Package 'splm'

July 14, 2018

July 14, 2016			
Title Econometric Models for Spatial Panel Data			
Version 1.4-11			
Date 2018-07-13			
Author Giovanni Millo [aut, cre], Gianfranco Piras [aut]			
Maintainer Giovanni Millo <giovanni.millo@generali.com></giovanni.millo@generali.com>			
Description ML and GM estimation and diagnostic testing of econometric models for spatial panel data.			
Depends R (>= 2.12.0), spdep			
Imports plm, maxLik, MASS, bdsmatrix, ibdreg, nlme, Matrix, spam, methods			
License GPL-2			
LazyLoad yes			
Repository CRAN			
Repository/R-Forge/Project splm			
Repository/R-Forge/Revision 220			
Repository/R-Forge/DateTimeStamp 2018-07-13 13:05:47			
Date/Publication 2018-07-14 08:50:02 UTC			
NeedsCompilation no			
R topics documented:			
bsjktest bsktest effects.splm Insurance itaww listw2dgCMatrix print.splm RiceFarms			

2 bsjktest

	rwtest	10
	slag	13
	slmtest	14
	spgm	15
	sphtest	18
	spml	20
	spreml	22
	summary.splm	24
	usaww	25
	vcov.splm	26
Index		27

bsjktest

Baltagi, Song, Jung and Koh LM test for spatial panels

Description

Baltagi, Song, Jung and Koh joint or conditional LM test for spatial error correlation or serial correlation sub spatial, serial correlation and random effects in panel models

Usage

```
bsjktest(x,...)
## S3 method for class 'formula'
bsjktest(x, data, index=NULL, listw,
test=c("C.1","C.2","C.3","J"), ...)
```

Arguments

Χ	an object of class formula
data	a data.frame or pdata.frame containing the variables in the model
index	either NULL (default) or a character vector to identify the indexes among the columns of the ${\tt data.frame}$
listw	either a matrix or a listw representing the spatial structure
test	one of $c("C.1", "C.2", "C.3", "J")$, the test to be performed.
	additional arguments to be passed

Value

an object of class htest

Author(s)

Giovanni Millo

bsktest 3

References

Baltagi, B.H., Song, S.H., Jung B. and Koh, W. (2007) Testing panel data regression models with spatial and serial error correlation. *Journal of Econometrics*, **140**, 5-51.

See Also

bsktest

Examples

```
data(Produc, package="plm")
data(usaww)
fm <- log(gsp)~log(pcap)+log(pc)+log(emp)+unemp
bsjktest(fm, data=Produc, listw = usaww, test="C.1")</pre>
```

bsktest

Baltagi, Song and Koh LM test for spatial panels

Description

Baltagi, Song and Koh marginal or conditional LM test for spatial error correlation or random effects in panel models

Usage

```
bsktest(x,...)
## S3 method for class 'formula'
bsktest(x, data, index=NULL, listw,
test=c("LMH","LM1","LM2","CLMlambda","CLMmu"),
standardize=FALSE, method = "eigen", ...)
```

Arguments

X	a formula
data	a data.frame or pdata.frame containing the variables in the model
index	either NULL (default) or a character vector to identify the indexes among the columns of the data.frame
listw	a listw representing the spatial structure
test	one of c ("LMH", "LM1", "LM2", "CLMlambda", "CLMmu"), the test to be performed
standardize	whether to standardize the test statistic or not (applies only to LM1 and LM2)
method	select a method for ML in "CLMmu". the default is "eigen"
	additional arguments to be passed

Value

an object of class htest

effects.splm

Author(s)

Gianfranco Piras

References

Baltagi, B.H., Song, S.H. and Koh, W. (2003) Testing panel data regression models with spatial error correlation. *Journal of Econometrics*, **117**, 123–150.

Millo, G., Piras, G. (2012) splm: Spatial Panel Data Models in R. *Journal of Statistical Software*, **47(1)**, 1–38. URL http://www.jstatsoft.org/v47/i01/.

See Also

sphtest

Examples

```
data(Produc, package="plm")
data(usaww)
fm <- log(gsp)~log(pcap)+log(pc)+log(emp)+unemp
bsktest(fm,data=Produc, listw = mat2listw(usaww),
    test="LM1")</pre>
```

effects.splm

method for extracting fixed effects

Description

Methods used for extracting fixed effects from objects of class splm where type is one of "fixed effects lag" or "fixed effects error"

Usage

```
## S3 method for class 'splm'
effects(object,...)
```

Arguments

```
object an object of class 'splm'
... additional arguments to be passed over
```

Details

If the argument object is not of class splm the function will terminate with an error.

