
Package ‘spatstat’
May 12, 2020

Version 1.64-1

Date 2020-05-10

Title Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests

Author Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>,
with substantial contributions of code by
Kasper Klitgaard Berthelsen;
Ottmar Cronie;
Tilman Davies;
Yongtao Guan;
Ute Hahn;
Abdollah Jalilian;
Marie-Colette van Lieshout;
Greg McSwiggan;
Tuomas Rajala;
Suman Rakshit;
Dominic Schuhmacher;
Rasmus Waagepetersen;
and Hangsheng Wang.
Additional contributions
by M. Adepeju;
C. Anderson;
Q.W. Ang;
R. Arellano;
J. Astrom;
R. Aue;
M. Austenfeld;
S. Azaele;
M. Baddeley;
C. Beale;
M. Bell;
R. Bernhardt;
T. Bendtsen;
A. Bevan;

1

2

B. Biggerstaff;
A. Bilgrau;
L. Bischof;
C. Biscio;
R. Bivand;
J.M. Blanco Moreno;
F. Bonneu;
J. Brown;
J. Burgos;
S. Byers;
Y.M. Chang;
J.B. Chen;
I. Chernayavsky;
Y.C. Chin;
B. Christensen;
L. Cobo Sanchez;
J.-F. Coeurjolly;
K. Colyvas;
H. Commenges;
R. Constantine;
R. Corria Ainslie;
R. Cotton;
M. de la Cruz;
P. Dalgaard;
M. D'Antuono;
S. Das;
P.J. Diggle;
P. Donnelly;
I. Dryden;
S. Eglen;
A. El-Gabbas;
B. Fandohan;
O. Flores;
E.D. Ford;
P. Forbes;
S. Frank;
J. Franklin;
N. Funwi-Gabga;
O. Garcia;
A. Gault;
J. Geldmann;
M. Genton;
S. Ghalandarayeshi;
J. Gilbey;
J. Goldstick;
P. Grabarnik;
C. Graf;
U. Hahn;

3

A. Hardegen;
M.B. Hansen;
M. Hazelton;
J. Heikkinen;
M. Hering;
M. Herrmann;
M. Hesselbarth;
P. Hewson;
H. Heydarian;
K. Hingee;
K. Hornik;
P. Hunziker;
J. Hywood;
R. Ihaka;
C. Icos;
A. Jammalamadaka;
R. John-Chandran;
D. Johnson;
M. Khanmohammadi;
R. Klaver;
P. Kovesi;
L. Kozmian-Ledward;
M. Kuhn;
J. Laake;
R.A. Lamb;
F. Lavancier;
T. Lawrence;
T. Lazauskas;
J. Lee;
G.P. Leser;
A. Li;
H.T. Li;
G. Limitsios;
A. Lister;
N. Luambua;
B. Madin;
M. Maechler;
J. Marcus;
K. Marchikanti;
R. Mark;
J. Mateu;
P. McCullagh;
U. Mehlig;
F. Mestre;
S. Meyer;
X.C. Mi;
L. De Middeleer;
R.K. Milne;

4

E. Miranda;
J. Moller;
A. Mollie;
I. Moncada;
M. Moradi;
V. Morera Pujol;
E. Mudrak;
G.M. Nair;
N. Najari;
N. Nava;
L.S. Nielsen;
F. Nunes;
J.R. Nyengaard;
J. Oehlschlaegel;
T. Onkelinx;
S. O'Riordan;
E. Parilov;
J. Picka;
N. Picard;
T. Pollington;
M. Porter;
S. Protsiv;
A. Raftery;
S. Rakshit;
B. Ramage;
P. Ramon;
X. Raynaud;
N. Read;
M. Reiter;
I. Renner;
T.O. Richardson;
B.D. Ripley;
E. Rosenbaum;
B. Rowlingson;
J. Rudokas;
T. Rudolph;
J. Rudge;
C. Ryan;
F. Safavimanesh;
A. Sarkka;
C. Schank;
K. Schladitz;
S. Schutte;
B.T. Scott;
O. Semboli;
F. Semecurbe;
V. Shcherbakov;
G.C. Shen;

5

P. Shi;
H.-J. Ship;
T.L. Silva;
I.-M. Sintorn;
Y. Song;
M. Spiess;
M. Stevenson;
K. Stucki;
J. Sulavik;
M. Sumner;
P. Surovy;
B. Taylor;
T. Thorarinsdottir;
L. Torres;
B. Turlach;
T. Tvedebrink;
K. Ummer;
M. Uppala;
A. van Burgel;
T. Verbeke;
M. Vihtakari;
A. Villers;
F. Vinatier;
M. Vogtland;
S. Voss;
S. Wagner;
H. Wang;
H. Wendrock;
J. Wild;
C. Witthoft;
S. Wong;
M. Woringer;
L. Yates;
M.E. Zamboni
and
A. Zeileis.

Maintainer Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Depends R (>= 3.3.0), spatstat.data (>= 1.4-2), stats, graphics,
grDevices, utils, methods, nlme, rpart

Imports spatstat.utils (>= 1.17-0), mgcv, Matrix, deldir (>= 0.0-21),
abind, tensor, polyclip (>= 1.10-0), goftest (>= 1.2-2)

Suggests sm, maptools (>= 0.9-9), gsl, locfit, spatial, RandomFields
(>= 3.1.24.1), RandomFieldsUtils(>= 0.3.3.1), fftwtools (>=
0.9-8)

Description Comprehensive open-source toolbox for analysing Spatial Point Patterns. Fo-
cused mainly on two-dimensional point patterns, including multitype/marked points, in any spa-
tial region. Also supports three-dimensional point patterns, space-time point patterns in any num-

6 R topics documented:

ber of dimensions, point patterns on a linear network, and patterns of other geometrical ob-
jects. Supports spatial covariate data such as pixel images.
Contains over 2000 functions for plotting spatial data, exploratory data analysis, model-
fitting, simulation, spatial sampling, model diagnostics, and formal inference.
Data types include point patterns, line segment patterns, spatial windows, pixel images, tessella-
tions, and linear networks.
Exploratory methods include quadrat counts, K-functions and their simulation envelopes, near-
est neighbour distance and empty space statistics, Fry plots, pair correlation function, ker-
nel smoothed intensity, relative risk estimation with cross-validated bandwidth selec-
tion, mark correlation functions, segregation indices, mark dependence diagnostics, and ker-
nel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kol-
mogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-
stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-
Smirnov, ANOVA) are also supported.
Parametric models can be fitted to point pattern data using the func-
tions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Pois-
son, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinan-
tal point processes. Models may involve dependence on covariates, inter-point interaction, clus-
ter formation and dependence on marks. Models are fitted by maximum likelihood, logistic re-
gression, minimum contrast, and composite likelihood methods.
A model can be fitted to a list of point patterns (replicated point pattern data) using the func-
tion mppm(). The model can include random effects and fixed effects depending on the experi-
mental design, in addition to all the features listed above.
Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fit-
ted model are supported (likelihood ratio test, analysis of de-
viance, Monte Carlo tests) along with basic tools for model selection (step-
wise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simula-
tion envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, par-
tial residuals, and added variable plots.

License GPL (>= 2)

URL http://www.spatstat.org

LazyData true

NeedsCompilation yes

ByteCompile true

BugReports https://github.com/spatstat/spatstat/issues

Repository CRAN

Date/Publication 2020-05-12 17:10:02 UTC

R topics documented:
spatstat-package . 28
adaptive.density . 55
add.texture . 56
addvar . 57
addVertices . 60

http://www.spatstat.org
https://github.com/spatstat/spatstat/issues

R topics documented: 7

affine . 61
affine.im . 62
affine.linnet . 63
affine.lpp . 65
affine.owin . 66
affine.ppp . 68
affine.psp . 69
affine.tess . 70
allstats . 72
alltypes . 73
angles.psp . 76
anova.lppm . 77
anova.mppm . 79
anova.ppm . 81
anova.slrm . 84
anylist . 85
anyNA.im . 86
append.psp . 87
applynbd . 88
area.owin . 91
areaGain . 92
AreaInter . 94
areaLoss . 96
as.box3 . 98
as.boxx . 99
as.data.frame.envelope . 100
as.data.frame.hyperframe . 101
as.data.frame.im . 102
as.data.frame.lintess . 103
as.data.frame.owin . 104
as.data.frame.ppp . 105
as.data.frame.psp . 106
as.data.frame.tess . 107
as.function.fv . 108
as.function.im . 110
as.function.leverage.ppm . 111
as.function.owin . 112
as.function.tess . 113
as.fv . 114
as.hyperframe . 116
as.hyperframe.ppx . 117
as.im . 119
as.interact . 124
as.layered . 125
as.linfun . 127
as.linim . 128
as.linnet.linim . 130
as.linnet.psp . 131

8 R topics documented:

as.lpp . 132
as.mask . 134
as.mask.psp . 135
as.matrix.im . 137
as.matrix.owin . 138
as.owin . 139
as.polygonal . 143
as.ppm . 144
as.ppp . 145
as.psp . 148
as.rectangle . 150
as.solist . 152
as.tess . 153
auc . 154
BadGey . 156
bc.ppm . 158
bdist.pixels . 159
bdist.points . 161
bdist.tiles . 162
beachcolours . 163
beginner . 164
begins . 165
berman.test . 166
bind.fv . 169
bits.envelope . 170
bits.test . 172
blur . 174
border . 176
bounding.box.xy . 177
boundingbox . 178
boundingcircle . 180
box3 . 181
boxx . 182
branchlabelfun . 183
bugfixes . 184
bw.abram . 186
bw.CvL . 188
bw.diggle . 190
bw.frac . 192
bw.lppl . 193
bw.pcf . 195
bw.ppl . 197
bw.relrisk . 198
bw.relrisklpp . 200
bw.scott . 202
bw.smoothppp . 204
bw.stoyan . 206
bw.voronoi . 207

R topics documented: 9

by.im . 208
by.ppp . 209
cauchy.estK . 211
cauchy.estpcf . 213
cbind.hyperframe . 215
CDF . 216
cdf.test . 217
cdf.test.mppm . 221
centroid.owin . 224
chop.linnet . 226
chop.tess . 227
circdensity . 228
clarkevans . 229
clarkevans.test . 231
clickbox . 232
clickdist . 233
clickjoin . 234
clicklpp . 235
clickpoly . 236
clickppp . 237
clip.infline . 238
closepairs . 239
closepairs.pp3 . 242
closetriples . 244
closing . 245
clusterfield . 246
clusterfit . 248
clusterkernel . 250
clusterradius . 251
clusterset . 253
coef.mppm . 255
coef.ppm . 257
coef.slrm . 258
collapse.fv . 259
colourmap . 260
colouroutputs . 262
colourtools . 263
commonGrid . 266
compareFit . 267
compatible . 269
compatible.fasp . 270
compatible.fv . 271
compatible.im . 272
compileK . 273
complement.owin . 275
concatxy . 276
Concom . 277
connected . 279

10 R topics documented:

connected.linnet . 281
connected.lpp . 282
connected.ppp . 284
connected.tess . 285
contour.im . 286
contour.imlist . 288
convexhull . 289
convexhull.xy . 290
convexify . 291
convolve.im . 292
coords . 293
corners . 295
covering . 296
crossdist . 297
crossdist.default . 298
crossdist.lpp . 299
crossdist.pp3 . 300
crossdist.ppp . 302
crossdist.ppx . 303
crossdist.psp . 304
crossing.linnet . 305
crossing.psp . 306
cut.im . 307
cut.lpp . 309
cut.ppp . 310
data.lppm . 313
data.ppm . 314
dclf.progress . 315
dclf.sigtrace . 317
dclf.test . 319
default.dummy . 323
default.expand . 324
default.rmhcontrol . 326
delaunay . 327
delaunayDistance . 328
delaunayNetwork . 329
deletebranch . 330
deltametric . 331
density.lpp . 333
density.ppp . 335
density.psp . 341
density.splitppp . 342
densityAdaptiveKernel . 344
densityEqualSplit . 346
densityfun.lpp . 348
densityfun.ppp . 350
densityHeat . 351
densityQuick.lpp . 353

R topics documented: 11

densityVoronoi . 355
densityVoronoi.lpp . 357
deriv.fv . 358
detpointprocfamilyfun . 360
dfbetas.ppm . 362
dffit.ppm . 364
dg.envelope . 366
dg.progress . 368
dg.sigtrace . 370
dg.test . 372
diagnose.ppm . 375
diameter . 380
diameter.box3 . 381
diameter.boxx . 382
diameter.linnet . 383
diameter.owin . 384
DiggleGatesStibbard . 385
DiggleGratton . 387
dilated.areas . 388
dilation . 389
dim.detpointprocfamily . 391
dimhat . 391
dirichlet . 392
dirichletAreas . 393
dirichletVertices . 394
dirichletWeights . 395
disc . 397
discpartarea . 398
discretise . 399
discs . 401
distcdf . 402
distfun . 404
distfun.lpp . 406
distmap . 407
distmap.owin . 408
distmap.ppp . 410
distmap.psp . 411
divide.linnet . 412
dkernel . 413
dmixpois . 414
domain . 416
dppapproxkernel . 419
dppapproxpcf . 419
dppBessel . 420
dppCauchy . 421
dppeigen . 422
dppGauss . 423
dppkernel . 424

12 R topics documented:

dppm . 424
dppMatern . 428
dppparbounds . 429
dppPowerExp . 430
dppspecden . 431
dppspecdenrange . 432
dummify . 433
dummy.ppm . 434
duplicated.ppp . 435
edge.Ripley . 436
edge.Trans . 438
edges . 440
edges2triangles . 441
edges2vees . 442
edit.hyperframe . 443
edit.ppp . 444
eem . 445
effectfun . 446
ellipse . 448
Emark . 449
emend . 451
emend.ppm . 452
endpoints.psp . 454
envelope . 455
envelope.envelope . 466
envelope.lpp . 468
envelope.pp3 . 472
envelopeArray . 475
eroded.areas . 476
erosion . 477
erosionAny . 479
eval.fasp . 480
eval.fv . 481
eval.im . 483
eval.linim . 485
ewcdf . 486
exactMPLEstrauss . 488
expand.owin . 489
Extract.anylist . 490
Extract.fasp . 491
Extract.fv . 493
Extract.hyperframe . 494
Extract.im . 496
Extract.influence.ppm . 499
Extract.layered . 500
Extract.leverage.ppm . 502
Extract.linim . 503
Extract.linnet . 504

R topics documented: 13

Extract.listof . 505
Extract.lpp . 506
Extract.msr . 508
Extract.owin . 509
Extract.ppp . 510
Extract.ppx . 513
Extract.psp . 515
Extract.quad . 516
Extract.solist . 517
Extract.splitppp . 519
Extract.tess . 520
extrapolate.psp . 521
F3est . 522
fardist . 524
fasp.object . 525
Fest . 527
Fiksel . 531
Finhom . 533
fitin.ppm . 535
fitted.lppm . 537
fitted.mppm . 538
fitted.ppm . 540
fitted.slrm . 542
fixef.mppm . 543
flipxy . 544
FmultiInhom . 545
foo . 546
formula.fv . 547
formula.ppm . 549
fourierbasis . 550
Frame . 551
fryplot . 552
funxy . 554
fv . 556
fv.object . 558
fvnames . 559
G3est . 561
gauss.hermite . 562
Gcom . 563
Gcross . 567
Gdot . 570
Gest . 573
Geyer . 576
Gfox . 578
Ginhom . 580
Gmulti . 582
GmultiInhom . 585
Gres . 587

14 R topics documented:

gridcentres . 588
gridweights . 590
grow.boxx . 591
grow.rectangle . 592
Hardcore . 593
harmonic . 594
harmonise . 596
harmonise.fv . 597
harmonise.im . 598
harmonise.msr . 599
harmonise.owin . 600
has.close . 602
headtail . 603
heatkernelapprox . 604
Hest . 605
hextess . 608
HierHard . 609
hierpair.family . 611
HierStrauss . 612
HierStraussHard . 613
hist.funxy . 615
hist.im . 616
hopskel . 618
hotrod . 619
Hybrid . 620
hybrid.family . 622
hyperframe . 623
identify.ppp . 624
identify.psp . 625
idw . 627
Iest . 629
im . 631
im.apply . 633
im.object . 634
imcov . 636
improve.kppm . 637
incircle . 639
increment.fv . 640
infline . 641
influence.ppm . 643
inforder.family . 644
insertVertices . 645
inside.boxx . 646
inside.owin . 648
integral.im . 649
integral.linim . 651
integral.msr . 652
intensity . 653

R topics documented: 15

intensity.dppm . 654
intensity.lpp . 655
intensity.ppm . 656
intensity.ppp . 657
intensity.ppx . 659
intensity.psp . 660
intensity.quadratcount . 661
interp.colourmap . 662
interp.im . 663
intersect.lintess . 664
intersect.owin . 665
intersect.tess . 667
invoke.symbolmap . 669
ippm . 670
is.connected . 672
is.connected.ppp . 674
is.convex . 675
is.dppm . 676
is.empty . 676
is.hybrid . 677
is.im . 678
is.linim . 679
is.lpp . 680
is.marked . 680
is.marked.ppm . 681
is.marked.ppp . 683
is.multitype . 684
is.multitype.ppm . 685
is.multitype.ppp . 686
is.owin . 688
is.ppm . 688
is.ppp . 689
is.rectangle . 690
is.stationary . 691
is.subset.owin . 693
Jcross . 694
Jdot . 696
Jest . 699
Jinhom . 702
Jmulti . 704
joinVertices . 707
K3est . 708
kaplan.meier . 709
Kcom . 711
Kcross . 714
Kcross.inhom . 717
Kdot . 721
Kdot.inhom . 724

16 R topics documented:

kernel.factor . 727
kernel.moment . 728
kernel.squint . 730
Kest . 731
Kest.fft . 735
Kinhom . 737
km.rs . 741
Kmark . 743
Kmeasure . 745
Kmodel . 748
Kmodel.dppm . 749
Kmodel.kppm . 750
Kmodel.ppm . 751
Kmulti . 752
Kmulti.inhom . 755
kppm . 759
Kres . 764
Kscaled . 766
Ksector . 769
LambertW . 770
laslett . 771
latest.news . 773
layered . 774
layerplotargs . 776
layout.boxes . 777
Lcross . 778
Lcross.inhom . 779
Ldot . 781
Ldot.inhom . 783
lengths_psp . 784
LennardJones . 786
Lest . 788
levelset . 789
leverage.ppm . 790
lgcp.estK . 792
lgcp.estpcf . 795
lineardirichlet . 798
lineardisc . 799
linearK . 801
linearKcross . 802
linearKcross.inhom . 804
linearKdot . 806
linearKdot.inhom . 807
linearKinhom . 809
linearmarkconnect . 811
linearmarkequal . 812
linearpcf . 813
linearpcfcross . 815

R topics documented: 17

linearpcfcross.inhom . 816
linearpcfdot . 818
linearpcfdot.inhom . 820
linearpcfinhom . 822
lineartileindex . 824
linequad . 825
linfun . 826
Linhom . 827
linim . 829
linnet . 830
lintess . 832
lixellate . 833
localK . 835
localKcross . 837
localKcross.inhom . 839
localKdot . 841
localKinhom . 843
localpcf . 845
logLik.dppm . 848
logLik.kppm . 849
logLik.mppm . 851
logLik.ppm . 854
logLik.slrm . 856
lohboot . 857
lpp . 860
lppm . 862
lurking . 864
lurking.mppm . 868
lut . 869
markconnect . 871
markcorr . 874
markcrosscorr . 878
markmarkscatter . 880
marks . 881
marks.psp . 883
marks.tess . 884
markstat . 886
marktable . 887
markvario . 888
matchingdist . 890
matclust.estK . 892
matclust.estpcf . 894
Math.im . 897
Math.imlist . 899
Math.linim . 901
matrixpower . 902
maxnndist . 903
mean.im . 905

18 R topics documented:

mean.linim . 906
measureContinuous . 907
measureVariation . 908
mergeLevels . 910
methods.box3 . 911
methods.boxx . 912
methods.distfun . 913
methods.dppm . 915
methods.fii . 916
methods.funxy . 917
methods.kppm . 918
methods.layered . 920
methods.linfun . 921
methods.linim . 923
methods.linnet . 924
methods.lpp . 927
methods.lppm . 929
methods.objsurf . 931
methods.pp3 . 932
methods.ppx . 933
methods.rho2hat . 934
methods.rhohat . 935
methods.slrm . 937
methods.ssf . 938
methods.unitname . 940
methods.zclustermodel . 942
midpoints.psp . 943
mincontrast . 944
MinkowskiSum . 946
miplot . 948
model.depends . 949
model.frame.ppm . 951
model.images . 952
model.matrix.mppm . 954
model.matrix.ppm . 955
model.matrix.slrm . 957
mppm . 958
msr . 962
MultiHard . 964
multiplicity.ppp . 966
MultiStrauss . 967
MultiStraussHard . 969
nearest.raster.point . 971
nearestsegment . 972
nearestValue . 973
nestsplit . 974
nnclean . 975
nncorr . 977

R topics documented: 19

nncross . 980
nncross.lpp . 983
nncross.pp3 . 985
nncross.ppx . 988
nndensity.ppp . 990
nndist . 991
nndist.lpp . 994
nndist.pp3 . 995
nndist.ppx . 997
nndist.psp . 999
nnfromvertex . 1000
nnfun . 1001
nnfun.lpp . 1003
nnmap . 1004
nnmark . 1006
nnorient . 1008
nnwhich . 1009
nnwhich.lpp . 1012
nnwhich.pp3 . 1013
nnwhich.ppx . 1014
nobjects . 1015
npfun . 1017
npoints . 1018
nsegments . 1019
nvertices . 1020
objsurf . 1021
opening . 1022
Ops.msr . 1024
Ord . 1025
ord.family . 1026
OrdThresh . 1027
overlap.owin . 1028
owin . 1029
owin.object . 1032
padimage . 1033
pairdist . 1034
pairdist.default . 1035
pairdist.lpp . 1037
pairdist.pp3 . 1038
pairdist.ppp . 1039
pairdist.ppx . 1040
pairdist.psp . 1041
pairorient . 1042
PairPiece . 1044
pairs.im . 1046
pairs.linim . 1047
pairsat.family . 1048
Pairwise . 1049

20 R topics documented:

pairwise.family . 1051
panel.contour . 1052
parameters . 1053
parres . 1054
pcf . 1057
pcf.fasp . 1059
pcf.fv . 1061
pcf.ppp . 1063
pcf3est . 1066
pcfcross . 1068
pcfcross.inhom . 1071
pcfdot . 1073
pcfdot.inhom . 1075
pcfinhom . 1077
pcfmulti . 1079
Penttinen . 1081
perimeter . 1083
periodify . 1084
persp.im . 1085
perspPoints . 1088
pixelcentres . 1089
pixellate . 1090
pixellate.owin . 1091
pixellate.ppp . 1092
pixellate.psp . 1094
pixelquad . 1096
plot.anylist . 1097
plot.bermantest . 1100
plot.cdftest . 1102
plot.colourmap . 1104
plot.dppm . 1105
plot.envelope . 1107
plot.fasp . 1108
plot.fv . 1110
plot.hyperframe . 1113
plot.im . 1115
plot.imlist . 1121
plot.influence.ppm . 1122
plot.kppm . 1124
plot.laslett . 1125
plot.layered . 1126
plot.leverage.ppm . 1128
plot.linim . 1130
plot.linnet . 1132
plot.lintess . 1133
plot.listof . 1135
plot.lpp . 1138
plot.lppm . 1140

R topics documented: 21

plot.mppm . 1141
plot.msr . 1142
plot.onearrow . 1144
plot.owin . 1145
plot.plotppm . 1148
plot.pp3 . 1150
plot.ppm . 1151
plot.ppp . 1154
plot.pppmatching . 1159
plot.profilepl . 1160
plot.psp . 1162
plot.quad . 1164
plot.quadratcount . 1166
plot.quadrattest . 1167
plot.rppm . 1168
plot.scan.test . 1169
plot.slrm . 1171
plot.solist . 1172
plot.splitppp . 1175
plot.ssf . 1176
plot.studpermutest . 1177
plot.symbolmap . 1179
plot.tess . 1181
plot.textstring . 1183
plot.texturemap . 1184
plot.yardstick . 1185
points.lpp . 1187
pointsOnLines . 1188
Poisson . 1189
polartess . 1190
polynom . 1192
pool . 1193
pool.anylist . 1194
pool.envelope . 1195
pool.fasp . 1196
pool.fv . 1197
pool.quadrattest . 1198
pool.rat . 1200
pp3 . 1201
ppm . 1202
ppm.object . 1208
ppm.ppp . 1211
ppmInfluence . 1222
ppp . 1224
ppp.object . 1227
pppdist . 1229
pppmatching . 1232
pppmatching.object . 1234

22 R topics documented:

PPversion . 1235
ppx . 1237
predict.dppm . 1238
predict.kppm . 1239
predict.lppm . 1240
predict.mppm . 1242
predict.ppm . 1244
predict.rppm . 1249
predict.slrm . 1250
print.im . 1252
print.owin . 1253
print.ppm . 1254
print.ppp . 1255
print.psp . 1256
print.quad . 1257
profilepl . 1258
progressreport . 1261
project2segment . 1263
project2set . 1264
prune.rppm . 1265
pseudoR2 . 1266
psib . 1267
psp . 1268
psp.object . 1270
psst . 1271
psstA . 1273
psstG . 1276
qqplot.ppm . 1278
quad.object . 1283
quad.ppm . 1284
quadrat.test . 1286
quadrat.test.mppm . 1290
quadrat.test.splitppp . 1292
quadratcount . 1293
quadratresample . 1296
quadrats . 1297
quadscheme . 1298
quadscheme.logi . 1301
quantess . 1303
quantile.density . 1305
quantile.ewcdf . 1306
quantile.im . 1307
quasirandom . 1308
rags . 1310
ragsAreaInter . 1311
ragsMultiHard . 1312
ranef.mppm . 1314
range.fv . 1315

R topics documented: 23

raster.x . 1316
rat . 1317
rCauchy . 1318
rcell . 1321
rcelllpp . 1322
rcellnumber . 1324
rDGS . 1325
rDiggleGratton . 1326
rdpp . 1328
reach . 1329
reach.dppm . 1331
reach.kppm . 1332
rectcontact . 1333
rectdistmap . 1334
reduced.sample . 1335
reflect . 1337
regularpolygon . 1338
relevel.im . 1339
reload.or.compute . 1340
relrisk . 1341
relrisk.lpp . 1342
relrisk.ppm . 1345
relrisk.ppp . 1347
repairNetwork . 1351
Replace.im . 1352
Replace.linim . 1354
repul.dppm . 1356
requireversion . 1357
rescale . 1358
rescale.im . 1359
rescale.owin . 1360
rescale.ppp . 1361
rescale.psp . 1363
rescue.rectangle . 1364
residuals.dppm . 1365
residuals.kppm . 1366
residuals.mppm . 1367
residuals.ppm . 1368
rex . 1371
rGaussPoisson . 1373
rgbim . 1374
rHardcore . 1375
rho2hat . 1377
rhohat . 1378
ripras . 1384
rjitter . 1386
rknn . 1387
rlabel . 1389

24 R topics documented:

rLGCP . 1390
rlinegrid . 1392
rlpp . 1393
rMatClust . 1394
rMaternI . 1396
rMaternII . 1398
rmh . 1399
rmh.default . 1400
rmh.ppm . 1411
rmhcontrol . 1415
rmhexpand . 1419
rmhmodel . 1421
rmhmodel.default . 1422
rmhmodel.list . 1429
rmhmodel.ppm . 1431
rmhstart . 1433
rMosaicField . 1435
rMosaicSet . 1436
rmpoint . 1437
rmpoispp . 1441
rNeymanScott . 1444
rnoise . 1447
roc . 1448
rose . 1450
rotate . 1452
rotate.im . 1453
rotate.infline . 1454
rotate.owin . 1456
rotate.ppp . 1457
rotate.psp . 1458
rotmean . 1459
round.ppp . 1460
rounding . 1461
rPenttinen . 1463
rpoint . 1464
rpoisline . 1466
rpoislinetess . 1467
rpoislpp . 1468
rpoispp . 1470
rpoispp3 . 1472
rpoisppOnLines . 1473
rpoisppx . 1475
rPoissonCluster . 1476
rppm . 1478
rQuasi . 1479
rshift . 1480
rshift.ppp . 1481
rshift.psp . 1484

R topics documented: 25

rshift.splitppp . 1485
rSSI . 1487
rstrat . 1489
rStrauss . 1490
rStraussHard . 1492
rSwitzerlpp . 1493
rsyst . 1495
rtemper . 1496
rthin . 1497
rthinclumps . 1499
rThomas . 1500
run.simplepanel . 1503
runifdisc . 1505
runiflpp . 1507
runifpoint . 1508
runifpoint3 . 1509
runifpointOnLines . 1510
runifpointx . 1511
rVarGamma . 1512
SatPiece . 1515
Saturated . 1516
scalardilate . 1517
scaletointerval . 1519
scan.test . 1520
scanLRTS . 1522
scanpp . 1524
sdr . 1525
sdrPredict . 1527
segregation.test . 1528
selfcrossing.psp . 1530
selfcut.psp . 1531
sessionLibs . 1532
setcov . 1533
sharpen . 1534
shift . 1535
shift.im . 1536
shift.owin . 1537
shift.ppp . 1539
shift.psp . 1540
sidelengths.owin . 1541
simplepanel . 1542
simplify.owin . 1546
simulate.dppm . 1547
simulate.kppm . 1549
simulate.lppm . 1550
simulate.mppm . 1552
simulate.ppm . 1553
simulate.slrm . 1555

26 R topics documented:

slrm . 1556
Smooth . 1559
Smooth.fv . 1560
Smooth.msr . 1561
Smooth.ppp . 1562
Smooth.ssf . 1565
Smoothfun.ppp . 1566
Softcore . 1567
solapply . 1570
solist . 1571
solutionset . 1572
spatdim . 1573
spatialcdf . 1575
spatstat.options . 1576
split.hyperframe . 1581
split.im . 1582
split.msr . 1583
split.ppp . 1585
split.ppx . 1588
spokes . 1589
square . 1591
ssf . 1592
stieltjes . 1593
stienen . 1594
stratrand . 1595
Strauss . 1597
StraussHard . 1598
studpermu.test . 1600
subfits . 1602
subset.hyperframe . 1603
subset.ppp . 1604
subset.psp . 1607
subspaceDistance . 1608
suffstat . 1609
summary.anylist . 1611
summary.distfun . 1612
summary.dppm . 1613
summary.im . 1614
summary.kppm . 1616
summary.listof . 1617
summary.owin . 1618
summary.ppm . 1619
summary.ppp . 1621
summary.psp . 1622
summary.quad . 1623
summary.solist . 1624
summary.splitppp . 1625
sumouter . 1626

R topics documented: 27

superimpose . 1627
superimpose.lpp . 1630
symbolmap . 1631
tess . 1633
test.crossing.psp . 1636
text.ppp . 1637
texturemap . 1638
textureplot . 1639
thinNetwork . 1641
thomas.estK . 1642
thomas.estpcf . 1644
tile.areas . 1647
tile.lengths . 1648
tileindex . 1649
tilenames . 1650
tiles . 1651
tiles.empty . 1652
timed . 1653
timeTaken . 1654
transect.im . 1655
transmat . 1656
treebranchlabels . 1658
treeprune . 1659
triangulate.owin . 1660
trim.rectangle . 1661
triplet.family . 1662
Triplets . 1663
Tstat . 1664
tweak.colourmap . 1666
union.quad . 1667
unique.ppp . 1668
uniquemap.default . 1669
uniquemap.ppp . 1670
unitname . 1671
unmark . 1673
unnormdensity . 1674
unstack.msr . 1676
unstack.ppp . 1677
unstack.solist . 1678
update.detpointprocfamily . 1679
update.interact . 1680
update.kppm . 1681
update.ppm . 1682
update.rmhcontrol . 1685
update.symbolmap . 1686
valid . 1687
valid.detpointprocfamily . 1688
valid.ppm . 1689

28 spatstat-package

varblock . 1690
varcount . 1692
vargamma.estK . 1693
vargamma.estpcf . 1696
vcov.kppm . 1698
vcov.mppm . 1700
vcov.ppm . 1701
vcov.slrm . 1705
venn.tess . 1706
vertices . 1707
volume . 1709
weighted.median . 1710
where.max . 1711
whichhalfplane . 1712
whist . 1713
will.expand . 1714
Window . 1715
WindowOnly . 1716
with.fv . 1719
with.hyperframe . 1721
with.msr . 1722
with.ssf . 1723
yardstick . 1724
zapsmall.im . 1726
zclustermodel . 1727
[.ssf . 1728

Index 1729

spatstat-package The Spatstat Package

Description

This is a summary of the features of spatstat, a package in R for the statistical analysis of spatial
point patterns.

