Package ‘spsann’

April 29, 2019
Type Package

Title Optimization of Sample Configurations using Spatial Simulated
Annealing

Version 2.2.0
Date 2019-04-28

Description
Methods to optimize sample configurations using spatial simulated annealing. Multiple objective
functions are implemented for various purposes, such as variogram estimation, spatial trend esti-
mation
and spatial interpolation. A general purpose spatial simulated annealing function en-
ables the user to
define his/her own objective function. Solutions for augmenting existing sample configura-
tions and solving
multi-objective optimization problems are available as well.

License GPL (>=2)

Imports methods, pedometrics, Rcpp, sp, SpatialTools
Suggests gstat, tcltk, knitr

LinkingTo Rcpp

Encoding UTF-8

RoxygenNote 6.1.1

VignetteBuilder knitr

URL https://github.com/samuel-rosa/spsann/

BugReports https://github.com/samuel-rosa/spsann/issues/
Language en-GB
NeedsCompilation yes
Author Alessandro Samuel-Rosa [aut, cre]
(<https://orcid.org/0000-0003-0877-1320>),
Lucia Helena Cunha dos Anjos [ths]

(<https://orcid.org/0000-0003-0063-3521>),
Gustavo de Mattos Vasques [ths],

https://github.com/samuel-rosa/spsann/
https://github.com/samuel-rosa/spsann/issues/

2 spsann-package

Gerard B M Heuvelink [ths] (<https://orcid.org/0000-0003-0959-9358>),
Dick Brus [ctb] (<https://orcid.org/0000-0003-2194-4783>),

Richard Murray Lark [ctb] (<https://orcid.org/0000-0003-2571-8521>),
Edzer Pebesma [ctb] (<https://orcid.org/0000-0001-8049-7069>),

Jon Skoien [ctb],

Joshua French [ctb],

Pierre Roudier [ctb]

Maintainer Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>
Repository CRAN
Date/Publication 2019-04-29 12:20:03 UTC

R topics documented:

SPSAnNN-package 2
minmaxPareto 5
objSPSANN e 8
optimACDC e e 8
optimCLHS e e 11
optimCORR e 15
optimDIST 18
optimMKYV . . e 21
optimMSSDo 23
optimPPL e 26
optimSPAN L e e 30
optimUSER e 33
plot.OptimizedSampleConfiguration 36
scheduleSPSANN e 37
SPIItter e e e 38

Index 42

spsann-package The spsann Package
Description

Optimization of sample configurations using spatial simulated annealing

Introduction

spsann is a package for the optimization of spatial sample configurations using spatial simulated
annealing. It includes multiple objective functions to optimize spatial sample configurations for
various purposes such as variogram estimation, spatial trend estimation, and spatial interpolation.
Most of the objective functions were designed to optimize spatial sample configurations when a)
multiple spatial variables must be modelled, b) we know very little about the model of spatial
variation of those variables, and c) sampling is limited to a single phase.

spsann-package 3

Spatial simulated annealing is a well known method with widespread use to solve combinatorial
optimization problems in the environmental sciences. This is mainly due to its robustness against
local optima and easiness to implement. In short, the algorithm consists of randomly changing
the spatial location of a candidate sampling point at a time and evaluating if the resulting spatial
sample configuration is better than the previous one with regard to the chosen quality criterion,
i.e. an objective function. Sometimes a worse spatial sample configuration is accepted so that the
algorithm is able to scape from local optima solutions, i.e. those spatial sample configurations that
are too good and appear to early in the optimization to be true. The chance of accepting a worse
spatial sample configuration reduces as the optimization proceeds so that we can get very close to
the optimum spatial sample configuration.

spsann also combines multiple objective functions so that spatial sample configurations can be
optimized regarding more than one modelling objective. Combining multiple objective functions
gives rise to a multi-objective combinatorial optimization problem (MOCOP). A MOCOP usually
has multiple possible solutions. spsann finds a single solution by aggregating the objective func-
tions using the weighted-sum method. With this method the relative importance of every objective
function can be specified at the beginning of the optimization so that their relative influence on
the resulting optimized spatial sample configuration can be different. But this requires the objec-
tive functions first to be scaled to the same approximate range of values. The upper-lower bound
approach is used for that end. In this approach, every objective function is scaled using as refer-
ence the respective minimum and maximum attainable objective function values, also known as the
Pareto minimum and maximum.

Package Structure

spsann has a very simple structure composed of three families of functions. The first is the family
of optim functions. These are the functions that include the spatial simulated annealing algorithm,
that is, the functions that perform the optimization regarding the chosen quality criterion (objective
function). Every optim function is named after the objective function used as quality criterion. For
example, the quality criterion used by optimMSSD is the mean squared shortest distance (MSSD)
between sample and prediction points. As the example shows, the name of the optim functions is
composed of the string 'optim' followed by a suffix that indicates the respective objective function.
In the example this is '"MSSD".

There currently are nine function in the optim family: optimACDC, optimCLHS, optimCORR, optimDIST,
optimMSSD, optimMKV, optimPPL, optimSPAN, and optimUSER. The latter is a general purpose func-
tion that enables to user to define his/her own objective function and plug it in the spatial simulated
annealing algorithm.

The second family of functions is the obj family. This family of functions is used to return the cur-
rent objective function value of a spatial sample configuration. Like the family of optim functions,
the name of the obj functions is composed of the string 'obj' plus a suffix that indicates the objec-
tive function being used. For example, objMSSD computes the value of the mean squared shortest
distance between sample and prediction points of any spatial sample configuration. Accordingly,
there is a obj function for every optim function, except for optimUSER. A ninth obj function,
objSPSANN, returns the objective function value at any point of the optimization, irrespective of the
objective function used.

The third family of functions implemented in spsann corresponds to a set of auxiliary functions.
These auxiliary functions can be used for several purposes, such as organizing the information
needed to feed an optim function, retrieving information from an object of class OptimizedSampleConfiguration,

4 spsann-package

i.e. an object containing an optimized sample configuration, generating plots of the spatial distri-
bution an optimized sample configuration, and so on. These functions are named after the purpose
for which they have been designed. For example: countPPL, minmaxPareto, scheduleSPSANN,
spJitter, and plot.

Despite spsann functions are classified into three general family of functions defined according
to the purpose for which they were designed, the documentation is constructed with regard to the
respective objective functions. For example, every spsann function that uses as quality criterion the
MSSD is documented in the same documentation page. The exception are the auxiliary functions,
that generally are documented separately.

Support

spsann was initially developed as part of the PhD research project entitled ‘Contribution to the
Construction of Models for Predicting Soil Properties’, developed by Alessandro Samuel-Rosa un-
der the supervision of Liicia Helena Cunha dos Anjos <lanjos@ufrrj.br> (Universidade Federal
Rural do Rio de Janeiro, Brazil), Gustavo de Mattos Vasques <gustavo.vasques@embrapa.br>
(Embrapa Solos, Brazil), and Gerard B. M. Heuvelink <gerard.heuvelink@wur.nl> (ISRIC —
World Soil Information, the Netherlands). The project was supported from March/2012 to Febru-
ary/2016 by the CAPES Foundation, Ministry of Education of Brazil, and the CNPq Foundation,
Ministry of Science and Technology of Brazil.

Contributors

Some of the solutions used to build spsann were found in the source code of other R-packages

and scripts developed and published by other researchers. For example, the original skeleton of the

optimization functions was adopted from the intamapInteractive package with the approval of the

package authors, Edzer Pebesma <edzer . pebesma@uni-muenster.de>and Jon Skoien <jon.skoien@gmail.com>.
The current skeleton is based on the later adoption of several solutions implemented in the script

developed and published by Murray Lark <mlark@bgs.ac.uk> as part of a short course (‘Com-

putational tools to optimize spatial sampling’) offered for the first time at the 2015 EGU General

Assembly in Vienna, Austria.

A few small solutions were adopted from the packages SpatialTools, authored by Joshua French

<joshua. french@ucdenver.edu>, clhs, authored by Pierre Roudier <roudierp@landcareresearch.co.nz>,
and spcosa, authored by Dennis Walvoort <dennis.Walvoort@wur.nl>, Dick Brus <dick.brus@wur.nl>,
and Jaap de Gruijter <Jaap.degruijter@wur.nl>.

Major conceptual contributions were made by Gerard Heuvelink <gerard.heuvelink@wur.nl>,
Dick Brus <dick.brus@wur.nl>, Murray Lark <mlark@bgs.ac.uk>, and Edzer Pebesma <edzer . pebesma@uni-muenster.

Author(s)

Author and Maintainer: Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>.

https://CRAN.R-project.org/package=clhs

minmaxPareto 5

minmaxPareto Pareto minimum and maximum values

Description
Compute the minimum and maximum attainable values of the objective functions that compose a
multi-objective combinatorial optimization problem.

Usage

minmaxPareto(osc, candi, covars)

Arguments
osc A list of objects of class OptimizedSampleConfiguration (OSC). Each OSC
of the list must be named after the objective function with which it has been
optimized. For example, osc = 1ist(CORR = osc_corr, DIST = osc_dist).
candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"J], the projected x-
coordinates, and [, "y"], the projected y-coordinates.
covars Data frame or matrix with the covariates in the columns.
Details

Multi-objective combinatorial optimization problems: A method of solving a multi-objective
combinatorial optimization problem (MOCOP) is to aggregate the objective functions into a single
utility function. In spsann, the aggregation is performed using the weighted sum method, which
incorporates in the weights the preferences of the user regarding the relative importance of each
objective function.

The weighted sum method is affected by the relative magnitude of the different function values.
The objective functions implemented in spsann have different units and orders of magnitude. The
consequence is that the objective function with the largest values may have a numerical dominance
during the optimization. In other words, the weights may not express the true preferences of the
user, resulting that the meaning of the utility function becomes unclear because the optimization
will favour the objective function which is numerically dominant.

A reasonable solution to avoid the numerical dominance of any objective function is to scale the
objective functions so that they are constrained to the same approximate range of values. Several
function-transformation methods can be used for this end and spsann has four of them available.

