Package ‘spherepc’

March 30, 2020

Type Package
Title Spherical Principal Curves
Version 0.1.4

Author Jongmin Lee [aut, cre],
Jang-Hyun Kim [ctb],
Hee-Seok Oh [aut]

Maintainer Jongmin Lee <jongminlee9218@gmail.com>

Description Fitting a principal curve to data lying in the spherical surface.
This package provides principal circle, principal geodesic analysis, Hauberg's
principal curves, and spherical principal curves. Moreover, it offers locally
defined principal geodesics which are currently under study. The detailed procedures
are described in Jang-Hyun Kim, Jongmin Lee and Hee-Seok Oh (2020) <arXiv:2003.02578>.

Depends R (>=3.5.0)

License GPL (>=3)

Encoding UTF-8

Imports geosphere, rgl, sphereplot, stats
SystemRequirements XQuartz (on MacOS)
LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2020-03-30 13:20:02 UTC

R topics documented:

Calrecon e e
Crossprod
Dist.pt e
Earthquake
Expmap
ExtrinsicMean
GenerateCircle

2 Cal.recon
IntrinsicMean e e 8
Kernel.Gaussian e 10
Kernel.indicator e 11
Kernel.quartic e e e 12
Logmap e e e e 13
LPG . . . e e e 14
PGA . . e e 18
PrincipalCircle e 19
Proj.Hauberg e 21
Rotate e e e 22
Rotate.inv e e e 23
SPC . e e e e 24
SPC.Hauberg e e 26
Trans.Euclid e 28
Trans.sph L e e 29

Index 30

Cal.recon Calculating reconstruction error

Description

This function calculates reconstruction error.
Usage

Cal.recon(data, line)
Arguments

data matrix or data frame consisting of spatial locations with two columns. Each row

represents longitude and latitude.

line longitude and latitude of a line as a matrix or data frame with two columns.
Details

This function calculates reconstruction error from the data to the line. Longitude should range from

-180 to 180 and latitude from -90 to 90. This function requires to load ’geosphere’ R package.
Value

summation of squared distance from the data to the line on the unit sphere.
Author(s)

Jongmin Lee

Crossprod

Examples

library(geosphere) # This function needs to load 'geosphere' R packages.
data <- rbind(c(@, @), c(50, -10), c(100, -70))

line <- rbind(c(30, 30), c(-20, 50), c(50, 80))

Cal.recon(data, line)

Crossprod Crossproduct of vectors

Description

This function performs the cross product of two three-dimensional vectors.

Usage

Crossprod(vecl, vec2)

Arguments
vecl A three-dimensional vector.
vec2 A three-dimensional vector.
Details

This function performs the cross product of two three-dimensional vectors.

Value

three-dimensional vector.

Author(s)

Jongmin Lee

Examples

Crossprod(c(1, 1, 1), c(5,6,10))

4 Earthquake

Dist.pt The number of distinct points.

Description

This function calculates the number of distinct point in the given data.

Usage

Dist.pt(data)

Arguments
data matrix or dataframe consisting of spatial locations with two columns. Each row
represents longitude and latitude.
Details

This function calculates the number of distinct point in the given data.

Value

a numeric.

Author(s)

Jongmin Lee

Examples

Dist.pt(rbind(c(@, @), c(o, 1), c(1, @), c(1, 1), c(0, 0)))

Earthquake Earthquake

Description

It is an earthquake data from the U.S Geological Survey that collect significant earthquakes (8+
Mb magnitude) around the Pacific Ocean since the year 1900. The data are available from (https:
//www.usgs.gov). Additionally, note that distribution of the data has the following features: 1)
scattered, 2) curvilinear one-dimensional structure on the sphere.

Usage

data(Earthquake)

https://www.usgs.gov
https://www.usgs.gov

Expmap 5

Format

A data frame consisting of time, latitude, longitude, depth, magnitude, etc.

Examples

data(Earthquake)

names (Earthquake)

collect spatial locations (longitude/latitude) of data.
earthquake <- cbind(Earthquake$longitude, Earthquake$latitude)
library(rgl)

library(sphereplot)

library(geosphere)

#i### example 1: principal geodesic analysis (PGA)
PGA(earthquake)

#i#t## example 2: principal circle

circle <- PrincipalCircle(earthquake) # get center and radius of principal circle.
PC <- GenerateCircle(circle[1:2], circle[3]) # generate Principal circle.
sphereplot: :rgl.sphgrid() # plot

sphereplot: :rgl.sphpoints(earthquake, radius = 1, col = "blue”, size = 12)
sphereplot::rgl.sphpoints(PC, radius = 1, col = "red”, size = 9)

example 3: spherical principal curves (SPC, SPC.Hauberg)
SPC(earthquake) # spherical principal curves.
SPC.Hauberg(earthquake) # principal curves by Hauberg on sphere.

example 4: local principal geodesics (LPG)
LPG(earthquake, scale = 0.5, nu = 0.2, maxpt = 20)
LPG(earthquake, scale = 0.4, nu = 0.3)

Expmap Exponential map

Description

This function performs the exponential map at (0, 0, 1) on the unit sphere.

