Package ‘sppmix’

November 17, 2017
Title Modeling Spatial Poisson and Related Point Processes
Version 1.0.2

Author Jiaxun Chen <chenjiaxun9@hotmail.com>
and Athanasios (Sakis) Christou Micheas <micheasa@missouri.edu>.
Significant contributions on the package skeleton creation, plotting functions and other code by
Yuchen Wang <ycwang@712@gmail.com>

Maintainer Sakis Micheas <micheasa@missouri.edu>

Description
Implements classes and methods for modeling spatial point patterns using inhomogeneous Pois-
son point processes, where the intensity surface is assumed to be analogous to a finite addi-
tive mixture of normal components and the number of components is a finite, fixed or random in-
teger. Extensions to the marked inhomogeneous Poisson point processes case are also pre-
sented. We provide an extensive suite of R functions that can be used to simulate, visual-
ize and model point patterns, estimate the parameters of the models, assess convergence of the al-
gorithms and perform model selection and checking in the proposed modeling context.

Depends R (>=3.2.1), stats, graphics, grDevices, utils

License GPL (>=2)

LazyData true

Imports Rcpp, spatstat, rgl, fields, mvtnorm, ggplot2 (>=2.1.0)
LinkingTo Rcpp, ReppArmadillo, mvtnorm

URL http://faculty.missouri.edu/~micheasa/sppmix/index.html
RoxygenNote 6.0.1

Suggests knitr,rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-11-17 08:35:59 UTC

http://faculty.missouri.edu/~micheasa/sppmix/index.html

2 R topics documented:

R topics documented:

add_title L e 3
APPrOX_MOTTIMEX « .« « v v v v v e v e e e e e e e e e e e e e e e e e e 4
check labels e 5
CompareSurfso 7
Count_pts o o e e e e e e 8
Datasets e e e e e e e e 10
demo_MIX L e 12
Demo_SppmiXo e e 13
dnormmixX L e e e 14
drop_realization L e 15
ESEINeNSILY_NP o ot e e e e e e e e e e 16
est MIPPP_cond_loc e 17
est MIPPP_cond_mark e 21
est MiX_damCmC e e e e e e e e 24
FixLS_da 28
GetBDCompfit 30
GetBDTable e e e e e 31
GetBMA e e e e e e 32
GetDensityValues L e 33
GetIPPPLikValue 34
GetKLEst e e 35
GetMAPESt e e e 37
GetMAPLabels e e 38
GetPMESt e e e e 39
GetStats L e e e e e e e e e e e 40
Get_ Rdiag L 41
kstest2d e e 42
kstest2dsurf L 44
MaternCov e e e e e e 45
mc_gof e e 46
10 T0) 3010 1 47
OPENWIN_SPPIMIX . . .« o v v vt v e e e e e e e e e e e 49
plotbdmeme_res e 50
plotdamemce_res 52
plotintensity_surface 53
PIOLNOIMMIX o v o ot e e e e e e e e e e e e e e e e 54
PIOLSPPIMIX o L e e e e e e e e 55
plot2dPP 57
plotmix_2d 58
plotmix_3d 59
plotstring 61
Plots_off e e 61
PlotUSAStates e e e e e e 62
PlOL_AUtOCOIT o oo e e e e e e e 65
plot_avgsurf 67

plot_chains 68

add._title 3
plot_CompDist e e e e 70
plot_convdiags e e e e e 71
plot_density e e e e e 72
plot_indo e e e e e 73
plot_MPP_fields 74
plot_MPP_probs 75
plot_runmean e e e e e e e e e 76
plot_true_labels e 77
rGRFE . . e 78
rMIPPP_cond_loc e 79
rMIPPP_cond_mark 83
rmixsurf e e e e 85
0 70) 3101101 86
TSPPIMEX « . v v v v e 88
Save_AllOpenRglGraphs 90
selectMiX e e e e e e 91
SPPIMUX . . v v v e e e e e e e e e e e e e e 93
summary.bdmcme_1es e e e e e e e e e e 96
sSumMmary.dameme_T€S i e e e e e e e e e e e e e e e 97
to_int_surfo e e 98

Index 100

add_title Add a title to an existing ggplot2 plot

Description

The function adds extra titles to a ggplot2 plot.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#add_title

Usage
add_title(title, lambda = "", m ="", n="" t="" L ="",
nmarks = IIIIy mu = IIH, theta = IIII, nu = IIH’ gamma = IIII, sigma = IIH,
df‘ = IIII)
Arguments
title The title to use for the plot.

lambda, m, n, t, L, nmarks, mu, theta, nu, gamma, sigma, df

Optional info to display on the second row of the title: average number of points,
number of components in the mixture, number of points in the point pattern, time
frame, number of iterations, total number of marks, a mean value, parameters
for a Matern covariance model, a parameter gamma, and degrees of freedom,
respectively.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#add_title

4 approx_normmix

Author(s)
Sakis Micheas, Yuchen Wang

See Also

rnormmix, dnormmix, MaternCov

Examples

truemix = rnormmix(m = 5, sigd = .1, df = 5,xlim= c(@, 3), ylim = c(@, 3))
intsurf=to_int_surf(truemix,lambda = 100,win=spatstat::owin(c(@, 5),c(0, 5)))

#plot the intensity surface

plotmix_2d(intsurf)+add_title("A pretty projection of the 3d surface to 2 dimensions”)

approx_normmix Approximate the masses of bivariate normal mixture components

Description

Calculates the mass of the density of each component of a normal mixture over a given window.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#approx_normmix

Usage

approx_normmix(mix, xlim = c(@, 1), ylim = c(0, 1))

Arguments
mix An object of class normmix
x1lim, ylim Vectors defining the x-y integration limits. A mixture component mass is esti-
mated within this window.
Value

A numerical vector with elements corresponding to the mass of each component within the window.
These values are required when we use truncation over an observation window in order to handle
edge effects.

Author(s)

Jiaxun Chen, Yuchen Wang

See Also

normmix

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#approx_normmix

check labels 5

Examples

truemix = normmix(ps = c(.3, .7), mus = list(c(0.2, 0.2),
c(.8, .8)), sigmas =list(.01xdiag(2),.01xdiag(2)))
approx_normmix(truemix,xlim= c(-2, 2), ylim = c(-2, 2))

check_labels Check for label switching

Description

Checks if there is label switching present in the posterior realizations using the chains for mu. The
algorithm is heuristic and works as follows; for each chain of mu for a given component, we look
for sharp changes in the generated values that lead to dramatically different variability from the
variability observed in the past history of the chain. The lag history is 5% of the total number of
realizations, excluding the burnin realizations.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#check_labels

Usage

check_labels(fit, burnin = floor(fit$L/10), lagnum = floor(@.05 * (fit$L -
burnin) + 1), showmessages = TRUE)

Arguments
fit Object of class damcmc_res or bdmecmc_res.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.
lagnum Number of past realizations to use for the detection algorithm. Default is .05 of

the total realizations after burnin realizations are removed.

showmessages Logical variable requesting to show informative messages (TRUE) or suppress
them (FALSE). Default is TRUE.

Details

To avoid the label switching problem one can plot the average of the intensities of the posterior re-
alizations, i.e., the average of the surfaces instead of the surface of the posterior averages. However,
by doing so we lose the ability to perform mixture deconvolution, namely, work with the posterior
means of the ps, mus and sigmas of the mixture intensity. In general, the average of posterior sur-
faces for each realization of the ps, mus and sigmas, and the surface based on the posterior means
of the ps, mus and sigmas, need not be the same.

For a DAMCMC fit, avoiding label switching can be accomplished using function plot_avgsurf,
which plots the average posterior surface. The surface of posterior means is plotted using the
function plot.damcmc_res on the returned value of GetPMEst.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#check_labels

6 check labels

When working with a BDMCMC fit, it is recommended that you use GetBDCompfit to retrieve the
realizations corresponding to a specific number of components and then fix the labels. Of course
the best estimate in this case, is the Bayesian model average intensity obtained via GetBMA, but it
can be very slow to compute. The BMA is an average on surfaces based on each of the posterior
realizations, and as such does not suffer from the label switching problem.

Value

Logical value indicating if label switching was detected.

Author(s)
Jiaxun Chen, Sakis Micheas

References

Jasra, A., Holmes, C.C. and Stephens, D. A. (2005). Markov Chain Monte Carlo Methods and the
Label Switching Problem in Bayesian Mixtures. Statistical Science, 20, 50-67.

See Also

normmix, rsppmix, est_mix_damcmc, plot_chains, FixLS_da

Examples

generate data

mix1 = normmix(ps=c(.4, .2,.4), mus=list(c(0.3, 0.3), c(.5,.5),c(0.7, 0.7)),
sigmas = list(.02*diag(2),.05*diag(2), .02*xdiag(2)),lambda = 100,
win = spatstat::square(1))

plot(mix1,main="True Poisson intensity surface (mixture of normal components)”)
ppl = rsppmix(mix1)

Run Data augmentation MCMC and get posterior realizations
postfit = est_mix_damecmc(pp1,m=5)

#plot the chains

plot_chains(postfit)

#check labels

check_labels(postfit)

#plot the average posterior surface

plot(GetPMEst(postfit))

#plot the surface of posterior means, can be slow for large LL

avgsurf=plot_avgsurf(postfit, LL = 5@, burnin = 1000)

Fix label switching, start with approx=TRUE

post_fixed = FixLS_da(postfit, plot_result = TRUE)

plot_chains(post_fixed)

plot_chains(post_fixed, separate = FALSE)

#this one works better in theory

post_fixed = FixLS_da(postfit,approx=FALSE, plot_result = TRUE)

plot_chains(post_fixed)

plot_chains(post_fixed, separate = FALSE)

CompareSurfs 7

CompareSurfs Quantify the difference between two surfaces

Description

This function can be used to compare two intensity surfaces. In particular, if we have the true
surface and an estimator of the truth, then we can assess how well the estimate fits the surface, i.e.,
how close are the two surfaces. Now if we have two estimates of the true surface then the estimate
with the smallest measure fits the truth better. We can also compare two estimating surfaces this
way.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#CompareSurfs

Usage

CompareSurfs(surf1l, surf2, LL = 100, truncate = FALSE)

Arguments

surfl, surf2 Either IPPP intensity surfaces (objects of type intensity_surface) or images
(objects of type im) that represent intensity surfaces.

LL Length of the side of the square grid. The intensities are calculated on an L *
L grid. The larger this value is, the slower the calculation, but the better the
approximation to the difference between the two surfaces.

truncate Requests to truncate the components of the mixture intensities to have all their
mass within the observation window.

Details

Since the two surfaces passed to the function can be represented as a 2d intensity surface, any
measure between two images can be used for comparison purposes, provided that the window is the
same.

If the two windows are different the function will choose the largest one and compare the two
surfaces in there.

Value

Returns a list containing all distances computed and the window of comparison, an object of class
owin.

Author(s)
Sakis Micheas

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#CompareSurfs

8 Count_pts

See Also

rmixsurf, owin, rsppmix, est_mix_bdmcmc, drop_realization, plotmix_3d, plot_avgsurf,
GetBMA,

Examples

#compare two surfaces first

mixsurfl = rmixsurf(m = 5, sigd = .1, df = 5,x1lim= c(-1,4), ylim = c(-2,1), rand_m = FALSE)
mixsurf2 = rmixsurf(m = 8, sigd = .1, df = 5,xlim= c(-4,3), ylim = c¢(-1,2), rand_m = FALSE)
comp=CompareSurfs(mixsurf1,mixsurf2)

plot(mixsurf1l,main = "First IPPP",win=comp$win)

plot(mixsurf2,main = "Second IPPP",win=comp$win)

now we compare intensity surfaces and image objects that represent intensity surfaces
truemixsurf = rmixsurf(m = 5,xlim= c(-2,2), ylim = c(-2,2))

plot(truemixsurf,main="True IPPP surface")

#get a point pattern

genpp = rsppmix(truemixsurf,truncate=FALSE)

Run BDMCMC and get posterior realizations

postfit=est_mix_bdmcmc(genpp,m=10,L=30000)
postfit=drop_realization(postfit,.1*postfit$L) #apply burnin
BMA=GetBMA(postfit,burnin=0)

titlel = paste(”"Bayesian model average of",postfit$L,"”posterior realizations"”)
plotmix_3d(BMA,titlel=titlel)

comp=CompareSurfs(truemixsurf,BMA,LL=100)

#We compare the average surface and the truth for many cases below. If we pass images, we
#make sure it has the same dimensions or we force it to the same value by setting LL=100.
#We retrieve the average surfaces corresponding to MAP-1, MAP and MAP+1 components and
#compare them against the truth.

#First retrieve the frequency table and MAP estimate for number of components
BDtab=GetBDTable(postfit)

BDtab

MAPm=BDtab$MAPcomp

BDfitMAPcomp_minus1=GetBDCompfit(postfit,MAPm-1,burnin=0)
avgsurfMAPcomp_minusl=plot_avgsurf (BDfitMAPcomp_minus1$BDgens, LL = 100,burnin=0)
comp=CompareSurfs(truemixsurf,avgsurfMAPcomp_minus1,LL=100)
BDfitMAPcomp=GetBDCompfit(postfit,MAPm,burnin=0)

avgsurfMAPcomp=plot_avgsurf (BDfitMAPcomp$BDgens, LL = 100,burnin=0)
comp=CompareSurfs(truemixsurf,avgsurfMAPcomp,LL=100)
BDfitMAPcomp_plus1=GetBDCompfit(postfit,MAPm+1,burnin=0)
avgsurfMAPcomp_plusi1=plot_avgsurf (BDfitMAPcomp_plus1$BDgens, LL = 100,burnin=0)
comp=CompareSurfs(truemixsurf,avgsurfMAPcomp_plus1,LL=100)

Count_pts Counts points in a window

Count_pts 9

Description

This function counts the number of points from a point pattern within a specified window.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Count_pts

Usage

Count_pts(pp, win)

Arguments
pp Object of class sppmix or ppp.
win The window of observation as an object of class owin, defining the window of
observation.
Value

An integer representing the number of points from pp within the window win.

Author(s)

Sakis Micheas

See Also

rsppmix, rmixsurf, plotmix_2d, square, owin

Examples

truemix_surf=rmixsurf(m = 3,lambda=100, xlim=c(-5,5),ylim=c(-5,5))
genPP=rsppmix(truemix_surf)

plotmix_2d(truemix_surf,genPP)

Count_pts(genPP,spatstat: :square(1))
Count_pts(genPP,spatstat::square(2))
Count_pts(genPP,spatstat::square(3))

Count_pts(genPP,spatstat: :square(4))

Count_pts(genPP,spatstat: :square(5))
Count_pts(genPP,spatstat::owin(c(-5,5),c(-5,5)))

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Count_pts

10 Datasets

Datasets Datasets

Description

Several datasets have been included in the sppmix package. They are all open source datasets that
have been processed into ppp objects. Many examples and tutorials use these datasets.

For basic examples see
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Datasets
ChicagoCrime2015

The 2015 Chicago crime dataset (http://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/
ijzp-qg8t2) contains the reported locations of homicide cases in Chicago during the year 2015. The

sppmix package object ChicagoCrime2@15 is a marked point pattern containing the crime locations

for two types of crimes; kidnappings coded as 0, and homicides coded as 1. In particular, there are

654 reported incident locations, 188 kidnappings, and 466 homicides.

ChicagoArea

The ChicagoArea object contains the coordinates for the different neighborhoods of the city of
Chicago.

CAQuakes2014

The Southern California Earthquake Data Center (SCEDC, Southern California Earthquake Center,
Caltech, Dataset: doi:10.7909/C3WD3xH1), operates at the Seismological Laboratory at Caltech
and is the primary archive of seismological data for southern California, recording the seismological
activity from 1932 to present. Here we concentrate on the year 2014, and all this data is contained in
a marked point process object named CAQuakes2@14. There are two continuous variables containing
marks for the events, including variable mag which represents the magnitude of the earthquake and
variable depth representing the depth.

CAQuakes2014.RichterOver3.0

In many examples we further restrict to events with magnitudes over 3.0 in the Richter scale. The
latter marked point pattern is aplty named CAQuakes2014.RichterOver3.0.

TornadoesAll

The National Oceanic and Atmospheric Administration (NOAA, http://www.noaa.gov/) is a
U.S.A. agency tasked with the dissemination of daily weather forecasts and severe storm warnings,
as well as, conducting climate monitoring among many other important tasks. The Storm Prediction
Center of NOAA contains important information on tornado occurrences throughout the U.S., start-
ing from 1950 all the way to the present. All this information is contained in the data.frame object
TornadoesAll. The variables (columns) included are as follows: 1="RecordNumber", 2="Year",
3="Month", 4="Day", 5="Date:yyyy-mm-dd", 6="Time:HH:MM:SS", 7="State", 8="Fscale", 9="In-
juries" 10="Fatalities", 11="Estimated property loss", 12="Estimated crop loss", 13="Starting lati-
tude", 14="Starting longitude", 15="Length in miles", and 16="Width in yards".

Note that each event (row) is marked using one of 6 levels (variable Fscale), each denoting the
strength of a tornado in the Fujita scale (Enhanced Fujita scale after January, 2007), with 0 denoting
minimal damage and 5 indicating complete destruction.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Datasets
http://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
http://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
http://www.noaa.gov/

Datasets 11

Tornadoes2011M0

In many examples we use the marked point pattern for year 2011 (a single time snap-shot), con-
tained in the object Tornadoes2@11MO, in order to study the behavior of the events of that year; this
year is of particular interest since on Sunday, May 22, 2011, Joplin Missouri, USA, was struck by a
destructive tornado resulting in over 150 deaths and $2.8 billion in damages.

ContinentalUSA_state_names

In several examples we use the names of the USA states. This data is contained in the object
ContinentalUSA_state_names.

MOAggIncomelLevelsPerCounty

In some examples we use the aggregate income levels per county for the state of Missouri, USA.
This data is contained in the object MOAggIncomeLevelsPerCounty.

USAStatesCounties2016
In many examples we use the boundaries of the states and counties of the USA. The Cartographic
Boundary Shapefiles (boundary data) is provided by the USA Census Bureau at https://www.
census.gov/geo/maps-data/data/tiger-cart-boundary.html. Thisis alist containing StateNames
(the state and territory names, 56 total), StatePolygons (a list of size 56, containing a list of
matrices describing the boundaries of the states/territories), and CountiesbyState (a list of size
56, with each list element a list containing element CountyName and CountyPolies, describ-
ing the county name of the specific state and polygons used). For example, USAStatesCoun-
ties2016$StateNames[1] is Alabama, and USAStatesCounties2016$CountiesbyState[[1]]$CountyName[1]
corresponds to Escambia county which can be plotted using the boundary coordinates in USAS-
tatesCounties2016$CountiesbyState[[1]]$CountyPolies[[1]].

Usage
Datasets()
ChicagoCrime2015
ChicagoArea
CAQuakes2014
CAQuakes2014.RichterOver3.0
TornadoesAll
Tornadoes2011MO
ContinentalUSA_state_names

MOAggIncomelLevelsPerCounty

USAStatesCounties2016

https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html
https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html

12 demo_mix

Format

All datasets are objects of type ppp and sppmix, except for object USAStatesCounties2016.

Author(s)
Sakis Micheas

Examples

ChicagoCrime2015

summary (ChicagoCrime2015)

plot(ChicagoCrime2015)+add_title("Chicago Crime, 2015")
CAQuakes2014.RichterOver3.0

summary (CAQuakes2014.RichterOver3.0)

plot (CAQuakes2014.RichterOver3.0)+add_title("Earthquakes in California, 2014")
Tornadoes2011MO

summary (Tornadoes2011M0)

plot(Tornadoes2011M0)+add_title("Tornado events about Missouri, 2011")

demo_mix Demo objects

Description

Demo objects (mixture, surface and generated pattern) using the classes provided by the sppmix
package.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#demo_mix

Usage

demo_mix
demo_intsurf
demo_genPPP
demo_truemix3
demo_truemix3comp
demo_truesurf3

demo_intsurf3comp

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#demo_mix

Demo_sppmix 13

Format

An object of class normmix of length 5.

Author(s)

Jiaxun Chen, Sakis Micheas, Yuchen Wang

Examples

demo_mix <- normmix(ps = c(.3, .7), mus = list(c(0.2, 0.2), c(.8, .8)),
sigmas = list(.@1xdiag(2), .01xdiag(2)))

demo_intsurf <- normmix(ps = c(.3, .7), mus = list(c(0.2, 0.2),

c(.8, .8)),sigmas = list(.01*diag(2), .01xdiag(2)), lambda = 100,

win = spatstat::square(1))

demo_genPPP<-rsppmix(demo_truesurf3, truncate=FALSE)

Demo_sppmix Run an sppmix package demo or vignette

Description

The function starts the different tutorials of the sppmix package.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Demo_sppmix

Usage

Demo_sppmix(whichdemo = NULL)

Arguments
whichdemo A number indicating which demo to run. Do not pass any number in order to
see all the availabe choices.
Author(s)
Sakis Micheas
Examples

Demo_sppmix ()#shows all available demos and opens the vignettes page
Demo_sppmix (1)#demo on sppmix objects

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Demo_sppmix

14 dnormmix

dnormmix Calculate the density or intensity of a normal mixture over a fine grid

Description

When a normmix object is given, this function calculates the mixture density over a fine grid for the
given window. When an intensity_surface object is given, the function multiplies the density
with the intensity surface parameter lambda, and returns the Poisson mixture intensity function over
the grid. Used for plotting.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#dnormmix

Usage

dnormmix(mix, xlim = c(@, 1), ylim = c(@, 1), L = 128, truncate = TRUE)

Arguments

mix An object of class normmix or intensity_surface

xlim, ylim Vectors defining the x-y integration limits. A mixture component mass is esti-
mated within this window.

L Length of the side of the square grid. The density or intensity is calculated on
an L * L grid. The larger this value is, the slower the calculation, but the better
the approximation.

truncate Requests to truncate the components of the mixture intensity to have all their
mass within the given x-y limits.

Value

An object of class im. This is a pixel image on a grid with values corresponding to the density (or
intensity surface) at that location.

