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1. Introduction 

This package provides functions estimating Moran eigenvector-based scalable spatial 

additive mixed models and related spatial models. In concrete, this package implements standard 

spatial regression models and extensions, including spatially and non-spatially varying coefficient 

model, models with group effects, spatial unconditional quantile regression model, and low rank 

spatial econometric models. All these models are estimated computationally efficiently (see Table 1). 

These models are extensions of the random effects eigenvector spatial filtering (RE-ESF) 

approach (Murakami and Griffith, 2015). Just like the classical ESF (see Griffith, 2003; Tiefelsdorf 

and Griffith, 2007), this approach efficiently eliminates residual spatial dependence using a spatial 

process that is interpretable in terms of the Moran coefficient (Moran I statistic). 

 

Table 1: Summary of functions. The first six implements low rank GPs that are interpretable in terms 

of the Moran coefficient, and the last two are low rank spatial econometric models. 

Function 

Spatial 
dependence 

Varying 
coefficients Group  

effects 

Quantile  
regress. 
(uncond.) 

Computation Function  
for ME 
extraction 

Function 
for spatial 
prediction Residual 

Explained 
 variable 

Spatial 
Non-
spatial 

Fast 
Memory 
free 

esf                

meigen 
or 
meigen_f 

predict0 

resf                 predict0 

resf_vc                 predict0_vc 

resf_qr                   

besf                  predict0 

besf_vc                   predict0_vc 

lsm               
weigen 

 

lsem                   
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 This vignette illustrates how to use functions in this package through land price analyses in 

the Ibaraki prefecture, Japan. Explained variables are logged land prices in 2015 (JPY/m2; sample 

size: 647; Figure 1). Explanatory variables are as listed in Table 2. All these variables are downloaded 

from the National Land Numerical Information download service (http://nlftp.mlit.go.jp/ksj-

e/index.html). 

Here is the first 5 rows in the dataset. “px” and “py” are spatial coordinates: 

 

 

 

 

 

Figure 1. Officially assessed residential land prices in 2015 (right) in the Ibaraki prefecture/ 

 

 

Table 2. Explanatory variables 

Variables Description 

tokyo Logarithm of the distance from the nearest railway station to Tokyo Station [km] 

station Logarithm of the distance to the nearest railway station [km] 

flood Anticipated inundation depth [m] 

urban 1 if the site is in an urban promotion land and 0 otherwise 

 

 

http://nlftp.mlit.go.jp/ksj-e/index.html
http://nlftp.mlit.go.jp/ksj-e/index.html
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2. Moran eigenvector-based spatial regression models 

This package assumes the following analysis steps: (a) define Moran eigenvectors; (b) 

spatial regression using these eigenvectors. Hereafter, Section 2.1 explains (a) whereas Sections 2.2 

to 2.5 explain (b). 

 

2.1. Moran eigenvectors 

2.2.1. What are Moran eigenvectors? 

Moran eigenvectors (MEs) {܍ଵ, … , {௅܍  are the eigenvectors extracted from a doubly-

centered spatial proximity matrix where ܍ଵ is the ME corresponding to the largest eigenvalue �ଵ, ܍ଶ is the ME corresponding to the second largest eigenvalue �ଶ, and so forth. Figure 2 plots the 1st, 

5th, and 25th eigenvectors. As illustrated in this figure, MEs corresponding to larger eigenvalue 

describes larger-scale map pattern. 

 

 

 
Figure 2. Examples of the MEs (e1, e10, e25) and their weighted sum (܎ெ�), which is used in regression 

analysis. Here, only three eigenvectors are considered just for illustration; all the MEs corresponding 

to positive eigenvalues are considered in this package by to accurately model positive spatial 

dependence. 

 

e1 e10 e25 fMC = 1.2e1 + e10 - 0.4e25

e1 e10 e25 fMC = 1.2e1 + e10 - 0.4e25
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MEs are interpretable in terms of the Moran coefficient (MC; or Moran’s I), which is a 

spatial dependence diagnostic statistic indicating larger positive value in the presence of stronger 

positive spatial dependence. Specifically, the following relationship holds: ܯ�[܍௟] ∝ �௟ , (1) 

where ∝ represents proportion. Eq.(1) suggests that ܍ଵ, which had the largest-scale map pattern, 

achieves the largest MC value, ܍ଶ, which had the second largest-scale pattern, achieves the second 

largest MC value, and so on. Thus, MEs furnish distinct map pattern descriptions of latent spatial 

dependence, with each level being indexed by the MC value (Griffith, 2003).  

In this package, MEs corresponding to positive eigenvalue are used to model positively 

dependent spatial process behind observations. Suppose that ݁௟ሺ�௜ሻ is the i-th element of the l-th 

eigenvector ܍௟, or the value of the eigenvector at site �௜. Then, the following model is used to model 

the spatial process at site �௜: 
ெ݂�ሺ�௜ሻ = ∑ ݁௟ሺ�௜ሻߛ௟௅

௟=ଵ , (2) 

where L is the number of positive eigenvalue and ߛ௟ is a coefficient. Eq.(2) models the spatial process 

by estimating the coefficients. See Figure 2 for examples. ESF defines ߛ௟  by a fixed coefficient 

whereas RE-ESF defines ߛ௟ by a random coefficient. I prefer the latter because of the following 

reasons: (i) the random specification tends to be more accurate (e.g., Donegan et al., 2020); (ii) in the 

random case, ݂ெ�ሺ�௜ሻ yields an approximate Gaussian process, which is widely accepted for spatial 

process modeling in geostatistics (Murakami and Griffith, 2015). Because of these reasons, most 

functions in this package models ெ݂�ሺ�௜ሻ while assuming ߛ௟ as random coefficients. 

 

2.2.2. Specification of Moran eigenvectors 

To model positively dependent spatial process, the meigen function extracts the MEs 

corresponding to positive eigenvalue using the following command: 

 

> coords <- data[ ,c( "px", "py" ) ] 

> meig <- meigen( coords = coords ) 

 

meig includes extracted eigenvectors and eigenvalues; they are extracted from a matrix that doubly 

centers a spatial proximity matrix C. The (i, j)-th element of C is given by exp(–di,j/r), where di,j is the 

Euclidean distance between sites i and j, and r is the longest distance in the minimum spanning tree 

covering the sample sites (Dray et al., 2006; Murakami and Griffith, 2015). The exponential kernel 

can be substituted by Gaussian kernel (model = “gau”) or spherical kernel (model = “sph”). 

 It is often the case that there are multiple samples in the same site. For example, spatial 

coordinates of condominium units are usually given by buildings. Panel data has multiple samples in 
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the same site/unit with different time points. For such data, an argument s_id in the meigen (or 

meigen_f) function is useful to define MEs by not individual samples but groups. For instance, if s_id 

is given by ID of condominiums buildings, MEs are defined by buildings based on the proximity 

among buildings. If spatial coordinates of samples within the same group are not identical, the 

geometric center of the group is used to extract the MEs. 