Usage

Expmap(vec)

Arguments

vec an element of two-dimensional Euclidean space.

6 ExtrinsicMean

Details

This function performs exponential map at (0, 0, 1) on the unit sphere. vec is an element of the
tangent plane of the unit sphere at (0, 0, 1), and the result is an element of the unit sphere in three-
dimensional Euclidean space.

Value

three-dimensional vector.

Author(s)

Jongmin Lee

References

Fletcher, P. T., Lu, C., Pizer, S. M. and Joshi, S. (2004). Principal geodesic analysis for the study of
nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23, 995-1005.

See Also

Logmap.

Examples

Expmap(c(1, 2))

ExtrinsicMean Finding Extrinsic Mean

Description

This function identifies the extrinsic mean of data on the sphere.

Usage

ExtrinsicMean(data, weights = rep(1, nrow(data)))

Arguments
data matrix or data frame consisting of spatial locations with two columns. Each row
represents longitude and latitude.
weights vector of weights.
Details

This function identifies the extrinsic mean of data.

GenerateCircle 7

Value

two-dimensional vector.

Note

In the case of spheres, if data set is not contained in a hemisphere, then it is possible that the extrinsic
mean of the data set does not exists, such as a great circle.

Author(s)

Jongmin Lee

References

Jang-Hyun Kim, Jongmin Lee, Hee-Seok Oh. (2020). Spherical Principal Curves <arXiv:2003.02578>.

See Also

IntrinsicMean.

Examples

comparison of Intrinsic mean and extrinsic mean.

example: noisy circular data set.

library(rgl)

library(sphereplot)

library(geosphere)

n <- 500 # the number of samples.

X <- 360 * runif(n) - 180

sigma <- 5

y <- 60 + sigma * rnorm(n)

simul.circle <- cbind(x, y)

data <- simul.circle

In.mean <- IntrinsicMean(data)

Ex.mean <- ExtrinsicMean(data)

plot (color of data is "blue"; that of intrinsic mean is "red" and
that of extrinsic mean is "green”.)

sphereplot: :rgl.sphgrid()

sphereplot::rgl.sphpoints(data, radius = 1, col = "blue”, size = 12)
sphereplot: :rgl.sphpoints(In.mean[1], In.mean[2], radius = 1, col = "red", size = 12)

sphereplot: :rgl.sphpoints(Ex.mean[1], Ex.mean[2], radius = 1, col = "green", size = 12)
GenerateCircle Generating circle on sphere
Description

This function makes a circle on the sphere.

8 IntrinsicMean

Usage

GenerateCircle(center, radius, T = 1000)

Arguments
center center of circle.
radius radius of circle. It should be in [0, pi].
T the number of points in circle.
Details

This function makes a circle on a sphere.

Value

matrix consisting of spatial locations with two columns.

Author(s)

Jongmin Lee

See Also

PrincipalCircle.

Examples

library(rgl)

library(sphereplot)

library(geosphere)

circle <- GenerateCircle(c(o, 0), 1)

plot (It requires to load 'rgl', 'sphereplot', and 'geosphere' R package.)

sphereplot: :rgl.sphgrid()

sphereplot::rgl.sphpoints(circle[, 1], circle[, 2], radius = 1, col = "blue”, size = 12)

IntrinsicMean Finding Intrinsic Mean

Description

This function calculates the intrinsic mean of data on the sphere.

Usage

IntrinsicMean(data, weights = rep(1, nrow(data)), thres = 1e-5)

IntrinsicMean 9

Arguments
data matrix or data frame consisting of spatial locations with two columns. Each row
represents longitude and latitude.
weights vector of weights.
thres threshold of the stopping conditions.
Details

This function calculates the intrinsic mean of data. The intrinsic mean is found by the gradient
descent algorithm, which works well if the data is well-localized. In the case of spheres, if data is
contained in a hemisphere, then the algorithm converges.

Value

two-dimensional vector.

Author(s)

Jongmin Lee

References

Fletcher, P. T., Lu, C., Pizer, S. M. and Joshi, S. (2004). Principal geodesic analysis for the study of
nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23, 995-1005.

See Also

ExtrinsicMean.

Examples

comparison of Intrinsic mean and extrinsic mean.