Author(s)

Jiaxun Chen, Sakis Micheas, Yuchen Wang

See Also

normmix, rnormmix, plotmix_2d, plot_density, to_int_surf

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#dnormmix

drop_realization 15
Examples

truemix <- rnormmix(m = 3, sigd = .1, df = 5,x1lim= c(@, 5),
ylim = c(0, 5))

normdens=dnormmix (truemix,xlim= c(@, 5), ylim = c(@, 5))

#2d plots

plot_density(as.data.frame(normdens))+ ggplot2::ggtitle(

"2d mixture density plot\nWindow=[0,51x[@,5]")

plot_density(as.data.frame(normdens),TRUE)+ ggplot2::ggtitle(
"2d mixture contour plot\nWindow=[0,5]x[0,5]")

#3d plot

plotmix_3d(normdens)

#Now build an intensity surface based on the normal mixture
intsurf=to_int_surf(truemix,lambda = 100, win =
spatstat::owin(c(@, 5),c(@, 5)))
intsurfdens=dnormmix(intsurf,xlim= c(@, 5), ylim = c(@, 5))

plot_density(as.data.frame(intsurfdens))+ ggplot2::ggtitle(
"2d mixture intensity plot\nWindow=[0,5]x[0,51")

plot_density(as.data.frame(intsurfdens),TRUE)+ ggplot2::ggtitle(
"2d mixture intensity contour plot\nWindow=[@,5]x[0,5]1")

plotmix_3d(normdens)#3d plot

#For an intensity surface object we use these functions instead

plotmix_2d(intsurf)

plot(intsurf)

drop_realization Drop MCMC realizations

Description

The function drops realizations from a DAMCMC or BDMCMC fit and returns the resulting fit
object.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#drop_realization

Usage

drop_realization(fit, drop = 0.1 * fit$L)

Arguments
fit Object of class damcmc_res or bdmcme_res.
drop If one integer is provided, the function will drop the first 1:drop realizations. If

an integer vector is provided, it will drop these iterations. If a logical vector is
provided (with the same length as the chain length of fit), it will be used for
subsetting directly.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#drop_realization

16

Author(s)

est_intensity_np

Sakis Micheas, Yuchen Wang

See Also

est_mix_bdmcmc

Examples

fit <- est_mix_bdmcmc(spatstat::redwood, m = 5)

fit

drop_realization(fit, 500)
drop_realization(fit, fit$numcomp != 5)

est_intensity_np

Estimate the intensity surface using a non-parametric method

Description

Using an Epanechnikov kernel we calculate an estimate of intensity surface while accounting for

edge effects.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_intensity_

np

Usage

est_intensity_np(pattern, win, h, L = 10, kernel = c("Epanechnikov"),
edgecorrect = TRUE, truncate = TRUE)

Arguments
pattern
win
h
L

kernel

edgecorrect

truncate

A two-dimesional spatial point pattern in the form of a ppp object.
Object of class owin.

Kernel bandwidth. h should be a positive number.

Length of the side of the square grid.

Kernel used to estimate the intensity surface. Currently, only supports the Epanech-
nikov kernel.

Logical flag indicating whether or not to use edge-correction in the estimating
intensity surface. The default is TRUE.

Logical flag indicating whether or not to use points only within the window. The
default is TRUE.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_intensity_np
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_intensity_np

est MIPPP cond loc 17

Value

An object of class im.

Author(s)
Jiaxun Chen, Sakis Micheas

See Also

rnormmix, to_int_surf, rsppmix, plotmix_3d

Examples

mix1 <- rnormmix(5, sig@ = .01, df =5, xlim=c(@, 5),ylim=c(@, 5))
intsurfi=to_int_surf(mix1,lambda = 40, win =spatstat::owin(c(@, 5),c(@, 5)))
plot(intsurf1)

ppl <- rsppmix(intsurf1)

estimate and plot the estimated intensity surface

surfNP1 <- est_intensity_np(ppl, win=spatstat::owin(c(@, 5),c(@, 5)), h=0.05,
L=100, truncate = FALSE)

plotmix_3d(surfNP1,title1="Non parametric estimator of the intensity surface")

#truncate components to have all their mass in the window

surfNP2 <- est_intensity_np(ppl, win=spatstat::owin(c(@, 5),c(@, 5)), h=0.5, L=100)
plotmix_3d(surfNP2,titlel1="(Truncated) Non parametric estimator of the intensity surface")

est_MIPPP_cond_loc Fit a MIPPP conditionally on location

Description

This function fits a Marked IPPP (MIPPP) on a marked point pattern by modeling the (joint) in-
tensity surface of the locations and the marks using an IPPP for the locations (independent of the
mark values) and for discrete marks a Gibbs model for the mark distribution which is conditionally
defined on all the locations. NOTE: The estimation procedure for continuous marks (random fields)
will be implemented in future versions of the sppmix package.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_MIPPP
cond_loc

Usage

est_MIPPP_cond_loc(pp, r, hyper = 1, L = 10000, burnin = floor(L/10),
m = 3, fit_groundIPPP = FALSE, truncate = FALSE, grayscale = FALSE,
startgamma, discrete_mark = TRUE, LL = 150, open_new_window = FALSE,
show_plots = TRUE)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_MIPPP_cond_loc
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_MIPPP_cond_loc

18 est MIPPP cond loc
S3 method for class 'MIPPP_fit'
plot(x, surf, open_new_window = FALSE,
grayscale = FALSE,
main = "Locations and ground intensity surface of a marked IPPP", ...)
S3 method for class 'MIPPP_fit'
summary (object, ...)
Arguments
pp Marked point pattern of class ppp.
r Radius used to define the neighborhood system. Any two locations within this
distance are considered neighbors.
hyper Hyperparameter for the proposal distribution of gamma. This is currently the
standard deviation for the random walk Metropolis-Hastings steps (one step for
each gamma). Use a small value.
L Number of iterations for the MCMC; default is 10000.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.
m The number of components to fit for the ground process when fit_groundIPPP=TRUE.

fit_groundIPPP

truncate

grayscale
startgamma

discrete_mark

LL

open_new_window

show_plots
X

surf

main

object

Logical variable requesting to fit and return the DAMCMC results of the ground
process.

Logical variable indicating whether or not we we only work with events within
the window defined in the point pattern pp.

Logical to request plots in grayscale.
Initial value for the gamma vector. If missing the zero vector is used.

Logical flag indicating whether the mark is a discrete (numerical value) or not.
For continuous marks set this to FALSE.

Length of the side of the square grid.

Open a new window for a plot.
Logical variable requesting to produce the probability field plots for each mark.
An object of class MIPPP_fit (the result of a request from est_MIPPP_cond_loc).

An object of type intensity_surface representing the IPPP surface for the
ground process (conditioning on location only). This can be the surface of pos-
terior means or the MAP from a damcmc_res object or the MAP number of
components surface from a bdmcmc_res object.

Main title for the plot.
Additional arguments for the S3 method.
An object of class MIPPP_fit (the result of a request from est_MIPPP_cond_loc).

est_MIPPP_cond_loc 19

Details

We assume that the joint distribution of a marked point pattern N=[s,m(s)] with n events is of the
form:

p(N)=lambda*n*exp(-lambda)/(n!)*f(all s|thetal)*g(all m|theta2(s),all s)

where s denotes a location and m=m(s) a mark value at that location, lambda a parameter with the
interpretation as the average number of points over the window of observation, and f, g are proper
densities.

The location (or ground process) f(all s|thetal) can be fit using any method for unmarked
point patterns (for us it is modeled using an IPPP with a mixture of normals intensity surface).
The function fits the parameters of the second part of this model by default. However, setting
fit_groundIPPP=TRUE will fit a mixture intensity surface for the ground process and return it
for future processing. Alternatively, simply retrieve the marked point process returned and fit the
ground process using est_mix_damcmc or est_mix_bdmeme (the marks will be ignored and only
the locations will be used).

Since s is observed over some window and the marks are conditioned on knowing the locations,
then g is a random field for each value of m.

The neighborhood system is controlled by r and is crucial in this case. Small values tend to produce
probability fields with concentrated masses about observed events of the process, whereas, large
neighborhoods allow us to borrow strength across locations and result in much smoother probability
fields. This parameter is currently NOT estimated by the sppmix package, but will be implemented
in future releases.

See Micheas (2014) for more details on special cases (2 marks) of these Marked IPPP models via
conditioning arguments.

Value
An object of class MIPPP_fit, which is simply a list containing the following components:
gen_gammas Posterior realizations of the gammas.

prob_fields Probability fields of marks.

discrete_mark Same logical flag as the input argument.

r Same as the input argument.
pp Same as the input argument.
ground_fit An object of type damcmc_res which contains the results of a DAMCMC fit to

the ground process. If fit_groundIPPP=FALSE this is NULL.

condition_on_loc

Logical variable indicating the type of conditioning used in order to produce this
MIPPP fit. For this function it is set to TRUE.

Author(s)

Sakis Micheas, Jiaxun Chen

20 est MIPPP cond loc

References

Hierarchical Bayesian Modeling of Marked Non-Homogeneous Poisson Processes with finite mix-
tures and inclusion of covariate information. Micheas, A.C. (2014). Journal of Applied Statistics,
41, 12, 2596-2615, DOI: 10.1080/02664763.2014.922167.

See Also

GetStats, rMIPPP_cond_loc

Examples

Create a marked point pattern

X <= runif(100)

y <- runif(100)

#mark distribution is discrete uniform

m <- sample(1:2, 100, replace=TRUE)

m <- factor(m, levels=1:2)

pp <- spatstat::ppp(x, vy, c(@,1), c(@,1), marks=m)

estimate the probability fields for each mark; since we have a discrete

uniform for the mark distribution we should see probabilities about .5

for both marks, as well as, the gamma credible sets should include 0,

meaning that the marks are independent of location (probability .5 for

each of the two mark values)

mpp_est <- est_MIPPP_cond_loc(pp, @.1, hyper=0.2)

GetStats(mpp_est$gen_gammas[,1])$CredibleSet

GetStats(mpp_est$gen_gammas[,2])$CredibleSet

mpp_est <-est_MIPPP_cond_loc(pp, @.3, hyper=0.2)

GetStats(mpp_est$gen_gammas[,1])$CredibleSet

GetStats(mpp_est$gen_gammas[,2])$CredibleSet

mpp_est <- est_MIPPP_cond_loc(pp, 9.5, hyper=0.2)

GetStats(mpp_est$gen_gammas[,1])$CredibleSet

GetStats(mpp_est$gen_gammas[,2])$CredibleSet

#Visualize the Tornado data about MO. We request to fit both the mark

#and ground process.

#plot the states, the tornado locations and the marks (strength of a tornado)
ret=PlotUSAStates(states=c('Iowa', 'Arkansas', 'Missouri','Illinois', 'Indiana’,
'Kentucky', 'Tennessee', 'Kansas', 'Nebraska', 'Texas', 'Oklahoma', 'Mississippi’,
'Alabama’, 'Louisiana'), showcentroids=FALSE, shownames=TRUE, plotlevels = FALSE,
main= "Tornadoes about MO, 2011")

#tcheck out the mark values and their frequency

table(Tornadoes2011M0$marks)

#plot each point with a different shape according to its marks

ret$p+ggplot2: :geom_point(data=as.data.frame(Tornadoes2011M0),ggplot2: :aes(x=x,
y=y, shape= as.factor(marks)))+ggplot2::guides(shape = ggplot2::guide_legend(
title="Tornado power"”, ncol=2,byrow=TRUE))

#plot each point with a different color according to its marks

ret$p+ggplot2: :geom_point(data=as.data.frame(Tornadoes2011M0),ggplot2: :aes(x=x,
y=y,color= as.factor(marks)))+ggplot2::guides(color = ggplot2::guide_legend(
title="Tornado power"”, ncol=2,byrow=TRUE))

#plot each point with a different circle size according to its marks
ret$p+ggplot2: :geom_point(data=as.data.frame(Tornadoes2011M0),ggplot2: :aes(x=x,

#
#
#
#

est MIPPP cond_mark 21

y=y, size=marks),shape=21)+ ggplot2::scale_size_continuous(breaks=sort(unique(
Tornadoes2011MO$marks))) + ggplot2::guides(size =ggplot2::guide_legend(title=

"Tornado power”, ncol=2,byrow=TRUE))
the marks must start from 1, recode the original
Tornadoes2011M01=Tornadoes2011MO
Tornadoes2011M01$marks=Tornadoes2011M01$marks+1
mpp_est=est_MIPPP_cond_loc(Tornadoes2011M01,r=1.5,hyper=0.01,
startgamma = c(.1,.2,.3,.4,.5,.6),fit_groundIPPP=TRUE)
#Now generate an MIPPP with 3 marks
newMPP=rMIPPP_cond_loc(gammas=c(.1,.2,.5))
summary (newMPP)
plot(newMPP$surf,main="True IPPP intensity surface for the locations")
true_gammas=newMPP$gammas
genMPP=newMPP$genMPP
newMPP$r
mpp_est=est_MIPPP_cond_loc(genMPP,newMPP$r, hyper=0.2)
GetStats(mpp_est$gen_gammas[,1])$Mean
GetStats(mpp_est$gen_gammas[,2])$Mean
GetStats(mpp_est$gen_gammas[,3])$Mean
GetStats(mpp_est$gen_gammas[,1])$CredibleSet
GetStats(mpp_est$gen_gammas[,2])$CredibleSet
GetStats(mpp_est$gen_gammas[,3])$CredibleSet
summary (mpp_est)
plot(mpp_est)
plot(mpp_est,newMPP$surf)

est_MIPPP_cond_mark Fit a MIPPP conditionally on mark

Description

This function fits a Marked IPPP (MIPPP) on a marked point pattern by modeling the (joint) in-
tensity surface of the locations and the marks using an IPPP for the marks (independent of the
locations) and an IPPP with mixture intensity for the corresponding ground process, where the mix-
ture parameters depend on the mark value. NOTE: The estimation procedure for continuous marks
will be implemented in future versions of the sppmix package.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_MIPPP_
cond_mark

Usage

est_MIPPP_cond_mark(pp, m = 10, L = 50000, burnin = floor(L/10), hyper_da,
hyper, fit_markdist = TRUE, truncate = FALSE, grayscale = FALSE,
discrete_mark = TRUE, LL = 256, open_new_window = FALSE,
show_plots = TRUE, compute_surfaces = TRUE)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_MIPPP_cond_mark
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_MIPPP_cond_mark

22

Arguments

PP
m

L

burnin

hyper_da

hyper

fit_markdist

truncate

grayscale

discrete_mark

LL

open_new_window

show_plots

est MIPPP cond mark

Marked point pattern of class ppp.

A vector representing the number of components to fit for the ground process
corresponding to each mark. Since in real applications we don’t know these
numbers we can specify an integer so that the routine will fit a BDMCMC with
this m as the maximum number of components. Then we use the MAP number
of components for each ground process with a mixture intensity function of this
many components. If not supplied the default is m=10.

Number of iterations for the MCMC; default is 50000.

Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.

A list of hyperparameters for est_mix_damcmc. Each element of this list should
contain 3 values (hyperparameters) and the number of elements should be the
same as the number of marks. If this parameter is omitted the default hyperpa-
rameters of est_mix_damcmc will be used.

Hyperparameter for the mark distribution. Must be a vector of positive real
numbers. If omitted the vector of one’s is used.

Logical variable requesting to fit and return the parameter estimates of the mark
distribution.

Logical variable indicating whether or not we we only work with events within
the window defined in the point pattern pp.

Logical to request plots in grayscale.

Logical flag indicating whether the mark is discrete or not. For continuous marks
set this to FALSE.

Length of the side of the square grid.

Open a new window for a plot.

Logical variable requesting to produce the ground fits and probability field plots
for each mark. If label switching is present, the MAPE surface is computed and
returned, otherwise the PME.

compute_surfaces

Value

Logical to request computation of the Average of Surfaces (if m is a vector) or
the Bayesian Model Average (if m is an integer or missing). Default is TRUE.
This is a SLOW operation.

An object of class MIPPP_fit, which is simply a list containing the following components:

gen_mark_ps
mark_dist

discrete_mark

PP

The posterior realizations of the discrete mark distribution probabilities.
The posterior means of the discrete mark distribution probabilities.
Same logical flag as the input argument.

Same as the input argument.

est MIPPP cond_mark 23

ground_fits A List of objects of type damecmc_res which contain the results of the DAMCMC
(or the BDMCMC for MAP number of components) fits to the ground process
for each discrete mark value.

ground_fitsAoS A List of objects of type im which contain the AoS (average of surfaces) sur-
face based on the DAMCMC (or the BMA from BDMCMC) fits to the ground
process for each discrete mark value.

post_surf A List of intensity_surface objects, one for each mark, representing the sur-
face of posterior means, after fixing label switching using SEL permutation.

condition_on_loc

Logical variable indicating the type of conditioning used in order to produce this
MIPPP fit. For this function it is set to FALSE.

fit_DAMCMC Logical variable indicating whether or not a DAMCMC or BDMCMC fit was
requested.
m Same as input.
Author(s)

Sakis Micheas, Jiaxun Chen

See Also

rMIPPP_cond_mark, GetStats

Examples

#Create a marked point pattern; use randomization and 3 discrete marks
newMPP=rMIPPP_cond_mark(params=c(.2,.5,.3),bigwin = spatstat::owin(c(-10,10),c(-10,10)))
newMPP$params

#supply the true number of components for each ground process

m=c (newMPP$groundsurfs[[1]1$m, newMPP$groundsurfs[[2]]$m, newMPP$groundsurfs[[3]]1$m)
MIPPPfit=est_MIPPP_cond_mark(newMPP$genMPP m=m, compute_surfaces=FALSE)

#check out the mark distribution parameters

#posterior means

MIPPPfit$mark_dist

#credible sets

GetStats(MIPPPfit$gen_mark_ps[,1]1)$CredibleSet#should contain .2
GetStats(MIPPPfit$gen_mark_ps[,2])$CredibleSet#should contain .5
GetStats(MIPPPfit$gen_mark_ps[,3])$CredibleSet#should contain .3

#now pretend we do not know the truth as is usually the case. Supply an integer
#for m so that the routine will fit a BDMCMC with this as the max number of
#components and use the MAP number of components
MIPPPfit=est_MIPPP_cond_mark(newMPP$genMPP ,m=7,compute_surfaces=FALSE)

#check out the mark distribution parameters

MIPPPfit$mark_dist

GetStats(MIPPPfit$gen_mark_ps[,1]1)$CredibleSet#should contain .2
GetStats(MIPPPfit$gen_mark_ps[,2]1)$CredibleSet#should contain .5
GetStats(MIPPPfit$gen_mark_ps[,3])$CredibleSet#should contain .3

24 est_mix_damcmc

est_mix_damcmc Estimate a mixture model parameters using MCMC

Description

These functions fit a Poisson point process with a mixture intensity, in a Bayesian framework, using
the Data Augmentation MCMC (DAMCMC) method for a fixed number of components or the
Birth-Death MCMC (BDMCMC) method for a random, finite number of components. Estimation
of the parameters of the models is accomplished via calculation of the posterior means, based on
posterior realizations obtained by these computational methods.

For DAMCMC examples see
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_mix_damcmc
For BDMCMC examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_mix_bdmcmc

Usage

est_mix_damcmc(pp, m, truncate = FALSE, L = 10000, hyper_da = c(3, 1, 1),
useKmeans = FALSE)

est_mix_bdmcmc(pp, m, truncate = FALSE, lambdal = 1, lambda2 = 10,
hyper = c(m/2, 1/36, 3, 2, 1, 1), L = 30000)

Arguments
pp Point pattern object of class ppp.
m Either the number of components to fit in DAMCMC or the maximum number
of components requested for a BDMCMC fit.
truncate Logical variable indicating whether or not we normalize the densities of the

mixture components to have all their mass within the window defined in the
point pattern pp.

L Number of iterations for the DAMCMC (default is 10000) or BDMCMC (de-
fault is 30000). If the value passed is less than the default, then it is set to the
default value.

hyper_da Hyperparameters for DAMCMC, default is (3, 1, 1).

useKmeans Logical variable. If TRUE use a kmeans clustering method to obtain the starting
values for the component means, otherwise, randomly sample a point from the
pattern and use it as a component mean.

lambda1 Parameter for the truncated Poisson prior; lambdal = 1 by default.
lambda2 Birth rate; lambda2 = 10 by default.

hyper Hyperparameters for the hierarchical prior. See *Details’ for more information.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_mix_damcmc
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#est_mix_bdmcmc

est_mix_damcmc

Details

25

The DAMCMC follows the sampling scheme of Diebolt and Robert (1994).

The BDMCMC uses the sampling scheme of Stephens (2000). The definitions of the hyperparam-
eters can be found in equations (21)-(24). The number of components entertained is from 1 to m,
and the moves for the BDMCMC chain for the number of components, are either one up (add a
component) or one down (remove a component). Make sure you plot the BDMCMC fit to obtain
additional information on the fit.

Value

An object of type damcmc_res, containing MCMC realizations.

allgens_List

genps

genmus

gensigmas

genzs

genlambdas

genlambdas

ApproxCompMass

data
L

m

A list of size L containing posterior realizations, with elements that are lists of
size m, with each element being the posterior realization of the parameters of a
component, i.e., p, mu and sigma.

An Lxm matrix containing the L posterior realizations of the m component prob-
abilities of the normal mixture.

An mx2xL array containing the L posterior realizations of m component mean
vectors of the normal mixture.

An Lxm list, with elements that are 2x2 matrices, the posterior realizations of the
covariance matrices of the components of the normal mixture.

An Lxn matrix containing the membership indicators of the n points of the point
pattern pp, over all iterations of the MCMCM.

An Lx1 vector containing the posterior realizations of the of the lambda param-
eter (the average number of points over the window).

An Lx1 vector containing the posterior realizations of the of the lambda param-
eter (the average number of points over the window).

An Lxm matrix containing the approximate mass of the m mixture components
for each iteration.

The original point pattern.
Same as input.

Same as input.

Additional return values from the BDMCMC fit (this is a bdmcmc_res object).

numcomp

maxnumcomp

Badgen

An Lx1 vector containing the number of components the BDMCMC chooses to
fit at each iteration.

