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1. Introduction

This package provides functions estimating Moran eigenvector-baseablscapatial
additive mixed models and related spatial models. In conchésepackage implements standard
spatial regression models and extensions, including spatially and ncelbgpatiying coefficient
model, models with group effects, spatial unconditional quantile régmessodel, and low rank
spatial econometric models. All these models are estimataegdutationally efficiently (see Table 1).

These models are extensions of the random effects eigenvector spatiabfi{RE-ESF)
approach (Murakami and Griffith, 2015). Just like the classical ES®FGsiffith, 2003; Tiefelsdorf
and Griffith, 2007), this approach efficiently elimiaatesidual spatial dependence using a spatial
process that is interpretable in terms of the Moran coefficient (Mastatistic).

Table 1: Summary of functions. The first six implements low @Rk that are interpretable in terms

of the Moran coefficient, and the last two are low rank spatial ecdnomedels.
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This vignette illustrates how to use functions in this package throndtplice analyses in
the Ibaraki prefecture, Japan. Explained variables are logged land ipri2@$5 (JPY/m; sample
size: 647; Figure 1). Explanatory variables are as listed in TaBletBese variables are downloaded
from the National Land Numerical Information download servitetp(/nlftp.mlit.go.jp/ksj-
el/index.htm).

Hereis the first 5 rows in the datasépx” and “py” are spatial coordinates:

s datall:5,]
pX py ln_price station tokyo urban flood city_name
1 19235.25 -4784.562 10.12663 4.0109290 43.38504 1 1.5 Tsukubamirai-shi
2 16450.37 -8782.851 1@.83565 @.8977986 43.38504 1 0.0 Toride-shi
3 17673.30 -8351.802 1@.63345 0.5596742 43.38504 1 0.0 Toride-shi
4 17824.50 -7704.343 9.87817 ©0.8504618 43.38504 @ 0.0 Toride-shi
5 67334.31 58001.724 10.12262 3.1660661 140.95839 1 0.0 Hitachiota-shi
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Figure 1. Officially assessed residential land prices in 2015 (right) in the Ibaraki prefecture/

Table 2. Explanatory variables

Variables Description

tokyo Logarithm of the distance from the nearest railway station to Tolgt@B8{km]
station Logarithm of the distance to the nearest railway station [km]

flood Anticipated inundation depth [m]

urban 1 if the site is in an urban promotion land and 0 otherwise
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2. Moran eigenvector-based spatial regression models

This package assumes the following analysis steps: (a) define Mgemvectors; (p

spatial regression using geeigenvectors. Hereafter, Section 2.1 explains (a) whereas Se&tons

to 2.5 explain (b).

2.1. Moran eigenvectors

2.2.1. What are Moran eigenvectors?

Moran eigenvectors (MEsje,,...,e,} are the eigenvectors extracted from a doubly-

centered spatial proximity matrix wheeg is the ME corresponding to the largest eigenvalye

e, is the ME corresponding to the second largest eigenviluand so forth. Figure 2 plots the 1st,
5th, and 25th eigenvectorAs illustrated in this figure, MEs corresponding to larger eigenvalue

describes larger-scale map pattern.
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Figure 2 Examples of the MEs{, e1o, e25) and their weighted sunfi,{-), which is used in regression
analysis. Here, only three eigenvectors are considered just foraflast all the MEs corresponding

to positive eigenvalues are considered in this package by to atguraidel positive spatial

dependence.

fMC: 1.%1 + elo = 04625



MEs are interpretable in terms of the Moran coefficient (MC; or Moran’s I), which is a
spatial dependence diagnostic statistic indicating larger posiéike in the presence of stronger
positive spatial dependence. Specifically, the following relationshitshol

MCle] x 2, (1)
where « represents proportion. Eq.(1) suggests #atwhich had the largest-scale map pattern,
achieves the largest MC value,, which had the second largest-scale pattern, achieves thedsec
largest MC value, and so on. ThidEs furnish distinct map pattern descriptions of latent spatial
dependence, with each level being indexed by the MC value (Griffith, 2003)

In this package, MEs corresponding to positive eigenvalue are used to posiilely
dependent spatial process behind observations. Suppose, @)at is thei-th element of thé-th
eigenvectore;, or the value of the eigenvector at site Then, the following model is used to model

the spatial process at site:
L

fuc(si) = Z el(s)vu 2)

=1
whereL is the number of positive eigenvalue apdis a coefficient. Eq.(2) models the spatial process
by estimating the coefficients. See Figure 2 for examples. Effieslg;; by a fixed coefficient
whereas RE-ESF defingg by a random coefficient. | prefer the latter because of the fallpwi
reasons: (i) the random specification tends to be more accuratdd@ggan et al., 202Q(ji) in the
random casef-(s;) yields an approximate Gaussian process, which is widely acdeptsghtial
process modeling in geostatistics (Murakami and Griffith, 2015). Becaudesd reasons, most

functions in this package modefg;-(s;) while assumingy; as random coefficients.

2.2.2. Specification of Moran eigenvectors
To model positively dependent spatial process, négen function extracts the MEs

corresponding to positive eigenvalue using the following command:

> coords <- data[,c("px", "py") ]

>meig <- meigen( coords = coords)

meig includes extracted eigenvectors and eigenvalues; they aretedtfemm a matrix that doubly
centers a spatial proximity matitx The {, j)-th element o€ is given by exp{di,;/r), wheredi; is the
Euclidean distance between siteandj, andr is the longest distance in the minimum spanning tree
covering the sample sites (Dray et al., 2006; Murakami and Griffith, 20h&) exponential kernel
can be substituted by Gaussian kerneldel = “gau”) or spherical kernelfodel = “sph’).

It is often the case that there are multiple samplebdrsame site. For example, spatial

coordinates of condominium units are usually given by buildings. Parehdatmultiple samples in



the same site/unit with different time points. For such dataargnments_id in the meigen (or
meigen_f) function is useful to define M&by not individual samples but groups. For instance, iif
is given by ID of condominiums buildingMEs are defined by buildings based on the proximity
among buildingsIf spatial coordinates of samples within the same group are noicalerthe
geometric center of the group is used to extract the MEs.

The distance-based canbe replaced with other spatial connectivity matrix. For example,

here is a code to prepare the 4-nearest-neighbor-Qaseadrix:

> library( spdep )
> col.knn<- knearneigh( coordinates( coords ), k =4)
>cmat <- nb2mat( knn2nb( col.knn), style = "B")

> meigB <- meigen( cmat = cmat )

If spatial connectivity matrix is not symmetric like the 4-nearegghimr-basedC, the meigen
function symmetrizes it by takingC(+ C' )/2. In cases with binary connectivity-bas€d(e.qg.
proximity-basedC; k-nearest-neighbor-bas€), 41 /11 > 0.25 is a standard threshol@he threshold

is implemented as follows:

> meigB <- meigen( cmat = cmat, threshold = 0.25)

Other connectivity matrices including road distance-based matrix ambmc connectivity-based

matrix are available (although | recommend the default exponéumiction because of the stability).
While eigen-decomposition is computationally demanding in general,migigen_f

function performs fast approximation MIiEs for large samples (see Murakami and Griffith, 2019a).

The command for the fast ME extraction is as follows:

> meig_f <- meigen_f( coords = coords )

By default, the first 200 eigenvectors are approximated based omlats»m result in Murakami and
Griffith (2019a). Whilemeigen took 243.79 seconds for 5,000 samplasigen_f took only 0.38
seconds (see Sectionl4or further details). Currently, this approximation is available only Her t
exponential, Gaussian, and spherical kernels.

Sections 2.2 to 2.6 explains how to use the extradieslin spatial regression modeling.

1 The threshold A: /41 > 0.25 attempts to capture roughly 95% of the variations attributable to positive
spatial dependence (Griffith and Chun, 2014).



2.2. Spatial regression models

2.2.1. Eigenvector spatial filtering (ESF) model

The classical ESF model is formulated as follows:

K

Yy = Z xi,k:Bk + fMC(F) (Si) + ¢, Si"’N(O: 0-2)- (3)

k=1
fucr)(si) = Xicq e1(s)yvim where v,y is a fixed coefficient (see EQ.2Yycr(s;) captures
residual spatial dependence to estimate and infer regression coefficients appropriately. If spatial
dependence in residuals is ignored, coefficient standard error tends to be underestimated, and the
statistical significance is overestimated. Consideration of spatial dependence is needed to avoid such
problem.

The ESF model is estimated by the following stepsM@s corresponding to positive
eigenvalue are extracted using theigen function; (ii) L MEs selected through a stepwise variable
selection procedure; (iii) the ESF model Eq.(3) with the selezitpehvectors is estimated uing the

ordinary least squares method. Binary connectivity matrix (e.g., knn-G3dgsdised for many ESF

studies.
The following command estimates the linear ESF model:
>y <- data[ ,"In_price" ] # Explained variables
> X <- data[ ,c( "station", "tokyo", "city", "flood " )] # Explatway variables
>meig <- meigB #Moran’s eigenvectors (knn-basedC)

>e_res <-esf(y=y, x=Xx, meig =meig, vif = 10, fn = "y2"

To cope with multicollinearity, eigenvectors can be selected sthingariance inflation factor (VIF),
which is an indicator of multicollinearity, does not to exceed 1i8.ithplemented by specifyingf
=10 The stepwise eigenvector selection is performed through an adfasteximization {n = "r2";
default), Akaike information criterion (AIC) minimizatiorfin( = "aic"), or Bayesian Information
criterion (BIC) minimization fn = "bic"). Alternatively, iffn = "all”, all the MEs corresponding to
positive eigenvalue are considered.