Details

spatstat is a package for the statistical analysis of spatial data. Its main focus is the analysis of
spatial patterns of points in two-dimensional space. The points may carry auxiliary data (‘marks’),
and the spatial region in which the points were recorded may have arbitrary shape.

The package is designed to support a complete statistical analysis of spatial data. It supports

• creation, manipulation and plotting of point patterns;

• exploratory data analysis;

• spatial random sampling;

spatstat-package 29

• simulation of point process models;

• parametric model-fitting;

• non-parametric smoothing and regression;

• formal inference (hypothesis tests, confidence intervals);

• model diagnostics.

Apart from two-dimensional point patterns and point processes, spatstat also supports point pat-
terns in three dimensions, point patterns in multidimensional space-time, point patterns on a linear
network, patterns of line segments in two dimensions, and spatial tessellations and random sets in
two dimensions.

The package can fit several types of point process models to a point pattern dataset:

• Poisson point process models (by Berman-Turner approximate maximum likelihood or by
spatial logistic regression)

• Gibbs/Markov point process models (by Baddeley-Turner approximate maximum pseudolike-
lihood, Coeurjolly-Rubak logistic likelihood, or Huang-Ogata approximate maximum likeli-
hood)

• Cox/cluster point process models (by Waagepetersen’s two-step fitting procedure and mini-
mum contrast, composite likelihood, or Palm likelihood)

• determinantal point process models (by Waagepetersen’s two-step fitting procedure and mini-
mum contrast, composite likelihood, or Palm likelihood)

The models may include spatial trend, dependence on covariates, and complicated interpoint in-
teractions. Models are specified by a formula in the R language, and are fitted using a function
analogous to lm and glm. Fitted models can be printed, plotted, predicted, simulated and so on.

Getting Started

For a quick introduction to spatstat, read the package vignette Getting started with spatstat installed
with spatstat. To read that document, you can either

• visit https://cran.r-project.org/package=spatstat and click on Getting Started with
Spatstat

• start R, type library(spatstat) and vignette('getstart')

• start R, type help.start() to open the help browser, and navigate to Packages > spatstat
> Vignettes.

Once you have installed spatstat, start R and type library(spatstat). Then type beginner for
a beginner’s introduction, or demo(spatstat) for a demonstration of the package’s capabilities.

For a complete course on spatstat, and on statistical analysis of spatial point patterns, read the
book by Baddeley, Rubak and Turner (2015). Other recommended books on spatial point process
methods are Diggle (2014), Gelfand et al (2010) and Illian et al (2008).

The spatstat package includes over 50 datasets, which can be useful when learning the package.
Type demo(data) to see plots of all datasets available in the package. Type vignette('datasets')
for detailed background information on these datasets, and plots of each dataset.

https://cran.r-project.org/package=spatstat

30 spatstat-package

For information on converting your data into spatstat format, read Chapter 3 of Baddeley, Rubak
and Turner (2015). This chapter is available free online, as one of the sample chapters at the book
companion website, https://spatstat.github.io/book.

For information about handling data in shapefiles, see Chapter 3, or the Vignette Handling shape-
files in the spatstat package, installed with spatstat, accessible as vignette('shapefiles').

Updates

New versions of spatstat are released every 8 weeks. Users are advised to update their installation
of spatstat regularly.

Type latest.news to read the news documentation about changes to the current installed version
of spatstat.
See the Vignette Summary of recent updates, installed with spatstat, which describes the main
changes to spatstat since the book (Baddeley, Rubak and Turner, 2015) was published. It is acces-
sible as vignette('updates').

Type news(package="spatstat") to read news documentation about all previous versions of the
package.

FUNCTIONS AND DATASETS

Following is a summary of the main functions and datasets in the spatstat package. Alternatively
an alphabetical list of all functions and datasets is available by typing library(help=spatstat).

For further information on any of these, type help(name) or ?name where name is the name of the
function or dataset.

CONTENTS:

I. Creating and manipulating data
II. Exploratory Data Analysis
III. Model fitting (Cox and cluster models)
IV. Model fitting (Poisson and Gibbs models)
V. Model fitting (determinantal point processes)
VI. Model fitting (spatial logistic regression)
VII. Simulation
VIII. Tests and diagnostics
IX. Documentation

I. CREATING AND MANIPULATING DATA

Types of spatial data:
The main types of spatial data supported by spatstat are:

ppp point pattern
owin window (spatial region)
im pixel image

https://spatstat.github.io/book

spatstat-package 31

psp line segment pattern
tess tessellation
pp3 three-dimensional point pattern
ppx point pattern in any number of dimensions
lpp point pattern on a linear network

To create a point pattern:

ppp create a point pattern from (x, y) and window information
ppp(x, y, xlim, ylim) for rectangular window
ppp(x, y, poly) for polygonal window
ppp(x, y, mask) for binary image window

as.ppp convert other types of data to a ppp object
clickppp interactively add points to a plot
marks<-, %mark% attach/reassign marks to a point pattern

To simulate a random point pattern:

runifpoint generate n independent uniform random points
rpoint generate n independent random points
rmpoint generate n independent multitype random points
rpoispp simulate the (in)homogeneous Poisson point process
rmpoispp simulate the (in)homogeneous multitype Poisson point process
runifdisc generate n independent uniform random points in disc
rstrat stratified random sample of points
rsyst systematic random sample of points
rjitter apply random displacements to points in a pattern
rMaternI simulate the Matérn Model I inhibition process
rMaternII simulate the Matérn Model II inhibition process
rSSI simulate Simple Sequential Inhibition process
rStrauss simulate Strauss process (perfect simulation)
rHardcore simulate Hard Core process (perfect simulation)
rStraussHard simulate Strauss-hard core process (perfect simulation)
rDiggleGratton simulate Diggle-Gratton process (perfect simulation)
rDGS simulate Diggle-Gates-Stibbard process (perfect simulation)
rPenttinen simulate Penttinen process (perfect simulation)
rNeymanScott simulate a general Neyman-Scott process
rPoissonCluster simulate a general Poisson cluster process
rMatClust simulate the Matérn Cluster process
rThomas simulate the Thomas process
rGaussPoisson simulate the Gauss-Poisson cluster process
rCauchy simulate Neyman-Scott Cauchy cluster process
rVarGamma simulate Neyman-Scott Variance Gamma cluster process
rthin random thinning
rcell simulate the Baddeley-Silverman cell process
rmh simulate Gibbs point process using Metropolis-Hastings
simulate.ppm simulate Gibbs point process using Metropolis-Hastings
runifpointOnLines generate n random points along specified line segments

32 spatstat-package

rpoisppOnLines generate Poisson random points along specified line segments

To randomly change an existing point pattern:

rshift random shifting of points
rjitter apply random displacements to points in a pattern
rthin random thinning
rlabel random (re)labelling of a multitype point pattern
quadratresample block resampling

Standard point pattern datasets:
Datasets in spatstat are lazy-loaded, so you can simply type the name of the dataset to use it; there
is no need to type data(amacrine) etc.

Type demo(data) to see a display of all the datasets installed with the package.

Type vignette('datasets') for a document giving an overview of all datasets, including back-
ground information, and plots.

amacrine Austin Hughes’ rabbit amacrine cells
anemones Upton-Fingleton sea anemones data
ants Harkness-Isham ant nests data
bdspots Breakdown spots in microelectrodes
bei Tropical rainforest trees
betacells Waessle et al. cat retinal ganglia data
bramblecanes Bramble Canes data
bronzefilter Bronze Filter Section data
cells Crick-Ripley biological cells data
chicago Chicago crimes
chorley Chorley-Ribble cancer data
clmfires Castilla-La Mancha forest fires
copper Berman-Huntington copper deposits data
dendrite Dendritic spines
demohyper Synthetic point patterns
demopat Synthetic point pattern
finpines Finnish Pines data
flu Influenza virus proteins
gordon People in Gordon Square, London
gorillas Gorilla nest sites
hamster Aherne’s hamster tumour data
humberside North Humberside childhood leukaemia data
hyytiala Mixed forest in Hyytiälä, Finland
japanesepines Japanese Pines data
lansing Lansing Woods data
longleaf Longleaf Pines data
mucosa Cells in gastric mucosa
murchison Murchison gold deposits
nbfires New Brunswick fires data
nztrees Mark-Esler-Ripley trees data

spatstat-package 33

osteo Osteocyte lacunae (3D, replicated)
paracou Kimboto trees in Paracou, French Guiana
ponderosa Getis-Franklin ponderosa pine trees data
pyramidal Pyramidal neurons from 31 brains
redwood Strauss-Ripley redwood saplings data
redwoodfull Strauss redwood saplings data (full set)
residualspaper Data from Baddeley et al (2005)
shapley Galaxies in an astronomical survey
simdat Simulated point pattern (inhomogeneous, with interaction)
spiders Spider webs on mortar lines of brick wall
sporophores Mycorrhizal fungi around a tree
spruces Spruce trees in Saxonia
swedishpines Strand-Ripley Swedish pines data
urkiola Urkiola Woods data
waka Trees in Waka national park
waterstriders Insects on water surface

To manipulate a point pattern:

plot.ppp plot a point pattern (e.g. plot(X))
spatstat.gui::iplot plot a point pattern interactively
edit.ppp interactive text editor
[.ppp extract or replace a subset of a point pattern

pp[subset] or pp[subwindow]
subset.ppp extract subset of point pattern satisfying a condition
superimpose combine several point patterns
by.ppp apply a function to sub-patterns of a point pattern
cut.ppp classify the points in a point pattern
split.ppp divide pattern into sub-patterns
unmark remove marks
npoints count the number of points
coords extract coordinates, change coordinates
marks extract marks, change marks or attach marks
rotate rotate pattern
shift translate pattern
flipxy swap x and y coordinates
reflect reflect in the origin
periodify make several translated copies
affine apply affine transformation
scalardilate apply scalar dilation
density.ppp kernel estimation of point pattern intensity
Smooth.ppp kernel smoothing of marks of point pattern
nnmark mark value of nearest data point
sharpen.ppp data sharpening
identify.ppp interactively identify points
unique.ppp remove duplicate points
duplicated.ppp determine which points are duplicates
uniquemap.ppp map duplicated points to unique points
connected.ppp find clumps of points

34 spatstat-package

dirichlet compute Dirichlet-Voronoi tessellation
delaunay compute Delaunay triangulation
delaunayDistance graph distance in Delaunay triangulation
convexhull compute convex hull
discretise discretise coordinates
pixellate.ppp approximate point pattern by pixel image
as.im.ppp approximate point pattern by pixel image

See spatstat.options to control plotting behaviour.

To create a window:
An object of class "owin" describes a spatial region (a window of observation).

owin Create a window object
owin(xlim, ylim) for rectangular window
owin(poly) for polygonal window
owin(mask) for binary image window

Window Extract window of another object
Frame Extract the containing rectangle (’frame’) of another object
as.owin Convert other data to a window object
square make a square window
disc make a circular window
ellipse make an elliptical window
ripras Ripley-Rasson estimator of window, given only the points
convexhull compute convex hull of something
letterR polygonal window in the shape of the R logo
clickpoly interactively draw a polygonal window
clickbox interactively draw a rectangle

To manipulate a window:

plot.owin plot a window.
plot(W)

boundingbox Find a tight bounding box for the window
erosion erode window by a distance r
dilation dilate window by a distance r
closing close window by a distance r
opening open window by a distance r
border difference between window and its erosion/dilation
complement.owin invert (swap inside and outside)
simplify.owin approximate a window by a simple polygon
rotate rotate window
flipxy swap x and y coordinates
shift translate window
periodify make several translated copies
affine apply affine transformation
as.data.frame.owin convert window to data frame

spatstat-package 35

Digital approximations:

as.mask Make a discrete pixel approximation of a given window
as.im.owin convert window to pixel image
pixellate.owin convert window to pixel image
commonGrid find common pixel grid for windows
nearest.raster.point map continuous coordinates to raster locations
raster.x raster x coordinates
raster.y raster y coordinates
raster.xy raster x and y coordinates
as.polygonal convert pixel mask to polygonal window

See spatstat.options to control the approximation

Geometrical computations with windows:

edges extract boundary edges
intersect.owin intersection of two windows
union.owin union of two windows
setminus.owin set subtraction of two windows
inside.owin determine whether a point is inside a window
area.owin compute area
perimeter compute perimeter length
diameter.owin compute diameter
incircle find largest circle inside a window
inradius radius of incircle
connected.owin find connected components of window
eroded.areas compute areas of eroded windows
dilated.areas compute areas of dilated windows
bdist.points compute distances from data points to window boundary
bdist.pixels compute distances from all pixels to window boundary
bdist.tiles boundary distance for each tile in tessellation
distmap.owin distance transform image
distfun.owin distance transform
centroid.owin compute centroid (centre of mass) of window
is.subset.owin determine whether one window contains another
is.convex determine whether a window is convex
convexhull compute convex hull
triangulate.owin decompose into triangles
as.mask pixel approximation of window
as.polygonal polygonal approximation of window
is.rectangle test whether window is a rectangle
is.polygonal test whether window is polygonal
is.mask test whether window is a mask
setcov spatial covariance function of window
pixelcentres extract centres of pixels in mask
clickdist measure distance between two points clicked by user

Pixel images: An object of class "im" represents a pixel image. Such objects are returned by some

36 spatstat-package

of the functions in spatstat including Kmeasure, setcov and density.ppp.

im create a pixel image
as.im convert other data to a pixel image
pixellate convert other data to a pixel image
as.matrix.im convert pixel image to matrix
as.data.frame.im convert pixel image to data frame
as.function.im convert pixel image to function
plot.im plot a pixel image on screen as a digital image
contour.im draw contours of a pixel image
persp.im draw perspective plot of a pixel image
rgbim create colour-valued pixel image
hsvim create colour-valued pixel image
[.im extract a subset of a pixel image
[<-.im replace a subset of a pixel image
rotate.im rotate pixel image
shift.im apply vector shift to pixel image
affine.im apply affine transformation to image
X print very basic information about image X
summary(X) summary of image X
hist.im histogram of image
mean.im mean pixel value of image
integral.im integral of pixel values
quantile.im quantiles of image
cut.im convert numeric image to factor image
is.im test whether an object is a pixel image
interp.im interpolate a pixel image
blur apply Gaussian blur to image
Smooth.im apply Gaussian blur to image
connected.im find connected components
compatible.im test whether two images have compatible dimensions
harmonise.im make images compatible
commonGrid find a common pixel grid for images
eval.im evaluate any expression involving images
im.apply evaluate a function of several images
scaletointerval rescale pixel values
zapsmall.im set very small pixel values to zero
levelset level set of an image
solutionset region where an expression is true
imcov spatial covariance function of image
convolve.im spatial convolution of images
transect.im line transect of image
pixelcentres extract centres of pixels
transmat convert matrix of pixel values

to a different indexing convention
rnoise random pixel noise

Line segment patterns

spatstat-package 37

An object of class "psp" represents a pattern of straight line segments.

psp create a line segment pattern
as.psp convert other data into a line segment pattern
edges extract edges of a window
is.psp determine whether a dataset has class "psp"
plot.psp plot a line segment pattern
print.psp print basic information
summary.psp print summary information
[.psp extract a subset of a line segment pattern
subset.psp extract subset of line segment pattern
as.data.frame.psp convert line segment pattern to data frame
marks.psp extract marks of line segments
marks<-.psp assign new marks to line segments
unmark.psp delete marks from line segments
midpoints.psp compute the midpoints of line segments
endpoints.psp extract the endpoints of line segments
lengths_psp compute the lengths of line segments
angles.psp compute the orientation angles of line segments
superimpose combine several line segment patterns
flipxy swap x and y coordinates
rotate.psp rotate a line segment pattern
shift.psp shift a line segment pattern
periodify make several shifted copies
affine.psp apply an affine transformation
pixellate.psp approximate line segment pattern by pixel image
as.mask.psp approximate line segment pattern by binary mask
distmap.psp compute the distance map of a line segment pattern
distfun.psp compute the distance map of a line segment pattern
density.psp kernel smoothing of line segments
selfcrossing.psp find crossing points between line segments
selfcut.psp cut segments where they cross
crossing.psp find crossing points between two line segment patterns
extrapolate.psp extrapolate line segments to infinite lines
nncross find distance to nearest line segment from a given point
nearestsegment find line segment closest to a given point
project2segment find location along a line segment closest to a given point
pointsOnLines generate points evenly spaced along line segment
rpoisline generate a realisation of the Poisson line process inside a window
rlinegrid generate a random array of parallel lines through a window

Tessellations
An object of class "tess" represents a tessellation.

tess create a tessellation
quadrats create a tessellation of rectangles
hextess create a tessellation of hexagons
polartess tessellation using polar coordinates

38 spatstat-package

quantess quantile tessellation
venn.tess Venn diagram tessellation
dirichlet compute Dirichlet-Voronoi tessellation of points
delaunay compute Delaunay triangulation of points
as.tess convert other data to a tessellation
plot.tess plot a tessellation
tiles extract all the tiles of a tessellation
[.tess extract some tiles of a tessellation
[<-.tess change some tiles of a tessellation
intersect.tess intersect two tessellations

or restrict a tessellation to a window
chop.tess subdivide a tessellation by a line
rpoislinetess generate tessellation using Poisson line process
tile.areas area of each tile in tessellation
bdist.tiles boundary distance for each tile in tessellation
connected.tess find connected components of tiles
shift.tess shift a tessellation
rotate.tess rotate a tessellation
reflect.tess reflect about the origin
flipxy.tess reflect about the diagonal
affine.tess apply affine transformation

Three-dimensional point patterns
An object of class "pp3" represents a three-dimensional point pattern in a rectangular box. The box
is represented by an object of class "box3".

pp3 create a 3-D point pattern
plot.pp3 plot a 3-D point pattern
coords extract coordinates
as.hyperframe extract coordinates
subset.pp3 extract subset of 3-D point pattern
unitname.pp3 name of unit of length
npoints count the number of points
runifpoint3 generate uniform random points in 3-D
rpoispp3 generate Poisson random points in 3-D
envelope.pp3 generate simulation envelopes for 3-D pattern
box3 create a 3-D rectangular box
as.box3 convert data to 3-D rectangular box
unitname.box3 name of unit of length
diameter.box3 diameter of box
volume.box3 volume of box
shortside.box3 shortest side of box
eroded.volumes volumes of erosions of box

Multi-dimensional space-time point patterns
An object of class "ppx" represents a point pattern in multi-dimensional space and/or time.

ppx create a multidimensional space-time point pattern

spatstat-package 39

coords extract coordinates
as.hyperframe extract coordinates
subset.ppx extract subset
unitname.ppx name of unit of length
npoints count the number of points
runifpointx generate uniform random points
rpoisppx generate Poisson random points
boxx define multidimensional box
diameter.boxx diameter of box
volume.boxx volume of box
shortside.boxx shortest side of box
eroded.volumes.boxx volumes of erosions of box

Point patterns on a linear network
An object of class "linnet" represents a linear network (for example, a road network).

linnet create a linear network
clickjoin interactively join vertices in network
spatstat.gui::iplot.linnet interactively plot network
simplenet simple example of network
lineardisc disc in a linear network
delaunayNetwork network of Delaunay triangulation
dirichletNetwork network of Dirichlet edges
methods.linnet methods for linnet objects
vertices.linnet nodes of network
joinVertices join existing vertices in a network
insertVertices insert new vertices at positions along a network
addVertices add new vertices, extending a network
thinNetwork remove vertices or lines from a network
repairNetwork repair internal format
pixellate.linnet approximate by pixel image

An object of class "lpp" represents a point pattern on a linear network (for example, road accidents
on a road network).

lpp create a point pattern on a linear network
methods.lpp methods for lpp objects
subset.lpp method for subset
rpoislpp simulate Poisson points on linear network
runiflpp simulate random points on a linear network
chicago Chicago crime data
dendrite Dendritic spines data
spiders Spider webs on mortar lines of brick wall

Hyperframes
A hyperframe is like a data frame, except that the entries may be objects of any kind.

hyperframe create a hyperframe

40 spatstat-package

as.hyperframe convert data to hyperframe
plot.hyperframe plot hyperframe
with.hyperframe evaluate expression using each row of hyperframe
cbind.hyperframe combine hyperframes by columns
rbind.hyperframe combine hyperframes by rows
as.data.frame.hyperframe convert hyperframe to data frame
subset.hyperframe method for subset
head.hyperframe first few rows of hyperframe
tail.hyperframe last few rows of hyperframe

Layered objects
A layered object represents data that should be plotted in successive layers, for example, a back-
ground and a foreground.

layered create layered object
plot.layered plot layered object
[.layered extract subset of layered object

Colour maps
A colour map is a mechanism for associating colours with data. It can be regarded as a function,
mapping data to colours. Using a colourmap object in a plot command ensures that the mapping
from numbers to colours is the same in different plots.

colourmap create a colour map
plot.colourmap plot the colour map only
tweak.colourmap alter individual colour values
interp.colourmap make a smooth transition between colours
beachcolourmap one special colour map

II. EXPLORATORY DATA ANALYSIS

Inspection of data:

summary(X) print useful summary of point pattern X
X print basic description of point pattern X
any(duplicated(X)) check for duplicated points in pattern X
spatstat.gui::istat(X) Interactive exploratory analysis
View(X) spreadsheet-style viewer

Classical exploratory tools:

clarkevans Clark and Evans aggregation index
fryplot Fry plot
miplot Morisita Index plot

Smoothing:

spatstat-package 41

density.ppp kernel smoothed density/intensity
relrisk kernel estimate of relative risk
Smooth.ppp spatial interpolation of marks
bw.diggle cross-validated bandwidth selection for density.ppp
bw.ppl likelihood cross-validated bandwidth selection for density.ppp
bw.CvL Cronie-Van Lieshout bandwidth selection for density estimation
bw.scott Scott’s rule of thumb for density estimation
bw.abram Abramson’s rule for adaptive bandwidths
bw.relrisk cross-validated bandwidth selection for relrisk
bw.smoothppp cross-validated bandwidth selection for Smooth.ppp
bw.frac bandwidth selection using window geometry
bw.stoyan Stoyan’s rule of thumb for bandwidth for pcf

Modern exploratory tools:

clusterset Allard-Fraley feature detection
nnclean Byers-Raftery feature detection
sharpen.ppp Choi-Hall data sharpening
rhohat Kernel estimate of covariate effect
rho2hat Kernel estimate of effect of two covariates
spatialcdf Spatial cumulative distribution function
roc Receiver operating characteristic curve

Summary statistics for a point pattern: Type demo(sumfun) for a demonstration of many of the
summary statistics.

intensity Mean intensity
quadratcount Quadrat counts
intensity.quadratcount Mean intensity in quadrats
Fest empty space function F
Gest nearest neighbour distribution function G
Jest J-function J = (1−G)/(1− F)
Kest Ripley’s K-function
Lest Besag L-function
Tstat Third order T -function
allstats all four functions F , G, J , K
pcf pair correlation function
Kinhom K for inhomogeneous point patterns
Linhom L for inhomogeneous point patterns
pcfinhom pair correlation for inhomogeneous patterns
Finhom F for inhomogeneous point patterns
Ginhom G for inhomogeneous point patterns
Jinhom J for inhomogeneous point patterns
localL Getis-Franklin neighbourhood density function
localK neighbourhood K-function
localpcf local pair correlation function
localKinhom local K for inhomogeneous point patterns
localLinhom local L for inhomogeneous point patterns

42 spatstat-package

localpcfinhom local pair correlation for inhomogeneous patterns
Ksector Directional K-function
Kscaled locally scaled K-function
Kest.fft fast K-function using FFT for large datasets
Kmeasure reduced second moment measure
envelope simulation envelopes for a summary function
varblock variances and confidence intervals

for a summary function
lohboot bootstrap for a summary function

Related facilities:

plot.fv plot a summary function
eval.fv evaluate any expression involving summary functions
harmonise.fv make functions compatible
eval.fasp evaluate any expression involving an array of functions
with.fv evaluate an expression for a summary function
Smooth.fv apply smoothing to a summary function
deriv.fv calculate derivative of a summary function
pool.fv pool several estimates of a summary function
nndist nearest neighbour distances
nnwhich find nearest neighbours
pairdist distances between all pairs of points
crossdist distances between points in two patterns
nncross nearest neighbours between two point patterns
exactdt distance from any location to nearest data point
distmap distance map image
distfun distance map function
nnmap nearest point image
nnfun nearest point function
density.ppp kernel smoothed density
Smooth.ppp spatial interpolation of marks
relrisk kernel estimate of relative risk
sharpen.ppp data sharpening
rknn theoretical distribution of nearest neighbour distance

Summary statistics for a multitype point pattern: A multitype point pattern is represented by an
object X of class "ppp" such that marks(X) is a factor.

relrisk kernel estimation of relative risk
scan.test spatial scan test of elevated risk
Gcross,Gdot,Gmulti multitype nearest neighbour distributions Gij , Gi•
Kcross,Kdot, Kmulti multitype K-functions Kij ,Ki•
Lcross,Ldot multitype L-functions Lij , Li•
Jcross,Jdot,Jmulti multitype J-functions Jij , Ji•
pcfcross multitype pair correlation function gij
pcfdot multitype pair correlation function gi•
pcfmulti general pair correlation function

spatstat-package 43

markconnect marked connection function pij
alltypes estimates of the above for all i, j pairs
Iest multitype I-function
Kcross.inhom,Kdot.inhom inhomogeneous counterparts of Kcross, Kdot
Lcross.inhom,Ldot.inhom inhomogeneous counterparts of Lcross, Ldot
pcfcross.inhom,pcfdot.inhom inhomogeneous counterparts of pcfcross, pcfdot
localKcross,localKdot local counterparts of Kcross, Kdot
localLcross,localLdot local counterparts of Lcross, Ldot
localKcross.inhom,localLcross.inhom local counterparts of Kcross.inhom, Lcross.inhom

Summary statistics for a marked point pattern: A marked point pattern is represented by an
object X of class "ppp" with a component X$marks. The entries in the vector X$marks may be
numeric, complex, string or any other atomic type. For numeric marks, there are the following
functions:

markmean smoothed local average of marks
markvar smoothed local variance of marks
markcorr mark correlation function
markcrosscorr mark cross-correlation function
markvario mark variogram
markmarkscatter mark-mark scatterplot
Kmark mark-weighted K function
Emark mark independence diagnostic E(r)
Vmark mark independence diagnostic V (r)
nnmean nearest neighbour mean index
nnvario nearest neighbour mark variance index

For marks of any type, there are the following:

Gmulti multitype nearest neighbour distribution
Kmulti multitype K-function
Jmulti multitype J-function

Alternatively use cut.ppp to convert a marked point pattern to a multitype point pattern.