Same as input m.

An Lx1 vector with 0-1 values, where 1 indicates that the realization should be
dropped, or O if the realization should be kept. The BDMCMC can produce
"bad" births and degenerate realizations (zero component mass) that end up in
the chain for a specific number of components. Although these realizations do
not affect averages of surfaces (no label switching problem and the correspond-
ing component probability is zero), they have a detrimental effect when working
for mixture deconvolution within the chain of a specific number of components,

26 est_mix_damcmc

i.e., computing the posterior averages of the mixture parameters corresponding
to the mixture with MAP number of components. If this parameter is 1 for
some realizations, then dropping these degenerate realizations allows us to use
the label switching algorithms efficiently and achieve mixture deconvolution.
Obviously, the number of posterior realizations can drop significantly in num-
ber when we first apply burnin and then drop the bad realizations, so it is good
practice to run the BDMCMC for at least 20000 iterations.

Author(s)
Jiaxun Chen, Sakis Micheas, Yuchen Wang

References

Diebolt, J., and Robert, C. P. (1994). Estimation of Finite Mixture Distributions through Bayesian
Sampling. Journal of the Royal Statistical Society B, 56, 2, 363-375.

Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of components-
an alternative to reversible jump methods. The Annals of Statistics, 28, 1, 40-74.

See Also

PlotUSAStates, plotmix_2d, GetPMEst, plot_chains, check_labels, GetBDTable, GetBDCompfit,
plot.intensity_surface, plot.bdmecmc_res, to_int_surf, owin, plot_CompDist, drop_realization,
plot_chains, plot_ind, FixLS_da, rnormmix

Examples

fit <- est_mix_damcmc(spatstat::redwood, m = 3)

fit

plot(fit)

#We work with the California Earthquake data. We fit an IPPP with intensity surface modeled
#by a mixture with 5 normal components.

CAfit=est_mix_damcmc (CAQuakes2014.RichterOver3.0, m=5, L = 20000)

#Now retrieve the surface of Maximum a Posteriori (MAP) estimates of the mixture parameter.
#Note that the resulting surface is not affected by label switching.

MAPsurf=GetMAPEst (CAfit)

#Plot the states and the earthquake locations along with the fitted MAP IPPP intensity
#surface.

ret=PlotUSAStates(states=c('California’', 'Nevada', 'Arizona'), showcentroids=FALSE,
shownames=TRUE ,main= "Earthquakes in CA, 2014" pp=CAQuakes2014.RichterOver3.0, surf=MAPsurf,
boundarycolor="white"”,namescolor="white")

plot(CAfit)

#check labels

check_labels(CAfit)

Fix label switching, start with approx=TRUE

post_fixed = FixLS_da(CAfit, plot_result = TRUE)

plot_chains(post_fixed)

plot_chains(post_fixed, separate = FALSE)

#this one works generally better but it is slow for large m

post_fixed = FixLS_da(CAfit,approx=FALSE, plot_result = TRUE)

est_mix_damcmc 27

plot_chains(post_fixed)
plot_chains(post_fixed, separate = FALSE)

fitBD <- est_mix_bdmcmc(spatstat::redwood, m = 5)
fitBD
plotsBDredwood=plot (fitBD)
#Earthquakes example
CAfitBD=est_mix_bdmcmc(pp = CAQuakes2014.RichterOver3.0, m = 5)
BDtab=GetBDTable(CAfitBD)#retrieve frequency table and MAP estimate for number of components
BDtab
MAPm=BDtab$MAPcomp
plotsCAfitBD=plot (CAfitBD)
#tget the surface of posterior means with MAP components and plot it
plotmix_2d(GetPMEst (CAfitBD,MAPm),CAQuakes2014.RichterOver3.0)
#retrieve all BDMCMC realizations corresponding to a mixture with MAP components
BDfitMAPcomp=GetBDCompfit(CAfitBD,MAPm)
BDfitMAPcomp
plot (BDfitMAPcomp$BDsurf,main=paste(”"Mixture intensity surface with" ,MAPm, "components”))
#Example of Dropping bad realizations and working with the MAP surface
open_new_plot=FALSE
truncate=FALSE
truemix4=rnormmix(m = 4, sigd = .1, df = 5,xlim= c(-2,2), ylim = c(-2,2))
plot(truemix4,xlim= c(-2,2), ylim = c(-2,2),whichplots=0, open_new_window=
open_new_plot)+add_title("True mixture of normals density”)
trueintsurfmix4=to_int_surf(truemix4,lambda = 150,win =spatstat::owin(c(-2,2),c(-2,2)))
#not truncating so let us use a larger window
bigwin=spatstat::owin(c(-4,4),c(-4,4))
ppmix4 <- rsppmix(intsurf = trueintsurfmix4,truncate = truncate,win=bigwin)# draw points
print(plotmix_2d(trueintsurfmix4,ppmix4, open_new_window=open_new_plot,
win=spatstat::owin(c(-4,4),c(-4,4)))+add_title(
"True Poisson intensity surface along with the point pattern, W=[-4,4]1x[-4,4]",
lambda =trueintsurfmix4$lambda,m=trueintsurfmix4$m,n=ppmix4$n))
BDMCMCfit=est_mix_bdmcmc(pp = ppmix4, m = 5,L=30000,truncate = truncate)
#check the original distribution of the number of components
plot_CompDist(BDMCMCfit, open_new_window=open_new_plot)
#get the realizations corresponding to the MAP number of components
BDtab=GetBDTable (BDMCMCfit,FALSE)#retrieve frequency table and MAP estimate for the
#number of components
MAPm=BDtab$MAPcomp
BDMCMCfitMAPcomp=GetBDCompfit (BDMCMCfit,MAPm)
BDMCMCf'itMAPcompgens=BDMCMCfitMAPcomp$BDgens
#look at the range of the means with the degenerate realizations included
print(range (BDMCMCfitMAPcompgens$genmus[,1,]))
print(range (BDMCMCfitMAPcompgens$genmus[,2,1))
#use the original output of the BDMCMC and apply 10% burnin (default)
BDMCMCfit=drop_realization(BDMCMCfit)
#now we drop the bad realizations
BDMCMCfit=drop_realization(BDMCMCfit, (BDMCMCfit$Badgen==1))
#we see how many realizations are left
plot_CompDist(BDMCMCfit, open_new_window=open_new_plot)
#get the realizations for the MAP only
BDMCMCfitMAPcomp=GetBDCompfit (BDMCMCfit,MAPm)

28 FixLS _da

BDMCMCf'itMAPcompgens=BDMCMCfitMAPcomp$BDgens
#check again the range of values for the x-y coords of the component means; they
#should be within the window
print(range (BDMCMCfitMAPcompgens$genmus[,1,1))
print(range (BDMCMCfitMAPcompgens$genmus[,2,]))
#check the MAP surface
plotmix_2d(BDMCMCfitMAPcomp$BDsurf,ppmix4, open_new_window=open_new_plot,
win=bigwin) +add_title("MAP Poisson intensity surface along with the point pattern”,
lambda =BDMCMCfitMAPcomp$BDsurf$lambda, m=BDMCMCfitMAPcomp$BDsurf$m, n=ppmix4$n,
L=BDMCMCfitMAPcomp$BDgens$L)
plot_chains(BDMCMCfitMAPcompgens, open_new_window=open_new_plot, separate = FALSE)
#burnin has been applied, set to zero and check for label switching
labelswitch=check_labels(BDMCMCfitMAPcompgens,burnin=0)
#use the identifiability constraint approach first
post_fixedBDMCMCfitIC = FixLS_da(BDMCMCfitMAPcompgens,burnin=0)
plot_chains(post_fixedBDMCMCfitIC, open_new_window=open_new_plot, separate = FALSE)
print(plot_ind(post_fixedBDMCMCfitIC, burnin=0, open_new_window=
open_new_plot)+add_title("Posterior means of the membership indicators (IC permuted labels)"”,
m = post_fixedBDMCMCfitIC$m, n = post_fixedBDMCMCfitIC$datas$n))
permSurfaceofPostMeansIC=GetPMEst(post_fixedBDMCMCfitIC, burnin=0)
print(plotmix_2d(permSurfaceofPostMeansIC,ppmix4, open_new_window=open_new_plot,
win=bigwin)+add_title("Poisson surface of posterior means (IC)",
lambda=permSurfaceofPostMeansIC$lambda, m=permSurfaceofPostMeansIC$m, n=ppmix4$n,
L=post_fixedBDMCMCfitIC$L))
#use the decision theoretic approach via SEL to find the best permutation; this one should
#work much better
post_fixedBDMCMCfitSEL = FixLS_da(BDMCMCfitMAPcompgens,approx=FALSE, burnin=0)
plot_chains(post_fixedBDMCMCfitSEL, open_new_window=open_new_plot, separate = FALSE)
print(plot_ind(post_fixedBDMCMCfitSEL, burnin=0, open_new_window=open_new_plot)+add_title(
"Posterior means of the membership indicators (best permutation)”,
m=post_fixedBDMCMCfitSEL$m,n = post_fixedBDMCMCfitSEL$datas$n))
permSurfaceofPostMeansSEL=GetPMEst (post_fixedBDMCMCfitSEL, burnin=0)
print(plotmix_2d(permSurfaceofPostMeansSEL,ppmix4, open_new_window=open_new_plot,
win=bigwin)+ add_title("Poisson surface of posterior means (best permutation)”,
lambda=permSurfaceofPostMeansSEL$1lambda, m=permSurfaceofPostMeansSEL$m,
n=ppmix4$n,L=post_fixedBDMCMCfitSEL$L))

FixLS_da Fix Label Switching

Description

Permutes the posterior realizations in order to fix the labels by either applying an identifiability
constraint or by minimizing the squared error loss to find the best permutation.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#FixLS_da

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#FixLS_da

FixLS_da 29

Usage

FixLS_da(fit, burnin = floor(fit$L/10), xlab = "x", ylab = "y",
approx = TRUE, plot_result = FALSE, run_silent = FALSE)

Arguments
fit Object of class damcmc_res or bdmeme_res.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.
xlab The label for the x-axis.
ylab The label for the y-axis.
approx Logical flag to request use of the identifiability constraint to permute all realiza-
tions. If FALSE, minimizing the loss function can be very slow for moderate
to large number of components (m>10), since the algorithm goes through all m!
permutations for each posterior realization.
plot_result Logical flag for requesting plots of the point pattern and intensity surface based
on the permuted realizations. The default is FALSE.
run_silent Logical flag to hide progress messages. Default is FALSE.
Author(s)

Jiaxun Chen, Sakis Micheas

References

Jasra, A., Holmes, C.C. and Stephens, D. A. (2005). Markov Chain Monte Carlo Methods and the
Label Switching Problem in Bayesian Mixtures. Statistical Science, 20, 50-67.

See Also

normmix, rsppmix, est_mix_damcmc, plot_chains, check_labels
Examples

generate data

mix1 <- normmix(ps=c(.4, .2,.4), mus=list(c(0.3, 0.3), c(.5,.5),c(0.7, 0.7)),
sigmas = list(.02*diag(2),.05*diag(2), .02*diag(2)),lambda = 100, win = spatstat::square(1))
#plot the true mixture

plot(mix1,main = "True Poisson intensity surface (mixture of normal components)”)
ppl <- rsppmix(mix1)

Run Data augmentation MCMC and get posterior realizations

postfit = est_mix_damcmc(ppl, m=3, truncate=TRUE)

#plot the chains

plot_chains(postfit)

plot_chains(postfit,separate = FALSE)

get the intensity of posterior means

post_mean = GetPMEst(postfit)

30

GetBDCompfit

plot the estimated intensity surface
plot(post_mean)

#check labels

check_labels(postfit)

Fix label switching, start with approx=TRUE
post_fixed = FixLS_da(postfit, plot_result = TRUE)
plot_chains(post_fixed)

plot_chains(post_fixed, separate = FALSE)

#this one works better in theory

post_fixed = FixLS_da(postfit, approx=FALSE, plot_result = TRUE)
plot_chains(post_fixed)

plot_chains(post_fixed, separate = FALSE)

GetBDCompfit Retrieve parts of a BDMCMC fit

Description

The function can be used to obtain the realizations and the corresponding surface of posterior means,
for a specific number of components. Use GetPMEst if you want just the surface.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetBDCompfit

Usage

GetBDCompfit(BDfit, num_comp, burnin = floor(BDfit$L/10))

Arguments
BDfit Object of class damcmc_res.
num_comp Number of components requested. Only the posterior realizations that have this
many components will be returned. The function fails if the BDMCMC chain
never visited this number of components.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.
Value

A list containing the following:

BDgens Realizations corresponging to this many mixture components. This is a damecmc_res

object (same as the result of a est_mix_damcmc call). All realizations for the
requested number of components are returned, that is, burnin is not applied to
this object.

BDsurf For the requested num_comp, this is the Poisson intensity surface based on the
corresponding posterior means (label switching might be present).

BDnormmix For the requested num_comp, this is a normmix object containing the correspond-
ing ps, mus and sigmas (label switching might be present).

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetBDCompfit

GetBDTable 31

Author(s)
Sakis Micheas

See Also

est_mix_bdmcmc, GetBDTable, plot.damcmc_res, plot.normmix

Examples

fit <- est_mix_bdmcmc(pp = spatstat::redwood, m = 7)

GetBDTable(fit)

#retrieve all BDMCMC realizations corresponding to a mixture with 5 components
BDfit5comp=GetBDCompfit(fit,5)

plot(BDfit5comp$BDsurf,main="Mixture intensity surface with 5 components”)

#plot with the correct window

plot(BDfit5comp$BDnormmix,xlim =BDfit5comp$BDsurf$window$xrange,ylim =
BDfit5comp$BDsurf$windows$yrange)

plot(BDfit5comp$BDgens)

GetBDTable Retrieve the MAP and distribution of the number of components

Description

The function can be used to obtain the MAP estimate (mode of the posterior) along with the fre-
quency table for the number of components, based on a BDMCMC fit from est_mix_bdmcmc.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetBDTable

Usage
GetBDTable(BDfit, showtable = TRUE)

Arguments

BDfit A BDMCMC fit obtain from est_mix_bdmecmc.

showtable Logical variable requesting to display the frequency table. Default is TRUE.
Value

A list containing the following:

MAPcomp The MAP number of mixture components.
FreqTab Frequency table for the number of components.

MeanComp The posterior mean for the number of components.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetBDTable

32 GetBMA

Author(s)
Sakis Micheas

See Also

est_mix_bdmcmc

Examples

fit <- est_mix_bdmecmc(pp = spatstat::redwood, m = 7)
GetBDTable(fit)

GetBMA Compute the Bayesian Model average

Description

This function uses the posterior realizations from a est_mix_bdmecmc call, to compute the Bayesian
Model Average across different number of components and returns the fitted Poisson point process
with mixture of normals intensity surface.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetBMA

Usage

GetBMA(fit, win = fit$data$window, burnin = fit$L/10, LL = 100,
zlims = c(0, 0))

Arguments

fit Object of class bdmcmc_res.

win An object of class owin.

burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.

LL Length of the side of the square grid. The density or intensity is calculated on
an L * L grid. The larger this value is, the slower the calculation, but the better
the approximation as well as the smoother the resulting plots.

zlims The limits of the z axis. Defaults to [0,max(z)].

Value

An image as an object of class im.object.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetBMA

GetDensity Values 33

Author(s)
Sakis Micheas

See Also

est_mix_bdmemc, plotmix_3d, plot_density

Examples

fit=est_mix_bdmcmc(pp = spatstat::redwood, m = 5)
BMA=GetBMA(fit)
burnin=.1xfit$L
titlel = paste(”Bayesian model average of"”,fit$L-burnin,"”posterior realizations”)
plotmix_3d(BMA,titlel=titlel)
plot_density(as.data.frame(BMA))+ggplot2::ggtitle("Bayesian model average intensity surface")
plot_density(as.data.frame(BMA),TRUE)+ggplot2::ggtitle(
"Contours of the Bayesian model average intensity surface")

GetDensityValues Retrieve density values

Description

This function operates on the point pattern and the realizations of a DAMCMC or BDMCMC fit
(object damcmc_res or bdmcmc_res) and returns a plethora of information about the fit. When a
bdmcmc_res is passed, only the realizations corresponding to the MAP number of components are
used for calculations.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetDensityValues

Usage

GetDensityValues(fit)

Arguments

fit Object of class damcmc_res or bdmemc_res.

Value

A list containing the following components:

Marginal the value of the Marginal (approximately)
LoglLikelihood the value of the LogLikelihood

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetDensityValues

34 GetIPPPLik Value

CompDensityAtXi
the value of the component densities across all realizations and for each data
point
DensityAtXi the value of the mixture density across all realizations and for each data point
EntropyMAP an approximation of the entropy of the distribution of the component indicators
Density the joint density at each posterior realization, i.e., for each iteration of ps, mus
and sigmas.
Author(s)
Sakis Micheas
See Also

normmix, est_mix_damecmc, est_mix_bdmecmc, rsppmix

Examples

create the true mixture intensity surface

truesurf =normmix(ps=c(.2, .6,.2), mus=list(c(0.3, 0.3), c(0.7, 0.7),
c(0.5, 0.5)),sigmas=list(.0Q1*diag(2), .01xdiag(2), .01*diag(2)),
lambda=100,win=spatstat: :square(1))

plot(truesurf)

generate the point pattern, truncate=TRUE by default
genPP=rsppmix(truesurf,truncate=FALSE)

fit=est_mix_damcmc(pp = genPP, m = 3)
allvals=GetDensityValues(fit)

MAPest=GetMAPEst(fit,vals=allvals)

plot(MAPest,main="IPPP intensity surface of MAP estimates")

GetIPPPLikValue Retrieve the IPPP likelihood value

Description

Given a point pattern this function calculates the IPPP likelihood value.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetIPPPLikValue

Usage

GetIPPPLikValue(pp, surf, truncate = FALSE)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetIPPPLikValue

GetKLEst 35

Arguments
pp Point pattern object of class ppp.
surf IPPP intensity surface object of class intensity_surface.
truncate Logical variable indicating whether or not we normalize the densities of the
mixture components to have all their mass within the window defined in the
point pattern pp.
Author(s)
Sakis Micheas
See Also

est_mix_damecmc, rmixsurf, rsppmix, GetPMEst

Examples

truemix_surf <- rmixsurf(m = 3, lambda=100,xlim = c(-3,3),ylim = c(-3,3))
plot(truemix_surf,main="True IPPP intensity surface")
genPPP=rsppmix(intsurf = truemix_surf, truncate = FALSE)

fit <- est_mix_damcmc(genPPP, m = 3)

MAPest=GetMAPEst (fit)

GetIPPPLikValue(genPPP,MAPest)

GetIPPPLikValue(genPPP,GetPMEst(fit))

GetKLEst Retrieve the surface of Kullback-Leibler (KL) estimators

Description

This function calculates the Kullback-Leibler estimators of the parameters of the components of the
mixture intensity, based on a DAMCMC or BDMCMC fit. This is a decision theoretic estimator
of the parameters, meaning that, we compute the Posterior Expected Loss (PEL) using the KL loss
function and then find the parameter values that minimize the PEL.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetKLEst

Usage

GetKLEst(fit, burnin = floor(fit$L/10), fixLS = FALSE, approx = FALSE,
segment = 50)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetKLEst

36

Arguments
fit
burnin
fixLS

approx

segment

Value

GetKLEst

Object of class damcmc_res or bdmeme_res.

Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.

Logical requesting to check and fix label switching (if present). Default is
FALSE.

Logical flag to request use of the identifiability constraint to permute all realiza-
tions. Same parameter as in function FixLS_da.

Number of segments to split the posterior realizations into. Each portion of
posterior realizations is used to calculate a single Kullback-Leibler realization.
The KL estimator is the average of all the KL realizations. Default is 50.

An object of class intensity_surface.

Author(s)

Jiaxun Chen, Sakis Micheas

See Also

rmixsurf, rsppmix, est_mix_damcmc, GetPMEst, GetMAPEst, CompareSurfs

Examples

#generate a surface

truemix_surf <- rmixsurf(m = 3, lambda=100, xlim = c(-3,3), ylim = c(-3,3))
plot(truemix_surf,main="True IPPP intensity surface")

#generate a point pattern

genPPP=rsppmix(intsurf = truemix_surf, truncate = FALSE)

#fit the IPPP model using DAMCMC

fit = est_mix_damcmc(genPPP, m = 3,L=20000)

#get the surfaces of posterior means, MAP and KL estimates
Meansest=GetPMEst (fit)

MAPest=GetMAPEst (fit)

KLest=GetKLEst(fit)

#plot all fitted surfaces

plot(Meansest,main="IPPP intensity surface of posterior means")
plot(MAPest,main="IPPP intensity surface of MAP estimates”)
plot(KLest,main="IPPP intensity surface of KL estimates")

#fix labels (if label switching is detected)
KLestLSFixed=GetKLEst(fit, fixLS=TRUE, approx=FALSE)
plot(KLestLSFixed,main="IPPP intensity surface of KL estimates (LS fixed)")
#tcompare the four estimates against the truth
CompareSurfs(truemix_surf, Meansest, LL = 100, truncate = FALSE)
CompareSurfs(truemix_surf, MAPest, LL = 100, truncate = FALSE)
CompareSurfs(truemix_surf, KlLest, LL = 100, truncate = FALSE)
CompareSurfs(truemix_surf, KLestLSFixed, LL = 100, truncate = FALSE)

GetMAPESst 37

GetMAPEst Retrieve the surface of MAP estimators

Description

The function calculates the Maximum A Posteriori (MAP) estimate of the [IPPP mixture intensity
surface parameters. Use function GetPMEst if you want the surface of posterior means.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetMAPEst

Usage

GetMAPEst(fit, burnin = floor(fit$L/10), vals, truncate = FALSE,
priortype = 1, d, mu@, Sigma@, dfo, sigd)

Arguments

fit Object of class damcmc_res or bdmecme_res.

burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.

vals Contains the density values over the point pattern and realizations in the fit
object. This can be obtained via a call to GetDensityValues. If this argument
is missing then the density values are computed herein before computing the
MAP estimates.

truncate Logical variable indicating whether or not we normalize the densities of the
mixture components to have all their mass within the window defined in the
point pattern pp.

priortype For different types of priors, ignored right now.

d, mu@, Sigma@, dfo, sigd

Optional parameters for the prior distributions used: d are the weights of the
Dirichlet prior on the component probabilities. mu0 and SigmaO are the mean

and covariance matrix of a bivariate normal that yields the component means.

df0 and sig0 are the degrees of freedom and sig0*2*Identity the parameter ma-

trix for the Inverse Wishart prior that yields the component matrices. If omit-

ted they are set to the following values, which are the default values used in
est_mix_damcmc: SigmaO=cov(cbind(ppx,ppSy)), muO=c(mean(pp$x),mean(pp$y)),
sig0=1, df0=10, and d=rep(1,m).

