBSTREAM DenStream CluStream

[1,] NA NA NA NA NA NA

[2,] 0.8123 0.8098 0.97376 0.621 0.7050 0.0397

[3,] 0.8299 0.8339 0.10320 0.858 0.8501 0.0576

[4,] 0.7856 0.7856 0.99042 0.990 0.9364 0.1714

[5,] 0.7745 0.7735 0.92194 0.863 0.8943 0.1518

[6,] 0.8371 0.8371 0.16580 0.928 0.8398 0.0396

[7,] 0.8833 0.8833 1.00000 0.992 0.7061 0.0957

[8,] 0.8166 0.8166 0.73767 0.887 0.1149 0.0756

[9,] 0.8379 0.8365 0.88573 0.818 0.5178 0.1544

[10,] 0.7963 0.8006 0.26502 0.907 0.1956 0.0454

[11,] 0.3802 0.2826 0.11440 0.204 0.1157 0.1075

[12,] 0.0646 0.0424 0.19888 0.178 0.0258 0.0141

[13,] 0.0855 0.7489 0.33434 0.334 0.4843 -0.0214

[14,] 0.8907 0.8903 -0.00121 0.154 0.2381 0.1541

[15,] 0.8646 0.8646 0.19710 0.163 0.0745 0.0125

[16,] 0.7710 0.7710 0.94826 0.861 0.0524 0.1315

[17,] 0.8448 0.8451 0.13243 0.801 0.1989 0.0452

[18,] 0.8147 0.8170 0.96493 0.882 0.0502 0.1256

[19,] 0.8663 0.8703 0.76705 0.799 0.6753 0.1190

[20,] 0.8019 0.8021 0.69115 0.882 0.7122 0.0313

R> matplot(Position, cRand, type="l", lwd=2)

R> legend("bottomleft", legend=names(evaluation),

+ col=1:6, lty=1:6, bty="n", lwd=2)

R> boxplot(cRand, las=2, cex.axis=.8)

And then we compare the sum of squares.

R> SSQ <- sapply(evaluation, FUN=function(x) x[,"SSQ"])

R> SSQ

Sample Window D-Stream DBSTREAM DenStream CluStream

[1,] NA NA NA NA NA NA

[2,] 0.358 0.225 0.154 0.332 0.510 0.266

[3,] 0.396 0.356 1.092 0.291 0.825 0.560

[4,] 0.369 0.263 0.671 0.374 1.108 1.271

[5,] 0.334 0.200 0.262 0.563 1.441 2.272

[6,] 0.442 0.390 1.433 0.452 2.749 2.337

[7,] 0.733 0.507 0.452 0.529 3.656 2.895

[8,] 0.530 0.373 0.487 0.696 4.758 3.278



Matthew Bolanos, John Forrest, Michael Hahsler 11

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position

cR
an

d Sample
Window
D−Stream
DBSTREAM
DenStream
CluStream

●

●●

●

●

S
am

pl
e

W
in

do
w

D
−

S
tr

ea
m

D
B

S
T

R
E

A
M

D
en

S
tr

ea
m

C
lu

S
tr

ea
m

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000

0
5

10
15

Position

S
S

Q

Sample
Window
D−Stream
DBSTREAM
DenStream
CluStream

●●●

●

●

●

●

S
am

pl
e

W
in

do
w

D
−

S
tr

ea
m

D
B

S
T

R
E

A
M

D
en

S
tr

ea
m

C
lu

S
tr

ea
m

0

5

10

15

Figure 6: Evaluation of data stream clustering of an evolving stream.

[9,] 0.761 0.875 1.416 0.499 3.572 3.387

[10,] 0.965 0.541 0.895 0.424 10.075 3.840

[11,] 0.936 0.928 0.466 0.394 17.246 3.991

[12,] 0.662 0.429 0.692 0.437 9.095 2.195

[13,] 1.100 0.402 1.022 1.065 1.387 2.269

[14,] 0.632 0.506 2.811 2.505 2.783 3.979

[15,] 0.618 0.400 4.501 4.412 4.651 5.734

[16,] 0.510 0.405 0.241 0.398 6.589 3.038

[17,] 0.516 0.345 1.404 0.455 10.218 3.719

[18,] 0.963 0.442 0.422 0.524 13.850 4.201

[19,] 1.191 0.388 0.542 0.605 1.104 4.742

[20,] 1.462 0.751 1.495 0.503 0.952 4.436

R> matplot(Position, SSQ, type="l", lwd=2)

R> legend("topright", legend=names(evaluation),

+ col=1:6, lty=1:6, bty="n", lwd=2)

R> boxplot(SSQ, las=2, cex.axis=.8)

Figure 6 shows how the different clustering algorithms compare in terms of the corrected Rand
index and the sum of squares. For all algorithms the performance degrades around position
3000 since both clusters overlap completely at that point in the stream. The box-plots to
the right indicate that D-Stream and DBSTREAM perform overall better than the other
algorithms.



12 Introduction to streamMOA

Acknowledgments

This work is supported in part by the U.S. National Science Foundation as a research ex-
perience for undergraduates (REU) under contract number IIS-0948893 and by the National
Human Genome Research Institute under contract number R21HG005912.

Affiliation:

Michael Hahsler
Engineering Management, Information, and Systems
Lyle School of Engineering
Southern Methodist University
P.O. Box 750122
Dallas, TX 75275-0122
E-mail: mhahsler@lyle.smu.edu
URL: http://michael.hahsler.net

John Forrest
Microsoft Corporation
E-mail: jforrest@microsoft.com

Matthew Bolaños
Microsoft Corporation
E-mail: mbolanos@curiouscrane.com

mailto:mhahsler@lyle.smu.edu
http://michael.hahsler.net
mailto:jforrest@microsoft.com
mailto:mbolanos@curiouscrane.com

	Introduction
	Experimental Comparison on Static Data
	Experimental Comparison using an Evolving Data Stream