 The distance-based C can be replaced with other spatial connectivity matrix. For example, 

here is a code to prepare the 4-nearest-neighbor-based C matrix: 

 

> library( spdep ) 

> col.knn <- knearneigh( coordinates( coords ), k = 4 ) 

> cmat  <- nb2mat( knn2nb( col.knn ), style = "B" ) 

> meigB <- meigen( cmat = cmat ) 

 

If spatial connectivity matrix is not symmetric like the 4-nearest neighbor-based C, the meigen 

function symmetrizes it by taking (C + C' )/2. In cases with binary connectivity-based C (e.g. 

proximity-based C; k-nearest-neighbor-based C), λl /λ1 > 0.25 is a standard threshold1. The threshold 

is implemented as follows: 

 

> meigB <- meigen( cmat = cmat, threshold = 0.25 ) 

 

Other connectivity matrices including road distance-based matrix and economic connectivity-based 

matrix are available (although I recommend the default exponential function because of the stability). 

While eigen-decomposition is computationally demanding in general, the meigen_f 

function performs fast approximation of MEs for large samples (see Murakami and Griffith, 2019a). 

The command for the fast ME extraction is as follows: 

 

> meig_f <- meigen_f( coords = coords ) 

 

By default, the first 200 eigenvectors are approximated based on a simulation result in Murakami and 

Griffith (2019a). While meigen took 243.79 seconds for 5,000 samples, meigen_f took only 0.38 

seconds (see Section 4.1 for further details). Currently, this approximation is available only for the 

exponential, Gaussian, and spherical kernels. 

 Sections 2.2 to 2.6 explains how to use the extracted MEs in spatial regression modeling. 

 

1 The threshold λl /λ1 > 0.25 attempts to capture roughly 95% of the variations attributable to positive 
spatial dependence (Griffith and Chun, 2014). 
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2.2. Spatial regression models 

2.2.1. Eigenvector spatial filtering (ESF) model 
The classical ESF model is formulated as follows: 

௜ݕ = ∑ ௞௄ߚ௜,௞ݔ
௞=ଵ + ெ݂�ሺ�ሻሺ�௜ሻ + �௜ ,      �௜~ܰሺ0, �ଶሻ. (3) 

ெ݂�ሺ�ሻሺ�௜ሻ = ∑ ݁௟ሺ�௜ሻߛ௟ሺ�ሻ௅௟=ଵ  where ߛ௟ሺ�ሻ  is a fixed coefficient (see Eq.2). ெ݂�ሺ�ሻሺ�௜ሻ captures 

residual spatial dependence to estimate and infer regression coefficients appropriately. If spatial 

dependence in residuals is ignored, coefficient standard error tends to be underestimated, and the 

statistical significance is overestimated. Consideration of spatial dependence is needed to avoid such 

problem.  

The ESF model is estimated by the following steps: (i) MEs corresponding to positive 

eigenvalue are extracted using the meigen function; (ii) L MEs selected through a stepwise variable 

selection procedure; (iii) the ESF model Eq.(3) with the selected eigenvectors is estimated uing the 

ordinary least squares method. Binary connectivity matrix (e.g., knn-based C) is used for many ESF 

studies. 

The following command estimates the linear ESF model: 

 

> y <- data[ ,"ln_price" ] # Explained variables 

> x <- data[ ,c( "station", "tokyo", "city", "flood " ) ] # Explanatory variables 

> meig <- meigB #Moran’s eigenvectors (knn-based C) 

> e_res <- esf( y = y, x = x, meig = meig, vif = 10, fn = "r2" ) 

 

To cope with multicollinearity, eigenvectors can be selected so that the variance inflation factor (VIF), 

which is an indicator of multicollinearity, does not to exceed 10. It is implemented by specifying vif 

= 10. The stepwise eigenvector selection is performed through an adjusted R2 maximization (fn = "r2"; 

default), Akaike information criterion (AIC) minimization (fn = "aic"), or Bayesian Information 

criterion (BIC) minimization (fn = "bic"). Alternatively, if fn = "all", all the MEs corresponding to 

positive eigenvalue are considered. 

 Summary of the estimation result is displayed as shown in the next page. The “Coefficients” 

section describes estimated coefficients and their statistical significance. Station (-) and city (+) are 

statistically significant at the 0.1% level. These results confirm higher land price nearby railway station 

areas and other urban areas. Flood is positively significant at the 10% level. This result suggests that 

influence from flood disaster, which is expected to be negative, is inappropriately reflected to land 

price. The “Spatial effects (residuals)” section describes the standard error (SE) (SE) and the scaled 

MC (Moran.I/max(Moran.I)) of the estimated spatial process ெ݂�ሺ�ሻሺ�௜ሻ. The SE is compatible to the 
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residual SE (resid_SE). The result suggests the pretense of residual spatial dependence. The scaled 

MC takes a value between 0 and 1 in which 0 suggests the smallest-scale spatial dependence whereas 

1 means the largest-scale spatial dependence. The estimated value of 0.137 suggests that small-scale 

residual spatial dependence is estimated. Finally, the “Error statistics” section summarizes error 

statistics, including residual standard error (residual_SE), adjusted R2 (adjR2), log-likelihood (logLik), 

AIC, and BIC: 

 

 

 

VIF values are displayed by the following command: 

 

> e_res$vif 

 VIF 

station  1.367917 

tokyo    1.225594 

city     1.282930 

flood    1.208189 

sf4      1.167728 

sf9      1.017697 

sf12     1.142611 

sf31     1.084662 

sf33     1.032077 
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sf45     1.035118 

sf32     1.095973 

sf26     1.012234 

sf6      1.059948 

sf20     1.016059 

 

While binary spatial proximity matrix is frequently used in regional science, distance-based 

matrix is popular in ecological studies. The distance-based ESF is implemented as follows: 

 

> meig <- meigen( coords=coords ) #Moran’s eigenvectors (distance-based C) 

> e_res <- esf( y=y, x=x, meig=meig, fn="r2") 

 

The distance-based ESF is often called Moran eigenvector maps (MEMs) or a principal coordinate 

neighborhood matrix (PCNM) (see Legendre and Legendre, 2012). 

A major disadvantage of ESF is the computational cost. To overcome the limitation, 

Murakami and Griffith (2019a) proposed a fast ESF, which is implemented as 

 

> meig_f <- meigen_f( coords = coords ) 

> e_res <- esf( y = y, x = x, meig = meig_f, fn = "all" ) 

 

Here, all the eigenvectors in meig_f are used without selecting them by specifying fn = "all". It is 

acceptable for medium to large samples). 

 

 

2.2.2. Random effects ESF (RE-ESF) model 
The RE-ESF model is formulated as follows: 

௜ݕ = ∑ ௞௄ߚ௜,௞ݔ
௞=ଵ + ெ݂�ሺ�௜ሻ + �௜ ,      �௜~ܰሺ0, �ଶሻ, (4) 

As with the classical ESF, this model is useful to estimate and infer regression coefficients in the 

presence of residual spatial dependence. Unlike ESF, ெ݂� ሺ�௜ሻ is given by a random spatial process 

approximating a Gaussian process (GP) that is frequently used for spatial process modeling in 

geostatistics (see Section 2.1). In other words, the RE-ESF model is an approximate GP interpretable 

in terms of the MC. 

The RE-ESF model is estimated by the following steps: (i) L (< N) MEs are extracted; (ii) 

parameters are estimated by the Type II maximum likelihood (ML) method or the restricted maximum 

likelihood (REML) method. I recommend REML because of a theoretical result for semiparametric 
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linear model including Eq.(4) that REML tends not to have local optima, and stable (Reiss and Ogden, 

2011). 