Summary of the estimation result is displayed as shown imetktepageThe “Coefficients”
section describes estimated coefficients and their stafistignificance. Station (-) and city (+) are
statistically significant at the 0.1% level. These results oortiigher land price nearby railway station
areas and other urban areas. Flood is positively significant aD#tdevel. This result suggests that
influence from flood disaster, which is expected to be negativeajgpropriately reflected to land
price. The “Spatial effects (residuals)” section describes the standard error (SEEYand the scaled
MC (Moran.I/max(Moran.l) of the estimated spatial procefgcr)(s;)- The SE is compatible to the



residual SEresid_SE. The result suggests the pretense of residual spatial dependensealEite
MC takes a value between 0 and 1 in which 0 suggests thiestrsaale spatial dependence whereas
1 means the largest-scale spatial dependence. The estimhtedf 0.137 suggests that small-scale
residual spatial dependence is estimated. Findity,“Error statistics” section summarizes error
statistics, including residual standard error (residual_SE), adj@s{adjR2), log-likelihood (logLik),
AIC, and BIC:

> e_res
Call:
esf(y =y, x = x, vif = 10, meig = meig, fn = "r2")

----Coefficients---=-ccoccmmmmm e

Estimate SE t_value p_value
(Intercept) 9.932080e+00 0.0587240255 169.13146372 0.000000e+00
station -6.911515e-02 0.0065601988 -10.53552610 5.070594e-24
tokyo -2.846888e-05 0.0004214075 -0.06755664 9.461599%¢-01
city 6.738630e-01 0.0360500253 18.69244166 2.121536e-62
flood 2.795299e-02 ©.0142681894 1.95911280@ 5.053884e-02

----Spatial effects (residuals)---------------
Estimate

SE 0.3163393

Moran.I/max(Moran.I) 0.1372278

---=Error statistics---------ceomemmmcmcccea

stat
resid_SE 0.3542671
adjR2 0.6987400
logLik  -239.0702859
AIC 510.1405718
BIC 581.6981125

VIF values are displayed by the following command:

> e res$vif
VIF
station 1.367917
tokyo 1.225594
city 1.282930
flood 1.208189
sf4 1.167728
sfo 1.017697
sf12 1.142611
sf31 1.084662
sf33 1.032077



sf45 1.035118

sf32 1.095973
sf26 1.012234
sfé 1.059948
sf20 1.016059

While binary spatial proximity matrix is frequently used in regionalre@edistance-based

matrix is popular in ecological studies. The distance-based€E8plemented as follows:

>meig <- meigen( coords=coords ) #Moran’s eigenvectors (distance-based C)

>e res <-esf( y=y, x=x, meig=meig, fn="r2")

The distance-based ESF is often called Moran eigenvector mapd{)MiE a principal coordinate
neighborhood matrix (PCNM) (see Legendre and Legendre, 2012).

A major disadvantage of ESF is the computational cost. To overtioendimitation
Murakami and Griffith (2019a) proposed a fast ESF, which is implemaste

> meig_f <- meigen_f( coords = coords )

>e_res <-esf(y=y,x=x, meig=meig_f, fn="all")

Here, all the eigenvectors imeig_fare used without selecting them by specifying= "all". It is

acceptable for medium to large samples).

2.2.2. Random effects ESF (RE-ESF) model

The RE-ESF model is formulated as follows:

K

Yi= Z XikBr + fuc(s) + &,  &~N(0,02), (4)

k=1

As with the classical ESF, this model is useful to estinaate infer regression coefficients in the
presence of residual spatial dependence. Unlike Egf(s;) is given by a random spatial process
approximating a Gaussian process (GP) that is frequently used for spatials prumésling in
geostatistics (see Section 2.1). In other words, the RE-ESF mateapproximate GP interpretable
in terms of the MC.

The RE-ESF model is estimated by the following stepd: (§ N) MEs are extracted; (ii)
parameters are estimated by the Type Il maximum likelihood (ML) methbé oestricted maximum

likelihood (REML) method. | recommend REML because of a theoreticalt fesidemiparametric



linear model including Eq.(4) that REML tends not to have locat@ptand stable (Reiss and Ogden,
2011).

The REML estimation is implemented by the following command:

>meig <- meigen( coords = coords) #Moran’s eigenvectors (distance-basedC)

>r res <-resf(y=y, x =X, meig=meig)

The REML is replaced with ML by specifyingethod = "ml"in theresf function. Estimation result
is displayed as below:

> r_res
Call:
resf(y = y, x = x, meig = meig)

----Coefficients----=-==-mmmmmmm e

Estimate SE t_value p_value
(Intercept) 9.9902450636 @.169898966 58.8010941 0.000000e+00
station -0.0792873434 0.009597978 -8.2608384 8.881784e-16
tokyo -0.0003707685 0.001796579 -0.2063747 8.365681e-01
city 0.6857654664 0.036926315 18.5711862 0.000000e+00
flood -0.0043678968 0.014784086 -0.2954459 7.677553e-01

-=--Variance parameter------ec-s--mecscmmmmanax

Spatial effects (residuals):
(Intercept)

random_SE 0.4336549

Moran.I/max(Moran.I) ©.1302975

----Error statistics---------------mcmeueuo—-

stat
resid_SE ©.3116842
adjR2(cond) 0.7653482
rloglLik -262.9627094
AIC 541.9254189
BIC 577.7041892

As same as ESF, station (-) and city (+) are statisticidjgificant while tokyo is not. In contrast,
unlike ESF, flood isnsignificant. Because RE-ESF tends to outperform ESF in termes e$timation
accuracy of regression coefficients and their standard errors, ti&SREesult might be more reliable.
The “Variance parameter” section summarizes estimated variance parameters. SE of the estimated
spatial processf{,-(s;)) (random_SE is greater than the residual SEeqid_SB The scaled MC
(Moran.l.max(Moran.l) is as small as ESF. Thus, strong small-scale spatatligtion is estimated.
The “Error statistics” section displays residual SE (resid_SB, the adjusted conditiondt
(adjR2(cond), the restricted log-likelihoodlpgLik), AIC, andBIC. rlogLik is replaced withoglik,

10



which is the log-likelihood, ifmethod = "ml" Note that, when REML is used, AIC and BIC are

comparable only with models with the same explanatory variables.

2.2.3. RE-ESF model for large samples

Although theresf function implementshe fast ML/REML of Murakami and Griffith
(2019b) that is available for large samples, theigen function, which performs the usual eigen-
decomposition, is computationally demanding, and not available for largiesafa.g., 10 thousand
samples)To avoid the problem, theeigen function may be replaced with theeigen_f function as

follows:

>meig_f <- meigen_f( coords = coords )

>r res2 <-resf(y=y, x=x, meig=meig_f)

While meigen took 243.79 seconds for 5,000 samptesigen_f took only 0.38 seconds (see Section
4.1 for further details). Still, th@eigen_f function store& x N eigenvector matrix(= 200 by default)

In other wordsthis function consumes a considerable amount of memaories, and noblaviaitarery
large samples such as millions of samples. To break the leattletmebesf function implements a
memory-free procedure for tRdE approximation andRE-ESF modeling (Murakami and Griffith,

2019c). The command is as follows:

>r_res3 <-besf(y=y, x =X, coords = coords)

This function implements a parallel computation by default. So, faster than the resf function. We

confirm that the besf function is available for 10 million samples. See Section 4 for further detail for

modeling large samples.

11



2.3. Spatially and non-spatially varying coefficient models

2.3.1. Varying coefficient modeling

Effects from covariates can vary depending on covariate value. For exafigtance to
railway station might have strong impact if the distance is swigle weak if the distance is large.
To capture such effect, thiesf function estimates coefficients varying with respect to the coeariat
value, which 1 call non-spatially varying coefficients (NVCs).nc =TRUE the resf function
estimates the following model considering residual spatial depen@gnpds;)) and NVCs g; x):

K

yi= Z XiBir + fuc(s) + &, Bk =bi+ f(xi),  &~N(0,02), (5)

k=1
where f(x;) is the function of the covariate; ,. The f(x;,) function is given by the natural

spline generated from the covariate. The command estimating théanddbe output are as follows:

> r_resZ2<-resf(y=y, x=x, meig=meig,nvc=TRUE)
> r_res2

----Non-spatially varying coefficients (summary)----

Coefficients:
station tokyo city flood

Min. :-0.19235  Min. :-0.001083  Min. 0.6344  Min. :-0.002225
1st Qu.:-0.18242 1st Qu.:-0.001083 1st Qu.:0.6344 1st Qu.:-0.002225
Median :-0.16061 Median :-0.001083 Median :0.6344 Median :-0.002225
Mean  :-@.15259 Mean :-0.001083 Mean :0.6344 Mean :-0.002225
3rd Qu.:-0.13782 3rd Qu.:-0.001083 3rd Qu.:0.6344 3rd Qu.:-0.002225
Max. :-0.05409  Max. :-0.001083  Max. :0.6344  Max. :-0.002225

Statistical significance:
station tokyo city flood

Not significant Q0 647 @ 647
Significant (10% level) 0 0 0 @
Significant ( 5% level) "] @ (4] (%
Significant ( 1% level) 647 @ 647 (%]

--=--Variance parameter--------c-cmmmmmmmaaan

Spatial effects (residuals):
(Intercept)

random_SE 0.4141524

Moran.I/max(Moran.I) ©.1303574

Non-spatially varying coefficients:
station tokyo city flood
random_SE 0.01004439 0 (7] 0

-===Error statistigg--=--cermemmccmmmnconaassa

stat
resid_SE 9.2969830
adjR2(cond) 0.7866274
rloglLik -241.9254246
AIC 501.8508493
BIC 542.1019659

12



By default, theresf function selects coefficient type (constant\dfC) througha BIC minimization,
which can be replaced with an AIC minimization by specifypegalty ="aic" Based on the result,
the coefficient on station is estimated non-spatially varyihileathe coefficients on tokyo, city, and
flood are estimated constant. TWariance parametesection summarizes the standard errors of the
estimated spatial processfy.(s;) ) and the NVCs, together with the scaled MC value
(Moran.l/max(Moran.l)) of fi,-(s;). Note that all the coefficients can be given by NVCs by
additionally specifyingiwvc_sel =FALSEnN theresf function.

