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Abstract

We document how sampling from a conditional Student’s t distribution is implemented
in stochvol. Moreover, a simple example using EUR/CHF exchange rates illustrates how
to use the augmented sampler. We conclude with results and implications.
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Preface

This note serves as a preliminary add-on to the more elaborate article“Dealing with Stochastic
Volatility in Time Series using the R package stochvol” (Kastner 2016a). It discusses and
relaxes the restriction to conditionally normal errors in the vanilla stochastic volatility (SV)
model.

1. The SV model with Student’s t errors

Several authors have suggested to use non-normal conditional innovation distributions for
stochastic volatility modeling. Examples include the Student’s t distribution (Harvey, Ruiz,
and Shephard 1994), the extended Generalized Inverse Gaussian (Silva, Lopes, and Migon
2006), (semi-)parametric innovations (Jensen and Maheu 2010; Delatola and Griffin 2011),
or the GH skew Student’s t distribution (Nakajima and Omori 2012). In the following, we
describe how the estimation of the SV model with Student’s t errors is implemented in the R
(R Core Team 2016) package stochvol (Kastner 2016b).

Let y = (y1, y2, . . . , yn)> be a vector of returns with mean zero. The SV model with Student’s
t errors (in short SV-t) is given through

yt|ht, ν ∼ tν(0, expht) , (1)

ht|ht−1, µ, φ, ση ∼ N
(
µ+ φ(ht−1 − µ), σ2η

)
, (2)

h0|µ, φ, ση ∼ N
(
µ, σ2η/(1− φ2)

)
, (3)

i.e., conditionally on ht, the data is assumed to follow a zero-mean non-standardized Student’s
t distribution with ν degrees of freedom and variance (ν expht)/(ν − 2) for ν > 2. Following
Chib, Nardari, and Shephard (2002), we assume that a priori the degrees of freedom parameter
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ν ∼ U(a, b), i.e., follows a uniform distribution with support on the real interval (a, b). All
other prior components are chosen as in Kastner (2016a).

2. Usage

Estimating a stochastic volatility model with conditional t errors via stochvol is very similar to
estimating a model with standard Gaussian errors, differing only through specifying a non-NA
argument priornu. This triggers the sampler specified in Section 3. To provide an example,
we investigate the historical daily EUR/CHF exchange rates and display these in Figure 1.

R> library(stochvol)

R> data(exrates)

R> par(mfrow = c(2, 1), mar = c(1.7, 1.7, 1.7, 0.1), mgp = c(1.6, 0.6, 0))

R> plot(exrates$date, exrates$CHF, type = 'l', main = 'Price of 1 EUR in CHF')
R> dat <- logret(exrates$CHF, demean = TRUE)

R> plot(exrates$date[-1], dat, type = 'l', main = 'Demeaned log returns')
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Figure 1: Levels and demeaned log returns of EUR in CHF.

By specifying the argument priornu (a two-element vector containing the lower and upper
bounds of the uniform prior for ν), we can trigger the sampler to allow for heavy-tailed
conditional innovations.

R> rest <- svsample(dat, priormu = c(-12, 1), priorphi = c(20, 1.1),

+ priorsigma = 0.1, priornu = c(2, 100), burnin = 2000)

R> plot(rest, showobs = FALSE)
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Results are displayed in Figure 2, containing the output from the SV-t model. Row 1 depicts
exp(ht/2) for t ∈ {1, . . . , n}; row 2 shows the time varying standard deviations given through√
ν/(ν − 2) exp(ht/2) for t ∈ {1, . . . , n}; row 3 portrays trace plots and row 4 outlines the

corresponding smoothed kernel density estimates for the four parameters µ, φ, σ, and ν. It
is worth noting that ν is estimated to lie between 6 and 18 with high posterior probability,
indicating evidence for the presence of heavy tails even after catering for stochastic volatility.
The extra flexibility of the SV-t sampler seems to allow for increased persistence φ and smaller
variance of log-volatility σ2, resulting in smoother time-varying volatility estimates.
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Figure 2: Standard output of the plot method when applied to an svdraws object containing
posterior draws from an SV model with Student’s t errors.