If the argument object is of class splm but type is not one of "fixed effects lag" or "fixed effects error", the function will terminate with an error.

Insurance 5

Value

An object of class effects.splm

res

a list whose elements are various type of fixed effects and the intercept (when present)

Author(s)

Gianfranco Piras

References

Elhorst, J.P. (2003) Specification and estimation of spatial panel data models, *International Regional Science Review*, **26**, pages 244–268.

Elhorst, J.P. (2009) Spatial panel data models, *In* Fischer, M.M. and Getis, A. (eds), *Handbook of Applied Spatial Analysis* Springer, Berlin.

See Also

```
spml summary.effects.splm
```

Examples

```
data(Produc, package = "plm")
data(usaww)
fm <- log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp
err <- spml(fm, data = Produc, listw = mat2listw(usaww), model="within")
summary(err)
eff <- effects(err)
print(eff)</pre>
```

Insurance

Insurance consumption across Italian provinces, 1998-2002

Description

```
A panel of 103 observations

number of observations: 515

observation: provinces

country: Italy
```

Usage

```
data(Insurance)
```

6 Insurance

Format

A dataframe containing:

code the province code according to Istat

year the year of observation

ppcd real per capita premiums in 2000 euros, non-life insurance excluding mandatory motor thirdparty liability

rgdp real per-capita GDP

bank real per-capita bank deposits

den population density per square Km

rirs real interest rate on lending to families and small enterprises

agen density of insurance agencies per 1000 inhabitants

school share of people with second grade schooling or more

vaagr share of value added, agriculture

fam average number of family members

inef judicial inefficiency index: average years to settle first degree of civil case

trust survey result to the question "do you trust others?"

dXX year dummies

NorthWest macroregional dummy

NorthEast macroregional dummy

Centre macroregional dummy

South macroregional dummy

Islands macroregional dummy (Sicily and Sardinia)

Author(s)

Giovanni Millo

Source

Giovanni Millo and Gaetano Carmeci, (2011) "Non-life insurance consumption in Italy: a subregional panel data analysis", *Journal of Geographical Systems*, **13:273–298**.

itaww 7

itaww

Spatial weights matrix - Italian provinces

Description

Spatial weights matrix of the 103 Italian provinces as in 1992-2005.

Usage

```
data(itaww)
```

Format

A matrix with elements different from zero if province i and j are neighbors. Weights are row-standardized. Messina and Reggio Calabria, divided by the Messina Strait, are considered neighbours.

Author(s)

Giovanni Millo

listw2dgCMatrix

Interface between Matrix class objects and weights list

Description

Interface between Matrix class objects and weights list

Usage

```
listw2dgCMatrix(listw, zero.policy = NULL)
```

Arguments

listw a listw object created for example by nb2listw

zero.policy See lagsarlm for details

Value

Matrix class object: a sparse Matrix

Author(s)

Gianfranco Piras

8 print.splm

Examples

```
data(columbus, package="spdep")
listw<-nb2listw(col.gal.nb)
spW<-listw2dgCMatrix(listw)</pre>
```

print.splm

print method for class splm

Description

Method to print objects of class summary. splm and splm

Usage

```
## S3 method for class 'splm'
print(x, digits = max(3,getOption("digits") -3), ...)
```

Arguments

x an object of class splm

digits minimal number of significant digits, see print.default

... additional arguments to be passed

Details

The summary function summary. splm returns an objects of class 'splm' organized in a coefficient matrix.

Also a matrix for the error components, or the spatial coefficients will be generated depending on the estimated model.

Author(s)

Giovanni Millo, Gianfranco Piras

See Also

```
spml, spgm
```

Examples

```
data(Produc, package = "plm")
data(usaww)
spremod<-spml(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp, data=Produc,
listw = mat2listw(usaww), model="random", lag=TRUE, spatial.error="none")
summary(spremod)</pre>
```

RiceFarms 9

RiceFarms

Production of Rice in India

Description

yearly observations of 171 farms number of observations: 1026

country: Indonesia

economic topic : producer behavior
econometrics topic : error component

Usage

data(RiceFarms)