The plot_n function is available to plot the estimated NVCs. An argumanin specifies
the number of NVC. For instancié,xnum = 1 the estimated NVC on the column of x (station) is
plotted as below. The line denotes the NVC estimates and thamg@erepresents the 95 % conficen

interval. This plot suggests that station has stronger negativetimgarby railway station areas.

> plot_n(r_res2, xnum=1)
-0.05-
-0.10-

-0.15-

Coefficients

-0.20-

0.0 2.5 5.0 7.5 100 12
station

For coefficients that are estimated constant, the constant etiare plotted together with the 95 %

confidential interval. The dotted line means zero.

> plot_n(r_res2, xnum =2)

0.0025-

00000= = = = = = = = = = = = = = = = = = .

-0.0025-

Coefficients

50 100 150
tokyo
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2.3.2. Spatially varying coefficient model

Murakami et al. (2017) and Murakami and Griffith (2019b) showed tiiEdased SVC
(M-SVC) modeling approach outperforms the geographically weighted regression (GWR) lapproac
which is a standard SVC modeling approach, in terms of coefficigimbad®n accuracy and

computational time. The SVC model is formulated as

K

Yi= z xi,k:Bl',k + fMC(Si) + & ,Bi,k = bk + fMC,k(Si)i SiNN(O,O'Z), (6)

k=1
Thek-th SVCs is defined ag; , = [constant mearb,] + [spatially varying componenfy,c . (s;)]-

Advantages of the M-SVC modeling approach relative to GWR are as follows.

(1) The M-SVC model estimates spatial scale (or the MC value) of individual SVC whereas the
classical GWR assumes a common scale across SVCs. Such coefficient-wise scale estimation was
implemented in the multiscale GWR (MGWR; e.g., Fotheringham et al., 2017).

(2) The k-th SVC can be replaced with a constant coefficient by assuming f; , = by. In other words,
our model allows for assuming SVCs on some covariates while constant coefficients on the others.
Semiparametric GWR (SGWR) employs such an assumption (Nakaya et al., 2009).

(3) This model is fast and free from memory limitation. Thus, it is available for 10 million samples
(see Murakami and Griffith, 2019c¢).

(4) Unlike GWR models, the M-SVC model is easily extended without losing its computational

efficiency as I will explain later.

For illustration, | assume SVCs on tokyo, station, city, and flood whkeceastant

coefficients on px and py (spatial coordinates). The command for48¥®modeling is as follows:

> XV <- X[, c( "tokyo", "station", "city", "flood" )] #x with spatiig varying coefficients
> xconst <- x[, c("px", "py") ] #x with constant coefficients
>meig <- meigen( coords = coords ) #Moran’s eigenvectors (distance-basedC)

>rv_res <-resf vc(y =y, X =Xv, xconst = xconst, meig = meig )

Remember that SVC models tend to suffer from multicollinearity (Véhesid Tiefelsdorf, 2005).

To address the problem, thesf_vc function selects coefficients type (constant or SVC) through a
Bayesian information criterion (BIC) minimization by default. The@e can be replaced with an
Akaike information criterion (AIC) minimization-based selection pgafying penalty = "aic"in the
resf_vc function. Alternatively, if X_sel = FALSEis added, SVCs are assumed on all the covariates
(see Section 2.3.3 for further detail about model selection).

The estimation result with tH&C-based model selection is as follows:

14



> rv_res
Call:
resf_vc(y = y, x = x, meig = meig)

----Spatially varying coefficients on x (summary)----

Coefficient estimates:
(Intercept) station tokyo city flood
Min. 1 9.155  Min. :-0.20724  Min, :-0.003905 Min. :-0.0823  Min. :-0.004508
1st Qu.:10.001 1st Qu.:-©0.1521@ 1st Qu.:-0.003905 1st Qu.: 0.5726 1st Qu.:-0.004508
Median :10.195 Median :-0.12128 Median :-0.003905 Median : 0.6953 Median :-©.004508
Mean :10.196  Mean :-0.11578 Mean :-0.003905 Mean : 0.6887 Mean :-0.004508
3rd Qu.:10.335 3rd Qu.:-0.0789@ 3rd Qu.:-0.003905 3rd Qu.: ©.8411 3rd Qu.:-0.004508

Max. :10.995  Max. : 0.04851  Max. 1-0.003905 Max. 1 1.1268 Max. :-0.004508
Statistical significance:
Intercept station tokyo city flood
Not significant L] 115 647 29 o647
Significant (10% level) (4] 64 0 12 0
Significant ( 5% level) 0 90 @ 30 (%]
Significant ( 1% level) 647 378 @ 576 @
----Constant coefficients on xconst---------------——-——-o——
Estimate SE t_value p_value
px -6.113010e-07 4.023963e-06 -0.1519152 @.8793085
py 6.084577e-06 3.963662e-06 1.5350898 ©.1253255
-=-==Variance parameters--------=cec-ccmcccmmmocccnnaaaee
Spatial variation (coefficients on x):
(Intercept) station tokyo city flood
random_SE 0.3878430 0.07940766 0 0.32763842 @

Moran.I/max(Moran.I) ©@.0886329 0.04648084 NA 0.07590154 NA

----Error statistics----------------------o -

stat
resid_SE 0.2669825
adjR2(cond) 0.8267360
rloglLik -253.2034445
AIC 534.4068890
BIC 597.0197371

The Spatially varying coefficients on x (summaiggction summarizes the estimated SVCs and their
statistical significance. Based on the result, coefficientstation and city (and intercept) are
estimated spatially varying whereas those on tokyo and floodtarets] constant. SVCs on station
are statistically significant at the 1 % level at 378 sansfies whereas SVCs on city are significant
at the same level at 576 sites. Coefficients on tokyo and flood aregndicant. The Constant
coefficientssection summarizes estimated constant coefficientsa@mst including px and py.

The Variance parametergection summarizes parameters determining map patterns of the
SVCs.“random_SHEepresents standard error of the estimated SVCs. Because coaffarietukyo

and flood are estimated constant, their standard errors are zeyoslaean.|/max(Moran.l)denotes

15



the scaled MC value of the map pattern. The values suggest ¢thaB¥€ has relatively local map
patterns. Lastly, th&rror statisticssection summarizes model errors.

The plot_s function is available to map the estimated coefficients. An aggtismum
specifies an SVC whesenum = Omeans spatially varying intercept, aatum > Omeans the column

number of x (except for intercept). Commands are as follows:

> plot_s(rv_res, xnum=0) # Spatially dependent intercept

Spatially.dependent.intercept

108

106

10.4

102

100

9.8

9.6

9.4

LY 92

> plot_s(rv_res, xnum=1) # SVCs on station (the 1st column of x)

station

0.00

-0.056

-0.10

-0.20
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To plot only statistically significant estimates, an argunpemhxspecifies the maximum p-value. For
example, Th&VCs on station that are statistically significant at the 5éllare plotted as

> plot_s(rv_res, xnum=1, pmax = 0.05)

station

0.00

T W, W

“&,{ ‘ I ‘ oo
[} hd

" . :6.? -0.15

-0.20

This result suggests that station has positive impact along majaay that though from the
southwest to the northeast of the study area. For coefficientséhedtanated constant, this function
returns the following message without plotting.

> plot_s(rv_res,xnum=2)
Note: Coefficients are not plotted because they are constant

There are some arguments to specify color coding, dot size and@aofunction is useful to quickly
check the result. For better visualization, | suggest using leafégtyisw, or other R packages, or
QGIS, ArcGIS, or other GIS software.
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2.3.3. Spatially and non-spatially varying coefficient model
Coefficients can vary both spatially and non-spatially. Given Matakami and Griffith
(2020)developed a spatially and non-spatially varying coeffici8it\(C) model which is defined as

K

Vi = 2 xi,kﬂi,k + fMC(Si) + &, ﬂi,k = b, + fMC,k(Si) + f(xi,k): EiNN(O,O'Z). (7)

k=1
This model defines thé&-th regression coefficieng;, ati-th site by [constantb,] + [SVC:
fuc k()] + INVC: f(x;,)]. They showed that this model is more stable than SVC models, asid doe
not suffer from spurious correlations among SVCs even if existing SVC models fsoiffesevere
spurious correlations. Based on the result, they recommend using W r8bdel even when the
analysis objective is estimating SVCs.

