
spsann
Optimization of Sample Configurations Using

Spatial Simulated Annealing

Alessandro Samuel-Rosa∗

April 29, 2019

Contents
1 Introduction 1

2 Getting Started 2
2.1 Package structure . 2
2.2 Planning our R script . 3

3 Optimizing Sample Configurations 4
3.1 Spatial trend estimation . 4
3.2 Variogram estimation . 5
3.3 Spatial interpolation . 5
3.4 User defined objective function 7

1 Introduction
spsann is a package for the optimization of spatial sample configurations using
spatial simulated annealing. It includes multiple objective functions to optimize
spatial sample configurations for various purposes such as variogram estimation,
spatial trend estimation, and spatial interpolation. Most of the objective func-
tions were designed to optimize spatial sample configurations when a) multiple
spatial variables must be modelled, b) we know very little about the model of
spatial variation of those variables, and c) sampling is limited to a single phase.

Spatial simulated annealing is a well known method with widespread use to
solve combinatorial optimization problems in the environmental sciences. This
is mainly due to its robustness against local optima and easiness to implement.
In short, the algorithm consists of randomly changing the spatial location of

∗Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio
de Janeiro, Brasil. alessandrosamuelrosa@gmail.com

1

a candidate sampling point at a time and evaluating if the resulting spatial
sample configuration is better than the previous one with regard to the chosen
quality criterion, i.e. an objective function. Sometimes a worse spatial sample
configuration is accepted so that the algorithm is able to scape from local optima
solutions, i.e. those spatial sample configurations that are too good and appear
to early in the optimization to be true. The chance of accepting a worse spatial
sample configuration reduces as the optimization proceeds so that we can get
very close to the optimum spatial sample configuration.

spsann also combines multiple objective functions so that spatial sample
configurations can be optimized regarding more than one modelling objective.
Combining multiple objective functions gives rise to a multi-objective combina-
torial optimization problem (MOCOP). AMOCOP usually has multiple possible
solutions. spsann finds a single solution by aggregating the objective functions
using the weighted-sum method. With this method the relative importance of
every objective function can be specified at the beginning of the optimization so
that their relative influence on the resulting optimized spatial sample configura-
tion can be different. But this requires the objective functions first to be scaled
to the same approximate range of values. The upper-lower bound approach is
used for that end. In this approach, every objective function is scaled using as
reference the respective minimum and maximum attainable objective function
values, also known as the Pareto minimum and maximum.

2 Getting Started

2.1 Package structure
spsann has a very simple structure composed of three families of functions. The
first is the family of optim functions. These are the functions that include
the spatial simulated annealing algorithm, that is, the functions that perform
the optimization regarding the chosen quality criterion (objective function).
Every optim function is named after the objective function used as quality
criterion. For example, the quality criterion used by optimMSSD is the mean
squared shortest distance (MSSD) between sample and prediction points. As
the example shows, the name of the optim functions is composed of the string
’optim’ followed by a suffix that indicates the respective objective function. In
the example this is ’MSSD’.

There currently are nine function in the optim family: optimACDC, optimCLHS,
optimCORR, optimDIST, optimMSSD, optimMKV, optimPPL, optimSPAN, and optimUSER.
The latter is a general purpose function that enables to user to define his/her
own objective function and plug it in the spatial simulated annealing algorithm.

The second family of functions is the obj family. This family of functions
is used to return the current objective function value of a spatial sample con-
figuration. Like the family of optim functions, the name of the obj functions is
composed of the string ’obj’ plus a suffix that indicates the objective function
being used. For example, objMSSD computes the value of the mean squared

2

shortest distance between sample and prediction points of any spatial sample
configuration. Accordingly, there is a obj function for every optim function,
except for optimUSER. A ninth obj function, objSPSANN, returns the objective
function value at any point of the optimization, irrespective of the objective
function used.

The third family of functions implemented in spsann corresponds to a set of
auxiliary functions. These auxiliary functions can be used for several purposes,
such as organizing the information needed to feed an optim function, retriev-
ing information from an object of class OptimizedSampleConfiguration, i.e.
an object containing an optimized sample configuration, generating plots of
the spatial distribution an optimized sample configuration, and so on. These
functions are named after the purpose for which they have been designed. For
example: countPPL, minmaxPareto, scheduleSPSANN, spJitter, and plot.