The REML estimation is implemented by the following command: 

 

> meig <- meigen( coords = coords ) #Moran’s eigenvectors (distance-based C) 

> r_res <- resf( y = y, x = x, meig = meig ) 

 

The REML is replaced with ML by specifying method = "ml" in the resf function. Estimation result 

is displayed as below: 

 

 
 

As same as ESF, station (-) and city (+) are statistically significant while tokyo is not. In contrast, 

unlike ESF, flood is insignificant. Because RE-ESF tends to outperform ESF in terms of the estimation 

accuracy of regression coefficients and their standard errors, the RE-ESF result might be more reliable. 

The “Variance parameter” section summarizes estimated variance parameters. SE of the estimated 

spatial process (ெ݂�ሺ�௜ሻ) (random_SE) is greater than the residual SE (resid_SE). The scaled MC 

(Moran.I.max(Moran.I)) is as small as ESF. Thus, strong small-scale spatially variation is estimated. 

The “Error statistics” section displays residual SE (resid_SE), the adjusted conditional R2 

(adjR2(cond)), the restricted log-likelihood (rlogLik), AIC, and BIC. rlogLik is replaced with loglik, 



 11 

which is the log-likelihood, if method = "ml". Note that, when REML is used, AIC and BIC are 

comparable only with models with the same explanatory variables. 

 

2.2.3. RE-ESF model for large samples 

 Although the resf function implements the fast ML/REML of Murakami and Griffith 

(2019b) that is available for large samples, the meigen function, which performs the usual eigen-

decomposition, is computationally demanding, and not available for large samples (e.g., 10 thousand 

samples). To avoid the problem, the meigen function may be replaced with the meigen_f function as 

follows: 

 

> meig_f <- meigen_f( coords = coords ) 

> r_res2 <- resf( y = y, x = x, meig = meig_f ) 

 

While meigen took 243.79 seconds for 5,000 samples, meigen_f took only 0.38 seconds (see Section 

4.1 for further details). Still, the meigen_f function stores L × N eigenvector matrix (L = 200 by default). 

In other words, this function consumes a considerable amount of memories, and not available for very 

large samples such as millions of samples. To break the bottleneck, the besf function implements a 

memory-free procedure for the ME approximation and RE-ESF modeling (Murakami and Griffith, 

2019c). The command is as follows: 

 

> r_res3 <- besf( y = y, x = x, coords = coords) 

 

This function implements a parallel computation by default. So, faster than the resf function. We 

confirm that the besf function is available for 10 million samples. See Section 4 for further detail for 

modeling large samples. 
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2.3. Spatially and non-spatially varying coefficient models 

2.3.1. Varying coefficient modeling 

 Effects from covariates can vary depending on covariate value. For example, distance to 

railway station might have strong impact if the distance is small while weak if the distance is large. 

To capture such effect, the resf function estimates coefficients varying with respect to the covariate 

value, which I call non-spatially varying coefficients (NVCs). If nvc =TRUE, the resf function 

estimates the following model considering residual spatial dependence ( ெ݂�ሺ�௜ሻ) and NVCs (ߚ௜,௞): 

௜ݕ = ∑ ௜,௞௄ߚ௜,௞ݔ
௞=ଵ + ெ݂�ሺ�௜ሻ + �௜ ௜,௞ߚ        , = �௞ + ݂ሺݔ௜,௞ሻ, �௜~ܰሺ0, �ଶሻ, (5) 

where ݂ሺݔ௜,௞ሻ is the function of the covariate ݔ௜,௞. The ݂ሺݔ௜,௞ሻ function is given by the natural 

spline generated from the covariate. The command estimating the model and the output are as follows: 
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By default, the resf function selects coefficient type (constant or NVC) through a BIC minimization, 

which can be replaced with an AIC minimization by specifying penalty ="aic". Based on the result, 

the coefficient on station is estimated non-spatially varying while the coefficients on tokyo, city, and 

flood are estimated constant. The Variance parameter section summarizes the standard errors of the 

estimated spatial process (ெ݂�ሺ�௜ሻ ) and the NVCs, together with the scaled MC value 

(Moran.I/max(Moran.I)) of ݂ ெ� ሺ�௜ሻ . Note that all the coefficients can be given by NVCs by 

additionally specifying nvc_sel =FALSE in the resf function. 

The plot_n function is available to plot the estimated NVCs. An argument xnum specifies 

the number of NVC. For instance, if  xnum = 1, the estimated NVC on the column of x (station) is 

plotted as below. The line denotes the NVC estimates and the grey area represents the 95 % confidence 

interval. This plot suggests that station has stronger negative impact nearby railway station areas. 

 

> plot_n( r_res2, xnum = 1 ) 

  
 

For coefficients that are estimated constant, the constant estimates are plotted together with the 95 % 

confidential interval. The dotted line means zero. 

 

> plot_n( r_res2, xnum = 2 ) 
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2.3.2. Spatially varying coefficient model 
Murakami et al. (2017) and Murakami and Griffith (2019b) showed that a ME-based SVC 

(M-SVC) modeling approach outperforms the geographically weighted regression (GWR) approach, 

which is a standard SVC modeling approach, in terms of coefficient estimation accuracy and 

computational time. The SVC model is formulated as 

௜ݕ = ∑ ௜,௞௄ߚ௜,௞ݔ
௞=ଵ + ெ݂� ሺ�௜ሻ + �௜ ௜,௞ߚ          , = �௞ + ெ݂�,௞ሺ�௜ሻ,           �௜~ܰሺ0, �ଶሻ, (6) 

The k-th SVCs is defined as ߚ௜,௞ = [constant mean �௞] + [spatially varying component ݂ெ�,௞ሺ�௜ሻ]. 

Advantages of the M-SVC modeling approach relative to GWR are as follows.  

(1) The M-SVC model estimates spatial scale (or the MC value) of individual SVC whereas the 

classical GWR assumes a common scale across SVCs. Such coefficient-wise scale estimation was 

implemented in the multiscale GWR (MGWR; e.g., Fotheringham et al., 2017). 

(2) The k-th SVC can be replaced with a constant coefficient by assuming ߚ௜,௞ = �௞. In other words, 

our model allows for assuming SVCs on some covariates while constant coefficients on the others. 

Semiparametric GWR (SGWR) employs such an assumption (Nakaya et al., 2009).  

(3) This model is fast and free from memory limitation. Thus, it is available for 10 million samples 

(see Murakami and Griffith, 2019c). 

(4) Unlike GWR models, the M-SVC model is easily extended without losing its computational 

efficiency as I will explain later. 

For illustration, I assume SVCs on tokyo, station, city, and flood whereas constant 

coefficients on px and py (spatial coordinates). The command for the M-SVC modeling is as follows: 

 

> xv <- x[ , c( "tokyo", "station", "city", "flood" ) ] #x with spatially varying coefficients 

> xconst <- x[ , c( "px", "py") ] #x with constant coefficients 

> meig <- meigen( coords = coords ) #Moran’s eigenvectors (distance-based C) 

> rv_res  <- resf_vc( y = y, x = xv, xconst = xconst, meig = meig ) 

 

Remember that SVC models tend to suffer from multicollinearity (Wheeler and Tiefelsdorf, 2005). 

To address the problem, the resf_vc function selects coefficients type (constant or SVC) through a 

Bayesian information criterion (BIC) minimization by default. The selection can be replaced with an 

Akaike information criterion (AIC) minimization-based selection by specifying penalty = "aic" in the 

resf_vc function. Alternatively, if x_sel = FALSE is added, SVCs are assumed on all the covariates 

(see Section 2.3.3 for further detail about model selection). 