Format

A dataframe containing:

id the farm identifier

time the growing season

size the total area cultivated with rice, measured in hectares

status land status, on of 'owner' (non sharecroppers, owner operators or leasholders or both), 'share' (sharecroppers), 'mixed' (mixed of the two previous status)

varieties one of 'trad' (traditional varieties), 'high' (high yielding varieties) and 'mixed' (mixed varieties)

bimas bIMAS is an intensification program; one of 'no' (non-bimas famer), 'yes' (bimas farmer) or 'mixed' (part but not all of farmer's land was registered to be in the bimas program)

seed seed in kilogram

urea urea in kilogram

phosphate phosphate in kilogram

pesticide pesticide cost in Rupiah

pseed price of seed in Rupiah per kg

purea price of urea in Rupiah per kg

pphosph price of phosphate in Rupiah per kg

hiredlabor hired labor in hours

famlabor family labor in hours

totlabor total labor (excluding harvest labor)

wage labor wage in Rupiah per hour

goutput gross output of rice in kg

noutput net output, gross output minus harvesting cost (paid in terms of rice)

price price of rough rice in Rupiah per kg

region one of 'wargabinangun', 'langan', 'gunungwangi', 'malausma', 'sukaambit', 'ciwangi'

10 rwtest

Source

Journal of Applied Econometrics data archive: http://jae.wiley.com/.

References

Qu Feng and William C. Horrace, (2012) "Alternative Measures of Technical Efficiency: Skew, Bias and Scale", *Journal of Applied Econometrics*, **forthcoming**.

Horrace, W.C. and P. Schmidt (1996) "Confidence statements for efficiency estimates from stochastic frontier models", *Journal of Productivity Analysis*, **7**, 257–282.

riceww

Spatial weights matrix of Indonesian rice farms

Description

Spatial weights matrix of the 171 farms in the Indonesian Rice Farming example. Farms in the same village (out of six) are considered contiguous.

Usage

data(riceww)

Format

A matrix with elements different from zero if farms i and j are neighbors. Farms are considered neighbors if in the same village. Weights are row-standardized.

Author(s)

Giovanni Millo, data provided by Yves Croissant

rwtest

Randomization-based test of spatial dependence for panel models

Description

Randomization-based test of spatial dependence for panel models, robust to global dependence induced by common factors and to persistence (serial correlation) in the data

rwtest 11

Usage

```
rwtest(x, ...)
## S3 method for class 'formula'
rwtest(x, data, w, index = NULL, model = NULL,
                         replications = 99, seed=NULL, order=1,
                         mc=1, test = c("rho", "cd", "sclm"),
                         alternative=c("twosided", "onesided",
                                        "symmetric"), ...)
## S3 method for class 'panelmodel'
rwtest(x, w, replications = 99, seed=NULL,
                         order=1, mc=1,
                         test = c("rho", "cd", "sclm"),
                         alternative=c("twosided", "onesided",
                                        "symmetric"), ...)
## S3 method for class 'pseries'
rwtest(x, w, replications = 99, seed=NULL,
                         order=1, mc=1,
                         test = c("rho", "cd", "sclm"),
                         alternative=c("twosided", "onesided",
                                        "symmetric"), ...)
```

Arguments

x an object of class formula, panelmodel, or pseries (depending on the respec-

tive interface) describing the model to be tested

data a data.frame

an x n matrix describing proximity between individuals, with $w_i j = a$ where

a is any number such that as.logical(a)==TRUE, if i,j are neighbours, 0 or any number b such that as.logical(b)==FALSE elsewhere. Only the lower triangluar part (without diagonal) of w after coercing by as.logical() is evaluated for neighbouring information (but w can be symmetric). See also **Details**

and Examples.

index an optional numerical index, in case data has to be formatted by plm. data

model an optional character string indicating which type of model to estimate; if left to

NULL, the original heterogeneous specification of Pesaran is used

replications the number of Monte Carlo randomizations of the neighbourhood matrix (de-

fault: 99),

seed the optional random seed,

order the order of neighbourhood to test for,

mc the number of parallel threads to execute; defaults to 1 (serial execution); is

limited to the number of execution cores actually available, and depends on

operating system support.

test the type of test statistic to be returned. One of

• "rho" for the average correlation coefficient,

12 rwtest

- "cd" for Pesaran's CD statistic, or
- "sclm" for the scaled version of Breusch and Pagan's LM statistic,

alternative

the alternative hypothesis for the test, defaulting to (asymmetric) twosided, further arguments to be passed on to plm, such as e.g. effect or random. method

Details

This test is meant as a generalization of Pesaran's spatial dependence test "CD(p)" for robustness against global dependence (perhaps of the factor type) and persistence in the data, both of which the original test does not tolerate.

The procedure can be applied to model residuals as well as to individual pseries. See the comments in pcdtest as for the different methods.

