
Package ‘spectral’
June 3, 2019

Type Package

Title Common Methods of Spectral Data Analysis

Version 1.3

Author Martin Seilmayer

Maintainer Martin Seilmayer <m.seilmayer@hzdr.de>

Description Fourier and Hilbert transforms are utilized to perform several
types of spectral analysis on the supplied data. Fragmented and irregularly
spaced data can be processed in terms of Lomb-Scargle method. Both,
FFT as well as LOMB methods take multivariate data. A user friendly
interface helps to interpret the results.

License GPL-2

Depends rasterImage,lattice, R (>= 2.15.0)

LazyData TRUE

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2019-06-03 11:30:07 UTC

R topics documented:
analyticFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
BP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
filter.fft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
filter.lomb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
gLmb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
interpolate.fft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
lmb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
plot.fft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
plot.lomb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
spec.fft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



2 analyticFunction

spec.lomb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
waterfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
win.cos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
win.tukey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Windowfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Index 22

analyticFunction Analytic function

Description

In general a causal real valued signal in time has negative frequencies, when a Fourier transform
is applied. To overcome this, a complex complement can be calculated to compensate the negative
frequency spectrum. The result is called analytic signal or analytic function, which provides a one
sided spectrum.

Usage

analyticFunction(x)

Arguments

x real valued data vector

Details

An analytic function xa is composed of the real valued signal representation y and its Hilber trans-
form H(y) as the complex complement

xa(t) = x(t) + iH(x(t)).

In consequence, the analytic function has a one sided spectrum, which is more natural. Calculating
the discrete Fourier transform of such a signal will give a complex vector, which is only non zero
until the half of the length. Every component higher than the half of the sampling frequency is zero.
Still, the analytic signal and its spectrum are a unique representation of the original signal x(t). The
new properties enables us to do certain filtering and calculations more easily in the spectral space
compared to the standard FFT approach. Some examples are:

Filtering because the spectrum is one sided, the user must only modifiy values in the lower half of
the vector. This strongly reduces mistakes in indexing. See filter.fft

Envelope functions Since the Hilbert transform is a perfect phase shifter by pi/2, the envelope of
a band limited signal can be calculated. See envelope

Calculations Deriving and integrating on bandlimited discrete data becomes possible, without tak-
ing the symmetry of the discrete Fourier transform into account. The secound Example of the
spec.fft function calculates the derivative as well, but plays with a certered spectrum and its
corresponding "true" negative frequencies
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A slightly different approach on the analytic signal can be found in R. Hoffmann "Signalanalyse
und -erkennung" (Chap. 6.1.2). Here the signal x(t) is split into the even and odd part. According
to Marko (1985) and Fritzsche (1995) this two parts can be composed to the analytic signal, which
lead to the definition with the Hilbert transform above.

Value

Complex valued analytic function

References

R. Hoffmann, Signalanalyse und -erkennung: eine Einfuehrung fuer Informationstechniker, Berlin;
Heidelberg: Springer, 1998.

H. Marko, Systemtheorie: Methoden und Anwendungen fuer ein- und mehrdimensionale Systeme.
3. Aufl., Berlin: Springer, 1995.

G. Fritzsche, Signale und Funktionaltransformationen - Informationselektronik. Berlin: VEB Ver-
lag Technik, 1985

BP Simple bandpass function

Description

This function represents a simple weighting function for spectral filtering.

Usage

BP(f, fc, BW, n = 3)

Arguments

f vector of frequencies
fc center frequency
BW bandwidth, with w[f < (fc - BW) | f > (fc+BW)] == 0

n degree of the polynom, n can be real, e.g. n = 2.5

Details

The band pass is represented troughout a polynom in the form

w = 1 − a ∗ (f − fc)n

with the degree n. The parameter fc controlls the center frequency and a scales the required band
width BW. outside the band width the result is forced to zero.

