Package ‘splitFeas’

April 11, 2018

Title Multi-Set Split Feasibility
Version 0.1.0

Description An implementation of the majorization-minimization (MM) algorithm introduced by
Xu, Chi, Yang, and Lange (2017) <arXiv:1612.05614> for solving multi-
set split feasibility problems. In the multi-set split feasibility problem, we seek to find a point x
in the intersection of multiple closed sets and whose image under a map-
ping also must fall in the intersection of several closed sets.

Depends compiler, corpcor, matrixStats
License MIT + file LICENSE
RoxygenNote 6.0.1
NeedsCompilation no

Author Eric C. Chi [aut, cre, cph],
Jason Xu [ctb],
Meng Yang [ctb],
Kenneth Lange [ctb]

Maintainer Eric C. Chi <ecchi1105@gmail.com>
Repository CRAN
Date/Publication 2018-04-11 08:15:34 UTC

R topics documented:

backtrack
ddg . . e e
dg . . e
MMAN_SEEP L e e e e e e e e e e e e e
nmsfp_mm e e
nmsfp_mmqan L e
nmsfp_sap e
nmsfp_sap_one_Step e
project_ball L
PIrOJECt_CUDE o o e e e e e e e
project_halfspace

2 ddg
PrOJECE_SQUATE . . .+ . v v v v e e i e e e e e e e e e e e e e e e e e 9
PrOXimity o o e e e e e e e e 10
QAN © ¢ v v v ot e 10
SOftmax e e e e 11
split_feasibility 11
wood_Inv_SOIVE e 12

Index 13

backtrack Backtracking Line Search

Description

Given a descent direction backtrack computes a step size that ensures sufficient decrease in an
objective.

Usage

backtrack(x, dx, f, df, alpha = 0.01, beta = 0.8)

Arguments

X Current iterate

dx Descent direction

f objective function

df gradient of objective function

alpha sufficient decrease parameter

beta sufficient decrease parameter

ddg Compute the approximate Hessian of the majorization.

Description

ddg computes the Hessian of the majorization of the proximity function.

Usage
ddg(

X, Vv, w, hgrad)

dg 3

Arguments
X non-anchor point
v weights for first set of constraints
w weights for second set of constraints
hgrad Handle for output mapping Jacobian
Examples

set.seed(12345)

n<-10

p <-2

x <= matrix(rnorm(p),p,1)

v <-1

w<-1

A <- matrix(rnorm(n*p),n,p)

hgrad <- function(x) {return(t(A))}
sol <- ddg(x,v,w,hgrad)

dg Compute the gradient of the majorization.

Description

dg computes the gradient of the majorization of the proximity function.

Usage
dg(x, xa, v, w, plist1l, plist2, h, hgrad)

Arguments

X non-anchor point

xa Anchor point

v weights for first set of constraints

w weights for second set of constraints

plistl list of projection functions for first set of constraints; each takes a single point
and returns its projection

plist2 list of projection functions for second set of constraints; each takes a single point
and returns its projection

h Function handle for output mapping

hgrad Handle for output mapping Jacobian

4 nmsfp_mm

mmgn_step MM-quasi-Newton step

Description

mmgn_step computes a single step.

Usage

mmgn_step(x, v, w, plistl, plist2, f, df, h, hgrad, woodbury = TRUE)

Arguments
X Current iterate
v weights for first set of constraints
w weights for second set of constraints
plisti list of projection functions for first set of constraints; each takes a single point
and returns its projection
plist2 list of projection functions for second set of constraints; each takes a single point
and returns its projection
f objective function
df gradient of objective function
h Function handle for output mapping
hgrad Handle for output mapping Jacobian
woodbury Boolean: TRUE to use the Woodbury inversion formula
nmsfp_mm MM algorithm for nonlinear multiple-sets split feasibility problem
Description

nmsfp_mm uses quasi-Newton updates to solve the nonlinear multiple-sets split feasibility problem.