The upper-lower-bound approach requires the user to inform the maximum (nadir point) and
minimum (utopia point) absolute function values. The resulting function values will always range
between 0 and 1.

The upper-bound approach requires the user to inform only the nadir point, while the utopia point
is set to zero. The upper-bound approach for transformation aims at equalizing only the upper
bounds of the objective functions. The resulting function values will always be smaller than or
equal to 1.

6 minmaxPareto

In most cases, the absolute maximum and minimum values of an objective function cannot be
calculated exactly. If the user is uncomfortable with guessing the nadir and utopia points, there
an option for using numerical simulations. It consists of computing the function value for many
random system configurations. The mean function value obtained over multiple simulations is
used to set the nadir point, while the the utopia point is set to zero. This approach is similar to the
upper-bound approach, but the function values will have the same orders of magnitude only at the
starting point of the optimization. Function values larger than one are likely to occur during the
optimization. We recommend the user to avoid this approach whenever possible because the effect
of the starting configuration on the optimization as a whole usually is insignificant or arbitrary.

The upper-lower-bound approach with the minimum and maximum attainable values of the ob-
jective functions that compose the MOCOP, also known as the Pareto minimum and maximum
values, is the most elegant solution to scale the objective functions. However, it is the most time
consuming. It works as follows:

1. Optimize a sample configuration with respect to each objective function that composes the
MOCOP;

2. Compute the function value of every objective function that composes the MOCOP for every
optimized sample configuration;

3. Record the minimum and maximum absolute function values attained for each objective func-
tion that composes the MOCOP — these are the Pareto minimum and maximum.

For example, consider ACDC, a MOCOP composed of two objective functions: CORR and
DIST. The minimum absolute attainable value of CORR is obtained when the sample configu-
ration is optimized with respect to only CORR, i.e. when the evaluator and generator objective
functions are the same (see the intersection between the second line and second column in the
table below). This is the Pareto minimum of CORR. It follows that the maximum absolute at-
tainable value of CORR is obtained when the sample configuration is optimized with regard to
only DIST, i.e. when the evaluator function is difference from the generator function (see the
intersection between the first row and the second column in the table below). This is the Pareto
maximum of CORR. The same logic applies for finding the Pareto minimum and maximum of

DIST.
Evaluator Generator
DIST CORR
DIST 0.5 8.6
CORR 64 0.3
Value

A data frame with the Pareto minimum and maximum values.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Arora, J. Introduction to optimum design. Waltham: Academic Press, p. 896, 2011.

minmaxPareto 7

Marler, R. T.; Arora, J. S. Survey of multi-objective optimization methods for engineering. Struc-
tural and Multidisciplinary Optimization, v. 26, p. 369-395, 2004.

Marler, R. T.; Arora, J. S. Function-transformation methods for multi-objective optimization. Engi-
neering Optimization, v. 37, p. 551-570, 2005.

Marler, R. T.; Arora, J. S. The weighted sum method for multi-objective optimization: new insights.
Structural and Multidisciplinary Optimization, v. 41, p. 853-862, 2009.

See Also

optimACDC, SPAN

Examples

Not run:

This example takes more than 5 seconds
require(sp)

data(meuse.grid)

candi <- meuse.grid[, 1:2]

covars <- meuse.grid[, c(1, 2)]

CORR
schedule <- scheduleSPSANN(initial.acceptance = @.1, chains = 1,
x.max = 1540, y.max = 2060, x.min = 0,
y.min = @, cellsize = 40)
set.seed(2001)
osc_corr <- optimCORR(points = 1@, candi = candi, covars = covars,
schedule = schedule)

DIST

set.seed(2001)

osc_dist <- optimDIST(points = 10, candi = candi, covars = covars,
schedule = schedule)

PPL
set.seed(2001)
osc_ppl <- optimPPL(points = 1@, candi = candi, schedule = schedule)

MSSD
set.seed(2001)
osc_mssd <- optimMSSD(points = 10, candi = candi, schedule = schedule)

Pareto
pareto <- minmaxPareto(osc = list(DIST = osc_dist, CORR = osc_corr,
PPL = osc_ppl, MSSD = osc_mssd),
candi = candi, covars = covars)
pareto

End(Not run)

8 optimACDC

objSPSANN Auxiliary tools

Description

Aucxiliary tools used in the optimization of sample configurations using spatial simulated annealing.

Usage

0bjSPSANN(osc, at = "end”, n = 1)

Arguments
osc Object of class OptimizedSampleConfiguration.
at Point of the optimization at which the energy state should be returned. Available
options: "start”, for the start, and "end”, for the end of the optimization.
Defaults to at = "end".
n Number of instances that should be returned. Defaultston = 1.
Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

optimACDC Optimization of sample configurations for spatial trend identification
and estimation (II)

Description

Optimize a sample configuration for spatial trend identification and estimation. An utility function
U is defined so that the sample reproduces the bivariate association/correlation between the covari-
ates, as well as their marginal distribution (ACDC). The utility function is obtained aggregating two
objective functions: CORR and DIST.

Usage

optimACDC(points, candi, covars, strata.type = "area"”,
use.coords = FALSE, schedule = scheduleSPSANN(), plotit = FALSE,
track = FALSE, boundary, progress = "txt", verbose = FALSE,
weights, nadir = list(sim = NULL, seeds = NULL, user = NULL, abs =
NULL), utopia = list(user = NULL, abs = NULL))

objACDC(points, candi, covars, strata.type = "area”,
use.coords = FALSE, weights, nadir = list(sim = NULL, seeds = NULL,
user = NULL, abs = NULL), utopia = list(user = NULL, abs = NULL))

optimACDC

Arguments

points

candi

covars

strata.type

use.coords

schedule

plotit

track

boundary

progress

verbose

Integer value, integer vector, data frame or matrix, or list.

* Integer value. The number of points. These points will be randomly sam-
pled from candi to form the starting sample configuration.

* Integer vector. The row indexes of candi that correspond to the points that
form the starting sample configuration. The length of the vector defines the
number of points.

* Data frame or matrix. An object with three columns in the following order:
[, "id"1, the row indexes of candi that correspond to each point, [, "x"],
the projected x-coordinates, and [, "y"], the projected y-coordinates.

* List. An object with two named sub-arguments: fixed, a data frame or
matrix with the projected x- and y-coordinates of the existing sample con-
figuration — kept fixed during the optimization —, and free, an integer value
defining the number of points that should be added to the existing sample
configuration — free to move during the optimization.

Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"J], the projected x-
coordinates, and [, "y"1], the projected y-coordinates.

Data frame or matrix with the covariates in the columns.

(Optional) Character value setting the type of stratification that should be used to
create the marginal sampling strata (or factor levels) for the numeric covariates.
Available options are "area”, for equal-area, and "range”, for equal-range.
Defaults to strata.type = "area”.

(Optional) Logical value. Should the spatial x- and y-coordinates be used as
covariates? Defaults to use.coords = FALSE.

List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

(Optional) Logical for plotting the optimization results, including a) the progress
of the objective function, and b) the starting (gray circles) and current sample
configuration (black dots), and the maximum jitter in the x- and y-coordinates.
The plots are updated at each 10 jitters. When adding points to an existing
sample configuration, fixed points are indicated using black crosses. Defaults to
plotit = FALSE.

(Optional) Logical value. Should the evolution of the energy state be recorded
and returned along with the result? If track = FALSE (the default), only the
starting and ending energy states are returned along with the results.

(Optional) SpatialPolygon defining the boundary of the spatial domain. If miss-
ing and plotit = TRUE, boundary is estimated from candi.

(Optional) Type of progress bar that should be used, with options "txt", for a
text progress bar in the R console, "tk", to put up a Tk progress bar widget, and
NULL to omit the progress bar. A Tk progress bar widget is useful when using
parallel processors. Defaults to progress = "txt".

(Optional) Logical for printing messages about the progress of the optimization.
Defaults to verbose = FALSE.

10 optimACDC

weights List with named sub-arguments. The weights assigned to each one of the objec-
tive functions that form the multi-objective combinatorial optimization problem.
They must be named after the respective objective function to which they apply.
The weights must be equal to or larger than 0 and sum to 1.

nadir List with named sub-arguments. Three options are available: 1) sim — the num-
ber of simulations that should be used to estimate the nadir point, and seeds —
vector defining the random seeds for each simulation; 2) user — a list of user-
defined nadir values named after the respective objective functions to which they
apply; 3) abs — logical for calculating the nadir point internally (experimental).

utopia List with named sub-arguments. Two options are available: 1) user — a list of
user-defined values named after the respective objective functions to which they
apply; 2) abs —logical for calculating the utopia point internally (experimental).

Details

The help page of minmaxPareto contains details on how spsann solves the multi-objective com-
binatorial optimization problem of finding a globally optimum sample configuration that meets
multiple, possibly conflicting, sampling objectives.

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Visit the help pages of optimCORR and optimDIST to see the details of the objective functions that
compose ACDC.

Value

optimACDC returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

objACDC returns a numeric value: the energy state of the sample configuration — the objective
function value.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

This function was derived with modifications from the method known as the conditioned Latin
Hypercube sampling originally proposed by Minasny and McBratney (2006), and implemented in
the R-package clhs by Pierre Roudier.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

https://CRAN.R-project.org/package=clhs

optimCLHS 11

References

Minasny, B.; McBratney, A. B. A conditioned Latin hypercube method for sampling in the presence
of ancillary information. Computers & Geosciences, v. 32, p. 1378-1388, 2006.

Minasny, B.; McBratney, A. B. Conditioned Latin Hypercube Sampling for calibrating soil sensor
data to soil properties. Chapter 9. Viscarra Rossel, R. A.; McBratney, A. B.; Minasny, B. (Eds.)
Proximal Soil Sensing. Amsterdam: Springer, p. 111-119, 2010.

