
Package ‘sqp’
March 31, 2020

Type Package

Title (Sequential) Quadratic Programming

Version 0.5

Date 2020-03-25

Author Simon Lenau

Maintainer Simon Lenau <lenau@uni-trier.de>

Description Solving procedures for quadratic programming with optional equality and inequality con-
straints, which can be used for by sequential quadratic programming (SQP). Similar to Newton-
Raphson methods in the unconstrained case, sequential quadratic programming solves non-
linear constrained optimization problems by iteratively solving linear approximations of the opti-
mality conditions of such a problem (cf. Powell (1978) <doi:10.1007/BFb0067703>; No-
cedal and Wright (1999, ISBN: 978-0-387-98793-4)). The Hessian matrix in this strategy is com-
monly approximated by the BFGS method in its damped modification proposed by Pow-
ell (1978) <doi:10.1007/BFb0067703>. All methods are implemented in C++ as header-only li-
brary, such that it is easy to use in other packages.

License GPL-3

Imports Rcpp (>= 1.0.0), Matrix, Rdpack

LinkingTo Rcpp, RcppArmadillo, RcppEigen

SystemRequirements C++11, GNU Make

NeedsCompilation yes

RdMacros Rdpack

Encoding UTF-8

RoxygenNote 7.1.0

Repository CRAN

Date/Publication 2020-03-31 13:20:02 UTC

R topics documented:
bfgs_update . 2
qp_solver . 3

Index 7

1

2 bfgs_update

bfgs_update (Damped) BFGS Hessian approximation

Description

BFGS update for appromation of the Hessian matrix (cf. Broyden 1970; Fletcher 1970; Goldfarb
1970; Shanno 1970) in its damped version proposed by Powell (1978). The approximation is based
on first-order information (parameter values & gradients) only.

Usage

bfgs_update(
hessian,
old_y,
new_y,
old_gradient,
new_gradient,
constraint_adjustment = TRUE

)

Arguments

hessian Dense matrix of size N ×N :
Current approximation of the Hessian matrix, which is updated by reference.
Needs to be symmetric positive definite.
A common starting point for the BFGS algorithm is the identity matrix.

old_y, new_y, old_gradient, new_gradient

Numeric vectors of size N:
parameters old_y,new_y and
corresponding gradients old_gradient,new_gradient from previous and current
iteration.

constraint_adjustment

Boolean:
Whether to enforce positive definiteness
(mainly for constrained optimization).

Value

Nothing. Argument ’hessian’ is updated by reference.

References

Broyden CG (1970). “The convergence of a class of double-rank minimization algorithms: 2. The
new algorithm.” IMA journal of applied mathematics, 6(3), 222–231. doi: 10.1093/imamat/6.3.222.

Fletcher R (1970). “A new approach to variable metric algorithms.” The computer journal, 13(3),
317–322. doi: 10.1093/comjnl/13.3.317.

https://doi.org/10.1093/imamat/6.3.222
https://doi.org/10.1093/comjnl/13.3.317

qp_solver 3

Goldfarb D (1970). “A family of variable-metric methods derived by variational means.” Mathe-
matics of computation, 24(109), 23–26. doi: 10.1090/S00255718197002582496.

Powell MJ (1978). “A fast algorithm for nonlinearly constrained optimization calculations.” In
Numerical analysis, 144–157. Springer. doi: 10.1007/BFb0067703.

Shanno DF (1970). “Conditioning of quasi-Newton methods for function minimization.” Mathe-
matics of computation, 24(111), 647–656. doi: 10.1090/S0025571819700274029X.

qp_solver Quadratic optimization solver

Description

Dense & Sparse solvers for linearly constrained quadratic optimization problems (cf. Fletcher 1971;
Nocedal and Wright 1999; Powell 1978; Wilson 1963).

Usage

qp_solver(
Q,
C_eq = NULL,
C_ineq = NULL,
l = NULL,
t_eq = NULL,
t_ineq = NULL,
x = NULL,
penalty = 1e+10,
tol = 1e-07,
max_iter = 500,
fast = FALSE,
all_slack = FALSE,
debug = FALSE,
solver = 0

)

Arguments

Q, C_eq, C_ineq Dense or sparse numeric matrices:

Q N ×N -matrix:
Quadratic distance (loss) multiplier for the optimization problem.

C_eq Neq ×N -matrix:
Equality constraint multiplier for the Neq equality constraints.

C_ineq Nineq ×N -matrix:
Inequality constraint multiplier for the Nineq inequality constraints.

l, t_eq, t_ineq Numeric vectors:

l Vector of size N :
Linear distance (loss) multiplier for the optimization problem.

https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.1007/BFb0067703
https://doi.org/10.1090/S0025-5718-1970-0274029-X

4 qp_solver

t_eq Vector of size Neq:
Targets for equality constraints.

t_ineq Vector of size Nineq: upper bound for inequality constraints.

x Numeric vector of size N:
Initial values for optimization parameters. Slack variables are only used for
constraints violated by this x, unless all_slack is TRUE.

penalty Numeric value:
Penalty multiplier for slack variables in distance function.

tol Numeric value:
Tolerance for assessing convgergence criteria & constraints.

max_iter Integer value:
Tolerance for assessing convgergence criteria & constraints.

fast Boolean:
Whether to use faster (but lower quality) solver (cf. Armadillo documentation:
fast mode: disable determining solution quality via rcond, disable iterative re-
finement, disable equilibration.

all_slack Boolean:
Whether to use slack variables for all constraints instead of
only for the ones violated by the initial values

debug Boolean:
Whether to print debugging status messages.

solver Solver identification used for optimization in the dense matrix case. Not yet
used.