Usage

nmsfp_mm(x@, v, w, plistl, plist2, f, df, h, hgrad, tol = 1e-10,
max_iter = 1000)

nmsfp_mmgqn 5
Arguments

x0 Initial iterate

v weights for first set of constraints

w weights for second set of constraints

plisti list of projection functions for first set of constraints; each takes a single point

and returns its projection
plist2 list of projection functions for second set of constraints; each takes a single point
and returns its projection

f objective function

df gradient of objective function

h Function handle for output mapping

hgrad Handle for output mapping Jacobian

tol Stopping tolerance

max_iter Maximum number of iterations
See Also

mmgn_step

nmsfp_mmgn MM algorithm (accelerated) for nonlinear multiple-sets split feasibil-
ity problem

Description

nmsfp_mmgn uses quasi-Newton updates to solve the nonlinear multiple-sets split feasibility prob-

lem.

Usage

nmsfp_mmgn(x@, v, w, plistl, plist2, f, df, h, hgrad, gn = 5, tol = 1e-10,

max_iter

Arguments

x0
%
w

plisti

plist2

1000)

Initial iterate
weights for first set of constraints
weights for second set of constraints

list of projection functions for first set of constraints; each takes a single point
and returns its projection

list of projection functions for second set of constraints; each takes a single point
and returns its projection

6 nmsfp_sap

f objective function
df gradient of objective function
h Function handle for output mapping
hgrad Handle for output mapping Jacobian
gn number of secants
tol convergence tolerance
max_iter maximum number of iterations
See Also

mmgn_step, gnamm

nmsfp_sap Self-adaptive projection-type method algorithm for nonlinear
multiple-sets split feasibility problem

Description

nmsfp_sap performs the self-adaptive projection-type method of Li et al.

Usage

nmsfp_sap(x0, v, w, plistl, plist2, proj, f, df, h, hgrad, delta = 0.3,
mu = 0.7, betad = 1, tol = 1e-10, max_iter = 1000)

Arguments

X0 Initial iterate

v weights for first set of constraints

w weights for second set of constraints

plistl list of projection functions for first set of constraints; each takes a single point
and returns its projection

plist2 list of projection functions for second set of constraints; each takes a single point
and returns its projection

proj handle to projection operation.

f objective function

df gradient of objective function

h Function handle for output mapping

hgrad Handle for output mapping Jacobian

delta step-size parameter

mu step-size parameter

beta0 initial

tol Tolerance

max_iter Maximum number of iterations

nmsfp_sap_one_step 7

nmsfp_sap_one_step One step of self-adaptive projection-type method for the NMSFP

Description

nmsfp_sap_one_step performs the self-adaptive projection-type method of Li et al.

Usage

nmsfp_sap_one_step(x, delta, mu, tau, gamma, df, proj)

Arguments

X current iterate

delta step-size parameter

mu step-size parameter

tau step-size parameter

gamma step-size parameter

df handle to gradient of objective function

proj handle to projection operation.
References

Li, Han, and Zhang. (2013) A self-adaptive projection-type method for nonlinear multiple-sets split
feasibility problem, Inverse Problems in Science and Engineering, 21(1):155-170.

project_ball Projection onto a ball

Description

project_ball computes the Euclidean projection of a point onto a ball.

Usage

project_ball(x, center, r)

Arguments
X Point to project
center Center of the sphere

r Radius of the sphere

8 project_halfspace

Examples

set.seed(12345)

p<-3

center <- rnorm(p)

r <- runif(1)

x <= rnorm(p)

y <- project_ball(x,center,r)

project_cube Project onto a cube

Description

project_cube computes the Euclidean projection of a point onto a cube.