Despite spsann functions are classified into three general family of functions
defined according to the purpose for which they were designed, the documen-
tation is constructed with regard to the respective objective functions. For
example, every spsann function that uses as quality criterion the MSSD is doc-
umented in the same documentation page. The exception are the auxiliary
functions, that generally are documented separately.

2.2 Planning our R script
Now that we are acquainted with the structure and naming conventions of sp-
sann, it is time start planning how to prepare and organize our R script that
will be used to optimize a sample configuration. Overall, there are four steps
that need to be followed, i.e. our R script will contain four main sections (see
below).

The first thing to do after we decide upon the objective function that will
be used to optimize our sample configuration is to load and pre-process all the
data required by the chosen objective function. This step can be time consuming
depending on the complexity of the optimization problem, on the quality of the
existing data for the problem at hand, and on the requirements of the chosen
objective function.

OPTIMIZING A SAMPLE CONFIGURATION IN FOUR STEPS
Step 1. Load and pre-process the data
...
Step 2. Set control parameters
...
Step 3. Execute the simulated annealing algorithm
...
... Be prepared to wait!!!
...
Step 4. Evaluate the optimized sample configuration
...

3

The next step consists of setting the parameters that control the spatial
simulated annealing algorithm. This usually requires an element of trial-and-
error. As such, it will likely take longer for a less experienced user to set the
appropriate control parameters.

The third step consists of executing the spatial simulated annealing algo-
rithm with the chosen objective function. Depending on the complexity of the
optimization problem and on the processing capacity of the computer, the exe-
cution can last from minutes to several hours or even days. Thus, we strongly
advise the user to first evaluate if the installed processing capacity is enough to
solve the optimization problem within a reasonable time.

Finally, with the optimized sample configuration at hand, we need to eval-
uate if it meets all our requirements. This can be done using the information
returned by the spatial simulated annealing algorithm, plotting the optimized
sample configuration, or any other means that the user might find useful.

3 Optimizing Sample Configurations

3.1 Spatial trend estimation
Our first example is about the optimization of sample configurations for spatial
trend identification and estimation. A objective function is defined so that the
sample reproduces the marginal distribution of the covariates.

Load and pre-process the data
data(meuse.grid, package = "sp")
boundary <- meuse.grid
sp::coordinates(boundary) <- c("x", "y")
sp::gridded(boundary) <- TRUE
boundary <- rgeos::gUnaryUnion(as(boundary, "SpatialPolygons"))
candi <- meuse.grid[, 1:2]
covars <- meuse.grid[, 6:7]

Set control parameters
schedule <- scheduleSPSANN(initial.temperature = 0.5)
set.seed(2001)

Execute the simulated annealing algorithm
res <- optimDIST(

points = 30, candi = candi, covars = covars, use.coords = TRUE,
schedule = schedule, plotit = TRUE, boundary = boundary)

Evaluate the optimized sample configuration
objSPSANN(res)
objDIST(

points = res, candi = candi, covars = covars, use.coords = TRUE)

4

plot(res, boundary = boundary)

3.2 Variogram estimation
The second example shows the optimization of sample configurations for var-
iogram identification and estimation using an objective function proposed in
the 1980s. It consists of aiming at a uniform distribution of point-pairs per
lag-distance class.

Load and pre-process the data
data(meuse.grid, package = "sp")
boundary <- meuse.grid
sp::coordinates(boundary) <- c("x", "y")
sp::gridded(boundary) <- TRUE
boundary <- rgeos::gUnaryUnion(as(boundary, "SpatialPolygons"))
candi <- meuse.grid[, 1:2]

Set control parameters
schedule <- scheduleSPSANN(initial.temperature = 500)
set.seed(2001)

Execute the simulated annealing algorithm
res <- optimPPL(

points = 30, candi = candi, pairs = TRUE, schedule = schedule,
plotit = TRUE, boundary = boundary)

Evaluate the optimized sample configuration
objSPSANN(res)
objPPL(points = res, pairs = TRUE, candi = candi)
countPPL(points = res, candi = candi, pairs = TRUE)
plot(res, boundary = boundary)

3.3 Spatial interpolation
For the sake of spatial interpolation, the third example with explore an objective
function that aims at minimizing the mean squared shortest distance between
sample points and prediction points. The difference here is that the optimization
is performed using a greedy algorithm.