#i### example: circular data set.

library(rgl)

library(sphereplot)

library(geosphere)

n <- 500

X <= 360 * runif(n) - 180

sigma <- 5

y <- 60 + sigma * rnorm(n)

simul.circle <- cbind(x, y)

data <- simul.circle

In.mean <- IntrinsicMean(data)

Ex.mean <- ExtrinsicMean(data)

plot (color of data is "blue"; that of intrinsic mean is "red" and

that of extrinsic mean is "green".)

sphereplot::rgl.sphgrid()

sphereplot: :rgl.sphpoints(data, radius = 1, col = "blue”, size = 12)
sphereplot::rgl.sphpoints(In.mean[1], In.mean[2], radius = 1, col = "red"”, size = 12)
sphereplot: :rgl.sphpoints(Ex.mean[1], Ex.mean[2], radius = 1, col = "green”, size = 12)

10 Kernel. Gaussian

Kernel.Gaussian Gaussian kernel function

Description

This function returns the value of a Gaussian kernel function.

Usage

Kernel.Gaussian(vec)

Arguments

vec any length of vector.

Details

This function returns the value of a Gaussian kernel function. The value of kernel represents the
similarity from origin. The function returns a vector whose length is same as vec.

Value

vector.

Author(s)

Jongmin Lee

See Also

Kernel.indicator, Kernel.quartic.

Examples

Kernel.Gaussian(c(@, 1/2, 1, 2))

Kernel.indicator 11

Kernel.indicator Indicator kernel function

Description

This function returns the value of an indicator kernel function.

Usage

Kernel.indicator(vec)

Arguments

vec any length of vector.

Details

This function returns the value of an indicator kernel function. The value of kernel represents
similarity from origin. The function returns a vector whose length is same as vec.

Value

vector.

Author(s)

Jongmin Lee

See Also

Kernel.Gaussian, Kernel.quartic.

Examples

Kernel.indicator(c(0, 1/2, 1, 2))

12 Kernel.quartic

Kernel.quartic Quartic kernel function

Description

This function returns the value of a quartic kernel function.

Usage

Kernel.quartic(vec)

Arguments

vec any length of vector.

Details

This function returns the value of quartic kernel function. The value of kernel represents similarity
from origin. The function returns a vector whose length is same as vec.

Value

vector.

Author(s)

Jongmin Lee

See Also

Kernel.Gaussian, Kernel.indicator.

Examples

Kernel.quartic(c(0, 1/2, 1, 2))

Logmap 13

Logmap Logarithm map

Description

This function performs the logarithm map at (0, 0, 1) on the unit sphere.

Usage

Logmap(vec)

Arguments

vec an element of the unit sphere in three-dimensional Euclidean space.

Details

This function performs the logarithm map at (0, 0, 1) on the unit sphere. Note that, vec is normalized
to be contained in the unit sphere.

Value

two-dimensional vector.

Author(s)

Jongmin Lee

References

Fletcher, P. T., Lu, C., Pizer, S. M. and Joshi, S. (2004). Principal geodesic analysis for the study of
nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23, 995-1005.

See Also

Expmap.

Examples

Logmap(c(1/sqrt(2), 1/sqrt(2), 0))

14

LPG

LPG

Local principal geodesics

Description

Locally definded principal geodesic analysis.

Usage
LPG(data, scale = 0.04, tau = scale/3, nu = @, maxpt = 500,
seed = NULL, kernel = "indicator”, thres = le-4,
col = c("blue”", "green", "red"), size = c(12, 4, 6))
Arguments
data matrix or data frame consisting of spatial locations with two columns. Each row
represents longitude and latitude.
scale scale parameter for this function. The argument is the degree to which LPG
expresses data locally; thus, as scale grows as the result of LPG become similar
to that of PGA.
tau forwarding or backwarding distance of each step. It is empirically recommended
to choose a third of scale, which is the default of this argument.
nu parameter to alleviate the bias of resulting curves. nu represents the viscosity of
the given data and it should be selected in [0, 1). When the nu is close to 1, the
curves usually swirl around, similar to the motion of a large viscous fluid. The
swirling can be controlled by the argument maxpt.
maxpt maximum number of points that each curve has.
seed random seed number.
kernel kind of kernel function. The default is the indicator kernel and alternatives are
quartic or Gaussian.
thres threshold of the stopping condition for the IntrinsicMean contained in the LPG
function.
col three-dimensional vector which represents colors of data, points in the resulting
curves, and the connecting line between points in the resulting curves, respec-
tively.
size three-dimensional vector which represents sizes of data, points in the resulting
curves, and the connecting line between points in the resulting curves, respec-
tively.
Details

Locally definded principal geodesic analysis. The result is sensitive to scale and nu, especially
scale should be carefully chosen according to the structure of the given data.

LPG

Value

plot and a list consisting of

prin.curves spatial locations of points in the resulting curves.
line connecting line between points of prin.curves.
num. curves the number of the resulting curves.

Author(s)

Jongmin Lee

See Also
PGA, SPC, SPC.Hauberg.