Usage

project_cube(x, center, r)

Arguments

X Point to project

center Center of the square

r Half the length of a side
Examples

set.seed(12345)

p <-3

center <- matrix(rnorm(p),p,1)
r <- runif (1)

x <= matrix(rnorm(p),p,1)

y <- project_cube(x,center,r)

project_halfspace Projection onto a halfspace

Description

project_halfspace computes the Euclidean projection of a point onto a closed half-space. The
function returns the projection onto the set

Usage

project_halfspace(x, a, b)

project_square

Arguments
X Point to project
a is the normal vector
b is the threshold
Examples

set.seed(12345)
<-3
<- matrix(rnorm(p),p,1)
<- a/norm(a, 'f")
runif (1)
<- matrix(rnorm(p),p,1)
<- project_halfspace(x,a,b)

< X T o o ©T
AN
I

project_square Project onto a square

Description

project_square computes the Euclidean projection of a point onto a square.

Usage

project_square(x, center, r)

Arguments

X Point to project

center Center of the square

r Half the length of a side
Examples

set.seed(12345)

p <-2

center <- matrix(rnorm(p),p,1)
r <- runif(1)

x <= matrix(rnorm(p),p,1)

y <- project_square(x,center,r)

10

gnamm

proximity

Proximity function

Description

proximity computes the proximity function.

Usage

proximity(x, v, w, plistl, plist2, h)

Arguments
X Current iterate
v weights for first set of constraints
w weights for second set of constraints
plistl list of projection functions for first set of constraints; each takes a single point
and returns its projection
plist2 list of projection functions for second set of constraints; each takes a single point
and returns its projection
h Function handle for output mapping
gnamm Quasi-Newton acceleration of MM algorithm
Description

gnamm performs Quasi-Newton acceleration of an MM algorithm.

Usage

gnamm(x, fx_mm, gn, fx_obj, max_iter = 100, tol = 1e-06, ...)
Arguments

X initial iterate

fx_mm MM algorithm map

an number of secants

fx_obj handle to objective function

max_iter maximum number of iterations

tol convergence tolerance

Additional arguments to pass to fx_mm

softmax 11

References

H Zhou, D Alexander, and K Lange. (2011) A quasi-Newton acceleration method for high-dimensional
optimization algorithms, Statistics and Computing, 21(2):261-273.

softmax Compute soft-max

Description

softmax returns the soft maximum of a collection of reals.

Usage

softmax(x, a = 100)

Arguments

X input

a scaling factor
Examples

set.seed(12345)
n<-10

X <= rnorm(n)
softmax(x)

split_feasibility split_feasibility

Description

split_feasibility

12 wood_inv_solve

wood_inv_solve Compute the inverse approximate Hessian of the majorization using
the Woodbury inversion formula. wood_inv_solve computes the in-
verse of the Hessian term of the majorization of the proximity func-
tion using the Woodbury formula. The function mmqn_step invokes
wood_inv_solve instead of ddg if the argument woodbury=TRUE. This
should be used when p « n.

Description

Compute the inverse approximate Hessian of the majorization using the Woodbury inversion for-
mula. wood_inv_solve computes the inverse of the Hessian term of the majorization of the prox-
imity function using the Woodbury formula. The function mmgn_step invokes wood_inv_solve
instead of ddg if the argument woodbury=TRUE. This should be used when p « n.

Usage

wood_inv_solve(x, v, w, hgrad, df)

Arguments
X non-anchor point
v weights for first set of constraints
w weights for second set of constraints
hgrad Handle for output mapping Jacobian

df Right hand side

Index

backtrack, 2

ddg, 2
dg, 3

mmgn_step, 4

nmsfp_mm, 4
nmsfp_mmgn, 5
nmsfp_sap, 6
nmsfp_sap_one_step, 7

project_ball, 7
project_cube, 8
project_halfspace, 8
project_square, 9
proximity, 10

gnamm, 10

softmax, 11

split_feasibility, 11

split_feasibility-package
(split_feasibility), 11

wood_inv_solve, 12

13

	backtrack
	ddg
	dg
	mmqn_step
	nmsfp_mm
	nmsfp_mmqn
	nmsfp_sap
	nmsfp_sap_one_step
	project_ball
	project_cube
	project_halfspace
	project_square
	proximity
	qnamm
	softmax
	split_feasibility
	wood_inv_solve
	Index