Programming tools:

applynbd apply function to every neighbourhood in a point pattern
markstat apply function to the marks of neighbours in a point pattern
marktable tabulate the marks of neighbours in a point pattern
pppdist find the optimal match between two point patterns

Summary statistics for a point pattern on a linear network:
These are for point patterns on a linear network (class lpp). For unmarked patterns:

linearK K function on linear network
linearKinhom inhomogeneous K function on linear network
linearpcf pair correlation function on linear network

44 spatstat-package

linearpcfinhom inhomogeneous pair correlation on linear network

For multitype patterns:

linearKcross K function between two types of points
linearKdot K function from one type to any type
linearKcross.inhom Inhomogeneous version of linearKcross
linearKdot.inhom Inhomogeneous version of linearKdot
linearmarkconnect Mark connection function on linear network
linearmarkequal Mark equality function on linear network
linearpcfcross Pair correlation between two types of points
linearpcfdot Pair correlation from one type to any type
linearpcfcross.inhom Inhomogeneous version of linearpcfcross
linearpcfdot.inhom Inhomogeneous version of linearpcfdot

Related facilities:

pairdist.lpp distances between pairs
crossdist.lpp distances between pairs
nndist.lpp nearest neighbour distances
nncross.lpp nearest neighbour distances
nnwhich.lpp find nearest neighbours
nnfun.lpp find nearest data point
density.lpp kernel smoothing estimator of intensity
distfun.lpp distance transform
envelope.lpp simulation envelopes
rpoislpp simulate Poisson points on linear network
runiflpp simulate random points on a linear network

It is also possible to fit point process models to lpp objects. See Section IV.

Summary statistics for a three-dimensional point pattern:
These are for 3-dimensional point pattern objects (class pp3).

F3est empty space function F
G3est nearest neighbour function G
K3est K-function
pcf3est pair correlation function

Related facilities:

envelope.pp3 simulation envelopes
pairdist.pp3 distances between all pairs of points
crossdist.pp3 distances between points in two patterns
nndist.pp3 nearest neighbour distances
nnwhich.pp3 find nearest neighbours
nncross.pp3 find nearest neighbours in another pattern

spatstat-package 45

Computations for multi-dimensional point pattern:
These are for multi-dimensional space-time point pattern objects (class ppx).

pairdist.ppx distances between all pairs of points
crossdist.ppx distances between points in two patterns
nndist.ppx nearest neighbour distances
nnwhich.ppx find nearest neighbours

Summary statistics for random sets:
These work for point patterns (class ppp), line segment patterns (class psp) or windows (class owin).

Hest spherical contact distribution H
Gfox Foxall G-function
Jfox Foxall J-function

III. MODEL FITTING (COX AND CLUSTER MODELS)

Cluster process models (with homogeneous or inhomogeneous intensity) and Cox processes can be
fitted by the function kppm. Its result is an object of class "kppm". The fitted model can be printed,
plotted, predicted, simulated and updated.

kppm Fit model
plot.kppm Plot the fitted model
summary.kppm Summarise the fitted model
fitted.kppm Compute fitted intensity
predict.kppm Compute fitted intensity
update.kppm Update the model
improve.kppm Refine the estimate of trend
simulate.kppm Generate simulated realisations
vcov.kppm Variance-covariance matrix of coefficients
coef.kppm Extract trend coefficients
formula.kppm Extract trend formula
parameters Extract all model parameters
clusterfield Compute offspring density
clusterradius Radius of support of offspring density
Kmodel.kppm K function of fitted model
pcfmodel.kppm Pair correlation of fitted model

For model selection, you can also use the generic functions step, drop1 and AIC on fitted point
process models. For variable selection, see sdr.

The theoretical models can also be simulated, for any choice of parameter values, using rThomas,
rMatClust, rCauchy, rVarGamma, and rLGCP.

Lower-level fitting functions include:

lgcp.estK fit a log-Gaussian Cox process model
lgcp.estpcf fit a log-Gaussian Cox process model
thomas.estK fit the Thomas process model

46 spatstat-package

thomas.estpcf fit the Thomas process model
matclust.estK fit the Matérn Cluster process model
matclust.estpcf fit the Matérn Cluster process model
cauchy.estK fit a Neyman-Scott Cauchy cluster process
cauchy.estpcf fit a Neyman-Scott Cauchy cluster process
vargamma.estK fit a Neyman-Scott Variance Gamma process
vargamma.estpcf fit a Neyman-Scott Variance Gamma process
mincontrast low-level algorithm for fitting models

by the method of minimum contrast

IV. MODEL FITTING (POISSON AND GIBBS MODELS)

Types of models
Poisson point processes are the simplest models for point patterns. A Poisson model assumes that
the points are stochastically independent. It may allow the points to have a non-uniform spatial den-
sity. The special case of a Poisson process with a uniform spatial density is often called Complete
Spatial Randomness.

Poisson point processes are included in the more general class of Gibbs point process models. In a
Gibbs model, there is interaction or dependence between points. Many different types of interaction
can be specified.

For a detailed explanation of how to fit Poisson or Gibbs point process models to point pattern data
using spatstat, see Baddeley and Turner (2005b) or Baddeley (2008).

To fit a Poisson or Gibbs point process model:
Model fitting in spatstat is performed mainly by the function ppm. Its result is an object of class
"ppm".

Here are some examples, where X is a point pattern (class "ppp"):

command model
ppm(X) Complete Spatial Randomness
ppm(X ~ 1) Complete Spatial Randomness
ppm(X ~ x) Poisson process with

intensity loglinear in x coordinate
ppm(X ~ 1, Strauss(0.1)) Stationary Strauss process
ppm(X ~ x, Strauss(0.1)) Strauss process with

conditional intensity loglinear in x

It is also possible to fit models that depend on other covariates.

Manipulating the fitted model:

plot.ppm Plot the fitted model
predict.ppm Compute the spatial trend and conditional intensity

of the fitted point process model
coef.ppm Extract the fitted model coefficients
parameters Extract all model parameters
formula.ppm Extract the trend formula
intensity.ppm Compute fitted intensity

spatstat-package 47

Kmodel.ppm K function of fitted model
pcfmodel.ppm pair correlation of fitted model
fitted.ppm Compute fitted conditional intensity at quadrature points
residuals.ppm Compute point process residuals at quadrature points
update.ppm Update the fit
vcov.ppm Variance-covariance matrix of estimates
rmh.ppm Simulate from fitted model
simulate.ppm Simulate from fitted model
print.ppm Print basic information about a fitted model
summary.ppm Summarise a fitted model
effectfun Compute the fitted effect of one covariate
logLik.ppm log-likelihood or log-pseudolikelihood
anova.ppm Analysis of deviance
model.frame.ppm Extract data frame used to fit model
model.images Extract spatial data used to fit model
model.depends Identify variables in the model
as.interact Interpoint interaction component of model
fitin Extract fitted interpoint interaction
is.hybrid Determine whether the model is a hybrid
valid.ppm Check the model is a valid point process
project.ppm Ensure the model is a valid point process

For model selection, you can also use the generic functions step, drop1 and AIC on fitted point
process models. For variable selection, see sdr.

See spatstat.options to control plotting of fitted model.

To specify a point process model:
The first order “trend” of the model is determined by an R language formula. The formula specifies
the form of the logarithm of the trend.

X ~ 1 No trend (stationary)
X ~ x Loglinear trend λ(x, y) = exp(α+ βx)

where x, y are Cartesian coordinates
X ~ polynom(x,y,3) Log-cubic polynomial trend
X ~ harmonic(x,y,2) Log-harmonic polynomial trend
X ~ Z Loglinear function of covariate Z

λ(x, y) = exp(α+ βZ(x, y))

The higher order (“interaction”) components are described by an object of class "interact". Such
objects are created by:

Poisson() the Poisson point process
AreaInter() Area-interaction process
BadGey() multiscale Geyer process
Concom() connected component interaction
DiggleGratton() Diggle-Gratton potential
DiggleGatesStibbard() Diggle-Gates-Stibbard potential
Fiksel() Fiksel pairwise interaction process

48 spatstat-package

Geyer() Geyer’s saturation process
Hardcore() Hard core process
HierHard() Hierarchical multiype hard core process
HierStrauss() Hierarchical multiype Strauss process
HierStraussHard() Hierarchical multiype Strauss-hard core process
Hybrid() Hybrid of several interactions
LennardJones() Lennard-Jones potential
MultiHard() multitype hard core process
MultiStrauss() multitype Strauss process
MultiStraussHard() multitype Strauss/hard core process
OrdThresh() Ord process, threshold potential
Ord() Ord model, user-supplied potential
PairPiece() pairwise interaction, piecewise constant
Pairwise() pairwise interaction, user-supplied potential
Penttinen() Penttinen pairwise interaction
SatPiece() Saturated pair model, piecewise constant potential
Saturated() Saturated pair model, user-supplied potential
Softcore() pairwise interaction, soft core potential
Strauss() Strauss process
StraussHard() Strauss/hard core point process
Triplets() Geyer triplets process

Note that it is also possible to combine several such interactions using Hybrid.

Finer control over model fitting:
A quadrature scheme is represented by an object of class "quad". To create a quadrature scheme,
typically use quadscheme.

quadscheme default quadrature scheme
using rectangular cells or Dirichlet cells

pixelquad quadrature scheme based on image pixels
quad create an object of class "quad"

To inspect a quadrature scheme:

plot(Q) plot quadrature scheme Q
print(Q) print basic information about quadrature scheme Q
summary(Q) summary of quadrature scheme Q

A quadrature scheme consists of data points, dummy points, and weights. To generate dummy
points:

default.dummy default pattern of dummy points
gridcentres dummy points in a rectangular grid
rstrat stratified random dummy pattern
spokes radial pattern of dummy points
corners dummy points at corners of the window

spatstat-package 49

To compute weights:

gridweights quadrature weights by the grid-counting rule
dirichletWeights quadrature weights are Dirichlet tile areas

Simulation and goodness-of-fit for fitted models:

rmh.ppm simulate realisations of a fitted model
simulate.ppm simulate realisations of a fitted model
envelope compute simulation envelopes for a fitted model

Point process models on a linear network:
An object of class "lpp" represents a pattern of points on a linear network. Point process models
can also be fitted to these objects. Currently only Poisson models can be fitted.

lppm point process model on linear network
anova.lppm analysis of deviance for

point process model on linear network
envelope.lppm simulation envelopes for

point process model on linear network
fitted.lppm fitted intensity values
predict.lppm model prediction on linear network
linim pixel image on linear network
plot.linim plot a pixel image on linear network
eval.linim evaluate expression involving images
linfun function defined on linear network
methods.linfun conversion facilities

V. MODEL FITTING (DETERMINANTAL POINT PROCESS MODELS)

Code for fitting determinantal point process models has recently been added to spatstat.

For information, see the help file for dppm.

VI. MODEL FITTING (SPATIAL LOGISTIC REGRESSION)

Logistic regression

Pixel-based spatial logistic regression is an alternative technique for analysing spatial point patterns
that is widely used in Geographical Information Systems. It is approximately equivalent to fitting a
Poisson point process model.

In pixel-based logistic regression, the spatial domain is divided into small pixels, the presence
or absence of a data point in each pixel is recorded, and logistic regression is used to model the
presence/absence indicators as a function of any covariates.

Facilities for performing spatial logistic regression are provided in spatstat for comparison pur-
poses.

Fitting a spatial logistic regression

50 spatstat-package

Spatial logistic regression is performed by the function slrm. Its result is an object of class "slrm".
There are many methods for this class, including methods for print, fitted, predict, simulate,
anova, coef, logLik, terms, update, formula and vcov.

For example, if X is a point pattern (class "ppp"):

command model
slrm(X ~ 1) Complete Spatial Randomness
slrm(X ~ x) Poisson process with

intensity loglinear in x coordinate
slrm(X ~ Z) Poisson process with

intensity loglinear in covariate Z

Manipulating a fitted spatial logistic regression

anova.slrm Analysis of deviance
coef.slrm Extract fitted coefficients
vcov.slrm Variance-covariance matrix of fitted coefficients
fitted.slrm Compute fitted probabilities or intensity
logLik.slrm Evaluate loglikelihood of fitted model
plot.slrm Plot fitted probabilities or intensity
predict.slrm Compute predicted probabilities or intensity with new data
simulate.slrm Simulate model

There are many other undocumented methods for this class, including methods for print, update,
formula and terms. Stepwise model selection is possible using step or stepAIC. For variable
selection, see sdr.

VII. SIMULATION

There are many ways to generate a random point pattern, line segment pattern, pixel image or
tessellation in spatstat.
Random point patterns:

runifpoint generate n independent uniform random points
rpoint generate n independent random points
rmpoint generate n independent multitype random points
rpoispp simulate the (in)homogeneous Poisson point process
rmpoispp simulate the (in)homogeneous multitype Poisson point process
runifdisc generate n independent uniform random points in disc
rstrat stratified random sample of points
rsyst systematic random sample (grid) of points
rMaternI simulate the Matérn Model I inhibition process
rMaternII simulate the Matérn Model II inhibition process
rSSI simulate Simple Sequential Inhibition process
rHardcore simulate hard core process (perfect simulation)
rStrauss simulate Strauss process (perfect simulation)
rStraussHard simulate Strauss-hard core process (perfect simulation)
rDiggleGratton simulate Diggle-Gratton process (perfect simulation)

spatstat-package 51

rDGS simulate Diggle-Gates-Stibbard process (perfect simulation)
rPenttinen simulate Penttinen process (perfect simulation)
rNeymanScott simulate a general Neyman-Scott process
rMatClust simulate the Matérn Cluster process
rThomas simulate the Thomas process
rLGCP simulate the log-Gaussian Cox process
rGaussPoisson simulate the Gauss-Poisson cluster process
rCauchy simulate Neyman-Scott process with Cauchy clusters
rVarGamma simulate Neyman-Scott process with Variance Gamma clusters
rcell simulate the Baddeley-Silverman cell process
runifpointOnLines generate n random points along specified line segments
rpoisppOnLines generate Poisson random points along specified line segments

Resampling a point pattern:

quadratresample block resampling
rjitter apply random displacements to points in a pattern
rshift random shifting of (subsets of) points
rthin random thinning

See also varblock for estimating the variance of a summary statistic by block resampling, and
lohboot for another bootstrap technique.

Fitted point process models:
If you have fitted a point process model to a point pattern dataset, the fitted model can be simulated.

Cluster process models are fitted by the function kppm yielding an object of class "kppm". To
generate one or more simulated realisations of this fitted model, use simulate.kppm.

Gibbs point process models are fitted by the function ppm yielding an object of class "ppm". To
generate a simulated realisation of this fitted model, use rmh. To generate one or more simulated
realisations of the fitted model, use simulate.ppm.

Other random patterns:

rlinegrid generate a random array of parallel lines through a window
rpoisline simulate the Poisson line process within a window
rpoislinetess generate random tessellation using Poisson line process
rMosaicSet generate random set by selecting some tiles of a tessellation
rMosaicField generate random pixel image by assigning random values in each tile of a tessellation

Simulation-based inference

envelope critical envelope for Monte Carlo test of goodness-of-fit
bits.envelope critical envelope for balanced two-stage Monte Carlo test
qqplot.ppm diagnostic plot for interpoint interaction
scan.test spatial scan statistic/test
studpermu.test studentised permutation test
segregation.test test of segregation of types

52 spatstat-package

VIII. TESTS AND DIAGNOSTICS

Hypothesis tests:

quadrat.test χ2 goodness-of-fit test on quadrat counts
clarkevans.test Clark and Evans test
cdf.test Spatial distribution goodness-of-fit test
berman.test Berman’s goodness-of-fit tests
envelope critical envelope for Monte Carlo test of goodness-of-fit
scan.test spatial scan statistic/test
dclf.test Diggle-Cressie-Loosmore-Ford test
mad.test Mean Absolute Deviation test
anova.ppm Analysis of Deviance for point process models

More recently-developed tests:

dg.test Dao-Genton test
bits.test Balanced independent two-stage test
dclf.progress Progress plot for DCLF test
mad.progress Progress plot for MAD test

Sensitivity diagnostics:
Classical measures of model sensitivity such as leverage and influence have been adapted to point
process models.

leverage.ppm Leverage for point process model
influence.ppm Influence for point process model
dfbetas.ppm Parameter influence
dffit.ppm Effect change diagnostic

Diagnostics for covariate effect:
Classical diagnostics for covariate effects have been adapted to point process models.

parres Partial residual plot
addvar Added variable plot
rhohat Kernel estimate of covariate effect
rho2hat Kernel estimate of covariate effect (bivariate)

Residual diagnostics:
Residuals for a fitted point process model, and diagnostic plots based on the residuals, were intro-
duced in Baddeley et al (2005) and Baddeley, Rubak and Møller (2011).

Type demo(diagnose) for a demonstration of the diagnostics features.

diagnose.ppm diagnostic plots for spatial trend
qqplot.ppm diagnostic Q-Q plot for interpoint interaction
residualspaper examples from Baddeley et al (2005)

spatstat-package 53

Kcom model compensator of K function
Gcom model compensator of G function
Kres score residual of K function
Gres score residual of G function
psst pseudoscore residual of summary function
psstA pseudoscore residual of empty space function
psstG pseudoscore residual of G function
compareFit compare compensators of several fitted models

Resampling and randomisation procedures
You can build your own tests based on randomisation and resampling using the following capabili-
ties:

quadratresample block resampling
rjitter apply random displacements to points in a pattern
rshift random shifting of (subsets of) points
rthin random thinning

IX. DOCUMENTATION

The online manual entries are quite detailed and should be consulted first for information about a
particular function.

The book Baddeley, Rubak and Turner (2015) is a complete course on analysing spatial point pat-
terns, with full details about spatstat.
Older material (which is now out-of-date but is freely available) includes Baddeley and Turner
(2005a), a brief overview of the package in its early development; Baddeley and Turner (2005b),
a more detailed explanation of how to fit point process models to data; and Baddeley (2010), a
complete set of notes from a 2-day workshop on the use of spatstat.
Type citation("spatstat") to get a list of these references.

Licence

This library and its documentation are usable under the terms of the "GNU General Public License",
a copy of which is distributed with the package.

Acknowledgements

Kasper Klitgaard Berthelsen, Ottmar Cronie, Tilman Davies, Yongtao Guan, Ute Hahn, Abdol-
lah Jalilian, Marie-Colette van Lieshout, Greg McSwiggan, Tuomas Rajala, Suman Rakshit, Do-
minic Schuhmacher, Rasmus Waagepetersen and Hangsheng Wang made substantial contributions
of code.

Additional contributions and suggestions from Monsuru Adepeju, Corey Anderson, Ang Qi Wei,
Ryan Arellano, Jens Åström, Robert Aue, Marcel Austenfeld, Sandro Azaele, Malissa Baddeley,
Guy Bayegnak, Colin Beale, Melanie Bell, Thomas Bendtsen, Ricardo Bernhardt, Andrew Be-
van, Brad Biggerstaff, Anders Bilgrau, Leanne Bischof, Christophe Biscio, Roger Bivand, Jose M.
Blanco Moreno, Florent Bonneu, Jordan Brown, Julian Burgos, Simon Byers, Ya-Mei Chang, Jian-
bao Chen, Igor Chernayavsky, Y.C. Chin, Bjarke Christensen, Lucía Cobo Sanchez, Jean-Francois

54 spatstat-package

Coeurjolly, Kim Colyvas, Hadrien Commenges, Rochelle Constantine, Robin Corria Ainslie, Richard
Cotton, Marcelino de la Cruz, Peter Dalgaard, Mario D’Antuono, Sourav Das, Peter Diggle, Patrick
Donnelly, Ian Dryden, Stephen Eglen, Ahmed El-Gabbas, Belarmain Fandohan, Olivier Flores,
David Ford, Peter Forbes, Shane Frank, Janet Franklin, Funwi-Gabga Neba, Oscar Garcia, Agnes
Gault, Jonas Geldmann, Marc Genton, Shaaban Ghalandarayeshi, Julian Gilbey, Jason Goldstick,
Pavel Grabarnik, C. Graf, Ute Hahn, Andrew Hardegen, Martin Bøgsted Hansen, Martin Hazel-
ton, Juha Heikkinen, Mandy Hering, Markus Herrmann, Maximilian Hesselbarth, Paul Hewson,
Hamidreza Heydarian, Kassel Hingee, Kurt Hornik, Philipp Hunziker, Jack Hywood, Ross Ihaka,
C̆enk Içös, Aruna Jammalamadaka, Robert John-Chandran, Devin Johnson, Mahdieh Khanmo-
hammadi, Bob Klaver, Lily Kozmian-Ledward, Peter Kovesi, Mike Kuhn, Jeff Laake, Robert
Lamb, Frédéric Lavancier, Tom Lawrence, Tomas Lazauskas, Jonathan Lee, George Leser, An-
gela Li, Li Haitao, George Limitsios, Andrew Lister, Nestor Luambua, Ben Madin, Martin Maech-
ler, Kiran Marchikanti, Jeff Marcus, Robert Mark, Peter McCullagh, Monia Mahling, Jorge Ma-
teu Mahiques, Ulf Mehlig, Frederico Mestre, Sebastian Wastl Meyer, Mi Xiangcheng, Lore De
Middeleer, Robin Milne, Enrique Miranda, Jesper Møller, Annie Mollié, Ines Moncada, Mehdi
Moradi, Virginia Morera Pujol, Erika Mudrak, Gopalan Nair, Nader Najari, Nicoletta Nava, Linda
Stougaard Nielsen, Felipe Nunes, Jens Randel Nyengaard, Jens Oehlschlägel, Thierry Onkelinx,
Sean O’Riordan, Evgeni Parilov, Jeff Picka, Nicolas Picard, Tim Pollington, Mike Porter, Sergiy
Protsiv, Adrian Raftery, Suman Rakshit, Ben Ramage, Pablo Ramon, Xavier Raynaud, Nicholas
Read, Matt Reiter, Ian Renner, Tom Richardson, Brian Ripley, Ted Rosenbaum, Barry Rowling-
son, Jason Rudokas, Tyler Rudolph, John Rudge, Christopher Ryan, Farzaneh Safavimanesh, Aila
Särkkä, Cody Schank, Katja Schladitz, Sebastian Schutte, Bryan Scott, Olivia Semboli, François
Sémécurbe, Vadim Shcherbakov, Shen Guochun, Shi Peijian, Harold-Jeffrey Ship, Tammy L Silva,
Ida-Maria Sintorn, Yong Song, Malte Spiess, Mark Stevenson, Kaspar Stucki, Jan Sulavik, Michael
Sumner, P. Surovy, Ben Taylor, Thordis Linda Thorarinsdottir, Leigh Torres, Berwin Turlach, Tor-
ben Tvedebrink, Kevin Ummer, Medha Uppala, Andrew van Burgel, Tobias Verbeke, Mikko Vih-
takari, Alexendre Villers, Fabrice Vinatier, Maximilian Vogtland, Sasha Voss, Sven Wagner, Hao
Wang, H. Wendrock, Jan Wild, Carl G. Witthoft, Selene Wong, Maxime Woringer, Luke Yates,
Mike Zamboni and Achim Zeileis.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. (2010) Analysing spatial point patterns in R. Workshop notes, Version 4.1. Online
technical publication, CSIRO. https://research.csiro.au/software/wp-content/uploads/
sites/6/2015/02/Rspatialcourse_CMIS_PDF-Standard.pdf

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Baddeley, A. and Turner, R. (2005a) Spatstat: an R package for analyzing spatial point patterns.
Journal of Statistical Software 12:6, 1–42. URL: www.jstatsoft.org, ISSN: 1548-7660.

Baddeley, A. and Turner, R. (2005b) Modelling spatial point patterns in R. In: A. Baddeley, P. Gre-
gori, J. Mateu, R. Stoica, and D. Stoyan, editors, Case Studies in Spatial Point Pattern Modelling,
Lecture Notes in Statistics number 185. Pages 23–74. Springer-Verlag, New York, 2006. ISBN:
0-387-28311-0.

https://research.csiro.au/software/wp-content/uploads/sites/6/2015/02/Rspatialcourse_CMIS_PDF-Standard.pdf
https://research.csiro.au/software/wp-content/uploads/sites/6/2015/02/Rspatialcourse_CMIS_PDF-Standard.pdf

adaptive.density 55

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models
and their implementation. Journal of Statistical Software 55:11, 1–43. http://www.jstatsoft.
org/v55/i11/

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Diggle, P.J. (2014) Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third edition.
Chapman and Hall/CRC.

Gelfand, A.E., Diggle, P.J., Fuentes, M. and Guttorp, P., editors (2010) Handbook of Spatial Statis-
tics. CRC Press.

Huang, F. and Ogata, Y. (1999) Improvements of the maximum pseudo-likelihood estimators in
various spatial statistical models. Journal of Computational and Graphical Statistics 8, 510–530.

Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical Analysis and Modelling of
Spatial Point Patterns. Wiley.

Waagepetersen, R. An estimating function approach to inference for inhomogeneous Neyman-Scott
processes. Biometrics 63 (2007) 252–258.

adaptive.density Adaptive Estimate of Intensity of Point Pattern

Description

Computes an adaptive estimate of the intensity function of a point pattern.

Usage

adaptive.density(X, ..., method=c("voronoi","kernel"))

Arguments

X Point pattern (object of class "ppp" or "lpp").

method Character string specifying the estimation method

... Additional arguments passed to densityVoronoi or densityAdaptiveKernel.

Details

This function is an alternative to density.ppp. It computes an estimate of the intensity function of
a point pattern dataset. The result is a pixel image giving the estimated intensity.

If method="voronoi" the data are passed to the function densityVoronoi which estimates the
intensity using the Voronoi-Dirichlet tessellation.

If method="kernel" the data are passed to the function densityAdaptiveKernel which estimates
the intensity using a variable-bandwidth kernel estimator.

http://www.jstatsoft.org/v55/i11/
http://www.jstatsoft.org/v55/i11/

56 add.texture

Value

A pixel image (object of class "im") whose values are estimates of the intensity of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi.

See Also

density.ppp, densityVoronoi, densityAdaptiveKernel, im.object.

Examples

plot(adaptive.density(nztrees, 1), main="Voronoi estimate")

add.texture Fill Plot With Texture

Description

Draws a simple texture inside a region on the plot.

Usage

add.texture(W, texture = 4, spacing = NULL, ...)

Arguments

W Window (object of class "owin") inside which the texture should be drawn.
texture Integer from 1 to 8 identifying the type of texture. See Details.
spacing Spacing between elements of the texture, in units of the current plot.
... Further arguments controlling the plot colour, line width etc.

Details

The chosen texture, confined to the window W, will be added to the current plot. The available
textures are:

texture=1: Small crosses arranged in a square grid.
texture=2: Parallel vertical lines.
texture=3: Parallel horizontal lines.
texture=4: Parallel diagonal lines at 45 degrees from the horizontal.
texture=5: Parallel diagonal lines at 135 degrees from the horizontal.
texture=6: Grid of horizontal and vertical lines.
texture=7: Grid of diagonal lines at 45 and 135 degrees from the horizontal.
texture=8: Grid of hexagons.

addvar 57

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, plot.owin, textureplot, texturemap.

Examples

W <- Window(chorley)
plot(W, main="")
add.texture(W, 7)

addvar Added Variable Plot for Point Process Model

Description

Computes the coordinates for an Added Variable Plot for a fitted point process model.

Usage

addvar(model, covariate, ...,
subregion=NULL,
bw="nrd0", adjust=1,
from=NULL, to=NULL, n=512,
bw.input = c("points", "quad"),
bw.restrict = FALSE,
covname, crosscheck=FALSE)

Arguments

model Fitted point process model (object of class "ppm").

covariate The covariate to be added to the model. Either a pixel image, a function(x,y),
or a character string giving the name of a covariate that was supplied when the
model was fitted.

subregion Optional. A window (object of class "owin") specifying a subset of the spatial
domain of the data. The calculation will be confined to the data in this subregion.

bw Smoothing bandwidth or bandwidth rule (passed to density.default).

adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of val-
ues at which the function will be estimated.

... Additional arguments passed to density.default.

bw.input Character string specifying the input data used for automatic bandwidth selec-
tion.