Space is defined supplying a proximity matrix (elements coercible to logical) with argument w which provides information on whether any pair of individuals are neighbours or not. If order=1, only first-order neighbouring pairs will be used in computing the test; else, w will be transformed in the neighbourhood matrix of the appropriate order. The matrix need not be binary, so commonly used "row-standardized" matrices can be employed as well. nb objects from spdep must instead be transformed into matrices by **spdep**'s function nb2mat before using.

Notice that the "rho" and "cd" tests are permutationally equivalent.

The test is suitable also for unbalanced panels.

The test on a pseries is the same as a test on a pooled regression model of that variable on a constant, i.e. rwtest(some_pseries) is equivalent to rwtest(plm(some_var ~ 1, data = some_pdata.frame, model = "pooling") and also equivalent to rwtest(some_var ~ 1, data = some_data), where some_var is the variable name in the data which corresponds to some_pseries.

Value

An object of class "htest".

Author(s)

Giovanni Millo

References

Millo, G. (2016), A simple randomization test for spatial dependence in the presence of common factors and serial correlation, (unpublished), xx(x), pp. xxx-xxx. Pesaran, M.H. (2004), General Diagnostic Tests for Cross Section Dependence in Panels, CESifo Working Paper 1229. Pesaran, M.H. (2015), Testing Weak Cross-Sectional Dependence in Large Panels, Econometric Reviews, **34**(6-10), pp. 1089–1117.

Examples

```
data(Produc, package = "plm")
data(usaww)
fm < -\log(gsp) \sim \log(pcap) + \log(pc) + \log(emp) + unemp
## test on heterogeneous model (separate time series regressions)
rwtest(fm, data = Produc, w=usaww, index = c("state", "year"))
```

slag 13

slag

Spatial lag operator

Description

Spatial lagging method for vectors or pseries objects.

Usage

```
## S3 method for class 'pseries'
slag(x, listw, maxlag, ...)
```

Arguments

```
    x an object of class pseries
    listw an object of class listw
    maxlag the spatial lag order (including lower)
    ... additional arguments to be passed
```

Value

a pseries

Author(s)

Giovanni Millo

Examples

```
data(Produc, package="plm")
data(usaww)
usalw <- mat2listw(usaww)
fm <- log(gsp)~log(pcap)+log(pc)+log(emp)+unemp+slag(log(pcap),
    listw=usalw)
slxmod <- spreml(fm, data=Produc, w = usaww,
    model="pooling", lag=FALSE, errors="ols")</pre>
```

14 slmtest

slmtest

Locally robust panel Lagrange Multiplier tests for spatial dependence

Description

Locally robust LM tests for spatial lag (error) correlation sub spatial error (lag) correlation in panel models

Usage

```
slmtest(x,...)
## S3 method for class 'formula'
slmtest(formula, data, listw, model="pooling",
   test=c("lme","lml","rlme","rlml"), index=NULL, ...)
## S3 method for class 'plm'
slmtest(x, listw,
   test=c("lme","lml","rlme","rlml"), ...)
```

Arguments

formula	an object of class formula
data	a data.frame or pdata.frame containing the variables in the model
x	an object of class plm
listw	either a matrix or a listw representing the spatial structure
model	a character value specifying the transformation to be applied to the data.
test	one of $c("lme","lml","rlme","rlml")$, the test to be performed.
index	either NULL (default) or a character vector to identify the indexes among the columns of the ${\tt data.frame}$
	additional arguments to be passed

Details

This tests are panel versions of the locally robust LM tests of Anselin et al. (1996), based on a pooling assumption: i.e., they do not allow for any kind of individual effect. Therefore it is advisable to employ a within transformation whenever individual effects cannot be ruled out.

It must be kept in mind that these locally robust procedures have been designed for situations in which the "other" effect is not of substantial magnitude, and can behave suboptimally otherwise.

Four tests are available to be chosen through the test argument: "lml" for "LM lag" and, respectively, "lme" for "LM error" are the standard, non-robust versions, obtained simply pooling the cross-sectional versions; "rlml" and "rlme" are, respectively, the locally robust test for lag, allowing for a spatial error; and for error, allowing for a spatial lag.

The model argument, specified according to the standards of plm, is passed on internally and employed to determine the panel data transformation to be applied before calculating the test. Defaults to "pooling" (no transformation).

spgm 15

Value

an object of class htest

Author(s)

Giovanni Millo

References

Anselin, L., Bera, A.K., Florax, R. and Yoon, M.J. (1996) Simple diagnostic tests for spatial dependence. *Regional Science and Urban Economics*, **26**(1), 77-104. Elhorst, J.P. (2014) Spatial Panel data Models, in Spatial Econometrics (Springer) 37-93.