The coefficient f;, includes the following specifications:

- Constant : Bix = by

- NVC D Bik = b+ f(xip)

- SvVC  Bik = b+ fuck(si)

- SNVC D Bik = bic + fuck(si) + f(xix)

The resf_vc function specify each coefficient as follows (see also Table 2).

SVCs are assumed on x by default. If x_nvc = TRUE is added, SNVCs are assumed on x. If
x_sel = TRUE is added, SVC is included only if it improves the BIC value. Likewise, if x_nvc_sel =
TRUE (and x_nvx = TRUE) is added, NVC is included if only it improves the BIC. Alternatively,
x_sel may be specified by column numbers of x. In that case, SVCs are assumed only on the covariates
in the corresponding columns. Similarly, x_nvc_sel can be given by column numbers assuming NVCs.

Coefficients on xconst are assumed constant by default. NVCs are assumed by adding
xconst_nve = TRUE. In addition, if xconst nvc_sel = TRUE (default), NVC is included only when it
improves the BIC. If xconst nvc sel = FALSE, NVCs are assumed across the coefficients.
Alternatively, if xconst nvc_sel is given by column numbers of xconst, NVCs are assumed only on

the covariates in the corresponding columns.

Table 2: Arguments specifying the coefficients in the resf_vc function. TRUE is the default for x_sel,

x_nvc_sel, and xconst_nvc_sel whereas FALSE is the default for x_nvc and xconst_nvec.

Covariates | Coefficients Select SVC or Constant Consider NVC | Select NVC or Constant

X With SVC x_sel X_nvce x_nvc_sel

xconst Without SVC xconst_nvc xconst_nvc_sel
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Here is a code estimating the full model with coefficients type selection.

> rv_res2<-resf_vc(y=y, X=X, xconst=xconst, meig=meig, Xx_nvc=TRUE, xconstTRIJE)

>rv_res2

----Spatially and non-spatially varying coefficients on x (summary)----

Coefficient estimates:

(Intercept) station tokyo city
Min. : 9.741 Min. :-0.28352  Min. :-0.010871  Min.
1st Qu.:1@0.552 1st Qu.:-0.20892 1st Qu.:-0.009988 1st Qu.:
Median :10.699 Median :-0.17912 Median :-0.007346 Median :
Mean :10.687 Mean :-0.16907 Mean :-0.007397  Mean
3rd Qu.:10.818 3rd Qu.:-0.13567 3rd Qu.:-0.004963 3rd Qu.:
Max . :11.560  Max. : 0.02906  Max. :-0.003764  Max. :
Statistical significance:
Intercept station tokyo city flood
Not significant (7] 20 308 36 647
Significant (10% level) 0 18 86 11 Q
Significant ( 5% level) 0 56 253 36 @
Significant ( 1% level) 047 553 9 564 @
----Non-spatially varying coefficients on xconst (summary)----
Coefficient estimates:
pXx Py
Min. :-3.837e-06  Min. :5.743e-06
1st Qu.:-3.837e-06 1st Qu.:5.743e-006
Median :-3.837e-06 Median :5.743e-06
Mean :-3.837e-06 Mean :5.743e-06
3rd Qu.:-3.837e-06 3rd Qu.:5.743e-06
Max. :-3.837e-06  Max. :5.743e-06
Statistical significance:
px py
Not significant 647 647
Significant (10% level) @ @
Significant ( 5% level) @ @
Significant ( 1% level) @ @
----Variance parameters------------om oo
Spatial variation (coefficients on x):
(Intercept) station tokyo city flood
random_SE @.36862667 0.06623723 @ 0.344@9123 (%]
Moran.I/max(Moran.I) @.06370044 @.05553843 NA @.08895847 NA

Non-spatial variation (coefficients on x):

station tokyo city flood

random_SE ©.01236218 0.000844719 0

Non-spatial variation (coefficients on xconst):

px py
random_SE @ 0
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flood
Min. 1-0.002216
1st Qu.:-0.002216
Median :-0.002216
Mean :-0.002216
3rd Qu.:-0.002216
Max . :-0.002216
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stat
resid_SE @.2537544
adjR2(cond) 0.8429830
rloglik -233.7105992
AIC 499.4211984
BIC 570.9787391

The BIC minimization result estimates SNVC on station, SVC on city (and intercept), NVC on tokyo,
and constants on the others (see Variance parameters section).

Estimated coefficients on ${/C, NVC, orSNVC) are mapped using tipot_s function as
below (see Section 2.3.2). Roughly speaking, coefficients on statigests strong impact of station
along principal railway, coefficients on tokyo suggests strong influence fokyoTin the southwest
region (Tokyo is located about 30km southwest from this area), and tifieieats on city suggests
higher impact of urban area nearby major cities (there are centraliwidash yellow areas). These

results are intuitively reasonable.

> plot_s( rv_res2, xnum =

Spatially.dependent.intercept

> plot_s( rv_res2, xnum =

> plot_s(rv_res2, xnum =

station

0)
114
1.2
11.0
108
106
10.4
102
10.0
9.8
1)
1, pmax = 0.05)
station
0.00 = ’.
-
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> plot_s(rv_res2, xnum = 2)

> plot_s(rv_res2, xnum = 2, pmax = 0.05)

tokyo tokyo
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> plot_s(rv_res2, xnum = 3)
> plot_s( rv_res2, xnum = 3, pmax = 0.05)

city city
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The plot_n function is available to plot the estimated NVCs onxconst. By default, it plots the

NVC estimtes on x together with their 95 % confidence intervals asvil

> plot_n(rv_res2, xnum=1)
> plot_n( rv_res2, xnum =2)

> plot_n( rv_res2, xnum = 3)
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station tokyo city
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If xtype="xconst'is added, NVCs on xconst is plotted.

> plot_n( rv_res2, xnum = 1, xtype="xconst" )

> plot_n( rv_res2, xnum = 2, xtype="xconst" )
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2.4. Models with group effects
Two group effects are available in this package:

(i) Spatially dependent group effects. Spatial dependence among groups are modeled instead of
modeling spatial dependence among individual samples.

(i) Spatially independent group effects assuming independence across groups (usual group effects).

They are estimateit theresf andresf_vc functions. When considering (i) and (ii), thesf function
estimates the following model (no NVC is assumed here):

K

H
Vi= D 5t fuc@io) + ) ¥(Gi) e &~N©,0), ®)
k=1 h=1

where gy, 911y, > iy TEPresent group variablesiyc(gy) represents (i) the spatially
dependent group effects wheregd,,)) represents (ii) the spatially independent group effects for
theh-th group variable. Theesf_vc function can estimate the following model with (i) and (ii) (again

no NVC is assumed):
K

H
yi = Z XixBix + fuc@i0) + ) v(Gim) +&,  &~N(0,02).
k=1 h=1 (9)
Bij = bx + ch.k(gz(o))»
As examples, multilevel modeling, small area estimatiod, @anel data analysis are demonstrated

below.

2.4.1. Multilevel model

Data often has multilevel structure. For example, school acheveofi individual student
changes depending on class and school. Condominium unit price depends notwnityatributes
but also building attributedgnorance of such multilevel structure can lead erroneous inference
(typically, overestimation of statistical significance). Maitiel modeling is requiretb explicitly
consider hierarchical structure behind data and evaluate sdtistoificance appropriately (see
Snijders and Bosker, 2011).

Theresf andresf_vc functions are available for multilevel modeling. An argumergjroup
specifies the group ID used to specify (ii) the spatially independentuguga)) group effects. When
considering one group variable groupis given by a vector of group ID. When considetiihgroup
variables, it is given by a matrix with itsth column being thédn-th group IDs. Here is a code
estimating a land price model considering individual-level residuaiaspdependence and (ii)

municipality-level spatially independent group effects:
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> xgroup <- data[ ,"city_name" ] # Municipality name

>m1l res <-resf(y =y, X = X, meig = meig, Xxgroup = xgroup )

It is also possible to assume (i) group-level spatial depend&hie.assumption is suitable, for
example, when modeling condominium unit price whose spatial depenaeseeamong buildings
rather than among units. (i) Spatially dependent group effects are introdusgelcifyings_idin the
meigen or meigen_f function using a group ID. Here is a code simultaneously estim@tispatially
dependent group effects and (ii) spatially independent group effects:

> meig_g <- meigen( coords = coords, s_id =s_id)

>m2 res <-resf(y =y, X = X, meig = meig_g, Xxgroup = xgroup )

The BIC values of the two multilevel models are 535.8 and 65217 fes$eaindm?2_res$e Relative
to the without group effects model estimated in Section 2.2.2, the BI€ isamproved especially in
the first model assuming individual-level spatially dependencsatdally independent group effects
The estimates are displayed as below.

