The user can also specify a custom distribution (called say dist
) provided the following functions are defined:
ddist(x, par1, par2, log = FALSE)
)pdist(q, par1, par2, lower.tail = TRUE, log.p = FALSE)
)qdist(p, par1, par2, lower.tail = TRUE, log.p = FALSE)
)rdist(n, par1, par2)
)sdist(x)
)An elegant approach using some tidyverse packages is demonstrated below.
library(purrr)
library(tidyr)
library(dplyr)
boron_preds <- nest(ssdtools::boron_data, data = c(Chemical, Species, Conc, Units)) %>%
mutate(
Fit = map(data, ssd_fit_dists, dists = "lnorm"),
Prediction = map(Fit, predict)
) %>%
unnest(Prediction)
The resultant data and predictions can then be plotted as follows.