Value

This function returns a weight vector, which is to apply to the frequency vector f in a top level
function
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envelope Calculates the envelope of a band limited signal

Description

The envelope of an amplitude modulated signal can be calculated by using the Hilbert-transform
H(y) of the signal or the analytic signal.

Usage

envelope(y)

Arguments

y numeric vector of the signal

Details

An amplitude modulated function y(x) = A(x) ∗ cos(ω ∗ x) can be demodulated as follows:

A(x)2 = y(x)2 +H(y(x))2

If the signal is not band limited, strange things can happen. See the ripple at the edges in the
example below. Pay attention, that the envelope is always the real part of the returned value.

Value

real valued envelope function of the signal

Examples

## noisy signal with amplitude modulation
x <- seq(0,1, length.out=2e2)

# original data
y <- (abs(x-0.5))*sin(20*2*pi*x)

ye <- base::Re(envelope(y))

# plot results
plot(x,y,type="l",lwd=1,col="darkgrey",lty=2,ylab="y",main="Spectral filtering")
lines(x,ye)
legend("bottomright",c("modulated","envelope"),col=c("grey","black"),lty=c(2,1))
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filter.fft Filter in the frequency domain

Description

This function provides a method to bandpass filter in the frequency domain.

Usage

filter.fft(y = stop("y-value is missing"), x = NULL, fc = 0,
BW = 0, n = 3)

Arguments

y numeric data vector

x optional x-coordinate

fc center frequency of the bandpass

BW bandwith of the bandpass

n parameter to control the stiffness of the bandpass

Details

A signal y is meant to be equaly spaced and causal, which means it starts at t = 0. For times
y < 0 the signal is not defined. The filtering itself takes place with the analytic function of y
which provides an one sided spectrum. Applying the Fourier transform, all properties of y will be
preserved.

The applied bandpass filter function is a simple polynomial approach, which weights the frequen-
cies. Setting fc = 0 one can achieve a low pass filter.

Examples

## noisy signal with amplitude modulation
x <- seq(0,1, length.out=500)

# original data
y_org <- (1+sin(2*2*pi*x))*sin(20*2*pi*x)

# overlay some noise
y_noise <- y_org+rnorm(length(x),sd=0.2)

# filter the noisy data
y_filt <- filter.fft(y_noise,x,fc=20,BW=4,n=50)

# plot results
plot(x,y_noise,type="l",lwd=1,col="darkgrey",lty=2,ylab="y",main="Spectral filtering")
lines(x,y_org,lwd=5,col="grey")
lines(x,y_filt)
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legend("topright",c("org","noisy","filtered"),col=c("grey","darkgrey","black")
,lty=c(1,2,1),lwd=c(5,1,1))

filter.lomb Filter and reconstruction of data analysed via spec.lomb

Description

Given an object of class lomb, this function allows the reconstruction of the input signal using (a) a
frequency selection of single or multiple frequency (ranges), and/or (b) the most significant peaks
in the periodogram.

Usage

filter.lomb(l = stop("No Lomb-Data"), newx = NULL, threshold = 6,
filt = NULL, phase = "nextnb")

Arguments

l lomb object

newx vector of new values at which the restored function is to be evaluated

threshold statistical threshold in terms of a standard deaviation of the amplidudes. It de-
termines which frequencies are used. Lower values give more frequencies.

filt vector or matix of frequencies (ranges) in which to select the frequencies

phase set the method to determine the phase at a given frequency

Details

To properly reconstruct the signal out of the calculated lomb-object, three different methods are
available, which are controlled by the filt-argument.

1. If filt=NULL, the most significant values in the (dense) spectrum are used.

2. If filt=c(f1, .., fn), the given frequencies are used. The corresponding phase is approx-
imated.

3. If class(filt)=="matrix", each row of the 2 x n matrix defines a frequency range. With in
each range the "significant" frequencies are selected for reconstruction.

Prior to the reconstruction the filter.lomb-function calculates the most significant amplitudes and
corresponding phases. As a measure to select the "correct" frequencies, the threshold argument
can be adjusted. The corresponding phases of the underlying sine/cosine-waves are estimated by
one of the four following methods.