Roudier, P.; Beaudette, D.; Hewitt, A. A conditioned Latin hypercube sampling algorithm incorpo-
rating operational constraints. 5th Global Workshop on Digital Soil Mapping. Sydney, p. 227-231,
2012.

See Also

cramer

Examples

data(meuse.grid, package = "sp")
candi <- meuse.grid[1:1000, 1:2]
nadir <- list(sim = 10, seeds = 1:10)
utopia <- list(user = 1list(DIST = @, CORR = 0))
covars <- meuse.grid[1:1000, 5]
schedule <- scheduleSPSANN(
chains = 1, initial.temperature = 5, x.max = 1540, y.max = 2060,
x.min = @, y.min = @, cellsize = 40)
set.seed(2001)
res <- optimACDC(
points = 10, candi = candi, covars = covars, nadir = nadir, use.coords = TRUE,
utopia = utopia, schedule = schedule, weights = list(DIST = 1/2, CORR = 1/2))
objSPSANN(res) - objACDC(
points = res, candi = candi, covars = covars, use.coords = TRUE, nadir = nadir,
utopia = utopia, weights = list(DIST = 1/2, CORR = 1/2))

optimCLHS Optimization of sample configurations for spatial trend identification
and estimation (1V)

Description

Optimize a sample configuration for spatial trend identification and estimation using the method
proposed by Minasny and McBratney (2006), known as the conditioned Latin hypercube sampling.
An utility function U is defined so that the sample reproduces the marginal distribution and corre-
lation matrix of the numeric covariates, and the class proportions of the factor covariates (CLHS).
The utility function is obtained aggregating three objective functions: O1, 02, and O3.

12 optimCLHS
Usage
optimCLHS(points, candi, covars, use.coords = FALSE,
clhs.version = c("paper”, "fortran", "update”),
schedule = scheduleSPSANN(), plotit = FALSE, track = FALSE,

boundary, progress = "txt", verbose = FALSE, weights)

objCLHS(points, candi, covars, use.coords = FALSE,
clhs.version = c("paper”, "fortran", "update”), weights)

Arguments

points

candi

covars

use.coords

clhs.version

schedule

plotit

Integer value, integer vector, data frame or matrix, or list.

* Integer value. The number of points. These points will be randomly sam-
pled from candi to form the starting sample configuration.

* Integer vector. The row indexes of candi that correspond to the points that
form the starting sample configuration. The length of the vector defines the
number of points.

* Data frame or matrix. An object with three columns in the following order:
[, "id"], the row indexes of candi that correspond to each point, [, "x"1],
the projected x-coordinates, and [, "y"], the projected y-coordinates.

e List. An object with two named sub-arguments: fixed, a data frame or
matrix with the projected x- and y-coordinates of the existing sample con-
figuration — kept fixed during the optimization —, and free, an integer value
defining the number of points that should be added to the existing sample
configuration — free to move during the optimization.

Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"1], the projected x-
coordinates, and [, "y"1, the projected y-coordinates.

Data frame or matrix with the covariates in the columns.

(Optional) Logical value. Should the spatial x- and y-coordinates be used as
covariates? Defaults to use.coords = FALSE.

(Optional) Character value setting the CLHS version that should be used. Avail-
able options are: "paper”, for the formulations of O1, 02, and O3 as presented
in the original paper by Minasny and McBratney (2006); "fortran”, for the
formulations of O1 and O3 that include a scaling factor as implemented in the
late Fortran code by Budiman Minasny (ca. 2015); and "update”, for formula-
tions of O1, 02, and O3 that include the modifications proposed the authors of
this package in 2018 (see below). Defaults to clhs.version = "paper”.

List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

(Optional) Logical for plotting the optimization results, including a) the progress
of the objective function, and b) the starting (gray circles) and current sample
configuration (black dots), and the maximum jitter in the x- and y-coordinates.
The plots are updated at each 10 jitters. When adding points to an existing
sample configuration, fixed points are indicated using black crosses. Defaults to
plotit = FALSE.

optimCLHS 13

track (Optional) Logical value. Should the evolution of the energy state be recorded
and returned along with the result? If track = FALSE (the default), only the
starting and ending energy states are returned along with the results.

boundary (Optional) SpatialPolygon defining the boundary of the spatial domain. If miss-
ing and plotit = TRUE, boundary is estimated from candi.

progress (Optional) Type of progress bar that should be used, with options "txt", for a
text progress bar in the R console, "tk", to put up a Tk progress bar widget, and
NULL to omit the progress bar. A Tk progress bar widget is useful when using
parallel processors. Defaults to progress = "txt".

verbose (Optional) Logical for printing messages about the progress of the optimization.
Defaults to verbose = FALSE.

weights List with named sub-arguments. The weights assigned to each one of the objec-
tive functions that form the multi-objective combinatorial optimization problem.
They must be named after the respective objective function to which they apply.
The weights must be equal to or larger than 0 and sum to 1.

Details

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Marginal sampling strata: Reproducing the marginal distribution of the numeric covariates
depends upon the definition of marginal sampling strata. Equal-area marginal sampling strata
are defined using the sample quantiles estimated with quantile using a continuous function
(type = 7), that is, a function that interpolates between existing covariate values to estimate
the sample quantiles. This is the procedure implemented in the original method of Minasny and
McBratney (2006), which creates breakpoints that do not occur in the population of existing co-
variate values. Depending on the level of discretization of the covariate values, that is, how many
significant digits they have, this can create repeated breakpoints, resulting in empty marginal
sampling strata. The number of empty marginal sampling strata will ultimately depend on the
frequency distribution of the covariate and on the number of sampling points. The effect of these
features on the spatial modelling outcome still is poorly understood.

Correlation between numeric covariates: The correlation between two numeric covariates is
measured using the sample Pearson’s r, a descriptive statistic that ranges from -1 to +1. This
statistic is also known as the sample linear correlation coefficient. The effect of ignoring the
correlation among factor covariates and between factor and numeric covariates on the spatial
modelling outcome still is poorly understood.

Multi-objective combinatorial optimization: A method of solving a multi-objective combina-
torial optimization problem (MOCOP) is to aggregate the objective functions into a single utility
function U. In the spsann package, as in the original implementation of the CLHS by Minasny
and McBratney (2006), the aggregation is performed using the weighted sum method, which
uses weights to incorporate the a priori preferences of the user about the relative importance of
each objective function. When the user has no preference, the objective functions receive equal
weights.

14 optimCLHS

The weighted sum method is affected by the relative magnitude of the different objective function
values. The objective functions implemented in optimCLHS have different units and orders of
magnitude. The consequence is that the objective function with the largest values, generally O1,
may have a numerical dominance during the optimization. In other words, the weights may not
express the true preferences of the user, resulting that the meaning of the utility function becomes
unclear because the optimization will likely favour the objective function which is numerically
dominant.

An efficient solution to avoid numerical dominance is to scale the objective functions so that
they are constrained to the same approximate range of values, at least in the end of the op-
timization. In the original implementation of the CLHS by Minasny and McBratney (2006),
clhs.version = "paper", optimCLHS uses the naive aggregation method, which ignores that
the three objective functions have different units and orders of magnitude. In a 2015 Fortran im-
plementation of the CLHS, clhs.version = "fortran”, scaling factors were included to make
the values of the three objective function more comparable. The effect of ignoring the need to
scale the objective functions, or using arbitrary scaling factors, on the spatial modelling outcome
still is poorly understood. Thus, an updated version of O1, 02, and O3 has been implemented
in the spsann package. The need formulation aim at making the values returned by the objec-
tive functions more comparable among themselves without having to resort to arbitrary scaling
factors. The effect of using these new formulations have not been tested yet.

Value

optimCLHS returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

objCLHS returns a numeric value: the energy state of the sample configuration — the objective
function value.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

The (only?) difference of optimCLHS to the original Fortran implementation of Minasny and
McBratney (2006), and to the clhs function implemented in the former clhs package by Pierre
Roudier, is the annealing schedule.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail . com>

References

Minasny, B.; McBratney, A. B. A conditioned Latin hypercube method for sampling in the presence
of ancillary information. Computers & Geosciences, v. 32, p. 1378-1388, 2006.

Minasny, B.; McBratney, A. B. Conditioned Latin Hypercube Sampling for calibrating soil sensor
data to soil properties. Chapter 9. Viscarra Rossel, R. A.; McBratney, A. B.; Minasny, B. (Eds.)
Proximal Soil Sensing. Amsterdam: Springer, p. 111-119, 2010.

https://CRAN.R-project.org/package=clhs

optimCORR 15

Roudier, P.; Beaudette, D.; Hewitt, A. A conditioned Latin hypercube sampling algorithm incorpo-
rating operational constraints. 5th Global Workshop on Digital Soil Mapping. Sydney, p. 227-231,
2012.

See Also

optimACDC

Examples

data(meuse.grid, package = "sp")

candi <- meuse.grid[1:1000, 1:2]

covars <- meuse.grid[1:1000, 5]

schedule <- scheduleSPSANN(
chains = 1, initial.temperature = 20, x.max = 1540, y.max = 2060,
x.min = @, y.min = @, cellsize = 40)

set.seed(2001)

res <- optimCLHS(
points = 10, candi = candi, covars = covars, use.coords = TRUE,
clhs.version = "fortran”, weights = list(01 = 0.5, 03 = 0.5), schedule = schedule)

0bjSPSANN(res) - objCLHS(
points = res, candi = candi, covars = covars, use.coords = TRUE,
clhs.version = "fortran”, weights = list(01 = 9.5, 03 = 0.5))

optimCORR Optimization of sample configurations for spatial trend identification
and estimation ()

Description

Optimize a sample configuration for spatial trend identification and estimation. A criterion is de-
fined so that the sample reproduces the bivariate association/correlation between the covariates
(CORR).

Usage

optimCORR(points, candi, covars, strata.type = "area”,
use.coords = FALSE, schedule = scheduleSPSANN(), plotit = FALSE,
track = FALSE, boundary, progress = "txt", verbose = FALSE)

objCORR(points, candi, covars, strata.type = "area”,
use.coords = FALSE)

Arguments

points Integer value, integer vector, data frame or matrix, or list.