58 addvar

bw.restrict Logical value, specifying whether bandwidth selection is performed using data
from the entire spatial domain or from the subregion.

covname Optional. Character string to use as the name of the covariate.

crosscheck For developers only. Logical value indicating whether to perform cross-checks
on the validity of the calculation.

Details

This command generates the plot coordinates for an Added Variable Plot for a spatial point process
model.

Added Variable Plots (Cox, 1958, sec 4.5; Wang, 1985) are commonly used in linear models and
generalized linear models, to decide whether a model with response y and predictors x would be
improved by including another predictor z.

In a (generalised) linear model with response y and predictors x, the Added Variable Plot for a new
covariate z is a plot of the smoothed Pearson residuals from the original model against the scaled
residuals from a weighted linear regression of z on x. If this plot has nonzero slope, then the new
covariate z is needed. For general advice see Cook and Weisberg(1999); Harrell (2001).

Essentially the same technique can be used for a spatial point process model (Baddeley et al, 2012).

The argument model should be a fitted spatial point process model (object of class "ppm").

The argument covariate identifies the covariate that is to be considered for addition to the model.
It should be either a pixel image (object of class "im") or a function(x,y) giving the values of
the covariate at any spatial location. Alternatively covariate may be a character string, giving the
name of a covariate that was supplied (in the covariates argument to ppm) when the model was
fitted, but was not used in the model.

The result of addvar(model,covariate) is an object belonging to the classes "addvar" and "fv".
Plot this object to generate the added variable plot.

Note that the plot method shows the pointwise significance bands for a test of the null model, i.e.
the null hypothesis that the new covariate has no effect.

The smoothing bandwidth is controlled by the arguments bw, adjust, bw.input and bw.restrict.
If bw is a numeric value, then the bandwidth is taken to be adjust * bw. If bw is a string representing
a bandwidth selection rule (recognised by density.default) then the bandwidth is selected by this
rule.

The data used for automatic bandwidth selection are specified by bw.input and bw.restrict. If
bw.input="points" (the default) then bandwidth selection is based on the covariate values at the
points of the original point pattern dataset to which the model was fitted. If bw.input="quad" then
bandwidth selection is based on the covariate values at every quadrature point used to fit the model.
If bw.restrict=TRUE then the bandwidth selection is performed using only data from inside the
subregion.

Value

An object of class "addvar" containing the coordinates for the added variable plot. There is a plot
method.

addvar 59

Slow computation

In a large dataset, computation can be very slow if the default settings are used, because the smooth-
ing bandwidth is selected automatically. To avoid this, specify a numerical value for the bandwidth
bw. One strategy is to use a coarser subset of the data to select bw automatically. The selected
bandwidth can be read off the print output for addvar.

Internal data

The return value has an attribute "spatial" which contains the internal data: the computed values
of the residuals, and of all relevant covariates, at each quadrature point of the model. It is an object
of class "ppp" with a data frame of marks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>,
Ya-Mei Chang and Yong Song.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2013) Residual diagnostics for covariate
effects in spatial point process models. Journal of Computational and Graphical Statistics, 22,
886–905.

Cook, R.D. and Weisberg, S. (1999) Applied regression, including computing and graphics. New
York: Wiley.

Cox, D.R. (1958) Planning of Experiments. New York: Wiley.

Harrell, F. (2001) Regression Modeling Strategies. New York: Springer.

Wang, P. (1985) Adding a variable in generalized linear models. Technometrics 27, 273–276.

See Also

parres, rhohat, rho2hat.

Examples

X <- rpoispp(function(x,y){exp(3+3*x)})
model <- ppm(X, ~y)
adv <- addvar(model, "x")
plot(adv)
adv <- addvar(model, "x", subregion=square(0.5))

60 addVertices

addVertices Add New Vertices to a Linear Network

Description

Adds new vertices to a linear network at specified locations outside the network.

Usage

addVertices(L, X, join=NULL, joinmarks=NULL)

Arguments

L Existing linear network (object of class "linnet") or point pattern on a linear
network (object of class "lpp").

X Point pattern (object of class "ppp") specifying the new vertices.

join Optional information specifying how to join the new vertices X to the existing
network. See Details. If join=NULL (the default), the new vertices are sim-
ply added to the list of network vertices without being joined to the rest of the
network.

joinmarks Optional vector or data frame of marks associated with the new edges specified
by join.

Details

This function adds new vertices to an existing linear network L, at specified locations X outside the
network.

The argument L can be either a linear network (class "linnet") or some other object that includes
a linear network.

The new vertex locations are points outside the network, specified as a point pattern X (object of
class "ppp").

The argument join specifies how to join the new vertices to the existing network.

• If join=NULL (the default), the new vertices are simply added to the list of network vertices
without being joined to the rest of the network.

• If join is a vector of integers, then these are taken to be indices of existing vertices of L in
the order given in V = vertices(L). Then each new vertex X[i] will be joined to an existing
vertex V[j] where j = join[i]. Each new vertex is joined to exactly one existing vertex.

• If join="vertices" then each new vertex X[i] is joined to the nearest existing vertex V[j].
Each new vertex is joined to exactly one existing vertex.

• If join="nearest" then each new vertex is projected to the nearest location along on the
network; these locations are inserted as new vertices of L; and then each vertex X[i] is joined
to the corresponding projected point. Each new vertex is joined to exactly one newly-inserted
vertex.

affine 61

• If join is a point pattern on a network (class "lpp"), it must be defined on the same network
as L and it must consist of the same number of points as X. The points of join will be inserted
as new vertices of L, and then each vertex X[i] is joined to the corresponding point join[i].
Each new vertex is joined to exactly one newly-inserted vertex.

The result is the modified object, with an attribute "id" such that the ith added vertex has become
the id[i]th vertex of the new network.

Value

An object of the same class as L representing the result of adding the new vertices. The result also
has an attribute "id" as described in Details.

Author(s)

Adrian Baddeley

See Also

insertVertices to insert vertices along an existing network.

as.lpp, linnet, methods.linnet, joinVertices, thinNetwork.

Examples

opa <- par(mfrow=c(1,3))
L <- simplenet
X <- runifpoint(20, Window(simplenet))
plot(L)
plot(X, add=TRUE, cols="green", pch=16, cex=2)
plot(addVertices(L, X, "nearest"), col="red")
plot(L, add=TRUE, col="grey", lwd=3)
plot(X, add=TRUE, cols="green", pch=16, cex=2)
plot(addVertices(L, X, "vertices"), col="red")
plot(L, add=TRUE, col="grey", lwd=3)
plot(X, add=TRUE, cols="green", pch=16, cex=2)
par(opa)

affine Apply Affine Transformation

Description

Applies any affine transformation of the plane (linear transformation plus vector shift) to a plane
geometrical object, such as a point pattern or a window.

Usage

affine(X, ...)

62 affine.im

Arguments

X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), a line segment pattern (object of class "psp"), a
window (object of class "owin") or a pixel image (object of class "im").

... Arguments determining the affine transformation.

Details

This is generic. Methods are provided for point patterns (affine.ppp) and windows (affine.owin).

Value

Another object of the same type, representing the result of applying the affine transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine.ppp, affine.psp, affine.owin, affine.im, flipxy, reflect, rotate, shift

affine.im Apply Affine Transformation To Pixel Image

Description

Applies any affine transformation of the plane (linear transformation plus vector shift) to a pixel
image.

Usage

S3 method for class 'im'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

Arguments

X Pixel image (object of class "im").

mat Matrix representing a linear transformation.

vec Vector of length 2 representing a translation.

... Optional arguments passed to as.mask controlling the pixel resolution of the
transformed image.

affine.linnet 63

Details

The image is subjected first to the linear transformation represented by mat (multiplying on the left
by mat), and then the result is translated by the vector vec.

The argument mat must be a nonsingular 2× 2 matrix.

This is a method for the generic function affine.

Value

Another pixel image (of class "im") representing the result of applying the affine transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine, affine.ppp, affine.psp, affine.owin, rotate, shift

Examples

X <- setcov(owin())
stretch <- diag(c(2,3))
Y <- affine(X, mat=stretch)
shear <- matrix(c(1,0,0.6,1),ncol=2, nrow=2)
Z <- affine(X, mat=shear)

affine.linnet Apply Geometrical Transformations to a Linear Network

Description

Apply geometrical transformations to a linear network.

Usage

S3 method for class 'linnet'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

S3 method for class 'linnet'
shift(X, vec=c(0,0), ..., origin=NULL)

S3 method for class 'linnet'
rotate(X, angle=pi/2, ..., centre=NULL)

S3 method for class 'linnet'
scalardilate(X, f, ...)

64 affine.linnet

S3 method for class 'linnet'
rescale(X, s, unitname)

Arguments

X Linear network (object of class "linnet").

mat Matrix representing a linear transformation.

vec Vector of length 2 representing a translation.

angle Rotation angle in radians.

f Scalar dilation factor.

s Unit conversion factor: the new units are s times the old units.

... Arguments passed to other methods.

origin Character string determining a location that will be shifted to the origin. Options
are "centroid", "midpoint" and "bottomleft". Partially matched.

centre Centre of rotation. Either a vector of length 2, or a character string (partially
matched to "centroid", "midpoint" or "bottomleft"). The default is the
coordinate origin c(0,0).

unitname Optional. New name for the unit of length. A value acceptable to the function
unitname<-

Details

These functions are methods for the generic functions affine, shift, rotate, rescale and scalardilate
applicable to objects of class "linnet".

All of these functions perform geometrical transformations on the object X, except for rescale,
which simply rescales the units of length.

Value

Another linear network (of class "linnet") representing the result of applying the geometrical
transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

linnet and as.linnet.

Generic functions affine, shift, rotate, scalardilate, rescale.

affine.lpp 65

Examples

U <- rotate(simplenet, pi)
stretch <- diag(c(2,3))
Y <- affine(simplenet, mat=stretch)
shear <- matrix(c(1,0,0.6,1),ncol=2, nrow=2)
Z <- affine(simplenet, mat=shear, vec=c(0, 1))

affine.lpp Apply Geometrical Transformations to Point Pattern on a Linear Net-
work

Description

Apply geometrical transformations to a point pattern on a linear network.

Usage

S3 method for class 'lpp'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

S3 method for class 'lpp'
shift(X, vec=c(0,0), ..., origin=NULL)

S3 method for class 'lpp'
rotate(X, angle=pi/2, ..., centre=NULL)

S3 method for class 'lpp'
scalardilate(X, f, ...)

S3 method for class 'lpp'
rescale(X, s, unitname)

Arguments

X Point pattern on a linear network (object of class "lpp").

mat Matrix representing a linear transformation.

vec Vector of length 2 representing a translation.

angle Rotation angle in radians.

f Scalar dilation factor.

s Unit conversion factor: the new units are s times the old units.

... Arguments passed to other methods.

origin Character string determining a location that will be shifted to the origin. Options
are "centroid", "midpoint" and "bottomleft". Partially matched.

66 affine.owin

centre Centre of rotation. Either a vector of length 2, or a character string (partially
matched to "centroid", "midpoint" or "bottomleft"). The default is the
coordinate origin c(0,0).

unitname Optional. New name for the unit of length. A value acceptable to the function
unitname<-

Details

These functions are methods for the generic functions affine, shift, rotate, rescale and scalardilate
applicable to objects of class "lpp".

All of these functions perform geometrical transformations on the object X, except for rescale,
which simply rescales the units of length.

Value

Another point pattern on a linear network (object of class "lpp") representing the result of applying
the geometrical transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

lpp.

Generic functions affine, shift, rotate, scalardilate, rescale.

Examples

X <- rpoislpp(2, simplenet)
U <- rotate(X, pi)
V <- shift(X, c(0.1, 0.2))
stretch <- diag(c(2,3))
Y <- affine(X, mat=stretch)
shear <- matrix(c(1,0,0.6,1),ncol=2, nrow=2)
Z <- affine(X, mat=shear, vec=c(0, 1))

affine.owin Apply Affine Transformation To Window

Description

Applies any affine transformation of the plane (linear transformation plus vector shift) to a window.

Usage

S3 method for class 'owin'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ..., rescue=TRUE)

affine.owin 67

Arguments

X Window (object of class "owin").

mat Matrix representing a linear transformation.

vec Vector of length 2 representing a translation.

rescue Logical. If TRUE, the transformed window will be processed by rescue.rectangle.

... Optional arguments passed to as.mask controlling the pixel resolution of the
transformed window, if X is a binary pixel mask.

Details

The window is subjected first to the linear transformation represented by mat (multiplying on the
left by mat), and then the result is translated by the vector vec.

The argument mat must be a nonsingular 2× 2 matrix.

This is a method for the generic function affine.

Value

Another window (of class "owin") representing the result of applying the affine transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine, affine.ppp, affine.psp, affine.im, rotate, shift

Examples

shear transformation
shear <- matrix(c(1,0,0.6,1),ncol=2)
X <- affine(owin(), shear)
Not run:
plot(X)

End(Not run)
data(letterR)
affine(letterR, shear, c(0, 0.5))
affine(as.mask(letterR), shear, c(0, 0.5))

68 affine.ppp

affine.ppp Apply Affine Transformation To Point Pattern

Description

Applies any affine transformation of the plane (linear transformation plus vector shift) to a point
pattern.

Usage

S3 method for class 'ppp'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

Arguments

X Point pattern (object of class "ppp").

mat Matrix representing a linear transformation.

vec Vector of length 2 representing a translation.

... Arguments passed to affine.owin affecting the handling of the observation
window, if it is a binary pixel mask.

Details

The point pattern, and its window, are subjected first to the linear transformation represented by mat
(multiplying on the left by mat), and are then translated by the vector vec.

The argument mat must be a nonsingular 2× 2 matrix.

This is a method for the generic function affine.

Value

Another point pattern (of class "ppp") representing the result of applying the affine transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine, affine.owin, affine.psp, affine.im, flipxy, rotate, shift

affine.psp 69

Examples

data(cells)
shear transformation
X <- affine(cells, matrix(c(1,0,0.6,1),ncol=2))
Not run:
plot(X)
rescale y coordinates by factor 1.3
plot(affine(cells, diag(c(1,1.3))))

End(Not run)

affine.psp Apply Affine Transformation To Line Segment Pattern

Description

Applies any affine transformation of the plane (linear transformation plus vector shift) to a line
segment pattern.

Usage

S3 method for class 'psp'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

Arguments

X Line Segment pattern (object of class "psp").

mat Matrix representing a linear transformation.

vec Vector of length 2 representing a translation.

... Arguments passed to affine.owin affecting the handling of the observation
window, if it is a binary pixel mask.

Details

The line segment pattern, and its window, are subjected first to the linear transformation represented
by mat (multiplying on the left by mat), and are then translated by the vector vec.

The argument mat must be a nonsingular 2× 2 matrix.

This is a method for the generic function affine.

Value

Another line segment pattern (of class "psp") representing the result of applying the affine trans-
formation.

70 affine.tess

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine, affine.owin, affine.ppp, affine.im, flipxy, rotate, shift

Examples

oldpar <- par(mfrow=c(2,1))
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(X, main="original")
shear transformation
Y <- affine(X, matrix(c(1,0,0.6,1),ncol=2))
plot(Y, main="transformed")
par(oldpar)
#
rescale y coordinates by factor 0.2
affine(X, diag(c(1,0.2)))

affine.tess Apply Geometrical Transformation To Tessellation

Description

Apply various geometrical transformations of the plane to each tile in a tessellation.

Usage

S3 method for class 'tess'
reflect(X)

S3 method for class 'tess'
flipxy(X)

S3 method for class 'tess'
shift(X, ...)

S3 method for class 'tess'
rotate(X, angle=pi/2, ..., centre=NULL)

S3 method for class 'tess'
scalardilate(X, f, ...)

S3 method for class 'tess'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

affine.tess 71

Arguments

X Tessellation (object of class "tess").

angle Rotation angle in radians (positive values represent anticlockwise rotations).

mat Matrix representing a linear transformation.

vec Vector of length 2 representing a translation.

f Positive number giving scale factor.

... Arguments passed to other methods.

centre Centre of rotation. Either a vector of length 2, or a character string (partially
matched to "centroid", "midpoint" or "bottomleft"). The default is the
coordinate origin c(0,0).

Details

These are method for the generic functions reflect, flipxy, shift, rotate, scalardilate,
affine for tessellations (objects of class "tess").

The individual tiles of the tessellation, and the window containing the tessellation, are all subjected
to the same geometrical transformation.

The transformations are performed by the corresponding method for windows (class "owin") or
images (class "im") depending on the type of tessellation.

If the argument origin is used in shift.tess it is interpreted as applying to the window containing
the tessellation. Then all tiles are shifted by the same vector.

Value

Another tessellation (of class "tess") representing the result of applying the geometrical transfor-
mation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Generic functions reflect, shift, rotate, scalardilate, affine.

Methods for windows: reflect.default, shift.owin, rotate.owin, scalardilate.owin, affine.owin.

Methods for images: reflect.im, shift.im, rotate.im, scalardilate.im, affine.im.

Examples

live <- interactive()
if(live) {

H <- hextess(letterR, 0.2)
plot(H)
plot(reflect(H))
plot(rotate(H, pi/3))

72 allstats

} else H <- hextess(letterR, 0.6)

shear transformation
shear <- matrix(c(1,0,0.6,1),2,2)
sH <- affine(H, shear)
if(live) plot(sH)

allstats Calculate four standard summary functions of a point pattern.

Description

Calculates the F , G, J , and K summary functions for an unmarked point pattern. Returns them as
a function array (of class "fasp", see fasp.object).

Usage

allstats(pp, ..., dataname=NULL, verb=FALSE)

Arguments

pp The observed point pattern, for which summary function estimates are required.
An object of class "ppp". It must not be marked.

... Optional arguments passed to the summary functions Fest, Gest, Jest and
Kest.

dataname A character string giving an optional (alternative) name for the point pattern.

verb A logical value meaning “verbose”. If TRUE, progress reports are printed during
calculation.

Details

This computes four standard summary statistics for a point pattern: the empty space function F (r),
nearest neighbour distance distribution function G(r), van Lieshout-Baddeley function J(r) and
Ripley’s function K(r). The real work is done by Fest, Gest, Jest and Kest respectively. Consult
the help files for these functions for further information about the statistical interpretation of F , G,
J and K.

If verb is TRUE, then “progress reports” (just indications of completion) are printed out when the
calculations are finished for each of the four function types.

The overall title of the array of four functions (for plotting by plot.fasp) will be formed from the
argument dataname. If this is not given, it defaults to the expression for pp given in the call to
allstats.

alltypes 73

Value

A list of length 4 containing the F , G, J and K functions respectively.

The list can be plotted directly using plot (which dispatches to plot.solist).

Each list entry retains the format of the output of the relevant estimating routine Fest, Gest, Jest
or Kest. Thus each entry in the list is a function value table (object of class "fv", see fv.object).

The default formulae for plotting these functions are cbind(km,theo) ~ r for F, G, and J, and
cbind(trans,theo) ~ r for K.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.solist, plot.fv, fv.object, Fest, Gest, Jest, Kest

Examples

data(swedishpines)
a <- allstats(swedishpines,dataname="Swedish Pines")
Not run:
plot(a)
plot(a, subset=list("r<=15","r<=15","r<=15","r<=50"))

End(Not run)

alltypes Calculate Summary Statistic for All Types in a Multitype Point Pattern

Description

Given a marked point pattern, this computes the estimates of a selected summary function (F ,G,
J , K etc) of the pattern, for all possible combinations of marks, and returns these functions in an
array.

Usage

alltypes(X, fun="K", ...,
dataname=NULL,verb=FALSE,envelope=FALSE,reuse=TRUE)

74 alltypes

Arguments

X The observed point pattern, for which summary function estimates are required.
An object of class "ppp" or "lpp".

fun The summary function. Either an R function, or a character string indicating
the summary function required. Options for strings are "F", "G", "J", "K", "L",
"pcf", "Gcross", "Jcross", "Kcross", "Lcross", "Gdot", "Jdot", "Kdot",
"Ldot".

... Arguments passed to the summary function (and to the function envelope if
appropriate)

dataname Character string giving an optional (alternative) name to the point pattern, dif-
ferent from what is given in the call. This name, if supplied, may be used by
plot.fasp() in forming the title of the plot. If not supplied it defaults to the
parsing of the argument supplied as X in the call.

verb Logical value. If verb is true then terse “progress reports” (just the values of
the mark indices) are printed out when the calculations for that combination of
marks are completed.

envelope Logical value. If envelope is true, then simulation envelopes of the summary
function will also be computed. See Details.

reuse Logical value indicating whether the envelopes in each panel should be based
on the same set of simulated patterns (reuse=TRUE) or on different, independent
sets of simulated patterns (reuse=FALSE).

Details

This routine is a convenient way to analyse the dependence between types in a multitype point
pattern. It computes the estimates of a selected summary function of the pattern, for all possible
combinations of marks. It returns these functions in an array (an object of class "fasp") amenable
to plotting by plot.fasp().

The argument fun specifies the summary function that will be evaluated for each type of point, or
for each pair of types. It may be either an R function or a character string.

Suppose that the points have possible types 1, 2, . . . ,m and let Xi denote the pattern of points of
type i only.

If fun="F" then this routine calculates, for each possible type i, an estimate of the Empty Space
Function Fi(r) of Xi. See Fest for explanation of the empty space function. The estimate is
computed by applying Fest to Xi with the optional arguments

If fun is "Gcross", "Jcross", "Kcross" or "Lcross", the routine calculates, for each pair of types
(i, j), an estimate of the “i-toj” cross-type function Gij(r), Jij(r), Kij(r) or Lij(r) respectively
describing the dependence between Xi and Xj . See Gcross, Jcross, Kcross or Lcross respec-
tively for explanation of these functions. The estimate is computed by applying the relevant function
(Gcross etc) to X using each possible value of the arguments i,j, together with the optional argu-
ments

If fun is "pcf" the routine calculates the cross-type pair correlation function pcfcross between
each pair of types.

If fun is "Gdot", "Jdot", "Kdot" or "Ldot", the routine calculates, for each type i, an estimate
of the “i-to-any” dot-type function Gi•(r), Ji•(r) or Ki•(r) or Li•(r) respectively describing the

alltypes 75

dependence betweenXi andX . See Gdot, Jdot, Kdot or Ldot respectively for explanation of these
functions. The estimate is computed by applying the relevant function (Gdot etc) to X using each
possible value of the argument i, together with the optional arguments

The letters "G", "J", "K" and "L" are interpreted as abbreviations for Gcross, Jcross, Kcross and
Lcross respectively, assuming the point pattern is marked. If the point pattern is unmarked, the
appropriate function Fest, Jest, Kest or Lest is invoked instead.

If envelope=TRUE, then as well as computing the value of the summary function for each combina-
tion of types, the algorithm also computes simulation envelopes of the summary function for each
combination of types. The arguments ... are passed to the function envelope to control the num-
ber of simulations, the random process generating the simulations, the construction of envelopes,
and so on.

When envelope=TRUE it is possible that errors could occur because the simulated point patterns do
not satisfy the requirements of the summary function (for example, because the simulated pattern
is empty and fun requires at least one point). If the number of such errors exceeds the maximum
permitted number maxnerr, then the envelope algorithm will give up, and will return the empirical
summary function for the data point pattern, fun(X), in place of the envelope.

Value

A function array (an object of class "fasp", see fasp.object). This can be plotted using plot.fasp.

If the pattern is not marked, the resulting “array” has dimensions 1× 1. Otherwise the following is
true:

If fun="F", the function array has dimensions m × 1 where m is the number of different marks
in the point pattern. The entry at position [i,1] in this array is the result of applying Fest to the
points of type i only.

If fun is "Gdot", "Jdot", "Kdot" or "Ldot", the function array again has dimensions m × 1.
The entry at position [i,1] in this array is the result of Gdot(X,i), Jdot(X,i) Kdot(X,i) or
Ldot(X,i) respectively.

If fun is "Gcross", "Jcross", "Kcross" or "Lcross" (or their abbreviations "G", "J", "K" or "L"),
the function array has dimensions m×m. The [i,j] entry of the function array (for i 6= j) is the
result of applying the function Gcross, Jcross, Kcross orLcross to the pair of types (i,j). The
diagonal [i,i] entry of the function array is the result of applying the univariate function Gest,
Jest, Kest or Lest to the points of type i only.

If envelope=FALSE, then each function entry fns[[i]] retains the format of the output of the
relevant estimating routine Fest, Gest, Jest, Kest, Lest, Gcross, Jcross ,Kcross, Lcross, Gdot,
Jdot, Kdot or Ldot The default formulae for plotting these functions are cbind(km,theo) ~ r for
F, G, and J functions, and cbind(trans,theo) ~ r for K and L functions.

If envelope=TRUE, then each function entry fns[[i]] has the same format as the output of the
envelope command.

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

76 angles.psp

See Also

plot.fasp, fasp.object, Fest, Gest, Jest, Kest, Lest, Gcross, Jcross, Kcross, Lcross, Gdot,
Jdot, Kdot, envelope.

Examples

bramblecanes (3 marks).
bram <- bramblecanes

bF <- alltypes(bram,"F",verb=TRUE)
plot(bF)
if(interactive()) {

plot(alltypes(bram,"G"))
plot(alltypes(bram,"Gdot"))

}

Swedishpines (unmarked).
swed <- swedishpines

plot(alltypes(swed,"K"))

plot(alltypes(amacrine, "pcf"), ylim=c(0,1.3))

A setting where you might REALLY want to use dataname:
Not run:
xxx <- alltypes(ppp(Melvin$x,Melvin$y,

window=as.owin(c(5,20,15,50)),marks=clyde),
fun="F",verb=TRUE,dataname="Melvin")

End(Not run)

envelopes
bKE <- alltypes(bram,"K",envelope=TRUE,nsim=19)
Not run:
bFE <- alltypes(bram,"F",envelope=TRUE,nsim=19,global=TRUE)

End(Not run)

extract one entry
as.fv(bKE[1,1])

angles.psp Orientation Angles of Line Segments

Description

Computes the orientation angle of each line segment in a line segment pattern.

anova.lppm 77

Usage

angles.psp(x, directed=FALSE)

Arguments

x A line segment pattern (object of class "psp").

directed Logical flag. See details.

Details

For each line segment, the angle of inclination to the x-axis (in radians) is computed, and the angles
are returned as a numeric vector.

If directed=TRUE, the directed angle of orientation is computed. The angle respects the sense of
direction from (x0,y0) to (x1,y1). The values returned are angles in the full range from −π to π.
The angle is computed as atan2(y1-y0,x1-x0). See atan2.

If directed=FALSE, the undirected angle of orientation is computed. Angles differing by π are
regarded as equivalent. The values returned are angles in the range from 0 to π. These angles are
computed by first computing the directed angle, then adding π to any negative angles.

Value

Numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

psp, marks.psp, summary.psp, midpoints.psp, lengths_psp, endpoints.psp, extrapolate.psp.

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
b <- angles.psp(a)

anova.lppm ANOVA for Fitted Point Process Models on Linear Network

Description

Performs analysis of deviance for two or more fitted point process models on a linear network.

78 anova.lppm

Usage

S3 method for class 'lppm'
anova(object, ..., test=NULL)

Arguments

object A fitted point process model on a linear network (object of class "lppm").

... One or more fitted point process models on the same linear network.

test Character string, partially matching one of "Chisq", "F" or "Cp".

Details

This is a method for anova for fitted point process models on a linear network (objects of class
"lppm", usually generated by the model-fitting function lppm).

If the fitted models are all Poisson point processes, then this function performs an Analysis of
Deviance of the fitted models. The output shows the deviance differences (i.e. 2 times log likelihood
ratio), the difference in degrees of freedom, and (if test="Chi") the two-sided p-values for the chi-
squared tests. Their interpretation is very similar to that in anova.glm.

If some of the fitted models are not Poisson point processes, then the deviance difference is replaced
by the adjusted composite likelihood ratio (Pace et al, 2011; Baddeley et al, 2014).

Value

An object of class "anova", or NULL.

Errors and warnings

models not nested: There may be an error message that the models are not “nested”. For an Anal-
ysis of Deviance the models must be nested, i.e. one model must be a special case of the
other. For example the point process model with formula ~x is a special case of the model
with formula ~x+y, so these models are nested. However the two point process models with
formulae ~x and ~y are not nested.

If you get this error message and you believe that the models should be nested, the problem
may be the inability of R to recognise that the two formulae are nested. Try modifying the
formulae to make their relationship more obvious.

different sizes of dataset: There may be an error message from anova.glmlist that “models were
not all fitted to the same size of dataset”. This generally occurs when the point process models
are fitted on different linear networks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

anova.mppm 79

References

Ang, Q.W. (2010) Statistical methodology for events on a network. Master’s thesis, School of
Mathematics and Statistics, University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Baddeley, A., Turner, R. and Rubak, E. (2015) Adjusted composite likelihood ratio test for Gibbs
point processes. Journal of Statistical Computation and Simulation 86 (5) 922–941. DOI: 10.1080/00949655.2015.1044530.

McSwiggan, G., Nair, M.G. and Baddeley, A. (2012) Fitting Poisson point process models to events
on a linear network. Manuscript in preparation.