1. phase=="nextnb"... use the phase of the bin of nearest neighbour.

2. phase=="lin"... linear interpolation between the two closest bins.

3. phase=="lockin"... principle of lock-in amplification, also known as quadrature-demodulation
technique.

4. phase=="fit"... non-linear least squares fit with stats::nls
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Value

This function returns a list which contains the reconstruction according to the lomb-object and newx
for the given data x and y. The returned object contains the following:

x,y reconstructed signal

f,A,phi used parameters from the lomb-object

p corresponding significance values

gLmb generalized Lomb-Scargle estimation function

Description

calculates the generalized Lomb-Scargle estimation after Zechmeister et al. (2009)

Usage

gLmb(f, dat, w, Y, hYY)

Arguments

f frequency

dat spatial vector including locations and values

w vector of weights

Y weighted sum of values

hYY weighted sum of squared values

Details

This method is based on the generalized approach

y(t) = a ∗ cos(w ∗ t) + b ∗ sin(w ∗ t) + c

which contains the floating average value c of the model function above. The calculation is vector-
ized to enhance calculation speed.
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H The Hilbert-transformation

Description

The Hilbert-transform is a phase shifter, which represents the complex complement to a real vauled
signal. It is calculated in the complex frequency space of the signal by using the Fourier transform.
Finally, calculating f = y + i ∗ H(y) gives the analytic signal, with a one sided spectrum. (See
analyticFunction)

Usage

H(x)

Arguments

x real valued time series

Value

A numeric real valued vector is returned

interpolate.fft interpolates data using the Fourier back transform

Description

There are two way to interpolate data from a given spectrum. Frist, one can do zero padding to
cover n new data points. Or, secound the complex amplitude with the associated frequency is taken
and evaluated at given points xout. Doing that for all frequencies and amplitudes will give the
interpolation.

Usage

interpolate.fft(y, x = NULL, n = NULL, xout = NULL)

Arguments

y numeric data vector to be interpolated
x numeric data vector with reference points
n number of new points
xout a vector new points

Value

A list with a x and y component is returned. The e99 value evaluates the error of the interpolation
with respect to linear approximation with the approx() function.
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lmb Lomb-Scargle estimation function

Description

calculates the standard Lomb-Scargle estimation. The calculation is vectorized to enhance calcula-
tion speed.

Usage

lmb(f, dat, var_val)

Arguments

f frequency

dat spatial vector including locations and values

var_val variance of the data

plot.fft Plot fft-objects

Description

This is a wrapper function to plot fft-class objects.

Usage

## S3 method for class 'fft'
plot(x, ...)

Arguments

x Object of the class fft

... further arguments to the plot functions

See Also

spec.fft

Examples

# See spec.fft
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plot.lomb plot method for Lomb-Scargle periodograms

Description

This method plots a standard Lomb-Scargle periodogram, which contains the normalized power
spectra PSD and the corresponding false alarm probability p. For more details refer to Zechmeister
et al. (2009).

Usage

## S3 method for class 'lomb'
plot(x, FAPcol = 1, FAPlwd = 1, FAPlty = "dashed",
FAPlim = c(1, 0.001), FAPlab = "FAP", legend.pos = "topleft",
legend.cex = 1, legend.on = T, legend.text = c("Spectrum",
"False Alarm Probability"), legend.lwd = NULL, legend.lty = NULL,
legend.col = NULL, xlab = "Frequency", ylab = "Normalized PSD",
main = "", ...)