Value

An object of type intensity_surface.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetMAPEst

38 GetMAPLabels

Author(s)
Sakis Micheas

See Also

est_mix_damecmc, rmixsurf, rsppmix, GetPMEst

Examples

truemix_surf <- rmixsurf(m = 3, lambda=100, xlim = c(-3,3), ylim = c(-3,3))
plot(truemix_surf,main="True IPPP intensity surface"”)
genPPP=rsppmix(intsurf = truemix_surf, truncate = FALSE)

#the larger the number of realizations the better

fit <- est_mix_damcmc(genPPP, m = 3,L=100000)

MAPest=GetMAPEst (fit)

plot(GetPMEst(fit),main="IPPP intensity surface of posterior means")
plot(MAPest,main="IPPP intensity surface of MAP estimates")

fitBD <- est_mix_bdmcmc(pp = genPPP, m = 5)

MAPest=GetMAPEst (fitBD)

plot(MAPest,main="IPPP intensity surface of MAP estimates for MAP m")

GetMAPLabels Retrieve the MAP estimates for the component labels

Description

The function returns the Maximum A Posteriori (MAP) estimates of the component labels (mem-
bership indicator variables) based on a damcmc_res object (output from est_mix_damemc) or a
bdmcmc_res object (output from est_mix_bdmemc) for the chain corresponding to MAP number of
components.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetMAPLabels

Usage

GetMAPLabels(fit)
Arguments

fit Object of class damcmc_res or bdmeme_res.
Value

A vector with size equal to the number of points, containing the MAP estimators of the component
labels (or membership indicator variables). This the most likely component we would classify a
point in.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetMAPLabels

GetPMEst 39

Author(s)

Jiaxun Chen

See Also

normmix, to_int_surf, rsppmix, est_mix_damcmc

Examples

truemix <- normmix(ps=c(.4, .2,.4), mus=list(c(0.3, 0.3), c(.5,.5),c(0.7, 0.7)),
sigmas = list(.02*diag(2), .05*diag(2), .01xdiag(2)))
intsurf=to_int_surf(truemix,lambda = 100, win = spatstat::square(1))

ppl1 <- rsppmix(intsurf)

plot(pp1)

plot(ppl, mus = intsurf$mus)#plot the mixture means as well

#plot the points with different colors depending on the true component label
plot(pp1, colors = TRUE)

#plot the points with different colors depending on the estimated component label
fit <- est_mix_damcmc(ppl, 3)

est_comp <- GetMAPLabels(fit)

plot(ppl, estcomp = est_comp, colors = TRUE)

fitBD <- est_mix_bdmcmc(pp1, 5)

est_compBD <- GetMAPLabels(fitBD)

plot(ppl, estcomp = est_compBD, colors = TRUE)

GetPMEst Retrieve the Surface of Posterior Means

Description

The function first calculates the posterior means of the parameters of the components of the mixture
intensity, based on a DAMCMC or BDMCMC fit. Then the surface of posterior means is calculated
using the posterior means of the parameters. For a BDMCMC fit, the number of components
should be specified, and all realizations with that number of components are gathered to calculate
the posterior intensity surface.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetPMEst

Usage

GetPMEst(fit, num_comp = 1, burnin = floor(fit$L/10))

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetPMEst

40 GetStats

Arguments
fit Object of class damcmc_res or bdmeme_res.
num_comp Number of components requested. The posterior will be calculated only based
on the posterior realizations that have this many mixture components. If missing
the realizations corresponding to the MAP number of components are returned.
This parameter is ignored if fit is of class damecmc_res.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.
Value

An object of class intensity_surface.

Author(s)
Jiaxun Chen, Sakis Micheas, Yuchen Wang

See Also

est_mix_damcmc,est_mix_bdmcmc
Examples

fit <- est_mix_damcmc(pp = spatstat::redwood, m = 3)
post_intsurf <- GetPMEst(fit, burnin = 1000)
plot(post_intsurf)

fit <- est_mix_bdmcmc(pp = spatstat::redwood, m = 5)
post_intsurf <- GetPMEst(fit, num_comp = 4, burnin = 1000)
plot(post_intsurf)

post_fixed = FixLS_da(fit,approx=FALSE, plot_result = TRUE)
plot(GetPMEst (post_fixed))

GetStats Retrieves basic Bayesian estimates from a generated chain

Description

The function returns the posterior mean and Credible Set for a parameter based on a chain of pos-
terior realizations.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetStats

Usage
GetStats(chain, alpha = 0.05)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#GetStats

Get_Rdiag 41

Arguments
chain A Markov Chain (a vector) containing the posterior realizations of the parameter.
alpha Level to use for the credible set.

Value

A list containing the min, max, mean, Credible Set and CredibleSetConfidence level.

Author(s)
Sakis Micheas

See Also

normmix, to_int_surf, rsppmix, est_mix_damcmc
Examples

truemix <- normmix(ps=c(.4, .2,.4), mus=list(c(@.3, 0.3), c(.5,.5),c(0.7, 0.7)),
sigmas = list(.02*diag(2), .05*diag(2), .01*diag(2)))
intsurf=to_int_surf(truemix,lambda = 100, win = spatstat::square(1))
pp1 <- rsppmix(intsurf)

fit <- est_mix_damcmc(ppl, 3)

p1=GetStats(fit$genps[,1])

p1$Mean

p1$CredibleSet

p2=GetStats(fit$genpsl,2])

p2$Mean

p2$CredibleSet

p3=GetStats(fit$genpsl,3])

p3$Mean

p3$CredibleSet

Get_Rdiag Checking convergence: diagnostics

Description

This function reports the Gelman-Rubin convergence diagnostic R (also known as the potential
scale reduction), by producing k DAMCMC fits and computing the within-chain and between-
chain variances. Values approximately equal to 1 indicate convergence, otherwise we need to run
the chain for a longer number of iterations to get convergence.

For DAMCMC examples see
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Get_Rdiag

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Get_Rdiag

42 kstest2d

Usage
Get_Rdiag(pp, m, truncate = FALSE, L = 20000, numofchains = 2,
permute = Q)
Arguments
pp Point pattern object of class ppp.
m The number of components to fit.
truncate Logical variable indicating whether or not we normalize the densities of the
mixture components to have all their mass within the window defined in the
point pattern pp.
L Number of iterations to use for each chain created; default is 20000. Note that
half of them will be dropped so use a large number.
numofchains Number of chains to create; default is 2.
permute Request to generate chains that are unpermuted (permute=0), identifiability con-
straint (IC) permuted (permute=1), or minimum squared error loss (SEL) per-
muted (permute=2).
Author(s)
Sakis Micheas
See Also

est_mix_damemc, rmixsurf, rsppmix

Examples

truemix_surf <- rmixsurf(m = 3, lambda=100, xlim = c(-3,3), ylim = c(-3,3))
plot(truemix_surf)

genPPP=rsppmix(intsurf = truemix_surf, truncate = FALSE)

Get_Rdiag(pp = genPPP, m = 3)

kstest2d Nonparametric Goodness-of-fit test between two point patterns

Description

This function performs a two-dimensional Kolmogorov-Smirnov goodness-of-fit test on two point
patterns.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#kstest2d

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#kstest2d

kstest2d 43

Usage

kstest2d(x1, x2, showinfo = TRUE)

Arguments
x1, x2 Objects of class ppp.
showinfo Logical variable. Requests to display the test conclusion based on the value of
the p-value. Default is TRUE.
Value

A list with class "htest" containing the following components:

statistic Value of the KS statistic

p.value The p-value of the test

alternative A character string describing the alternative hypothesis
Author(s)

Jiaxun Chen, Sakis Micheas

References

Peacock, J.A. (1983). Two-dimensional goodness-of-fit testing in astronomy. Monthly Notices
Royal Astronomy Society, 202, 615-627.

Adapted from Matlab code by Dylan Muir.

See Also

rnormmix,to_int_surf,owin

Examples

generate two point patterns
mix1 <- rnormmix(3, sigd = .01, df

intsurfi=to_int_surf(mix1,lambda =

mix2 <- rnormmix(8, sigd = .01, df = 10, xlim=c(@, 5),ylim=c(@, 5))
intsurf2=to_int_surf(mix2,lambda = 50, win =spatstat::owin(c(@, 5),c(@, 5)))
#generate patterns from the two different models

ppl <- rsppmix(intsurf1)

pp2 <- rsppmix(intsurf2)

pp3 <- rsppmix(intsurf2)#pp3 is from the same model as pp2

Test for goodness of fit, p-value should be small

kstest2d(ppl1, pp2)

Test for goodness of fit, p-value should be large

kstest2d(pp2, pp3)

= 5, xlim=c(@, 5), ylim=c(@, 5))
40, win =spatstat::owin(c(@, 5),c(9, 5)))

44 kstest2dsurf

kstest2dsurf Nonparametric Goodness-of-fit test for a point pattern against a sur-
face

Description

This function performs a two-dimensional Kolmogorov-Smirnov goodness-of-fit test for a point
pattern against a given intensity surface.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#kstest2dsurf

Usage

kstest2dsurf(pp, intsurf, truncate = FALSE, iters = 500)

Arguments
pp Object of class ppp.
intsurf Object of class intensity_surface.
truncate Requests to truncate the generated point patterns to be within the window of the
intensity object intsurf. Default is FALSE.
iters Number of point patterns to generate and compare against pp. The larger this
value is, the more test performed, and thus the more reliable the result.
Author(s)
Sakis Micheas
See Also

rmixsurf, kstest2d, rsppmix, plotmix_2d

Examples

generate two intensity surfaces; assume the same window [-3,3]x[-3,3]
mixsurfl <- rmixsurf(m = 3, lambda=100,xlim=c(-3,3),ylim=c(-3,3))
plot(mixsurfi)

mixsurf2 <- rmixsurf(m = 5, lambda=200,xlim=c(-3,3),ylim=c(-3,3))
plot(mixsurf2)

#generate point patterns from the two different models

pp1 <- rsppmix(mixsurf1, truncate=FALSE)
plotmix_2d(mixsurf1,ppl,colors=TRUE)

pp2 <- rsppmix(mixsurf2, truncate=FALSE)
plotmix_2d(mixsurf2,pp2,colors=TRUE)

Test for goodness of fit, p-value should be small

kstest2d(ppl1, pp2)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#kstest2dsurf

MaternCov 45

Test each pattern for gof against both Poisson models
kstest2dsurf(ppl, mixsurfl)#correct model for ppl
kstest2dsurf(ppl, mixsurf2)#wrong model for pp1l
kstest2dsurf(pp2, mixsurf2)#correct model for pp2
kstest2dsurf(pp2, mixsurf1)#wrong model for pp2

MaternCov Matern covariance function

Description

Computes the Matern covariance function. Used in the creation of stationary and isotropic Gaussian
Random Fields (GRFs).

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#MaternCov

Usage

MaternCov(grid, nu = 0.5, theta = 1, sig = 1)

Arguments

grid An nx2 matrix of locations over which to compute the covariance matrix or an
nxn matrix representing the distances of the n planar points.

nu, theta, sig Matern model parameters. See details.

Details

The Matern covariance model for two points with Euclidean distance 1, is given by
C(r) = sig"2 2*(1-nu) gamma(nu)*(-1) (sqrt(2nu) r/theta)*nu B_nu(sqrt(2nu) r/theta)

where sig, theta, nu>0, and B_nu is the modified Bessel function of second kind. Note that the
Matern for nu=.5 reduces to the exponential.

Value

A matrix representing the covariance matrix for a random field (typically a GRF).

Author(s)
Sakis Micheas

See Also
rGRF

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#MaternCov

46 mc_gof
Examples

grid=cbind(seq(@,1,length=10), seq(@,1,length=10))
MaternCov(grid)

mc_gof Monte Carlo goodness of fit test

Description

Performs a Monte Carlo test of goodness-of-fit for a given point pattern. The entertained model is
a Poisson with mixture of normals intensity surface.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#mc_gof

Usage

mc_gof (pp, intsurf, alpha = 0.5, L = 20000, burnin = floor(@.1 * L),
truncate = FALSE)

Arguments
pp Point pattern object of class ppp.
intsurf Object of class intensity_surface.
alpha Significance level for the goodness-of-fit test.
L Number of iterations requested; default is 20000.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.
truncate Requests to truncate the components of the mixture intensity to have all their
mass within the window of the intensity object intsurf. Default is FALSE.
Details

The test statistic is the average of the average distances between the points assigned to the jth
mixture component from the mean of the component. The Monte Carlo test utilizes realizations
from the posterior predictive distribution to obtain the critical point, i.e., the ath percentile of the
distribution of the test statistic. Make sure that L is large in order to get accurate results.

Author(s)

Jiaxun Chen, Sakis Micheas

See Also

normmix, rsppmix

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#mc_gof

normmix 47

Examples

Create the intensity surface

intsurf1 <- normmix(ps = c(.3, .7), mus = list(c(0.2, 0.2), c(.8, .8)), sigmas =
list(.01xdiag(2), .01*xdiag(2)), lambda = 100, win = spatstat::square(1))

Generate a point pattern

ppl1 <- rsppmix(intsurf1)

Assess goodness-of-fit. Since this is the right model, we should get gof. Make

sure L is large for more accurate results

mc_gof (ppl1, intsurfl, 0.05)

Create another intensity surface

intsurf2 <- normmix(ps = c(.5, .5), mus = list(c(@0.2, 0.8), c(.8, .2)), sigmas =
list(.0Q1xdiag(2), .01*xdiag(2)), lambda = 100, win = spatstat::square(1))

Assess goodness-of-fit against this Poisson. Since this is the wrong model,

we should NOT get gof

mc_gof (ppl1, intsurf2, 0.05)

normmix Create a 2d mixture with normal components

Description

Constructor function for the normmix class. Creates a mixture in two dimensions with bivariate
normal components. If the parameters lambda and window are set, this function will create an
intensity surface object of class intensity_surface.

For examples see
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#normmix

The print function can be used on a normmix or intensity_surface object in order to display
basic information.

The summary function can be used on a normmix or intensity_surface object in order to display
additional information.

Usage

normmix(ps, mus, sigmas, lambda = NULL, win = NULL, estimated = FALSE)

S3 method for class 'normmix'
print(x, ...)

S3 method for class 'intensity_surface'
print(x, ...)

S3 method for class 'normmix'
summary (object, ...)

S3 method for class 'intensity_surface'
summary (object, ...)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#normmix

48

Arguments

ps

mus

sigmas

lambda

win

estimated

object

Value

normmix

Vector of component probabilities.

A list where every element is a vector of length 2, defining the center of each
component.

A list where every element is a 2 by 2 covariance matrix, defining the covariance
for each component.

Optional parameter denoting the average number of points over the window. If
set along with the win parameter, the returned object will be an intensity surface.

Optional parameter for the window of observation, an object of type owin. Must
be set together with 1ambda in order to create an intensity surface.

Logical variable to indicate that this is an estimated mixture not the true mixture
surface. By default it is set to FALSE, but when using the function to define an
mixture based on estimates of the parameters it should be set to TRUE.

An object of class normmix or intensity_surface.
Additional arguments for the S3 method.

An object of class normmix or intensity_surface.

An object of class "normmix" containing the following components:

m
ps

mus
sigmas
lambda

window

estimated

Author(s)

Number of components.

Vector of component probabilities.

List of mean vectors of the components.

List of covariance matrices of the components.

Returned only if lambda is provided when calling normmix.

Returned only win is provided when calling normmix. This is an object of class
owin.

Whether the normal mixture is estimated.

Yuchen Wang, Sakis Micheas

See Also

rnormmix for generating a mixture with random parameters.

Examples

mix1 <- normmix(ps = c(.3, .7), mus = list(c(@.2, 0.2), c(.8, .8)),
sigmas = list(.01*diag(2), .01*diag(2)))

mix1

summary (mix1)

openwin_sppmix 49

intsurf1 <- normmix(ps = c(.3, .7), mus = list(c(@.2, 0.2), c(.8, .8)),

sigmas = list(.01xdiag(2), .@1xdiag(2)), lambda = 100, win = spatstat::square(1))
intsurf1

summary (intsurf1)

openwin_sppmix Opens a new graphics window

Description

This function is independent of the OS present, and is useful when working outside of RStudio.
The latter GUI places all plots under the plots tab, but if working in the R GUI the plots will be
overwritten if you don’t open a new device.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#openwin_sppmix

Usage

openwin_sppmix (check2open = FALSE)

Arguments

check2open Logical: TRUE to open a newplot, FALSE do not open.

Details

This function is used by almost all plotting functions of the sppmix package.

Author(s)

Sakis Micheas

Examples

openwin_sppmix (TRUE)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#openwin_sppmix

50 plot.bdmcmc_res

plot.bdmcmc_res Plot results from a BDMCMC fit

Description
This function uses the posterior realizations from a est_mix_bdmcmc call, to produce a plethora of
plots about the fitted Poisson point process with mixture intensity surface.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.bdmcmc_
res
Usage

S3 method for class 'bdmcmc_res'
plot(x, win = fit$data$window,

burnin = floor(fit$L/10), LL = 100, zlims = c(@, @), ...)
Arguments
X Object of class bdmemc_res.
win An object of class owin.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-

ber of iterations.

LL Length of the side of the square grid. The density or intensity is calculated on
an L * L grid. The larger this value is, the slower the calculation, but the better
the approximation as well as the smoother the resulting plots.

zlims The limits of the z axis. Defaults to [0,max(z)].

Additional arguments for the S3 method.

Details

Unlike the corresponding output from DAMCMC (fixed number of components), the BDMCMC
algorithm allows us to obtain a distribution for the number of components which can be thought of
as a statistical inference procedure for model selection. In particular, the Bayesian model average
of all the realizations is perhaps the best possible estimator of the Poisson intensity surface, how-
ever, it can be very slow to compute for moderate number of iterations and maximum number of
components allowed.

Value

A list with the following objects

FreqTab Frequency table for the number of components.

Mapsurf The Maximum A Posteriori (MAP) Poisson intensity surface based on the cor-
responding posterior means (label switching might be present). The MAP is the
mode of the distribution of the number of components.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.bdmcmc_res
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.bdmcmc_res

plot.bdmcmc_res 51

BMA The Bayesian Model Average is returned only if we answer "Y" to request it.
Alternatively, use function GetBMA to compute the BMA. This is an image, i.e.,
an object of class im.object.

Author(s)
Jiaxun Chen, Sakis Micheas, Yuchen Wang

See Also

est_mix_bdmecmc, PlotUSAStates, plotmix_3d, plot_density, check_labels, FixLS_da, plot_chains,
GetBMA GetBDTable,

Examples

fit <- est_mix_bdmcmc(pp = spatstat::redwood, m = 10)

plot(fit)

#Tornadoes

ret=PlotUSAStates(states=c('Iowa', 'Arkansas', 'Missouri','Illinois', 'Indiana’', 'Kentucky',
'Tennessee', 'Kansas', 'Nebraska', 'Texas', 'Oklahoma', 'Mississippi', 'Alabama', 'Louisiana'),
showcentroids=FALSE, shownames=TRUE, plotlevels = FALSE, main="Tornadoes about MO, 2011",
pp=Tornadoes2011M0)

print(ret)

Tornfit=est_mix_bdmcmc(pp = Tornadoes2011MO, m = 7)

TornResults=plot(Tornfit)#if we plot the Bayesian model average return it

TornResults

if(!is.null(TornResults$BMA)){
BMA_image=TornResults$BMA#must answer yes above or compute it using GetBMA
burnin=.1*Tornfit$L
titlel = paste(”Bayesian model average of”, Tornfit$L-burnin,"posterior realizations")
plotmix_3d(BMA_image,titlel=titlel)
plot_density(as.data.frame(BMA_image))+ggplot2: :ggtitle(

"Bayesian Model Average Intensity")
plot_density(as.data.frame(BMA_image),TRUE)+ggplot2::ggtitle(
"Contours of the Bayesian Model Average Intensity”)}

Work with the MAP intensity

Mapsurf=TornResults$Mapsurf

plot(Mapsurf)

#retrieve realizations for the MAP number of components only

tab=GetBDTable(Tornfit)

MAPm=tab$MAPcomp

BDfitMAPcomp=GetBDCompfit(Tornfit,MAPm)

summary (BDfitMAPcomp)

summary (BDfitMAPcomp$BDgens)

plot (BDfitMAPcomp$BDsurf,main=paste(

"Poisson Mixture intensity surface, MAP # of components=",MAPm))

#check labels

check_labels(BDfitMAPcomp$BDgens)

If present then fix label switching, start with approx=TRUE

post_fixed = FixLS_da(BDfitMAPcomp$BDgens, plot_result = TRUE)

plot_chains(post_fixed)

52 plot.damcmc_res

plot_chains(post_fixed, separate = FALSE)

#this one works better

post_fixed = FixLS_da(BDfitMAPcomp$BDgens,approx=FALSE, plot_result = TRUE)
plot_chains(post_fixed)

plot_chains(post_fixed, separate = FALSE)

plot.damcmc_res Plot results from a DAMCMC fit

Description
This function uses the posterior realizations from a est_mix_damcmc call, to produce a plethora of
plots about the fitted Poisson point process with mixture intensity surface.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.damcmc_

res
Usage
S3 method for class 'damcmc_res'
plot(x, burnin = floor(length(fit$allgens)/10), ...)
Arguments
X Object of class damcmc_res.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-

ber of iterations.