The estimation result with the BIC-based model selection is as follows: 
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The Spatially varying coefficients on x (summary) section summarizes the estimated SVCs and their 

statistical significance. Based on the result, coefficients on station and city (and intercept) are 

estimated spatially varying whereas those on tokyo and flood are estimated constant. SVCs on station 

are statistically significant at the 1 % level at 378 sample sites whereas SVCs on city are significant 

at the same level at 576 sites. Coefficients on tokyo and flood are not significant. The Constant 

coefficients section summarizes estimated constant coefficients on xconst, including px and py. 

 The Variance parameters section summarizes parameters determining map patterns of the 

SVCs.“random_SE represents standard error of the estimated SVCs. Because coefficients on tokyo 

and flood are estimated constant, their standard errors are zeros zero. Moran.I/max(Moran.I) denotes 
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the scaled MC value of the map pattern. The values suggest that each SVC has relatively local map 

patterns. Lastly, the Error statistics section summarizes model errors. 

 The plot_s function is available to map the estimated coefficients. An argument xnum 

specifies an SVC where xnum = 0 means spatially varying intercept, and xnum > 0 means the column 

number of x (except for intercept). Commands are as follows: 

 

> plot_s( rv_res, xnum=0 ) # Spatially dependent intercept 

 

 

> plot_s( rv_res, xnum=1 ) # SVCs on station (the 1st column of x) 
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To plot only statistically significant estimates, an argument pmax specifies the maximum p-value. For 

example, The SVCs on station that are statistically significant at the 5 % level are plotted as 

 

> plot_s( rv_res, xnum=1, pmax = 0.05 )  

 

 

This result suggests that station has positive impact along major railway that though from the 

southwest to the northeast of the study area. For coefficients that are estimated constant, this function 

returns the following message without plotting. 

 

 

 

There are some arguments to specify color coding, dot size and so on. This function is useful to quickly 

check the result. For better visualization, I suggest using leaflet, mapview, or other R packages, or 

QGIS, ArcGIS, or other GIS software. 
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2.3.3. Spatially and non-spatially varying coefficient model 
Coefficients can vary both spatially and non-spatially. Given that, Murakami and Griffith 

(2020) developed a spatially and non-spatially varying coefficient (SNVC) model which is defined as 

௜ݕ = ∑ ௜,௞௄ߚ௜,௞ݔ
௞=ଵ + ெ݂�ሺ�௜ሻ + �௜ ௜,௞ߚ        , = �௞ + ெ݂�,௞ሺ�௜ሻ + ,(௜,௞ݔ)݂ �௜~ܰሺ0, �ଶሻ. (7) 

This model defines the k-th regression coefficient ߚ௜,௞  at i-th site by [constant: �௞ ] + [SVC: ெ݂�,௞ሺ�௜ሻ] + [NVC: ݂ሺݔ௜,௞ሻ]. They showed that this model is more stable than SVC models, and does 

not suffer from spurious correlations among SVCs even if existing SVC models suffer from severe 

spurious correlations. Based on the result, they recommend using the SNVC model even when the 

analysis objective is estimating SVCs. 

 The coefficient ߚ௜,௞ includes the following specifications:  

- Constant : ߚ௜,௞ = �௞ 

- NVC  : ߚ௜,௞ = �௞ + ݂ሺݔ௜,௞ሻ 

- SVC  : ߚ௜,௞ = �௞ + ெ݂�,௞ሺ�௜ሻ 

- SNVC : ߚ௜,௞ = �௞ + ெ݂�,௞ሺ�௜ሻ + ݂ሺݔ௜,௞ሻ 

The resf_vc function specify each coefficient as follows (see also Table 2). 

SVCs are assumed on x by default. If x_nvc = TRUE is added, SNVCs are assumed on x. If 

x_sel = TRUE is added, SVC is included only if it improves the BIC value. Likewise, if x_nvc_sel = 

TRUE (and x_nvx = TRUE) is added, NVC is included if only it improves the BIC. Alternatively, 

x_sel may be specified by column numbers of x. In that case, SVCs are assumed only on the covariates 

in the corresponding columns. Similarly, x_nvc_sel can be given by column numbers assuming NVCs. 

Coefficients on xconst are assumed constant by default. NVCs are assumed by adding 

xconst_nvc = TRUE. In addition, if xconst_nvc_sel = TRUE (default), NVC is included only when it 

improves the BIC. If xconst_nvc_sel = FALSE, NVCs are assumed across the coefficients. 

Alternatively, if xconst_nvc_sel is given by column numbers of xconst, NVCs are assumed only on 

the covariates in the corresponding columns. 

 

Table 2: Arguments specifying the coefficients in the resf_vc function. TRUE is the default for x_sel, 

x_nvc_sel, and xconst_nvc_sel whereas FALSE is the default for x_nvc and xconst_nvc. 

Covariates Coefficients Select SVC or Constant Consider NVC Select NVC or Constant 

x With SVC x_sel x_nvc x_nvc_sel 

xconst Without SVC  xconst_nvc xconst_nvc_sel 
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Here is a code estimating the full model with coefficients type selection. 

 

> rv_res2<-resf_vc(y=y, x=x, xconst=xconst, meig=meig, x_nvc=TRUE, xconst_nvc=TRUE) 

> rv_res2 
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The BIC minimization result estimates SNVC on station, SVC on city (and intercept), NVC on tokyo, 

and constants on the others (see Variance parameters section). 

Estimated coefficients on x (SVC, NVC, or SNVC) are mapped using the plot_s function as 

below (see Section 2.3.2). Roughly speaking, coefficients on station suggests strong impact of station 

along principal railway, coefficients on tokyo suggests strong influence from Tokyo in the southwest 

region (Tokyo is located about 30km southwest from this area), and the coefficients on city suggests 

higher impact of urban area nearby major cities (there are central cities in each yellow areas). These 

results are intuitively reasonable.  

 

> plot_s( rv_res2, xnum = 0 ) 

 

 

> plot_s( rv_res2, xnum = 1 )  

> plot_s( rv_res2, xnum = 1, pmax = 0.05) # pmax is the maximum p-value 
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> plot_s( rv_res2, xnum = 2 )  

> plot_s( rv_res2, xnum = 2, pmax = 0.05) 

  
 

> plot_s( rv_res2, xnum = 3 )  

> plot_s( rv_res2, xnum = 3, pmax = 0.05) 

  
 

The plot_n function is available to plot the estimated NVCs on x or xconst. By default, it plots the 

NVC estimtes on x together with their 95 % confidence intervals as follows: 

 

> plot_n( rv_res2, xnum = 1 ) 

> plot_n( rv_res2, xnum = 2 ) 

> plot_n( rv_res2, xnum = 3 ) 
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If xtype="xconst" is added, NVCs on xconst is plotted. 

 

> plot_n( rv_res2, xnum = 1, xtype="xconst" ) 

> plot_n( rv_res2, xnum = 2, xtype="xconst" ) 
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2.4. Models with group effects 

 Two group effects are available in this package: 

(i) Spatially dependent group effects. Spatial dependence among groups are modeled instead of 

modeling spatial dependence among individual samples. 

(ii)  Spatially independent group effects assuming independence across groups (usual group effects). 

