This vignette provides a go-to summary for which test is carried out for each function included in the package and what effect size it returns. Additionally, there are also recommendations on how to interpret those effect sizes.
Here is a summary table of all the statistical tests currently supported across various functions:
Functions | Type | Test | Effect size | 95% CI available? |
---|---|---|---|---|
expr_anova_parametric (2 groups) |
Parametric | Student’s and Welch’s t-test | Cohen’s d, Hedge’s g | \(\checkmark\) |
expr_anova_parametric (> 2 groups) |
Parametric | Fisher’s and Welch’s one-way ANOVA | \(\eta^2, \eta^2_p, \omega^2, \omega^2_p\) | \(\checkmark\) |
expr_anova_nonparametric (2 groups) |
Non-parametric | Mann-Whitney U-test | r | \(\checkmark\) |
expr_anova_nonparametric (> 2 groups) |
Non-parametric | Kruskal-Wallis Rank Sum Test | \(\epsilon^2\) | \(\checkmark\) |
expr_anova_robust (2 groups) |
Robust | Yuen’s test for trimmed means | \(\xi\) | \(\checkmark\) |
expr_anova_robust (> 2 groups) |
Robust | Heteroscedastic one-way ANOVA for trimmed means | \(\xi\) | \(\checkmark\) |
expr_anova_parametric (2 groups) |
Parametric | Student’s t-test | Cohen’s d, Hedge’s g | \(\checkmark\) |
expr_anova_parametric (> 2 groups) |
Parametric | Fisher’s one-way repeated measures ANOVA | \(\eta^2_p, \omega^2\) | \(\checkmark\) |
expr_anova_nonparametric (2 groups) |
Non-parametric | Wilcoxon signed-rank test | r | \(\checkmark\) |
expr_anova_nonparametric (> 2 groups) |
Non-parametric | Friedman rank sum test | \(W_{Kendall}\) | \(\checkmark\) |
expr_anova_robust (2 groups) |
Robust | Yuen’s test on trimmed means for dependent samples | \(\xi\) | \(\checkmark\) |
expr_anova_robust (> 2 groups) |
Robust | Heteroscedastic one-way repeated measures ANOVA for trimmed means | \(\times\) | \(\times\) |
expr_contingency_tab (unpaired) |
Parametric | \(\text{Pearson's}~ \chi^2 ~\text{test}\) | Cramér’s V | \(\checkmark\) |
expr_contingency_tab (paired) |
Parametric | McNemar’s test | Cohen’s g | \(\checkmark\) |
expr_contingency_tab |
Parametric | One-sample proportion test | Cramér’s V | \(\checkmark\) |
expr_corr_test |
Parametric | Pearson’s r | r | \(\checkmark\) |
expr_corr_test |
Non-parametric | \(\text{Spearman's}~ \rho\) | \(\rho\) | \(\checkmark\) |
expr_corr_test |
Robust | Percentage bend correlation | r | \(\checkmark\) |
expr_t_onesample |
Parametric | One-sample t-test | Cohen’s d, Hedge’s g | \(\checkmark\) |
expr_t_onesample |
Non-parametric | One-sample Wilcoxon signed rank test | r | \(\checkmark\) |
expr_t_onesample |
Robust | One-sample percentile bootstrap | robust estimator | \(\checkmark\) |
expr_meta_parametric |
Parametric | Meta-analysis via random-effects models | \(\beta\) | \(\checkmark\) |
expr_meta_robust |
Robust | Meta-analysis via robust random-effects models | \(\beta\) | \(\checkmark\) |
Note that the following recommendations on how to interpret the effect sizes are just suggestions and there is nothing universal about them. The interpretation of any effect size measures is always going to be relative to the discipline, the specific data, and the aims of the analyst. Here the guidelines are given for small, medium, and large effects and references should shed more information on the baseline discipline with respect to which these guidelines were recommended. This is important because what might be considered a small effect in psychology might be large for some other field like public health.
(Additionally, you will also see which function is used internally to compute the effect size and their confidence intervals.)