Additional arguments for the S3 method.

Author(s)
Jiaxun Chen, Sakis Micheas, Yuchen Wang

See Also

est_mix_damcmc, PlotUSAStates, GetPMEst, check_labels, FixLS_da, plot_chains

Examples

fit <- est_mix_damcmc(pp = spatstat::redwood, m = 10)

plot(fit)

#Tornadoes

Tornfit=est_mix_damcmc(Tornadoes2011M0, m=5, L = 20000)

MAPsurf=GetMAPEst (Tornfit)

ret=PlotUSAStates(states=c('Iowa', 'Arkansas', 'Missouri', 'Illinois', 'Indiana’,
'Kentucky', 'Tennessee', 'Kansas', 'Nebraska', 'Texas', 'Oklahoma', 'Mississippi',

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.damcmc_res
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.damcmc_res

plot.intensity_surface 53

'Alabama’, 'Louisiana'), showcentroids=FALSE, shownames=TRUE, plotlevels = FALSE,
main="Tornadoes about MO, 2011", pp=Tornadoes2011M0, surf=MAPsurf,
boundarycolor="white"”, namescolor="white")
print(ret)
plot(Tornfit)
get the intensity of posterior means
post_mean = GetPMEst(Tornfit)
plot the estimated intensity surface
plot(post_mean)
#check labels
check_labels(Tornfit)
If present then fix label switching, start with approx=TRUE
post_fixed = FixLS_da(Tornfit, plot_result = TRUE)
plot_chains(post_fixed)
plot_chains(post_fixed, separate = FALSE)

plot.intensity_surface
Plots a normal mixture intensity in 3d

Description
Plot the 3d intensity surface of a Poisson point process with mixture intensity of normal compo-
nents.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.intensity_
surface
Usage

S3 method for class 'intensity_surface'
plot(x, truncate = TRUE, L = 256, zlims = c(9,

@), main = "Poisson intensity surface (mixture of normal components)”,
grayscale = FALSE, ...)
Arguments
X Object of class intensity_surface or normmix.
truncate Requests to truncate the components of the mixture intensity to have all their
mass within the window of the intensity object intsurf. Default is TRUE.
L Length of the side of the square grid. The intensity is calculated on an L * L
grid. The larger this value is, the better the picture resolution.
zlims The limits of the z axis. Defaults to [0,1.1*max(intensity)].
main Title for the plot.
grayscale Logical flag to request a gray scale plot.

Additional parameters passed to to_int_surf ().

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.intensity_surface
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.intensity_surface

54 plot.normmix

Author(s)
Jiaxun Chen, Sakis Micheas, Yuchen Wang

See Also

normmix, to_int_surf

Examples

truemix <- rnormmix(m = 5, sigd = .1, df = 5, xlim= c(-1, 5), ylim =c(2, 5))
intsurf=to_int_surf(truemix, lambda = 200, win =spatstat::owin(c(-1, 5),c(2, 5)))
plot(intsurf,main = "True Poisson intensity surface (mixture of normal components)"”)
#use the demo intensity surface

demo_intsurf

summary (demo_intsurf)

#3d plot of the intensity surface

plot(demo_intsurf,main = "True Poisson intensity surface (mixture of normal components)")

plot.normmix Plot a mixture of normal components

Description
Create a 3d plot and 2d image or contour plots of the density of a mixture of normal components.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.normmix

Usage

S3 method for class 'normmix'
plot(x, xlim, ylim, contour = FALSE, truncate = FALSE,
open_new_window = FALSE, grayscale = FALSE, L = 256,

titlel = "Mixture with normal components”, whichplots = 2, ...)
Arguments
X Object of class normmix.
xlim, ylim The observation window.
contour Logical flag requesting the countour plot only.
truncate Logical flag requesting that the components are truncated within the window.

open_new_window
Open a new window for the plot.

grayscale Plot in gray scale. Default is FALSE (use colors).

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.normmix

plot.sppmix 55

L Length of the side of the square grid. The intensity is calculated on an L * L
grid. The larger this value is, the better the picture resolution.

titlel Optional title for the 3d plot.

whichplots Requests plots of the normal mixture density (surface). To get only the 2d plot

set whichplots=0, only the 3d plot set whichplots=1, or for both the 2d and
3d plots set whichplots=2. Default action is to produce both plots.

Additional arguments for the S3 method.

Author(s)

Jiaxun Chen, Sakis Micheas, Yuchen Wang

See Also

normmix, to_int_surf, owin, rsppmix

Examples

plot normmix density
truemix<- rnormmix(m = 3, sig@ = .1, df =5, xlim= c(-1, 2), ylim = c(-1, 2))
summary (truemix)
#plot the normal mixture
plot(truemix, xlim= c(-1, 2), ylim = c(-1,2),
title1="True mixture density in 3d")+add_title(
"True mixture of normals density")
plot(truemix,xlim= c(-1, 2), ylim = c(-1, 2),contour = TRUE)+add_title(
"Contour plot of the true mixture of normals density”)
#build a mixture intensity surface for the Poisson point process
trueintsurf=to_int_surf(truemix, lambda = 100, win=
spatstat::owin(c(-1, 2),c(-1, 2)))
plot(trueintsurf)#plot the surface, it is lambda*normmix

plot.sppmix Plot a spatial point pattern

Description
Plot a spatial point pattern generated from a Poisson with mixture intensity surface. Alternatively,
the function can plot a spatstat ppp object.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.sppmix

Usage

S3 method for class 'sppmix'
plot(x, mus, estcomp, open_new_window = FALSE,
colors = FALSE, showmarks = TRUE, whichmark = 1, ...)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot.sppmix

56

Arguments
X
mus

estcomp

plot.sppmix

A point pattern of class sppmix or ppp.
An optional list of the theoretical means of the mixture components.

The estimated component label should be a vector whose length should be the
same as number of points. If estcomp is not missing, the function will plot the
points using different colors according to estcomp. See the example on how to
calculate estcomp from a DAMCMC fit. If this variable is missing and we pass
a point pattern generated using rsppmix, then the true component labels will
be used, otherwise, the function will not plot the points with different colors to
indicate the different components.

open_new_window

colors

showmarks

whichmark

Author(s)

Open a new window for the plot.

Logical flag requesting to use different colors for the points based on which
component they belong to.

Logical flag requesting to plot each point with a different circle size according
to its mark value. If the mark is a data.frame object (multivariate marks), the
first column (mark) is used as the the marks and displayed.

If multivariate marks, choose to display this one.

Additional parameters to the add_title function. Valid choices are m, n and L.
To add a different title than the default, use add_title after the plot call (see
examples below).

Jiaxun Chen, Sakis Micheas, Yuchen Wang

See Also

normmix, to_int_surf, owin, rsppmix, est_mix_damcmc, GetMAPLabels, rMIPPP_cond_mark

Examples

mix1 <- rnormmix(5, sig@d = .01, df = 5, xlim=c(@, 5), ylim=c(0, 5))

intsurfi=to_int_

surf(mix1, lambda = 40, win =spatstat::owin(c(@, 5),c(@, 5)))

ppl1 <- rsppmix(intsurf1)

plot(pp1)

plot(pp1, mus=intsurfi1$mus)
plot(pp1,mus=intsurfi$mus)+add_title(

"Poisson point
plot(pp1, mus =
plot(ppl, mus =

"Poisson point

m=intsurfi$m,n=

pattern along with the true component means”, m=intsurfi1$m,n=pp1$n)
intsurf1$mus, lambda = intsurfi1$lambda)

intsurf1$mus)+ add_title(

pattern along with the true component means”, lambda = intsurfi1$lambda,
pp1$n)

#use the demo intensity surface

demo_intsurf

pp2 <- rsppmix(demo_intsurf,marks = 1:3)

plot(pp2)

plot2dPP 57

plot(pp2, mus = demo_intsurf$mus)#plot the mixture means as well

#plot the points with different colors depending on the true component label
plot(pp2, colors = TRUE)

#plot the points with different colors depending on the estimated component label
fit <- est_mix_damcmc(pp2, 2)

est_comp <- GetMAPLabels(fit)

plot(pp2, estcomp = est_comp, colors = TRUE)

#tgenerate and plot a marked point pattern

newMPP=rMIPPP_cond_mark()

plot(newMPP$genMPP, showmarks=TRUE)

plot2dPP Plot a spatial point pattern

Description

Standard 2d plot for a spatial point pattern.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot2dPP

Usage

plot2dPP(pp, mus, add2plot = FALSE, titlel = "Spatial point pattern”,
open_new_window = FALSE)

Arguments
pp A point pattern of class sppmix or ppp.
mus An optional list of the theoretical means of the mixture components.
add2plot Logical variable to indicate if the function should add the points to an existing
plot.
titlel Title for the plot.

open_new_window
Open a new window for the plot.

Author(s)
Sakis Micheas

See Also

normmix, to_int_surf, owin, rsppmix

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot2dPP

58 plotmix_2d

Examples

mix1 <- rnormmix(5, sig@ = .01, df =5, xlim=c(@, 5), ylim=c(@, 5))
intsurfi=to_int_surf(mix1, lambda = 40, win =spatstat::owin(c(@, 5),c(@, 5)))
ppl <- rsppmix(intsurf1)

plot2dPP(pp1)

plot2dPP(pp1, mus = intsurfi$mus)

plotmix_2d 2d exploratory plots for mixture intensity surfaces

Description

Create a 2d image or contour plot of the intensity surface, with the option to display a point pattern.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plotmix_2d

Usage

plotmix_2d(intsurf, pattern, estcomp, contour
L = 256, open_new_window = FALSE, grayscale

FALSE, truncate = TRUE,
FALSE, colors = FALSE,

.
Arguments
intsurf Object of class intensity_surface or normmix.
pattern Optional spatial point pattern to add to the plot. This is an object of class ppp.
estcomp The estimated component label should be a vector whose length should be the
same as number of points. If estcomp is not missing, the function will plot the
points using different colors according to estcomp. See the example on how to
calculate estcomp from a DAMCMC fit. If this variable is missing and we pass
a point pattern generated using rsppmix, then the true component labels will
be used, otherwise, the function will not plot the points with different colors to
indicate the different components.
contour Logical flag requesting the countour plot only.
truncate Logical variable indicating that the points should be within the window of ob-
servation. Default is TRUE.
L Length of the side of the square grid. The intensity is calculated on an L * L

grid. The larger this value is, the better the picture resolution.
open_new_window

Open a new window for the plot.
grayscale Plot in gray scale. Default is FALSE (use colors).

colors Logical flag requesting to use different colors for the points based on which
component they belong to.

Additional parameters passed to to_int_surf ().

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plotmix_2d

plotmix_3d

Author(s)

Jiaxun Chen, Sakis Micheas, Yuchen Wang

See Also

normmix, to_int_surf, owin, rsppmix, GetMAPLabels, est_mix_damcmc, PlotUSAStates

Examples

plot normmix density

truemix<- rnormmix(m = 3, sigd = .1, df =5, xlim= c(@, 5), ylim = c(0, 5))
summary (truemix)

intsurf=to_int_surf(truemix, lambda = 100, win =spatstat::owin(c(@, 5),c(@, 5)))
#plot the intensity surface

plotmix_2d(intsurf)

plotmix_2d(intsurf,contour = TRUE)

ppl <- rsppmix(intsurf = intsurf)# draw points

plotmix_2d(intsurf, pp1)

plotmix_2d(intsurf, pp1,contour = TRUE)

#fit a Poisson with mixture intensity surface

CAgens=est_mix_damcmc(pp = CAQuakes2014.RichterOver3.0, m = 5)

#retrieve the surface of posterior means

CAfit=GetPMEst (CAgens)

#plot the surface and the point pattern
plotmix_2d(CAfit,CAQuakes2@14.RichterOver3.o)

#to include the state boundaries use function PlotUSAStates
ret=PlotUSAStates(states=c('California', 'Nevada', 'Arizona'), showcentroids=FALSE,
shownames=TRUE, main="Earthquakes in CA, 2014", pp=CAQuakes2014.RichterOver3.0,

surf=CAfit, boundarycolor="white"”, namescolor="white")
#plotting the points with different colors depending on the component they belong to
truemix <- rnormmix(m = 5, sig@ = .1, df =5, xlim=c(-2,2), ylim=c(-2,2))
intsurf=to_int_surf(truemix, lambda = 100, win = spatstat::owin(c(-2,2),c(-2,2)))
pp1 <- rsppmix(intsurf)
#plot the points with different colors depending on the true component label
plotmix_2d(intsurf,ppl, colors = TRUE)
#plot the points with different colors depending on the estimated component label
fit <- est_mix_damcmc(ppl, 5)
est_comp <- GetMAPLabels(fit)
plotmix_2d(intsurf,ppl, estcomp = est_comp, colors = TRUE)
plotmix_2d(intsurf,ppl, estcomp = est_comp, contour = TRUE,colors = TRUE)

59

plotmix_3d Plot the density or intensity of a normal mixture in 3d over a fine grid

60 plotmix_3d

Description

When a normmix object is given, this function calculates the mixture density over a fine grid for the
given window. When an intensity_surface object is given, the function multiplies the density
with the surface lambda, and returns the Poisson mixture intensity function over the grid. Used for
plotting.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plotmix_3d

Usage

plotmix_3d(dens_image, titlel = "3d Surface (Density or Intensity)",
zlims = NULL, grayscale = FALSE)

Arguments
dens_image An image as an object of class im.
titlel A title for the 3d plot.
zlims The limits of the z axis. Defaults to [0,1.1*max(dens_image)].
grayscale Plot in gray scale. Default is FALSE (use colors).
Author(s)

Jiaxun Chen, Sakis Micheas, Yuchen Wang

See Also

rnormmix, dnormmix

Examples

truemix <- rnormmix(m = 5, sigd = .1, df =5, xlim= c(@, 3), ylim = c(@, 3))
normdens=dnormmix(truemix, xlim= c(@, 3), ylim = c(0, 3))
plotmix_3d(normdens)

plotmix_3d(normdens, titlel="Density of a normal mixture")

#use the demo_mix and demo_truemix3comp objects; the windows are found in the
#corresponding demo demo_intsurf and demo_intsurf3comp

demo_intsurf$window

normdens1=dnormmix (demo_mix, xlim= c(@, 1), ylim = c(0, 1))
plotmix_3d(normdens1, titlel="Density of a normal mixture, 2 components")
#change the window

normdens1=dnormmix (demo_mix, xlim= c(-1, 1.5), ylim = c(-1, 1.5))
plotmix_3d(normdens1, titlel="Density of a normal mixture, 2 components")
demo_intsurf3comp$window

normdens2=dnormmix (demo_truemix3comp, xlim= c(-1, 1), ylim = c(-2, 3))
plotmix_3d(normdens2, titlel="Density of a normal mixture, 3 components")

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plotmix_3d

plotstring

61

plotstring General Helper Functions

Description

The plotstring function plots a string in a generic plot device.

Usage

plotstring(str = "Hello World")

Arguments

str A string to display.

Examples

plotstring()

Plots_off Closes all open plots

Description

The function closes all Rgl plots, as well as, any graphics devices.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Plots_off

Usage
Plots_off ()

Author(s)
Sakis Micheas

See Also
Save_AllOpenRglGraphs

Examples

Plots_off ()

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Plots_off

62 PlotUSAStates

PlotUSAStates Visualization of USA states and their counties

Description

The function plots the requested USA state or county boundaries and additional information if re-
quested or if certain parameters are supplied. We use this function for visualization of geostatistical
data, in particular, (Marked) IPPPs.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#PlotUSAStates

Usage

PlotUSAStates(showcounties = FALSE, states = "Missouri”,
showcentroids = TRUE, typecentroid = @, shownames = FALSE,
showmarks = FALSE, grayscale = FALSE, open_new_window = FALSE,
main = "States (true levels)”, guidemain = "Level”,
discretelevels = TRUE, levels = 1:3, showplot = TRUE,
plotlevels = TRUE, marks, pp, surf, boundarycolor = "black”,
namescolor = "black”, ppsize = 1)

Arguments

showcounties Logical to denote that we want a plot of counties. Default is FALSE. Setting this
to TRUE will show all the counties for the states passed in the states parameter.

states A vector of state names. Set to NULL to request all states or ContinentalUSA_state_names
to show only the continental USA states.

showcentroids Logical requesting to show centroids for each state or county. These centroids
are returned in a ppp object. The centroid is chosen so that it is always within
the state or county boundaries.

typecentroid If showcentroids=TRUE we can display either the average of the boundary
(typecentroid=0) or the "marker point" of the state or county (typecentroid=1).
For convex states or counties, the latter point is the most south-western point of
the state or county.

shownames Logical to display the names of the states for showcounties=FALSE or counties
for showcounties=TRUE.

showmarks Logical to display the mark values given to each state for showcounties=FALSE
or county for showcounties=TRUE.

grayscale Logical to request plots in grayscale.
open_new_window
Logical to request plotting in a new graphics window.

main A character string to serve as the main title for the plot.

guidemain A character string to be used as the title for the guide used (legend or colorbar).

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#PlotUSAStates

PlotUSAStates 63

discretelevels Logical indicating that the marks are discrete valued.

levels When discretelevels=TRUE, the parameter levels contains all the possible
discrete levels (marks). This is a vector of integers or strings. Default is 1: 3.

showplot Logical requesting to show the plot. Set to FALSE if you want to simply retrieve
the centroids of the states or counties, in which case the plot will not be created.

plotlevels Logical requesting that the levels (marks) of each state or county are displayed.
If marks is not supplied, then for discretelevels=TRUE the mark of each state
or county is uniformly generated over the values of levels, otherwise the marks
are uniform in (0,1) (probabilities). If marks are given, then they are used to
appropriately paint a state or county.

marks A vector of length equal to the number of states or counties requested, containing
the mark values for each state or county. A mark is an integer pointing to an
element from the vector levels for discretelevels=TRUE, otherwise a real
number.

pp Optionally, a point pattern as an object of type ppp to be displayed over the
created plot. The window of this point pattern will be used as the window of
observation (overrides the window in the surf parameter).

surf Optionally, an intensity surface as an object of type intensity_surface or an
image object of class im to be plotted first and then the map will be displayed
over this field. Supplying this parameter sets the flag plotlevels=FALSE auto-
matically. The window of this intensity surface will be used as the window of
observation.

boundarycolor A specific color to use for drawing boundaries. Default is "black". Set to NULL
if you do not want boundaries drawn.

namescolor A specific color to use for drawing the state or county names when plotnames=TRUE.
Default is "black".
ppsize Size used in plotting the points. Default is 1.
Details
Note that we use the state and county longitude and latitude boundaries in the USAStatesCounties2016
object.
Value

A list containing the following components:

PPPcent The centroids of the states or counties requested, returned as a marked point
pattern.

PPPMarker The marker points of the states or counties requested, returned as a marked point
pattern.

itemnames Vector of strings containing all items processed (i.e., either all state names or all

county names).

p The created plot, otherwise NULL.