Details

Sequential quadratic programming relies on iteratively solving linear approximations of the opti-
mality conditions (cf. Kjeldsen 2000; Kuhn and Tucker 1951).

This is equivalent to minimizing a quadratic approximation of the distance function under lin-
earised constraint functions. qp_solver can be used to solve this quadratic sub-problem. Solving a
quadratic problem under linear equalits constraints is equivalent to solving a system of linear equa-
tions. The inequality constraints are handeled by an active set strategy, where the binding ones are
treated as equalities, and the active set is found iteratively (cf. Fletcher 1971; Nocedal and Wright
1999; Powell 1978; Wilson 1963).

Value

A named list with values

x Final values for optimization parameters

lagrange_eq, lagrange_ineq Lagrange multipliers for equality and inequality constraints

slack_eq_positive, slack_eq_negative Positive and negative slack variables for equality constraints

slack_ineq Slack variables for inequalits constraints

lagrange_slack_eq_positive, lagrange_slack_eq_negative, lagrange_slack_ineq Lagrange mul-
tipliers for positivity of slack variables

http://arma.sourceforge.net/docs.html#solve

qp_solver 5

Note

Although there is already an implementation for using the SuperLU sparse solver within this pack-
age, it is currently disabled due to licensing considerations.

Sparse matrices are converted to dense ones in the solving procedure.

Hopefully, this can be updated in the near future.

References

Fletcher R (1971). “A general quadratic programming algorithm.” IMA Journal of Applied Mathe-
matics, 7(1), 76–91. doi: 10.1093/imamat/7.1.76.

Kjeldsen TH (2000). “A contextualized historical analysis of the Kuhn-Tucker theorem in nonlinear
programming: the impact of World War II.” Historia mathematica, 27(4), 331-361. doi: 10.1006/
hmat.2000.2289.

Kuhn HW, Tucker AW (1951). “Nonlinear programming.” In Neyman J (ed.), Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability. http://web.math.ku.
dk/~moller/undervisning/MASO2010/kuhntucker1950.pdf.

Nocedal J, Wright SJ (1999). Numerical optimization. Springer, New York. ISBN 387987932.

Powell MJ (1978). “A fast algorithm for nonlinearly constrained optimization calculations.” In
Numerical analysis, 144–157. Springer. doi: 10.1007/BFb0067703.

Wilson RB (1963). A simplicial algorithm for concave programming. Ph.D. thesis, Harvard Univer-
sity. http://faculty-gsb.stanford.edu/wilson/documents/Asimplicialalgorithmforconcaveprogramming.
pdf.

Examples

set.seed(1)
n <- 5

x_init <- cbind(runif(n))

w <- runif(n)

Q <- 3*diag(n) # minimize sum(3*x^2 + 3*x)
l <- cbind(rep(3,n)) # minimize sum(3*x^2 + 3*x)

C_eq <- rbind(1,w) # constraints: sum(x) == 1, sum(w*x) == 5
C_ineq <- rbind(diag(n),-diag(n)) # constraints: all(x >= -4) & all(x <= 4)

t_eq <- rbind(1,5) # constraints: sum(x) == 1, sum(w*x) == 5
t_ineq <- cbind(rep(c(4,4),each=n)) # constraints: all(x >= -4) & all(x <= 4)

output <- qp_solver(Q = Q,
C_eq = C_eq,
C_ineq = C_ineq,
l=l,
t_eq = t_eq,
t_ineq = t_ineq,

https://doi.org/10.1093/imamat/7.1.76
https://doi.org/10.1006/hmat.2000.2289
https://doi.org/10.1006/hmat.2000.2289
http://web.math.ku.dk/~moller/undervisning/MASO2010/kuhntucker1950.pdf
http://web.math.ku.dk/~moller/undervisning/MASO2010/kuhntucker1950.pdf
https://doi.org/10.1007/BFb0067703
http://faculty-gsb.stanford.edu/wilson/documents/Asimplicialalgorithmforconcaveprogramming.pdf
http://faculty-gsb.stanford.edu/wilson/documents/Asimplicialalgorithmforconcaveprogramming.pdf

6 qp_solver

x = x_init,
tol = 1e-15)

sum(output$x) # constraints: sum(x) == 1
sum(w*output$x) # constraints: sum(w*x) == 5

all(output$x >= -4) # constraints: all(x >= -4)
all(output$x <= 4) # constraints: all(x <= 4)

Index

bfgs_update, 2

qp_solver, 3

7

	bfgs_update
	qp_solver
	Index