They are estimated in the resf and resf_vc functions. When considering (i) and (ii), the resf function 

estimates the following model (no NVC is assumed here): 

௜ݕ = ∑ ௞௄ߚ௜ݔ
௞=ଵ + ெ݂�ሺ݃ூሺ଴ሻሻ + ∑ ሺ݃ூሺℎሻሻுߛ

ℎ=ଵ + �௜ ,        �௜~ܰሺ0, �ଶሻ, (8) 

where ݃ூሺ଴ሻ, ݃ூሺଵሻ, … , ݃ூሺுሻ  represent group variables. ெ݂�ሺ݃ூሺ଴ሻሻ  represents (i) the spatially 

dependent group effects whereas ߛሺ݃ூሺℎሻሻ represents (ii) the spatially independent group effects for 

the h-th group variable. The resf_vc function can estimate the following model with (i) and (ii) (again, 

no NVC is assumed): 

௜ݕ = ∑ ௜,௞௄ߚ௜,௞ݔ
௞=ଵ + ெ݂�ሺ݃ூሺ଴ሻሻ + ∑ ሺ݃ூሺℎሻሻுߛ

ℎ=ଵ + �௜ ,     �௜~ܰሺ0, �ଶሻ. 
௜,௞ߚ = �௞ + ெ݂�,௞(݃ூሺ଴ሻ), (9) 

As examples, multilevel modeling, small area estimation, and panel data analysis are demonstrated 

below. 

 

2.4.1. Multilevel model 
Data often has multilevel structure. For example, school achievement of individual student 

changes depending on class and school. Condominium unit price depends not only on unit attributes 

but also building attributes. Ignorance of such multilevel structure can lead erroneous inference 

(typically, overestimation of statistical significance). Multilevel modeling is required to explicitly 

consider hierarchical structure behind data and evaluate statistical significance appropriately (see 

Snijders and Bosker, 2011). 

The resf and resf_vc functions are available for multilevel modeling. An argument x_group 

specifies the group ID used to specify (ii) the spatially independent (i.e., usual) group effects. When 

considering one group variable, x_group is given by a vector of group ID. When considering H group 

variables, it is given by a matrix with its h-th column being the h-th group IDs. Here is a code 

estimating a land price model considering individual-level residual spatial dependence and (ii) 

municipality-level spatially independent group effects: 
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> xgroup <- data[ ,"city_name" ] # Municipality name 

> m1_res <- resf( y = y, x = x, meig = meig, xgroup = xgroup )  

 

It is also possible to assume (i) group-level spatial dependence. This assumption is suitable, for 

example, when modeling condominium unit price whose spatial dependence arise among buildings 

rather than among units. (i) Spatially dependent group effects are introduced by specifying s_id in the 

meigen or meigen_f function using a group ID. Here is a code simultaneously estimating (i) spatially 

dependent group effects and (ii) spatially independent group effects: 

 

> meig_g <- meigen( coords = coords, s_id = s_id ) 

> m2_res <- resf( y = y, x = x, meig = meig_g, xgroup = xgroup ) 

 

The BIC values of the two multilevel models are 535.8 and 652.7 (m1_res$e and m2_res$e). Relative 

to the without group effects model estimated in Section 2.2.2, the BIC value is improved especially in 

the first model assuming individual-level spatially dependence and spatially independent group effects. 

The estimates are displayed as below. 
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This result shows that standard errors (random_SE) of (i) the spatial effects, (ii) group effects, and 

noise are 0.428, 0.325, and 0.333, respectively. If (ii) xgroup is ignored (xgroup=NULL), the BIC 

value becomes 835.0, which is worse than the presented result. It is suggested that land price has 

municipality-level variation.  

 The estimated (ii) group effects are displayed as follows: 

 

 
. 
. 
. 

 

 

2.4.2. Small area estimation 

Small area estimation (SAE; Ghosh and Rao, 1994) is a statistical technique estimating 

parameters for small areas such as districts and municipality. SAE is useful to obtain reliable small 

area statistics from noisy data. Suppose that the raw data ݕூ in the I-th small area is defined by the 

mean of the ܰ ூ individual sample values {ݕଵ,ூ , … ூݕ :ூ as followsݕ ே�,ூ} in the area. SAE modelsݕ = ூݕ̂ + �ூ ,        �ூ~ܰ ቆ0, �ଶܰ
ூ ቇ, (10) 

where �ூ denotes noise with variance decreasing as the number of individuals ூܰ in the small area 

increases. The objective of SAE is estimating the denoised data ̂ݕூ. 
To achieve this, we assume Eq.(11), which is a special case of Eq.(8) that can be estimated 

by the resf function: 

௜,ூݕ = ∑ ௞௄ߚ௜,ூ,௞ݔ
௞=ଵ + ெ݂�ሺ݃ூሻ + ሺ݃ூሻߛ + �௜,ூ ,        �௜,ூ~ܰሺ0, �ଶሻ. (11) 

where ݃ூ  denotes small area ID and ݔ௜,ூ,௞  is an individual-level explanatory variable. Let us 

aggregate (take average) each term of Eq.(11). Then, the aggregated model yields Eq.(10) with 

ூݕ̂ = ∑ ௞௄ߚூ,௞ݔ
௞=ଵ + ெ݂�ሺ݃ூሻ +  ሺ݃ூሻ, (12)ߛ
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where ݔூ,௞  is the mean of the ݔ௜,ூ,௞ values in the I-th area. Eqs.(10) - (12) suggest that by estimating 

Eq.(11) using the resf function, and calculating Eq.(12) after that, we can estimate the denoised data ̂ݕூ. Similarly, the resf_vc function is available when estimating the denoised data ̂ݕூ while assuming 

the S(N)VC model with group effects instead of Eq.(11). Thus, the resf and resf_vc functions are 

available for SAE. 

As an example, land price level in each municipality is evaluated using the land price data. 

In this case, ݕ௜,ூ is the i-th land price data in the I-th municipality, and ݕூ = ଵே� ∑ ௜,ூே�௜⊆ூݕ  is the mean 

price. While many municipalities include more than 10 observations, some municipalities contain only 

a few observations (minimum: 2); this tendency is prominent in the north area. SAE is useful to 

estimate the municipal land price level while reducing data uncertainty in the north area. 

Here is the code for the SAE, which assumes Eq.(11) for ݕ௜,ூ:  

 

> meig   <- meigen(coords,s_id=s_id) 

> r_res  <- resf(y=y, x=x,meig=meig, xgroup=s_id) 

> pred   <- predict0(r_res, x0=x, meig0=meig, xgroup0=s_id ) 

> adat   <- aggregate(data.frame(y, pred$pred),by=list(s_id),mean) 

 

 

Therein, s_id (municipality name) is used in the meigen function to model spatially dependent group 

effects. The resf function estimates Eq.(11). Then, the predict0 function (see Section 2.6) evaluates 

the individual-level predicted value ̂ݕ௜,ூ = ∑ ௞௄௞=ଵߚ௜,ூ,௞̂ݔ + ݂̂ெ�ሺ݃ூሻ + ሺ݃ூሻߛ̂ , and the aggregate 

function aggregates each term to obtain Eq.(12). adat summarizes the municipality level outputs. The 

columns are as follows:  

- y   : Sample mean: ݕூ 
- pred  : Denoised data: ̂ݕூ 
- xb   : Trend in the denoised data: ∑ ௞௄௞=ଵߚ௜,ூ,௞̂ݔ  

- sf_residual  : Spatially dependent group effects: ݂̂ெ�ሺ݃ூሻ 
- xgroup  : Spatially independent group effects: ̂ߛሺ݃ூሻ 

Not only, pred, but also xb, sf_residuals, xgroup are useful to understand the structure behind 

observations. After combining adat with spatial polygons of the municipalities, the estimated y and 

pred are be visualized as follows: 
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> spplot(iba,c("y","pred")) 

 

As expected, the denoised data (pred) has larger difference with the raw data (y) in the north area. The 

other effects can be visualized as follows: 

 

> spplot(iba,c(“xgroup”,”sf_residual”)) 

> spplot(iba,"xb", main = “xb”) 

 
 

Spatially dependent group effects (sf_residuals) are relatively smooth whereas independent group 

effects (xgroup) indicated large values (yellow) in two municipalities in the south-west area. They are 

Tsukuba and Moriya cities. These cities are popular residential areas for commuters to Tokyo, which 

locates about 30 km south-west from this prefecture. 