Arguments

x object of class lomb
FAPcol color of the FAP line
FAPlwd line width of the FAP line
FAPlty line type for the FAP graph
FAPlim limits to the FAP
FAPlab label of the right vertical axis
legend.pos position of the legend
legend.cex cex value for the legend
legend.on logical, wheater to draw a legend or not
legend.text legend text
legend.lwd line width
legend.lty line type
legend.col color vector of the legend elements
xlab a label for the x axis, defaults to a description of x.
ylab a label for the y axis, defaults to a description of y.
main setting the title of the plot
... further parameters to the plot function

Details

The plot.lomb function is a wrapper function for R’s standard scatter plot To switch off certain
properties, simply overwrite the parameter. For example log = "" will reset the plot axis back to
non-log scale.
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References

M. Zechmeister and M. Kurster, "The generalised Lomb-Scargle periodogram. A new formalism for
the floating-mean and Keplerian periodograms", Astronomy & Astrophysics, 496(2), pp. 577–584,
2009.

See Also

spec.lomb

Examples

# See spec.lomb

spec.fft 1D/2D/nD (multivariate) spectrum of the Fourier transform

Description

This function calculates the Fourier spectrum of a given data object. The dimension of the array
can be of arbitary size e.g. 3D or 4D. The goal is to return a user friendly object, which contains
as much frequency vectors as ordinates of the array are present. spec.fft provides the ability to
center the spectrum along multiple axis. The output is already normalized to the sample count and
the frequencies are given in terms of 1/∆x-units.

Usage

spec.fft(y = NULL, x = NULL, z = NULL, center = T)

Arguments

y 1D data vector, y coordinate of a 2D matrix, nD (even 2D) array or object of
class fft

x x-coordinate of the data in y or z. If y is an array, x must be a named list
x = list(x = ..., y = ...).

z optional 2D matrix

center logical vector, indicating which axis to center in frequency space

Value

An object of the type fft is returned. It contains the spectrum, with "reasonable" frequency vectors
along each axis.

See Also

plot.fft
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Examples

# 1D Example with two frequencies
#################################

x <- seq(0, 1, length.out = 1e3)
y <- sin(4 * 2 * pi * x) + 0.5 * sin(20 * 2 * pi * x)
FT <- spec.fft(y, x)
par(mfrow = c(2, 1))
plot(x, y, type = "l", main = "Signal")
plot(

FT,
ylab = "Amplitude",
xlab = "Frequency",
type = "l",
xlim = c(-30, 30),
main = "Spectrum"

)

# 2D example with a propagating wave
####################################

x <- seq(0, 1, length.out = 1e2)
y <- seq(0, 1, length.out = 1e2)

# calculate the data
m <- matrix(0, length(x), length(y))
for (i in 1:length(x))

for (j in 1:length(y))
m[i, j] <- sin(4 * 2 * pi * x[i] + 10 * 2 * pi * y[j])

# calculate the spectrum
FT <- spec.fft(x = x, y = y, z = m)

# plot
par(mfrow = c(2, 1))
rasterImage2(x = x,

y = y,
z = m,
main = "Propagating Wave")

plot(
FT,
main = "2D Spectrum",
palette = "wb"
,
xlim = c(-20, 20),
ylim = c(-20, 20),
zlim = c(0, 0.51)
,
xlab = "fx",
ylab = "fy",
zlab = "A",
ndz = 3,
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z.adj = c(0, 0.5)
,
z.cex = 1

)

# 3D example with a propagating wave
####################################

# sampling vector
x <- list(x = seq(0,2,by = 0.05)[-1]

,y = seq(0,1, by = 0.05)[-1]
,z = seq(0,1, by = 0.1)[-1]

)

# initializing array
m <- array(data = 0,dim = sapply(x, length))

for(i in 1:length(x$x))
for(j in 1:length(x$y))
for(k in 1:length(x$z))

m[i,j,k] <- cos(2*pi*(5*x$x[i] + 4*x$y[j] + 2*x$z[k])) + sin(2*pi*(2*x$x[i]))^2

FT <- spec.fft(x = x, y = m, center = c(TRUE,TRUE,FALSE))

par(mfrow = c(2,2))
# plotting m = 0
rasterImage2( x = FT$fx

,y = FT$fy
,z = abs(FT$A[,,1])
,zlim = c(0,0.5)
,main="m = 0"
)