Examples

library(rgl)
library(sphereplot)
library(geosphere)

#i### example 1: spiral data

n <- 500 # the number of samples.
sigma <- 0.2 # noise level.

r <- runif(n) x 42

theta <- -pi/10 * r + 2 + sigma * rnorm(n)

X <= r * cos(theta)

y <= r x sin(theta)

simul.spiral <- chind(x - 90, y)

LPG(simul.spiral, scale = 0.07, nu = 0.1)

#i### example 2: zigzag data set

n <- 50 # the number of samples is 6 * n = 300.
sigma <- 2 # noise level.
x1 <= runif(n) * 20 - 20

y1 <= x1 + 20 + sigma * rnorm(n)

x2 <= runif(n) * 20 - 20

y2 <= - x2 + 20 + sigma * rnorm(n)

x3 <- runif(n) * 20 - 20

y3 <- x3 + 60 + sigma * rnorm(n)

x4 <- runif(n) * 20 - 20

y4 <- - x4 - 20 + sigma * rnorm(n)

x5 <= runif(n) * 20 - 20

y5 <= x5 - 20 + sigma * rnorm(n)

x6 <- runif(n) * 20 - 20

y6 <- - x6 - 60 + sigma * rnorm(n)

x <- c(x1, x2, x3, x4, x5, x6)

y <= c(y1, y2, y3, y4, y5, y6)

simul.zigzag <- cbind(x, y)

LPG(simul.zigzag, scale = 0.1, nu = 0.1)

16

LPG

#it## example 3: earthquake data

data(Earthquake)

names (Earthquake)

earthquake <- cbind(Earthquake$longitude, Earthquake$latitude)
LPG(earthquake, scale = 0.5, nu = 0.2, maxpt = 20)
LPG(earthquake, scale = 0.4, nu = 0.3)

#i### example 4: tree data

stem

set.seed(7)

n <- 300 # the number of samples in stem.
sigma <- 0.1 # noise level of stem.

lat <= 70 * runif(n) - 10
lon <- @ + sigma * rnorm(n)
stem <- cbind(lon, lat)

branch

n2 <- 200 # the number of samples of each branch.
sigma2 <- 0.05 # noise level of branch.

lon <- -20 * runif(n2)

lat <- -lon + 10 + sigma2 * rnorm(n2)

branchl <- cbind(lon, lat)

lon <- 20 * runif(n2)

lat <- lon + sigma2 * rnorm(n2)
branch3 <- cbind(lon, lat)

lon <- 20 * runif(n2)

lat <- lon + 20 + sigma2 * rnorm(n2)
branch2 <- cbind(lon, lat)

lon <- 20 * runif(n2)

lat <- lon + 40 + sigma2 * rnorm(n2)
branch5 <- cbind(lon, lat)

lon <- -20 * runif(n2)

lat <- -lon + 30 + sigma2 * rnorm(n2)
branch4 <- cbind(lon, lat)

branch <- rbind(branch1, branch2, branch3, branch4, branch5)
sub-branches

n3 <- 20 # the number of samples of each sub-branch.
sigma3 <- 0.01 # noise level of sub-branch.
1<-1 # length of sub-branches
lon <= 1 * runif(n3) - 10

lat <- lon + 30 + sigma3 * rnorm(n3)
branches1 <- cbind(lon, lat)

lon <= -1 x runif(n3) + 10

lat <- -lon + 20 + sigma3 * rnorm(n3)
branches2 <- cbind(lon, lat)

lon <= -1 x runif(n3) + 10

lat <- -lon + 40 + sigma3 * rnorm(n3)
branches17 <- cbind(lon, lat)

lon <= 1 * runif(n3) - 14

lat <- lon + 38 + sigma3 * rnorm(n3)
branches3 <- cbind(lon, lat)

lon <= -1 x runif(n3) + 14

lat <- -lon + 28 + sigma3 * rnorm(n3)
branches4 <- cbind(lon, lat)

LPG

lon <= -1 * runif(n3) + 14

lat <- -lon + 48 + sigma3 * rnorm(n3)
branches18 <- cbind(lon, lat)

lon <= -1 * runif(n3) - 12

lat <- lon + 34 + sigma3 * rnorm(n3)
branches5 <- cbind(lon, lat)

lon <= 1 * runif(n3) + 12

lat <- -lon + 24 + sigma3 * rnorm(n3)
branches6 <- cbind(lon, lat)

lon <= 1 * runif(n3) + 12

lat <- -lon + 44 + sigma3 * rnorm(n3)
branches20 <- cbind(lon, lat)

lon <= -1 * runif(n3) - 16

lat <- lon + 42 + sigma3 * rnorm(n3)
branches7 <- cbind(lon, lat)

lon <= 1 * runif(n3) + 16

lat <- -lon + 32 + sigma3 * rnorm(n3)
branches8 <- cbind(lon, lat)

lon <= 1 * runif(n3) + 16

lat <- -lon + 52 + sigma3 * rnorm(n3)
branches19 <- cbind(lon, lat)