Pace, L., Salvan, A. and Sartori, N. (2011) Adjusting composite likelihood ratio statistics. Statistica
Sinica 21, 129–148.

See Also

lppm

Examples

X <- runiflpp(10, simplenet)
mod0 <- lppm(X ~1)
modx <- lppm(X ~x)
anova(mod0, modx, test="Chi")

anova.mppm ANOVA for Fitted Point Process Models for Replicated Patterns

Description

Performs analysis of deviance for one or more point process models fitted to replicated point pattern
data.

Usage

S3 method for class 'mppm'
anova(object, ...,

test=NULL, adjust=TRUE,
fine=FALSE, warn=TRUE)

Arguments

object Object of class "mppm" representing a point process model that was fitted to
replicated point patterns.

... Optional. Additional objects of class "mppm".

80 anova.mppm

test Type of hypothesis test to perform. A character string, partially matching one of
"Chisq", "LRT", "Rao", "score", "F" or "Cp", or NULL indicating that no test
should be performed.

adjust Logical value indicating whether to correct the pseudolikelihood ratio when
some of the models are not Poisson processes.

fine Logical value passed to vcov.ppm indicating whether to use a quick estimate
(fine=FALSE, the default) or a slower, more accurate estimate (fine=TRUE) of
the variance of the fitted coefficients of each model. Relevant only when some
of the models are not Poisson and adjust=TRUE.

warn Logical value indicating whether to issue warnings if problems arise.

Details

This is a method for anova for comparing several fitted point process models of class "mppm",
usually generated by the model-fitting function mppm).

If the fitted models are all Poisson point processes, then this function performs an Analysis of
Deviance of the fitted models. The output shows the deviance differences (i.e. 2 times log likelihood
ratio), the difference in degrees of freedom, and (if test="Chi") the two-sided p-values for the chi-
squared tests. Their interpretation is very similar to that in anova.glm.

If some of the fitted models are not Poisson point processes, the ‘deviance’ differences in this
table are ’pseudo-deviances’ equal to 2 times the differences in the maximised values of the log
pseudolikelihood (see ppm). It is not valid to compare these values to the chi-squared distribution.
In this case, if adjust=TRUE (the default), the pseudo-deviances will be adjusted using the method
of Pace et al (2011) and Baddeley, Turner and Rubak (2015) so that the chi-squared test is valid. It
is strongly advisable to perform this adjustment.

The argument test determines which hypothesis test, if any, will be performed to compare the
models. The argument test should be a character string, partially matching one of "Chisq", "F"
or "Cp", or NULL. The first option "Chisq" gives the likelihood ratio test based on the asymptotic
chi-squared distribution of the deviance difference. The meaning of the other options is explained
in anova.glm. For random effects models, only "Chisq" is available, and again gives the likelihood
ratio test.

Value

An object of class "anova", or NULL.

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix of one of the models was either too large or too small for reliable
numerical calculation. See vcov.ppm for suggestions on how to handle this.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

anova.ppm 81

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

Baddeley, A., Turner, R. and Rubak, E. (2015) Adjusted composite likelihood ratio test for Gibbs
point processes. Journal of Statistical Computation and Simulation 86 (5) 922–941. DOI: 10.1080/00949655.2015.1044530.

Pace, L., Salvan, A. and Sartori, N. (2011) Adjusting composite likelihood ratio statistics. Statistica
Sinica 21, 129–148.

See Also

mppm

Examples

H <- hyperframe(X=waterstriders)
#' test for loglinear trend in x coordinate
mod0 <- mppm(X~1, data=H, Poisson())
modx <- mppm(X~x, data=H, Poisson())
anova(mod0, modx, test="Chi")
not significant
anova(modx, test="Chi")
not significant

#' test for inhibition
mod0S <- mppm(X~1, data=H, Strauss(2))
anova(mod0, mod0S, test="Chi")
significant!

#' test for trend after accounting for inhibition
modxS <- mppm(X~x, data=H, Strauss(2))
anova(mod0S, modxS, test="Chi")
not significant

anova.ppm ANOVA for Fitted Point Process Models

Description

Performs analysis of deviance for one or more fitted point process models.

Usage

S3 method for class 'ppm'
anova(object, ..., test=NULL,

adjust=TRUE, warn=TRUE, fine=FALSE)

82 anova.ppm

Arguments

object A fitted point process model (object of class "ppm").
... Optional. Additional objects of class "ppm".
test Character string, partially matching one of "Chisq", "LRT", "Rao", "score",

"F" or "Cp", or NULL indicating that no test should be performed.
adjust Logical value indicating whether to correct the pseudolikelihood ratio when

some of the models are not Poisson processes.
warn Logical value indicating whether to issue warnings if problems arise.
fine Logical value, passed to vcov.ppm, indicating whether to use a quick estimate

(fine=FALSE, the default) or a slower, more accurate estimate (fine=TRUE) of
variance terms. Relevant only when some of the models are not Poisson and
adjust=TRUE.

Details

This is a method for anova for fitted point process models (objects of class "ppm", usually generated
by the model-fitting function ppm).

If the fitted models are all Poisson point processes, then by default, this function performs an Anal-
ysis of Deviance of the fitted models. The output shows the deviance differences (i.e. 2 times log
likelihood ratio), the difference in degrees of freedom, and (if test="Chi" or test="LRT") the two-
sided p-values for the chi-squared tests. Their interpretation is very similar to that in anova.glm. If
test="Rao" or test="score", the score test (Rao, 1948) is performed instead.

If some of the fitted models are not Poisson point processes, the ‘deviance’ differences in this
table are ’pseudo-deviances’ equal to 2 times the differences in the maximised values of the log
pseudolikelihood (see ppm). It is not valid to compare these values to the chi-squared distribution.
In this case, if adjust=TRUE (the default), the pseudo-deviances will be adjusted using the method
of Pace et al (2011) and Baddeley et al (2015) so that the chi-squared test is valid. It is strongly
advisable to perform this adjustment.

Value

An object of class "anova", or NULL.

Errors and warnings

models not nested: There may be an error message that the models are not “nested”. For an Anal-
ysis of Deviance the models must be nested, i.e. one model must be a special case of the
other. For example the point process model with formula ~x is a special case of the model
with formula ~x+y, so these models are nested. However the two point process models with
formulae ~x and ~y are not nested.
If you get this error message and you believe that the models should be nested, the problem
may be the inability of R to recognise that the two formulae are nested. Try modifying the
formulae to make their relationship more obvious.

different sizes of dataset: There may be an error message from anova.glmlist that “models were
not all fitted to the same size of dataset”. This implies that the models were fitted using differ-
ent quadrature schemes (see quadscheme) and/or with different edge corrections or different
values of the border edge correction distance rbord.

anova.ppm 83

To ensure that models are comparable, check the following:

• the models must all have been fitted to the same point pattern dataset, in the same window.
• all models must have been fitted by the same fitting method as specified by the argument
method in ppm.

• If some of the models depend on covariates, then they should all have been fitted using
the same list of covariates, and using allcovar=TRUE to ensure that the same quadrature
scheme is used.

• all models must have been fitted using the same edge correction as specified by the ar-
guments correction and rbord. If you did not specify the value of rbord, then it may
have taken a different value for different models. The default value of rbord is equal to
zero for a Poisson model, and otherwise equals the reach (interaction distance) of the in-
teraction term (see reach). To ensure that the models are comparable, set rbord to equal
the maximum reach of the interactions that you are fitting.

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix of one of the models was either too large or too small for reliable
numerical calculation. See vcov.ppm for suggestions on how to handle this.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Turner, R. and Rubak, E. (2015) Adjusted composite likelihood ratio test for Gibbs
point processes. Journal of Statistical Computation and Simulation 86 (5) 922–941. DOI: 10.1080/00949655.2015.1044530.

Pace, L., Salvan, A. and Sartori, N. (2011) Adjusting composite likelihood ratio statistics. Statistica
Sinica 21, 129–148.

Rao, C.R. (1948) Large sample tests of statistical hypotheses concerning several parameters with
applications to problems of estimation. Proceedings of the Cambridge Philosophical Society 44,
50–57.

See Also

ppm, vcov.ppm

Examples

mod0 <- ppm(swedishpines ~1)
modx <- ppm(swedishpines ~x)
Likelihood ratio test
anova(mod0, modx, test="Chi")
Score test
anova(mod0, modx, test="Rao")

Single argument

84 anova.slrm

modxy <- ppm(swedishpines ~x + y)
anova(modxy, test="Chi")

Adjusted composite likelihood ratio test
modP <- ppm(swedishpines ~1, rbord=9)
modS <- ppm(swedishpines ~1, Strauss(9))
anova(modP, modS, test="Chi")

anova.slrm Analysis of Deviance for Spatial Logistic Regression Models

Description

Performs Analysis of Deviance for two or more fitted Spatial Logistic Regression models.

Usage

S3 method for class 'slrm'
anova(object, ..., test = NULL)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... additional objects of the same type (optional).

test a character string, (partially) matching one of "Chisq", "F" or "Cp", indicating
the reference distribution that should be used to compute p-values.

Details

This is a method for anova for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm).

The output shows the deviance differences (i.e. 2 times log likelihood ratio), the difference in
degrees of freedom, and (if test="Chi") the two-sided p-values for the chi-squared tests. Their
interpretation is very similar to that in anova.glm.

Value

An object of class "anova", inheriting from class "data.frame", representing the analysis of de-
viance table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm

anylist 85

Examples

X <- rpoispp(42)
fit0 <- slrm(X ~ 1)
fit1 <- slrm(X ~ x+y)
anova(fit0, fit1, test="Chi")

anylist List of Objects

Description

Make a list of objects of any type.

Usage

anylist(...)
as.anylist(x)

Arguments

... Any number of arguments of any type.

x A list.

Details

An object of class "anylist" is a list of objects that the user intends to treat in a similar fashion.

For example it may be desired to plot each of the objects side-by-side: this can be done using the
function plot.anylist.

The objects can belong to any class; they may or may not all belong to the same class.

In the spatstat package, various functions produce an object of class "anylist".

Value

A list, belonging to the class "anylist", containing the original objects.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

solist, as.solist, anylapply.

86 anyNA.im

Examples

anylist(cells, intensity(cells), Kest(cells))
anylist()

anyNA.im Check Whether Image Contains NA Values

Description

Checks whether any pixel values in a pixel image are NA (meaning that the pixel lies outside the
domain of definition of the image).

Usage

S3 method for class 'im'
anyNA(x, recursive = FALSE)

Arguments

x A pixel image (object of class "im").

recursive Ignored.

Details

The function anyNA is generic: anyNA(x) is a faster alternative to any(is.na(x)).

This function anyNA.im is a method for the generic anyNA defined for pixel images. It returns the
value TRUE if any of the pixel values in x are NA, and and otherwise returns FALSE.

Value

A single logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

im.object

Examples

anyNA(as.im(letterR))

append.psp 87

append.psp Combine Two Line Segment Patterns

Description

Combine two line segment patterns into a single pattern.

Usage

append.psp(A, B)

Arguments

A,B Line segment patterns (objects of class "psp").

Details

This function is used to superimpose two line segment patterns A and B.

The two patterns must have identical windows. If one pattern has marks, then the other must also
have marks of the same type. It the marks are data frames then the number of columns of these data
frames, and the names of the columns must be identical.

(To combine two point patterns, see superimpose).

If one of the arguments is NULL, it will be ignored and the other argument will be returned.

Value

Another line segment pattern (object of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp, as.psp, superimpose,

Examples

X <- psp(runif(20), runif(20), runif(20), runif(20), window=owin())
Y <- psp(runif(5), runif(5), runif(5), runif(5), window=owin())
append.psp(X,Y)

88 applynbd

applynbd Apply Function to Every Neighbourhood in a Point Pattern

Description

Visit each point in a point pattern, find the neighbouring points, and apply a given function to them.

Usage

applynbd(X, FUN, N=NULL, R=NULL, criterion=NULL, exclude=FALSE, ...)

Arguments

X Point pattern. An object of class "ppp", or data which can be converted into this
format by as.ppp.

FUN Function to be applied to each neighbourhood. The arguments of FUN are de-
scribed under Details.

N Integer. If this argument is present, the neighbourhood of a point of X is defined
to consist of the N points of X which are closest to it.

R Nonnegative numeric value. If this argument is present, the neighbourhood of a
point of X is defined to consist of all points of X which lie within a distance R of
it.

criterion Function. If this argument is present, the neighbourhood of a point of X is deter-
mined by evaluating this function. See under Details.

exclude Logical. If TRUE then the point currently being visited is excluded from its own
neighbourhood.

... extra arguments passed to the function FUN. They must be given in the form
name=value.

Details

This is an analogue of apply for point patterns. It visits each point in the point pattern X, de-
termines which points of X are “neighbours” of the current point, applies the function FUN to this
neighbourhood, and collects the values returned by FUN.

The definition of “neighbours” depends on the arguments N, R and criterion. Also the argument
exclude determines whether the current point is excluded from its own neighbourhood.

• If N is given, then the neighbours of the current point are the N points of X which are closest to
the current point (including the current point itself unless exclude=TRUE).

• If R is given, then the neighbourhood of the current point consists of all points of X which lie
closer than a distance R from the current point.

• If criterion is given, then it must be a function with two arguments dist and drank which
will be vectors of equal length. The interpretation is that dist[i] will be the distance of a
point from the current point, and drank[i] will be the rank of that distance (the three points

applynbd 89

closest to the current point will have rank 1, 2 and 3). This function must return a logical
vector of the same length as dist and drank whose i-th entry is TRUE if the corresponding
point should be included in the neighbourhood. See the examples below.

• If more than one of the arguments N, R and criterion is given, the neighbourhood is defined
as the intersection of the neighbourhoods specified by these arguments. For example if N=3
and R=5 then the neighbourhood is formed by finding the 3 nearest neighbours of current point,
and retaining only those neighbours which lie closer than 5 units from the current point.

When applynbd is executed, each point of X is visited, and the following happens for each point:

• the neighbourhood of the current point is determined according to the chosen rule, and stored
as a point pattern Y;

• the function FUN is called as:
FUN(Y=Y,current=current,dists=dists,dranks=dranks,...)

where current is the location of the current point (in a format explained below), dists is
a vector of distances from the current point to each of the points in Y, dranks is a vector of
the ranks of these distances with respect to the full point pattern X, and ... are the arguments
passed from the call to applynbd;

• The result of the call to FUN is stored.

The results of each call to FUN are collected and returned according to the usual rules for apply and
its relatives. See the Value section of this help file.

The format of the argument current is as follows. If X is an unmarked point pattern, then current
is a vector of length 2 containing the coordinates of the current point. If X is marked, then current is
a point pattern containing exactly one point, so that current$x is its x-coordinate and current$marks
is its mark value. In either case, the coordinates of the current point can be referred to as current$x
and current$y.

Note that FUN will be called exactly as described above, with each argument named explicitly. Care
is required when writing the function FUN to ensure that the arguments will match up. See the
Examples.

See markstat for a common use of this function.

To simply tabulate the marks in every R-neighbourhood, use marktable.

Value

Similar to the result of apply. If each call to FUN returns a single numeric value, the result is a
vector of dimension npoints(X), the number of points in X. If each call to FUN returns a vector of
the same length m, then the result is a matrix of dimensions c(m,n); note the transposition of the
indices, as usual for the family of apply functions. If the calls to FUN return vectors of different
lengths, the result is a list of length npoints(X).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

90 applynbd

See Also

ppp.object, apply, markstat, marktable

Examples

redwood
count the number of points within radius 0.2 of each point of X
nneighbours <- applynbd(redwood, R=0.2, function(Y, ...){npoints(Y)-1})
equivalent to:
nneighbours <- applynbd(redwood, R=0.2, function(Y, ...){npoints(Y)}, exclude=TRUE)

compute the distance to the second nearest neighbour of each point
secondnndist <- applynbd(redwood, N = 2,

function(dists, ...){max(dists)},
exclude=TRUE)

marked point pattern
trees <- longleaf

compute the median of the marks of all neighbours of a point
(see also 'markstat')
dbh.med <- applynbd(trees, R=90, exclude=TRUE,

function(Y, ...) { median(marks(Y))})

ANIMATION explaining the definition of the K function
(arguments `fullpicture' and 'rad' are passed to FUN)

if(interactive()) {
showoffK <- function(Y, current, dists, dranks, fullpicture,rad) {

plot(fullpicture, main="")
points(Y, cex=2)

ux <- current[["x"]]
uy <- current[["y"]]

points(ux, uy, pch="+",cex=3)
theta <- seq(0,2*pi,length=100)
polygon(ux + rad * cos(theta), uy+rad*sin(theta))
text(ux + rad/3, uy + rad/2,npoints(Y),cex=3)
if(interactive()) Sys.sleep(if(runif(1) < 0.1) 1.5 else 0.3)
return(npoints(Y))

}
applynbd(redwood, R=0.2, showoffK, fullpicture=redwood, rad=0.2, exclude=TRUE)

animation explaining the definition of the G function

showoffG <- function(Y, current, dists, dranks, fullpicture) {
plot(fullpicture, main="")
points(Y, cex=2)

u <- current
points(u[1],u[2],pch="+",cex=3)
v <- c(Y$x[1],Y$y[1])
segments(u[1],u[2],v[1],v[2],lwd=2)

area.owin 91

w <- (u + v)/2
nnd <- dists[1]
text(w[1],w[2],round(nnd,3),cex=2)
if(interactive()) Sys.sleep(if(runif(1) < 0.1) 1.5 else 0.3)
return(nnd)

}

applynbd(cells, N=1, showoffG, exclude=TRUE, fullpicture=cells)
}

area.owin Area of a Window

Description

Computes the area of a window

Usage

area(w)

S3 method for class 'owin'
area(w)

Default S3 method:
area(w)

S3 method for class 'owin'
volume(x)

Arguments

w A window, whose area will be computed. This should be an object of class owin,
or can be given in any format acceptable to as.owin().

x Object of class owin

Details

If the window w is of type "rectangle" or "polygonal", the area of this rectangular window is
computed by analytic geometry. If w is of type "mask" the area of the discrete raster approximation
of the window is computed by summing the binary image values and adjusting for pixel size.

The function volume.owin is identical to area.owin except for the argument name. It is a method
for the generic function volume.

Value

A numerical value giving the area of the window.

92 areaGain

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

perimeter, diameter.owin, owin.object, as.owin

Examples

w <- unit.square()
area(w)

returns 1.00000

k <- 6
theta <- 2 * pi * (0:(k-1))/k
co <- cos(theta)
si <- sin(theta)
mas <- owin(c(-1,1), c(-1,1), poly=list(x=co, y=si))
area(mas)

returns approx area of k-gon

mas <- as.mask(square(2), eps=0.01)
X <- raster.x(mas)
Y <- raster.y(mas)
mas$m <- ((X - 1)^2 + (Y - 1)^2 <= 1)
area(mas)

returns 3.14 approx

areaGain Difference of Disc Areas

Description

Computes the area of that part of a disc that is not covered by other discs.

Usage

areaGain(u, X, r, ..., W=as.owin(X), exact=FALSE,
ngrid=spatstat.options("ngrid.disc"))

Arguments

u Coordinates of the centre of the disc of interest. A vector of length 2. Alterna-
tively, a point pattern (object of class "ppp").

X Locations of the centres of other discs. A point pattern (object of class "ppp").

r Disc radius, or vector of disc radii.

areaGain 93

... Arguments passed to distmap to determine the pixel resolution, when exact=FALSE.

W Window (object of class "owin") in which the area should be computed.

exact Choice of algorithm. If exact=TRUE, areas are computed exactly using analytic
geometry. If exact=FALSE then a faster algorithm is used to compute a discrete
approximation to the areas.

ngrid Integer. Number of points in the square grid used to compute the discrete ap-
proximation, when exact=FALSE.

Details

This function computes the area of that part of the disc of radius r centred at the location u that
is not covered by any of the discs of radius r centred at the points of the pattern X. This area is
important in some calculations related to the area-interaction model AreaInter.

If u is a point pattern and r is a vector, the result is a matrix, with one row for each point in u and
one column for each entry of r. The [i,j] entry in the matrix is the area of that part of the disc
of radius r[j] centred at the location u[i] that is not covered by any of the discs of radius r[j]
centred at the points of the pattern X.

If W is not NULL, then the areas are computed only inside the window W.

Value

A matrix with one row for each point in u and one column for each value in r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

AreaInter, areaLoss

Examples

data(cells)
u <- c(0.5,0.5)
areaGain(u, cells, 0.1)

94 AreaInter

AreaInter The Area Interaction Point Process Model

Description

Creates an instance of the Area Interaction point process model (Widom-Rowlinson penetrable
spheres model) which can then be fitted to point pattern data.

Usage

AreaInter(r)

Arguments

r The radius of the discs in the area interaction process

Details

This function defines the interpoint interaction structure of a point process called the Widom-
Rowlinson penetrable sphere model or area-interaction process. It can be used to fit this model
to point pattern data.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the area interaction structure is yielded by the function AreaInter().
See the examples below.

In standard form, the area-interaction process (Widom and Rowlinson, 1970; Baddeley and Van
Lieshout, 1995) with disc radius r, intensity parameter κ and interaction parameter γ is a point
process with probability density

f(x1, . . . , xn) = ακn(x)γ−A(x)

for a point pattern x, where x1, . . . , xn represent the points of the pattern, n(x) is the number of
points in the pattern, and A(x) is the area of the region formed by the union of discs of radius r
centred at the points x1, . . . , xn. Here α is a normalising constant.

The interaction parameter γ can be any positive number. If γ = 1 then the model reduces to a
Poisson process with intensity κ. If γ < 1 then the process is regular, while if γ > 1 the process is
clustered. Thus, an area interaction process can be used to model either clustered or regular point
patterns. Two points interact if the distance between them is less than 2r.

The standard form of the model, shown above, is a little complicated to interpret in practical ap-
plications. For example, each isolated point of the pattern x contributes a factor κγ−πr

2

to the
probability density.

In spatstat, the model is parametrised in a different form, which is easier to interpret. In canonical
scale-free form, the probability density is rewritten as

f(x1, . . . , xn) = αβn(x)η−C(x)

AreaInter 95

where β is the new intensity parameter, η is the new interaction parameter, andC(x) = B(x)−n(x)
is the interaction potential. Here

B(x) =
A(x)

πr2

is the normalised area (so that the discs have unit area). In this formulation, each isolated point
of the pattern contributes a factor β to the probability density (so the first order trend is β). The
quantity C(x) is a true interaction potential, in the sense that C(x) = 0 if the point pattern x does
not contain any points that lie close together (closer than 2r units apart).

When a new point u is added to an existing point pattern x, the rescaled potential −C(x) increases
by a value between 0 and 1. The increase is zero if u is not close to any point of x. The increase is
1 if the disc of radius r centred at u is completely contained in the union of discs of radius r centred
at the data points xi. Thus, the increase in potential is a measure of how close the new point u is
to the existing pattern x. Addition of the point u contributes a factor βηδ to the probability density,
where δ is the increase in potential.

The old parameters κ, γ of the standard form are related to the new parameters β, η of the canonical
scale-free form, by

β = κγ−πr
2

= κ/η

and
η = γπr

2

provided γ and κ are positive and finite.

In the canonical scale-free form, the parameter η can take any nonnegative value. The value η = 1
again corresponds to a Poisson process, with intensity β. If η < 1 then the process is regular, while
if η > 1 the process is clustered. The value η = 0 corresponds to a hard core process with hard core
radius r (interaction distance 2r).

The nonstationary area interaction process is similar except that the contribution of each individual
point xi is a function β(xi) of location, rather than a constant beta.

Note the only argument of AreaInter() is the disc radius r. When r is fixed, the model becomes
an exponential family. The canonical parameters log(β) and log(η) are estimated by ppm(), not
fixed in AreaInter().

Value

An object of class "interact" describing the interpoint interaction structure of the area-interaction
process with disc radius r.

Warnings

The interaction distance of this process is equal to 2 * r. Two discs of radius r overlap if their
centres are closer than 2 * r units apart.

The estimate of the interaction parameter η is unreliable if the interaction radius r is too small or
too large. In these situations the model is approximately Poisson so that η is unidentifiable. As a
rule of thumb, one can inspect the empty space function of the data, computed by Fest. The value
F (r) of the empty space function at the interaction radius r should be between 0.2 and 0.8.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

96 areaLoss

References

Baddeley, A.J. and Van Lieshout, M.N.M. (1995). Area-interaction point processes. Annals of the
Institute of Statistical Mathematics 47 (1995) 601–619.

Widom, B. and Rowlinson, J.S. (1970). New model for the study of liquid-vapor phase transitions.
The Journal of Chemical Physics 52 (1970) 1670–1684.

See Also

ppm, pairwise.family, ppm.object

ragsAreaInter and rmh for simulation of area-interaction models.

Examples

prints a sensible description of itself
AreaInter(r=0.1)

Note the reach is twice the radius
reach(AreaInter(r=1))

Fit the stationary area interaction process to Swedish Pines data
data(swedishpines)
ppm(swedishpines, ~1, AreaInter(r=7))

Fit the stationary area interaction process to `cells'
data(cells)
ppm(cells, ~1, AreaInter(r=0.06))
eta=0 indicates hard core process.

Fit a nonstationary area interaction with log-cubic polynomial trend
Not run:
ppm(swedishpines, ~polynom(x/10,y/10,3), AreaInter(r=7))

End(Not run)

areaLoss Difference of Disc Areas

Description

Computes the area of that part of a disc that is not covered by other discs.

Usage

areaLoss(X, r, ..., W=as.owin(X), subset=NULL,
exact=FALSE,
ngrid=spatstat.options("ngrid.disc"))

areaLoss 97

Arguments

X Locations of the centres of discs. A point pattern (object of class "ppp").

r Disc radius, or vector of disc radii.

... Ignored.

W Optional. Window (object of class "owin") inside which the area should be
calculated.

subset Optional. Index identifying a subset of the points of X for which the area differ-
ence should be computed.

exact Choice of algorithm. If exact=TRUE, areas are computed exactly using analytic
geometry. If exact=FALSE then a faster algorithm is used to compute a discrete
approximation to the areas.

ngrid Integer. Number of points in the square grid used to compute the discrete ap-
proximation, when exact=FALSE.

Details

This function computes, for each point X[i] in X and for each radius r, the area of that part of the
disc of radius r centred at the location X[i] that is not covered by any of the other discs of radius r
centred at the points X[j] for j not equal to i. This area is important in some calculations related
to the area-interaction model AreaInter.

The result is a matrix, with one row for each point in X and one column for each entry of r.

Value

A matrix with one row for each point in X (or X[subset]) and one column for each value in r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

AreaInter, areaGain, dilated.areas

Examples

data(cells)
areaLoss(cells, 0.1)

98 as.box3

as.box3 Convert Data to Three-Dimensional Box

Description

Interprets data as the dimensions of a three-dimensional box.

Usage

as.box3(...)

Arguments

... Data that can be interpreted as giving the dimensions of a three-dimensional
box. See Details.

Details

This function converts data in various formats to an object of class "box3" representing a three-
dimensional box (see box3). The arguments ... may be

• an object of class "box3"

• arguments acceptable to box3

• a numeric vector of length 6, interpreted as c(xrange[1],xrange[2],yrange[1],yrange[2],zrange[1],zrange[2])

• an object of class "pp3" representing a three-dimensional point pattern contained in a box.

Value

Object of class "box3".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

box3, pp3

Examples

X <- c(0,10,0,10,0,5)
as.box3(X)
X <- pp3(runif(42),runif(42),runif(42), box3(c(0,1)))
as.box3(X)

as.boxx 99

as.boxx Convert Data to Multi-Dimensional Box

Description

Interprets data as the dimensions of a multi-dimensional box.

Usage

as.boxx(..., warn.owin = TRUE)

Arguments

... Data that can be interpreted as giving the dimensions of a multi-dimensional
box. See Details.

warn.owin Logical value indicating whether to print a warning if a non-rectangular window
(object of class "owin") is supplied.

Details

Either a single argument should be provided which is one of the following:

• an object of class "boxx"

• an object of class "box3"

• an object of class "owin"

• a numeric vector of even length, specifying the corners of the box. See Examples

or a list of arguments acceptable to boxx.

Value

A "boxx" object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

Convert unit square to two dimensional box.
W <- owin()
as.boxx(W)
Make three dimensional box [0,1]x[0,1]x[0,1] from numeric vector
as.boxx(c(0,1,0,1,0,1))

100 as.data.frame.envelope

as.data.frame.envelope

Coerce Envelope to Data Frame

Description

Converts an envelope object to a data frame.

Usage

S3 method for class 'envelope'
as.data.frame(x, ..., simfuns=FALSE)

Arguments

x Envelope object (class "envelope").

... Ignored.

simfuns Logical value indicating whether the result should include the values of the sim-
ulated functions that were used to build the envelope.

Details

This is a method for the generic function as.data.frame for the class of envelopes (see envelope.

The result is a data frame with columns containing the values of the function argument (usually
named r), the function estimate for the original point pattern data (obs), the upper and lower enve-
lope limits (hi and lo), and possibly additional columns.

If simfuns=TRUE, the result also includes columns of values of the simulated functions that were
used to compute the envelope. This is possible only when the envelope was computed with the
argument savefuns=TRUE in the call to envelope.