Examples

spgm

GM estimation of spatial panel data models

Description

GM estimation of panel data models with spatially correlated errors components of the form:

$$y_N(t) = \lambda W y + X_N(t)\beta + u_N(t)$$

$$u_N(t) = \rho W_N u_N(t) + \epsilon(t)$$

$$\epsilon_N = (e_T \otimes I_N)\mu_N + \nu_N$$

where ρ , and the variance components σ_{μ}^2 and σ_{ν}^2 are estimated by GM, and the model coefficients by a feasible GLS estimator. The model can also include additional (other than the spatial lag) endogenous variables.

16 spgm

Usage

```
spgm(formula, data=list(), index=NULL, listw =NULL, listw2 = NULL,
    model=c("within","random"), lag = FALSE, spatial.error=TRUE,
    moments = c("initial", "weights", "fullweights"), endog = NULL,
    instruments= NULL, lag.instruments = FALSE, verbose = FALSE,
    method = c("w2sls", "b2sls", "g2sls", "ec2sls"), control = list(),
    optim.method = "nlminb", pars = NULL)
```

Arguments

formula a description of the model to be fit. The details of model specification are given

for lm

data an object of class data.frame or pdata.frame. An optional data frame con-

taining the variables in the model. When the obect is a data. frame, the first

two columns may contain the indexes. See index

index if not NULL (default), a character vector to identify the indexes among the

columns of the data.frame

listw an object of class listw, matrix, or Matrix.

listw2 an object of class listw, matrix, or Matrix. Only if both lag and spatial.error

are both TRUE

model One of "within" or "random". The assumption made on the individual effects

lag if TRUE a spatial lag of the dependent variable is added to the regression equation

spatial.error a logic vector. If TRUE the spatial autoregressive error term is added to the model

and an estimate for ρ is produced

moments "initial" (default) defines the set of GM estimator to be used. Alternatives

are "weights" and "fullweights" (See Details)

endog additional endogenous variables. Default NULL. If not NULL should be specified

as a formula with no dependent variable (endog = $\sim x1 + x2$). Note the \sim before

the expression.

instruments external instruments. Default NULL. If not NULL should be specified as a formula

with no dependent variable (instruments = $\sim x1 + x2$). Note the \sim before the

expression.

lag.instruments

should the external instruments be spatially lagged?

verbose default FALSE, If TRUE reports function values during optimization

method One of "w2sls", "b2sls", "g2sls", "ec2sls". (See Details)

control a list of control parameters for the optimization

optim.method default set to "nlminb". or optionally a method passed to optim to use an

alternative optimizer.

pars initial values of the parameter rho and sigmav. The default for rho is to start

from a regression of the spatially lagged residuals on the residuals (depending on the model). For sigmav the starting value is the variance of the residuals

(again this depends on the model).

spgm 17

Details

The function is a very general interface to estimate various nested specifications of the general model including additional endogenous variables described above. When both spatial.error and lag are FALSE the model reduces to a panel data model with an additional endogeneous variable. The function then uses ivsplm to perform the Instrumental Variables and two-stage least squares for panel data model. method = "w2sls" corresponds to the fixed effects estimator, method = "b2sls" to the between effects model, method = "g2sls" to the GLS random effects model, and method = "ec2sls" to the Baltagi's EC2SLS.

When spatial.error is TRUE and lag is FALSE the model is one with spatially autocorrelated error components. If effects is "random", the Kapoor et al. (2007) GM estimator is performed and the residuals in the first step come from an OLS regression. When moments is "initial", the initial estimator is calculated. This first set of GM estimators is based only on a subset of the moments conditions and assigns equal weights to each of them. When moments is "fullweights", the second set of GM estimators is calculated. This estimator is based on the full set of moments conditions. It also involves the expression for the variance covariance matrix of the sample moments calculated under the assumption of normally distributed innovations. The calculation of the trace terms in the expression of the variance covariance matrix of the sample moments uses codes from the Matrix package. When moments is "weights", the third set of GM estimator is used. This is motivated by computational issues. The procedure is analogous to the second one but uses a simplified expression for the variance covariance matrix of the sample moments. If effects is "fixed", the initial estimator is a within estimator and the moments conditions of Kapoor et al. (2007) are modified accordingly.