lon <= 1 * runif(n3) + 10

lat <- -lon + 60 + sigma3 * rnorm(n3)
branches9 <- cbind(lon, lat)

lon <= -1 * runif(n3) - 10

lat <- lon + 50 + sigma3 * rnorm(n3)
branches10 <- cbind(lon, lat)

lon <= -1 * runif(n3) + 12

lat <- -lon + 64 + sigma3 * rnorm(n3)
branches11 <- cbind(lon, lat)

lon <= 1 * runif(n3) - 12

lat <- lon + 54 + sigma3 * rnorm(n3)
branches12 <- cbind(lon, lat)

lon <= 1 * runif(n3) + 14

lat <- -lon + 68 + sigma3 * rnorm(n3)
branches13 <- cbind(lon, lat)

lon <= -1 * runif(n3) - 14

lat <- lon + 58 + sigma3 * rnorm(n3)
branches14 <- cbind(lon, lat)

lon <= -1 x runif(n3) + 16

lat <- -lon + 72 + sigma3 * rnorm(n3)
branches15 <- cbind(lon, lat)

lon <= 1 * runif(n3) - 16

lat <- lon + 62 + sigma3 * rnorm(n3)
branches16 <- cbind(lon, lat)

sub.branches <- rbind(branches1, branches2, branches3,
branches4,branches5, branches6, branches7, branches8,
branches9, branches1@, branches11, branchesi12,
branches13, branches14, branches15, branchesi6,
branches17, branches18, branches19, branches20)
tree <- rbind(stem, branch, sub.branches)
LPG(tree, scale = 0.03, nu = 0.1, seed = 7)

17

18 PGA

PGA Principal geodesic analysis

Description

This function performs principal geodesic analysis.

Usage

PGA(data, col = c("blue”, "red"), size = c(12, 6))

Arguments
data matrix or data frame consisting of spatial locations with two columns. Each row
represents longitude and latitude.
col two-dimensional vector which represents colors of data and the principal geodesic
line.
size two-dimensional vector which represents sizes of data and the principal geodesic
line.
Details

This function performs principal geodesic analysis.

Value

plot and a list consisting of

line spatial locations of points in the principal geodesic line.

Note

This function requires to load ’sphereplot’, *geosphere’ and ’rgl’ R package.

Author(s)

Jongmin Lee

References

Fletcher, P. T., Lu, C., Pizer, S. M. and Joshi, S. (2004). Principal geodesic analysis for the study of
nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23, 995-1005.

See Also
LPG.

PrincipalCircle 19

Examples

library(rgl)

library(sphereplot)

library(geosphere)

example 1: noisy half-great circle data

circle <- GenerateCircle(c(150, 60), radius = pi / 2)
half.circle <- circle[circle[, 1] < @, , drop = FALSE]

sigma <- 2

half.circle <- half.circle + sigma * rnorm(nrow(half.circle))
PGA(half.circle)

#i### example 2: noisy S-shaped data
The data consists of two parts: x ~ Uniform[@, 20], y = sqrt(20 x x - x*2) + N(@, sigma*2),
###H x ~ Uniform[-20, 0], y = -sqrt(-20 * x - x*2) + N(@, sigma*2).

n <- 500
X <= 60 * runif(n)
sigma <- 2

y <= (60 * x - x*2)*(1/2) + sigma * rnorm(n)
simul.S1 <- cbind(x, y)

z <= =60 * runif(n)

w<- -(-60 * z - z*2)*(1/2)+ sigma * rnorm(n)
simul.S2 <- cbind(z, w)

simul.S <- rbind(simul.S1, simul.S2)
PGA(simul.S)

PrincipalCircle Principal circle on sphere

Description

This function fits a principal circle on sphere via gradient descent algorithm.

Usage

PrincipalCircle(data, step.size = le-3, thres = le-5, maxit = 10000)

Arguments
data matrix or data frame consisting of spatial locations with two columns. Each row
represents longitude and latitude.
step.size step size of gradient descent algorithm. For convergence of the algorithm, step.size
is recommended to be below 0.01.
thres threshold of the stopping condition.

maxit maximum number of iterations.

20 PrincipalCircle

Details

This function fits a principal circle on sphere via gradient descent algorithm. The function returns
three-dimensional vectors whose components represent longitude and latitude of the center and the
radius of the circle in regular order.

Value

three-dimensional vector.

Author(s)

Jongmin Lee

References

Jang-Hyun Kim, Jongmin Lee, Hee-Seok Oh (2020), Spherical principal curves <arXiv:2003.02578>.