 Here is a code for SAE when using S(N)VC model: 

 

rv_res  <-resf_vc(y=y, x=x, meig=meig, xgroup=s_id, x_sel=FALSE) 

pred_vc <-predict0_vc(rv_res,x0=x,meig0=meig,xgroup0=s_id) 

adat_vc  <-aggregate(data.frame(y, pred_vc$pred),by=list(s_id),mean) 
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2.4.2. Longitudinal/panel data model 
 The resf and resf_vc functions are also available for longitudinal or panel data analysis 

with/without S(N)VC (see Yu et al., 2020). To illustrate this, we use a panel data of 48 US states from 

1970 to 1986, which is published in the plm package (Croissant and Millo, 2008). Because our 

approach uses spatial coordinates by default, we added center spatial coordinates (px and py) to the 

panel data. Here are the first 5 rows of the data: 

 

 

 

Following an example in the plm package, logged public capital stock (pcap) is used as explained 

variables. The explained variables are logged private capital stock (pc), logged labor input measured 

by the employment in non-agricultural payrolls (emp), and unemployment rate (unemp). 

 

y     <- log(pdat$gsp) 

x     <- data.frame(log_pcap = log(pdat$pcap), log_pc = log(pdat$pc),  

log_emp = log(pdat$emp), unemp = pdat$unemp) 

 

Because panel data has multiple observations for each individual (site/region), individual ID is needed 

to model individual-level spatial dependence. Here is the code extracting MEs by individuals to model 

spatial dependence by individuals: 

 

s_id  <- pdat$state 

coords<- pdat[,c("px", "py")] 

pmeig < -meigen(coords, s_id= s_id )# Moran eigenvectors by states 

 

Currently, the following panel models can be implemented: 

- Pooling model (no random effects) 

- One-way (individual) random effects model 

- One-way (time) random effects model 

- Two-way (individual and time) random effects model 
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In all the models, residual spatial dependence is considered when using the resf function while residual 

spatial dependence and S(N)VC are considered when using the resf_vc function. 

Here is the code implementing these models using the resf fucntion: 

 

pmod0 <-resf(y=y,x=x,meig=pmeig)    # pooling model 

 

xgroup<-pdat$state     # individual ID 

pmod1 <-resf(y=y,x=x,meig=pmeig,xgroup=xgroup) # one-way (individual) model 

 

xgroup<-pdat$year     # time ID  

pmod2 <-resf(y=y,x=x,meig=pmeig,xgroup=xgroup) # one-way (time) model 

 

xgroup<-pdat[,c("state","year")]   # individual ID and time ID 

pmod3 <-resf(y=y,x=x,meig=pmeig,xgroup=xgroup) # two-way model 

 

Among these, BIC value of the two-way model is the smallest. The estimation result is as follows. 
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random_SE values show large residual spatial dependent variation (0.157) relative to group effects 

(state:0.099; year:0.024) and the error variation (0.034). The estimated individual and time effects are 

extracted as  

 

 

 

 For validation, our two-way model estimates are compared with another two-way model 

estimated using the plm package. Unlike our model, it ignores residual spatial dependence. The plm 

coefficient estimates as shown below. The results are similar with our result. 

 

 

 

Below, estimated individual (state) and time (year) effects are compared. The result suggests that time 

effects estimates are quite similar whereas individual effects are less similar. This is because our model 

decomposes latent map pattern into spatially dependent and independent (i.e., individual) effects. 

 

pm0     <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, 

            data = pdat, effect="twoways",model="random") 

s_g_plm <- ranef(pm0,"individual") 

t_g_plm <- ranef(pm0,"time") 
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plot(s_g_plm,s_g[,1],xlab="plm",ylab="resf"); abline(0,1,col="red")# Individual effects 

 

plot(t_g_plm,t_g[,1],xlab="plm",ylab="resf"); abline(0,1,col="red") # Time effects 
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2.5. Spatially filtered unconditional quantile regression model 

While the usual (conditional) quantile regression (CQR) estimates the influence of xk on the 

Ĳ-th “conditional” quantile of y, qĲ(y|xk), the unconditional quantile regression (UQR; Firpo et al., 

2009) estimates the influence of xk on the “unconditional” quantile of y, qĲ(y). 

Suppose that y and xk represent land price and accessibility respectively. UQR estimates the 

influence of accessibility on land price by quantile; it is interpretable and useful for e.g. hedonic land 

price analysis. By contrast, this interpretation does not hold for CQR because it estimates the influence 

of accessibility on conditional land prices (land price conditional on explanatory variables). Higher 

conditional land price does not mean higher land price, but rather, it means overprice relative to the 

price expected by the explanatory variables. Thus, CQR has difficulty in its interpretation in some 

cases including hedonic land price modeling. 

Murakami and Seya (2019) developed the spatial filter UQR (SF-UQR). The SF-UQR 

model is formulated as follows: 

��ሺݕ௜ሻ = ∑ ௞,�௄ߚ௜,௞ݔ
௞=ଵ + ெ݂�,�ሺ�௜ሻ + �௜,� ,      �௜,�~ܰሺ0, ��ଶሻ, (13) 

where ��ሺݕ௜ሻ is unconditional quantile for the i-th explained variable, yi. The SF-UQR is a UQR 

considering spatial dependence. The resf_qr function estimates the SF-UQR model. The command is 

as follows: 

 

> qr_res  <- resf_qr( y = y, x = x, meig = meig, boot = TRUE ) 

 

If boot = TRUE, a semiparametric bootstrapping is performed to estimate the standard errors of the 

regression coefficients, and they are not calculated if boot = FALSE. By default, this function returns 

the coefficients ߚ௞,� estimated at the 0.1, 0.2, ..., 0.9 quantiles. An argument tau specifies the quantile. 

For example, coefficients at the 0.22 quantile are estimated by specifying tau = 0.22.  
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 Here is the summary of the estimation result: 

 

 
 

The estimated coefficients can be visualized using the plot_qr function. Here is the 

command to plot the estimated coefficients for the first five explanatory variables: 

 

> plot_qr( qr_res, 1 ) 

> plot_qr( qr_res, 2 ) 

> plot_qr( qr_res, 3 ) 

> plot_qr( qr_res, 4 ) 

> plot_qr( qr_res, 5 ) 

 

The numbers 1 to 5 specify which regression coefficients are plotted (1: intercept). The resulting plots 

are as below. The solid lines are estimated coefficients and the gray areas are their 95% confidence 

intervals. 
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The standard errors for the residual spatial dependent component (spcomp_SE) in each quantile are 

plotted by assigning par = "s" and pnum = 1, while the scaled ME (Moran.I/max(Moran.I)), which is 

a measure of spatial scale by quantile (spcomp_Moran.I/max(Moran.I)) are plotted by assigning par = 

"s" and pnum = 2. The commands and the outcomes are as follows: 

 

> plot( qr_res, par = "s" , 1 ) 

> plot( qr_res, par = "s" , 2 ) 

 

  

 

Based on this result, there is larger local spatially dependent variations in higher price range. 
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2.6. Spatial prediction 

This package provides functions for ESF/RE-ESF-based spatial interpolation minimizing 

the expected error variance (just like kriging) (see Murakami and Griffith, 2019c). The Nystrom 

extension, which is an eigen-approximation technique is used for the expected error minimization. 