¢ Integer value. The number of points. These points will be randomly sam-
pled from candi to form the starting sample configuration.

16

candi

covars

strata.type

use.coords

schedule

plotit

track

boundary

progress

verbose

Details

optimCORR

¢ Integer vector. The row indexes of candi that correspond to the points that
form the starting sample configuration. The length of the vector defines the
number of points.

 Data frame or matrix. An object with three columns in the following order:
[, "id"], the row indexes of candi that correspond to each point, [, "x"1,
the projected x-coordinates, and [, "y"], the projected y-coordinates.

* List. An object with two named sub-arguments: fixed, a data frame or
matrix with the projected x- and y-coordinates of the existing sample con-
figuration — kept fixed during the optimization —, and free, an integer value
defining the number of points that should be added to the existing sample
configuration — free to move during the optimization.

Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"], the projected x-
coordinates, and [, "y"1], the projected y-coordinates.

Data frame or matrix with the covariates in the columns.

(Optional) Character value setting the type of stratification that should be used to
create the marginal sampling strata (or factor levels) for the numeric covariates.
Available options are "area”, for equal-area, and "range”, for equal-range.
Defaults to strata.type = "area".

(Optional) Logical value. Should the spatial x- and y-coordinates be used as
covariates? Defaults to use.coords = FALSE.

List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

(Optional) Logical for plotting the optimization results, including a) the progress
of the objective function, and b) the starting (gray circles) and current sample
configuration (black dots), and the maximum jitter in the x- and y-coordinates.
The plots are updated at each 10 jitters. When adding points to an existing
sample configuration, fixed points are indicated using black crosses. Defaults to
plotit = FALSE.

(Optional) Logical value. Should the evolution of the energy state be recorded
and returned along with the result? If track = FALSE (the default), only the
starting and ending energy states are returned along with the results.

(Optional) SpatialPolygon defining the boundary of the spatial domain. If miss-
ing and plotit = TRUE, boundary is estimated from candi.

(Optional) Type of progress bar that should be used, with options "txt", for a
text progress bar in the R console, "tk", to put up a Tk progress bar widget, and
NULL to omit the progress bar. A Tk progress bar widget is useful when using
parallel processors. Defaults to progress = "txt".

(Optional) Logical for printing messages about the progress of the optimization.
Defaults to verbose = FALSE.

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help

page of spJitter.

optimCORR 17

Association/Correlation between covariates: The correlation between two numeric covariates
is measured using the Pearson’s r, a descriptive statistic that ranges from —1 to +1. This statistic
is also known as the linear correlation coefficient.

‘When the set of covariates includes factor covariates, all numeric covariates are transformed into
factor covariates. The factor levels are defined using the marginal sampling strata created from
one of the two methods available (equal-area or equal-range strata).

The association between two factor covariates is measured using the Cramér’s V, a descriptive
statistic that ranges from O to +1. The closer to 41 the Cramér’s V is, the stronger the association
between two factor covariates.

The main weakness of using the Cramér’s V is that, while the Pearson’s r shows the degree and
direction of the association between two covariates (negative or positive), the Cramér’s V only
measures the degree of association (weak or strong). The effect of replacing the Pearson’s r with
the Cramér’s V on the spatial modelling outcome still is poorly understood.

Value

optimCORR returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

objCORR returns a numeric value: the energy state of the sample configuration — the objective
function value.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Cramér, H. Mathematical methods of statistics. Princeton: Princeton University Press, p. 575,
1946.

Everitt, B. S. The Cambridge dictionary of statistics. Cambridge: Cambridge University Press, p.
432, 2006.

See Also

cramer, optimACDC

Examples

data(meuse.grid, package = "sp")
candi <- meuse.grid[1:1000, 1:2]
covars <- meuse.grid[1:1000, 5]

18 optimDIST

schedule <- scheduleSPSANN(
initial.temperature = 5, chains = 1, x.max = 1540, y.max = 2060,
x.min = @, y.min = @, cellsize = 40)

set.seed(2001)

res <- optimCORR(
points = 10, candi = candi, covars = covars, use.coords = TRUE,
schedule = schedule)

objSPSANN(res) - objCORR(
points = res, candi = candi, covars = covars, use.coords = TRUE)

optimDIST Optimization of sample configurations for spatial trend identification
and estimation (1)

Description

Optimize a sample configuration for spatial trend identification and estimation. A criterion is de-
fined so that the sample reproduces the marginal distribution of the covariates (DIST).

Usage

optimDIST(points, candi, covars, strata.type = "area",
use.coords = FALSE, schedule = scheduleSPSANN(), plotit = FALSE,
track = FALSE, boundary, progress = "txt", verbose = FALSE)

objDIST(points, candi, covars, strata.type = "area”,
use.coords = FALSE)

Arguments

points Integer value, integer vector, data frame or matrix, or list.

* Integer value. The number of points. These points will be randomly sam-
pled from candi to form the starting sample configuration.

* Integer vector. The row indexes of candi that correspond to the points that
form the starting sample configuration. The length of the vector defines the
number of points.

 Data frame or matrix. An object with three columns in the following order:
[, "id"], the row indexes of candi that correspond to each point, [, "x"1,
the projected x-coordinates, and [, "y"], the projected y-coordinates.

* List. An object with two named sub-arguments: fixed, a data frame or
matrix with the projected x- and y-coordinates of the existing sample con-
figuration — kept fixed during the optimization —, and free, an integer value
defining the number of points that should be added to the existing sample
configuration — free to move during the optimization.

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"J], the projected x-
coordinates, and [, "y"], the projected y-coordinates.

optimDIST 19

covars Data frame or matrix with the covariates in the columns.

strata.type (Optional) Character value setting the type of stratification that should be used to
create the marginal sampling strata (or factor levels) for the numeric covariates.
Available options are "area”, for equal-area, and "range”, for equal-range.
Defaults to strata.type = "area".

use.coords (Optional) Logical value. Should the spatial x- and y-coordinates be used as
covariates? Defaults to use.coords = FALSE.

schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

plotit (Optional) Logical for plotting the optimization results, including a) the progress
of the objective function, and b) the starting (gray circles) and current sample
configuration (black dots), and the maximum jitter in the x- and y-coordinates.
The plots are updated at each 10 jitters. When adding points to an existing
sample configuration, fixed points are indicated using black crosses. Defaults to
plotit = FALSE.

track (Optional) Logical value. Should the evolution of the energy state be recorded
and returned along with the result? If track = FALSE (the default), only the
starting and ending energy states are returned along with the results.

boundary (Optional) SpatialPolygon defining the boundary of the spatial domain. If miss-
ing and plotit = TRUE, boundary is estimated from candi.

progress (Optional) Type of progress bar that should be used, with options "txt", for a
text progress bar in the R console, "tk", to put up a Tk progress bar widget, and
NULL to omit the progress bar. A Tk progress bar widget is useful when using
parallel processors. Defaults to progress = "txt".

verbose (Optional) Logical for printing messages about the progress of the optimization.
Defaults to verbose = FALSE.

Details

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Marginal distribution of covariates: Reproducing the marginal distribution of the numeric
covariates depends upon the definition of marginal sampling strata. These marginal sampling
strata are also used to define the factor levels of all numeric covariates that are passed together
with factor covariates. Two types of marginal sampling strata can be used: equal-area and equal-
range.

Equal-area marginal sampling strata are defined using the sample quantiles estimated with quantile
using a discontinuous function (type = 3). Using a discontinuous function avoids creating break-
points that do not occur in the population of existing covariate values.

Depending on the level of discretization of the covariate values, quantile produces repeated
breakpoints. A breakpoint will be repeated if that value has a relatively high frequency in the
population of covariate values. The number of repeated breakpoints increases with the number
of marginal sampling strata. Repeated breakpoints result in empty marginal sampling strata. To
avoid this, only the unique breakpoints are used.

20 optimDIST

Equal-range marginal sampling strata are defined by breaking the range of covariate values into
pieces of equal size. Depending on the level of discretization of the covariate values, this method
creates breakpoints that do not occur in the population of existing covariate values. Such break-
points are replaced with the nearest existing covariate value identified using Euclidean distances.
Like the equal-area method, the equal-range method can produce empty marginal sampling strata.
The solution used here is to merge any empty marginal sampling strata with the closest non-empty
marginal sampling strata. This is identified using Euclidean distances as well.

The approaches used to define the marginal sampling strata result in each numeric covariate having
a different number of marginal sampling strata, some of them with different area/size. Because the
goal is to have a sample that reproduces the marginal distribution of the covariate, each marginal
sampling strata will have a different number of sample points. The wanted distribution of the
number of sample points per marginal strata is estimated empirically as the proportion of points
in the population of existing covariate values that fall in each marginal sampling strata.

Value

optimDIST returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

objDIST returns a numeric value: the energy state of the sample configuration — the objective
function value.
Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Hyndman, R. J.; Fan, Y. Sample quantiles in statistical packages. The American Statistician, v. 50,
p- 361-365, 1996.

Everitt, B. S. The Cambridge dictionary of statistics. Cambridge: Cambridge University Press, p.
432, 2006.
See Also

optimACDC

Examples

require(sp)
data(meuse.grid)
candi <- meuse.grid[, 1:2]

optimMKV 21

covars <- meuse.grid[, 5]

schedule <- scheduleSPSANN(initial.temperature = 1, chains =1,
x.max = 1540, y.max = 2060, x.min =
y.min = @, cellsize = 40)

Oy

set.seed(2001)
res <- optimDIST(points = 10, candi = candi, covars = covars,
use.coords = TRUE, schedule = schedule)
objSPSANN(res) -
0bjDIST(points = res, candi = candi, covars = covars, use.coords = TRUE)

optimMKV Optimization of sample configurations for spatial interpolation (II)

Description
Optimize a sample configuration for spatial interpolation with a known linear model. A criterion is
defined so that the sample configuration minimizes the mean or maximum kriging variance (MKYV).
Usage

optimMKV(points, candi, covars, eqn = z ~ 1, vgm, krige.stat = "mean”,
., schedule = scheduleSPSANN(), plotit = FALSE, track = FALSE,
boundary, progress = "txt", verbose = FALSE)

objMKV(points, candi, covars, egqn = z ~ 1, vgm, krige.stat = "mean”,
D)
Arguments
points Integer value, integer vector, data frame or matrix, or list.