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

E <- envelope(cells, nsim=5, savefuns=TRUE)
tail(as.data.frame(E))
tail(as.data.frame(E, simfuns=TRUE))

as.data.frame.hyperframe 101

as.data.frame.hyperframe

Coerce Hyperframe to Data Frame

Description

Converts a hyperframe to a data frame.

Usage

S3 method for class 'hyperframe'
as.data.frame(x, row.names = NULL,

optional = FALSE, ...,
discard=TRUE, warn=TRUE)

Arguments

x Hyperframe (object of class "hyperframe").

row.names Optional character vector of row names.

optional Argument passed to as.data.frame controlling what happens to row names.

... Ignored.

discard Logical. Whether to discard columns of the hyperframe that do not contain
atomic data. See Details.

warn Logical. Whether to issue a warning when columns are discarded.

Details

This is a method for the generic function as.data.frame for the class of hyperframes (see hyperframe.

If discard=TRUE, any columns of the hyperframe that do not contain atomic data will be removed
(and a warning will be issued if warn=TRUE). If discard=FALSE, then such columns are converted
to strings indicating what class of data they originally contained.

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

h <- hyperframe(X=1:3, Y=letters[1:3], f=list(sin, cos, tan))
as.data.frame(h, discard=TRUE, warn=FALSE)
as.data.frame(h, discard=FALSE)

102 as.data.frame.im

as.data.frame.im Convert Pixel Image to Data Frame

Description

Convert a pixel image to a data frame

Usage

S3 method for class 'im'
as.data.frame(x, ...)

Arguments

x A pixel image (object of class "im").

... Further arguments passed to as.data.frame.default to determine the row
names and other features.

Details

This function takes the pixel image x and returns a data frame with three columns containing the
pixel coordinates and the pixel values.

The data frame entries are automatically sorted in increasing order of the x coordinate (and in
increasing order of y within x).

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

artificial image
Z <- setcov(square(1))

Y <- as.data.frame(Z)

head(Y)

as.data.frame.lintess 103

as.data.frame.lintess Convert Network Tessellation to Data Frame

Description

Converts a tessellation on a linear network into a data frame.

Usage

S3 method for class 'lintess'
as.data.frame(x, ...)

Arguments

x Tessellation on a linear network (object of class "lintess").

... Further arguments passed to as.data.frame.default to determine the row
names and other features.

Details

A tessellation on a linear network is a partition of the network into non-overlapping pieces (tiles).
Each tile consists of one or more line segments which are subsets of the line segments making up
the network. A tile can consist of several disjoint pieces.

This function converts the tessellation x to a data frame. Each row of the data frame specifies one
sub-segment of the network, and allocates it to a particular tile. The data frame has the following
columns:

• The seg column specifies which line segment of the network contains the sub-segment. Values
of seg are integer indices for the network segments in as.psp(as.linnet(x)).

• The t0 and t1 columns specify the start and end points of the sub-segment. They are numeric
values between 0 and 1 inclusive, where the values 0 and 1 representing the network vertices
that are joined by this network segment.

• The tile column specifies which tile of the tessellation includes this sub-segment. It is a
factor whose levels are the names of the tiles.

The tessellation may have marks, which are attached to the tiles of the tessellation. If marks are
present, the resulting data frame includes columns containing, for each sub-segment, the mark value
of the corresponding tile.

Value

A data frame with columns named seg, t0, t1, tile, and possibly other columns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

104 as.data.frame.owin

See Also

lintess

Examples

X <- lineardirichlet(runiflpp(3, simplenet))
marks(X) <- letters[1:3]
as.data.frame(X)

as.data.frame.owin Convert Window to Data Frame

Description

Converts a window object to a data frame.

Usage

S3 method for class 'owin'
as.data.frame(x, ..., drop=TRUE)

Arguments

x Window (object of class "owin").

... Further arguments passed to as.data.frame.default to determine the row
names and other features.

drop Logical value indicating whether to discard pixels that are outside the window,
when x is a binary mask.

Details

This function returns a data frame specifying the coordinates of the window.

If x is a binary mask window, the result is a data frame with columns x and y containing the spatial
coordinates of each pixel. If drop=TRUE (the default), only pixels inside the window are retained. If
drop=FALSE, all pixels are retained, and the data frame has an extra column inside containing the
logical value of each pixel (TRUE for pixels inside the window, FALSE for outside).

If x is a rectangle or a polygonal window, the result is a data frame with columns x and y containing
the spatial coordinates of the vertices of the window. If the boundary consists of several polygons,
the data frame has additional columns id, identifying which polygon is being traced, and sign,
indicating whether the polygon is an outer or inner boundary (sign=1 and sign=-1 respectively).

Value

A data frame with columns named x and y, and possibly other columns.

as.data.frame.ppp 105

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.data.frame.im, as.owin.data.frame

Examples

as.data.frame(square(1))

holey <- owin(poly=list(
list(x=c(0,10,0), y=c(0,0,10)),
list(x=c(2,2,4,4), y=c(2,4,4,2))))

as.data.frame(holey)

M <- as.mask(holey, eps=0.5)
Mdf <- as.data.frame(M)

as.data.frame.ppp Coerce Point Pattern to a Data Frame

Description

Extracts the coordinates of the points in a point pattern, and their marks if any, and returns them in
a data frame.

Usage

S3 method for class 'ppp'
as.data.frame(x, row.names = NULL, ...)

Arguments

x Point pattern (object of class "ppp").

row.names Optional character vector of row names.

... Ignored.

Details

This is a method for the generic function as.data.frame for the class "ppp" of point patterns.

It extracts the coordinates of the points in the point pattern, and returns them as columns named x
and y in a data frame. If the points were marked, the marks are returned as a column named marks
with the same type as in the point pattern dataset.

106 as.data.frame.psp

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

data(amacrine)
df <- as.data.frame(amacrine)
df[1:5,]

as.data.frame.psp Coerce Line Segment Pattern to a Data Frame

Description

Extracts the coordinates of the endpoints in a line segment pattern, and their marks if any, and
returns them in a data frame.

Usage

S3 method for class 'psp'
as.data.frame(x, row.names = NULL, ...)

Arguments

x Line segment pattern (object of class "psp").

row.names Optional character vector of row names.

... Ignored.

Details

This is a method for the generic function as.data.frame for the class "psp" of line segment
patterns.

It extracts the coordinates of the endpoints of the line segments, and returns them as columns named
x0, y0, x1 and y1 in a data frame. If the line segments were marked, the marks are appended as an
extra column or columns to the data frame which is returned. If the marks are a vector then a single
column named marks is appended. in the data frame, with the same type as in the line segment
pattern dataset. If the marks are a data frame, then the columns of this data frame are appended
(retaining their names).

Value

A data frame with 4 or 5 columns.

as.data.frame.tess 107

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

data(copper)
df <- as.data.frame(copper$Lines)

as.data.frame.tess Convert Tessellation to Data Frame

Description

Converts a spatial tessellation object to a data frame.

Usage

S3 method for class 'tess'
as.data.frame(x, ...)

Arguments

x Tessellation (object of class "tess").

... Further arguments passed to as.data.frame.owin or as.data.frame.im and
ultimately to as.data.frame.default to determine the row names and other
features.

Details

This function converts the tessellation x to a data frame.

If x is a pixel image tessellation (a pixel image with factor values specifying the tile membership
of each pixel) then this pixel image is converted to a data frame by as.data.frame.im. The result
is a data frame with columns x and y giving the pixel coordinates, and Tile identifying the tile
containing the pixel.

If x is a tessellation consisting of a rectangular grid of tiles or a list of polygonal tiles, then each tile
is converted to a data frame by as.data.frame.owin, and these data frames are joined together,
yielding a single large data frame containing columns x, y giving the coordinates of vertices of the
polygons, and Tile identifying the tile.

Value

A data frame with columns named x, y, Tile, and possibly other columns.

108 as.function.fv

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.data.frame.owin, as.data.frame.im

Examples

Z <- as.data.frame(dirichlet(cells))
head(Z, 10)

as.function.fv Convert Function Value Table to Function

Description

Converts an object of class "fv" to an R language function.

Usage

S3 method for class 'fv'
as.function(x, ..., value=".y", extrapolate=FALSE)

S3 method for class 'rhohat'
as.function(x, ..., value=".y", extrapolate=TRUE)

Arguments

x Object of class "fv" or "rhohat".

... Ignored.

value Optional. Character string or character vector selecting one or more of the
columns of x for use as the function value. See Details.

extrapolate Logical, indicating whether to extrapolate the function outside the domain of x.
See Details.

Details

A function value table (object of class "fv") is a convenient way of storing and plotting several
different estimates of the same function. Objects of this class are returned by many commands in
spatstat, such as Kest which returns an estimate of Ripley’s K-function for a point pattern dataset.

Sometimes it is useful to convert the function value table to a function in the R language. This is
done by as.function.fv. It converts an object x of class "fv" to an R function f.

If f <-as.function(x) then f is an R function that accepts a numeric argument and returns a
corresponding value for the summary function by linear interpolation between the values in the
table x.

as.function.fv 109

Argument values lying outside the range of the table yield an NA value (if extrapolate=FALSE) or
the function value at the nearest endpoint of the range (if extrapolate = TRUE). To apply different
rules to the left and right extremes, use extrapolate=c(TRUE,FALSE) and so on.

Typically the table x contains several columns of function values corresponding to different edge
corrections. Auxiliary information for the table identifies one of these columns as the recommended
value. By default, the values of the function f <-as.function(x) are taken from this column of
recommended values. This default can be changed using the argument value, which can be a
character string or character vector of names of columns of x. Alternatively value can be one of
the abbreviations used by fvnames.

If value specifies a single column of the table, then the result is a function f(r) with a single
numeric argument r (with the same name as the orginal argument of the function table).

If value specifies several columns of the table, then the result is a function f(r,what) where r is
the numeric argument and what is a character string identifying the column of values to be used.

The formal arguments of the resulting function are f(r,what=value), which means that in a call
to this function f, the permissible values of what are the entries of the original vector value; the
default value of what is the first entry of value.

The command as.function.fv is a method for the generic command as.function.

Value

A function(r) or function(r,what) where r is the name of the original argument of the function
table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv, fv.object, fvnames, plot.fv, Kest

Examples

K <- Kest(cells)
f <- as.function(K)
f
f(0.1)
g <- as.function(K, value=c("iso", "trans"))
g
g(0.1, "trans")

110 as.function.im

as.function.im Convert Pixel Image to Function of Coordinates

Description

Converts a pixel image to a function of the x and y coordinates.

Usage

S3 method for class 'im'
as.function(x, ...)

Arguments

x Pixel image (object of class "im").

... Ignored.

Details

This command converts a pixel image (object of class "im") to a function(x,y) where the ar-
guments x and y are (vectors of) spatial coordinates. This function returns the pixel values at the
specified locations.

Value

A function in the R language, also belonging to the class "funxy".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

[.im

Examples

d <- density(cells)
f <- as.function(d)
f(0.1, 0.3)

as.function.leverage.ppm 111

as.function.leverage.ppm

Convert Leverage Object to Function of Coordinates

Description

Converts an object of class "leverage.ppm" to a function of the x and y coordinates.

Usage

S3 method for class 'leverage.ppm'
as.function(x, ...)

Arguments

x Object of class "leverage.ppm" produced by leverage.ppm.

... Ignored.

Details

An object of class "leverage.ppm" represents the leverage function of a fitted point process model.
This command converts the object to a function(x,y) where the arguments x and y are (vectors of)
spatial coordinates. This function returns the leverage values at the specified locations (calculated
by referring to the nearest location where the leverage has been computed).

Value

A function in the R language, also belonging to the class "funxy".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.im.leverage.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
lev <- leverage(fit)
f <- as.function(lev)

f(0.2, 0.3) # evaluate at (x,y) coordinates
y <- f(X) # evaluate at a point pattern

112 as.function.owin

as.function.owin Convert Window to Indicator Function

Description

Converts a spatial window to a function of the x and y coordinates returning the value 1 inside the
window and 0 outside.

Usage

S3 method for class 'owin'
as.function(x, ...)

Arguments

x Pixel image (object of class "owin").

... Ignored.

Details

This command converts a spatial window (object of class "owin") to a function(x,y) where the
arguments x and y are (vectors of) spatial coordinates. This is the indicator function of the window:
it returns the value 1 for locations inside the window, and returns 0 for values outside the window.

Value

A function in the R language with arguments x,y. It also belongs to the class "indicfun" which
has methods for plot and print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.im.owin

Examples

W <- Window(humberside)
f <- as.function(W)
f
f(5000, 4500)
f(123456, 78910)
X <- runifpoint(5, Frame(humberside))
f(X)
plot(f)

as.function.tess 113

as.function.tess Convert a Tessellation to a Function

Description

Convert a tessellation into a function of the x and y coordinates. The default function values are
factor levels specifying which tile of the tessellation contains the point (x, y).

Usage

S3 method for class 'tess'
as.function(x,...,values=NULL)

Arguments

x A tessellation (object of class "tess").
values Optional. A vector giving the values of the function for each tile of x.
... Ignored.

Details

This command converts a tessellation (object of class "tess") to a function(x,y) where the ar-
guments x and y are (vectors of) spatial coordinates. The corresponding function values are factor
levels identifying which tile of the tessellation contains each point. Values are NA if the correspond-
ing point lies outside the tessellation.

If the argument values is given, then it determines the value of the function in each tile of x.

Value

A function in the R language, also belonging to the class "funxy".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

tileindex for the low-level calculation of tile index.

cut.ppp and split.ppp to divide up the points of a point pattern according to a tessellation.

Examples

X <- runifpoint(7)
V <- dirichlet(X)
f <- as.function(V)
f(0.1, 0.4)
plot(f)

114 as.fv

as.fv Convert Data To Class fv

Description

Converts data into a function table (an object of class "fv").

Usage

as.fv(x)

S3 method for class 'fv'
as.fv(x)

S3 method for class 'data.frame'
as.fv(x)

S3 method for class 'matrix'
as.fv(x)

S3 method for class 'fasp'
as.fv(x)

S3 method for class 'minconfit'
as.fv(x)

S3 method for class 'dppm'
as.fv(x)

S3 method for class 'kppm'
as.fv(x)

S3 method for class 'bw.optim'
as.fv(x)

Arguments

x Data which will be converted into a function table

Details

This command converts data x, that could be interpreted as the values of a function, into a function
value table (object of the class "fv" as described in fv.object). This object can then be plotted
easily using plot.fv.

The dataset x may be any of the following:

• an object of class "fv";

as.fv 115

• a matrix or data frame with at least two columns;

• an object of class "fasp", representing an array of "fv" objects.

• an object of class "minconfit", giving the results of a minimum contrast fit by the command
mincontrast. The

• an object of class "kppm", representing a fitted Cox or cluster point process model, obtained
from the model-fitting command kppm;

• an object of class "dppm", representing a fitted determinantal point process model, obtained
from the model-fitting command dppm;

• an object of class "bw.optim", representing an optimal choice of smoothing bandwidth by a
cross-validation method, obtained from commands like bw.diggle.

The function as.fv is generic, with methods for each of the classes listed above. The behaviour is
as follows:

• If x is an object of class "fv", it is returned unchanged.

• If x is a matrix or data frame, the first column is interpreted as the function argument, and
subsequent columns are interpreted as values of the function computed by different methods.

• If x is an object of class "fasp" representing an array of "fv" objects, these are combined
into a single "fv" object.

• If x is an object of class "minconfit", or an object of class "kppm" or "dppm", the result is a
function table containing the observed summary function and the best fit summary function.

• If x is an object of class "bw.optim", the result is a function table of the optimisation criterion
as a function of the smoothing bandwidth.

Value

An object of class "fv" (see fv.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

Examples

r <- seq(0, 1, length=101)
x <- data.frame(r=r, y=r^2)
as.fv(x)

116 as.hyperframe

as.hyperframe Convert Data to Hyperframe

Description

Converts data from any suitable format into a hyperframe.

Usage

as.hyperframe(x, ...)

Default S3 method:
as.hyperframe(x, ...)

S3 method for class 'data.frame'
as.hyperframe(x, ..., stringsAsFactors=FALSE)

S3 method for class 'hyperframe'
as.hyperframe(x, ...)

S3 method for class 'listof'
as.hyperframe(x, ...)

S3 method for class 'anylist'
as.hyperframe(x, ...)

Arguments

x Data in some other format.

... Optional arguments passed to hyperframe.
stringsAsFactors

Logical. If TRUE, any column of the data frame x that contains character strings
will be converted to a factor. If FALSE, no such conversion will occur.

Details

A hyperframe is like a data frame, except that its entries can be objects of any kind.

The generic function as.hyperframe converts any suitable kind of data into a hyperframe.

There are methods for the classes data.frame, listof, anylist and a default method, all of which
convert data that is like a hyperframe into a hyperframe object. (The method for the class listof
and anylist converts a list of objects, of arbitrary type, into a hyperframe with one column.) These
methods do not discard any information.

There are also methods for other classes (see as.hyperframe.ppx) which extract the coordinates
from a spatial dataset. These methods do discard some information.

as.hyperframe.ppx 117

Value

An object of class "hyperframe" created by hyperframe.

Conversion of Strings to Factors

Note that as.hyperframe.default will convert a character vector to a factor. It behaves like
as.data.frame.

However as.hyperframe.data.frame does not convert strings to factors; it respects the structure
of the data frame x.

The behaviour can be changed using the argument stringsAsFactors.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

hyperframe, as.hyperframe.ppx

Examples

df <- data.frame(x=runif(4),y=letters[1:4])
as.hyperframe(df)

sims <- list()
for(i in 1:3) sims[[i]] <- rpoispp(42)
as.hyperframe(as.listof(sims))
as.hyperframe(as.solist(sims))

as.hyperframe.ppx Extract coordinates and marks of multidimensional point pattern

Description

Given any kind of spatial or space-time point pattern, extract the coordinates and marks of the
points.

Usage

S3 method for class 'ppx'
as.hyperframe(x, ...)
S3 method for class 'ppx'
as.data.frame(x, ...)
S3 method for class 'ppx'
as.matrix(x, ...)

118 as.hyperframe.ppx

Arguments

x A general multidimensional space-time point pattern (object of class "ppx").

... Ignored.

Details

An object of class "ppx" (see ppx) represents a marked point pattern in multidimensional space
and/or time. There may be any number of spatial coordinates, any number of temporal coordinates,
and any number of mark variables. The individual marks may be atomic (numeric values, factor
values, etc) or objects of any kind.

The function as.hyperframe.ppx extracts the coordinates and the marks as a "hyperframe" (see
hyperframe) with one row of data for each point in the pattern. This is a method for the generic
function as.hyperframe.

The function as.data.frame.ppx discards those mark variables which are not atomic values, and
extracts the coordinates and the remaining marks as a data.frame with one row of data for each
point in the pattern. This is a method for the generic function as.data.frame.

Finally as.matrix(x) is equivalent to as.matrix(as.data.frame(x)) for an object of class
"ppx". Be warned that, if there are any columns of non-numeric data (i.e. if there are mark variables
that are factors), the result will be a matrix of character values.

Value

A hyperframe, data.frame or matrix as appropriate.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppx, hyperframe, as.hyperframe.

Examples

df <- data.frame(x=runif(4),y=runif(4),t=runif(4))
X <- ppx(data=df, coord.type=c("s","s","t"))
as.data.frame(X)
val <- runif(4)
E <- lapply(val, function(s) { rpoispp(s) })
hf <- hyperframe(t=val, e=as.listof(E))
Z <- ppx(data=hf, domain=c(0,1))
as.hyperframe(Z)
as.data.frame(Z)

as.im 119

as.im Convert to Pixel Image

Description

Converts various kinds of data to a pixel image

Usage

as.im(X, ...)

S3 method for class 'im'
as.im(X, W=NULL, ...,

eps=NULL, dimyx=NULL, xy=NULL,
na.replace=NULL)

S3 method for class 'owin'
as.im(X, W=NULL, ...,

eps=NULL, dimyx=NULL, xy=NULL,
na.replace=NULL, value=1)

S3 method for class 'matrix'
as.im(X, W=NULL, ...)

S3 method for class 'tess'
as.im(X, W=NULL, ...,

eps=NULL, dimyx=NULL, xy=NULL,
na.replace=NULL)

S3 method for class 'function'
as.im(X, W=NULL, ...,

eps=NULL, dimyx=NULL, xy=NULL,
na.replace=NULL,
stringsAsFactors=default.stringsAsFactors(),
strict=FALSE, drop=TRUE)

S3 method for class 'funxy'
as.im(X, W=Window(X), ...)

S3 method for class 'expression'
as.im(X, W=NULL, ...)

S3 method for class 'distfun'
as.im(X, W=NULL, ...,

eps=NULL, dimyx=NULL, xy=NULL,
na.replace=NULL, approx=TRUE)

120 as.im

S3 method for class 'nnfun'
as.im(X, W=NULL, ...,

eps=NULL, dimyx=NULL, xy=NULL,
na.replace=NULL, approx=TRUE)

S3 method for class 'densityfun'
as.im(X, W=Window(X), ..., approx=TRUE)

S3 method for class 'Smoothfun'
as.im(X, W=Window(X), ..., approx=TRUE)

S3 method for class 'leverage.ppm'
as.im(X, ..., what=c("smooth", "nearest"))

S3 method for class 'data.frame'
as.im(X, ..., step, fatal=TRUE, drop=TRUE)

Default S3 method:
as.im(X, W=NULL, ...,

eps=NULL, dimyx=NULL, xy=NULL,
na.replace=NULL)

Arguments

X Data to be converted to a pixel image.
W Window object which determines the spatial domain and pixel array geometry.
... Additional arguments passed to X when X is a function.
eps,dimyx,xy Optional parameters passed to as.mask which determine the pixel array geom-

etry. See as.mask.
na.replace Optional value to replace NA entries in the output image.
value Optional. The value to be assigned to pixels inside the window, if X is a window.
strict Logical value indicating whether to match formal arguments of X when X is a

function. If strict=FALSE (the default), all the ... arguments are passed to X.
If strict=TRUE, only named arguments are passed, and only if they match the
names of formal arguments of X.

step Optional. A single number, or numeric vector of length 2, giving the grid step
lengths in the x and y directions.

fatal Logical value indicating what to do if the resulting image would be too large for
available memory. If fatal=TRUE (the default), an error occurs. If fatal=FALSE,
a warning is issued and NULL is returned.

drop Logical value indicating what to do if the result would normally be a list of
pixel images but the list contains only one image. If drop=TRUE (the default),
the pixel image is extracted and the result is a pixel image. If drop=FALSE, this
list is returned as the result.

stringsAsFactors

Logical value (passed to data.frame) specifying how to handle pixel values
which are character strings. If TRUE, character values are interpreted as factor

as.im 121

levels. If FALSE, they remain as character strings. The factory-fresh befault is
TRUE, but that can be changed by setting options(stringsAsFactors=FALSE).

approx Logical value indicating whether to compute an approximate result at faster
speed.

what Character string (partially matched) specifying which image data should be ex-
tracted. See plot.leverage.ppm for explanation.

Details

This function converts the data X into a pixel image object of class "im" (see im.object). The
function as.im is generic, with methods for the classes listed above.

Currently X may be any of the following:

• a pixel image object, of class "im".

• a window object, of class "owin" (see owin.object). The result is an image with all pixel
entries equal to value inside the window X, and NA outside.

• a matrix.

• a tessellation (object of class "tess"). The result is a factor-valued image, with one factor
level corresponding to each tile of the tessellation. Pixels are classified according to the tile of
the tessellation into which they fall.

• a single number (or a single logical, complex, factor or character value). The result is an image
with all pixel entries equal to this constant value inside the window W (and NA outside, unless
the argument na.replace is given). Argument W is required.

• a function of the form function(x,y,...) which is to be evaluated to yield the image pixel
values. In this case, the additional argument W must be present. This window will be converted
to a binary image mask. Then the function X will be evaluated in the form X(x,y,...) where
x and y are vectors containing the x and y coordinates of all the pixels in the image mask, and
... are any extra arguments given. This function must return a vector or factor of the same
length as the input vectors, giving the pixel values.

• an object of class "funxy" representing a function(x,y,...) defined in a spatial region.
The function will be evaluated as described above. The window W defaults to the domain of
definition of the function.

• an object of class "funxy" which also belongs to one of the following special classes. If
approx=TRUE (the default), the function will be evaluated approximately using a very fast
algorithm. If approx=FALSE, the function will be evaluated exactly at each grid location as
described above.

– an object of class "distfun" representing a distance function (created by the command
distfun). The fast approximation is the distance transform distmap.

– an object of class "nnfun" representing a nearest neighbour function (created by the
command nnfun). The fast approximation is nnmap.

– an object of class "densityfun" representing a kernel estimate of intensity (created by
the command densityfun). The fast approximation is the Fast Fourier Transform algo-
rithm in density.ppp.

– an object of class "Smoothfun" representing kernel-smoothed values (created by the com-
mand Smoothfun). The fast approximation is the Fast Fourier Transform algorithm in
Smooth.ppp.

122 as.im

• An expression involving the variables x and y representing the spatial coordinates, and pos-
sibly also involving other variables. The additional argument W must be present; it will be
converted to a binary image mask. The expression X will be evaluated in an environment
where x and y are vectors containing the spatial coordinates of all the pixels in the image
mask. Evaluation of the expression X must yield a vector or factor, of the same length as x and
y, giving the pixel values.

• a list with entries x,y,z in the format expected by the standard R functions image.default
and contour.default. That is, z is a matrix of pixel values, x and y are vectors of x and y
coordinates respectively, and z[i,j] is the pixel value for the location (x[i],y[j]).

• a point pattern (object of class "ppp"). See the separate documentation for as.im.ppp.

• A data frame with at least three columns. Columns named x, y and z, if present, will be
assumed to contain the spatial coordinates and the pixel values, respectively. Otherwise the x
and y coordinates will be taken from the first two columns of the data frame, and any remaining
columns will be interpreted as pixel values.

The spatial domain (enclosing rectangle) of the pixel image is determined by the argument W. If W is
absent, the spatial domain is determined by X. When X is a function, a matrix, or a single numerical
value, W is required.

The pixel array dimensions of the final resulting image are determined by (in priority order)

• the argument eps, dimyx or xy if present;

• the pixel dimensions of the window W, if it is present and if it is a binary mask;

• the pixel dimensions of X if it is an image, a binary mask, or a list(x,y,z);

• the default pixel dimensions, controlled by spatstat.options.

Note that if eps, dimyx or xy is given, this will override the pixel dimensions of X if it has them.
Thus, as.im can be used to change an image’s pixel dimensions.

If the argument na.replace is given, then all NA entries in the image will be replaced by this value.
The resulting image is then defined everwhere on the full rectangular domain, instead of a smaller
window. Here na.replace should be a single value, of the same type as the other entries in the
image.

If X is a pixel image that was created by an older version of spatstat, the command X <-as.im(X)
will repair the internal format of X so that it conforms to the current version of spatstat.

If X is a data frame with m columns, then m-2 columns of data are interpreted as pixel values, yielding
m-2 pixel images. The result of as.im.data.frame is a list of pixel images, belonging to the class
"imlist". If m = 3 and drop=TRUE (the default), then the result is a pixel image rather than a list
containing this image.

If X is a function(x,y) which returns a matrix of values, then as.im(X,W) will be a list of pixel
images.

Value

A pixel image (object of class "im"), or a list of pixel images, or NULL if the conversion failed.

as.im 123

Character-valued images

By default, if the pixel value data are character strings, they will be treated as levels of a factor,
and the resulting image will be factor-valued. To prevent the conversion of character strings to
factors, use the argument stringsAsFactors=FALSE, which is recognised by most of the methods
for as.im, or alternatively set options(stringsAsFactors=FALSE).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

Separate documentation for as.im.ppp

Examples

data(demopat)
window object
W <- Window(demopat)
plot(W)
Z <- as.im(W)
image(Z)
function
Z <- as.im(function(x,y) {x^2 + y^2}, unit.square())
image(Z)
or as an expression
Z <- as.im(expression(x^2+y^2), square(1))

function with extra arguments
f <- function(x, y, x0, y0) {

sqrt((x - x0)^2 + (y-y0)^2)
}
Z <- as.im(f, unit.square(), x0=0.5, y0=0.5)
image(Z)

Revisit the Sixties
Z <- as.im(f, letterR, x0=2.5, y0=2)
image(Z)
usual convention in R
stuff <- list(x=1:10, y=1:10, z=matrix(1:100, nrow=10))
Z <- as.im(stuff)
convert to finer grid
Z <- as.im(Z, dimyx=256)

#' distance functions
d <- distfun(redwood)
Zapprox <- as.im(d)
Zexact <- as.im(d, approx=FALSE)
plot(solist(approx=Zapprox, exact=Zexact), main="")

124 as.interact

pixellate the Dirichlet tessellation
Di <- dirichlet(runifpoint(10))
plot(as.im(Di))
plot(Di, add=TRUE)

as.im.data.frame is the reverse of as.data.frame.im
grad <- bei.extra$grad
slopedata <- as.data.frame(grad)
slope <- as.im(slopedata)
unitname(grad) <- unitname(slope) <- unitname(grad) # for compatibility
all.equal(slope, grad) # TRUE

handling of character values
as.im("a", W=letterR, na.replace="b")
as.im("a", W=letterR, na.replace="b", stringsAsFactors=FALSE)

as.interact Extract Interaction Structure

Description

Extracts the interpoint interaction structure from a point pattern model.