Note that RE-ESF approximates Gaussian process (GP) or the kriging model, which has 

actively been used for spatial prediction, and ESF is a special case (Murakami and Griffith, 2015). 

Because ESF and RE-ESF perform approximations, their spatial predictions might be less accurate 

relative to kriging. Instead, they are faster and available for very large samples (see Section 4). 

In this tutorial, the land price data is randomly divided into two, and one is considered as 

observations (dd) and another is considered as data at unobserved sites (md). 

 

> samp     <-sample( length( data[, 1] ), 300 ) # Random sampling 

 

> dd <- data[ samp, ]  # Data at observed sites 

> coords <- dd[ , 1:2 ] 

> y <- dd[ ,3 ] 

> x <- dd[ ,4:7] 

> xconst <- dd[ ,1:2] 

 

> md <- data[-samp, ]  # Data at unobserved sites 

> coords0 <- md[ , 1:2 ] 

> y0 <- md[ ,3 ] 

> x0 <- md[ ,4:7 ] 

> xconst0 <- md[ ,1:2 ] 

 

Before prediction, ME must be evaluated for both the observed and unobserved sites. meigen or 

meigen_f is available for the former while meigen0 is available for the latter: 

 

> meig  <- meigen( coords = coords ) 

> meig0  <- meigen0( meig = meig, coords0 = coords0 ) 

 

For ESF-based spatial interpolation, the ESF model is estimated as before. Then, data at unobserved 

sites are predicted using the predict0 function. The command is as follows:  

 

> mod_e <-esf( y = y, x = x, meig = meig )   ## Model estimation 

> pred_e <-predict0( mod = mod_e, x0 = x0, meig0 = meig0 ) ## Spatial prediction 
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As shown above, predicted values (pred), trend (xb), and residual spatial process (sf_residual) at 

unobserved sites are returned. RE-ESF-based spatial interpolation is implemented in the same way: 

> mod_re <-resf( y = y, x = x, meig = meig )   ## Model estimation 

> pred_re <-predict0( mod = mod_re, x0 = x0, meig0=meig0 ) ## Spatial prediction 

 

If x0 is not provided, the predict0 function interpolates only the spatial component. 

 

The S(N)VC model is also available for spatial prediction using the predict0_vc function. 

When using the SNVC model, which assumes SNVC (= SVC + NVC) on x (x_nvc=TRUE) and NVC 

on xconst (xconst_nvc=TRUE), the command is as follows: 

> rv_res  <- resf_vc( y = y, x = x, xconst = xconst, meig = meig, x_nvc=TRUE, xconst_nvc=TRUE ) 

> pred_vc <- predict0_vc( mod = rv_res, x0 = x0, xconst0 = xconst0, meig0 = meig0 ) 

The predicted values are returned as 
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This function returns the estimated S(N)VC on x as follows: 

 

 
 

It also returns the estimated NVC on xconst as follows: 

 

 
 

The standard errors, t-values, and p-values of the SNVCs are returned by pred_vc$bse_vc, 

pred_vc$t_vc, and pred_vc$p_vc, respectively.  

 When estimating SNVC or NVC at missing sites, x0 and xconst0 must be provided. By 

contrast, when estimating only SVC, the predict0_vc function returns the SVC estimates even if x0 

and/or xconst0 are missing. Here is an example: 

 

> rv_res2  <- resf_vc( y = y, x = x, xconst = xconst, meig = meig ) 
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3. Low rank spatial econometric models 

While Section 2 explains distance-based ESF, RE-ESF, and other spatial regression models 

approximating a GP (i.e., a geostatistical model), this section explains low rank spatial econometric 

models, approximating spatial econometric models (see Murakami et al., 2018). 

Section 3.1 explains how to specify spatial connectivity matrix, and Section 3.2 and 3.3 

explains the low rank spatial lag model (LSLM) and low rank spatial error model (LSEM), 

respectively. 

 

3.1. Spatial weight matrix and their eigenvectors 

Eigenvectors and eigenvalues of a spatial connectivity matrix, which is called spatial weight 

matrix or the W matrix in spatial econometrics, are used for the low rank modeling. The weigen 

function is available for the eigen-decomposition. 

If a shape polygon object is provided, this function returns eigenpairs of a rook adjacency-

based W (1 if two polygons share edge, and 0 otherwise). Here is a sample code: 

 

require( spdep ) 

require( rgdal ) 

data( boston ) 

poly <- readOGR( system.file( "shapes/boston_tracts.shp", package = "spData" )[ 1 ] ) 

weig1 <- weigen( poly )   #### Rook adjacency-based W 

 

If spatial coordinates are provided, weigen returns eigenpairs of the k-nearest neighbor-based W by 

default. The commends are as follows: 

 

cords <- boston.c[ ,c( "LAT", "LON" )] 

weig2 <- weigen( coords )   #### 4-nearest neighbor-based W 

weig3 <- weigen( coords, k = 8 )  #### 8-nearest-neighbor-based W 

 

Alternatively, the W matrix can be defined based on the Delaunay triangulation. In this case, the (i, 

j)-th element of W is 1 if the sample sites i and j share edge that is generated by the Delaunay 

triangulation, and 0 otherwise. This type of W is used if type = “tri” is specified: 

 

weig4 <- weigen( coords, type = "tri" ) #### Delaunay triangulation-based W 
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An user-specified W matrix is also available if the matrix is provided instead of a shape polygon object 

or spatial coordinates. A sample code is follows: 

 

dmat <- as.matrix( rist( coords )) 

cmat  <- exp( -dmat )  #### User specified W 

diag(cmat)<- 0     

weig5 <- weigen( cmat ) 

 

Note that weigen internally replaces all the diagonals of W with zeros. 

For a binary connectivity-based W (weig1 to weig4), λl /λ1 > 0.25 is a standard threshold for 

the eigenvector selection; this criterion attempts to consider roughly 95% of the variations explaining 

positive spatial dependence (Griffith and Chun, 2014). This threshold is assumed by default. This 

threshold value can be changed. For example, λl /λ1 > 0.00 is implemented as follows: 

 

weig6 <- weigen( cmat = cmat, threshold = 0 ) 

 

Outputs from the weigen function is used to estimate low rank spatial econometric models. 

 

 

3.2. Spatial regression models 

3.2.1. Low rank spatial lag model 
The low rank spatial lag model (LSLM) approximates the following model: ݕ௜ = ଴ߚ + ௜ݖ + �௜ ,             �௜~ܰሺ0, �ଶሻ, 

௜ݖ = � ∑ ௝௄ݖ௜,௝ݓ
௜≠௝ + ∑ ௞௄ߚ௜,௞ݔ

௞=ଵ + �௜ ,           �௜~ܰሺ0, �ଶሻ 
(14) 

where ݖ௜ is defined by the classical spatial lag model (SLM) with parameters ρ and �ଶ. Just like the 

original SLM, ρ takes a value between 1 and 1/λN (< 0). ρ > 0 in the presence of positive spatial 

dependence whereas ρ < 0 in the presence of negative spatial dependence. �ଶ represents the variance 

of the SLM-based spatial process (i.e., ݖ௜) while ı2 represents the variance of independent data noise.  