* Integer value. The number of points. These points will be randomly sam-
pled from candi to form the starting sample configuration.

* Integer vector. The row indexes of candi that correspond to the points that
form the starting sample configuration. The length of the vector defines the
number of points.

 Data frame or matrix. An object with three columns in the following order:
[, "id"], the row indexes of candi that correspond to each point, [, "x"1,
the projected x-coordinates, and [, "y"], the projected y-coordinates.

e List. An object with two named sub-arguments: fixed, a data frame or
matrix with the projected x- and y-coordinates of the existing sample con-
figuration — kept fixed during the optimization —, and free, an integer value
defining the number of points that should be added to the existing sample
configuration — free to move during the optimization.

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"], the projected x-
coordinates, and [, "y"1], the projected y-coordinates.

covars Data frame or matrix with the covariates in the columns.

22

eqn

vgm

krige.stat

schedule

plotit

track

boundary

progress

verbose

Details

optimMKV

Formula string that defines the dependent variable z as a linear model of the
independent variables contained in covars. Defaults to eqn = z ~ 1, that
is, ordinary kriging. See the argument formula in the function krige for more
information.

Object of class variogramModel. See the argument model in the function krige
for more information.

Character value defining the statistic that should be used to summarize the krig-
ing variance. Available options are "mean” and "max” for the mean and maxi-
mum kriging variance, respectively. Defaults to krige.stat = "mean”.

further arguments passed to krige.

List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

(Optional) Logical for plotting the optimization results, including a) the progress
of the objective function, and b) the starting (gray circles) and current sample
configuration (black dots), and the maximum jitter in the x- and y-coordinates.
The plots are updated at each 10 jitters. When adding points to an existing
sample configuration, fixed points are indicated using black crosses. Defaults to
plotit = FALSE.

(Optional) Logical value. Should the evolution of the energy state be recorded
and returned along with the result? If track = FALSE (the default), only the
starting and ending energy states are returned along with the results.

(Optional) SpatialPolygon defining the boundary of the spatial domain. If miss-
ing and plotit = TRUE, boundary is estimated from candi.

(Optional) Type of progress bar that should be used, with options "txt", for a
text progress bar in the R console, "tk", to put up a Tk progress bar widget, and
NULL to omit the progress bar. A Tk progress bar widget is useful when using
parallel processors. Defaults to progress = "txt".

(Optional) Logical for printing messages about the progress of the optimization.
Defaults to verbose = FALSE.

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help

page of spJitter.

Value

optimMKYV returns an object of class OptimizedSampleConfiguration: the optimized sample con-
figuration with details about the optimization.

objMKV returns a numeric value: the energy state of the sample configuration — the objective function

value.

optimMSSD 23

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

This function is based on the method originally proposed by Heuvelink, Brus and de Gruijter (2006)
and implemented in the R-package intamapInteractive by Edzer Pebesma and Jon Skoien.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail . com>

References

Brus, D. J.; Heuvelink, G. B. M. Optimization of sample patterns for universal kriging of environ-
mental variables. Geoderma. v. 138, p. 86-95, 2007.

Heuvelink, G. B. M.; Brus, D. J.; de Gruijter, J. J. Optimization of sample configurations for digital
mapping of soil properties with universal kriging. In: Lagacherie, P.; McBratney, A. & Voltz, M.
(Eds.) Digital soil mapping - an introductory perspective. Elsevier, v. 31, p. 137-151, 2006.

Examples

Not run:
data(meuse.grid, package = "sp")
candi <- meuse.grid[1:1000, 1:2]
covars <- as.data.frame(meuse.grid)[1:1000,]
vgm <- gstat::vgm(psill = 10, model = "Exp", range = 500, nugget = 8)
schedule <- scheduleSPSANN(
initial.temperature = 10, chains = 1, x.max = 1540, y.max = 2060,
x.min = @, y.min = @, cellsize = 40)
set.seed(2001)
res <- optimMKV(
points = 10, candi = candi, covars = covars, eqn = z ~ dist,
vgm = vgm, schedule = schedule)
0bjSPSANN(res) - objMKV(
points = res, candi = candi, covars = covars, egn = z ~ dist,
vgm = vgm)

End(Not run)

optimMSSD Optimization of sample configurations for spatial interpolation ()

Description

Optimize a sample configuration for spatial interpolation. The criterion used is the mean squared
shortest distance (MSSD) between sample points and prediction points.

24

Usage

optimMSSD

optimMSSD(points, candi, schedule = scheduleSPSANN(), plotit = FALSE,
track = FALSE, boundary, progress = "txt", verbose = FALSE)

objMSSD(points, candi)

Arguments

points

candi

schedule

plotit

track

boundary

progress

verbose

Integer value, integer vector, data frame or matrix, or list.

¢ Integer value. The number of points. These points will be randomly sam-
pled from candi to form the starting sample configuration.

* Integer vector. The row indexes of candi that correspond to the points that
form the starting sample configuration. The length of the vector defines the
number of points.

* Data frame or matrix. An object with three columns in the following order:
[, "id"], the row indexes of candi that correspond to each point, [, "x"1],
the projected x-coordinates, and [, "y"1, the projected y-coordinates.

* List. An object with two named sub-arguments: fixed, a data frame or
matrix with the projected x- and y-coordinates of the existing sample con-
figuration — kept fixed during the optimization —, and free, an integer value
defining the number of points that should be added to the existing sample
configuration — free to move during the optimization.

Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"J], the projected x-
coordinates, and [, "y"1], the projected y-coordinates.

List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

(Optional) Logical for plotting the optimization results, including a) the progress
of the objective function, and b) the starting (gray circles) and current sample
configuration (black dots), and the maximum jitter in the x- and y-coordinates.
The plots are updated at each 10 jitters. When adding points to an existing
sample configuration, fixed points are indicated using black crosses. Defaults to
plotit = FALSE.

(Optional) Logical value. Should the evolution of the energy state be recorded
and returned along with the result? If track = FALSE (the default), only the
starting and ending energy states are returned along with the results.

(Optional) SpatialPolygon defining the boundary of the spatial domain. If miss-
ing and plotit = TRUE, boundary is estimated from candi.

(Optional) Type of progress bar that should be used, with options "txt", for a
text progress bar in the R console, "tk", to put up a Tk progress bar widget, and
NULL to omit the progress bar. A Tk progress bar widget is useful when using
parallel processors. Defaults to progress = "txt".

(Optional) Logical for printing messages about the progress of the optimization.
Defaults to verbose = FALSE.

optimMSSD 25

Details

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Spatial coverage sampling: Spatial coverage sampling is based on the knowledge that the
kriging variance depends upon the distance between sample points. As such, the better the spread
of the sample points in the spatial domain, the smaller the kriging variance. This is similar to
using a regular grid of sample points. However, a regular grid usually is suboptimal for irregularly
shaped areas.

Value

optimMSSD returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

objMSSD returns a numeric value: the energy state of the sample configuration — the objective
function value.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

This function was derived with modifications from the method known as spatial coverage sampling
originally proposed by Brus, de Gruijter and van Groenigen (2006), and implemented in the R-
package spcosa by Dennis Walvoort, Dick Brus and Jaap de Gruijter.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Brus, D. J.; de Gruijter, J. J.; van Groenigen, J.-W. Designing spatial coverage samples using the
k-means clustering algorithm. In: P. Lagacherie,A. M.; Voltz, M. (Eds.) Digital soil mapping — an
introductory perspective. Elsevier, v. 31, p. 183-192, 2006.

de Gruijter, J. J.; Brus, D.; Bierkens, M.; Knotters, M. Sampling for natural resource monitoring.
Berlin: Springer, p. 332, 2006.

Walvoort, D. J. J.; Brus, D. J.; de Gruijter, J. J. An R package for spatial coverage sampling and
random sampling from compact geographical strata by k-means. Computers and Geosciences. V.
36, p. 1261-1267, 2010.

See Also

[distanceFromPoints](https://CRAN.R-project.org/package=raster), [stratify](https://CRAN.R-project.o

https://CRAN.R-project.org/package=spcosa

26 optimPPL

Examples

require(sp)

data(meuse.grid)

candi <- meuse.grid[, 1:2]

schedule <- scheduleSPSANN(chains = 1, initial.temperature = 5000000,
x.max = 1540, y.max = 2060, x.min = 0,
y.min = @, cellsize = 40)

set.seed(2001)

res <- optimMSSD(points = 10, candi = candi, schedule = schedule)

0bjSPSANN(res) - objMSSD(candi = candi, points = res)

optimPPL Optimization of sample configurations for variogram identification
and estimation

Description

Optimize a sample configuration for variogram identification and estimation. A criterion is defined
so that the optimized sample configuration has a given number of points or point-pairs contributing
to each lag-distance class (PPL).

Usage

optimPPL(points, candi, lags = 7, lags.type = "exponential”,
lags.base = 2, cutoff, criterion = "distribution”, distri,
pairs = FALSE, schedule = scheduleSPSANN(), plotit = FALSE,
track = FALSE, boundary, progress = "txt", verbose = FALSE)

objPPL(points, candi, lags = 7, lags.type = "exponential”,
lags.base = 2, cutoff, distri, criterion = "distribution”,
pairs = FALSE, x.max, x.min, y.max, y.min)

countPPL(points, candi, lags = 7, lags.type = "exponential”,
lags.base = 2, cutoff, pairs = FALSE, x.max, x.min, y.max, y.min)

Arguments

points Integer value, integer vector, data frame or matrix, or list.

* Integer value. The number of points. These points will be randomly sam-
pled from candi to form the starting sample configuration.

