
Package ‘ssh.utils’
August 29, 2016

Title Local and remote system commands with output and error capture.

Version 1.0

Author Sergei Izrailev

Maintainer Sergei Izrailev <sizrailev@collective.com>

Description This package provides utility functions for system command
execution, both locally and remotely using ssh/scp. The command
output is captured and provided to the caller. This functionality is
intended to streamline calling shell commands from R, retrieving and
using their output, while instrumenting the calls with appropriate
error handling. NOTE: this first version is limited to unix with local
and remote systems running bash as the default shell.

URL http://github.com/collectivemedia/ssh.utils

Depends R (>= 3.0.3), stringr

License Apache License (== 2.0)

Copyright Copyright (C) Collective, Inc. | file inst/COPYRIGHTS

LazyData true

OS_type unix

NeedsCompilation no

Repository CRAN

Date/Publication 2014-07-24 21:13:49

R topics documented:
cp.remote . 2
file.exists.remote . 3
mem.usage . 4
mkdir.remote . 4
ps.grep.remote . 5
run.remote . 6
ssh.utils . 8

Index 10

1

http://github.com/collectivemedia/ssh.utils

2 cp.remote

cp.remote scp wrapper

Description

A wrapper around the scp shell command that handles local/remote files and allows copying be-
tween remote hosts via the local machine.

Usage

cp.remote(remote.src, path.src, remote.dest, path.dest, verbose = FALSE,
via.local = FALSE, local.temp.dir = tempdir())

Arguments

remote.src Remote machine for the source file in the format user@machine or an empty
string for local.

path.src Path of the source file.

remote.dest Remote machine for the destination file in the format user@machine or an empty
string for local.

path.dest Path for the source file; can be a directory.

verbose Prints elapsed time if TRUE

via.local Copies the file via the local machine. Useful when two remote machines can’t
talk to each other directly.

local.temp.dir When copying via local machine, the directory to use as scratch space.

Examples

Not run:
Copy file myfile.csv from the home directory on the remote server to
the local working directory.

on remote server in bash shell:
cat myfile.csv
[me@myserver ~]$ cat myfile.csv
"val","ts"
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,

file.exists.remote 3

on local server in R:
cp.remote(remote.src = "me@myserver", path.src = "~/myfile.csv",

remote.dest = "", path.dest = getwd(), verbose = TRUE)
[1] "Elapsed: 1.672 sec"
df <- read.csv("myfile.csv")
df
val ts
1 1 NA
2 2 NA
3 3 NA
4 4 NA
5 5 NA
6 6 NA
7 7 NA
8 8 NA
9 9 NA
10 10 NA

End(Not run)

file.exists.remote Checks if a local or remote file exists.

Description

A wrapper around a bash script. Works with local files too if remote="".

Usage

file.exists.remote(file, remote = "")

Arguments

file File path.

remote Remote machine specification for ssh, in format such as user@server that does
not require interactive password entry. For local execution, pass an empty string
"" (default).

Value

TRUE or FALSE indicating whether the file exists.

Examples

Not run:
file.exists.remote("~/myfile.csv", remote = "me@myserver")
[1] TRUE

End(Not run)

4 mkdir.remote

mem.usage Measure the resident memory usage of a process.

Description

Returns the memory usage in KB of a process with the specified process id. By default, returns the
memory usage of the current R process. This can be used to measure and log the memory usage of
the R process during script execution.

Usage

mem.usage(pid = Sys.getpid())

Arguments

pid Process ID (default is the current process id).

Value

The resident memory usage in KB.

Examples

Not run:
mem.usage()
[1] 37268

End(Not run)

mkdir.remote Creates a remote directory with the specified group ownership and
permissions.

Description

If the directory already exists, attempts to set the group ownership to the user.group. The allowed
group permissions are one of c("g+rwx", "g+rx", "go-w", "go-rwx"), or "-". The value "-"
means "don’t change permissions".

Usage

mkdir.remote(path, user.group = NULL, remote = "",
permissions = c("g+rwx", "g+rx", "go-w", "go-rwx", "-"))

ps.grep.remote 5

Arguments

path Directory path. If using remote, this should be a full path or a path relative to
the user’s home directory.

user.group The user group. If NULL, the default group is used.

remote Remote machine specification for ssh, in format such as user@server that does
not require interactive password entry. For local execution, pass an empty string
"" (default).

permissions The group permissions on the directory. Default is ’rwx’.

Note

This may not work on Windows.

ps.grep.remote Checks for processes running on a local or remote machine.

Description

One of the use cases for this function is to ensure that an R process is already running and not start
another one accidentally.

Usage

ps.grep.remote(grep.string, remote, stop.if.any = FALSE,
stop.if.none = FALSE, count.self = FALSE, ps.options = "aux")

Arguments

grep.string String(s) to check for in ps. If a vector, runs a chain of piped grep commands
for each string.

remote Remote machine specification for ssh, in format such as user@server that does
not require interactive password entry. For local execution, pass an empty string
"" (default).

stop.if.any Stop if any of grep.string is running

stop.if.none Stop if none of grep.string is running

count.self When FALSE, excludes the calling process name from the count, if it gets matched.

ps.options Gives the ability to run different options to ps.

Note

This may not work on Windows.