> ml_res
Call:
resf(y = y, X = X, Xxgroup = xgroup, meig = meig)

--==Coefficients-==emmemmmmccmmrmncrccn e

Estimate SE t_value p_value
(Intercept) 1@.252976269 0.213878697 47.9382772 0.0000000
station -0.095555958 0.008230725 -11.6096649 0.0000000
tokyo -0.003474515 0.002176735 -1.5962053 @.1109658
urban 0.764757108 ©.038886177 19.6665541 0.0000000
flood -0.011892280 ©.014964623 -0.7946929 0.4271042

----Variance parameter---------==c-cemmmmcna--

Spatial effects (residuals):
(Intercept)

random_SE 0.4281196

Moran.I/max(Moran.I) ©.7898730

Group effects:
xgroup

ramdom_SE @.3253219

-==-=Error statistics-----—s=re==rmrerermmrneon

stat
resid_SE @.333405
adjR2(cond) 0.731082
rloglLik -297.205044
AIC 612.410088
BIC 652.661204
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This result shows that standard erraenflom_SI of (i) the spatial effects, (ii) group effects, and
noise are 0.428, 0.325, and 0.333, respectively. Ik@ipupis ignored xgroup=NULL), the BIC
value becomes 835.0, which is worse than the presented ressilsuljgested that land price has

municipality-level variation.

The estimated (ii) group effects are displayed as follows:

> r_res$b_g

Cr1d

Estimate SE t_value
xgroup_Ami-machi 0.054442162 ©0.13119263 ©.41497880
xgroup_Bando-shi @.131628850 0.14513678 ©@.90692967
xgroup_Chikusei-shi -0.266329978 ©.13922504 -1.91294590
xgroup_Daigo-machi -0.033811902 0.20085140 -0.16834287
xgroup_Goka-machi -0.197816323 ©.19711741 -1.00354566
xgroup_Tsukuba-shi ©.533528999 0.10817352 4.93215894
xgroup_Tsukubamirai-shi -0.131326082 0.14140017 -0.92875474
xgroup_Ushiku-shi 0.294976331 0.12645680 2.33262527
xgroup_Yachiyo-machi 0.132015118 0.19394536 0.68068203
xgroup_Yuki-shi -0.055251498 ©.15485152 -0.35680307

2.4.2. Small area estimation

Small area estimation (SAEshosh and Rao, 1994) is a statistical technique estimating
parameters for small areas such as districts and municipaBy.isSuseful to obtain reliable small
area statistics from noisy data. Suppose that the rawygata thel-th small area is defined by the
mean of theN, individual sample valuesy ,, ... yy,,} in the area. SAE modelg, as follows:

o2
yi=%+e g~N (0, —>. (10)

where g; denotes noise with variance decreasing as the number of indivilpals the small area
increases. The objective of SAE is estimating the denoisadiat

To achieve this, we assume Eq.(11), which is a speciabt&sg (8) that can be estimated
by theresf function:

K

Vit = Y Xt fuc(9D) +v(9) + e Eu~N(0,07) (11)
k=1

where g, denotes small area ID and,;, is an individual-level explanatory variable. Let us
aggregate (take average) each term of Eq.(11). Then, the aggregatd/imlds Eq.(1pwith

K

9= ) xibe + fuc(g) +v(gD, (12)

k=1
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where x; . is the mean of the;; , values in theé-th area. Egs.(10) - (12) suggest that by estimating
Eq.(11) using theesf function, and calculating Eq.(L2fter that, we can estimate the denoised data
¥,. Similarly, theresf_vc function is available when estimating the denoised datavhile assuming
the S(N)VC model with group effects instead of Eq.(11). Thusrdtfeandresf_vc functions are
available for SAE.

As an example, land price level in each municipality is evaluated tfse land price data.
In this case,y;; is thei-th land price data in thieth municipality, andy; = NLZQVC’, yi; is the mean
| 4ic

price. While many municipalities include more than 10 observations snunicipalities contain only
a few observations (minimum: 2); this tendency is prominent in the aoeth SAE is useful to
estimate the municipal land price level while reducing data wiogrtin the north area.

Here is the code for the SAE, which assumes Eq.(11yfor

>meig <- meigen(coords,s_id=s_id)

>r res <-resf(y=y, x=x,meig=meig, xgroup=s_id)

>pred <- predictO(r_res, x0=x, meig0=meig, xgroup0=s_id )
>adat <- aggregate(data.frame(y, pred$pred),by=list(s_id),mean)

> adat[1:5,]

Group.1 y pred xb sf_residual xgroup
1 Ami-machi 10.218564 10.218639 10.349851 -0.18565423 0.05444216
2 Bando-shi 9.967086 9.960930 9.855077 -0.02577580 ©.13162885
3 Chikusei-shi 9.979030 9.993724 10.316444 -0.05639032 -0.26632998
4 Daigo-machi 9.614147 9.645394 9.544478 0.13472822 -0.03381190
5 Goka-machi 9.959758 10.048423 10.289023 -0.04278297 -0.19781632

Therein,s_id (municipality name) is used in theeigen function to model spatially dependent group
effects. Theresf function estimates Eq.(11). Then, twedictOfunction (see Section 2.6) evaluates
the individual-level predicted value;; = ¥X_, x;, bk + fuc(g;) + 7(g;), and theaggregate

function aggregates each term to obtain Eq.@d@tsummarizes the municipality level outputs. The

columns are as follows:

-y : Sample mean: y;
- pred : Denoised data: ¥,
- xb : Trend in the denoised data: Y,K_, xi,,,kﬁk

- sf residual : Spatially dependent group effects: fi,-(g;)

- xgroup : Spatially independent group effects: 7(g;)

Not only, pred, but also xb, sf residuals, xgroup are useful to understand tharesttehind
observations. After combiningdatwith spatial polygon®f the municipalities, the estimated y and

pred are be visualized as follows:
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> spplot(iba,c("y","pred"))

Y pred

As expected, the denoised data (pred) has larger difference witvtbatea(y) in the north area. The
other effects can be visualized as follows:

> spplot(iba,c(“xgroup”,”’sf residual”))

> spplot(iba,"xb", main = “xb”)

xgroup sf_residual 0.6 xb

10.8
04 & 106
53 10.4

10.2
0.0 eV 10.0

9.8
0.2

9.6
0.4 9.4

9.2
%8 9.0

Spatially dependent group effects (sf_residuals) are relatively smduatreas independent group
effects (xgroup) indicated large values (yellow) in two municipalitieeérsbuth-west area. They are
Tsukuba and Moriya cities. These cities are popular residergias for commuters to Tokyo, which
locates about 30 km south-west from this prefecture.

Here is a code for SAE when using S(N)VC model:

rv_res  <-resf_vc(y=y, x=X, meig=meig, xgroup=s_id, x_sel=FALSE)
pred_vc <-predictO_vc(rv_res,x0=x,meig0=meig,xgroup0=s_id)
adat_vc <-aggregate(data.frame(y, pred_vc$pred),by=list(s_id),mean)

> adat_vec[1:5,]

Group.1 y pred xb sf_residual xgroup
1 Ami-machi 10.218564 10.214928 10.309744 -0.18921742 0.09440170
2 Bando-shi 9.967086 9.953377 9.712561 0.03239573 0.20841994
3 Chikusei-shi 9.979030 9.992218 10.291589 -0.07652292 -0.22284743
4 Daigo-machi 9.614147 9.647795 9.608168 0.08122060 -0.04159323
5 Goka-machi 9.959758 10.059834 10.293884 -0.01398082 -0.22006946
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2.4.2. Longitudinal/panel data model

The resf andresf_vc functions are also available for longitudinal or panel data analysis
with/without S(N)VC (see Yu et al., 2020). To illustrate this,use a panel data of 48 US states from
1970 to 1986, which is published in thén package (Croissant and Millo, 2008). Because our
approach uses spatial coordinates by default, we added center spatialatesr(fix and py) to the
panel data. Here are the first 5 rows of the data:

> pdat <-read.csv("Produc_s.csv")

> pdat[1:5,]

state year region pcap hwy  water util pc  gsp emp unemp px py
1 ALABAMA 1970 6 15032.67 7325.80 1655.68 6051.20 35793.80 28418 1010.5 4.7 32.80667 -86.79113
2 ALABAMA 1971 6 15501.94 7525.94 1721.02 6254.98 37299.91 29375 1021.9 5.2 32.80667 -86.79113
3 ALABAMA 1972 6 15972.41 7765.42 1764.75 6442.23 38670.30 31303 1072.3 4.7 32.80667 -86.79113
4 ALABAMA 1973 6 16406.26 7907.66 1742.41 6756.19 40084.01 33430 1135.5 3.9 32.80667 -86.79113
5 ALABAMA 1974 6 16762.67 8025.52 1734.85 7002.29 42057.31 33749 1169.8 5.5 32.80667 -86.79113

Following an example in theim package, logged public capital stock (pcap) is used as explained
variables. The explained variables are logged private capital @oxKogged labor input measured

by the employment in non-agricultural payrolls (emp), and unemploymer(uremp).

y <- log(pdat$gsp)
X <- data.frame(log_pcap = log(pdat$pcap), log_pc = log(pdat$pc),
log_emp = log(pdat$emp), unemp = pdat$unemp)

Because panel data has multiple observations for each individuak(ge), individual ID is needed
to model individual-level spatial dependence. Here is the codecéng MESby individuals to model
spatial dependence by individuals:

s id <- pdat$state

coords<- pdat[,c("px", "py")]

pmeig < -meigen(coords, s_id=s_id )# Moran eigenvectors by states

Currently, the following panel models can be implemented:
- Pooling model (no random effects)

- One-way (individual) random effects model

- One-way (time) random effects model

- Two-way (individual and time) random effects model
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In all the models, residual spatial dependence is considered whegrthesiesf function while residual
spatial dependence and S(N)VC are considered when usingsfthe: function.