Finally, when both spatial.error and lag are TRUE the complete model is estimated (with or without additional endogenous variables). OLS residuals are no longer consistent because of the spatially lagged dependent variable. If effects is "random", two initial estimators are computed: a within two-stage least squares and a between two stage least squares. The two sets of corresponding residuals are used in the spatial generalized moments estimator (GM) where the moments conditions of Kapoor et al. (2007) are again modified accordingly. If effects is "fixed", the initial estimator is a within two stage least squares estimator and the moments conditions of Kapoor et al. (2007) are modified accordingly.

Note that for the random effects models, σ_{μ}^2 is not reported. σ_1^2 is reported instead. However, a value for σ_{μ}^2 can easily be obtained from:

$$\sigma_1^2 = \sigma_\nu^2 + T \sigma_\mu^2$$

The function also produces an estimate for θ which is a function of the variance components.

Value

An object of class "splm".

coefficients GLS coefficients estimate of the model parameters

vcov the variance covariance matrix of the estimated coefficients

residuals the GLS residuals

fitted.values difference between response variable and residuals

sigma2 GLS residuals variance type 'random effect GM'

18 sphtest

rho	a vector including the spatial parameter and the variance components (see Details)
model	the matrix of the data used
call	the call used to create the object

Author(s)

Gianfranco Piras

References

Kapoor, M., Kelejian, H.H. and Prucha, I.R. (2007) Panel data model with spatially correlated error components, *Journal of Econometrics*, **140**, pages 97–130.

Mutl, J., and Pfaffermayr, M. (2011) The Hausman test in a Cliff and Ord panel model, *Econometrics Journal*, **14**, pages 48–76.

Kelejian, H.H. and Prucha, I.R. (1999) A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model, *International Economic Review*, **40**, pages 509–533.

Kelejian, H.H. and Prucha, I.R. (1999) A Generalized Spatial Two Stage Least Square Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, *Journal of Real Estate Finance and Economics*, **17**, pages 99–121.

Millo, G., Piras, G. (2012) splm: Spatial Panel Data Models in R. *Journal of Statistical Software*, **47(1)**, 1–38. URL http://www.jstatsoft.org/v47/i01/.

Examples

sphtest

Hausman test for spatial panel data models

Description

Hausman specification test for spatial panel data models

Usage

sphtest 19

Arguments

X	an object of class formula or splm
x2	an object of class splm
data	an object of class data.frame or pdata.frame. An optional data frame containing the variables in the model. When the obect is a data.frame, the first two columns may contain the indexes. See index
index	if not NULL (default), a character vector to identify the indexes among the columns of the $data$. frame
listw	an object of class listw created for example by nb2listw
spatial.model	one of $c("lag","error","sarar")$, the model to be estimated (only lag, only error, both lag and error dependence)
method	one of c("ML", "GM")
errors	one of c("BSK", "KPP"). When method is "ML" defines the specification of the innovations

Value

an object of class htest

Author(s)

Gianfranco Piras

References

Millo, G., Piras, G. (2012) splm: Spatial Panel Data Models in R. *Journal of Statistical Software*, **47(1)**, 1–38. URL http://www.jstatsoft.org/v47/i01/.

See Also

spgm

Examples

additional arguments to be passed

20 spml

spml

Spatial Panel Model by Maximum Likelihood

Description

Maximum likelihood (ML) estimation of spatial panel models, possibly with fixed or random effects.

Usage

Arguments

formula	a symbolic description of the model to be estimated
data	an object of class data.frame or pdata.frame. A data frame containing the variables in the model. When the object is a data.frame, the first two columns shall contain the indexes, unless otherwise specified. See index
index	if not NULL (default), a character vector to identify the indexes among the columns of the ${\sf data.frame}$
listw	an object of class listwor a matrix. It represents the spatial weights to be used in estimation.
listw2	an object of class listw or a matrix. Second of set spatial weights for estimation, if different from the first (e.g., in a 'sarar' model).
na.action	see spdep for more details.
model	one of c("within", "random", "pooling").
effect	one of $c("individual","time","twoways")$; the effects introduced in the model.
lag	default=FALSE. If TRUE, a spatial lag of the dependent variable is added.
spatial.error	one of $c("b","kkp","none")$. The type of spatial error in the specification, if any. See details.
	additional argument to pass over to other functions

Details

The models are estimated by two-step Maximum Likelihood. Further optional parameters to be passed on to the estimator may be: pvar: if TRUE the pvar function is called hess: if TRUE use numerical Hessian instead of GLS for the standard errors of the estimates quiet: if FALSE report function and parameters values during optimization initval: one of c("zeros", "estimate"), the initial values for the parameters. If "zeros" a vector of zeros is used. if "estimate" the initial

spml 21

values are retreived from the estimation of the nested specifications. Alternatively, a numeric vector can be specified. x.tol: Tolerance. See nlminb for details. rel.tol: Relative tolerance. See nlminb for details.

