library(ssdtools)
library(ggplot2)
The user can also specify a custom distribution (called say dist
) provided the following functions are defined:
ddist(x, par1, par2, log = FALSE)
)pdist(q, par1, par2, lower.tail = TRUE, log.p = FALSE)
)qdist(p, par1, par2, lower.tail = TRUE, log.p = FALSE)
)rdist(n, par1, par2)
)sdist(x)
)An elegant approach using some tidyverse packages is demonstrated below.
library(purrr)
library(tidyr)
library(dplyr)
nest(ssdtools::boron_data, data = c(Chemical, Species, Conc, Units)) %>%
boron_preds <- mutate(
Fit = map(data, ssd_fit_dists, dists = "lnorm"),
Prediction = map(Fit, predict)
%>%
) unnest(Prediction)
The resultant data and predictions can then be plotted as follows.
ssd_plot(boron_data, boron_preds, xlab = "Concentration (mg/L)", ci = FALSE) +
facet_wrap(~Group)
The data can be visualized using a Cullen Frey plot of the skewness and kurtosis.
set.seed(10)
ssd_plot_cf(boron_data)
A fitdists
object can be plotted to display model diagnostics plots for each fit.
plot(boron_dists)