See Also

run.remote

6 run.remote

Examples

Not run:
Check if Eclipse is running.
ps.grep.remote("Eclipse", remote = "")
[1] TRUE

End(Not run)

run.remote Functions to run commands remotely via ssh and capture output.

Description

run.withwarn - Evaluates the expression (e.g. a function call) and returns the result with additional
atributes:

• num.warnings - number of warnings occured during the evaluation

• last.message - the last warning message

Otherwise, run.withwarn is similar to base::supressWarnings

run.remote - Runs the command locally or remotely using ssh.

Usage

run.withwarn(expr)

run.remote(cmd, remote = "", intern = T, stderr.redirect = T,
verbose = F)

Arguments

expr Expression to be evaluated.

cmd Command to run. If run locally, quotes should be escaped once. If run remotely,
quotes should be escaped twice.

remote Remote machine specification for ssh, in format such as user@server that does
not require interactive password entry. For local execution, pass an empty string
"" (default).

intern Useful for debugging purposes: if there’s an error in the command, the output of
the remote command is lost. Re-running with intern=FALSE causes the output
to be printed to the console. Normally, we want to capture output and return it.

stderr.redirect

When TRUE appends 2>&1 to the command. Generally, one should use that to
capture STDERR output with intern=TRUE, but this should be set to FALSE if
the command manages redirection on its own.

verbose When TRUE prints the command.

run.remote 7

Details

In run.remote the remote commands are enclosed in wrappers that allow to capture output. By
default stderr is redirected to stdout. If there’s a genuine error, e.g., the remote command does
not exist, the output is not captured. In this case, one can see the output by setting intern to
FALSE. However, when the command is run but exits with non-zero code, run.remote intercepts
the generated warning and saves the output.

The remote command will be put inside double quotes twice, so all quotes in cmd must be escaped
twice: \\". However, if the command is not remote, i.e., remote is NULL or empty string, quotes
should be escaped only once.

If the command itself redirects output, the stderr.redirect flag should be set to FALSE.

Value

run.remote returns a list containing the results of the command execution, error codes and mes-
sages.

• cmd.error - flag indicating if a warning was issued because command exited with non-zero
code

• cmd.out - the result of the command execution. If there was no error, this contains the out-
put as a character array, one value per line, see system. If there was an error (as indicated
by cmd.error), this most likely contains the error message from the command itself. The
elapsed.time attribute contains the elapsed time for the command in seconds.

• warn.msg - the warning message when cmd.error is TRUE.

Warnings are really errors here so the error flag is set if there are warnings.

Additionally, cmd.out has the elapsed.time, num.warnings and, if the number of warnings is
greater than zero, last.warning attributes.

Examples

Not run:
Error handling:
remote = ""
command = "ls /abcde"
res <- run.remote(cmd=command, remote=remote)
if (res$cmd.error)
{

stop(paste(paste(res$cmd.out, collapse="\n"), res$warn.msg, sep="\n"))
}
Error: ls: /abcde: No such file or directory
running command 'ls /abcde 2>&1 ' had status 1

Fetching result of a command on a remote server

Get the file size in bytes
res <- run.remote("ls -la myfile.csv | awk '{print \$5;}'", remote = "me@myserver")
res
$cmd.error
[1] FALSE

8 ssh.utils

#
$cmd.out
[1] "42"
attr(,"num.warnings")
[1] 0
attr(,"elapsed.time")
elapsed
1.063
#
$warn.msg
NULL

file.length <- as.integer(res$cmd.out)

End(Not run)

ssh.utils Local and remote system commands with output and error capture.

Description

Package ssh.utils provides utility functions for system command execution, both locally and re-
motely using ssh/scp. The command output is captured and provided to the caller. This functionality
is intended to streamline calling shell commands from R, retrieving and using their output, while
instrumenting the calls with appropriate error handling. NOTE: this first version is limited to unix
with local and remote systems running bash as the default shell.

OS_type

unix

Maintainer

Sergei Izrailev

Copyright

Copyright (C) Collective, Inc.

License

Apache License, Version 2.0, available at http://www.apache.org/licenses/LICENSE-2.0

URL

http://github.com/collectivemedia/ssh.utils

Installation from github

devtools::install_github("collectivemedia/ssh.utils")

ssh.utils 9

Author(s)

Sergei Izrailev

See Also

run.remote, cp.remote, file.exists.remote, mkdir.remote, ps.grep.remote, mem.usage

Index

∗Topic bash
ssh.utils, 8

∗Topic capture
ssh.utils, 8

∗Topic remote
ssh.utils, 8

∗Topic scp
ssh.utils, 8

∗Topic shell
ssh.utils, 8

∗Topic ssh
ssh.utils, 8

∗Topic system
ssh.utils, 8

cp.remote, 2, 9

file.exists.remote, 3, 9

mem.usage, 4, 9
mkdir.remote, 4, 9

ps.grep.remote, 5, 9

run.remote, 6, 9
run.withwarn (run.remote), 6

ssh.utils, 8
ssh.utils-package (ssh.utils), 8
system, 7

10

	cp.remote
	file.exists.remote
	mem.usage
	mkdir.remote
	ps.grep.remote
	run.remote
	ssh.utils
	Index