* Integer vector. The row indexes of candi that correspond to the points that
form the starting sample configuration. The length of the vector defines the
number of points.

* Data frame or matrix. An object with three columns in the following order:
[, "id"], the row indexes of candi that correspond to each point, [, "x"1J,
the projected x-coordinates, and [, "y"], the projected y-coordinates.

optimPPL 27

* List. An object with two named sub-arguments: fixed, a data frame or
matrix with the projected x- and y-coordinates of the existing sample con-
figuration — kept fixed during the optimization —, and free, an integer value
defining the number of points that should be added to the existing sample
configuration — free to move during the optimization.

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"J], the projected x-
coordinates, and [, "y"], the projected y-coordinates.

lags Integer value, the number of lag-distance classes. Alternatively, a vector of
numeric values with the lower and upper bounds of each lag-distance class, the
lowest value being larger than zero (e.g. 0.0001). Defaults to lags = 7.

lags. type Character value, the type of lag-distance classes, with options "equidistant”
and "exponential”. Defaults to lags.type = "exponential”.

lags.base Numeric value, base of the exponential expression used to create exponentially
spaced lag-distance classes. Used only when lags.type = "exponential”.

Defaults to lags.base = 2.

cutoff Numeric value, the maximum distance up to which lag-distance classes are cre-
ated. Used only when lags is an integer value. If missing, it is set to be equal
to the length of the diagonal of the rectangle with sides x.max and y.max as
defined in scheduleSPSANN.

criterion Character value, the feature used to describe the energy state of the system con-
figuration, with options "minimum” and "distribution”. Defaults to objective = "distribution”.

distri Numeric vector, the distribution of points or point-pairs per lag-distance class
that should be attained at the end of the optimization. Used only when criterion = "distribution”.
Defaults to a uniform distribution.

pairs Logical value. Should the sample configuration be optimized regarding the num-
ber of point-pairs per lag-distance class? Defaults to pairs = FALSE.

schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

plotit (Optional) Logical for plotting the optimization results, including a) the progress
of the objective function, and b) the starting (gray circles) and current sample
configuration (black dots), and the maximum jitter in the x- and y-coordinates.
The plots are updated at each 10 jitters. When adding points to an existing
sample configuration, fixed points are indicated using black crosses. Defaults to
plotit = FALSE.

track (Optional) Logical value. Should the evolution of the energy state be recorded
and returned along with the result? If track = FALSE (the default), only the
starting and ending energy states are returned along with the results.

boundary (Optional) SpatialPolygon defining the boundary of the spatial domain. If miss-
ing and plotit = TRUE, boundary is estimated from candi.

progress (Optional) Type of progress bar that should be used, with options "txt", for a
text progress bar in the R console, "tk", to put up a Tk progress bar widget, and
NULL to omit the progress bar. A Tk progress bar widget is useful when using
parallel processors. Defaults to progress = "txt".

28 optimPPL

verbose (Optional) Logical for printing messages about the progress of the optimization.
Defaults to verbose = FALSE.

X .max Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

X.min Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

y.max Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

y.min Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

Details

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Lag-distance classes: Two types of lag-distance classes can be created by default. The first are
evenly spaced lags (lags.type = "equidistant”). They are created by simply dividing the
distance interval from 0.0001 to cutoff by the required number of lags. The minimum value of
0.0001 guarantees that a point does not form a pair with itself. The second type of lags is defined
by exponential spacings (lags.type = "exponential”). The spacings are defined by the base
b of the exponential expression b", where n is the required number of lags. The base is defined
using the argument lags.base. See vgmLags for other details.

Using the default uniform distribution means that the number of point-pairs per lag-distance class
(pairs = TRUE) is equal to n x (n — 1)/(2 x lag), where n is the total number of points and
lag is the number of lags. If pairs = FALSE, then it means that the number of points per lag is
equal to the total number of points. This is the same as expecting that each point contributes to
every lag. Distributions other than the available options can be easily implemented changing the
arguments lags and distri.

There are two optimizing criteria implemented. The firstis called using criterion = "distribution”
and is used to minimize the sum of the absolute differences between a pre-specified distribution
and the observed distribution of points or point-pairs per lag-distance class. The second criterion
is called using criterion = "minimum”. It corresponds to maximizing the minimum number of
points or point-pairs observed over all lag-distance classes.

optimPPL 29

Value

optimPPL returns an object of class OptimizedSampleConfiguration: the optimized sample con-
figuration with details about the optimization.

objPPL returns a numeric value: the energy state of the sample configuration — the objective function
value.

countPPL returns a data.frame with three columns: a) the lower and b) upper limits of each lag-
distance class, and c) the number of points or point-pairs per lag-distance class.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Bresler, E.; Green, R. E. Soil parameters and sampling scheme for characterizing soil hydraulic
properties of a watershed. Honolulu: University of Hawaii at Manoa, p. 42, 1982.

Pettitt, A. N.; McBratney, A. B. Sampling designs for estimating spatial variance components.
Applied Statistics. v. 42, p. 185, 1993.

Russo, D. Design of an optimal sampling network for estimating the variogram. Soil Science Society
of America Journal. v. 48, p. 708-716, 1984.

Truong, P. N.; Heuvelink, G. B. M.; Gosling, J. P. Web-based tool for expert elicitation of the
variogram. Computers and Geosciences. v. 51, p. 390-399, 2013.

Warrick, A. W.; Myers, D. E. Optimization of sampling locations for variogram calculations. Water
Resources Research. v. 23, p. 496-500, 1987.

Examples

Not run:

This example takes more than 5 seconds

require(sp)

data(meuse.grid)

candi <- meuse.grid[, 1:2]

schedule <- scheduleSPSANN(chains = 1, initial.temperature = 30,
x.max = 1540, y.max = 2060, x.min = 0,
y.min = @, cellsize = 40)

set.seed(2001)

res <- optimPPL(points = 10, candi = candi, schedule = schedule)
objSPSANN(res) - objPPL(points = res, candi = candi)
countPPL(points = res, candi = candi)

30 optimSPAN
End(Not run)
optimSPAN Optimization of sample configurations for variogram and spatial trend
identification and estimation, and for spatial interpolation
Description
Optimize a sample configuration for variogram and spatial trend identification and estimation, and
for spatial interpolation. An utility function U is defined so that the sample points cover, extend
over, spread over, SPAN the feature, variogram and geographic spaces. The utility function is
obtained aggregating four objective functions: CORR, DIST, PPL, and MSSD.
Usage
optimSPAN(points, candi, covars, strata.type = "area”,
use.coords = FALSE, lags = 7, lags.type = "exponential”,
lags.base = 2, cutoff, criterion = "distribution”, distri,
pairs = FALSE, schedule = scheduleSPSANN(), plotit = FALSE,
track = FALSE, boundary, progress = "txt", verbose = FALSE,
weights, nadir = list(sim = NULL, seeds = NULL, user = NULL, abs =
NULL), utopia = list(user = NULL, abs = NULL))
objSPAN(points, candi, covars, strata.type = "area”,
use.coords = FALSE, lags = 7, lags.type = "exponential”,
lags.base = 2, cutoff, criterion = "distribution”, distri,
pairs = FALSE, x.max, x.min, y.max, y.min, weights, nadir = list(sim
= NULL, seeds = NULL, user = NULL, abs = NULL), utopia = list(user =
NULL, abs = NULL))
Arguments

points

Integer value, integer vector, data frame or matrix, or list.

* Integer value. The number of points. These points will be randomly sam-
pled from candi to form the starting sample configuration.

* Integer vector. The row indexes of candi that correspond to the points that
form the starting sample configuration. The length of the vector defines the
number of points.

 Data frame or matrix. An object with three columns in the following order:
[, "id"1], the row indexes of candi that correspond to each point, [, "x"],
the projected x-coordinates, and [, "y"], the projected y-coordinates.

* List. An object with two named sub-arguments: fixed, a data frame or
matrix with the projected x- and y-coordinates of the existing sample con-
figuration — kept fixed during the optimization —, and free, an integer value
defining the number of points that should be added to the existing sample
configuration — free to move during the optimization.

optimSPAN 31

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"], the projected x-
coordinates, and [, "y"1], the projected y-coordinates.

covars Data frame or matrix with the covariates in the columns.

strata.type (Optional) Character value setting the type of stratification that should be used to
create the marginal sampling strata (or factor levels) for the numeric covariates.
Available options are "area”, for equal-area, and "range”, for equal-range.
Defaults to strata.type = "area".

use.coords (Optional) Logical value. Should the spatial x- and y-coordinates be used as
covariates? Defaults to use.coords = FALSE.

lags Integer value, the number of lag-distance classes. Alternatively, a vector of
numeric values with the lower and upper bounds of each lag-distance class, the
lowest value being larger than zero (e.g. 0.0001). Defaults to lags = 7.

lags. type Character value, the type of lag-distance classes, with options "equidistant”
and "exponential”. Defaults to lags.type = "exponential”.

lags.base Numeric value, base of the exponential expression used to create exponentially
spaced lag-distance classes. Used only when lags.type = "exponential”.