# plotting m = 1
rasterImage2( x = FT$fx

,y = FT$fy
,z = abs(FT$A[,,2])
,zlim = c(0,0.5)
,main="m = 1"

)

# plotting m = 2
rasterImage2( x = FT$fx

,y = FT$fy
,z = abs(FT$A[,,3])
,zlim = c(0,0.5)
,main="m = 2"

)
rasterImage2( x = FT$fx

,y = FT$fy
,z = abs(FT$A[,,4])
,zlim = c(0,0.5)
,main="m = 3"
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)

# calculating the derivative with the help of FFT
################################################
#
# Remember, a signal has to be band limited.
# !!! You must use a window function !!!
#

# preparing the data
x <- seq(-2, 2, length.out = 1e4)
dx <- mean(diff(x))
y <- win.tukey(x) * (-x ^ 3 + 3 * x)

# calcualting spectrum
FT <- spec.fft(y = y, center = TRUE)
# calculating the first derivative
FT$A <- FT$A * 2 * pi * 1i * FT$fx
# back transform
dm <- spec.fft(FT)

# plot
par(mfrow=c(1,1))
plot(

x,
c(0, diff(y) / dx),
type = "l",
col = "grey",
lty = 2,
ylim = c(-4, 3)

)
# add some points to the line for the numerical result
points(approx(x, Re(dm$y) / dx, n = 100))
# analytical result
curve(-3 * x ^ 2 + 3,

add = TRUE,
lty = 3,
n = length(x))

legend(
"topright",
c("analytic", "numeric", "spectral"),
title = "diff",
lty = c(3, 2, NA),
pch = c(NA, NA, 1),
col=c("black","grey","black")

)
title(expression(d / dx ~ (-x ^ 3 + 3 * x)))
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spec.lomb Lomb-Scargle Periodigram

Description

The Lomb-Scargle periodigram represents a statistical estimator for the amplitude and phase at a
given frequency. This function takes also multivariate (n-dimensional) input data.

Usage

spec.lomb(x = NULL, y = stop("Missing y-Value"), f = NULL,
ofac = 1, w = NULL, mode = "normal", maxMem = 100)

Arguments

x sampling vector or data frame data.frame(x1, x2, x3, ...)

y input data vector or data frame data.frame(x1, x2, ..., val)

f optional frequency vector / data frame. If not supplied f is calculated.

ofac in case f=NULL this value controlls the amount of frequency oversampling.

w weights for data. It must be a 1D vector.

mode "normal" calculates the normal Lomb-Scargle periodogram; "generalized"
calculates the generalized Lomb-Scargle periodogram including floating aver-
age and weights.

maxMem sets the amount of memory (in MB) to utilize, as a rough approximate.

Details

Since the given time series does not need to be evenly sampled, the data mainly consists of data pairs
x1, x2, x3, ... (sampling points) and (one) corresponding value y, which stores the realisa-
tion/measurement data. As can be seen from the data definition above multivariate (n-dimensional)
input data is allowed and properly processed.

Two different methods are implemented: the standard Lomb-Scargle method with

y(t) = a ∗ cos(ω(t− τ)) + b ∗ sin(ω(t− τ))

as model function and the generalized Lomb-Scargle (after Zechmeister 2009) method with

y(t) = a ∗ cos(ωt) + b ∗ sin(ωt) + c

as model function, which investigates a floating average parameter c as well.

Both methods can be supplied by an artifical dense frequency vector f. In conjunction with the
resulting phase information the user might be able to build a "Fourier" spectrum to reconstruct or
interpolate the timeseries in equally spaced sampling. Remind the band limitation which must be
fulfilled for this.

f The frequencies should be stored in a 1D vector or – in case of multivariate analysis – in a
data.frame structure to preserve variable names
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ofac If the user does not provide a corresponding frequency vector, the ofac parameter causes the
function to estimate

nf = ofac ∗ length(x)/2

equidistant frequencies.

p-value The p-value (aka false alarm probability FAP) gives the probability, wheater the estimated
amplitude is NOT significant. However, if p tends to zero the amplidutde is significant. The
user must decide which maximum value is acceptable, until an amplitude is not valid.