64 PlotUSAStates

Author(s)

Sakis Micheas and Jiaxun Chen

See Also

est_MIPPP_cond_loc, est_mix_damcmc, est_mix_bdmecmc, plot_CompDist, drop_realization,
GetBDTable, GetBDCompfit, plotmix_2d, GetBMA, plot_MPP_probs, GetMAPEst

Examples

#plot the continental USA with uniformly sampled discrete marks from 10 different levels
ret=PlotUSAStates(states=ContinentalUSA_state_names, levels=1:10, grayscale = FALSE,
shownames=TRUE, plotlevels =TRUE, discretelevels=TRUE, main="Continental USA (generated levels)")
#now use continuous marks

ret=PlotUSAStates(states=ContinentalUSA_state_names, shownames=FALSE, discretelevels=FALSE,
main="Continental USA (generated probabilities)”, guidemain="Probability"”, showcentroids = FALSE)
#Fit an IPPP to the California Earthquake data

fitDA=est_mix_damcmc (CAQuakes2014.RichterOver3.0, 8, L = 20000)

#get the surface of Maximum a Posteriori estimates

MAPsurf=GetMAPEst (fitDA)

#plot the states and the earthquake points along with the fitted MAP IPPP intensity surface
ret=PlotUSAStates(states=c('California’', 'Nevada', 'Arizona'), showcentroids=FALSE,
shownames=TRUE, main="Earthquakes in CA, 2014", pp=CAQuakes2014.RichterOver3.0, surf=MAPsurf,
boundarycolor="white"”, namescolor="white")

#Visualize the Tornado data about MO

#plot the states and the tornado points
ret=PlotUSAStates(states=c('Iowa', 'Arkansas', 'Missouri', 'Illinois', 'Indiana', 'Kentucky',
'Tennessee', 'Kansas', 'Nebraska', 'Texas', 'Oklahoma', 'Mississippi', 'Alabama’, 'Louisiana'),
showcentroids=FALSE, shownames=TRUE, plotlevels = FALSE, main="Tornadoes about MO, 2011",
pp=Tornadoes2011M0)

#Visualize aggregate income levels in MO by county using data from the American Community

#Survey (ACS)

#plot in the original scale first; here we pass the marks vector which contains the aggregate

#income values of Missourian counties

ret=PlotUSAStates(showcounties=TRUE, states=c('Missouri'), showcentroids=TRUE, typecentroid=1,
discretelevels=FALSE, shownames=TRUE, plotlevels=TRUE, marks=MOAggIncomelLevelsPerCounty,
main="Aggregate Income in MO, 2014", guidemain = "Income level”, namescolor="gray",
boundarycolor="gray")

#plot in the log scale

ret=PlotUSAStates(showcounties=TRUE, states=c('Missouri'), showcentroids=TRUE, typecentroid=1,
discretelevels=FALSE, shownames=TRUE, plotlevels=TRUE, marks=log(MOAggIncomelLevelsPerCounty),
main="Aggregate Income in MO, 2014", guidemain = "Income level\n(log scale)"”, namescolor="gray",
boundarycolor="gray")

#plot the marker points, county boundaries and names

ret=PlotUSAStates(showcounties=TRUE, states=c('Missouri'), showcentroids=TRUE, typecentroid =1,
discretelevels=FALSE, shownames=TRUE, plotlevels=FALSE, marks=log(MOAggIncomeLevelsPerCounty),
main="Marker points for Missouri counties")

#now plot only the marker points, we treat this as a marked IPPP
ret=PlotUSAStates(showcounties=TRUE, states=c('Missouri'), showcentroids=TRUE, typecentroid =1,
discretelevels=FALSE, shownames=FALSE, plotlevels=FALSE, marks=log(MOAggIncomelLevelsPerCounty),
main="Marker points for Missouri counties”, boundarycolor = NULL)

plot_autocorr 65

#let us discretize log(income) to 3 levels; low if <=20, average if >20 and <=23, and high if >23
newmarks=rep(@, length(MOAggIncomelLevelsPerCounty))
newmarks[log(MOAggIncomelLevelsPerCounty)<=20]=1
newmarks[log(MOAggIncomeLevelsPerCounty)>20 & log(MOAggIncomelLevelsPerCounty)<=23]=2
newmarks[log(MOAggIncomelLevelsPerCounty)>23]=3
table(newmarks)
levels=c("low","average"”,"high")
ret=PlotUSAStates(showcounties=TRUE, states=c('Missouri'), showcentroids=TRUE, typecentroid=1,
discretelevels=TRUE, shownames=TRUE, plotlevels=TRUE, main="Aggregate Income in MO, 2014",
marks=newmarks, levels=levels, guidemain = "Income level”, namescolor="gray",
boundarycolor="gray")
#now fit a marked IPPP model, use the PP of marker points
MPP=ret$PPPMarker
mpp_est <- est_MIPPP_cond_loc(MPP,r=1, hyper=0.2)
plot_MPP_probs(mpp_est)
#now obtain a BDMCMC fit for the ground process this way we can cluster the data
BDMCMCfit <- est_mix_bdmcmc(MPP,m=10,L = 50000)
plot_CompDist (BDMCMCfit)
#use the original output of BDMCMC and apply 10% burnin (default)
BDMCMCfit=drop_realization(BDMCMCfit)
#get the realizations corresponding to the MAP number of components
BDtab=GetBDTable(BDMCMCfit,FALSE)#retrieve frequency table and MAP estimate for
#the number of components
MAPm=BDtab$MAPcomp
BDMCMCf'i tMAPcomp=GetBDCompfit (BDMCMCfit,MAPm)
BDMCMCfitMAPcompgens=BDMCMCfitMAPcomp$BDgens
MAPsurf=GetMAPEst (BDMCMCfitMAPcompgens)
plotmix_2d(MAPsurf ,MPP)+add_title(
"IPPP intensity surface of MAP estimates (MAP number of components)”,
lambda =MAPsurf$lambda, m=MAPsurf$m, n=MPP$n, L=MAPsurf$L)
plot_ind(BDMCMCfitMAPcompgens)
ret=PlotUSAStates(showcounties=TRUE, states=c('Missouri'),
showcentroids=TRUE, typecentroid=1, discretelevels=TRUE, shownames=TRUE,
main="Ground surface of MAP estimates”, marks=newmarks, levels=levels,
guidemain = "Income level”, namescolor="gray", boundarycolor="gray",
pp=MPP, surf=MAPsurf)
#obtain and plot the Bayesian model average; first drop the bad realizations
BDMCMCfit=drop_realization(BDMCMCfit, (BDMCMCfit$Badgen==1))
BMAest=GetBMA(BDMCMCfit)
ret=PlotUSAStates(showcounties=TRUE, states=c('Missouri'),
showcentroids=TRUE, typecentroid=1, discretelevels=TRUE, shownames=TRUE,
main="Bayesian model average ground intensity surface”, marks=newmarks,
levels=levels, guidemain = "Income level”, namescolor="gray",
boundarycolor="gray", pp=MPP, surf=BMAest)

plot_autocorr Checking convergence: autocorrelation plot

66 plot_autocorr

Description

This function can be used to assess convergence by visualizing the autocorrelations between the
draws of the Markov chain chain. The lag k autocorrelation rho_k is the correlation between
every draw and its kth lag. We would expect the kth lag autocorrelation to be smaller as k increases
(that is, the 100th and 1000th draws should be less correlated than the 100th and 105th draws). For
higher values of k we anticipate small autocorrelation values, otherwise the chain is not mixing
well (in other words we do not explore the parameter space adequately).

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_autocorr

Usage

plot_autocorr(chain, open_new_window = FALSE, maxlag = 100)

Arguments

chain An Lx1 vector containing the L posterior realizations.

open_new_window
Open a new window for the plot.

maxlag The maximum lag value to consider. Default is 100.

Author(s)

Sakis Micheas

See Also

est_mix_damemc, rmixsurf, rsppmix

Examples

truemix_surf <- rmixsurf(m = 3, lambda=100, xlim = c(-3,3), ylim = c(-3,3))
plot(truemix_surf)

genPPP=rsppmix(intsurf = truemix_surf, truncate = FALSE)

fit <- est_mix_damcmc(pp = genPPP, m = 3)

plot_autocorr(fit$genps[,1])

plot_autocorr(fit$genps([,2])

plot_autocorr(fit$genpsl,3])

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_autocorr

plot_avgsurf 67

plot_avgsurf Plot the average intensity surface

Description

This function calculates the intensity surface at each posterior realization and then computes the
average for the intensity surface over a fine grid. The result is a much smoother posterior estimator
of the intensity surface, which is not necessarily the same as the surface of posterior means, which
is obtained by GetPMEst.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_avgsurf

Usage

plot_avgsurf(fit, win = fit$data$window, LL = 100,
burnin = floor(fit$L/10), zlims = c(@, @), grayscale = FALSE,
showplot = TRUE)

Arguments

fit An object the contains all posterior realizations, e.g., the return value from
est_mix_damemc or est_mix_bdmcmc.

win An object of class owin.

LL Length of the side of the square grid. The density or intensity is calculated on
an L * L grid. The larger this value is, the slower the calculation, but the better
the approximation.

burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.

zlims The limits of the z axis. Defaults to [0,1.1*max(intensity)].

grayscale Logical flag to request a gray scale plot.

showplot Logical flag to request that the plot will be shown. Set to FALSE if you want to
return the im.object, but do not want to produce the 3d plot.

Value

An image as an object of class im.object.

Author(s)

Jiaxun Chen, Sakis Micheas

See Also

rnormmix, to_int_surf, rsppmix, est_mix_damcmc, plot_density, ggtitle, geom_point, plotmix_3d,
GetPMEst

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_avgsurf

68 plot_chains
Examples

truemix <- rnormmix(m = 5, sigd = .1, df =5, xlim= c(-1, 1), ylim =c(@, 3))
trueintsurf=to_int_surf(truemix, lambda = 200, win =spatstat::owin(c(-1, 1),c(0, 3)))
plot(trueintsurf, main = "True Poisson intensity surface (mixture of normal components)")
ppl1 <- rsppmix(trueintsurf)
Run Data augmentation MCMC and get posterior realizations
postfit=est_mix_damcmc(pp1,m=5)
Plot the average of the surfaces of the posterior realizations
avgsurf=plot_avgsurf(postfit, LL = 50)
p<-plot_density(as.data.frame(avgsurf))+ggplot2::ggtitle(

"Average surface of the posterior realization surfaces\n x denotes a true component mean")
#show the point pattern points
pp_df <- data.frame(pp1$x,ppIs$y)
names(pp_df) <- c("x", "y")
p<-p + ggplot2::geom_point(data = pp_df,size=0.8)
#show the true means
mean_df <- data.frame(do.call(rbind, trueintsurf$mus))
names(mean_df) <- c("x", "y")
p + ggplot2::geom_point(data = mean_df, color = "red”, shape = "x", size = 5)
#repeat for the contour plot
p<-plot_density(as.data.frame(avgsurf),contour = TRUE)+ggplot2::ggtitle(

"Average surface of the posterior realization surfaces\n x denotes a true component mean")
#show the point pattern points
pp_df <- data.frame(pp1$x,ppls$y)
names(pp_df) <- c("x", "y")
p<-p + ggplot2::geom_point(data = pp_df,size=0.8)
#show the true means
mean_df <- data.frame(do.call(rbind, trueintsurf$mus))
names(mean_df) <- c("x", "y")
p + ggplot2::geom_point(data = mean_df, color = "red"”, shape = "x", size = 5)
#plot the 3d surface again based on the returned object
plotmix_3d(avgsurf,titlel = paste(”Average of"”, .9*postfit$L,

"posterior realizations of the intensity surface"))

plot_chains Plot MCMC chains

Description

Plot the MCMC chains for all component means and probabilities, generated by est_mix_damcmc
or est_mix_bdmcmc.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_chains

Usage

plot_chains(fit, burnin = floor(fit$L/10), chain = c("p", "x", "y"),
ncol = fit$m%%3 + 1, separate = TRUE, open_new_window = FALSE)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_chains

plot_chains 69

Arguments

fit Object of class damcmc_res or bdmecme_res.

burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.

chain Character vector choosing from c("p", "x", "y"). Multiple choices are supported.
This will plot the MCMC chain for the requested variables.

ncol Number of columns in each plot.

separate Logical flag to request the the chains should be shown in separate plots or shown

in one plot with different colors per component. The latter (separate=FALSE)
is useful for spotting label switching visually.

open_new_window
Open a new window for the plot.

Author(s)
Jiaxun Chen, Sakis Micheas

See Also

PlotUSAStates, normmix, rsppmix, est_mix_damcmc, FixLS_da
Examples

fit <- est_mix_damcmc(pp = spatstat::redwood, m = 10)

plot(fit)

plot_chains(fit)

#plot the chains in the same plot with different colors

plot_chains(fit, separate = FALSE)

Only plot the realizations for the component means

plot_chains(fit, chain = c("x", "y"))

#check labels

check_labels(fit)

#fix labels and plot the chains again

post_fixed = FixLS_da(fit, plot_result = TRUE)

plot_chains(post_fixed)

plot_chains(post_fixed, separate = FALSE)

#We work with the California Earthquake data. We fit an IPPP with intensity surface

#modeled by a mixture with 8 normal components.

CAfit=est_mix_damcmc (CAQuakes2014.RichterOver3.0, m=5, L = 20000)

#Now retrieve the surface of Maximum a Posteriori (MAP) estimates of the mixture parameter.

#Note that the resulting surface is not affected by label switching.

MAPsurf=GetMAPEst (CAfit)

#Plot the states and the earthquake locations along with the fitted MAP IPPP intensity surface
ret=PlotUSAStates(states=c('California’', 'Nevada', 'Arizona'), showcentroids=FALSE,
shownames=TRUE, main= "Earthquakes in CA, 2014", pp=CAQuakes2014.RichterOver3.0, surf=MAPsurf,
boundarycolor="white", namescolor="white")

CAfit=est_mix_damcmc(pp = CAQuakes2014.RichterOver3.0, m = 5)

plot(CAfit)

70 plot_CompDist

check_labels(CAfit)

plot_chains(CAfit, separate = FALSE)

#fix labels and plot the chains again
post_fixedCA = FixLS_da(CAfit, plot_result = TRUE)
plot_chains(post_fixedCA, separate = FALSE)

plot_CompDist Plots for the number of components

Description

The function produces two plots: the trace plot for the number of components based on all realiza-
tions of a BDMCMC fit, and a barplot describing the distribution of the number of components.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_CompDist

Usage

plot_CompDist(fit, open_new_window = FALSE)

Arguments

fit Object of class bdmemc_res.
open_new_window
Open new windows for the two plots.

Author(s)

Sakis Micheas

See Also

est_mix_bdmecmc

Examples

fitBD <- est_mix_bdmcmc(spatstat::redwood, m = 10)
plot_CompDist(fitBD)

CAfitBD=est_mix_bdmcmc(pp = CAQuakes2014.RichterOver3.0, m = 10)
plot_CompDist(CAfitBD)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_CompDist

plot_convdiags 71

plot_convdiags Checking convergence visually

Description

Based on a ‘damcmc_res* object, this function will produce many graphs to help assess convergence
visually, including running mean plots and autocorrelation plots for all the parameters. This function
calls plot_runmean and plot_autocorr for all parameters so we do not have to it individually.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_convdiags

Usage

plot_convdiags(fit, burnin = floor(fit$L/10), open_new_window = FALSE,
maxlag = 100)

Arguments
fit Object of class damcmc_res or bdmeme_res.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-

ber of iterations.
open_new_window
Open a new window for the plot.

maxlag The maximum lag value to consider. Default is 100.

Author(s)
Sakis Micheas

See Also

est_mix_damecmc, rmixsurf, plot_runmean, plot_autocorr, rsppmix

Examples

truemix_surf <- rmixsurf(m = 3, lambda=100, xlim = c(-3,3), ylim = c(-3,3))
plot(truemix_surf)

genPPP=rsppmix(intsurf = truemix_surf, truncate = FALSE)

fit = est_mix_damcmc(pp = genPPP, m = 3)

plot_convdiags(fit)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_convdiags

72 plot_density

plot_density Plots a density or image

Description

Create a 2d image or contour plot of the density, intensity or any image object.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_density

Usage
plot_density(density_df, contour = FALSE, grayscale = FALSE, pp = NULL,
surf = NULL, ppsize = 1, main = "2d surface (density or intensity)")
Arguments
density_df A data frame. Typically density_df=as.data.frame(imdens), where imdens an im
object.
contour Logical flag requesting the countour plot only.
grayscale Plot in gray scale. Default is FALSE (use colors).
pp Optional point pattern to display (a ppp or sppmix object).
surf Optional intensity_surface object containing means to be displayed in the
plot.
ppsize Size of the points in the plot.
main A title for the 2d plot.
Details

This function does not open a new window for the plot.

Author(s)
Sakis Micheas

See Also

dnormmix

Examples

plot a mixture of normals density

truemix <- rnormmix(m = 3, sigd = .1, df =5, xlim= c(@, 5), ylim = c(@, 5))
summary (truemix)

normdens=dnormmix (truemix, xlim = c(@, 5), ylim = c(@, 5))

#2d plots

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_density

plot_ind 73

plot_density(normdens, main="2d mixture density plot\nWindow=[0,5]x[@,5]")
#Contour plot
plot_density(normdens, contour=TRUE, main="2d mixture contour plot\nWindow=[@,5]x[0,5]1")

plot_ind Plot membership indicators

Description

The function plots the posterior means of the membership indicators (or allocation variables) of
each point to one of the mixture components, based on a DAMCMC fit. These are the posterior
probabilities of a point belonging to a component.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_ind

Usage

plot_ind(fit, burnin = floor(fit$L/10), open_new_window = FALSE)

Arguments
fit Object of class damcmc_res or bdmeme_res.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-

ber of iterations.
open_new_window
Open a new window for the plot.

Author(s)
Sakis Micheas, Yuchen Wang

See Also

est_mix_damcmc

Examples

fit <- est_mix_damcmc(pp = spatstat::redwood, m = 10)
plot_ind(fit)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_ind

74 plot_MPP_fields

plot_MPP_fields Plot the mark probability fields

Description

The function displays the mark probability fields for each location of a marked point pattern. These
fields are simply the probabilities of observing the corresponding mark value at that location.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_MPP_fields

Usage

plot_MPP_fields(MPP, gammas, r, discrete_mark = TRUE, grayscale = FALSE,
truncate = FALSE, open_new_window = FALSE, LL = 128)

Arguments

MPP A marked point pattern as an object of class ppp.

gammas For discrete marks (discrete_mark=TRUE), this is a vector of length equal to
the number of marks. These parameters should typically be non-negative and
they represent weights affecting the probability fields of each mark. For values
close to 0, we get higher probabilities of observing this mark. Large positive
values lead to small probabilities of observing the corresponding mark.

r Radius used to define the neighborhood system. Any two locations within this

distance are considered neighbors.

discrete_mark Logical flag indicating whether the mark is discrete or not. Default is TRUE.
For continuous marks set this to FALSE.

grayscale Logical to request plots in grayscale.

truncate Logical variable indicating to discard points if they are not within the window
of observation. Default is FALSE.

open_new_window
Logical requesting a new window for the plot(s).

LL Length of the side of the square grid. The larger this value is, the better the
picture resolution.

Author(s)
Sakis Micheas

See Also

rMIPPP_cond_loc

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_MPP_fields

plot_MPP_probs 75

Examples

newMPP=rMIPPP_cond_loc(gammas=c(.1,.2,.5), r=.5)
plot(newMPP$surf,main="True IPPP intensity surface for the locations")
plot_MPP_fields(newMPP$genMPP, newMPP$gammas, newMPP$r)
plot_MPP_fields(newMPP$genMPP, newMPP$gammas, 1)
plot_MPP_fields(newMPP$genMPP, newMPP$gammas,1.5)
plot_MPP_fields(newMPP$genMPP, newMPP$gammas, 2)

plot_MPP_probs Plot the mark probabilities of a marked point pattern

Description

For discrete marks only, the function displays for each location of a marked point pattern, the
probabilities of observing each of the discrete marks at that location.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_MPP_probs

Usage

plot_MPP_probs(MPPfit, truncate = FALSE, open_new_window = FALSE)

Arguments
MPPfit Object of class MIPPP_fit.
truncate Logical variable indicating to discard points if they are not within the window

of observation. Default is FALSE.
open_new_window
Open a new window for the plot.

Author(s)

Sakis Micheas

See Also

rMIPPP_cond_loc, est_MIPPP_cond_loc

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_MPP_probs

76 plot_runmean

Examples

newMPP=rMIPPP_cond_loc(gammas=c(.1,.2,.5))

plot(newMPP$surf,main="True IPPP intensity surface for the locations")
genMPP=newMPP$genMPP

newMPP$r

mpp_est <- est_MIPPP_cond_loc(genMPP,newMPP$r, hyper=0.2)
plot_MPP_probs(mpp_est)

plot_runmean Checking convergence: running means plot

Description

This function produces a running mean plot, that is, a plot of the iterations against the mean of the
draws up to each iteration. If the plot is not a near constant line then convergence has not been
achieved (e.g., label switching is present).

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_runmean

Usage

plot_runmean(chain, open_new_window = FALSE)

Arguments

chain An Lx1 vector containing the L posterior realizations.
open_new_window
Open a new window for the plot.

Author(s)
Sakis Micheas

See Also

est_mix_damemc, rmixsurf, rsppmix

Examples

truemix_surf <- rmixsurf(m = 3, lambda=100, xlim = c(-3,3), ylim = c(-3,3))
plot(truemix_surf)

genPPP=rsppmix(intsurf = truemix_surf, truncate = FALSE)

fit <- est_mix_damcmc(pp = genPPP, m = 3)

plot_runmean(fit$genps[,1])

plot_runmean(fit$genps[,2])

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_runmean

plot_true_labels 77

plot_runmean(fit$genps[,3])

plot_true_labels Plot the true membership indicators

Description

The function plots the true membership indicators (or allocation variables) of each point to one of
the mixture components, based on a generated sppmix object. These are the true probabilities of a
point belonging to a component.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_true
labels
Usage

plot_true_labels(pattern, open_new_window = FALSE)

Arguments

pattern Object of class sppmix.
open_new_window
Open a new window for the plot.

Author(s)

Sakis Micheas

See Also

rnormmix, to_int_surf, owin, rsppmix

Examples

truemix <- rnormmix(m = 5, sigd = .1, df =5, xlim= c(-3, 3), ylim = c(-3, 3))
intsurf=to_int_surf(truemix, lambda = 100, win =spatstat::owin(c(-3, 3),c(-3, 3)))
ppl1 <- rsppmix(intsurf,FALSE)

plot_true_labels(pp1)

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_true_labels
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#plot_true_labels

78 rGRF

rGRF Generate a Gaussian Random Field

Description

Generates Gaussian random fields (GRFs) and related fields via transformations. The spatial co-
variances are modeled using Matern’s model.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rGRF

Usage

rGRF(mu = @, gentype = 0, xlims = c(-5, 5), ylims = c(-5, 5),
LL = 128, df = 10, nu = 0.5, theta = 1, sig = 1, pattern)

Arguments
mu Mean of the stationary GRF.
gentype Set to 0 for Gaussian, 1 for Chi-square. Default is gentype=0.

xlims, ylims Vectors defining the grid limits of the x-y locations over which to compute the
covariance matrix.

LL Length of the side of the square grid.
df Degrees of freedom (an integer) for the chi-square random field when gentype=1.
nu, theta, sig Matern model parameters. See MaternCov for details.

pattern Optionally, a point pattern as an object of type ppp containing locations within
the window. The values of the generated GRF over these locations are returned
as the marks of the point pattern pattern.

Details

The code of the rGRF function uses a modification of the functions sim.rf and matern. image.cov
from the fields package, by Douglas Nychka, Reinhard Furrer, John Paige, and Stephan Sain.

Depending on the choice of the Matern model parameters we might end up having trouble with the
FFT giving negative values. The code accounts for this event and adjusts the range of values via an
increasing variable incr. If it still takes a long time to generate the fields try increasing the domain
of observation using wider x1ims and ylims.

