Package 'spiders'

August 29, 2016

Type Package
Title Fits Predator Preferences Model
Version 1.2
Date 2016-03-01
Description Fits and simulates data from our predator preferences model, <doi:10.1007 s10651-016-0341-3="">.</doi:10.1007>
Depends R (>= $3.0.2$)
Imports plyr
Suggests testthat, knitr, rmarkdown
License GPL (>= 2.0)
VignetteBuilder knitr
NeedsCompilation no
Author Edward A. Roualdes [cre, aut], Simon J. Bonner [aut]
Maintainer Edward A. Roualdes <eroualdes@csuchico.edu></eroualdes@csuchico.edu>
Repository CRAN
Date/Publication 2016-03-02 23:35:57
R topics documented:
spiders-package
calcHypotheses
checkHypotheses
converged
est1
estC
estCs
estCst
estCt
estGen
getTimeCounts

2 spiders-package

spid	ers-package	Fits predato	r prefere	ences mode	el.	
Index						16
	testC					
	sumT					
	summary.predPref . sumSp					
	simPref					
	print.summary.predF	Pref				 . 11
	predPref					
	11EM					 . 9
	11					 . 8

Description

Models predator preferences over an array of time and prey species

Details

Package: spiders Type: Package Version: 1.0

Date: 2014-04-30 License: GPL

Author(s)

Edward A. Roualdes <edward.roualdes@uky.edu>

References

Reliability Estimates for Ivlev's Electivity Index, the Forage Ratio, and a Proposed Linear Index of Food Selection Richard E. Strauss Transactions of the American Fisheries Society Vol. 108, Iss. 4, 1979

Examples

```
## make up some numbers
Predators <- 20
Traps <- 20
PreySpecies <- 3
Times <- 12
ST <- Times*PreySpecies</pre>
```

calcHypotheses 3

```
1 <- matrix(1:ST, nrow=Times, ncol=PreySpecies)
g <- matrix(2*(1:ST), nrow=Times, ncol=PreySpecies)
## simulate data
fdata <- simPref(PreySpecies, Times, Predators, Traps, 1, g)
## calculate model
(prefs <- predPref(fdata$eaten, fdata$caught))</pre>
```

calcHypotheses

calculate hypotheses

Description

calculates hypotheses, given a user specifed null and alternative

Usage

```
calcHypotheses(hyp, Xdst, Ydst, J, I, balanced, EM, em_maxiter)
```

Arguments

hyp	a 2-tuple specifying the null and alternative hypotheses, respectively
Xdst	matrix of sums of number of eaten prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
Ydst	matrix sum of number of caught prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
J	vector of predators caught in each time period
I	vector of number of days all traps were left out in a given time period
balanced	boolean specifying balanced data or not
EM	boolean specifying if EM algorithm should be used
em_maxiter	maximum number of iterations allowed for EM algorithm
checkHypotheses	function to check user specified hypotheses

Description

function to check user specified hypotheses

Usage

```
checkHypotheses(hyp)
```

Arguments

hyp

a 2-tuple specifying the null and alternative hypotheses, respectively

4 est1

converged	checks convergence of the parameters for the estimation functions

Description

checks convergence of the parameters for the estimation functions

Usage

```
converged(theta, theta_old, eps = 1e-05)
```

Arguments

theta an object, convertible to a matrix, of current parameter values theta_old an object, convertible to a matrix, of old parameter values

eps tolerance to determine convergence

est1 $estimate\ hypothesis\ c_st = 1$

Description

estimates parameters from hypothesis lambda = gamma

Usage

```
est1(Xdst, Ydst, J, I, EM, em_maxiter, BALANCED)
```

Arguments

Xdst	matrix of sums of number of eaten prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
Ydst	matrix sum of number of caught prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
J	vector of predators caught in each time period
I	vector of number of days all traps were left out in a given time period
EM	boolean; whether or not EM algorithm is used
em_maxiter	integer specifying max number of EM iterations
BALANCED	boolean; whether or not data are BALANCED