See Also

GenerateCircle

Examples

library(rgl)

library(sphereplot)

library(geosphere)

example 1: half-great circle data

circle <- GenerateCircle(c(150, 60), radius = pi/2)

half.great.circle <- circle[circle[, 1] < @, , drop = FALSE]

sigma <- 2

half.great.circle <- half.great.circle + sigma * rnorm(nrow(half.great.circle))
find a principal circle

PC <- PrincipalCircle(half.great.circle)

result <- GenerateCircle(PC[1:2], PC[3])

plot

rgl.sphgrid()

rgl.sphpoints(half.great.circle, radius = 1, col = "blue", size = 12)
rgl.sphpoints(result, radius = 1, col = "red", size = 6)

#i### example 2: circular data

n <- 700
x <- seq(-180, 180, length.out = n)
sigma <- 5

y <- 45 + sigma * rnorm(n)

simul.circle <- cbind(x, y)

find a principal circle

PC <- PrincipalCircle(simul.circle)
result <- GenerateCircle(PC[1:2], PC[3])
plot

sphereplot: :rgl.sphgrid()

Proj.Hauberg 21

sphereplot: :rgl.sphpoints(simul.circle, radius = 1, col = "blue", size = 12)
sphereplot::rgl.sphpoints(result, radius = 1, col = "red"”, size = 6)

#it## example 3: earthquake data

data(Earthquake)

names (Earthquake)

earthquake <- cbind(Earthquake$longitude, Earthquake$latitude)

PC <- PrincipalCircle(earthquake)

result <- GenerateCircle(PC[1:2], PC[31)

plot

sphereplot::rgl.sphgrid(col.long = "black”, col.lat = "black")
sphereplot::rgl.sphpoints(earthquake, radius = 1, col = "blue”, size = 12)

sphereplot::rgl.sphpoints(result, radius = 1, col = "red"”, size = 6)
Proj.Hauberg Projecting the nearest point
Description

This function performs the approximated projection for each data.

Usage

Proj.Hauberg(data, line)

Arguments
data matrix or data frame consisting of spatial locations with two columns. Each row
represents longitude and latitude.
line longitude and latitude of line as a matrix or data frame with two columns.
Details

This function returns the nearest points in 1ine for each point in the data. The function requires to
load the ’geosphere’ R package.
Value

matrix consisting of spatial locations with two columns.

Author(s)

Jongmin Lee

References

Hauberg, S. (2016). Principal curves on Riemannian manifolds. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38, 1915-1921.

22 Rotate

See Also

SPC.Hauberg

Examples

library(geosphere)
Proj.Hauberg(rbind(c(@, @), c(10, -20)), rbind(c(50, 10), c(40, 20), c(30, 30)))

Rotate Rotating point on sphere

Description

Rotate a point on the unit sphere.

Usage

Rotate(pt1, pt2)

Arguments
pt1 a spatial location.
pt2 a spatial location.
Details

This function rotates pt2 to the extent that pt1 to spherical coordinate (0, 90). The function returns
a point as a form of three-dimensional Euclidean coordinate.

Value

three-dimensional vector.

Author(s)

Jongmin Lee

References

https://en.wikipedia.org/wiki/Rodrigues_rotation_formula

See Also

Rotate.inv.

Rotate.inv 23

Examples

If "pt1” is north pole (= (@, 90)), Rotate() function returns Euclidean coordinate of "pt2".
Rotate(c(@, 90), c(10, 10)) # It returns Euclidean coornate of spatial location (10, 10).

The Trans.Euclid() function converts spatial coordinate (10, 10) to Euclidean coordinate.
Trans.Euclid(c(10, 10))

Rotate.inv Rotating point on sphere

Description

Rotate a point on the unit sphere.

Usage

Rotate.inv(pt1, pt2)

Arguments
pt1 a spatial location.
pt2 a spatial location.
Details

This function rotates pt2 to the extent that the spherical coordinate (0, 90) is rotated to pt1. The
function is the inverse of the Rotate function, and returns a point as a form of three-dimensional
Euclidean coordinate.

Value

three-dimensional vector.

Author(s)

Jongmin Lee

References

https://en.wikipedia.org/wiki/Rodrigues_rotation_formula

See Also

Rotate.

24

Examples

SPC

If "pt1” is north pole (= (@, 90)), Rotate.inv() returns Euclidean coordinate of "pt2".
It returns Euclidean coornate of spatial location (-100, 80).

Rotate.inv(c(@, 90), c(-100, 80))

It converts spatial coordinate (-100, 8@) to Euclidean coordinate.
Trans.Euclid(c(-100, 80))

SPC

Spherical principal curves

Description

This function fits a spherical principal curve.