Value

An object of class "splm".

coefficients coefficients estimate of the model parameters

arcoef the coefficient for the spatial lag on y

errcomp the estimates of the error variance components

vcov the asymptotic variance covariance matrix of the estimated coefficients

vcov.arcoef the asymptotic variance of the estimated spatial lag parameter

vcov.errcomp the asymptotic variance covariance matrix of the estimated error covariance pa-

rameters

type 'random effects ML' residuals the model residuals

fitted.values the fitted values, calculated as $\hat{y} = X\hat{\beta}$

sigma2 GLS residuals variance

model the matrix of the data used

call the call used to create the object

logLik the value of the log likelihood function at the optimum

errors the value of the errors argument

Author(s)

Giovanni Millo

References

Baltagi, B.H., Song, S.H., Jung B. and Koh, W. (2007) Testing panel data regression models with spatial and serial error correlation. *Journal of Econometrics*, **140**, 5-51.

Millo, G., Piras, G. (2012) splm: Spatial Panel Data Models in R. *Journal of Statistical Software*, **47(1)**, 1–38. URL http://www.jstatsoft.org/v47/i01/.

See Also

spgm

22 spreml

Examples

```
data(Produc, package = "plm")
data(usaww)
fm < -\log(gsp) \sim \log(pcap) + \log(pc) + \log(emp) + unemp
## the two standard specifications (SEM and SAR) one with FE
## and the other with RE:
## fixed effects panel with spatial errors
fespaterr <- spml(fm, data = Produc, listw = mat2listw(usaww),</pre>
                   model="within", spatial.error="b", Hess = FALSE)
summary(fespaterr)
## random effects panel with spatial lag
respatlag <- spml(fm, data = Produc, listw = mat2listw(usaww),</pre>
                   model="random", spatial.error="none", lag=TRUE)
summary(respatlag)
## calculate impact measures
impac1 <- impacts(respatlag, listw = mat2listw(usaww, style = "W"), time = 17)</pre>
summary(impac1, zstats=TRUE, short=TRUE)
```

spreml

Spatial Panel Model with Random Effects by Maximum Likelihood

Description

Maximum likelihood (ML) estimation of spatial panel models with random effects and serial error correlation.

Usage

Arguments

formula	a symbolic description of the model to be estimated
data	an object of class data.frame or pdata.frame. A data frame containing the variables in the model. When the object is a data.frame, the first two columns shall contain the indexes, unless otherwise specified. See index
index	if not NULL (default), a character vector to identify the indexes among the columns of the $\mbox{\sc data.frame}$
W	an object of class listw or a matrix. It represents the spatial weights to be used in estimation.
w2	an object of class listw or a matrix. Second set of spatial weights for estimation, if different from the first (e.g., in a 'sarar' model).

spreml 23

lag default=FALSE. If TRUE, a spatial lag of the dependent variable is added.

errors Specifies the error covariance structure. See details.

pvar legacy parameter here only for compatibility.

hess default=FALSE. If TRUE estimate the covariance for beta_hat by numerical Hes-

sian instead of GLS at optimal values.

quiet default=TRUE. If FALSE, report function and parameters values during optimiza-

tion.

initval one of c("zeros", "estimate"), the initial values for the parameters. If

"zeros" a vector of zeros is used. if "estimate" the initial values are retreived from the estimation of the nested specifications. Alternatively, a numeric vector

can be specified.

x.tol control parameter for tolerance. See nlminb for details.

rel.tol control parameter for relative tolerance. See nlminb for details.
... additional arguments to pass over to other functions, e.g. method.

Details

Second-level wrapper for estimation of random effects models with serial and spatial correlation. The specifications without serial correlation (no "sr" in errors) can be called through spml, the extended ones only through spreml. The models are estimated by two-step Maximum Likelihood. Abbreviations in errors correspond to: "sem" Anselin-Baltagi type spatial autoregressive error: if present, random effects are not spatially correlated; "sem2" Kapoor, Kelejian and Prucha-type spatial autoregressive error model with spatially correlated random effects; "sr" serially correlated remainder errors; "re" random effects; "ols" spherical errors (usually combined with lag=T). The optimization method can be passed on as optional parameter. Default is "nlminb"; all constrained optimization methods from maxLik are allowed ("BFGS", "NM", "SANN") but the latter two are still experimental.