Details

There are S*T free parameters under this hypothesis.

estC 5

estC	$estimate\ hypothesis\ c_st = c$	

Description

estimate parameters from hypothesis lambda = c*gamma

Usage

```
estC(Xdst, Ydst, J, I, EM, em_maxiter, BALANCED)
```

Arguments

Xdst	matrix of sums of number of eaten prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
Ydst	matrix sum of number of caught prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
J	vector of predators caught in each time period
I	vector of number of days all traps were left out in a given time period
EM	boolean; whether or not EM algorithm is used
em_maxiter	integer specifying max number of EM iterations
BALANCED	boolean; whether or not data are BALANCED

Details

There are S*T + 1 free parameters under this hypothesis.

estCs	$estimate\ hypothesis\ c_st = c_s$	

Description

```
estimates parameters from hypothesis lambda_s = c_s * gamma_s
```

```
estCs(Xdst, Ydst, J, I, EM, em\_maxiter, BALANCED)
```

6 estCst

Arguments

Xdst	matrix of sums of number of eaten prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
Ydst	matrix sum of number of caught prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
J	vector of predators caught in each time period
I	vector of number of days all traps were left out in a given time period
EM	boolean; whether or not EM algorithm is used
em_maxiter	integer specifying max number of EM iterations
BALANCED	boolean; whether or not data are BALANCED

Details

There are S*T + S free parameters under this hypothesis.

estCst	estimate hypothesis c_st	

Description

estimates parameters from hypothesis lambda = c_st * gamma

Usage

```
estCst(Xdst, Ydst, J, I, EM, em_maxiter, BALANCED)
```

Arguments

Xdst	matrix of sums of number of eaten prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
Ydst	matrix sum of number of caught prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
J	vector of predators caught in each time period
I	vector of number of days all traps were left out in a given time period
EM	boolean; whether or not EM algorithm is used
em_maxiter	integer specifying max number of EM iterations
BALANCED	boolean; whether or not data are BALANCED

Details

There are 2*S*T free parameters under this hypothesis

estCt 7

estCt $estimate\ hypothesis\ c_st = c_t$

Description

estimates parameters from hypothesis lambda_t = $c_t * gamma_t$

Usage

```
estCt(Xdst, Ydst, J, I, EM, em_maxiter, BALANCED)
```

Arguments

Xdst	matrix of sums of number of eaten prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
Ydst	matrix sum of number of caught prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
J	vector of predators caught in each time period
I	vector of number of days all traps were left out in a given time period
EM	boolean; whether or not EM algorithm is used
em_maxiter	integer specifying max number of EM iterations
BALANCED	boolean; whether or not data are BALANCED

Details

There are S*T + T free parameters under this hypothesis.

est Gen estimate a reparameterization of the hypothesis c_st

Description

estimates parameters from hypothesis lambda != gamma, where lambda is indepdent of gamma

```
estGen(Xdst, Ydst, J, I, EM, em_maxiter, BALANCED)
```

8

Arguments

Xdst	matrix of sums of number of eaten prey species s during occurrence t; rows indexed by time, and cols indexed by prey species, TxS
Ydst	matrix sum of number of caught prey species s during occurrence t ; rows indexed by time, and cols indexed by prey species, TxS
J	vector of predators caught in each time period
I	vector of number of days all traps were left out in a given time period
EM	boolean; whether or not EM algorithm is used
em_maxiter	integer specifying max number of EM iterations
BALANCED	boolean; whether or not data are BALANCED

Details

There are 2*S*T free parameters under this hypothesis.

by time	sum specified column	getTimeCounts
---------	----------------------	---------------

Description

sum specified columns by time

Usage

```
getTimeCounts(data, vars)
```

Arguments

data	a dataframe
vars	column variables in data to sum over

11 observed count log-likelihood of predator preferances model

Description

log-likelihood of fully observed count data predator preferances model

```
11(Xdst, Ydst, lambda, gamma, J, I, c = NULL)
```