Usage

as.interact(object)
S3 method for class 'fii'
as.interact(object)
S3 method for class 'interact'
as.interact(object)
S3 method for class 'ppm'
as.interact(object)

Arguments

object A fitted point process model (object of class "ppm") or an interpoint interaction
structure (object of class "interact").

Details

The function as.interact extracts the interpoint interaction structure from a suitable object.

An object of class "interact" describes an interpoint interaction structure, before it has been fitted
to point pattern data. The irregular parameters of the interaction (such as the interaction range) are
fixed, but the regular parameters (such as interaction strength) are undetermined. Objects of this
class are created by the functions Poisson, Strauss and so on. The main use of such objects is in
a call to ppm.

The function as.interact is generic, with methods for the classes "ppm", "fii" and "interact".
The result is an object of class "interact" which can be printed.

as.layered 125

Value

An object of class "interact" representing the interpoint interaction. This object can be printed
and plotted.

Note on parameters

This function does not extract the fitted coefficients of the interaction. To extract the fitted interac-
tion including the fitted coefficients, use fitin.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fitin, ppm.

Examples

data(cells)
model <- ppm(cells, ~1, Strauss(0.07))
f <- as.interact(model)
f

as.layered Convert Data To Layered Object

Description

Converts spatial data into a layered object.

Usage

as.layered(X)

Default S3 method:
as.layered(X)

S3 method for class 'ppp'
as.layered(X)

S3 method for class 'splitppp'
as.layered(X)

S3 method for class 'solist'
as.layered(X)

126 as.layered

S3 method for class 'listof'
as.layered(X)

S3 method for class 'msr'
as.layered(X)

Arguments

X Some kind of spatial data.

Details

This function converts the object X into an object of class "layered".

The argument X should contain some kind of spatial data such as a point pattern, window, or pixel
image.

If X is a simple object then it will be converted into a layered object containing only one layer
which is equivalent to X.

If X can be interpreted as consisting of multiple layers of data, then the result will be a layered
object consisting of these separate layers of data.

• if X is a list of class "listof" or "solist", then as.layered(X) consists of several layers,
one for each entry in the list X;

• if X is a multitype point pattern, then as.layered(X) consists of several layers, each contain-
ing the sub-pattern consisting of points of one type;

• if X is a vector-valued measure, then as.layered(X) consists of several layers, each contain-
ing a scalar-valued measure.

Value

An object of class "layered" (see layered).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

layered, split.ppp

Examples

as.layered(cells)
as.layered(amacrine)

P <- rpoispp(100)

as.linfun 127

fit <- ppm(P ~ x+y)
rs <- residuals(fit, type="score")
as.layered(rs)

as.linfun Convert Data to a Function on a Linear Network

Description

Convert some kind of data to an object of class "linfun" representing a function on a linear net-
work.

Usage

as.linfun(X, ...)

S3 method for class 'linim'
as.linfun(X, ...)

S3 method for class 'lintess'
as.linfun(X, ..., values=marks(X), navalue=NA)

Arguments

X Some kind of data to be converted.

... Other arguments passed to methods.

values Optional. Vector of function values, one entry associated with each tile of the
tessellation.

navalue Optional. Function value associated with locations that do not belong to a tile
of the tessellation.

Details

An object of class "linfun" represents a function defined on a linear network.

The function as.linfun is generic. The method as.linfun.linim converts objects of class "linim"
(pixel images on a linear network) to functions on the network.

The method as.linfun.lintess converts a tessellation on a linear network into a function with a
different value on each tile of the tessellation. The function values are specified by the argument
values. It should be a vector with one entry for each tile of the tessellation; any point lying in tile
number i will return the value v[i]. If values is missing, the marks of the tessellation are taken as
the function values. If values is missing and the tessellation has no marks, or if values is given as
NULL, then the function returns factor values identifying which tile contains each given point.

Value

Object of class "linfun".

128 as.linim

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linfun

Examples

X <- runiflpp(2, simplenet)
Y <- runiflpp(5, simplenet)

image on network
D <- density(Y, 0.1)

f <- as.linfun(D)
f
f(X)

tessellation on network
Z <- lineardirichlet(Y)
g <- as.linfun(Z)
g(X)
h <- as.linfun(Z, values = runif(5))
h(X)

as.linim Convert to Pixel Image on Linear Network

Description

Converts various kinds of data to a pixel image on a linear network.

Usage

as.linim(X, ...)

S3 method for class 'linim'
as.linim(X, ...)

Default S3 method:
as.linim(X, L, ...,

eps = NULL, dimyx = NULL, xy = NULL,
delta=NULL)

S3 method for class 'linfun'
as.linim(X, L=domain(X), ...,

eps = NULL, dimyx = NULL, xy = NULL,
delta=NULL)

as.linim 129

Arguments

X Data to be converted to a pixel image on a linear network.

L Linear network (object of class "linnet").

... Additional arguments passed to X when X is a function.

eps,dimyx,xy Optional arguments passed to as.mask to control the pixel resolution.

delta Optional. Numeric value giving the approximate distance (in coordinate units)
between successive sample points along each segment of the network.

Details

This function converts the data X into a pixel image on a linear network, an object of class "linim"
(see linim).

The argument X may be any of the following:

• a function on a linear network, an object of class "linfun".

• a pixel image on a linear network, an object of class "linim".

• a pixel image, an object of class "im".

• any type of data acceptable to as.im, such as a function, numeric value, or window.

First X is converted to a pixel image object Y (object of class "im"). The conversion is performed
by as.im. The arguments eps, dimyx and xy determine the pixel resolution.

Next Y is converted to a pixel image on a linear network using linim. The argument L determines
the linear network. If L is missing or NULL, then X should be an object of class "linim", and L
defaults to the linear network on which X is defined.

In addition to converting the function to a pixel image, the algorithm also generates a fine grid
of sample points evenly spaced along each segment of the network (with spacing at most delta
coordinate units). The function values at these sample points are stored in the resulting object
as a data frame (the argument df of linim). This mechanism allows greater accuracy for some
calculations (such as integral.linim).

Value

An image object on a linear network; an object of class "linim".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

as.im

Examples

f <- function(x,y){ x + y }
plot(as.linim(f, simplenet))

130 as.linnet.linim

as.linnet.linim Extract Linear Network from Data on a Linear Network

Description

Given some kind of data on a linear network, the command as.linnet extracts the linear network
itself.

Usage

S3 method for class 'linim'
as.linnet(X, ...)

S3 method for class 'linfun'
as.linnet(X, ...)

S3 method for class 'lintess'
as.linnet(X, ...)

S3 method for class 'lpp'
as.linnet(X, ..., fatal=TRUE, sparse)

Arguments

X Data on a linear network. A point pattern (class "lpp"), pixel image (class
"linim"), function (class "linfun") or tessellation (class "lintess") on a lin-
ear network.

... Ignored.

fatal Logical value indicating whether data in the wrong format should lead to an
error (fatal=TRUE) or a warning (fatal=FALSE).

sparse Logical value indicating whether to use a sparse matrix representation, as ex-
plained in linnet. Default is to keep the same representation as in X.

Details

These are methods for the generic as.linnet for various classes.

The network on which the data are defined is extracted.

Value

A linear network (object of class "linnet").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

as.linnet.psp 131

See Also

linnet, methods.linnet.

Examples

make some data
xcoord <- linfun(function(x,y,seg,tp) { x }, simplenet)
as.linnet(xcoord)
X <- as.linim(xcoord)
as.linnet(X)

as.linnet.psp Convert Line Segment Pattern to Linear Network

Description

Converts a line segment pattern to a linear network.

Usage

S3 method for class 'psp'
as.linnet(X, ..., eps, sparse=FALSE)

Arguments

X Line segment pattern (object of class "psp").

... Ignored.

eps Optional. Distance threshold. If two segment endpoints are closer than eps units
apart, they will be treated as the same point, and will become a single vertex in
the linear network.

sparse Logical value indicating whether to use a sparse matrix representation, as ex-
plained in linnet.

Details

This command converts any collection of line segments into a linear network by guessing the con-
nectivity of the network, using the distance threshold eps.

If any segments in X cross over each other, they are first cut into pieces using selfcut.psp.

Then any pair of segment endpoints lying closer than eps units apart, is treated as a single vertex.
The linear network is then constructed using linnet.

It would be wise to check the result by plotting the degree of each vertex, as shown in the Examples.

If X has marks, then these are stored in the resulting linear network Y <-as.linnet(X), and can be
extracted as marks(as.psp(Y)) or marks(Y$lines).

132 as.lpp

Value

A linear network (object of class "linnet").

The result also has an attribute "camefrom" indicating the provenance of each line in the resulting
network. For example camefrom[3]=2 means that the third line segment in the result is a piece of
the second segment of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linnet, selfcut.psp, methods.linnet.

Examples

make some data
A <- psp(0.09, 0.55, 0.79, 0.80, window=owin())
B <- superimpose(A, as.psp(simplenet))

convert to a linear network
L <- as.linnet(B)

check validity
L
plot(L)
text(vertices(L), labels=vertexdegree(L))

show the pieces that came from original segment number 1
S <- as.psp(L)
(camefrom <- attr(L, "camefrom"))
parts <- which(camefrom == 1)
plot(S[parts], add=TRUE, col="green", lwd=2)

as.lpp Convert Data to a Point Pattern on a Linear Network

Description

Convert various kinds of data to a point pattern on a linear network.

Usage

as.lpp(x=NULL, y=NULL, seg=NULL, tp=NULL, ...,
marks=NULL, L=NULL, check=FALSE, sparse)

as.lpp 133

Arguments

x,y Vectors of cartesian coordinates, or any data acceptable to xy.coords. Alterna-
tively x can be a point pattern on a linear network (object of class "lpp") or a
planar point pattern (object of class "ppp").

seg,tp Optional local coordinates. Vectors of the same length as x,y. See Details.

... Ignored.

marks Optional marks for the point pattern. A vector or factor with one entry for each
point, or a data frame or hyperframe with one row for each point.

L Linear network (object of class "linnet") on which the points lie.

check Logical. Whether to check the validity of the spatial coordinates.

sparse Optional logical value indicating whether to store the linear network data in a
sparse matrix representation or not. See linnet.

Details

This function converts data in various formats into a point pattern on a linear network (object of
class "lpp").

The possible formats are:

• x is already a point pattern on a linear network (object of class "lpp"). Then x is returned
unchanged.

• x is a planar point pattern (object of class "ppp"). Then x is converted to a point pattern on
the linear network L using lpp.

• x,y,seg,tp are vectors of equal length. These specify that the ith point has Cartesian coor-
dinates (x[i],y[i]), and lies on segment number seg[i] of the network L, at a fractional
position tp[i] along that segment (with tp=0 representing one endpoint and tp=1 the other
endpoint of the segment).

• x,y are missing and seg,tp are vectors of equal length as described above.

• seg,tp are NULL, and x,y are data in a format acceptable to xy.coords specifying the Carte-
sian coordinates.

• Only the arguments x and L are given, and x is a data frame with one of the following types:

– two columns labelled seg,tp interpreted as local coordinates on the network.
– two columns labelled x,y interpreted as Cartesian coordinates.
– four columns labelled x,y,seg,tp interpreted as Cartesian coordinates and local coordi-

nates.

Value

A point pattern on a linear network (object of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

134 as.mask

See Also

lpp.

Examples

A <- as.psp(simplenet)
X <- runifpointOnLines(10, A)
is.ppp(X)
Y <- as.lpp(X, L=simplenet)

as.mask Pixel Image Approximation of a Window

Description

Obtain a discrete (pixel image) approximation of a given window

Usage

as.mask(w, eps=NULL, dimyx=NULL, xy=NULL)

Arguments

w A window (object of class "owin") or data acceptable to as.owin.

eps (optional) width and height of pixels.

dimyx (optional) pixel array dimensions

xy (optional) data containing pixel coordinates

Details

This function generates a rectangular grid of locations in the plane, tests whether each of these
locations lies inside the window w, and stores the results as a binary pixel image or ‘mask’ (an
object of class "owin", see owin.object).

The most common use of this function is to approximate the shape of another window w by a binary
pixel image. In this case, we will usually want to have a very fine grid of pixels.

This function can also be used to generate a coarsely-spaced grid of locations inside a window, for
purposes such as subsampling and prediction.

The grid spacing and location are controlled by the arguments eps, dimyx and xy, which are mutu-
ally incompatible.

If eps is given, then it determines the grid spacing. If eps is a single number, then the grid spacing
will be approximately eps in both the x and y directions. If eps is a vector of length 2, then the grid
spacing will be approximately eps[1] in the x direction and eps[2] in the y direction.

If dimyx is given, then the pixel grid will be an m × n rectangular grid where m,n are given by
dimyx[2], dimyx[1] respectively. Warning: dimyx[1] is the number of pixels in the y direction,
and dimyx[2] is the number in the x direction.

as.mask.psp 135

If xy is given, then this should be some kind of data specifing the coordinates of a pixel grid. It may
be

• a list or structure containing elements x and y which are numeric vectors of equal length.
These will be taken as x and y coordinates of the margins of the grid. The pixel coordinates
will be generated from these two vectors.

• a pixel image (object of class "im").

• a window (object of class "owin") which is of type "mask" so that it contains pixel coordi-
nates.

If xy is given, w may be omitted.

If neither eps nor dimyx nor xy is given, the pixel raster dimensions are obtained from spatstat.options("npixel").

There is no inverse of this function. However, the function as.polygonal will compute a polygonal
approximation of a binary mask.

Value

A window (object of class "owin") of type "mask" representing a binary pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin.object, as.rectangle, as.polygonal, spatstat.options

Examples

w <- owin(c(0,10),c(0,10), poly=list(x=c(1,2,3,2,1), y=c(2,3,4,6,7)))
Not run: plot(w)
m <- as.mask(w)
Not run: plot(m)
x <- 1:9
y <- seq(0.25, 9.75, by=0.5)
m <- as.mask(w, xy=list(x=x, y=y))

as.mask.psp Convert Line Segment Pattern to Binary Pixel Mask

Description

Converts a line segment pattern to a binary pixel mask by determining which pixels intersect the
lines.

136 as.mask.psp

Usage

as.mask.psp(x, W=NULL, ...)

Arguments

x Line segment pattern (object of class "psp").

W Optional window (object of class "owin") determining the pixel raster.

... Optional extra arguments passed to as.mask to determine the pixel resolution.

Details

This function converts a line segment pattern to a binary pixel mask by determining which pixels
intersect the lines.

The pixel raster is determined by W and the optional arguments If W is missing or NULL, it
defaults to the window containing x. Then W is converted to a binary pixel mask using as.mask.
The arguments ... are passed to as.mask to control the pixel resolution.

Value

A window (object of class "owin") which is a binary pixel mask (type "mask").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pixellate.psp, as.mask.

Use pixellate.psp if you want to measure the length of line in each pixel.

Examples

X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(as.mask.psp(X))
plot(X, add=TRUE, col="red")

as.matrix.im 137

as.matrix.im Convert Pixel Image to Matrix or Array

Description

Converts a pixel image to a matrix or an array.

Usage

S3 method for class 'im'
as.matrix(x, ...)
S3 method for class 'im'

as.array(x, ...)

Arguments

x A pixel image (object of class "im").

... See below.

Details

The function as.matrix.im converts the pixel image x into a matrix containing the pixel values. It
is handy when you want to extract a summary of the pixel values. See the Examples.

The function as.array.im converts the pixel image to an array. By default this is a three-dimensional
array of dimension n by m by 1. If the extra arguments ... are given, they will be passed to array,
and they may change the dimensions of the array.

Value

A matrix or array.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

as.matrix.owin

Examples

artificial image
Z <- setcov(square(1))

M <- as.matrix(Z)

138 as.matrix.owin

median(M)

Not run:
plot the cumulative distribution function of pixel values
plot(ecdf(as.matrix(Z)))

End(Not run)

as.matrix.owin Convert Pixel Image to Matrix

Description

Converts a pixel image to a matrix.

Usage

S3 method for class 'owin'
as.matrix(x, ...)

Arguments

x A window (object of class "owin").

... Arguments passed to as.mask to control the pixel resolution.

Details

The function as.matrix.owin converts a window to a logical matrux.

It first converts the window x into a binary pixel mask using as.mask. It then extracts the pixel
entries as a logical matrix.

The resulting matrix has entries that are TRUE if the corresponding pixel is inside the window, and
FALSE if it is outside.

The function as.matrix is generic. The function as.matrix.owin is the method for windows
(objects of class "owin").

Use as.im to convert a window to a pixel image.

Value

A logical matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

as.owin 139

See Also

as.matrix.im, as.im

Examples

m <- as.matrix(letterR)

as.owin Convert Data To Class owin

Description

Converts data specifying an observation window in any of several formats, into an object of class
"owin".

Usage

as.owin(W, ..., fatal=TRUE)

S3 method for class 'owin'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'ppp'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'ppm'
as.owin(W, ..., from=c("points", "covariates"), fatal=TRUE)

S3 method for class 'kppm'
as.owin(W, ..., from=c("points", "covariates"), fatal=TRUE)

S3 method for class 'dppm'
as.owin(W, ..., from=c("points", "covariates"), fatal=TRUE)

S3 method for class 'lpp'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'lppm'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'msr'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'psp'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'quad'

140 as.owin

as.owin(W, ..., fatal=TRUE)

S3 method for class 'quadratcount'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'quadrattest'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'tess'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'im'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'layered'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'data.frame'
as.owin(W, ..., step, fatal=TRUE)

S3 method for class 'distfun'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'nnfun'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'funxy'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'boxx'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'rmhmodel'
as.owin(W, ..., fatal=FALSE)

S3 method for class 'leverage.ppm'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'influence.ppm'
as.owin(W, ..., fatal=TRUE)

Default S3 method:
as.owin(W, ..., fatal=TRUE)

Arguments

W Data specifying an observation window, in any of several formats described un-
der Details below.

as.owin 141

fatal Logical value determining what to do if the data cannot be converted to an ob-
servation window. See Details.

... Ignored.

from Character string. See Details.

step Optional. A single number, or numeric vector of length 2, giving the grid step
lengths in the x and y directions.

Details

The class "owin" is a way of specifying the observation window for a point pattern. See owin.object
for an overview.

The function as.owin converts data in any of several formats into an object of class "owin" for use
by the spatstat package. The function as.owin is generic, with methods for different classes of
objects, and a default method.

The argument W may be

• an object of class "owin"

• a structure with entries xrange, yrange specifying the x and y dimensions of a rectangle

• a structure with entries named xmin, xmax, ymin, ymax (in any order) specifying the x and y
dimensions of a rectangle. This will accept objects of class bbox in the sf package.

• a numeric vector of length 4 (interpreted as (xmin,xmax,ymin,ymax) in that order) specifying
the x and y dimensions of a rectangle

• a structure with entries named xl, xu, yl, yu (in any order) specifying the x and y dimensions
of a rectangle as (xmin,xmax) = (xl,xu) and (ymin,ymax) = (yl,yu). This will accept
objects of class spp used in the Venables and Ripley spatial package.

• an object of class "ppp" representing a point pattern. In this case, the object’s window structure
will be extracted.

• an object of class "psp" representing a line segment pattern. In this case, the object’s window
structure will be extracted.

• an object of class "tess" representing a tessellation. In this case, the object’s window structure
will be extracted.

• an object of class "quad" representing a quadrature scheme. In this case, the window of the
data component will be extracted.

• an object of class "im" representing a pixel image. In this case, a window of type "mask" will
be returned, with the same pixel raster coordinates as the image. An image pixel value of NA,
signifying that the pixel lies outside the window, is transformed into the logical value FALSE,
which is the corresponding convention for window masks.

• an object of class "ppm", "kppm" or "dppm" representing a fitted point process model. In
this case, if from="data" (the default), as.owin extracts the original point pattern data to
which the model was fitted, and returns the observation window of this point pattern. If
from="covariates" then as.owin extracts the covariate images to which the model was
fitted, and returns a binary mask window that specifies the pixel locations.

• an object of class "lpp" representing a point pattern on a linear network. In this case, as.owin
extracts the linear network and returns a window containing this network.

142 as.owin

• an object of class "lppm" representing a fitted point process model on a linear network. In this
case, as.owin extracts the linear network and returns a window containing this network.

• A data.frame with exactly three columns. Each row of the data frame corresponds to one
pixel. Each row contains the x and y coordinates of a pixel, and a logical value indicating
whether the pixel lies inside the window.

• A data.frame with exactly two columns. Each row of the data frame contains the x and y
coordinates of a pixel that lies inside the window.

• an object of class "distfun", "nnfun" or "funxy" representing a function of spatial location,
defined on a spatial domain. The spatial domain of the function will be extracted.

• an object of class "rmhmodel" representing a point process model that can be simulated using
rmh. The window (spatial domain) of the model will be extracted. The window may be NULL
in some circumstances (indicating that the simulation window has not yet been determined).
This is not treated as an error, because the argument fatal defaults to FALSE for this method.

• an object of class "layered" representing a list of spatial objects. See layered. In this case,
as.owin will be applied to each of the objects in the list, and the union of these windows will
be returned.

• an object of class "SpatialPolygon", "SpatialPolygons" or "SpatialPolygonsDataFrame".
To handle these data types, the package maptools must be loaded, because it provides the
methods for as.owin for these classes. For full details, see vignette('shapefiles').

If the argument W is not in one of these formats and cannot be converted to a window, then an error
will be generated (if fatal=TRUE) or a value of NULL will be returned (if fatal=FALSE).

When W is a data frame, the argument step can be used to specify the pixel grid spacing; otherwise,
the spacing will be guessed from the data.

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

owin.object, owin.

Additional methods for as.owin are provided in the maptools package: as.owin.SpatialPolygon,
as.owin.SpatialPolygons, as.owin.SpatialPolygonsDataFrame.

Examples

w <- as.owin(c(0,1,0,1))
w <- as.owin(list(xrange=c(0,5),yrange=c(0,10)))
point pattern
data(demopat)
w <- as.owin(demopat)
image

as.polygonal 143

Z <- as.im(function(x,y) { x + 3}, unit.square())
w <- as.owin(Z)

Venables & Ripley 'spatial' package
spatialpath <- system.file(package="spatial")
if(nchar(spatialpath) > 0) {

require(spatial)
towns <- ppinit("towns.dat")
w <- as.owin(towns)
detach(package:spatial)

}

as.polygonal Convert a Window to a Polygonal Window

Description

Given a window W of any geometric type (rectangular, polygonal or binary mask), this function
returns a polygonal window that represents the same spatial domain.

Usage

as.polygonal(W, repair=FALSE)

Arguments

W A window (object of class "owin").

repair Logical value indicating whether to check the validity of the polygon data and
repair it, if W is already a polygonal window.

Details

Given a window W of any geometric type (rectangular, polygonal or binary mask), this function
returns a polygonal window that represents the same spatial domain.

If W is a rectangle, it is converted to a polygon with 4 vertices.

If W is already polygonal, it is returned unchanged, by default. However if repair=TRUE then the
validity of the polygonal coordinates will be checked (for example to check the boundary is not
self-intersecting) and repaired if necessary, so that the result could be different from W.

If W is a binary mask, then each pixel in the mask is replaced by a small square or rectangle, and the
union of these squares or rectangles is computed. The result is a polygonal window that has only
horizontal and vertical edges. (Use simplify.owin to remove the staircase appearance, if desired).

Value

A polygonal window (object of class "owin" and of type "polygonal").

144 as.ppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

owin, as.owin, as.mask, simplify.owin

Examples

data(letterR)
m <- as.mask(letterR, dimyx=32)
p <- as.polygonal(m)
if(interactive()) {

plot(m)
plot(p, add=TRUE, lwd=2)

}

as.ppm Extract Fitted Point Process Model

Description

Extracts the fitted point process model from some kind of fitted model.

Usage

as.ppm(object)

S3 method for class 'ppm'
as.ppm(object)

S3 method for class 'profilepl'
as.ppm(object)

S3 method for class 'kppm'
as.ppm(object)

S3 method for class 'dppm'
as.ppm(object)

Arguments

object An object that includes a fitted Poisson or Gibbs point process model. An object
of class "ppm", "profilepl", "kppm" or "dppm" or possibly other classes.

as.ppp 145

Details

The function as.ppm extracts the fitted point process model (of class "ppm") from a suitable object.

The function as.ppm is generic, with methods for the classes "ppm", "profilepl", "kppm" and
"dppm", and possibly for other classes.

For the class "profilepl" of models fitted by maximum profile pseudolikelihood, the method
as.ppm.profilepl extracts the fitted point process model (with the optimal values of the irregular
parameters).

For the class "kppm" of models fitted by minimum contrast (or Palm or composite likelihood) using
Waagepetersen’s two-step estimation procedure (see kppm), the method as.ppm.kppm extracts the
Poisson point process model that is fitted in the first stage of the procedure.

The behaviour for the class "dppm" is analogous to the "kppm" case above.

Value

An object of class "ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

ppm, profilepl.

Examples

fit a model by profile maximum pseudolikelihood
rvals <- data.frame(r=(1:10)/100)
pfit <- profilepl(rvals, Strauss, cells, ~1)
extract the fitted model
fit <- as.ppm(pfit)

as.ppp Convert Data To Class ppp

Description

Tries to coerce any reasonable kind of data to a spatial point pattern (an object of class "ppp") for
use by the spatstat package).

146 as.ppp

Usage

as.ppp(X, ..., fatal=TRUE)

S3 method for class 'ppp'
as.ppp(X, ..., fatal=TRUE)

S3 method for class 'psp'
as.ppp(X, ..., fatal=TRUE)

S3 method for class 'quad'
as.ppp(X, ..., fatal=TRUE)

S3 method for class 'matrix'
as.ppp(X, W=NULL, ..., fatal=TRUE)

S3 method for class 'data.frame'
as.ppp(X, W=NULL, ..., fatal=TRUE)

S3 method for class 'influence.ppm'
as.ppp(X, ...)

Default S3 method:
as.ppp(X, W=NULL, ..., fatal=TRUE)

Arguments

X Data which will be converted into a point pattern

W Data which define a window for the pattern, when X does not contain a window.
(Ignored if X contains window information.)

... Ignored.

fatal Logical value specifying what to do if the data cannot be converted. See Details.

Details

Converts the dataset X to a point pattern (an object of class "ppp"; see ppp.object for an overview).

This function is normally used to convert an existing point pattern dataset, stored in another format,
to the "ppp" format. To create a new point pattern from raw data such as x, y coordinates, it is
normally easier to use the creator function ppp.

The function as.ppp is generic, with methods for the classes "ppp", "psp", "quad", "matrix",
"data.frame" and a default method.

The dataset X may be:

• an object of class "ppp"

• an object of class "psp"

• a point pattern object created by the spatial library

• an object of class "quad" representing a quadrature scheme (see quad.object)

as.ppp 147

• a matrix or data frame with at least two columns

• a structure with entries x, y which are numeric vectors of equal length

• a numeric vector of length 2, interpreted as the coordinates of a single point.

In the last three cases, we need the second argument W which is converted to a window object by the
function as.owin. In the first four cases, W will be ignored.

If X is a line segment pattern (an object of class psp) the point pattern returned consists of the
endpoints of the segments. If X is marked then the point pattern returned will also be marked, the
mark associated with a point being the mark of the segment of which that point was an endpoint.

If X is a matrix or data frame, the first and second columns will be interpreted as the x and y
coordinates respectively. Any additional columns will be interpreted as marks.

The argument fatal indicates what to do when W is missing and X contains no information about the
window. If fatal=TRUE, a fatal error will be generated; if fatal=FALSE, the value NULL is returned.

In the spatial library, a point pattern is represented in either of the following formats:

• (in spatial versions 1 to 6) a structure with entries x, y xl, xu, yl, yu

• (in spatial version 7) a structure with entries x, y and area, where area is a structure with
entries xl, xu, yl, yu

where x and y are vectors of equal length giving the point coordinates, and xl, xu, yl, yu are
numbers giving the dimensions of a rectangular window.

Point pattern datasets can also be created by the function ppp.

Value

An object of class "ppp" (see ppp.object) describing the point pattern and its window of observa-
tion. The value NULL may also be returned; see Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

ppp, ppp.object, as.owin, owin.object

Examples

xy <- matrix(runif(40), ncol=2)
pp <- as.ppp(xy, c(0,1,0,1))

Venables-Ripley format
check for 'spatial' package
spatialpath <- system.file(package="spatial")
if(nchar(spatialpath) > 0) {
require(spatial)
towns <- ppinit("towns.dat")
pp <- as.ppp(towns) # converted to our format

148 as.psp

detach(package:spatial)
}

xyzt <- matrix(runif(40), ncol=4)
Z <- as.ppp(xyzt, square(1))

as.psp Convert Data To Class psp

Description

Tries to coerce any reasonable kind of data object to a line segment pattern (an object of class
"psp") for use by the spatstat package.