If missing values NA or NaN appear in any column, the whole row is excluded from calculation.

In general the function calculates everything in a vectorized manner, which speeds up the procedure.
If the memory requirement is more than maxMem, the calculation is split into chunks which fit in the
memory size.

Value

The spec.lomb function returns an object of the class lomb, which is a list containg the following
parameters:

A A vector with amplitude spectrum

f corresponding frequency vector

phi phase vector

PSD power spectral density normalized to the sample variance

floatAvg floating average value only in case of mode == "generalized"

x,y original data

p p-value as statistical measure

References

A. Mathias, F. Grond, R. Guardans, D. Seese, M. Canela, H. H. Diebner, and G. Baiocchi, "Al-
gorithms for spectral analysis of irregularly sampled time series", Journal of Statistical Software,
11(2), pp. 1–30, 2004.

J. D. Scargle, "Studies in astronomical time series analysis. II - Statistical aspects of spectral anal-
ysis of unevenly spaced data", The Astrophysical Journal, 263, pp. 835–853, 1982.

M. Zechmeister and M. Kurster, "The generalised Lomb-Scargle periodogram. A new formalism for
the floating-mean and Keplerian periodograms", Astronomy & Astrophysics, 496(2), pp. 577–584,
2009.

See Also

filter.lomb
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Examples

# create two sin-functions
x_orig <- seq(0,1,by=1e-2)
y_orig <- sin(10*2*pi*x_orig) + 0.1*sin(2*2*pi*x_orig)

# make a 10% gap
i <- round(length(x_orig)*0.2) : round(length(x_orig)*0.3)
x <- x_orig
y <- y_orig
x[i] <- NA
y[i] <- NA

# calculating the lomb periodogram
l <- spec.lomb(x = x, y = y,ofac = 20,mode = "normal")

# select a frequency range
m <- rbind(c(9,11))
# select and reconstruct the most significant component
l2 = filter.lomb(l, x_orig, filt = m)

# plot everything
par(mfrow=c(2,1),mar = c(4,4,2,4))
plot(x,y,"l", main = "Gapped signal")
lines(l2$x, l2$y,lty=2)
legend("bottomleft",c("gapped","10Hz component"),lty=c(1,2))

plot(l,main = "Spectrum")

### Multivariate -- 3D Expample ###
require(lattice)
fx <- 8.1
fy <- 5
fz <- 2

# creating frequency space
f <- expand.grid( fx = seq(-10,10,by = 0.25)

,fy = seq(-10,10,by = 0.25)
,fz = 0:3

)

# creating spatial space
pts <- expand.grid( x = seq(0,1,by = 0.025)

,y = seq(0,1,by = 0.025)
,z = seq(0,1,by = 0.025)

)

# gapping 30%
i <- sample(1:dim(pts)[1],0.7*dim(pts)[1])
pts <- pts[i,]
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# caluculating function
pts$val <- cos(2*pi*( fx*pts$x

+ fy*pts$y
+ fz*pts$z
) + pi/4

)

# display with lattice
levelplot(val~x+y,pts,subset = z == 0,main = "with z = 0")

# calculating lomb takes a while
# or we sample only a few points
# which enlarges the noise but accelerates the calculation
l <- spec.lomb(y = pts[sample(1:dim(pts)[1],5e2),]

,f = f
,mode = "generalized"
)

# name the stripes
l$fz_lev <- factor(x = paste("fz =",l$fz)
)

# display output
levelplot(PSD~fx+fy|fz_lev,l)

waterfall Estimate the local frequencies

Description

A waterfall-diagramm displays the local frequency in dependence of or spatial vector. One can
then locate an event in time or space.