IIEM 9

Arguments

Xdst	matrix of sums of number of eaten prey species s during occurrence t; rows indexed by time and cols indexed by prey species, TxS
Ydst	matrix sum of number of caught prey species s during occurrence t; rows indexed by time and cols indexed by prey species, TxS
lambda	matrix of parameters representing rates predator ate prey species s in time period $t;TxS$
gamma	matrix of parameters representing rates traps caught prey species s in time period $t;TxS$
J	vector of predators caught in each time period
I	vector of number of days all traps were left out in a given time period
С	scalar in null hypotheses

11EM	non-observed count log-likelihood of predators preferances	
------	--	--

Description

log-likelihood for non-observed count data; model with EM

Usage

```
11EM(Zdst, Ydst, lambda, gamma, J, I, c = NULL)
```

Arguments

Zdst	matrix of sums of indicators whether or not predator ate prey species s during occurrence t; TxS
Ydst	matrix sum of number of caught prey species s during occurrence t; TxS
lambda	matrix of parameters representing rates predator ate prey species s in time period $t;TxS$
gamma	matrix of parameters representing rates traps caught prey species s in time period $t;TxS$
J	vector of predators caught in each time period
I	vector of number of days all traps were left out in a given time period
С	scalar in null hypotheses

10 predPref

predPref	parameter estimation	
----------	----------------------	--

Description

Estimates parameters of predator preferences model and calculates LRT. Eaten and caught dataframes are indexed with rows across time points and columns of prey species.

Usage

```
predPref(eaten, caught, hypotheses = c("c", "Ct"), alpha = 0.05,
  em_maxiter = 1000)
```

Arguments

eaten a dataframes of eatings preferences; TxS caught a dataframes of caught prey species; TxS

hypotheses a 2-tuple specifying the null and alternative hypotheses, respectively

alpha LRT level of significance

em_maxiter maximum number of iterations allowed for EM algorithm

Value

A list of class 'predPref' with the following elements:

null: parameters as estimated under the specified null hypothesis.

alt: parameters as estimated under the specified alternative hypothesis.

loglikH0: the null hypothesis log-likelihood, with constants not accounted for.

loglikH1: the alternative hypothesis log-likelihood, with constants not accounted for.

J: a column vector of dimension T containing the number of predators in each time period.

I: a column vector of dimension T containing the number of traps in each time period.

LRT: the likelihood ratio test statistics.

hypotheses: a 2-tuple of the user specified hypotheses.

data.name: a character string giving the names of the data.

See Also

```
simPref summary.predPref
```

Examples

```
# set parameters
Predators <- Traps <- 100
PreySpecies <- 2
Times <- 5
g <- matrix(sqrt(2), nrow=Times, ncol=PreySpecies)  # gamma
1 <- matrix(seq(0.4,1.8,length.out=5)*sqrt(2), nrow=Times, ncol=PreySpecies) # ct

# fit model
## Not run:
fdata <- simPref(PreySpecies, Times, Predators, Traps, 1, g, EM=FALSE)
predPref(fdata$eaten, fdata$caught, hypotheses=c('ct', 'cst'))

## End(Not run)</pre>
```

```
\verb"print.summary.predPref"
```

predPref summary print

Description

printing method for the summary function for class predPref

Usage

```
## S3 method for class 'summary.predPref'
print(x, ...)
```

Arguments

x object of class predPref
... additional arguments

simPref

simulate data

Description

simulate data for predator preferences model

```
simPref(S, T, J, I, lambda, gamma, EM = F)
```

12 summary.predPref

Arguments

S	number of prey species
Т	number of time periods
J	scalar or vector (of length T) number of predators caught at each time
I	scalar or vector (of length T) effective number of traps at each time
lambda	matrix of rates at which predator eats prey species; TxS
gamma	matrix of rates at which prey species is seen in habitat; TxS
EM	boolean specifying test of EM algorithm

Details

Both lambda and gamma must be specified as a matrix with rows indexing time and columns indexing the number of species.