Defaults to lags.base = 2.

cutoff Numeric value, the maximum distance up to which lag-distance classes are cre-
ated. Used only when lags is an integer value. If missing, it is set to be equal
to the length of the diagonal of the rectangle with sides x.max and y.max as
defined in scheduleSPSANN.

criterion Character value, the feature used to describe the energy state of the system con-
figuration, with options "minimum” and "distribution”. Defaults to objective = "distribution”.

distri Numeric vector, the distribution of points or point-pairs per lag-distance class
that should be attained at the end of the optimization. Used only when criterion = "distribution”.
Defaults to a uniform distribution.

pairs Logical value. Should the sample configuration be optimized regarding the num-
ber of point-pairs per lag-distance class? Defaults to pairs = FALSE.

schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

plotit (Optional) Logical for plotting the optimization results, including a) the progress
of the objective function, and b) the starting (gray circles) and current sample
configuration (black dots), and the maximum jitter in the x- and y-coordinates.
The plots are updated at each 10 jitters. When adding points to an existing
sample configuration, fixed points are indicated using black crosses. Defaults to
plotit = FALSE.

track (Optional) Logical value. Should the evolution of the energy state be recorded
and returned along with the result? If track = FALSE (the default), only the
starting and ending energy states are returned along with the results.

boundary (Optional) SpatialPolygon defining the boundary of the spatial domain. If miss-
ing and plotit = TRUE, boundary is estimated from candi.

progress (Optional) Type of progress bar that should be used, with options "txt", for a
text progress bar in the R console, "tk", to put up a Tk progress bar widget, and

32

optimSPAN

NULL to omit the progress bar. A Tk progress bar widget is useful when using
parallel processors. Defaults to progress = "txt".

verbose (Optional) Logical for printing messages about the progress of the optimization.
Defaults to verbose = FALSE.

weights List with named sub-arguments. The weights assigned to each one of the objec-
tive functions that form the multi-objective combinatorial optimization problem.
They must be named after the respective objective function to which they apply.
The weights must be equal to or larger than 0 and sum to 1.

nadir List with named sub-arguments. Three options are available: 1) sim — the num-
ber of simulations that should be used to estimate the nadir point, and seeds —
vector defining the random seeds for each simulation; 2) user — a list of user-
defined nadir values named after the respective objective functions to which they
apply; 3) abs — logical for calculating the nadir point internally (experimental).

utopia List with named sub-arguments. Two options are available: 1) user — a list of
user-defined values named after the respective objective functions to which they
apply; 2) abs —logical for calculating the utopia point internally (experimental).

X.max, x.min, y.max, y.min
Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

Details

The help page of minmaxPareto contains details on how spsann solves the multi-objective com-
binatorial optimization problem of finding a globally optimum sample configuration that meets
multiple, possibly conflicting, sampling objectives.

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Visit the help pages of optimCORR, optimDIST, optimPPL, and optimMSSD to see the details of the
objective functions that compose SPAN.

Value

optimSPAN returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

objSPAN returns a numeric value: the energy state of the sample configuration — the objective
function value.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

optimUSER 33
Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>
See Also

optimCORR, optimDIST, optimPPL, optimMSSD
Examples

Not run:

This example takes more than 5 seconds to run!

require(sp)

data(meuse.grid)

candi <- meuse.grid[, 1:2]

nadir <- list(sim = 10, seeds = 1:10)

utopia <- list(user = 1list(DIST = @, CORR = @, PPL = @, MSSD = 0@))

covars <- meuse.grid[, 5]

schedule <- scheduleSPSANN(chains = 1, initial.temperature = 1,

x.max = 1540, y.max = 2060, x.min = 0,
y.min = @, cellsize = 40)

weights <- list(CORR = 1/6, DIST = 1/6, PPL = 1/3, MSSD = 1/3)

set.seed(2001)

res <- optimSPAN(

points = 10, candi = candi, covars = covars, nadir = nadir, weights = weights,
use.coords = TRUE, utopia = utopia, schedule = schedule)
0bjSPSANN(res) -
0bjSPAN(points = res, candi = candi, covars = covars, nadir = nadir,
use.coords = TRUE, utopia = utopia, weights = weights)
End(Not run)
optimUSER Optimization of sample configurations using a user-defined objective

function

Description

Optimize a sample configuration using a user-defined objective function.

Usage

optimUSER(points, candi, fun, ..., schedule = scheduleSPSANN(),
plotit = FALSE, track = FALSE, boundary, progress = "txt",
verbose = FALSE)

34

Arguments

points

candi

fun

schedule

plotit

track

boundary

progress

verbose

optimUSER

Integer value, integer vector, data frame or matrix, or list.

* Integer value. The number of points. These points will be randomly sam-
pled from candi to form the starting sample configuration.

* Integer vector. The row indexes of candi that correspond to the points that
form the starting sample configuration. The length of the vector defines the
number of points.

* Data frame or matrix. An object with three columns in the following order:
[, "id"], the row indexes of candi that correspond to each point, [, "x"1],
the projected x-coordinates, and [, "y"], the projected y-coordinates.

» List. An object with two named sub-arguments: fixed, a data frame or
matrix with the projected x- and y-coordinates of the existing sample con-
figuration — kept fixed during the optimization —, and free, an integer value
defining the number of points that should be added to the existing sample
configuration — free to move during the optimization.

Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"], the projected x-
coordinates, and [, "y"1], the projected y-coordinates.

A function defining the objective function that should be used to evaluate the en-
ergy state of the system configuration at each random perturbation of a candidate
sample point. See ‘Details’ for more information.

Other arguments passed to the objective function. See ‘Details’ for more infor-
mation.

List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

(Optional) Logical for plotting the optimization results, including a) the progress
of the objective function, and b) the starting (gray circles) and current sample
configuration (black dots), and the maximum jitter in the x- and y-coordinates.
The plots are updated at each 10 jitters. When adding points to an existing
sample configuration, fixed points are indicated using black crosses. Defaults to
plotit = FALSE.

(Optional) Logical value. Should the evolution of the energy state be recorded
and returned along with the result? If track = FALSE (the default), only the
starting and ending energy states are returned along with the results.

(Optional) SpatialPolygon defining the boundary of the spatial domain. If miss-
ing and plotit = TRUE, boundary is estimated from candi.

(Optional) Type of progress bar that should be used, with options "txt", for a
text progress bar in the R console, "tk", to put up a Tk progress bar widget, and
NULL to omit the progress bar. A Tk progress bar widget is useful when using
parallel processors. Defaults to progress = "txt".

(Optional) Logical for printing messages about the progress of the optimization.
Defaults to verbose = FALSE.

optimUSER 35

Details

The user-defined objective function fun must be an object of class function and include the ar-
gument points. The argument points is defined in optimUSER as a matrix with three columns:
[, 117 the identification of each sample point given by the respective row indexes of candi, [, 2]
the x-coordinates, and [, 3] the y-coordinates. The identification is useful to retrieve information
from any data matrix used by the objective function defined by the user.

Value

optimUSER returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

Examples

Not run:

This example takes more than 5 seconds

require(sp)

require(SpatialTools)

data(meuse.grid)

candi <- meuse.grid[, 1:2]

schedule <- scheduleSPSANN(chains = 1, initial.temperature = 30,
x.max = 1540, y.max = 2060, x.min = 0,
y.min = @, cellsize = 40)

Define the objective function - number of points per lag distance class
objUSER <-
function (points, lags, n_lags, n_pts) {
dm <- SpatialTools::dist1(points[, 2:31)
ppl <- vector()
for (i in 1:n_lags) {
n <- which(dm > lags[i] & dm <= lags[i + 1], arr.ind = TRUE)
ppl[i] <- length(unique(c(n)))
3
distri <- rep(n_pts, n_lags)
res <- sum(distri - ppl)
3
lags <- seq(1, 1000, length.out = 10)

Run the optimization using the user-defined objective function

set.seed(2001)

timeUSER <- Sys.time()

resUSER <- optimUSER(points = 1@, fun = objUSER, lags = lags, n_lags = 9,
n_pts = 10, candi = candi, schedule = schedule)

timeUSER <- Sys.time() - timeUSER

Run the optimization using the respective function implemented in spsann
set.seed(2001)

36

plot.OptimizedSampleConfiguration

timePPL <- Sys.time()

resPPL <- optimPPL(points = 1@, candi = candi, lags = lags,
schedule = schedule)

timePPL <- Sys.time() - timePPL

Compare results

timeUSER

timePPL

lapply(list(resUSER, resPPL), countPPL, candi = candi, lags = lags)
objSPSANN(resUSER) - objSPSANN(resPPL)

End(Not run)

plot.OptimizedSampleConfiguration
Plot an optimized sample configuration

Description

Plot the evolution of the energy state and the optimized sample configuration

Usage

S3 method for class 'OptimizedSampleConfiguration'
plot(x, which = 1:2, boundary,

D)
Arguments
X Object of class OptimizedSampleConfiguration returned by one of the optim-
functions.
which Which plot should be produced: evolution of the energy state (1), optimized
sample configuration (2), or both (1:2)? Defaults to which = 1:2.
boundary Object of class Spatial defining the boundary of the sampling region.
Other options passed to plot.
Examples
require(sp)
data(meuse.grid)
candi <- meuse.grid[, 1:2]

covars <- meuse.grid[, 5]

schedule <- scheduleSPSANN(initial.temperature = 5, chains =1,
x.max = 1540, y.max = 2060, x.min =
y.min = @, cellsize = 40)

o,

set.seed(2001)

res <- optimCORR(points = 10, candi = candi, covars = covars,
use.coords = TRUE, schedule = schedule)

plot(res)

scheduleSPSANN 37

scheduleSPSANN spsann annealing schedule

Description

Set the control parameters for the annealing schedule of spsann functions.

Usage

scheduleSPSANN(initial.acceptance = .95, initial.temperature = 0.001,
temperature.decrease = 0.95, chains = 500, chain.length =1,
stopping = 10, x.max, x.min = @, y.max, y.min = @, cellsize)

Arguments

initial.acceptance
Numeric value between 0 and 1 defining the initial acceptance probability, i.e.
the proportion of proposed system configurations that should be accepted in the
first chain. The optimization is stopped and a warning is issued if this value is
not attained. Defaults to initial.acceptance = 0.95.
initial.temperature
Numeric value larger than O defining the initial temperature of the system. A
low initial. temperature, combined with a low initial.acceptance result
in the algorithm to behave as a greedy algorithm, i.e. only better system config-
urations are accepted. Defaults to initial.temperature = 0.001.
temperature.decrease
Numeric value between 0 and 1 used as a multiplying factor to decrease the tem-
perature at the end of each Markov chain. Defaults to temperature.decrease = 0.95.

chains Integer value defining the maximum number of chains, i.e. the number of cycles
of jitters at which the temperature and the size of the neighbourhood should be
kept constant. Defaults to chains = 500.

chain.length Integer value defining the length of each Markov chain relative to the number
of sample points. Defaults to chain.length = 1, i.e. one time the number of
sample points.

stopping Integer value defining the maximum allowable number of Markov chains with-
out improvement of the objective function value. Defaults to stopping = 10.