Test: One-sample t-test
Effect size: Cohen’s d, Hedge’s g
Function: effectsize::cohens_d
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
Cohen’s d | 0 – < 0.20 | 0.20 – < 0.50 | ≥ 0.80 | [-Inf,Inf] |
Hedge’s g | 0 – < 0.20 | 0.20 – < 0.50 | ≥ 0.80 | [-Inf,Inf] |
Test: One-sample Wilcoxon Signed-rank Test
Effect size: \(r\) ( = \(Z/\sqrt(N_{obs})\))
Function: rcompanion::wilcoxonOneSampleR
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
r | 0.10 – < 0.30 | 0.30 – < 0.50 | ≥ 0.50 | [0,1] |
Test: One-sample percentile bootstrap test
Effect size: robust location measure
Function: WRS2::onesampb
Test: Student’s dependent samples t-test
Effect size: Cohen’s d, Hedge’s g
Function: effectsize::cohens_d
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
Cohen’s d | 0.20 | 0.50 | 0.80 | [0,1] |
Hedge’s g | 0.20 | 0.50 | 0.80 | [0,1] |
Test: Wilcoxon signed-rank test
Effect size: \(r\) ( = \(Z/\sqrt(N_{pairs})\))
Function: rcompanion::wilcoxonPairedR
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
r | 0.10 – < 0.30 | 0.30 – < 0.50 | ≥ 0.50 | [0,1] |
Test: Yuen’s dependent sample trimmed means t-test
Effect size: robust (trimmed-Winsorized) standardized difference similar to Cohen’s d
Function: WRS2::dep.effect
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
\(\delta_{R}\) | 0.10 – < 0.30 | 0.30 – < 0.50 | ≥ 0.50 | [0,1] |
Reference: - https://CRAN.R-project.org/package=WRS2/vignettes/WRS2.pdf - https://journals.sagepub.com/doi/10.1177/0013164406288161
Test: Student’s and Welch’s independent samples t-test
Effect size: Cohen’s d, Hedge’s g
Function: effectsize::cohens_d
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
Cohen’s d | 0.20 | 0.50 | 0.80 | [-Inf,Inf] |
Hedge’s g | 0.20 | 0.50 | 0.80 | [-Inf,Inf] |
Test: Two-sample Mann–Whitney U Test
Effect size: \(r\) ( = \(Z/\sqrt(N_{obs})\))
Function: rcompanion::wilcoxonR
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
r | 0.10 – < 0.30 | 0.30 – < 0.50 | ≥ 0.50 | [0,1] |
Reference: https://rcompanion.org/handbook/F_04.html
Test: Yuen’s independent sample trimmed means t-test
Effect size: Explanatory measure of effect size (\(\xi\))
Function: WRS2::yuen.effect.ci
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
\(\xi\) | 0.10 – < 0.30 | 0.30 – < 0.50 | ≥ 0.50 | [0,1] |
Reference: https://CRAN.R-project.org/package=WRS2/vignettes/WRS2.pdf
Test: Fisher’s repeated measures one-way ANOVA
Effect size: \(\eta^2_p\), \(\omega^2\)
Function: effectsize::eta_squared
and effectsize::omega_squared
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
\(\omega^2\) | 0.01 – < 0.06 | 0.06 – < 0.14 | ≥ 0.14 | [0,1] |
\(\eta^2_p\) | 0.01 – < 0.06 | 0.06 – < 0.14 | ≥ 0.14 | [0,1] |
Reference:
Test: Friedman’s rank sum test
Effect size: Kendall’s W
Function: rcompanion::kendallW
In the following table, k is the number of treatments, groups, or things being rated.
k | Small | Medium | Large | Range |
---|---|---|---|---|
k = 3 | < 0.10 | 0.10 – < 0.30 | ≥ 0.30 | [0,1] |
k = 5 | < 0.10 | 0.10 – < 0.25 | ≥ 0.25 | [0,1] |
k = 7 | < 0.10 | 0.10 – < 0.20 | ≥ 0.20 | [0,1] |
k = 9 | < 0.10 | 0.10 – < 0.20 | ≥ 0.20 | [0,1] |
Test: Heteroscedastic one-way repeated measures ANOVA for trimmed means
Effect size: Not available
Test: Fisher’s or Welch’s one-way ANOVA
Effect size: \(\eta^2\), \(\eta^2_p\), \(\omega^2\), \(\omega^2_p\)
Function: effectsize::eta_squared
and effectsize::omega_squared
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
\(\eta^2\) | 0.01 – < 0.06 | 0.06 – < 0.14 | ≥ 0.14 | [0,1] |
\(\omega^2\) | 0.01 – < 0.06 | 0.06 – < 0.14 | ≥ 0.14 | [0,1] |
\(\eta^2_p\) | 0.01 – < 0.06 | 0.06 – < 0.14 | ≥ 0.14 | [0,1] |
\(\omega^2_p\) | 0.01 – < 0.06 | 0.06 – < 0.14 | ≥ 0.14 | [0,1] |
Reference:
Test: Kruskal–Wallis test
Effect size: \(\epsilon^2\)
Function: rcompanion::epsilonSquared
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
\(\epsilon^2\) | 0.01 – < 0.08 | 0.08 – < 0.26 | ≥ 0.26 | [0,1] |
Reference: https://rcompanion.org/handbook/F_08.html
Test: Heteroscedastic one-way ANOVA for trimmed means
Effect size: Explanatory measure of effect size (\(\xi\))
Function: WRS2::t1way
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
\(\xi\) | 0.10 – < 0.30 | 0.30 – < 0.50 | ≥ 0.50 | [0,1] |
Reference: https://CRAN.R-project.org/package=WRS2/vignettes/WRS2.pdf
Test: Pearson’s \(\chi^2\)-squared test
Effect size: Cramér’s V
Function: rcompanion::cramerV
In the following table, k is the minimum number of categories in either rows or columns.
