Package 'spe'

February 20, 2015

Version 1.1.2
Date 2009-02-24
Title Stochastic Proximity Embedding
Author Rajarshi Guha <rajarshi.guha@gmail.com>
Maintainer Rajarshi Guha <rajarshi.guha@gmail.com>
Description Implements stochastic proximity embedding as described by Agrafiotis et al. in PNAS, 2002, 99, pg 15869 and J. Comput. Chem., 2003,24, pg 1215
License GPL
ZipData no

NeedsCompilation yes

Repository CRAN

Date/Publication 2009-02-24 21:29:28

R topics documented:

eval.stress	 	 1
phone	 	 3
sample.max.distance	 	 3
spe	 	 4
swissroll	 	 · · · · · · · · · · · · · · · · · · ·
		7

Index

eval.stress

Evaluates the Sammon stress of an embedding

Description

Given an N dimensional dataset embedded M dimensions, this function will evaluate the Sammon stress of the embedding, via probability sampling

Usage

```
eval.stress( x, coord,
    ndim = 0, edim = 0, nobs = 0,
    samplesize = 1e6)
```

Arguments

x	The embedded data in matrix form. If present in a data.frame it will be coerced to a matrix
coord	The input data in matrix form. If present in a data.frame it will be coerced to a matrix
nobs	The number of observations (rows of the input matrix should be the same as the rows of the embedding matrix) If it is not specified nobs will be taken as nrow(coord)
ndim	The number of input dimensions. If not specified it will be taken as ncol(coord)
edim	The number of dimensions to embed in. If not specified it will be taken as $ncol(x)$
samplesize	The number of iterations for probability sampling. For a dataset of 6070 observations there will be 6070x6069/2 pairwise distances. The default value gives a close approximation and runs fast. If you want a better approximation 1e7 is a good value. YMMV

Details

The Sammon stress is given by

$$S = \sum_{i < j} \frac{(d_{ij} - r_{ij})^2}{r_{ij}} / \sum_{i < j} r_{ij}$$

where d_{ij} is the Euclidean distance between two observations in the embedded data and r_{ij} is the relationship (in this case it is the Euclidean distance but could be a similarity value) between the two observations in the input data

Value

Returns the value of the Sammon stress as a single number

References

Stochastic Proximity Embedding, J. Comput. Chem., 2003, 24, 1215-1221

See Also

spe

phone

Description

This dataset consists of the 3D points representing an image of a phone. The original data was stripped of connectivity information and centroids of the triangles were added to generate additional points

Usage

data(phone)

Format

A data.frame with 6070 rows and 3 column

Source

J. Comput. Chem., 2003, 24, 1215-1221

sample.max.distance Samples the distances in the input dimensions to get the maximum distance

Description

The maxmium distance in the input dimensions is required to generate a value of the neighborhood radius. For datasets with >1000 observations an all pairs calculation is prohibitive. Instead probability sampling is used so that two points are randomly chosen and their distance is calculated. This is repeated for a user specified number of times and the maximum distance obtained is kept track of and returned at the end.

Usage

Arguments

coord	The input data in matrix form. If present in a data.frame it will be coerced to a matrix
nobs	The number of observations (rows of the input matrix should be the same as the rows of the embedding matrix) If it is not specified nobs will be taken as nrow(coord)
ndim	The number of input dimensions. If not specified it will be taken as ncol(coord)
samplesize	The number of iterations for probability sampling. For a dataset of 6070 observations there will be $6070 \times 6069/2$ pairwise distances. The default value gives a close approximation and runs fast. If you want a better approximation 1e7 is a good value. YMMV

Value

Returns the value of the maxmium distance found as a single number

See Also

spe

spe

Implements the stochastic proximity embedding algorithm

Description

Embeds an N dimensional dataset in M dimensions, such that distances (or similarities) in the original N dimensions are maintained (as close as possible) in the final M dimensions

Usage

```
spe( coord, rcutpercent = 1, maxdist = 0,
nobs = 0, ndim = 0, edim,
lambda0 = 2.0, lambda1 = 0.01,
nstep = 1e6, ncycle = 100,
evalstress=FALSE, sampledist=TRUE, samplesize = 1e6)
```

Arguments

coord	This should be a matrix with number of rows equal to the number of observations and number of columns equal to the input dimension. A data frame may also be supplied and it will be converted to a matrix (so all names will be lost)
rcutpercent	This is the percentage of the maximum distance (as determined by probability sampling) that will be used as the neighborhood radius. Setting rcutpercent to a value greater than 1 effectively sets it to infinity.

maxdist	If you have alread calculated a mxaimum distance then you can supply it and probability sampling will not be carried out to obtain a maximum distance. The default is to carry out sampling. By setting maxdist to a non zero value sampling will not be carried out (even if sampledist=TRUE)
nobs	The number of observations. If it is not specified nobs will be taken as nrow(coord)
ndim	The number of input dimensions. If not specified it will be taken as ncol(coord)
edim	The number of dimensions to embed in
lambda0	The starting value of the learning parameter
lambda1	The ending value of the learning parameter
nstep	The number of refinement steps
ncycle	The number of cycles to carry out refinement for
evalstress	If TRUE the function will evaluate the Sammon stress on the final embedding
sampledist	If TRUE an approximation to the maximum distance in the input dimensions will be obtained via probability sampling
samplesize	The number of iterations for probability sampling. For a dataset of 6070 observations there will be 6070x6069/2 pairwise distances. The default value gives a close approximation and runs fast. If you want a bettr approximation 1e7 is a good value. YMMV

Details

Efficient determination of rcut is yet to be implemented (using the connected component method). As a result you will have to determine a value of rcutpercent by trail and error. The pivot SPE method (*J. Mol. Graph. Model.*, 2003, **22**, 133-140) is not yet implemented

Value

If evalstress is TRUE it will be a list with two components named x and stress. x is the matrix of the final embedding and stress is the final stress

Author(s)

Rajarshi Guha <rajarshi@presidency.com>

References

A Self Organizing Principle for Learning Nonlinear Manifolds, *Proc. Nat. Acad. Sci.*, 2002, **99**, 15869-15872 Stochastic Proximity Embedding, *J. Comput. Chem.*, 2003, **24**, 1215-1221 A Modified Rule for Stochastic Proximity Embedding, *J. Mol. Graph. Model.*, 2003, **22**, 133-140 A Geodesic Framework for Analyzing Molecular Similarities, *J. Chem. Inf. Comput. Sci.*, 2003, **43**, 475-484

See Also

eval.stress, sample.max.distance

swissroll

Examples

```
## load the phone dataset
data(phone)
## run SPE, embed$stress should be 0 or very close to it
## You can plot the embedding using the scatterplot3d package
## (This will take a few minutes to run)
embed <- spe(phone, edim=3, evalstress=TRUE)
## evaluate the Sammon stress
stress <- eval.stress(embed$x, phone)
## embed the Swiss Roll dataset in 2D
data(swissroll)
embed <- spe(swissroll, edim=2, evalstress=TRUE)</pre>
```

```
swissroll
```

Data points for the Swiss Roll function in 3 dimensions

Description

This dataset comprise 1000 3D points generated using:

 $x = \phi \cos \phi, y = \phi \sin \phi, z$

Usage

data(swissroll)

Format

A data.frame with 1000 rows and 3 column

6

Index

*Topic datasets
 phone, 3
 swissroll, 6
*Topic nonparametric
 eval.stress, 1
 sample.max.distance, 3
 spe, 4
eval.stress, 1, 5

phone, $\frac{3}{2}$

sample.max.distance, 3, 5
spe, 2, 4, 4
swissroll, 6