Usage

SPC(data, q = 0.1, T = nrow(data), step.size = 1e-3, maxit = 30,
type = "Intrinsic”, thres = le-2, deletePoints = FALSE, plot.proj = FALSE,
kernel = "quartic”, col = c("blue”, "green", "red", "black"”), size = c(12, 6, 6))

Arguments

data

T

step.size

maxit

type

thres

deletePoints

plot.proj

kernel

matrix or data frame consisting of spatial locations with two columns. Each row
represents a longitude and latitude.

numeric value of the smoothing parameter. Intuitively speaking, the role of this
argument is similar to the that of bandwidth for kernel regression. The value
should be a numeric value between 0.01 and 0.5. The default is 0.1.

the number of points in the resulting curve.

step size of the PrincipalCircle function. The resulting principal circle is
used by an initialization of the SPC.

maximum number of iterations.

type of mean on the sphere. The default is "Intrinsic" and the other choice is
"Extrinsic".

threshold of the stopping condition.

logical value. The argument is an option of whether to delete points or not. If
deletePoints is FALSE, this function leaves the points in curves which do not
have adjacent data for each expectation step. As a result, the function usually re-
turns a closed curve, i.e., a curve without endpoints. If deletePoints is TRUE,
this function deletes the points in curves which do not have adjacent data for
each expectation step. As a result, The SPC function usually returns an open
curve, i.e., a curve with endpoints. The default is FALSE.

logical value. If the argument is TRUE, the projection line for each data is
plotted. The default is FALSE.

kind of kernel function. The default is quartic kernel and alternatives are indica-
tor or Gaussian.

SPC 25

col four-dimensional vector which represents colors of data, points in the resulting
curves, the connecting line between points in the resulting curves, and projection
lines, respectively.

size three-dimensional vector which represents sizes of data, points in the principal
curves, and the connecting line between points in the curves, respectively.
Details
This function fits a spherical principal curves, and requires to load the ’rgl’, ’sphereplot’, and ’geo-
sphere’ R packages.
Value

plot and a list consisting of

prin.curves spatial points of in the resulting principal curves.
line connecting line bewteen points of prin.curves.
converged whether or not the algorithm converged.
iteration the number of iterations of the algorithm.
recon.error sum of squared distances from the data to their projections.
num.dist.pt the number of distinct projections.

Note

This function requires to load 'rgl’, ’sphereplot’, and "geosphere’ R packages.

Author(s)

Jongmin Lee

References

Jang-Hyun Kim, Jongmin Lee, Hee-Seok Oh. (2020). Spherical Principal Curves <arXiv:2003.02578>.

See Also

SPC.Hauberg.

Examples

library(rgl)

library(sphereplot)

library(geosphere)

#it## example 1: earthquake data

data(Earthquake)

names (Earthquake)

earthquake <- cbind(Earthquake$longitude, Earthquake$latitude)
SPC(earthquake, g = 0.1)

example 2: waveform data

26
n <- 200
alpha <- 1/3
freq <- 4
sigma <- 2

SPC.Hauberg

amplitude
frequency

lon <- seq(-180, 180, length.out = n)

lat <- alpha * 180/pi * sin(lon * pi/180 * freq) + 10 + sigma * rnorm(length(lon))
wave <- cbind(lon, lat)

SPC(wave, q = 0.05)

SPC.Hauberg

principal curves by Hauberg on the sphere

Description

This function fits a principal curve by Hauberg on the sphere.

Usage

SPC.Hauberg(data, q = 0.1, T = nrow(data), step.size = 1e-3, maxit = 30,
type = "Intrinsic”, thres = le-2, deletePoints = FALSE, plot.proj = FALSE,
kernel = "quartic”, col = c("blue”, "green", "red", "black"”), size = c(12, 6, 6))

Arguments

data

T

step.size

maxit

type

thres

deletePoints

plot.proj

matrix or data frame consisting of spatial locations with two columns. Each row
represents longitude and latitude.

numeric value of the smoothing parameter. Intuitively speaking, the role of this
argument is similar to the that of bandwidth for kernel regression. The value
should be a numeric value between 0.01 and 0.5. The default is 0.1.

the number of points in the resulting curve.

step size of the PrincipalCircle. The resulting principal circle is used by an
initialization of the SPC.

maximum number of iterations.

type of mean on sphere. The default is "Intrinsic" and the alternative is "extrin-

sic".
threshold of the stopping condition.

logical value. The argument is an option of whether to delete points or not. If
deletePoints is FALSE, this function leaves the points in curves which do not
have adjacent data for each expectation step. As a result, the function usually re-
turns a closed curve, i.e., a curve without endpoints. If deletePoints is TRUE,
this function deletes the points in curves which do not have adjacent data for
each expectation step. As a result, The SPC function usually returns an open
curve, i.e., a curve with endpoints. The default is FALSE.

logical value. If the argument is TRUE, the projection line for each data is
plotted. The default is FALSE.