Here is the code implementing these models usinggtfiéucntion:

pmodO0 <-resf(y=y,x=x,meig=pmeig) # pooling model
xgroup<-pdat$state # individual ID

pmodl <-resf(y=y,x=X,meig=pmeig,xgroup=xgroup) # one-way (individual) model
Xgroup<-pdat$year # time ID

pmod2 <-resf(y=y,x=X,meig=pmeig,xgroup=xgroup) # one-way (time) model
xgroup<-pdat[,c("state","year")] # individual ID and time ID
pmod3 <-resf(y=y,x=x,meig=pmeig,xgroup=xgroup) # two-way model

Among these, BIC value of the two-way model is the smallest.eBtimation result is as follows.

> pmod3
Call:
resf(y = y, X = x, xgroup = xgroup, meig = pmeig)

----Coefficients------—cmmmmmmmmm o

Estimate SE t_value p_value
(Intercept) 2.206244035 0.160980415 14.0777624 0.000000e+00
log_pcap 0.006849663 0.023709501 ©.2888995 7.727381e-01

log_pc ©.295108887 0.022270070 13.2513679 0.000000e+00
log_emp 0.729258595 0.024715495 29.5061293 0.000000e+00
unemp -0.004394629 0.001066807 -4.1194237 4.220743e-05

----Variance parameter-----------c-mmceeana——-

Spatial effects (residuals):
(Intercept)

random_SE 0.1568176

Moran.I/max(Moran.1) ©.3800088

Group effects:
state year

ramdom_SE ©.09909044 ©.02439177

----Error statistics-------------c-mm—-

stat
resid_SE 3.382292e-02
adjR2(cond) 9.988947e-01
rloglLik 1.406802e+03
AIC -2.793605e+03
BIC -2.746561e+@3
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random_SEvalues show large residual spatial dependent variation (0.157) rdtativeup effects
(state:0.099; year:0.024) and the error variation (0.034). The estimated iatlasiditime effects are
extracted as

> s_g<- pmod3$b_g[[1]]
> 1§..g[1¥5.]
Estimate SE t_value

state_ALABAMA -0.05967592 ©.01357188 -4.397028
state_ARIZONA -0.05060541 0.01616867 -3.129844
state_ARKANSAS  -0.05858735 0.01403461 -4.174490
state_CALIFORNIA @.21739354 0.01979789 10.980644
state_COLORADO -0.13503462 0.01286928 -10.492791
> t_g<- pmod3$b_g[[2]1]
> Eag[1i5.]

Estimate SE t_value
year_1970 -0.006188420 ©.011143668 -0.5553306
year_1971 0.002712708 0.010608721 @.2557054
year_1972 ©.013174179 0.010443949 1.2614175
year_1973 0.021912546 0.010296965 2.1280588
year_1974 -0.009897092 0.009689259 -1.0214498

For validation, our two-way model estimates are compared witthar two-way model
estimated using thelm package. Unlike our model, it ignores residual spatial depend€&heglm
coefficient estimates as shown below. The results are siwvitlaour result.

Coefficients:

Estimate Std. Error z-value Pr(zlzl)
(Intercept) 2.3634993 0.1389056 17.0151 < 2.2e-16 ***
log(pcap) ©.0178529 ©.0233207 0.7655 0.444

log(pc) 0.2655895 0.0209824 12.6577 < 2.2e-16 ***
log(emp) 0.7448989 0.0241144 30.8902 < 2.2e-16 ***
unemp -0.0045755 0.0010179 -4.4952 6.95e-06 ***

Below, estimated individual (state) and time (year) effects@argared. The result suggests that time
effects estimates are quite similar whereas individual sfegetless similar. This is because our model

decomposes latent map pattern into spatially dependent and indep@edantividual) effects.

pmO <- pIm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
data = pdat, effect="twoways",model="random")
s_g_plm <- ranef(pmO,"individual")

t g_plm <-ranef(pmO0,"time")
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plot(s_g_plm,s_g[,1],xlab="pIm",ylab="resf"); abline(0,1,col="red")# IndividUé s
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2.5. Spatially filtered unconditional quantile regression model

While the usual (conditional) quantile regression (CQR) estimates thenicdwéx« on the
7-th “conditional” quantile of vy, g:(y[x<), the unconditional quantile regression (UQR; Firpo et al.,
2009) estimates the influence>afon the “unconditional” quantile of y, g:(y).

Suppose that andxk represent land price and accessibility respectively. UQRatds the
influence of accessibility on land price by quantile; it is interfnletand useful for e.g. hedonic land
price analysisBy contrast, this interpretation does not hold for CQR because it estithatinfluence
of accessibility on conditional land prices (land price conditi@maéxplanatory variablesHigher
conditional land price does not mean higher land price, but ratimeaihs overprice relative to the
price expected by the explanatory variables. Thus, CQR has diffioulty interpretation in some
cases including hedonic land price modeling.

Murakami and Seya (2019) developed the spatial filter UQR (SF-UQR). THéQ&F

model is formulated as follows:

K

400 = ) Xybr + fiuce () + Eirs E2~N(0,02), (13)
k=1

where q.(y;) is unconditional quantile for thieth explained variableyi. The SF-UQR is a UQR
considering spatial dependence. Té&f_qr function estimates the SF-UQR model. The command is

as follows:

> qr_res <-resf_gr(y =Y, x =X, meig = meig, boot = TRUE )

If boot = TRUE a semiparametric bootstrapping is performed to estimate the stamdasdof the
regression coefficients, and they are not calculateddt = FALSE By default, this function returns

the coefficientsp, , estimated at the 0.1, 0.2, ..., 0.9 quantiles. An argumespecifies the quantile.

For example, coefficients at the 0.22 quantile are estimatsgddwifyingtau = 0.22
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Here is the summary of the estimation result:

> gr_res
Call:
resf_qr(y = y, X = x, meig = meig, boot = TRUE)

----Coefficients---------cmmmmmmcm oo
tau=0.1 tau=0.2 tau=0.3 tau=0.4 tau=0.5 tau=0.6
(Intercept) 8.111826124 8.771653162 9.3782350972 9.964101377 10.1653773735 10.455828615
station -0.100777459 -0.105972672 -0.0885991067 -0.083971480 -0.0783966978 -0.071351950
tokyo 0.004158935 0.001876297 0.0009791778 -0.001315195 -0.0008725778 -0.001530231
urban 1.515237376 1.425806626 ©.9881122110 0.691648977 0.5304508318 @.385279294
flood 0.014765660 0.027267700 0.0023210183 0.012634788 -0.0023559381 @.005573913
tau=0.7 tau=0.8 tau=0.9
(Intercept) 10.783150568 11.049070814 11.749703977
station -0.074261737 -0.075319498 -0.099295897
tokyo -0.002570480 -0.002997311 -0.006852662
urban 0.270011975 ©0.233725064 @.269818223
flood 0.001539262 -0.044487902 -0.127362823

----Spatial effects (residuals)---------------
tau=0.1 tou=0.2 tau=0.3 tau=0.4 tau=0.5 tau=0.6
spcomp_SE 0.4838237 0.4714741 0.5021188 0.4907561 0.4467881 0.4929422
spcomp_Moran.I/max(Moran.I) ©.1919850 ©.1598558 0.1526074 @.1569209 ©.1395674 0.1203970
tau=0.7 tau=0.8 tau=0.9
spcomp_SE 0.5261663 0.5820577 0.91940364
spcomp_Moran.I/max(Moran.I) 0.1043638 ©.1138635 0.06294751

-==-Error statistics-------c-ccccocmmcnncnaaa-
tau=0.1 tau=0.2 tau=0.3 tau=0.4 tau=0.5 tau=0.6 tau=0.7
resid_SE 0.9316461 0.6781962 ©.5847565 0.4914106 0.4869947 0.4709563 0.5036244
quasi_adjR2(cond) ©0.4383783 ©.5799752 0.5738571 0.6123778 @.5561950 0.5540619 0.5188972
tau=0.8 tau=0.9
resid_SE 0.6027896 1.0025656
guasi_adiR2(cond) 0.4649889 0.4267469

The estimated coefficients can be visualized usingpibe gr function. Hereis the

command to plot the estimated coefficients for the first five exgptay variables:

> plot_qr(gr_res, 1)
> plot_qr( gr_res, 2)
> plot_qgr( gr_res, 3)
> plot_qr( gr_res, 4)
>plot_qr(qr_res, 5)

The numbers 1 to 5 specify which regression coefficients are plottedeitept). The resulting plots

are as below. The solid lines are estimated coefficients argtdlyeareas are their 95% confidence

intervals.
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The standard errors for the residual spatial dependent component (spcohimpe&th quantile are
plotted by assigningar = "s"andpnum = 1 while the scaled ME (Moran.l/max(Moran.l)), which is
a measure of spatial scale by quantile (spcomp_Moran.l/max(Morae.p)adted by assigningar =

"s" andpnum = 2 The commands and the outcomes are as follows:

> plot( gr_res, par="s",1)
> plot( gr_res, par="s",2)
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Based on this result, there is larger local spatially dependenti@asian higher price range.
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2.6. Spatial prediction

This package provides functions for ESF/RE-ESF-based spatial interpatationizing
the expected error variance (just like kriging) (see Murakami and Gri#@h9c). The Nystrom
extension, which is an eigen-approximation technique is used for theted@gror minimization.