Value

An image as an object of class im.object, containing the realization of the field over the grid. If
argument pattern was supplied, the return value is now a list contaning the realization of the field
as an image, augmented by the marked point pattern with locations in pattern and marks the field
values over these locations. This capability is illustrated for realizations of marked point processes
conditioning on continuous marks. See function rMIPPP_cond_loc for more details.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rGRF

rMIPPP_cond_loc 79

Author(s)

Sakis Micheas

See Also

MaternCov, plot_density, ggtitle, add_title

Examples

#Gaussian random field as an image

GRF1=rGRF ()

p<-plot_density(as.data.frame(GRF1))

p_title<-expression(paste("”GRF with Matern covariances, ", theta,”=1,",mu,"=0,",nu, "=.5,",
sigma,"=1"))

ptggplot2::ggtitle(p_title)

#or simply use the add_title function

ptadd_title("GRF with Matern model covariances”, mu=@,theta=1,nu=.5,sigma=1)

#Chi-Square random field as an image

ChiSqRF=rGRF (gentype=1,df=10)

p<-plot_density(as.data.frame(ChiSqRF))

ptadd_title(paste(chi*{2},"” random fields with Matern model covariances for the GRFs"),

mu=0, theta=1,nu=.5,sigma=1,df=10)

#Log-Gaussian random field as an image

GRF2=rGRF ()

LogGRF=exp(rGRF())

p<-plot_density(as.data.frame(LogGRF))

ptadd_title("Log-Gaussian random field with Matern model covariances”, mu=0,theta=1,
nu=.5,sigma=1)

rMIPPP_cond_loc Generate a Marked Poisson point process (conditional on location)

Description

This function generates realizations (point patterns) from a given Marked IPPP or a generated one.
See details for the choice of models for the mark distribution. The location (ground) process is
a standard IPPP (unmarked) with mixture intensity surface, and is responsible for the number of
events in the point pattern.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rMIPPP_cond_
loc

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rMIPPP_cond_loc
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rMIPPP_cond_loc

80 rMIPPP cond_loc

Usage

rMIPPP_cond_loc(surf, locPP, gammas, r, hyper = 0.01, truncate = FALSE,
win = owin(c(-3, 3), c(-3, 3)), bigwin, discrete_mark = TRUE,
open_new_window = FALSE, grayscale = FALSE, show_plots = TRUE,
LL = 128, L = 50000, mark_distr_choice = @, GRFmu = @, df = 10,
nu = 0.5, theta =1, sig = 1)

Arguments

surf An object of type intensity_surface representing the IPPP surface for the
ground process. Omit this argument to create a surface randomly.

locPP The ground IPPP (locations of the events). If missing then these are generated
using a call to rsppmix. Note that if surf is not supplied, then it will be gener-
ated which may lead to completely inappropriate locations of the events, if the
supplied 1locPP was created with a completely different surface. It is safer to
supply both the surface and ground locations at the same time or none of the
two, so that both will be generated.

gammas For discrete marks (discrete_mark=TRUE), this is a vector of length equal to
the number of marks. These parameters should typically be non-negative and
they represent weights affecting the probability fields of each mark. For values
close to 0, we get higher probabilities of observing this mark. Large positive
values lead to small probabilities of observing the corresponding mark. Negative
values are allowed, but they can lead to a mark not being present in the generated
pattern. If the vector gammas is not supplied, then we randomly generate the
number of marks from 1:10 and the values of the vector gammas from a gamma
distribution.

r Radius used to define the neighborhood system. Any two locations within this
distance are considered neighbors. If missing, we randomly select the radius
using the generated (ground) point pattern over the window parameter win.

hyper Hyperparameter for the distribution of gamma.

truncate Logical variable indicating whether or not we normalize the densities of the
mixture components to have all their mass within the window defined in the
window win. This affects the mixture model for the intensity surface of the
ground process.

win Object of type owin defining the window of observation.

bigwin Object of type owin. If supplied, this will be the window of observation, even if
the pattern is generated over win. Useful if we do not truncate (truncate=FALSE)
and we want better presentation of the generated MIPPP.

discrete_mark Logical flag indicating whether the mark is discrete or not. Default is TRUE.
For continuous marks set this to FALSE.

open_new_window
Open a new window for a plot.

grayscale Logical to request plots in grayscale.

show_plots Logical variable requesting to produce exploratory plots of the Marked IPPP
intensity surface and generated point pattern.

rMIPPP cond_loc 81

LL Length of the side of the square grid. The larger this value is, the better the
picture resolution.

L Number of iterations. Required when sampling from the mark model condi-
tional on locations.

mark_distr_choice
A number indicating which mark distribution to use. Currently we have only
one choice in the discrete mark case, which is essentialy a Markov random field
(MRF) over the window. See details for more on the mark model currently used.
For continuous marks, we have two choices, Gaussian random field (GRF) for
mark_distr_choice=0 or Chi-Square random field for mark_distr_choice=1.

GRFmu This is the mean of the Gaussian random field. Only stationarity is currently sup-
ported (i.e., GRFmu does not depend on location). Used only if discrete_mark=FALSE.

df Degrees of freedom (an integer) for the chi-square random field when mark_distr_choice=1.
Default is df=10. Used only if discrete_mark=FALSE.

nu, theta, sig Additional arguments passed to the MaternCov function in order to create the
spatial covariance field. Default values are nu=.5, theta=1, and sig=1. See
MaternCov for details. Used only if discrete_mark=FALSE.

Details

We assume that the joint distribution of a marked point pattern N=[s,m(s)] with n events is of the
form:

p(N)=1ambda*n*exp(-lambda)/(n!)*f(all s|thetal)xg(all m|theta2(s),all s)

where s denotes a location and m=m(s) a mark value at that location, lambda a parameter with the
interpretation as the average number of points over the window of observation, and f, g are proper
densities.

In order to simulate from this Marked IPPP we first simulate the number of events and their locations
from an IPPP with mixture intensity surface lambdaxf (s|thetal) (e.g., using rsppmix), and then
generate the mark at that location s.

In the discrete mark case, the mark is modeled using a mixture distribution of Dirac measures on the
marks with the probability q(m,s) of observing a specific mark value m depending on the current
location s and the marks of its neighbors. Since we have a window of observation, any point in
there can potentially be marked, which leads to q(m, s) being a field. In particular, the probability
g(m,s) is analogous to

exp(-gammas_(j)*(sum over all neighbors of s of their marks minus m squared))
and when we fit the MIPPP model, our goal is to estimate the parameters gammas.
Note that if all gammas are zero then we fall back to a discrete uniform mark distribution.

The neighborhood system is controlled by r and is crucial in this case. Small values tend to produce
probability fields with concentrated masses about observed events of the process, whereas, large
neighborhoods allow us to borrow strength across locations and result in much smoother probability
fields.

In the continuous case the mark is generated from a (typically stationary) Gaussian process or chi-
squared random process, e.g., using function rGRF.

See Micheas (2014) for more details on Marked IPPP models via conditioning arguments.

82 rMIPPP cond_loc

Value

A list containing the following components:

surf The generated or supplied intensity surface object surf for the ground process.
gammas The generated or supplied parameters gammas. Returned only if discrete_mark=TRUE.
genMPP The generated point pattern as an object of class ppp and sppmix. The member

$marks contains the marks at each of the generated locations. If the ground PP
locPP was supplied, this is also the ground process for the MIPPP and only the
marks are generated (at those locations).

r The generated or supplied parameter r. Returned only if discrete_mark=TRUE.

prob_fields In the continuous mark case this is the realization of the random field (as an
image im object). For discrete marks, this is a list of size equal to the number of
marks containing the probability fields for each mark value.
prob_field_params
A list of the parameters used to create the continuous valued mark fields. Re-
turned only if discrete_mark=FALSE.

Author(s)
Sakis Micheas

References

Hierarchical Bayesian Modeling of Marked Non-Homogeneous Poisson Processes with finite mix-
tures and inclusion of covariate information. Micheas, A.C. (2014). Journal of Applied Statistics,
41, 12, 2596-2615, DOI: 10.1080/02664763.2014.922167.

See Also
plot_MPP_fields

Examples

Create a marked point pattern; use randomization and discrete marks (default values)
newMPP=rMIPPP_cond_loc()

plot(newMPP$surf,main="True IPPP intensity surface for the locations")
newMPP$gammas

newMPP$genMPP

newMPP$r

print(table(newMPP$genMPP$marks))

#we can reproduce the random field plots anytime using the following call
plot_MPP_fields(newMPP$genMPP, newMPP$gammas, newMPP$r)

#Now generate continuous marks according to a Gaussian process
newMPP=rMIPPP_cond_loc(discrete_mark = FALSE)

plot(newMPP$surf,main="True IPPP intensity surface for the locations")
#now the marks are taken from a chi-square field
newMPP=rMIPPP_cond_loc(mark_distr_choice=1, discrete_mark = FALSE)
plot(newMPP$surf,main="True IPPP intensity surface for the locations")

rMIPPP cond_mark 83

rMIPPP_cond_mark Generate a Marked Poisson point process (conditional on mark)

Description

This function generates realizations (point patterns) from a given Marked IPPP via conditioning
of the joint intensity surface on its marked component. See details for the choice of models for
the mark distribution. For each mark value we obtain a ground process. There processes are stan-
dard IPPP (unmarked) with mixture intensity surfaces. The mark distribution is responsible for the
number of events in the point pattern.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rMIPPP_cond_
mark

Usage

rMIPPP_cond_mark(lambda = 500, params = c(0.5, 0.5),
mark_distr_choice = @, truncate = FALSE, discrete_mark = TRUE,
win = owin(c(-3, 3), c(-3, 3)), bigwin, open_new_window = FALSE,
grayscale = FALSE, show_plots = TRUE)

Arguments
lambda Average number of mark values observed over the window. This is the total
number of points observed (on the average).
params Parameters for the mark distribution. The value depends on the mark_distr_choice

parameter, e.g., params is a vector of probabilities if the mark distribution is dis-
crete (mark_distr_choice=0).

mark_distr_choice
A number indicating which mark distribution to use. In the discrete mark case,
the mark distribution is discrete over the marks 1:1length(params) with cor-
responding probabilities in params. The continuous mark case has not been
implemented yet.

truncate Logical variable indicating whether or not we normalize the densities of the
mixture components to have all their mass within the window defined in the
window win. This affects the mixture model for the intensity surface of the
ground process.

discrete_mark Logical flag indicating whether the mark is discrete or not. Default is TRUE.
For continuous marks set this to FALSE.

win Object of type owin defining the window of observation.

bigwin Object of type owin. If supplied, this will be the window of observation, even if
the pattern is generated over win. Useful if we do not truncate (truncate=FALSE)
and we want better presentation of the generated MIPPP.

open_new_window
Open a new window for a plot.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rMIPPP_cond_mark
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rMIPPP_cond_mark

84 rMIPPP cond mark

grayscale Logical to request plots in grayscale.

show_plots Logical variable requesting to produce exploratory plots of the Marked IPPP
intensity surface and generated point pattern for each mark.

Details

For discrete marks, we assume that the joint intensity function of a marked point pattern N=[s, m]
with n events is of the form:

intensity(s,m)=lambda*M(m|thetal)xg(s(m) |theta2(m))

where m denotes a mark and s=s(m) a location with mark m, lambda a parameter with the interpre-
tation as the average number of events over the window of observation, and M the mark distribution
and g the ground intensity are proper densities.

In order to simulate from this Marked IPPP we first simulate the number of events and their marks
from an IPPP with intensity Lambda*M(m| thetal), and then generate the ground intensities for each
mark. Marks are assumed to be independnet of each other and the mixture parameters describing
each ground process are also assumed to be independent of each other.

The continuous mark case will be implemented in future releases.

See Micheas (2014) for more details on Marked IPPP models via conditioning arguments.

Value
A list containing the following components:
groundsurfs Alist of intensity_surface objects containing the surfaces of the ground pro-
cesses (one for each discrete mark value).

groundPPs A list of ppp objects containing the locations of the ground processes (one for
each discrete mark value).

genMPP The generated point pattern as an object of class ppp and sppmix. The member
$marks contains the marks at each of the generated locations.

mark_distr_choice
The choice of mark distribution. Same as the supplied parameter.

params The default or supplied parameter params.

Author(s)
Sakis Micheas

References

Hierarchical Bayesian Modeling of Marked Non-Homogeneous Poisson Processes with finite mix-
tures and inclusion of covariate information. Micheas, A.C. (2014). Journal of Applied Statistics,
41, 12, 2596-2615, DOI: 10.1080/02664763.2014.922167.

See Also

plotmix_2d

rmixsurf 85

Examples

Create a marked point pattern; use randomization and 2 discrete uniform
marks (default values)
newMPP=rMIPPP_cond_mark(bigwin = spatstat::owin(c(-10,10),c(-10,10)))
newMPP$params
plot(newMPP$genMPP, showmarks=TRUE)+add_title("Marked Poisson point pattern”,
n=newMPP$genMPP$n, nmarks=2)
plotmix_2d(newMPP$groundsurfs[[1]], newMPP$groundPPs[[1]]1)+ add_title(
"Poisson point pattern for mark 1", n=newMPP$genMPP$n, m=newMPP$groundsurfs[[1]11$m)
plotmix_2d(newMPP$groundsurfs[[2]], newMPP$groundPPs[[2]])+ add_title(
"Poisson point pattern for mark 2", n=newMPP$genMPP$n, m=newMPP$groundsurfs[[2]1]$m)

rmixsurf Generate a Poisson process surface object

Description

This function creates a Poisson point process intensity surface modeled as a mixture of normal
components, on the given 2d window. The means, covariances and component probabilities are
chosen randomly based on parameters passed to the function. The number of components can be
either fixed or random.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rmixsurf

Usage

rmixsurf(m, lambda, sig@d, df, rand_m = FALSE, xlim, ylim, dvec, mu@, Sigma@)

Arguments

m Number of components of the mixture. If omitted, m is uniformly selected from
1 up to 10.

lambda Average number of points over the window. If omitted lambda is generated from
a Gamma with shape~Unif(1,10) and scale~Unif(50,100).

sig@ Tuning parameter for generating a random matrix from an Inverse Wishart dis-
tribution.

df Degrees of freedom for generating a random matrix from an Inverse Wishart
distribution.

rand_m Request a random number of components. When rand_m = TRUE, the function
will randomly choose a number of components from 1:m.

x1lim, ylim Vectors defining the observation window. The component means are sampled

uniformly over this window.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rmixsurf

86 rnormmix

dvec A vector of weights used in the Dirichlet distribution used to sample the mixture
probabilities. If the dimension of dvec is not the same as the number of com-
ponents, then dvec is either truncated to the same dimension or repeated to have
dimension m. If missing, a vector of ones is used.

mu@, Sigmad Mean and covariance matrix for a multivariate normal distribution, used to gen-
erate all component means. If mu0 is missing the center of the window is used.
If Sigma0 is missing it is set to the identity matrix. If both mu0 and Sigma0
are missing, the component means are generated uniformly over the window of
observation.

Value

Object of class intensity_surface.

Author(s)
Sakis Micheas

See Also

plotmix_2d, summary.intensity_surface, plot.intensity_surface

Examples

mixsurfl <- rmixsurf(m = 3, lambda=100)

summary (mixsurf1)

plot(mixsurf1)

plotmix_2d(mixsurf1)

mixsurf2 <- rmixsurf(m = 5, lambda=200, rand_m = TRUE, ylim = c(-3, 3))
summary (mixsurf2)

plot(mixsurf2)

plotmix_2d(mixsurf2)

mixsurf3 <- rmixsurf(m = 5, lambda=200, rand_m = TRUE, Sigma®=.01*diag(2))
summary (mixsurf3)

plot(mixsurf3)

plotmix_2d(mixsurf3)

rnormmix Generate a mixture with normal components

Description
Generates a mixture on a 2d window where the means, covariances and component probabilities are
chosen randomly. The number of components can be either fixed or random.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rnormmix

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rnormmix

rnormmix

Usage

87

rnormmix(m, sig@, df = 10, rand_m = FALSE, xlim = c(@, 1), ylim = c(0,
1), dvec, mu@, Sigmad)

Arguments

m

sigd

df

rand_m

xlim, ylim

dvec

mu@, Sigmad

Value

Number of components of the mixture.

Tuning parameter for generating a random matrix from an Inverse Wishart dis-
tribution. If this argument is missing it is set to .1 of the minimum width/height
of the window.

Degrees of freedom for generating a random matrix from an Inverse Wishart
distribution. Default is 10.

Request a random number of components. When rand_m = TRUE, the function
will randomly choose a number of components from 1:m.

Vectors defining the observation window. The component means are sampled
uniformly over this window.

A vector of weights used in the Dirichlet distribution used to sample the mixture
probabilities. If the dimension of dvec is not the same as the number of com-
ponents, then dvec is either truncated to the same dimension or repeated to have
dimension m. If missing, a vector of ones is used.

Mean and covariance matrix for a multivariate normal distribution, used to gen-
erate all component means. If mu0 is missing the center of the window is used.
If Sigma0 is missing it is set to the identity matrix. If both mu0 and Sigma0
are missing, the component means are generated uniformly over the window of
observation.

Object of class normmix.

Author(s)

Sakis Micheas, Yuchen Wang

Examples

mix1 <- rnormmix(m = 3, sig®

summary (mix1)

mix2 <- rnormmix(m

summary (mix2)

1
—_
Q.
=

1

5)

5, sigd = .1, df = 5, rand_m = TRUE, ylim = c(@, 5))

88 rsppmix

rsppmix Generate a point pattern from a Poisson process

Description

This function generates a point pattern from a Poisson point process with intensity surface modeled
by a mixture of normal components.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rsppmix

Usage

rsppmix(intsurf, truncate = TRUE, marks = NULL, ...)

S3 method for class 'sppmix'

summary(object, ...)
Arguments
intsurf Object of class intensity_surface or normmix.
truncate Logical variable indicating that the points should be within the window of ob-
servation. Default is TRUE.
marks An optional vector defining the mark space. A mark value is randomly selected

and attached to the generated locations. Default is NULL, so that we create an
unmarked point pattern.

Further parameters passed to to_int_surf ().

object A point pattern object of class sppmix.

Details

If an intensity surface is passed to intsurf, the function generates a pattern from the Poisson di-
rectly. We can also pass a normal mixture of class normmix and specify the observation window win
and the parameter lambda, which is interpreted as the average number of points over the window,
as additional parameters.

Even if we pass an intensity surface to rsppmix (), we can still overwrite the lambda and win by
passing them as additional parameters. See the examples for specific calls to the function.

For a given window W, the number of points N(W) in W follows a Poisson distribution, with intensity
measure Lambda (W). The intensity surface of the Poisson process is the Radon-Nikodym derivative
of the measure Lambda with respect to the Lebesgue measure.

The intensity surface is modeled using a multiple of a mixture of normal distributions, i.e., the
intensity is given by

f(x|lambda, thetas)=lambda * sum(p_i*f_i(x|mu_i,sigma_i)),

where the parameters thetas consist of the mixture probabilities ps, normal component means mus,
and covariances sigmas, with sum(p_i)=1.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#rsppmix

rsppmix 89

When the masses of all the components f_i are within the window, then the mixture sum(p_i*f_i(x|mu_i,sigma_i))
integrates to 1 over W, so that the average number of points is given by E(N(W))=1ambda.

If truncate = TRUE, we generate points from the unbounded Poisson with the given mixture inten-
sity function until there are exactly n points in the window (rejection method). If truncate = FALSE,
the function will not check if the points are inside the window.

Value

A point pattern of class c("sppmix”, "ppp"). The object has all the traits of the ppp object and
in addition, a comp member indicating from which mixture component the event comes from. The
object members include:

x : a vector of x coordinates of the events,

y : a vector of y coordinates of the events,

n : the number of events,

window : the window of observation (an object of class owin),
marks : optional vector of marks,

comp : vector of true allocation variables.

Author(s)
Jiaxun Chen, Sakis Micheas, Yuchen Wang

See Also

normmix, rmixsurf, square, rsppmix, plot.sppmix, plotmix_2d, plot2dPP, plot.normmix,
rnormmix, plotmix_3d

Examples

create the true mixture

truemix_surf <- normmix(ps=c(.2, .6,.2), mus=list(c(@.3, 0.3), c(0.7, 0.7), c(0.5, 0.5)),
sigmas = list(.01*diag(2), .03xdiag(2), .02xdiag(2)), lambda=100, win=spatstat::square(1))
plot(truemix_surf)

generate the point pattern

genPPP1=rsppmix (truemix_surf)

summary (genPPP1)

plot2dPP(genPPP1)

plot2dPP(genPPP1, truemix_surf$mus)

plotmix_2d(truemix_surf,genPPP1)

overwrite lambda or win

genPPP2=rsppmix (truemix_surf, lambda = 200)

plotmix_2d(truemix_surf,genPPP2)

genPPP3=rsppmix (truemix_surf, win = spatstat::square(2))

truemix_surf$window

plotmix_2d(truemix_surf,genPPP3)#will not see the points outside the surface window
plotmix_2d(truemix_surf,genPPP3, win = spatstat::square(2)) #have to pass the new window
#to see the points

#use normmix with additional parameters

90 Save_AllOpenRglGraphs

truemix<- rnormmix(m = 3, sig@ = .1, df = 5, xlim= c(@, 3), ylim = c(0@, 3))
plot(truemix)

normdens=dnormmix(truemix, xlim= c(@, 3), ylim = c(0, 3))
plotmix_3d(normdens)

genPPP4=rsppmix(truemix, lambda = 100, win = spatstat::square(3))

turn off truncation

genPPP5=rsppmix(intsurf = truemix_surf, truncate = FALSE)
plotmix_2d(truemix_surf, genPPP5)

plotmix_2d(truemix_surf,genPPP5, win = spatstat::square(2))
plotmix_2d(truemix_surf,genPPP5,contour=TRUE)
intsurf6=rmixsurf(m=5, lambda=rgamma(1, shape=10,scale=5),
df=5,sig0=1,rand_m=TRUE,mu@ = c(.5,.5),Sigma@® = 0.001*diag(2))
genPPP6=rsppmix (intsurf6,marks=1:3, truncate = FALSE)
plotmix_2d(intsurf6,genPPP6)

plot(genPPP6, showmarks=TRUE)

Save_AllOpenRglGraphs Saves RGL plots

Description

The function saves all open RGL plots (3d plots) to the specified directory and using a template
name.

For examples see
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Save_AllOpenRglGraphs

Usage
Save_Al10penRglGraphs(dir1, filenamel = "RglGraph”)

Arguments

dir1 Directory to save the plots.

filenamel Template filename. Each open plot is saved as filenamel.png, filename2.png,
and so forth.

Author(s)
Sakis Micheas

See Also
Plots_off

Examples

use a temporary directory to save the plots
Save_Al10penRglGraphs(diri=tempdir())

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#Save_AllOpenRglGraphs

selectMix 91

selectMix Mixture Model Selection

Description

This function suggests the best number of components by computing model selection criteria, in-
cluding AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), ICLC (Inte-
grated Classification Likelihood Criterion).

Since the only parameter of interest is the number of components of the mixture, we consider several
fixed numbers of components defined in the vector Ms, and we entertain mixture models with their
other parameters approximated via the MAP estimators of DAMCMC runs.