Value

An object of class "splm".

coefficients coefficients estimate of the model parameters

arcoef the coefficient for the spatial lag on y

errcomp the estimates of the error variance components

vcov the asymptotic variance covariance matrix of the estimated coefficients

vcov.arcoef the asymptotic variance of the estimated spatial lag parameter

vcov.errcomp the asymptotic variance covariance matrix of the estimated error covariance pa-

rameters

type 'random effects ML' residuals the model residuals

fitted.values the fitted values, calculated as $\hat{y} = X\hat{\beta}$

sigma2 GLS residuals variance model the matrix of the data used

24 summary.splm

call the call used to create the object

logLik the value of the log likelihood function at the optimum

errors the value of the errors argument

Author(s)

Giovanni Millo

References

Millo, G. (2014) Maximum likelihood estimation of spatially and serially correlated panels with random effects. *Computational Statistics and Data Analysis*, **71**, 914–933.

See Also

spml

Examples

summary.splm

summary method for class splm

Description

Method for summarizing the results of objects of class 'splm'

Usage

```
## S3 method for class 'splm'
summary(object,...)
```

Arguments

```
object an object of class 'splm'
... additional arguments to be passed
```

usaww 25

Details

The summary function summary. splm returns an objects of class 'splm' organized in a coefficient matrix.

Also a matrix for the error components, or the spatial coefficients will be generated depending on the estimated model.

When the 'splm' is produced by the function 'spsegm', the summary will be generated looping over the number of equations in the system.

Value

```
An object of class 'summary.splm'
```

Author(s)

Giovanni Millo, Gianfranco Piras

See Also

```
spml, spgm
```

Examples

usaww

Spatial weights matrix - US states

Description

Spatial weights matrix of the 48 continental US States based on the queen contiguity criterium.

Usage

```
data(usaww)
```

Format

A matrix with elements different from zero if state i and j are neighbors. Weights are row standardized. According to the queen contiguity criterium, Arizona and Colorado are considered neighbours.

Author(s)

Giovanni Millo

26 vcov.splm

vcov.splm

Covariance extractor method for splm objects

Description

Covariance extractor method for splm objects. Seldom used as such but needed, e.g., for interoperability with testing functions in lmtest and car.

Usage

```
## S3 method for class 'splm'
vcov(object, ...)
```

Arguments

```
object an object of class splm
... additional arguments to be passed; currently not used
```

Value

a covariance matrix of beta coefficients

Author(s)

Giovanni Millo

References

Zeileis, A. (2006) Object-Oriented Computation of Sandwich Estimators. *Journal of Statistical Software*, **16(9)**, 1-16.

Examples

```
## not run:
## data(Produc, package="plm")
## data(usaww)
## fm <- log(gsp)~log(pcap)+log(pc)+log(emp)+unemp
## sarremod <- spml(fm, data=Produc, listw = mat2listw(usaww),
## model="random", lag=TRUE, spatial.error="none")
## ## compact representation of betas
## library(lmtest)
## coeftest(sarremod)
## ## linear hypothesis test
## library(car)
## lht(sarremod, "log(pcap)=log(pc)")</pre>
```

Index

*Topic datasets	rwtest, 10
Insurance, 5	
itaww,7	slag, <u>13</u>
RiceFarms, 9	slmtest, 14
riceww, 10	sperrorgm(spgm), 15
usaww, <u>25</u>	spgm, 15
*Topic htest	sphtest, 18
bsjktest, 2	spml, 20
bsktest, 3	spreml, 22
rwtest, 10	spsarargm(spgm), 15
slmtest, 14	summary.splm,24
sphtest, 18	
*Topic slag	usaww, 25
slag, 13	1 00
*Topic spatial	vcov.splm, 26
effects.splm,4	
listw2dgCMatrix,7	
print.splm,8	
spgm, 15	
spm1, 20	
sprem1, 22	
summary.splm, 24	
*Topic vcov	
vcov.splm, 26	
veov. 3p.i.i., 20	
bsjktest,2	
bsktest, 3	
effects.splm,4	
Insurance, 5	
itaww, 7	
ivsplm(spgm), 15	
listw2dgCMatrix,7	
print.effects.splm(effects.splm), 4	
print.splm, 8	
RiceFarms, 9	
riceww.10	