We investigate one-day-ahead out-of-sample predictive performance of an AR(1) model with
(a) homoskedastic, (b) SV, (c) SV-t, (d) GARCH(1,1) errors, applied to the raw exchange
rate data. Details about this procedure are provided in Chapter 5 of Kastner (2016a). The
results, summarized in Figure 3, speak in favor of the SV-t model for this dataset.
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Figure 3: Log predictive one-day-ahead Bayes factors in favor of SV, SV-t, and GARCH errors
over the homoskedastic model. The final log predictive Bayes factors aggregate to 1107.44
(SV), 1115.36 (SV-t), and 1033.53 (GARCH), respectively, thus providing strong evidence for
the SV-t model.
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3. Necessary modifications in the sampling scheme

The Student’s t distribution appearing in Equation 1 can be conveniently expressed as a scale
mixture of normal distributions,

yt|ht, τt ∼ N (0, τt expht) ,

τt|ν ∼ G−1(ν/2, ν/2) ,

where N
(
µ, σ2η

)
denotes the normal distribution with mean µ and variance σ2η, and G−1(a, b)

denotes the inverse gamma distribution with shape and scale parameters a and b, respectively.

Treating τ = (τ1, . . . , τn)> as latent data and letting ỹt = yt/
√
τt for t ∈ {1, . . . , n}, we have

ỹt|ht ∼ N (0, expht) ,

and the AWOL sampler described in Kastner and Frühwirth-Schnatter (2014) can directly be
applied to the transformed data. To obtain draws from the newly introduced variables τ and
ν, two additional steps are required.

3.1. Sampling the auxiliary variables

It is easy to see that the marginal posterior is given through

τt|yt, ht, ν ∼ G−1
(
ν + 1

2
,
ν + y2t exp(−ht)

2

)
,

independently for each t ∈ {1, . . . , n}. Obtaining draws from this distribution is straightfor-
ward.

3.2. Sampling the degrees of freedom parameter

The full conditional posterior of the degrees of freedom parameter, ν|·, only depends on τ .
Its density is given through the product of n univariate truncated inverse gamma densities
which may be written as

p(ν|·) = p(ν|τ ) ∝
(ν

2

)nν/2
Γ
(ν

2

)−n( n∏
t=1

τt

)−ν/2
exp

{
−ν

2

n∑
t=1

1

τt

}
(4)

for ν ∈ (a, b) and zero elsewhere.

For obtaining draws from this distribution, we use an independence Metropolis-Hastings up-
date. We follow Chib and Greenberg (1994), who introduced the idea of specifying an inde-
pendence proposal through numerical maximization of the log-density. For the problem at
hand, we consequently aim for optimizing

log p(ν|τ ) =
nν

2
log(ν/2)− n log Γ(ν/2)− ν

2

n∑
t=1

(
log τt +

1

τt

)
+ C, (5)

with first and second derivatives given through

∂ log p(ν|τ )

∂ν
=

n

2

(
1 + log(ν/2)− ψ(0)(ν/2)

)
− 1

2

n∑
t=1

(
log τt +

1

τt

)
, (6)

∂2 log p(ν|τ )

∂ν2
=

n

2ν
− n

4
ψ(1)(ν/2), (7)
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where ψ(m) denotes the polygamma function of order m. Using the above, it is easy to
numerically find

ν̂ = arg max
ν

log p(ν|τ ),

Bν̂ = −1

/
∂2 log p(ν|τ )

∂ν2

∣∣∣∣
ν=ν̂

,

and a proposal candidate νprop may be drawn from a normal distribution with mean ν̂ and
variance Bν̂ (the Laplace approximation). Letting φ(x|ν̂, Bν̂) denote the corresponding den-
sity function, the acceptance probability is equal to min{1, R} with

R =
p(νprop|τ )

p(νold|τ )
× φ(νold|ν̂, Bν̂)

φ(νprop|ν̂, Bν̂)
.

4. Conclusion

We have shown how a simply data augmentation trick can be utilized to generalize the core
sampler in stochvol in order to cater for potentially heavier-tailed innovation distributions.
However, several caveats are called for:

• Even though the uniform prior for ν has been used widely, more robust alternatives are
probably preferred, cf. Frühwirth-Schnatter and Pyne (2010) and the references therein.

• Sampling the degrees of freedom parameter ν conditionally on τ can be very inefficient
if ν becomes large (and thus the plain vanilla SV model suffices). We recommend to
resort to the original SV sampler in this case.

• Leaving aside the additional computational burden, it is trivial to incorporate this ex-
tension into samplers employing stochvol as part of a larger MCMC scheme (e.g. Huber
2014; Kastner, Frühwirth-Schnatter, and Lopes 2014; Dovern, Feldkircher, and Huber
2015). Nevertheless, at the current stage of development, this should be conducted with
caution by carefully investigating the convergence of the posterior draws.
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