Load and pre-process the data
data(meuse.grid, package = "sp")
boundary <- meuse.grid
sp::coordinates(boundary) <- c("x", "y")
sp::gridded(boundary) <- TRUE

5

boundary <- rgeos::gUnaryUnion(as(boundary, "SpatialPolygons"))
candi <- meuse.grid[, 1:2]

Set control parameters
schedule <- scheduleSPSANN(

initial.acceptance = 0, initial.temperature = 0.01)
set.seed(2001)

Execute the simulated annealing algorithm
res <- optimMSSD(

points = 30, candi = candi, schedule = schedule, plotit = TRUE,
boundary = boundary)

Evaluate the optimized sample configuration
objSPSANN(res)
objMSSD(candi = candi, points = res)
plot(res, boundary = boundary)

A different objective function can be used to optimize our sample configu-
ration if we know the form of the model of spatial variation that will be used
for spatial interpolation. In this case the goal could be to minimize the mean
universal kriging variance.

Load and pre-process the data
data(meuse.grid, package = "sp")
boundary <- meuse.grid
sp::coordinates(boundary) <- c("x", "y")
sp::gridded(boundary) <- TRUE
boundary <- rgeos::gUnaryUnion(as(boundary, "SpatialPolygons"))
candi <- meuse.grid[, 1:2]
covars <- as.data.frame(meuse.grid)

Set control parameters
vgm <- gstat::vgm(

psill = 10, model = "Exp", range = 500, nugget = 8)
schedule <- scheduleSPSANN(initial.temperature = 10)
set.seed(2001)

Execute the simulated annealing algorithm
res <- optimMKV(

points = 30, candi = candi, covars = covars, vgm = vgm,
eqn = z ~ soil, plotit = TRUE, boundary = boundary,
schedule = schedule)

Evaluate the optimized sample configuration

6

objSPSANN(res)
objMKV(

points = res, candi = candi, covars = covars,
eqn = z ~ soil, vgm = vgm)

plot(res, boundary = boundary)

3.4 User defined objective function
The user can define her/his own objective function and plug it in a general pur-
pose function implemented in spsann. Let us see an example when an objective
function is defined so that the sample will have all points forming point-pairs
at all lag-distance classes.

Load and pre-process the data
data(meuse.grid, package = "sp")
boundary <- meuse.grid
sp::coordinates(boundary) <- c("x", "y")
sp::gridded(boundary) <- TRUE
boundary <- rgeos::gUnaryUnion(as(boundary, "SpatialPolygons"))
candi <- meuse.grid[, 1:2]

Set control parameters
schedule <- scheduleSPSANN(

initial.temperature = 30, x.max = 1540, y.max = 2060,
x.min = 0, y.min = 0, cellsize = 40)

objUSER <- function (points, lags, n_lags, n_pts) {
dm <- SpatialTools::dist1(points[, 2:3])
ppl <- vector()
for (i in 1:n_lags) {

n <- which(dm > lags[i] & dm <= lags[i + 1], arr.ind = TRUE)
ppl[i] <- length(unique(c(n)))

}
distri <- rep(n_pts, n_lags)
res <- sum(distri - ppl)

}
lags <- seq(1, 1000, length.out = 10)
set.seed(2001)

Execute the simulated annealing algorithm
res <- optimUSER(

points = 30, fun = objUSER, lags = lags, n_lags = 9,
n_pts = 10, candi = candi, schedule = schedule,
plotit = TRUE, boundary = boundary)

7

Evaluate the optimized sample configuration
objSPSANN(res)
countPPL(res, candi = candi, lags = lags)
plot(res, boundary = boundary)

library(magrittr)
#
Load existing sampling grid
data(meuse, package = "sp")
meuse <- sf::st_as_sf(meuse, coords = c('x', 'y'))
#
Set control parameters
bb <- sf::st_bbox(meuse)
x.max <- diff(bb[c('xmin', 'xmax')])
y.max <- diff(bb[c('ymin', 'ymax')])
schedule <-
spsann::scheduleSPSANN(
initial.temperature = 100000, chains = 500,
x.max = x.max, y.max = y.max, x.min = 0, y.min = 0,
cellsize = 0)
#
Execute the simulated annealing algorithm
n <- round(nrow(meuse) / 4)
res <- spsann::optimMSSD(
points = n,
candi = sf::st_coordinates(meuse) %>% `colnames<-`(c('x', 'y')),
schedule = schedule, plotit = TRUE)

8

	Introduction
	Getting Started
	Package structure
	Planning our R script

	Optimizing Sample Configurations
	Spatial trend estimation
	Variogram estimation
	Spatial interpolation
	User defined objective function