The main differences between LSLM and SLM are as follows: (i) LSLM considers 

independent data noise while SLM ignores it; (ii) LSLM is faster than SLM. Due to the difference (i), 

the parameters estimated from LSLM and SLM is different.  

 The LSLM is estimated using the lslm function. Here is a sample code: 
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> y <- data[ ,"ln_price" ] 

> x <- data[ ,c( "station", "tokyo", "city", "flood " ) ]  

> coords <- data[ ,c( "px", "py" ) ] 

> weig <- weigen( coords ) 

>lslm_res<- lslm( y = y, x = x, weig = weig, boot = TRUE ) 

 

If boot = TRUE, a nonparametric bootstrapping is performed to estimate the 95 % confidence intervals 

(CIs) for the �ଶ and ρ parameters, and the direct and indirect effects, which we will explain later. 

Default is FALSE. Here is the output: 
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{ sp_rho, sp_SE} are estimated {�, �ଶ} values. The standard error of the spatially dependent variation 

(sp_SE = 0.411) was greater than the residual standard error of 0.245. The � value of 0.562 suggests 

moderate-to-large scale spatial variation. 

 

3.2.2. Low rank spatial error model 
The low rank spatial error model (LSEM) approximates the following model: ݕ௜ = ଴ߚ + ௜ݖ + �௜ ,             �௜~ܰሺ0, �ଶሻ, 

௜ݖ = ∑ ௞௄ߚ௜,௞ݔ
௞=ଵ + ݁௜ ,        ݁௜ = � ∑ ௜,௝ݓ ௝݁௄

௜≠௝ + �௜ ,          �௜~ܰሺ0, �ଶሻ, (15) 

 ௜ is defined by the classical spatial error model (SEM) with parameters λ and �ଶ. λ takes a positiveݖ

value in the presence of positive spatial dependence while ρ < 0 in the presence of negative spatial 

dependence. �ଶ represents the variance of the residual spatial dependence. The LSEM estimation is 

faster than the (maximum likelihood) estimation of the original SEM. Besides, unlike SEM, LSEM 

considers independent data noise, which corresponds to the nugget effect in geostatistics. 

 The estimated coefficients are summarized as below: 

 

 

{ sp_lambda, sp_SE} are estimated {�, �ଶ} values. The standard error of the spatially dependent 

variation (sp_SE = 0.235) was slightly smaller than the residual standard error of 0.248. The � value 

of 0.852 suggests large scale spatial variation. 
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4. Tips for modeling large samples 

4.1. Eigen-decomposition 

Unfortunately, eigen-decomposition is known to be slow for large samples; all the methods 

explained in Section 2 will be slow for large samples. To overcome the limitation, the meigen_f 

function is available for fast eigen-approximation. By default, this function approximates 200 MEs. 

The computation is further accelerated by reducing number of eigenvectors. It is achieved by 

specifying enum by a number smaller than 200. For example, in a case with 5000 samples and enum 

= 200 (default), 100, and 50, computational times are as follows: 

 

> coords_test  <- cbind( rnorm( 5000 ), rnorm( 5000 ) ) 

 

-----------------CP time (without approximation) ----------------- 

> system.time( meig_test <- meigen( coords = coords_test ) ) 

user system elapsed 

242.28 1.44 243.79 

 

-----------------CP time (with approximation) ---------------------- 

> system.time( meig_test200 <- meigen_f( coords = coords_test ) 

user system elapsed 

0.37 0.00 0.38 

> system.time( meig_test100 <- meigen_f( coords = coords_test, enum = 100 ) ) 

user system elapsed 

0.15 0.00 0.16 

> system.time( meig_test50 <- meigen_f( coords = coords_test, enum = 50 ) ) 

user system elapsed 

0.08 0.00 0.08 

 

Figure 3 maps the calculated 1st, 10th, and 100th eigenvectors. It is important to note that, while exact 

and approximated eigenvectors can have different map patterns, they always have similar spatial scales. 

In other words, in both cases, 1st ME describes the largest-scale map pattern, 10th ME describes the 

10th largest-scale map pattern, and 100th ME describes the 100-th largest-scale patterns. 
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1st (meigen)               10th (meigen)              100th (meigen) 

                 

1st (meigen_f)            10th (meigen_f)             100th (meigen_f) 

Figure 3: The 1st, 10th, and 100th MEs extracted from meigen and meigen_f 

 

 

On the other hand, the weigen function impalements the ARPACK routine for fast eigen-

decomposition by default. The computational times with 5,000 samples and enum = 200 (default), 100, 

and 50 are as follows: 

 

> system.time( weig_test200 <- weigen( coords_test ) 

user system elapsed 

9.30 0.07 9.39 

> system.time( weig_test100 <- weigen( coords_test, enum = 100 ) ) 

user system elapsed 

3.05 0.04 3.10 

> system.time( weig_test50 <- weigen( coords_test, enum = 50 ) ) 

user system elapsed 

1.19 0.03 1.22 
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4.2. Parameter estimation 

The basic ESF model is estimated computationally efficiently by setting fn = "all" in the esf 

function. This setting is acceptable for large samples (Murakami and Griffith, 2019). 

The resf and resf_vc functions estimate all the models explained in Section 2 using a fast 

estimation algorithm developed in Murakami and Griffith (2019b). Thus, they are available for large 

samples (e.g., 100,000 samples). 

The SF-UQR model requires a bootstrapping to estimate confidential intervals for the 

coefficients. However, computational cost for the iteration does not dependent on sample size. So, it 

is implemented computationally efficiently even for large samples. 

 

4.3. For very large samples (e.g., millions of samples) 

A computational limitation is the memory consumption of meigen and meigen_f to store 

the MEs. Because of the limitation, the resf and resf_vc functions are not available for very large 

samples (e.g., millions of samples). To overcome this limitation, the besf and besf_vc functions 

perform the same calculation as resf and resf_vc but without saving the whole MEs in the memory. 

Besides, for fast computation, these functions perform a parallel model estimation (see Murakami and 

Griffith, 2019c).  

Here is a sample example implementing a spatial regression model using the besf function 

and a SVC model using the besf_vc function: 

 

data <- read.csv("Data.csv") 

coords <- data[ ,c("px", "py")] 

y <- data[ ,"ln_price" ] 

x <- data[ ,c( "station", "tokyo", "urban", "flood" ) ] 

mod1 <- besf(y=y, x=x, coords=coords) 

mod2 <- besf_vc(y=y, x=x, coords=coords) 

 

I have evaluated the computational time for a SVC modeling using the besf_vc function 

using a Mac Pro (3.5 GHz, 12-Core Intel Xeon E5 processor with 64 GB memory). The besf_vc 

function took only 8.0 minutes to estimate the 7 SVCs from 1 million samples. I also confirmed that 

besf_vc took 70.3 minutes to estimate the same model from 10 million samples. besf and besf_vc are 

suitable for very large data analysis. 
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5. Future updates 

Spatiotemporal models, non-Gaussian models, and extensions of the low rank spatial 

econometric models will be implemented in the future. 
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