X.max, x.min, y.max, y.min
Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The units are the same as of
the projected x- and y-coordinates. If missing, they are estimated from candi,
x.min and y.min being set to zero, and x.max and y.max being set to half the
maximum distance in the x- and y-coordinates, respectively.

cellsize Vector with two numeric values defining the horizontal (x) and vertical (y) spac-
ing between the candidate locations in candi. A single value can be used if the
spacing in the x- and y-coordinates is the same. If cellsize = @ then spsann
understands that a finite set of candidate locations is being used (See Details).

38 splitter

Value

A list with a set of control parameters of the annealing schedule.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Aarts, E. H. L.; Korst, J. H. M. Boltzmann machines for travelling salesman problems. European
Journal of Operational Research, v. 39, p. 79-95, 1989.

Cerny, V. Thermodynamical approach to the travelling salesman problem: an efficient simulation
algorithm. Journal of Optimization Theory and Applications, v. 45, p. 41-51, 1985.

Brus, D. J.; Heuvelink, G. B. M. Optimization of sample patterns for universal kriging of environ-
mental variables. Geoderma, v. 138, p. 86-95, 2007.

Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by simulated annealing. Science, v. 220,
p- 671-680, 1983.

Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of state
calculations by fast computing machines. The Journal of Chemical Physics, v. 21, p. 1087-1092,
1953.

van Groenigen, J.-W.; Stein, A. Constrained optimization of spatial sampling using continuous
simulated annealing. Journal of Environmental Quality. v. 27, p. 1078-1086, 1998.

Webster, R.; Lark, R. M. Field sampling for environmental science and management. London:
Routledge, p. 200, 2013.

See Also

optimACDC, optimCORR, optimDIST, optimMKV, optimMSSD, optimPPL, optimSPAN, optimUSER.

Examples

schedule <- scheduleSPSANN()

spJitter Random perturbation of spatial points

Description

Randomly perturb (‘jitter’) the coordinates of spatial points.

Usage

spJitter(points, candi, x.max, x.min, y.max, y.min, which.point, cellsize)

splitter 39

Arguments
points Data frame or matrix with three columns in the following order: [, "id"] the
row indexes of candi that correspond to each point, [, "x"1] the projected x-
coordinates, and [, "y"] the projected y-coordinates. Note that points must
be a subset of candi.
candi Data frame or matrix with the candidate locations for the jittered points. candi

must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

X.max, X.min, y.max, y.min
Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

which.point Integer values defining which point should be perturbed.

cellsize Vector with two numeric values defining the horizontal (x) and vertical (y) spac-
ing between the candidate locations in candi. A single value can be used if the
spacing in the x- and y-coordinates is the same. If cellsize = @ then spsann
understands that a finite set of candidate locations is being used (See Details).

Details

Jittering methods: There are multiple mechanism to generate a new sample configuration out of
the current sample configuration. The main step consists of randomly perturbing the coordinates
of a sample point, a process known as fjittering’. These mechanisms can be classified based
on how the set of candidate locations is defined. For example, one could use an infinite set of
candidate locations, that is, any location in the sampling region can be selected as the new location
of a jittered point. All that is needed is a polygon indicating the boundary of the sampling region.
This method is the most computationally demanding because every time a point is jittered, it is
necessary to check if the point falls in sampling region.

Another approach consists of using a finite set of candidate locations for the jittered points. A
finite set of candidate locations is created by discretising the sampling region, that is, creating
a fine grid of points that serve as candidate locations for the jittered point. This is the least
computationally demanding jittering method because, by definition, the jittered point will always
fall in the sampling region.

Using a finite set of candidate locations has two important inconveniences. First, not all locations
in the sampling region can be selected as the new location for a jittered point. Second, when
a point is jittered, it may be that the new location already is occupied by another point. If this
happens, another location has to be iteratively sought for, say, as many times as the number of
points in the sample. In general, the more points there are in the sample, the more likely it is that
the new location already is occupied by another point. If a solution is not found in a reasonable
time, the point selected to be jittered is kept in its original location. Such a procedure clearly is
suboptimal.

spsann uses a more elegant method which is based on using a finite set of candidate locations cou-
pled with a form of two-stage random sampling as implemented in [spsample](https://CRAN.R-project.org/package
Because the candidate locations are placed on a finite regular grid, they can be seen as the centre
nodes of a finite set of grid cells (or pixels of a raster image). In the first stage, one of the “grid

40

splitter

cells” is selected with replacement, i.e. independently of already being occupied by another sam-
ple point. The new location for the point chosen to be jittered is selected within that “grid cell”
by simple random sampling. This method guarantees that virtually any location in the sampling
region can be selected. It also discards the need to check if the new location already is occupied
by another point, speeding up the computations when compared to the first two approaches.

Value

A matrix with the jittered projected coordinates of the points.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Edzer Pebesma, Jon Skoien with contributions from Olivier Baume, A. Chorti, D.T. Hristopulos,
S.J. Melles and G. Spiliopoulos (2013). intamaplnteractive: procedures for automated interpola-
tion - methods only to be used interactively, not included in intamap package. R package version
1.1-10.

van Groenigen, J.-W. Constrained optimization of spatial sampling: a geostatistical approach. Wa-
geningen: Wageningen University, p. 148, 1999.

Walvoort, D. J. J.; Brus, D. J.; de Gruijter, J. J. An R package for spatial coverage sampling and
random sampling from compact geographical strata by k-means. Computers & Geosciences. v. 36,
p. 1261-1267, 2010.

See Also

ssaOptim, zerodist, jitter, [jitter2d](https://CRAN.R-project.org/package=geoR).

Examples

require(sp)
data(meuse.grid)
meuse.grid <- as.matrix(meuse.grid[, 1:2])
meuse.grid <- matrix(cbind(1:dim(meuse.grid)[1], meuse.grid), ncol = 3)
pts1 <- sample(c(1:dim(meuse.grid)[1]), 155)
pts2 <- meuse.grid[ptsi1,]
pts3 <- spJitter(points = pts2, candi = meuse.grid, x.min = 40,
x.max = 100, y.min = 40, y.max = 100,
which.point = 10, cellsize = 40)
plot(meuse.grid[, 2:3], asp = 1, pch = 15, col = "gray")

splitter

points(pts2[, 2:3], col = "red"”, cex = 0.5)
points(pts3[, 2:3], pch = 19, col = "blue"”, cex = 0.5)

#' Cluster of points
pts1 <- c(1:55)
pts2 <- meuse.grid[pts1, 1]
pts3 <- spJitter(points = pts2, candi = meuse.grid, x.min = 40,
x.max = 80, y.min = 40, y.max = 80,
which.point = 1, cellsize = 40)
plot(meuse.grid[, 2:3], asp = 1, pch = 15, col = "gray")
points(pts2[, 2:31, col = "red"”, cex = 0.5)
points(pts3[, 2:3], pch = 19, col = "blue"”, cex = 0.5)

Index

*Topic iteration
optimACDC, 8
optimCLHS, 11
optimCORR, 15
optimDIST, 18
optimMKYV, 21
optimMSSD, 23
optimPPL, 26
optimSPAN, 30
optimUSER, 33

+Topic optimize
optimACDC, 8
optimCLHS, 11
optimCORR, 15
optimDIST, 18
optimMKYV, 21
optimMSSD, 23
optimPPL, 26
optimSPAN, 30
optimUSER, 33

xTopic spatial
optimACDC, 8
optimCLHS, 11
optimCORR, 15
optimDIST, 18
optimMKYV, 21
optimMSSD, 23
optimPPL, 26
optimSPAN, 30
optimUSER, 33

ACDC (optimACDC), 8

CLHS (optimCLHS), 11
CORR (optimCORR), 15
countPPL, 4

countPPL (optimPPL), 26
cramer, 11,17

DIST (optimDIST), 18

42

function, 35
jitter, 40
krige, 22

minmaxPareto, 4, 5, 10, 32
MKV (optimMKV), 21
MSSD (optimMSSD), 23

0bjACDC (optimACDC), 8
0bjCLHS (optimCLHS), 11
objCORR (optimCORR), 15
objDIST (optimDIST), 18
objMKV (optimMKV), 21
ob3jMSSD, 3

0bjMSSD (optimMSSD), 23
objPPL (optimPPL), 26
objSPAN (optimSPAN), 30
objSPSANN, 3, 8
optimACDC, 3, 7, 8, 15, 17, 20, 38
optimCLHS, 3, 11
optimCORR, 3, 10, 15, 32, 33, 38
optimDIST, 3, 10, 18, 32, 33, 38
optimMKV, 3, 21, 38
optimMSSD, 3, 23, 32, 33, 38
optimPPL, 3, 26, 32, 33, 38
optimSPAN, 3, 30, 38
optimUSER, 3, 33, 38

plot, 4
plot

(plot.OptimizedSampleConfiguration),

36

plot.OptimizedSampleConfiguration, 36

PPL (optimPPL), 26

quantile, 13, 19

scheduleSPSANN, 4, 9, 12, 16, 19, 22, 24, 27,

31,34, 37

INDEX

SPAN, 7

SPAN (optimSPAN), 30

spJitter, 4, 10, 13, 16, 19, 22, 25, 28, 32, 38
spsann (spsann-package), 2
spsann-package, 2

SPSANNtools (objSPSANN), 8

USER (optimUSER), 33
vgmLags, 28

zerodist, 40

43

	spsann-package
	minmaxPareto
	objSPSANN
	optimACDC
	optimCLHS
	optimCORR
	optimDIST
	optimMKV
	optimMSSD
	optimPPL
	optimSPAN
	optimUSER
	plot.OptimizedSampleConfiguration
	scheduleSPSANN
	spJitter
	Index