Usage

waterfall(y = stop("y value is missing"), x = NULL, nf = 3,
width = 10)

Arguments

y numeric real valued data vector

x numeric real valued spatial vector. (time or space)

nf steepness of the bandpass filter, degree of the polynomial.

width normalized (to df ) maximum width of the bandpass.
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Details

Each frequency is evaluated by calculating the amplitude demodulation, which is equivalent to the
envelope function of the bandpass filtered signal. The frequency of interest defines automatically
the center frequency of the applied bandpass with the bandwidth BW :

BW = f0/4, BW < 4df− > BW = 4df,BW > width ∗ df− > BW = width ∗ df

The minimal frequency is df and f0 denotes the center frequency of the bandpass. With increas-
ing frequency the bandwidth becomes wider, which lead to a variable resolution in space and fre-
quency. This is comparable to the wavelet (or Gabor) transform, which scales the wavelet (window)
according to the frequency. However, the necessary bandwidth is changed by frequency to take the
uncertainty principle into account. Slow oscillating events are measured precisely in frequency and
fast changing processes can be determined more exact in space. This means for a signal with steady
increasing frequency the waterfall function will produce a diagonally stripe. See the examples
below.

Value

a special fft-object is returned. It has mode "waterfall" and x and fx present, so it is only plotable.

Examples

## noisy signal with amplitude modulation
x <- seq(0,1, length.out=1000)
# original data
# extended example from envelope function
y <- 2*(abs(x-0.5))*sin(10*2*pi*x) + ifelse(x > 0.5,sin(10*(1+2*(x - 0.5))*2*pi*x),0)
ye <- base::Re(envelope(y))

par(mfrow=c(2,1),mar=c(1,3.5,3,3),mgp=c(2.5,1,0))
# plot results
plot(x,y,type="l",lwd=1,col="darkgrey",lty=2,ylab="y",main="Original Data",xaxt="n",xlab="")
lines(x,ye)
legend("bottomright",c("modulated","envelope"),col=c("grey","black"),lty=c(2,1))

par(mar=c(3.5,3.5,2,0))
wf <- waterfall(y,x,nf = 3)
plot(wf,ylim=c(0,40),main="Waterfall")

## uncertainty principle
#
# take a look at the side effects at [0,30] and [1,0]
#
# with a large steepness e.g. n=50 you will gain
# artefacts.
#
x <- seq(0,1, length.out=500)
y <- sin(100*x*x)

par(mfrow=c(2,1),mar=c(1,3.5,3,3),mgp=c(2.5,1,0))
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# plot results
plot(x,y,type="l",lwd=1,col="darkgrey",lty=2,ylab="y",main="Original Data",xaxt="n",xlab="")

par(mar=c(3.5,3.5,2,0))
wf <- waterfall(y,x)
rasterImage2(x = wf$x, y= wf$fx,z=wf$A,ylim=c(0,40),main="Waterfall")

win.cos Cosine window function

Description

This window function returns a vector of weights with means of a cosine window

Usage

win.cos(n)

Arguments

n data vector to be windowed

See Also

Windowfunctions

win.tukey Tukey window function

Description

This window function returns a vector of weights with means of a Tukey-window. In contrast to a
cosine window this function is more steep at the beginning and the end. And it is 1 in the middle.

Usage

win.tukey(n, a = 0.5)

Arguments

n data vector to be windowed

a width of the rising and falling edge as ratio of the total data length

See Also

Windowfunctions
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Windowfunctions Windowfunctions

Description

Some typical windowfunctions are defined below:

Details

win.cos() cosine window

win.tukey() the tukey window

A window function weights a given dataset in a way, that the new data set is coerced to be periodic.
This method reduces the leakage effects of the Fourier transform.

Value

All window functions return a wighting vector with the same length as the provided data vector.

Examples

y <- 1:100
y_cos <- y * win.cos(y)
y_tuk <- y * win.tukey(y)

# Plot the original data
plot(y,main="Effect of window functions")
legend("topleft",c("original","cos","tukey"),pch=c(16,17))
points(y_cos,pch=16)
points(y_tuk,pch=17)
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