Note that RE-ESF approximates Gaussian process (GP) or the kriging mbidél,has
actively been used for spatial prediction, and ESF is a spexgal (Murakami and Griffith, 2015)
Because ESF and RE-ESF perform approximations, their spatial prediciiginisbe less accurate
relative to kriging. Instead, they are faster and available for vegg Eamples (see Section 4).

In this tutorial, the land price data is randomly divided into two, @melis considered as

observationsdd) and another is considered as data at unobservednsites (

> samp <-sample( length(atd, 1] ), 300 )# Random sampling

> dd <- data[ samp, ] # Data at observed sites

> coords <-dd[, 1:2]

>y <-dd[,3]

> X <-dd[,4:7]

> xconst <-dd[,1:2]

>md <- data[-samp, ] # Data at unobserved sites
> coords0 <-md[, 1:2]

>y0 <-md[,3]

> x0 <-md[,4:7 ]

> xconst0 <-md[,1:2]

Before predictionME must be evaluated for both the observed and unobservednsitgen or

meigen_f is available for the former whilmeigen0 is available for the latter:

> meig <- meigen( coords = coords)

> meig0 <- meigen0( meig = meig, coords0 = coords0 )

For ESF-based spatial interpolation, the ESF model is estiraateefore. Then, data at unobserved

sites are predicted using theedictO function. The command is as follows:

>mod_e <-esf(y =y, X=X, meig = meig ) ## Model estiomati

> pred_e <-predictO( mod = mod_e, x0 = x0, meig0 = meig0 ) ## Spatiattwadi
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> pred_e$pred[1:6,]

pred xb sf_residual
1 10.66889 10.386075 ©.2828139
2 10.96157 10.641180 ©0.3203926
4 10.25746 9.943871 ©0.3135856
5 10.21886 10.389411 -0.1705480
6 10.25080 10.437851 -0.1870549
7 10.39713 10.530782 -0.1336485

As shown above, predicted valugse(d), trend &b), and residual spatial proce&$_residual) at

unobserved sites are returned. RE-ESF-based spatial interpolation is implemented in the same way:

> mod_re <-resf(y =y, x =X, meig = meig ) ## Model estimation

> pred_re <-predictO( mod = mod_re, X0 = x0, meig0=meig0 ) ## Spatial pradict

> pred_re$pred[1:6,]
pred xb sf_residual

1 10.63098 10.410279 0.2207022
2 10.94095 10.679910 ©@.2610403
4 10.21270 9.959378 0.2533217
5 10.24305 10.363861 -0.1208115
6 10.28607 10.418273 -0.1322042
7 10.41421 10.514778 -0.1005692

If X0 is not provided, theredict0 function interpolates only the spatial component.

> sf_re <-predict@( mod = mod_re, meig@=meigd )

Note: Trend term (xb) is ignored because x@ is missing
> sf_reS$pred[1:6,]
pred sf_residual

NA  0.2207022

NA  0.2610403

NA  ©.2533217

NA -0.1208115

NA -0.1322042

NA -0.1005692

VA WN

The S(N)VC model is also available for spatial prediction usingtédict0_vc function.
When using the SNVC model, which assumes SNVC (= SVC + NVC) snw¢=TRUB and NVC
on xconst xconst_nvc=TRUJ;, the command is as follows:

>rv_res <-resf vc(y=y, X=X, xconst = xconst, meig = meigyc=TRUE, xconst_nvc=TRUE )

> pred_vc <- predict0_vc( mod = rv_res, x0 = x0, xconst0 = xconst0, metghgo )

The predicted values are returned as

> pred_vc$pred[1:6,]

pred xb

@0.5249721
@.966584
0.120867
9.973893
9.985101
Q.

10.306944

10.524921
10.966584
10.120866
9.973894
9.985101
10.306945

sf_residual
3.114089e-07
3.020101e-07
3.094337e-07
-3.511139e-07
-3.538379e-07
-3.514422e-07
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This function returns the estimated S(N)VCxoas follows:

> pred_vc$b_vc[1:6,]

(Intercept) station tokyo urban flood
10.85225 -0.1570148 -0.01077498 0.8506938 -0.01178667
10.85225 -0.2033687 -0.01077498 0.8690882 -0.01178667
10.85225 -0.1999714 -0.01077498 0.8642268 -0.01178667
10.85225 -0.1959116 -0.01050526 ©.6350893 -0.01178667
10.85225 -0.2305232 -0.01050526 0.6533033 -0.01178667
10.85225 -0.2326697 -0.01050526 0.6941207 -0.01178667

U~ WN

It also returns the estimated NVC xuonst as follows:

> pred_vc$c_vc[1:6,]

px py
-5.898711e-07 1.0881596e-05
-5.898711e-07 1.081596e-05
-5.898711e-07 1.081596e-05
-5.898711e-07 1.881596e-05
-5.898711e-07 1.081596e-05
-5.898711e-07 1.081596e-05

oUW

The standard errorg-values, andp-values of the SNVCs are returned lpyed vc$bse vc
pred_vc$t veandpred_vc$p_verespectively.

When estimating SNVC or NVC at missing sjte@ andxconst0 must be provided. By
contrast, when estimating only SVC, theedict0_vcfunction returns the SVC estimates everaif

and/orxconst0 are missing. Here is an example:

>rv_res2 <-resf vc(y =y, X=X, Xxconst = xconst, meig = feig

> pred_vc2 <- predict@_vc( mod = rv_res2, meigd = meig@ )

Note: y is not predicted because x@ and/or xconst@ is missing

> pred_vc2%pred[1:6,]

NULL

> pred_vc2$b_vc[1:6,]

(Intercept) station tokyo urban flood
10.40836 -0.0849332 -0.001349617 ©.7276704 -0.001844808
10.45348 -0.0849332 -0.001349617 0.7276704 -0.001844808
10.44798 -0.0849332 -0.001349617 ©.7276704 -0.001844808
10.03293 -0.0849332 -0.001349617 0.7276704 -0.001844808
10.03350 -0.0849332 -0.001349617 0.7276704 -0.001844808

6 10.06296 -0.0849332 -0.001349617 ©.7276704 -0.001844808

> pred_vc2%$c_vc[1:6,]

NULL

vl wrN e
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3. Low rank spatial econometric models

While Section 2 explains distance-based ESF, RE-ESF, and othial sggression models
approximatinga GP (i.e., a geostatistical model), this section explains low spatial econometric
models, approximating spatial econometric models (see Murakami20H8).

Section 3.1 explains how to specify spatial connectivity matrig, $ection 3.2 and 3.3
explains the low rank spatial lag model (LSLM) and low rank spati@r enodel (LSEM),

respectively.

3.1. Spatial weight matrix and their eigenvectors

Eigenvectors and eigenvalues of a spatial connectivity matrixhvig@alled spatial weight
matrix or theW matrix in spatial econometrics, are used for the low rank modelingwé&tgen
function is available for the eigen-decomposition.

If a shape polygon object is provided, this function returns eigenpairs of adg@alency-

basedW (1 if two polygons share edge, and 0 otherwise). Here is a sample cod

require( spdep )

require( rgdal )

data( boston )

poly <- readOGR( system.file( "shapes/boston_tracts.shp”, packag®atas )[ 1])
weigl  <- weigen( poly) #### Rook adjacency-based W

If spatial coordinates are providegdeigen returns eigenpairs of thenearest neighbor-bas&d by

default. The commends are as follows:

cords <- boston.c[ ,c( "LAT", "LON")]

weig2  <- weigen( coords) #### 4-nearest neighbor-bAsed

weig3  <- weigen( coords, k=8) #### 8-nearest-neighbor-h&sed

Alternatively, theW matrix can be defined based on the Delaunay triangulation. Inathés thei(

j)-th element ofW is 1 if the sample sitesandj share edge that is generated by the Delaunay

triangulation, and O otherwise. This typeVifis used iftype = “tri” is specified:

weig4d  <- weigen( coords, type = "tri") ###H# Delaunay triangulatesedwW
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An user-specified W matrix is also available if the matrix@vided instead of a shape polygon object

or spatial coordinates. A sample code is follows:

dmat <- as.matrix( rist( coords))
cmat <- exp(-dmat) #HH User specifid
diag(cmat)<- 0

weigs  <- weigen( cmat)

Note thatweigen internally replaces all the diagonalsWifwith zeros.

For a binary connectivity-bas&d (weigltoweig4), 4 /A1 > 0.25 is a standard threshold for
the eigenvector selection; this criterion attempts to consider p@&kb of the variations explaining
positive spatial dependence (Griffith and Chun, 2014). This threshoksusnad by default. This
threshold value can be changed. For exaniplé; > 0.00 is implemented as follows:

weigb6  <- weigen( cmat = cmat, threshold = 0)

Outputs from theveigen function is used to estimate low rank spatial econometric models.