k | Small | Medium | Large | Range |
---|---|---|---|---|
k = 2 | 0.10 – < 0.30 | 0.30 – < 0.50 | ≥ 0.50 | [0,1] |
k = 3 | 0.07 – < 0.20 | 0.20 – < 0.35 | ≥ 0.35 | [0,1] |
k = 4 | 0.06 – < 0.17 | 0.17 – < 0.29 | ≥ 0.29 | [0,1] |
Reference: https://rcompanion.org/handbook/H_10.html
Test: McNemar’s test
Effect size: Cohen’s g
Function: rcompanion::cohenG
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
Cohen’s g | 0.05 – < 0.15 | 0.15 – < 0.25 | ≥ 0.25 | [0,1] |
Reference: https://rcompanion.org/handbook/H_05.html
Test: Pearson’s \(\chi^2\)-squared goodness-of-fit test
Effect size: Cramér’s V
Function: rcompanion::cramerVFit
In the following table, k is the number of categories.
k | Small | Medium | Large | Range |
---|---|---|---|---|
k = 2 | 0.100 – < 0.300 | 0.300 – < 0.500 | ≥ 0.500 | [0,1] |
k = 3 | 0.071 – < 0.212 | 0.212 – < 0.354 | ≥ 0.354 | [0,1] |
k = 4 | 0.058 – < 0.173 | 0.173 – < 0.289 | ≥ 0.289 | [0,1] |
k = 5 | 0.050 – < 0.150 | 0.150 – < 0.250 | ≥ 0.250 | [0,1] |
k = 6 | 0.045 – < 0.134 | 0.134 – < 0.224 | ≥ 0.224 | [0,1] |
k = 7 | 0.043 – < 0.130 | 0.130 – < 0.217 | ≥ 0.217 | [0,1] |
k = 8 | 0.042 – < 0.127 | 0.127 – < 0.212 | ≥ 0.212 | [0,1] |
k = 9 | 0.042 – < 0.125 | 0.125 – < 0.209 | ≥ 0.209 | [0,1] |
k = 10 | 0.041 – < 0.124 | 0.124 – < 0.207 | ≥ 0.207 | [0,1] |
Reference: https://rcompanion.org/handbook/H_03.html
Test: Pearson product-moment correlation coefficient
Effect size: Pearson’s correlation coefficient (r)
Function: correlation::correlation
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
Pearson’s r | 0.10 – < 0.30 | 0.30 – < 0.50 | ≥ 0.50 | [-1,1] |
Test: Spearman’s rank correlation coefficient
Effect size: Spearman’s rank correlation coefficient (\(\rho\))
Function: correlation::correlation
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
Spearman’s \(\rho\) | 0.10 – < 0.30 | 0.30 – < 0.50 | ≥ 0.50 | [-1,1] |
Test: Percentage bend correlation coefficient
Effect size: Percentage bend correlation coefficient (\(\rho_{pb}\))
Function: correlation::correlation
Effect size | Small | Medium | Large | Range |
---|---|---|---|---|
\(\rho_{pb}\) | 0.10 – < 0.30 | 0.30 – < 0.50 | ≥ 0.50 | [-1,1] |
Test: Parametric random-effects meta-analysis
Effect size: Regression estimate (\(\beta\))
Function: metafor::rma
Test: Random-effects meta-analysis using a mixture of normals for the random effect
Effect size: Regression estimate (\(\beta\))
Function: metaplus::metaplus
Test: Bayesian random-effects meta-analysis
Effect size: Regression estimate (\(\beta\))
Function: metaBMA::meta_random
If you find any bugs or have any suggestions/remarks, please file an issue on GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues
For details, see- https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/session_info.html