Value

A list consisting of two dataframes, eaten and caught, made specifically for the function predPref.

See Also

predPref

summary.predPref predPref summary

Description

summary method for predPref objects as returned by the function predPref

Usage

```
## S3 method for class 'predPref'
summary(object, ..., sig.level = 0.05)
```

Arguments

object predPref object as returned from predPref()
... additional arguments

sig.level significance level used in hypothesis test

sumSp 13

sumSp

sum over species to get a vector of values for each time period

Description

sum over species to get a vector of values for each time period

Usage

```
sumSp(mat)
```

Arguments

mat

a matrix of values with columns indexing species

sumT

sum over times to get a vector of values for each species

Description

sum over times to get a vector of values for each species

Usage

```
sumT(mat)
```

Arguments

mat

a matrix of values with rows indexing time

testC

linear contrast of c_st

Description

estimates linear contrasts of the elements of c, c_s, c_t, or c_st from a predPref object

```
testC(x, b, mu = 0, alternative = c("two.sided", "less", "greater"),
  conf.level = 0.95, sig.level = 0.05)
```

14 testC

Arguments

x a predPref object as fit by the eponymous function
 b a vector to linearly transform c_st
 mu a number to test the linear contrast against in the null

alternative string to specify alternative hypothesis

conf. level confidence level of the interval

sig.level determines null/alternative hypothesis value of c_st from predPref

Details

The input vector b performs the linear transformation t(b) %*% matrix(c_st), so that c_st becomes a column vector by indexing t first and then s. Hence there is no requirement of a linear contrast, any linear transformation such that t(b) %*% matrix(1, nrow=length(b))!= 0 is allowed.

Of the two estimated hypotheses in the underlying call to predPref, the linear transformation b is applied to the hypothesis that is determined by the choice of sig.level.

Value

A list with class '"htest"' containing the following components:

statistic: the value of the t-statistic.

parameter: the degrees of freedom for the t-statistic.

p.value: the p-value for the test.

conf.int: a confidence interval for the mean appropriate to the specified alternative hypothesis.

estimate: the estimated mean or difference in means depending on whether it was a one-sample test or a two-sample test.

null.value: the specified hypothesized value of the mean or mean difference depending on whether it was a one-sample test or a two-sample test.

alternative: a character string describing the alternative hypothesis.

method: a character string indicating what type of t-test was performed.

data.name: a character string giving the names of the data.

Examples

```
# set parameters
Predators <- Traps <- 100
PreySpecies <- 2
Times <- 5
g <- matrix(sqrt(2), nrow=Times, ncol=PreySpecies)  # gamma
l <- matrix(seq(0.4,1.8,length.out=5)*sqrt(2), nrow=Times, ncol=PreySpecies) # ct

# fit model and contrast
## Not run:
set.seed(0)
fdata <- simPref(PreySpecies, Times, Predators, Traps, l, g, EM=FALSE) # p-value=0.305
pref <- predPref(fdata$eaten, fdata$caught, hypotheses=c('ct', 'cst'))</pre>
```

testC 15

```
testC(pref, b = c(0,1, -1, 0, 0)) # p-value > sig.level => ct is used, not cst ## End(Not run)
```

Index

```
*Topic spiders
    spiders-package, 2
calcHypotheses, 3
{\it checkHypotheses}, {\it \color{red} 3}
converged, 4
est1, 4
estC, 5
estCs, 5
estCst, 6
estCt, 7
estGen, 7
{\tt getTimeCounts}, \color{red} 8
11, 8
11EM, 9
predPref, 10, 12–14
\verb|print.summary.predPref|, 11
simPref, 10, 11
spiders (spiders-package), 2
spiders-package, 2
summary.predPref, 10, 12
sumSp, 13
sumT, 13
testC, 13
```