3.2. Spatial regression models

3.2.1. Low rank spatial lag model

The low rank spatial lag model (LSLM) approximates the following ode

yi=Potz+¢ g~N(0,02),
K K (14)
zZ;=p Z w; ;jzj + z X kB + U, u;~N(0,7%)
%] k=1

where z; is defined by the classical spatial lag model (SLM) with pararsetand 2. Just like the
original SLM, p takes a value between 1 andnl(< 0).p > 0 in the presence of positive spatial
dependence whereas 0 in the presence of negative spatial dependerfcaepresents the variance
of the SLM-based spatial process (i.&.) while 2 represents the variance of independent data noise.

The main differences between LSLM and SLM are as follows: (i) LStdvsiders
independent data noise while SLM ignores it; (i) LSLM is fastem BlaM. Due to the difference (i),
the parameters estimated from LSLM and SisMifferent.

The LSLM is estimated using thgm function. Here is a sample code:
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>y <- data[ ,"In_price" ]

> X <- data[ ,c( "station", "tokyo", "city", "flood ") ]

py") 1]
<- weigen( coords )

> coords <- data[ ,c( "px", "
> weig

>|slm_res<- Isim(y =y, X = X, weig = weig, boot = TRUE )

If boot = TRUE a nonparametric bootstrapping is performed to estimate the 95 % confittencals
(Cls) for thet? andp parameters, and the direct and indirect effects, which weexyplain later.
Default is FALSE. Here is the output:

> lslm_res
Call:
1slm(y = y, x = x, weig = weig, boot = TRUE)

A o T o =

Estimate SE
(Intercept) 9.8435163399 0.0655499769

t_value p_value
150.1681131 ©.0000000

station -0.0569754332 0.0060471688 -9.4218361 0.0000000
tokyo -0.0009341669 ©.0003728492 -2.5054820 0.0124876
urban @.6054556087 0.0255012538 23.7421898 0.0000000
flood -0.0047713534 0.0122339503 -0.3900092 0.6966657

----Spatial effects (lag)

Estimates C(I_lower CI_upper
sp_rho ©.5627116 ©.4313565 0.6458234
sp_SE ©.4112699 ©.3412107 ©.4806375

----Effects estimates

Direct:

Estimates CI_lower CI_upper p_value
station -0.064120881 -0.07980270 -0.0510171911 0.00
tokyo -©.001051323 -0.00193867 -0.0001665993 0.02
urban 0.681387479 0.62578040 0.7350228970 0.00
flood -@.005369742 -0.03186009 0.0226252017 0.60
Indirect:

Estimates CI_lower CI_upper p_value
station -©0.0393872899 -0.051345711 -2.619757e-02 0.00
tokyo -0.0006457924 -0.001361761 -8.830294e-05 0.02
urban ©.4185533001 ©.279064265 5.202204e-01 0.00
flood -©.0032984511 -0.017574688 1.236365e-02 0.60

----Error statistics

stat
resid_SE 0.2450407
adjR2(cond) 0.8549657
rloglLik -240.4682106
AIC 496.9364212
BIC 532.7151916
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{sp_rhq sp_SE are estimated{p, 72} values. The standard error of the spatially dependent variation
(sp_SE= 0.411) was greater than the residual standard error of 0.24% Madue of 0.562 suggests
moderateto-large scale spatial variation.

3.2.2. Low rank spatial error model

The low rank spatial error model (LSEM) approximates the following model:

Yi=PBot+z +e, g~N(0,0?),
K K
(15)
Zi = Z xi'kﬂk + ei, ei = /’lz Wi’jej + ui, ui"‘"N(O, TZ),
k=1 i#j

z; is defined by the classical spatial error model (SEM) with patersi and 72. A takes a positive
value in the presence of positive spatial dependence whkil@ in the presence of negative spatial
dependencer? represents the variance of the residual spatial dependence. ThedsHFdtion is
faster than the (maximum likelihood) estimation of the origindSBesides, unlike SEM, LSEM
considers independent data noise, which corresponds to the nugget effestatigies.

The estimated coefficients are summarized as below:

> lsem_res
Call:
lsem(y = y, x = X, weig = weig)

----Coefficients------mmmmmm e

Estimate SE t_value p_value
(Intercept) 10.013404446 0.0850568656 117.7259987 ©.00000000
station -9.079830521 0.0082862405 -9.6341062 ©.00000000
tokyo -0.001391626 0.0007416046 -1.8765064 ©.06106739
urban 0.651196700 0.0310669822 20.9610543 0.00000000
flood -0.009259069 0.0147235724 -0.6288602 ©.52967818

----Spatial effects (residuals)---------------
Estimates

sp_lambda ©.9125101

sp_SE 0.2352453

renn ERPOR ISEat1SELES srrrmrnnm e e nnnn s e

stat
resid_SE 0.2477682
adjR2(cond) 0.8517190@
rloglLik -234.5039323
AIC 485.0078645
BIC 520.7866349

{sp_lambdasp_SB are estimated{4,7?} values. The standard error of the spatially dependent
variation 6p_SE= 0.235) was slightly smaller than the residual standard erbP48. Thed value
of 0.852 suggests large scale spatial variation.
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4. Tips for modeling large samples

4.1. Eigen-decomposition

Unfortunately, eigen-decomposition is known to be slow for large sanadlehe methods
explained in Section 2 will be slow for large samples. To overcibmdimitation, themeigen_f
function is available fofast eigen-approximation. By default, this function approximates 200 MEs.
The computation is further accelerated by reducing number of eigenvelttissachieved by
specifyingenumby a number smaller than 200. For example, ¢ase with 5000 samples aeadum

= 200(default),100 and50, computational times are as follows:

> coords_test <- cbind( rnorm( 5000 ), rnorm( 5000 ) )

> system.time( meig_test <- meigen( coords = coords_test ) )
user  system elapsed

242.28 1.44 243.79

————————————————— CP time (with approximationy)

> system.time( meig_test200 <- meigen_f( coords = coords_test )
user  system elapsed
0.37 0.00 0.38

> system.time( meig_test100 <- meigen_f( coords = coords_test, enum) ¥ 100
user  system elapsed
0.15 0.00 0.16

> system.time( meig_test50 <- meigen_f( coords = coords_test, enun)= 50
user  system elapsed
0.08 0.00 0.08

Figure 3 maps the calculated 1st, 10th, and 100th eigenvectsisjtortant to note that, while exact
and approximated eigenvectors can have different map patterns, theyteweagimilar spatial scales
In other words, in both cases, ME describes the largest-scale map pattern, 10th ME descrées th

10th largest-scale map pattern, and 100th ME describes the 10Qetstiacale patterns.
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1st (meigen_f) 10threigen_f) 100thr@eigen_f)
Figure 3: The 1st, 10th, and 100th MEs extracted frarigen andmeigen_f

On the other hand, theeigen function impalements the ARPACK routine for fast eigen-
decomposition by default. The computational times with 5,000 saraptienum = 20default),100,

and50 are as follows:

> system.time( weig_test200 <- weigen( coords_test )
user  system elapsed
9.30 0.07 9.39

> system.time( weig_test100 <- weigen( coords_test, enum =100))
user  system elapsed
3.05 0.04 3.10

> system.time( weig_test50 <- weigen( coords_test, enum =50))
user  system elapsed
1.19 0.03 1.22
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4.72. Parameter estimation

The basic ESF model is estimated computationally efficiently tingén = "all" in theesf
function. This setting is acceptable for large samples (Mura&athiGriffith, 2019.

The resf andresf_vc functions estimate all the models explained in Section 2 wsiiagt
estimation algorithm developed in Murakami and Griffith (2019b). Ttines; are available for large
samples (e.g., 100,000 samples).

The SF-UQR model requires a bootstrapping to estimate confidengavals for the
coefficients. However, computational cost for the iteration doesep#ndlent on sample size. So, it

is implemented computationally efficiently even for large samples.

4.3. For very large samples (e.g., millions of samples)

A computational limitation is the memory consumptiomafigen andmeigen_f to store
the MEs. Because of the limitation, thesf andresf_vc functions are not available for very large
samples (e.g., millions of samples). To overcome this limitatioebesf and besf_vc functions
perform the same calculation as resf and resf_vc but without savimghtiie MEs in the memory.
Besides, for fast computation, these functions perform a parallel mstdahtion (see Murakami and
Griffith, 2019c).

Here is a sample example implementing a spatial regression osddg thebesf function

and a SVC model using thesf_vc function:

data <- read.csv("Data.csv")

coords <-data[,c("px", "py")]

y <- data[ ,"In_price" ]

X <- data[ ,c( "station", "tokyo", "urban", "flood" ) ]
modl  <- besf(y=y, x=X, coords=coords)

mod2  <- besf vc(y=y, X=X, coords=coords)

| have evaluated the computational time fd8\&C modeling using théesf_vc function
using a Mac Pro (3.5 GHz, 12-Core Intel Xeon E5 processor with 64 GB membeypesf vc
function took only 8.0 minutes to estimate the 7 SVCs from 1 milliorpkesml also confirmed that
besf_vc took 70.3 minutes to estimate the same model from 10 million sarbpbf andbesf_vc are

suitable for very large data analysis.
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b. Future updates

Spatiotemporal models, non-Gaussian models, and extensions of the lowpetiah

econometric models will be implemented in the future.
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