For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#selectMix

Usage

selectMix(pp, Ms, L = 30000, burnin = 0.1 * L, truncate = FALSE,
runallperms = 0)

Arguments
pp Point pattern object of class ppp.
Ms A vector of integers, representing different numbers of components to assess for
the mixture model for the intensity function.
L Number of iterations for the DAMCMC we run for each number of components
in Ms; default is 30000.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.
truncate Logical variable indicating whether or not we normalize the densities of the
mixture components to have all their mass within the window defined in the
point pattern pp.
runallperms Set to 0 to use an approximation to the Likelihood and Entropy within the
MCMC (not affected by label switching). Set to 1 to use an identifiability con-
straint to permute the labels and use the posterior means of the parameters to
compute the criteria. Set to 2 to use the decision theoretic approach (minimize
Squared Error Loss) in order to permute the labels. The latter setting can take a
long time to run for m>7.
Details

For each integer in the vector Ms, we fit a mixture with that many components using DAMCMC.
Then the criteria are computed and presented at the end of the calculations.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#selectMix

92 selectMix

Note that the AIC and BIC do not account for constraints in the parameter space of the mixture
model parameters. The ICLC uses the estimated entropy of the distribution of the membership in-
dicators and therefore should be trusted more in identifying the true number of components, instead
of AIC and BIC.

In addition, we run Stephens’ BDMCMC and present the posterior distribution for the number of
components.

All these methods should serve us in making an informed choice about the true number of compo-
nents and then proceed to fit the DAMCMC with the chosen number of components and take care
of label switching (if present), in order to achieve mixture deconvolution. If we simply want the
surface, then the Bayesian model average from the BDMCMC fit is the best solution.

Value

A list containing the following components:

AIC the values of the AIC criterion
BIC the values of the BIC criterion
ICLC the values of the ICLC criterion
Marginal the values of the marginal density

LogLikelihood the values of the LogLikelihood

Author(s)
Jiaxun Chen, Sakis Micheas

References

Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of compo-
nents: an alternative to reversible jump methods. The Annals of Statistics, 28, 1, 40-74.

McLachlan, G., and Peel, D. (2000). Finite Mixture Models. Wiley-Interscience.

Jasra, A., Holmes, C.C. and Stephens, D. A. (2005). Markov Chain Monte Carlo Methods and the
Label Switching Problem in Bayesian Mixture. Statistical Science, 20, 50-67.

See Also

normmix, square, est_mix_damcmc, est_mix_bdmcmc, GetBMA, FixLS_da, rsppmix

Examples

create the true mixture intensity surface

truesurf <- normmix(ps=c(.2, .6,.2), mus=list(c(0.3, 0.3), c(0.7, 0.7), c(0.5, 0.5)),
sigmas = list(.01*diag(2), .01xdiag(2), .@1xdiag(2)), lambda=100, win=spatstat::square(1))
plot(truesurf)

generate the point pattern, truncate=TRUE by default

pp <- rsppmix(truesurf,truncate=FALSE)

plot(pp,mus=truesurf$mus)

compute model selection criteria via an approximation that is not affected by label

sppmix 93

switching and will typically work well for large L
ModelSel=selectMix(pp,1:5, truncate=FALSE)

show info

ModelSel

#generate the intensity surface randomly

truesurf <- rmixsurf(5,100,x1lim = c(-3,3), ylim = c(-3,3), rand_m = TRUE)
truesurf

pp <- rsppmix(truesurf,truncate=FALSE)
ModelSel@=selectMix(pp,1:5,runallperms = @, truncate=FALSE)
ModelSell=selectMix(pp,1:5,runallperms = 1, truncate=FALSE)
ModelSel2=selectMix(pp,1:5,runallperms = 2, truncate=FALSE)

sppmix sppmix: Poisson point process modeling using normal mixture models
for the intensity surface

Description

This help page contains a summary of the features of the R package sppmix.
The main page for the package is at
http://faculty.missouri.edu/~micheasa/sppmix/index.html

including the package vignettes and R code with examples for each function of the package.

Details

The sppmix package implements classes and methods for modeling spatial point process data using
Poisson point processes, where the intensity surface is assumed to be a multiple of a finite additive
mixture with normal components.

Comprehensive accounts on modeling spatial point processes can be found in the books by Illian et
al. (2008), Gelfand et al. (2010), Diggle (2014), and Baddeley, Rubak and Turner (2015).

The idea of using mixtures of normals for the intensity function is not entirely new (e.g., Thomas
processes or Poisson cluster processes). However, the Bayesian framework (DAMCMC) for general
mixtures for a fixed number of components were recently presented by Chakraborty and Gelfand
(2010), and for a fixed or random number of components in the context of marked point processes,
by Micheas (2014) (both DAMCMC and BDMCMC). In Zhou et al. (2015), the authors entertained
space-time models based on Poisson point processes with mixture intensity surfaces.

The addition of marks and the introduction of time to a point pattern, leads to general Marked
Space-Time Poisson point processes, and such models will be investigated in future versions of the
sppmix package.

Getting Started

We recommend that you run the basic demos in order to get a first taste of the capabilities of sppmix.
Simply run

Demo_sppmix (#)

http://faculty.missouri.edu/~micheasa/sppmix/index.html

94 Sppmix

in order to view the available demos and tutorials (vignettes), by choosing an appropriate number
#. A call Demo_sppmix () will bring up a browser with all the available vignetters of the package.
The following demos are available:

1) Defining, generating, working with and basic plotting of sppmix objects.
2) Plotting in the sppmix package.

3-6) How to perform model fitting for a Poisson point process with intensity surface assumed to
be a mixture of normals. There are 4 cases discussed: fixed or random number of components and
edge effects are considered or not considered.

7) Model checking in the sppmix package.

8) Perform model fitting for a (discrete) marked Poisson point process with ground (locations pro-
cess) intensity surface assumed to be a mixture of normals.

Bayesian computational methods

Data Augmentation MCMC (DAMCMC by Diebolt and Robert, 1994, function est_mix_damcmc)
and Birth-Death MCMC (BDMCMC by Stephens, 2000, function est_mix_bdmemc) are the two
main MCMC methods we have implemented for estimating the parameters of the Poisson intensity
surface, in a Bayesian framework. The intensity surface consists of a parameter lambda, interpreted
as the average number of points over the window of observation and the mixture component pa-
rameters, including the component probabilities ps, the component means mus, and the component
covariances sigmas. See the details section of the function rsppmix. The latter function is used for
sampling a point pattern from the Poisson point process.

Objects in sppmix

We introduce an object of class normmix for handling 2d mixtures of bivariate normal components.
This helps us build the Poisson point process intensity surface as an object of class intensity_surface.

The DAMCMC and BDMCMC functions, return objects damcmc_res and bdmcmc_res, respec-
tively, representing the fitted model parameters, as well as, a plethora of information. The func-
tions plot and summary can then be applied to these objects to obtain additional information.
See plot.damcmc_res, plot.bdmcmc_res, summary.damcmc_res, and summary . bdmcmc_res, for
more details.

External dependencies

We link and require several R packages, including spatstat, rgl, ggplot2, Rcpp, RcppArmadillo,
fields, and mvtnorm.

In particular, we utilize the ppp and owin classes from the spatstat package in order to describe a
point pattern.

The MCMC algorithms are implemented in C++ using Rcpp and RcppArmadillo, and were op-
timized after extensive testing, meaning that this approach is significantly faster than some other
implementations of 2d mixture models.

Plotting is accomplished using the rgl package in order to create 3d plots of the intensity surfaces.
In addition, the fields and ggplot2 packages were used for 2d plots.

sppmix 95

Use the help pages and please report errors!
There are many examples in the help pages of each and every function in the sppmix package. You
will find all the answers you need there, in the demos and in the vignettes.

But just in case we missed something, or if you find a typo, or a mistake or have any other sugges-
tions feel free to contact the package maintainer Sakis Micheas.

License Information
All code in this package is copyright Sakis Micheas and Jiaxun Chen and is released under the MIT
license (https://cran.r-project.org/web/licenses/MIT).

Furthermore, a lot of our examples utilize the PlotUSAStates function which requires the Carto-
graphic Boundary Shapefiles (boundary data) provided by the USA Census Bureau at https://
Wwww.census.gov/geo/maps-data/data/tiger-cart-boundary.html. To our knowledge there
is no special license required to use this data.

If you use the sppmix package in your research, we would appreciate a citation.

Citation

In order to cite the sppmix package in publications please use:

Micheas, A., and Chen, J. (2017): sppmix-Modeling spatial Poisson and related point processes
using normal mixture models. R package. Package website: http://faculty.missouri.edu/
~micheasa/sppmix/index.html.

Author(s)

Jiaxun Chen (Author and Creator) <chenjiaxun9@hotmail.com>.
Athanasios (Sakis) Christou Micheas (Author and Maintainer) <micheasa@missouri.edu>

Significant contributions on the package skeleton creation, plotting functions and other code by
Yuchen Wang <ycwang®@712@gmail.com>

References
Diebolt, J., and Robert, C. P. (1994). Estimation of Finite Mixture Distributions through Bayesian
Sampling. Journal of the Royal Statistical Society B, 56, 2, 363-375.

Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of components-
an alternative to reversible jump methods. The Annals of Statistics, 28, 1, 40-74.

McLachlan, G., and Peel, D. (2000). Finite Mixture Models. Wiley-Interscience.

Jasra, A., Holmes, C.C. and Stephens, D. A. (2005). Markov Chain Monte Carlo Methods and the
Label Switching Problem in Bayesian Mixtures. Statistical Science, 20, 50-67.

[lian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical Analysis and Modelling of
Spatial Point Patterns. Wiley.

Chakraborty, A., and Gelfand, A.E. (2010). Measurement error in spatial point patterns. Bayesian
Analysis, 5, 97-122.

Gelfand, A.E., Diggle, PJ., Fuentes, M. and Guttorp, P., editors (2010) Handbook of Spatial Statis-
tics. CRC Press.

https://cran.r-project.org/web/licenses/MIT
https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html
https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html
http://faculty.missouri.edu/~micheasa/sppmix/index.html
http://faculty.missouri.edu/~micheasa/sppmix/index.html

96 summary.bdmemc_res

Diggle, P.J. (2013) Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third edition.
Chapman and Hall/CRC.

Micheas, A. C. (2014). Hierarchical Bayesian Modeling of Marked Non-Homogeneous Poisson
Processes with finite mixtures and inclusion of covariate information. Journal of Applied Statistics,
41, 12, 2596-2615.

Zhou, Z., Matteson, D.S., Woodard, D.B., Henderson, S.G., and Micheas, A.C. (2015). A Spatio-
Temporal Point Process Model for Ambulance Demand. Journal of the American Statistical Asso-
ciation, 110, 509, 6-15.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

summary . bdmcmc_res Summarize BDMCMC results

Description

Prints a brief summary of the results of a BDMCMC fit.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#summary.bdmcmc_
res

Usage

S3 method for class 'bdmcmc_res'
summary (object, num_comp, burnin = floor(object$L/10),
alpha = 0.05, dgt = 4, ...)

Arguments
object Object of class bdmcmc_res.
num_comp Number of components requested. Only the posterior realizations that have this
many components will be returned. The function fails if the BDMCMC chain
never visited this number of components. We can also pass a vector of integer
values and present the posterior means summary. If this argument is missing,
the MAP estimator is chosen by default.
burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.
alpha Level alpha for the credible sets. Default is 0.05, for 95 sets of the mixture
parameters.
dgt Number of digits to use (formatting the output).
Additional arguments for the S3 method.
Author(s)

Sakis Micheas

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#summary.bdmcmc_res
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#summary.bdmcmc_res

summary.damcmc_res 97

See Also

rnormmix, to_int_surf, rsppmix, est_mix_bdmcmc, owin

Examples

generate data

truemix<- rnormmix(m = 3, sig@ = .1, df = 5, xlim= c(@, 5), ylim = c(@, 5))
summary (truemix)

intsurf=to_int_surf(truemix, lambda = 100, win =spatstat::owin(c(@, 5),c(@, 5)))
pp1 <- rsppmix(intsurf = intsurf)# draw points

#Run BDMCMC and get posterior realizations

postfit=est_mix_bdmcmc(pp1,m=5)

#summary of the posterior results

summary (postfit)

summary (postfit, num_comp=2)

summary (postfit, num_comp=c(2,4))

summary .damcmc_res Summarize DAMCMC results

Description
Prints a brief summary of the results of a DAMCMC fit.
For examples see

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#summary.damcmc_
res
Usage

S3 method for class 'damcmc_res'
summary(object, burnin = object$L/10, alpha = 0.05,

dgt = 4, ...)
Arguments

object Object of class damcmc_res.

burnin Number of initial realizations to discard. By default, it is 1/10 of the total num-
ber of iterations.

alpha Level alpha for the credible sets. Default is 0.05, for 95 sets of the mixture
parameters.

dgt Number of digits to use (formatting the output).

Additional arguments for the S3 method.

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#summary.damcmc_res
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#summary.damcmc_res

98 to_int_surf

Author(s)
Jiaxun Chen, Sakis Micheas, Yuchen Wang

See Also

rnormmix, to_int_surf, rsppmix, est_mix_damcmc, owin

Examples

generate data

truemix<- rnormmix(m = 3, sig@ = .1, df =5, xlim= c(@, 5), ylim = c(9, 5))
summary (truemix)

intsurf=to_int_surf(truemix, lambda = 100, win =spatstat::owin(c(@, 5),c(@, 5)))
ppl = rsppmix(intsurf = intsurf)# draw points

#Run DAMCMC and get posterior realizations

postfit=est_mix_damcmc(ppl,m=3)

#summary of the posterior results

summary (postfit)

to_int_surf Convert a normal mixture to an intensity surface

Description

This function converts a normmix object into an intensity_surface object. It can also be used
to change the parameters 1lambda (average number of points over the window) or win (window of
observation) of an intensity_surface object.

For examples see
http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#to_int_surf

If the class of mix is normmix, lambda and win are used to convert mix into an intensity surface
class. If the class of mix is intensity_surface already, lambda and win are used to change the
original settings for these parameters.

Usage

to_int_surf(mix, lambda = NULL, win = NULL, return_normmix = FALSE)

Arguments
mix Object of class normmix or intensity_surface.
lambda Optional parameter treated as the average number of points over the window.
win Optional parameter of class owin, defining the window of observation.

return_normmix Logical variable requesting to return a normal mixture (discard lambda and
win).

http://faculty.missouri.edu/~micheasa/sppmix/sppmix_all_examples.html#to_int_surf

to_int_surf

Value

Object of class intensity_surface.

Author(s)

Yuchen Wang

See Also

normmix, rnormmix, square

Examples

truemix <- normmix(ps=c(.4, .2,.4), mus=list(c(0.3, 0.3), c(.5,.5),c(0.7, 0.7)),
sigmas = list(.02xdiag(2), .05*diag(2),.01*xdiag(2)))
intsurf=to_int_surf(truemix, lambda = 100, win = spatstat::square(1))

#plot the true mixture

plot(intsurf,main = "True Poisson intensity surface (mixture of normal components)"”)

using the demo_mix normmix object

summary (demo_mix)

demo_surfl1=to_int_surf(demo_mix, lambda = 100, win = spatstat::square(1))
plot(demo_surf1)

using an intensity_surface object

summary (demo_intsurf)

demo_surf2=to_int_surf(demo_intsurf, win = spatstat::square(2))

summary (demo_surf2)

plot(demo_surf2)

demo_surf3=to_int_surf(demo_intsurf, lambda = 50)

plot(demo_surf3)

99

Index

+Topic datasets
Datasets, 10
demo_mix, 12

add_title, 3, 79
approx_normmix, 4

CAQuakes2014 (Datasets), 10
check_labels, 5, 26, 29, 51, 52
ChicagoArea (Datasets), 10
ChicagoCrime2015 (Datasets), 10
CompareSurfs, 7, 36
ContinentalUSA_state_names (Datasets),
10
Count_pts, 8

Datasets, 10

demo_genPPP (demo_mix), 12
demo_intsurf (demo_mix), 12
demo_intsurf3comp (demo_mix), 12
demo_mix, 12

Demo_sppmix, 13

demo_truemix3 (demo_mix), 12
demo_truemix3comp (demo_mix), 12
demo_truesurf3 (demo_mix), 12
dnormmix, 4, 14, 60, 72
drop_realization, 8, 15, 26, 64

est_intensity_np, 16

est_MIPPP_cond_loc, 17, 18, 64,75

est_MIPPP_cond_mark, 21

est_mix_bdmcme, 8, 16, 19, 31-34, 38, 40, 50,
51,64, 67, 68, 70, 92, 94, 97

est_mix_bdmecmc (est_mix_damcmc), 24

est_mix_damemc, 6, 19, 22, 24, 29, 30, 34-36,
38-42, 52, 56, 59, 64, 66-69, 71, 73,
76,92, 94, 98

fields, 78, 94
FixLS_da, 6, 26, 28, 36, 51, 52, 69, 92

100

geom_point, 67
Get_Rdiag, 41
GetBDCompfit, 6, 26, 30, 64
GetBDTable, 26, 31, 31, 51, 64
GetBMA, 6, 8, 32, 51, 64, 92
GetDensityValues, 33, 37
GetIPPPLikValue, 34
GetKLEst, 35
GetMAPEst, 36, 37, 64
GetMAPLabels, 38, 56, 59
GetPMEst, 5, 26, 30, 35-38, 39, 52, 67
GetStats, 20, 23, 40
ggtitle, 67,79

im, 7, 14,17, 23, 60, 63, 72, 82
im.object, 32, 51, 67,78

kstest2d, 42, 44
kstest2dsurf, 44

matern.image.cov, 78

MaternCov, 4, 45, 78, 79, 81

mc_gof, 46

MOAggIncomelevelsPerCounty (Datasets),
10

normmix, 4, 6, 14, 29, 30, 34, 39, 41, 46, 47,
54-57, 59, 69, 89, 92, 94, 99

openwin_sppmix, 49
owin, 7-9, 16, 26, 32, 43, 48, 50, 55-57, 59,
67,77,80, 83,89, 94, 97, 98

plot.bdmcmc_res, 26, 50, 94
plot.damcmc_res, 5, 31, 52, 94
plot.intensity_surface, 26, 53, 86
plot.MIPPP_fit (est_MIPPP_cond_loc), 17
plot.normmix, 31, 54, 89
plot.sppmix, 55, 89

plot2dPP, 57, 89

plot_autocorr, 65, 71

INDEX

plot_avgsurf, 5, 8, 67
plot_chains, 6, 26, 29, 51, 52, 68
plot_CompDist, 26, 64, 70
plot_convdiags, 71
plot_density, 14, 33,51,67,72,79
plot_ind, 26, 73
plot_MPP_fields, 74, 82
plot_MPP_probs, 64, 75
plot_runmean, 71, 76
plot_true_labels, 77
plotmix_2d, 9, 14, 26, 44, 58, 64, 84, 86, 89
plotmix_3d, 8, 17, 33,51,59, 67, 89
Plots_off, 61, 90
plotstring, 61
PlotUSAStates, 26, 51, 52, 59, 62, 69, 95
ppp, 9, 10, 12, 16, 22, 24, 42—44, 55-58, 62,
63,72,74,78, 82,84, 89, 94
print.intensity_surface (normmix), 47
print.normmix (normmix), 47

Rcpp, 94

RcppArmadillo, 94

rgl, 94

rGRF, 45,78, 81

rMIPPP_cond_loc, 20, 74, 75, 79

rMIPPP_cond_mark, 23, 56, 83

rmixsurf, 8, 9, 35, 36, 38, 42,44, 66, 71, 76,
85, 89

rnormmix, 4, 14, 17, 26, 43, 48, 60, 67, 77, 86,
89, 97-99

rsppmix, 6, 8, 9, 17, 29, 34-36, 38, 39, 41, 42,
44, 46, 55-57, 59, 66, 67, 69, 71, 76,
77,80, 81, 88, 89, 92, 94, 97, 98

Save_Al10OpenRglGraphs, 61, 90

selectMix, 91

sim.rf, 78

spatstat, 94

sppmix, 12, 19,49, 56, 93

sppmix-package (sppmix), 93

square, 9, 89, 92, 99

summary .bdmeme_res, 94, 96

summary .damcmc_res, 94, 97

summary.intensity_surface, 86

summary.intensity_surface (normmix), 47

summary .MIPPP_fit (est_MIPPP_cond_loc),
17

summary.normmix (normmix), 47

summary . sppmix (rsppmix), 88

101

to_int_surf, 14, 17, 26, 39, 41, 43, 54-57,
59,67,77,97, 98, 98

Tornadoes2011MO (Datasets), 10

TornadoesAll (Datasets), 10

USAStatesCounties2016, 63
USAStatesCounties2016 (Datasets), 10

	add_title
	approx_normmix
	check_labels
	CompareSurfs
	Count_pts
	Datasets
	demo_mix
	Demo_sppmix
	dnormmix
	drop_realization
	est_intensity_np
	est_MIPPP_cond_loc
	est_MIPPP_cond_mark
	est_mix_damcmc
	FixLS_da
	GetBDCompfit
	GetBDTable
	GetBMA
	GetDensityValues
	GetIPPPLikValue
	GetKLEst
	GetMAPEst
	GetMAPLabels
	GetPMEst
	GetStats
	Get_Rdiag
	kstest2d
	kstest2dsurf
	MaternCov
	mc_gof
	normmix
	openwin_sppmix
	plot.bdmcmc_res
	plot.damcmc_res
	plot.intensity_surface
	plot.normmix
	plot.sppmix
	plot2dPP
	plotmix_2d
	plotmix_3d
	plotstring
	Plots_off
	PlotUSAStates
	plot_autocorr
	plot_avgsurf
	plot_chains
	plot_CompDist
	plot_convdiags
	plot_density
	plot_ind
	plot_MPP_fields
	plot_MPP_probs
	plot_runmean
	plot_true_labels
	rGRF
	rMIPPP_cond_loc
	rMIPPP_cond_mark
	rmixsurf
	rnormmix
	rsppmix
	Save_AllOpenRglGraphs
	selectMix
	sppmix
	summary.bdmcmc_res
	summary.damcmc_res
	to_int_surf
	Index