SPC.Hauberg 27

kernel kind of kernel function. The default is quartic kernel and alternatives are indica-
tor or Gaussian.

col four-dimensional vector which represents colors of data, points in the resulting
curves, the connecting line between points in the resulting curves, and projection
lines, respectively.

size three-dimensional vector which represents sizes of data, points in the principal
curves, and the connecting line between points in the curves, respectively.
Details
This function fits a principal curve proposed by Hauberg on the sphere, and requires to load the
’rgl’, “sphereplot’, and *geosphere’ R packages.
Value

plot and a list consisting of

prin.curves spatial points of in the resulting principal curves.
line connecting line bewteen points of prin.curves.
converged whether or not the algorithm converged.
iteration the number of iterations of the algorithm.
recon.error sum of squared distances from the data to their projections.
num.dist.pt the number of distinct projections.
plot plotting of the data and principal curves.
Note

This function requires to load ’rgl’, ’sphereplot’, and "geosphere’ R packages.

Author(s)

Jongmin Lee

References

Hauberg, S. (2016). Principal curves on Riemannian manifolds. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38, 1915-1921.

Jang-Hyun Kim, Jongmin Lee, and Hee-Seok Oh. (2020). Spherical Principal Curves <arXiv:2003.02578>.

See Also

SPC, Proj.Hauberg.

28 Trans.Euclid

Examples

library(rgl)

library(sphereplot)

library(geosphere)

example 1: earthquake data

data(Earthquake)

names (Earthquake)

earthquake <- cbind(Earthquake$longitude, Earthquake$latitude)
SPC.Hauberg(earthquake, q = 0.1)

#it## example 2: waveform data

n <- 200

alpha <- 1/3 # amplitude
freq <- 4 # frequency
sigma <- 2

lon <- seq(-180, 180, length.out = n)

lat <- alpha x 180/pi * sin(lon * pi/180 * freq) + 1@ + sigma * rnorm(length(lon))
wave <- cbind(lon, lat)

SPC.Hauberg(wave, q = 0.05)

Trans.Euclid Transforming into Euclidean coordinate

Description

This function converts a spherical coordinate to a Euclidean coordinate.

Usage

Trans.Euclid(vec)

Arguments

vec two-dimensional spherical coordinate.

Details

This function converts a two-dimensional spherical coordinate to a three-dimensional Euclidean
coordinate. Longitude should be range from -180 to 180 and latitude from -90 to 90.

Value

three-dimensional vector.

Author(s)

Jongmin Lee

See Also

Trans. sph.

Trans.sph 29

Examples

Trans.Euclid(c(0, 0))
Trans.Euclid(c(@, 90))
Trans.Euclid(c(90, 0))
Trans.Euclid(c(180, 0))
Trans.Euclid(c(-90, 0))

Trans.sph Transforming into spherical coordinate

Description

This function converts a Euclidean coordinate to a spherical coordinate.

Usage

Trans.sph(vec)

Arguments

vec three-dimensional Euclidean coordinate.

Details

This function converts a three-dimensional Euclidean coordinate to a two-dimensional spherical
coordinate. If vec is not in the unit sphere, it is divided by its magnitude so that the result lies on
the unit sphere.

Value

two-dimensional vector.

Author(s)

Jongmin Lee

See Also

Trans.Euclid.

Examples

Trans.sph(c(1, 0, 0))
Trans.sph(c(0, 1, 0))
Trans.sph(c(0, 0, 1))
Trans.sph(c(-1, @ , 0))
Trans.sph(c(0, -1, 0))

Index

+Topic ~principal curves
LPG, 14
SPC, 24
SPC.Hauberg, 26

+Topic ~principal geodesic analysis
LPG, 14
PGA, 18

+Topic ~principal nested sphere
GenerateCircle, 7
PrincipalCircle, 19

xTopic ~spherical surface
SPC.Hauberg, 26

+Topic datasets
Earthquake, 4

Cal.recon, 2
Crossprod, 3

Dist.pt, 4

Earthquake, 4
Expmap, 5, 13
ExtrinsicMean, 6, 9

GenerateCircle, 7, 20
IntrinsicMean, 7, 8

Kernel.Gaussian, 10, 17, 12
Kernel.indicator, 10, 11, 12
Kernel.quartic, 10, 11,12

Logmap, 6, 13
LPG, 14, 18

PGA, 14, 15,18
PrincipalCircle, 8, 19
Proj.Hauberg, 21, 27

Rotate, 22, 23
Rotate.inv, 22,23

30

SPC, 15,24, 27
SPC.Hauberg, 15, 22, 25, 26

Trans.Euclid, 28, 29
Trans.sph, 28, 29

	Cal.recon
	Crossprod
	Dist.pt
	Earthquake
	Expmap
	ExtrinsicMean
	GenerateCircle
	IntrinsicMean
	Kernel.Gaussian
	Kernel.indicator
	Kernel.quartic
	Logmap
	LPG
	PGA
	PrincipalCircle
	Proj.Hauberg
	Rotate
	Rotate.inv
	SPC
	SPC.Hauberg
	Trans.Euclid
	Trans.sph
	Index