Usage

as.psp(x, ..., from=NULL, to=NULL)

S3 method for class 'psp'
as.psp(x, ..., check=FALSE, fatal=TRUE)

S3 method for class 'data.frame'
as.psp(x, ..., window=NULL, marks=NULL,

check=spatstat.options("checksegments"), fatal=TRUE)

S3 method for class 'matrix'
as.psp(x, ..., window=NULL, marks=NULL,

check=spatstat.options("checksegments"), fatal=TRUE)

Default S3 method:
as.psp(x, ..., window=NULL, marks=NULL,

check=spatstat.options("checksegments"), fatal=TRUE)

Arguments

x Data which will be converted into a line segment pattern

window Data which define a window for the pattern.

... Ignored.

marks (Optional) vector or data frame of marks for the pattern

check Logical value indicating whether to check the validity of the data, e.g. to check
that the line segments lie inside the window.

fatal Logical value. See Details.

from,to Point patterns (object of class "ppp") containing the first and second endpoints
(respectively) of each segment. Incompatible with x.

as.psp 149

Details

Converts the dataset x to a line segment pattern (an object of class "psp"; see psp.object for an
overview).

This function is normally used to convert an existing line segment pattern dataset, stored in another
format, to the "psp" format. To create a new point pattern from raw data such as x, y coordinates,
it is normally easier to use the creator function psp.

The dataset x may be:

• an object of class "psp"

• a data frame with at least 4 columns

• a structure (list) with elements named x0,y0,x1,y1 or elements named xmid,ymid,length,angle
and possibly a fifth element named marks

If x is a data frame the interpretation of its columns is as follows:

• If there are columns named x0,y0,x1,y1 then these will be interpreted as the coordinates of
the endpoints of the segments and used to form the ends component of the psp object to be
returned.

• If there are columns named xmid,ymid,length,angle then these will be interpreted as the
coordinates of the segment midpoints, the lengths of the segments, and the orientations of the
segments in radians and used to form the ends component of the psp object to be returned.

• If there is a column named marks then this will be interpreted as the marks of the pattern
provided that the argument marks of this function is NULL. If argument marks is not NULL then
the value of this argument is taken to be the marks of the pattern and the column named marks
is ignored (with a warning). In either case the column named marks is deleted and omitted
from further consideration.

• If there is no column named marks and if the marks argument of this function is NULL, and if
after interpreting 4 columns of x as determining the ends component of the psp object to be
returned, there remain other columns of x, then these remaining columns will be taken to form
a data frame of marks for the psp object to be returned.

If x is a structure (list) with elements named x0,y0,x1,y1,marks or xmid,ymid,length,angle,marks,
then the element named marks will be interpreted as the marks of the pattern provide that the argu-
ment marks of this function is NULL. If this argument is non-NULL then it is interpreted as the marks
of the pattern and the element marks of x is ignored — with a warning.

Alternatively, you may specify two point patterns from and to containing the first and second
endpoints of the line segments.

The argument window is converted to a window object by the function as.owin.

The argument fatal indicates what to do when the data cannot be converted to a line segment
pattern. If fatal=TRUE, a fatal error will be generated; if fatal=FALSE, the value NULL is returned.

The function as.psp is generic, with methods for the classes "psp", "data.frame", "matrix" and
a default method.

Point pattern datasets can also be created by the function psp.

150 as.rectangle

Value

An object of class "psp" (see psp.object) describing the line segment pattern and its window of
observation. The value NULL may also be returned; see Details.

Warnings

If only a proper subset of the names x0,y0,x1,y1 or xmid,ymid,length,angle appear amongst
the names of the columns of x where x is a data frame, then these special names are ignored.

For example if the names of the columns were xmid,ymid,length,degrees, then these columns
would be interpreted as if the represented x0,y0,x1,y1 in that order.

Whether it gets used or not, column named marks is always removed from x before any attempt to
form the ends component of the psp object that is returned.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp, psp.object, as.owin, owin.object.

See edges for extracting the edges of a polygonal window as a "psp" object.

Examples

mat <- matrix(runif(40), ncol=4)
mx <- data.frame(v1=sample(1:4,10,TRUE),

v2=factor(sample(letters[1:4],10,TRUE),levels=letters[1:4]))
a <- as.psp(mat, window=owin(),marks=mx)
mat <- cbind(as.data.frame(mat),mx)
b <- as.psp(mat, window=owin()) # a and b are identical.
stuff <- list(xmid=runif(10),

ymid=runif(10),
length=rep(0.1, 10),
angle=runif(10, 0, 2 * pi))

a <- as.psp(stuff, window=owin())
b <- as.psp(from=runifpoint(10), to=runifpoint(10))

as.rectangle Window Frame

Description

Extract the window frame of a window or other spatial dataset

Usage

as.rectangle(w, ...)

as.rectangle 151

Arguments

w A window, or a dataset that has a window. Either a window (object of class
"owin"), a pixel image (object of class "im") or other data determining such a
window.

... Optional. Auxiliary data to help determine the window. If w does not belong to
a recognised class, the arguments w and ... are passed to as.owin to determine
the window.

Details

This function is the quickest way to determine a bounding rectangle for a spatial dataset.

If w is a window, the function just extracts the outer bounding rectangle of w as given by its elements
xrange,yrange.

The function can also be applied to any spatial dataset that has a window: for example, a point
pattern (object of class "ppp") or a line segment pattern (object of class "psp"). The bounding
rectangle of the window of the dataset is extracted.

Use the function boundingbox to compute the smallest bounding rectangle of a dataset.

Value

A window (object of class "owin") of type "rectangle" representing a rectangle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, as.owin, boundingbox

Examples

w <- owin(c(0,10),c(0,10), poly=list(x=c(1,2,3,2,1), y=c(2,3,4,6,7)))
r <- as.rectangle(w)
returns a 10 x 10 rectangle

data(lansing)
as.rectangle(lansing)

data(copper)
as.rectangle(copper$SouthLines)

152 as.solist

as.solist Convert List of Two-Dimensional Spatial Objects

Description

Given a list of two-dimensional spatial objects, convert it to the class "solist".

Usage

as.solist(x, ...)

Arguments

x A list of objects, each representing a two-dimensional spatial dataset.

... Additional arguments passed to solist.

Details

This command makes the list x into an object of class "solist" (spatial object list). See solist
for details.

The entries in the list x should be two-dimensional spatial datasets (not necessarily of the same
class).

Value

A list, usually of class "solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

solist, as.anylist, solapply.

Examples

x <- list(cells, density(cells))
y <- as.solist(x)

as.tess 153

as.tess Convert Data To Tessellation

Description

Converts data specifying a tessellation, in any of several formats, into an object of class "tess".

Usage

as.tess(X)
S3 method for class 'tess'

as.tess(X)
S3 method for class 'im'

as.tess(X)
S3 method for class 'owin'

as.tess(X)
S3 method for class 'quadratcount'

as.tess(X)
S3 method for class 'quadrattest'

as.tess(X)
S3 method for class 'list'

as.tess(X)

Arguments

X Data to be converted to a tessellation.

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. This command creates an object of class "tess" that represents a tessellation.

This function converts data in any of several formats into an object of class "tess" for use by the
spatstat package. The argument X may be

• an object of class "tess". The object will be stripped of any extraneous attributes and re-
turned.

• a pixel image (object of class "im") with pixel values that are logical or factor values. Each
level of the factor will determine a tile of the tessellation.

• a window (object of class "owin"). The result will be a tessellation consisting of a single tile.

• a set of quadrat counts (object of class "quadratcount") returned by the command quadratcount.
The quadrats used to generate the counts will be extracted and returned as a tessellation.

• a quadrat test (object of class "quadrattest") returned by the command quadrat.test. The
quadrats used to perform the test will be extracted and returned as a tessellation.

• a list of windows (objects of class "owin") giving the tiles of the tessellation.

The function as.tess is generic, with methods for various classes, as listed above.

154 auc

Value

An object of class "tess" specifying a tessellation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

tess

Examples

pixel image
v <- as.im(function(x,y){factor(round(5 * (x^2 + y^2)))}, W=owin())
levels(v) <- letters[seq(length(levels(v)))]
as.tess(v)
quadrat counts
data(nztrees)
qNZ <- quadratcount(nztrees, nx=4, ny=3)
as.tess(qNZ)

auc Area Under ROC Curve

Description

Compute the AUC (area under the Receiver Operating Characteristic curve) for a fitted point process
model.

Usage

auc(X, ...)

S3 method for class 'ppp'
auc(X, covariate, ..., high = TRUE)

S3 method for class 'ppm'
auc(X, ...)

S3 method for class 'kppm'
auc(X, ...)

S3 method for class 'lpp'
auc(X, covariate, ..., high = TRUE)

S3 method for class 'lppm'
auc(X, ...)

auc 155

Arguments

X Point pattern (object of class "ppp" or "lpp") or fitted point process model
(object of class "ppm" or "kppm" or "lppm").

covariate Spatial covariate. Either a function(x,y), a pixel image (object of class "im"),
or one of the strings "x" or "y" indicating the Cartesian coordinates.

... Arguments passed to as.mask controlling the pixel resolution for calculations.

high Logical value indicating whether the threshold operation should favour high or
low values of the covariate.

Details

This command computes the AUC, the area under the Receiver Operating Characteristic curve. The
ROC itself is computed by roc.

For a point pattern X and a covariate Z, the AUC is a numerical index that measures the ability of
the covariate to separate the spatial domain into areas of high and low density of points. Let xi be
a randomly-chosen data point from X and U a randomly-selected location in the study region. The
AUC is the probability that Z(xi) > Z(U) assuming high=TRUE. That is, AUC is the probability
that a randomly-selected data point has a higher value of the covariate Z than does a randomly-
selected spatial location. The AUC is a number between 0 and 1. A value of 0.5 indicates a
complete lack of discriminatory power.

For a fitted point process model X, the AUC measures the ability of the fitted model intensity to
separate the spatial domain into areas of high and low density of points. Suppose λ(u) is the
intensity function of the model. The AUC is the probability that λ(xi) > λ(U). That is, AUC is the
probability that a randomly-selected data point has higher predicted intensity than does a randomly-
selected spatial location. The AUC is not a measure of the goodness-of-fit of the model (Lobo et
al, 2007).

Value

Numeric. For auc.ppp and auc.lpp, the result is a single number giving the AUC value. For
auc.ppm, auc.kppm and auc.lppm, the result is a numeric vector of length 2 giving the AUC value
and the theoretically expected AUC value for this model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2007) AUC: a misleading measure of the perfor-
mance of predictive distribution models. Global Ecology and Biogeography 17(2) 145–151.

Nam, B.-H. and D’Agostino, R. (2002) Discrimination index, the area under the ROC curve. Pages
267–279 in Huber-Carol, C., Balakrishnan, N., Nikulin, M.S. and Mesbah, M., Goodness-of-fit tests
and model validity, Birkhäuser, Basel.

156 BadGey

See Also

roc

Examples

fit <- ppm(swedishpines ~ x+y)
auc(fit)
auc(swedishpines, "x")

BadGey Hybrid Geyer Point Process Model

Description

Creates an instance of the Baddeley-Geyer point process model, defined as a hybrid of several Geyer
interactions. The model can then be fitted to point pattern data.

Usage

BadGey(r, sat)

Arguments

r vector of interaction radii

sat vector of saturation parameters, or a single common value of saturation param-
eter

Details

This is Baddeley’s generalisation of the Geyer saturation point process model, described in Geyer,
to a process with multiple interaction distances.

The BadGey point process with interaction radii r1, . . . , rk, saturation thresholds s1, . . . , sk, inten-
sity parameter β and interaction parameters γ1, . . . , gammak, is the point process in which each
point xi in the pattern X contributes a factor

βγ
v1(xi,X)
1 . . . gamma

vk(xi,X)
k

to the probability density of the point pattern, where

vj(xi, X) = min(sj , tj(xi, X))

where tj(xi, X) denotes the number of points in the pattern X which lie within a distance rj from
the point xi.

BadGey is used to fit this model to data. The function ppm(), which fits point process models to
point pattern data, requires an argument of class "interact" describing the interpoint interaction
structure of the model to be fitted. The appropriate description of the piecewise constant Saturated
pairwise interaction is yielded by the function BadGey(). See the examples below.

BadGey 157

The argument r specifies the vector of interaction distances. The entries of r must be strictly
increasing, positive numbers.

The argument sat specifies the vector of saturation parameters that are applied to the point counts
tj(xi, X). It should be a vector of the same length as r, and its entries should be nonnegative
numbers. Thus sat[1] is applied to the count of points within a distance r[1], and sat[2] to the
count of points within a distance r[2], etc. Alternatively sat may be a single number, and this
saturation value will be applied to every count.

Infinite values of the saturation parameters are also permitted; in this case vj(xi, X) = tj(xi, X)
and there is effectively no ‘saturation’ for the distance range in question. If all the saturation pa-
rameters are set to Inf then the model is effectively a pairwise interaction process, equivalent to
PairPiece (however the interaction parameters γ obtained from BadGey have a complicated rela-
tionship to the interaction parameters γ obtained from PairPiece).

If r is a single number, this model is virtually equivalent to the Geyer process, see Geyer.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Hybrids

A ‘hybrid’ interaction is one which is built by combining several different interactions (Baddeley et
al, 2013). The BadGey interaction can be described as a hybrid of several Geyer interactions.

The Hybrid command can be used to build hybrids of any interactions. If the Hybrid operator is
applied to several Geyer models, the result is equivalent to a BadGey model. This can be useful for
incremental model selection.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>
in collaboration with Hao Wang and Jeff Picka

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models
and their implementation. Journal of Statistical Software 55:11, 1–43. http://www.jstatsoft.
org/v55/i11/

See Also

ppm, pairsat.family, Geyer, PairPiece, SatPiece, Hybrid

Examples

BadGey(c(0.1,0.2), c(1,1))
prints a sensible description of itself
BadGey(c(0.1,0.2), 1)

fit a stationary Baddeley-Geyer model
ppm(cells ~1, BadGey(c(0.07, 0.1, 0.13), 2))

http://www.jstatsoft.org/v55/i11/
http://www.jstatsoft.org/v55/i11/

158 bc.ppm

nonstationary process with log-cubic polynomial trend
Not run:
ppm(cells ~polynom(x,y,3), BadGey(c(0.07, 0.1, 0.13), 2))

End(Not run)

bc.ppm Bias Correction for Fitted Model

Description

Applies a first-order bias correction to a fitted model.

Usage

bc(fit, ...)

S3 method for class 'ppm'
bc(fit, ..., nfine = 256)

Arguments

fit A fitted point process model (object of class "ppm") or a model of some other
class.

... Additional arguments are currently ignored.

nfine Grid dimensions for fine grid of locations. An integer, or a pair of integers. See
Details.

Details

This command applies the first order Newton-Raphson bias correction method of Baddeley and
Turner (2014, sec 4.2) to a fitted model. The function bc is generic, with a method for fitted point
process models of class "ppm".

A fine grid of locations, of dimensions nfine * nfine or nfine[2] * nfine[1], is created over
the original window of the data, and the intensity or conditional intensity of the fitted model is
calculated on this grid. The result is used to update the fitted model parameters once by a Newton-
Raphson update.

This is only useful if the quadrature points used to fit the original model fit are coarser than the
grid of points specified by nfine.

Value

A numeric vector, of the same length as coef(fit), giving updated values for the fitted model
coefficients.

bdist.pixels 159

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Baddeley, A. and Turner, R. (2014) Bias correction for parameter estimates of spatial point process
models. Journal of Statistical Computation and Simulation 84, 1621–1643. DOI: 10.1080/00949655.2012.755976

See Also

rex

Examples

fit <- ppm(cells ~ x, Strauss(0.07))
coef(fit)
if(!interactive()) {

bc(fit, nfine=64)
} else {

bc(fit)
}

bdist.pixels Distance to Boundary of Window

Description

Computes the distances from each pixel in a window to the boundary of the window.

Usage

bdist.pixels(w, ..., style="image", method=c("C", "interpreted"))

Arguments

w A window (object of class "owin").

... Arguments passed to as.mask to determine the pixel resolution.

style Character string determining the format of the output: either "matrix", "coords"
or "image".

method Choice of algorithm to use when w is polygonal.

160 bdist.pixels

Details

This function computes, for each pixel u in the window w, the shortest distance d(u,W c) from u to
the boundary of W .

If the window is a binary mask then the distance from each pixel to the boundary is computed using
the distance transform algorithm distmap.owin. The result is equivalent to distmap(W,invert=TRUE).

If the window is a rectangle or a polygonal region, the grid of pixels is determined by the arguments
"..." passed to as.mask. The distance from each pixel to the boundary is calculated exactly, using
analytic geometry. This is slower but more accurate than in the case of a binary mask.

For software testing purposes, there are two implementations available when w is a polygon: the
default is method="C" which is much faster than method="interpreted".

Value

If style="image", a pixel image (object of class "im") containing the distances from each pixel in
the image raster to the boundary of the window.

If style="matrix", a matrix giving the distances from each pixel in the image raster to the bound-
ary of the window. Rows of this matrix correspond to the y coordinate and columns to the x
coordinate.

If style="coords", a list with three components x,y,z, where x,y are vectors of length m,n
giving the x and y coordinates respectively, and z is an m × n matrix such that z[i,j] is the
distance from (x[i],y[j]) to the boundary of the window. Rows of this matrix correspond to the
x coordinate and columns to the y coordinate. This result can be plotted with persp, image or
contour.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin.object, erosion, bdist.points, bdist.tiles, distmap.owin.

Examples

u <- owin(c(0,1),c(0,1))
d <- bdist.pixels(u, eps=0.01)
image(d)
d <- bdist.pixels(u, eps=0.01, style="matrix")
mean(d >= 0.1)
value is approx (1 - 2 * 0.1)^2 = 0.64

bdist.points 161

bdist.points Distance to Boundary of Window

Description

Computes the distances from each point of a point pattern to the boundary of the window.

Usage

bdist.points(X)

Arguments

X A point pattern (object of class "ppp").

Details

This function computes, for each point xi in the point pattern X, the shortest distance d(xi,W
c)

from xi to the boundary of the window W of observation.

If the window Window(X) is of type "rectangle" or "polygonal", then these distances are com-
puted by analytic geometry and are exact, up to rounding errors. If the window is of type "mask"
then the distances are computed using the real-valued distance transform, which is an approximation
with maximum error equal to the width of one pixel in the mask.

Value

A numeric vector, giving the distances from each point of the pattern to the boundary of the window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

bdist.pixels, bdist.tiles, ppp.object, erosion

Examples

data(cells)
d <- bdist.points(cells)

162 bdist.tiles

bdist.tiles Distance to Boundary of Window

Description

Computes the shortest distances from each tile in a tessellation to the boundary of the window.

Usage

bdist.tiles(X)

Arguments

X A tessellation (object of class "tess").

Details

This function computes, for each tile si in the tessellation X, the shortest distance from si to the
boundary of the window W containing the tessellation.

Value

A numeric vector, giving the shortest distance from each tile in the tessellation to the boundary of
the window. Entries of the vector correspond to the entries of tiles(X).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

tess, bdist.points, bdist.pixels

Examples

P <- runifpoint(15)
X <- dirichlet(P)
plot(X, col="red")
B <- bdist.tiles(X)
identify tiles that do not touch the boundary
plot(X[B > 0], add=TRUE, col="green", lwd=3)

beachcolours 163

beachcolours Create Colour Scheme for a Range of Numbers

Description

Given a range of numerical values, this command creates a colour scheme that would be appropriate
if the numbers were altitudes (elevation above or below sea level).

Usage

beachcolours(range, sealevel = 0, monochrome = FALSE,
ncolours = if (monochrome) 16 else 64,
nbeach = 1)

beachcolourmap(range, ...)

Arguments

range Range of numerical values to be mapped. A numeric vector of length 2.

sealevel Value that should be treated as zero. A single number, lying between range[1]
and range[2].

monochrome Logical. If TRUE then a greyscale colour map is constructed.

ncolours Number of distinct colours to use.

nbeach Number of colours that will be yellow.

... Arguments passed to beachcolours.

Details

Given a range of numerical values, these commands create a colour scheme that would be appro-
priate if the numbers were altitudes (elevation above or below sea level).

Numerical values close to zero are portrayed in green (representing the waterline). Negative values
are blue (representing water) and positive values are yellow to red (representing land). At least,
these are the colours of land and sea in Western Australia. This colour scheme was proposed by
Baddeley et al (2005).

The function beachcolours returns these colours as a character vector, while beachcolourmap
returns a colourmap object.

The argument range should be a numeric vector of length 2 giving a range of numerical values.

The argument sealevel specifies the height value that will be treated as zero, and mapped to the
colour green. A vector of ncolours colours will be created, of which nbeach colours will be green.

The argument monochrome is included for convenience when preparing publications. If monochrome=TRUE
the colour map will be a simple grey scale containing ncolours shades from black to white.

Value

For beachcolours, a character vector of length ncolours specifying colour values. For beachcolourmap,
a colour map (object of class "colourmap").

164 beginner

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

See Also

colourmap, colourtools.

Examples

plot(beachcolourmap(c(-2,2)))

beginner Print Introduction For Beginners

Description

Prints an introduction for beginners to the spatstat package, or another specified package.

Usage

beginner(package = "spatstat")

Arguments

package Name of package.

Details

This function prints an introduction for beginners to the spatstat package.

The function can be executed simply by typing beginner without parentheses.

If the argument package is given, then the function prints the beginner’s help file BEGINNER.txt
from the specified package (if it has one).

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

begins 165

See Also

latest.news

Examples

beginner

begins Check Start of Character String

Description

Checks whether a character string begins with a particular prefix.

Usage

begins(x, firstbit)

Arguments

x Character string, or vector of character strings, to be tested.

firstbit A single character string.

Details

This simple wrapper function checks whether (each entry in) x begins with the string firstbit,
and returns a logical value or logical vector with one entry for each entry of x. This function is
useful mainly for reducing complexity in model formulae.

Value

Logical vector of the same length as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

begins(c("Hello", "Goodbye"), "Hell")
begins("anything", "")

166 berman.test

berman.test Berman’s Tests for Point Process Model

Description

Tests the goodness-of-fit of a Poisson point process model using methods of Berman (1986).

Usage

berman.test(...)

S3 method for class 'ppp'
berman.test(X, covariate,

which = c("Z1", "Z2"),
alternative = c("two.sided", "less", "greater"), ...)

S3 method for class 'ppm'
berman.test(model, covariate,

which = c("Z1", "Z2"),
alternative = c("two.sided", "less", "greater"), ...)

S3 method for class 'lpp'
berman.test(X, covariate,

which = c("Z1", "Z2"),
alternative = c("two.sided", "less", "greater"), ...)

S3 method for class 'lppm'
berman.test(model, covariate,

which = c("Z1", "Z2"),
alternative = c("two.sided", "less", "greater"), ...)

Arguments

X A point pattern (object of class "ppp" or "lpp").

model A fitted point process model (object of class "ppm" or "lppm").

covariate The spatial covariate on which the test will be based. An image (object of class
"im") or a function.

which Character string specifying the choice of test.

alternative Character string specifying the alternative hypothesis.

... Additional arguments controlling the pixel resolution (arguments dimyx and eps
passed to as.mask) or other undocumented features.

berman.test 167

Details

These functions perform a goodness-of-fit test of a Poisson point process model fitted to point
pattern data. The observed distribution of the values of a spatial covariate at the data points, and
the predicted distribution of the same values under the model, are compared using either of two test
statistics Z1 and Z2 proposed by Berman (1986). The Z1 test is also known as the Lawson-Waller
test.

The function berman.test is generic, with methods for point patterns ("ppp" or "lpp") and point
process models ("ppm" or "lppm").

• If X is a point pattern dataset (object of class "ppp" or "lpp"), then berman.test(X,...)
performs a goodness-of-fit test of the uniform Poisson point process (Complete Spatial Ran-
domness, CSR) for this dataset.

• If model is a fitted point process model (object of class "ppm" or "lppm") then berman.test(model,...)
performs a test of goodness-of-fit for this fitted model. In this case, model should be a Poisson
point process.

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model. Thus, you
must nominate a spatial covariate for this test.

The argument covariate should be either a function(x,y) or a pixel image (object of class "im"
containing the values of a spatial function. If covariate is an image, it should have numeric values,
and its domain should cover the observation window of the model. If covariate is a function,
it should expect two arguments x and y which are vectors of coordinates, and it should return a
numeric vector of the same length as x and y.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

Next the values of the covariate at all locations in the observation window are evaluated. The
point process intensity of the fitted model is also evaluated at all locations in the window.

• If which="Z1", the test statistic Z1 is computed as follows. The sum S of the covariate values
at all data points is evaluated. The predicted mean µ and variance σ2 of S are computed from
the values of the covariate at all locations in the window. Then we compute Z1 = (S − µ)/σ.
Closely-related tests were proposed independently by Waller et al (1993) and Lawson (1993)
so this test is often termed the Lawson-Waller test in epidemiological literature.

• If which="Z2", the test statistic Z2 is computed as follows. The values of the covariate at
all locations in the observation window, weighted by the point process intensity, are compiled
into a cumulative distribution function F . The probability integral transformation is then ap-
plied: the values of the covariate at the original data points are transformed by the predicted
cumulative distribution function F into numbers between 0 and 1. If the model is correct,
these numbers are i.i.d. uniform random numbers. The standardised sample mean of these
numbers is the statistic Z2.

In both cases the null distribution of the test statistic is the standard normal distribution, approxi-
mately.

The return value is an object of class "htest" containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

168 berman.test

Value

An object of class "htest" (hypothesis test) and also of class "bermantest", containing the results
of the test. The return value can be plotted (by plot.bermantest) or printed to give an informative
summary of the test.

Warning

The meaning of a one-sided test must be carefully scrutinised: see the printed output.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

References

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

Lawson, A.B. (1993) On the analysis of mortality events around a prespecified fixed point. Journal
of the Royal Statistical Society, Series A 156 (3) 363–377.

Waller, L., Turnbull, B., Clark, L.C. and Nasca, P. (1992) Chronic Disease Surveillance and testing
of clustering of disease and exposure: Application to leukaemia incidence and TCE-contaminated
dumpsites in upstate New York. Environmetrics 3, 281–300.

See Also

cdf.test, quadrat.test, ppm

Examples

Berman's data
data(copper)
X <- copper$SouthPoints
L <- copper$SouthLines
D <- distmap(L, eps=1)
test of CSR
berman.test(X, D)
berman.test(X, D, "Z2")

bind.fv 169

bind.fv Combine Function Value Tables

Description

Advanced Use Only. Combine objects of class "fv", or glue extra columns of data onto an existing
"fv" object.

Usage

S3 method for class 'fv'
cbind(...)
bind.fv(x, y, labl = NULL, desc = NULL, preferred = NULL, clip=FALSE)

Arguments

... Any number of arguments, which are objects of class "fv".
x An object of class "fv".
y Either a data frame or an object of class "fv".
labl Plot labels (see fv) for columns of y. A character vector.
desc Descriptions (see fv) for columns of y. A character vector.
preferred Character string specifying the column which is to be the new recommended

value of the function.
clip Logical value indicating whether each object must have exactly the same do-

main, that is, the same sequence of values of the function argument (clip=FALSE,
the default) or whether objects with different domains are permissible and will
be restricted to a common domain (clip=TRUE).

Details

This documentation is provided for experienced programmers who want to modify the internal
behaviour of spatstat.
The function cbind.fv is a method for the generic R function cbind. It combines any number of
objects of class "fv" into a single object of class "fv". The objects must be compatible, in the
sense that they have identical values of the function argument.

The function bind.fv is a lower level utility which glues additional columns onto an existing object
x of class "fv". It has two modes of use:

• If the additional dataset y is an object of class "fv", then x and y must be compatible as
described above. Then the columns of y that contain function values will be appended to the
object x.

• Alternatively if y is a data frame, then y must have the same number of rows as x. All columns
of y will be appended to x.

The arguments labl and desc provide plot labels and description strings (as described in fv) for
the new columns. If y is an object of class "fv" then labl and desc are optional, and default to the
relevant entries in the object y. If y is a data frame then labl and desc must be provided.

170 bits.envelope

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

fv, with.fv.

Undocumented functions for modifying an "fv" object include fvnames, fvnames<-, tweak.fv.entry
and rebadge.fv.

Examples

data(cells)
K1 <- Kest(cells, correction="border")
K2 <- Kest(cells, correction="iso")
remove column 'theo' to avoid duplication
K2 <- K2[, names(K2) != "theo"]

cbind(K1, K2)

bind.fv(K1, K2, preferred="iso")

constrain border estimate to be monotonically increasing
bm <- cumsum(c(0, pmax(0, diff(K1$border))))
bind.fv(K1, data.frame(bmono=bm),

"%s[bmo](r)",
"monotone border-corrected estimate of %s",
"bmono")

bits.envelope Global Envelopes for Balanced Independent Two-Stage Test

Description

Computes the global envelopes corresponding to the balanced independent two-stage Monte Carlo
test of goodness-of-fit.

Usage

bits.envelope(X, ...,
nsim = 19, nrank = 1,
alternative=c("two.sided", "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

bits.envelope 171

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm" or "slrm").

... Arguments passed to mad.test or envelope to control the conduct of the test.
Useful arguments include fun to determine the summary function, rinterval
to determine the range of r values used in the test, and verbose=FALSE to turn
off the messages.

nsim Number of simulated patterns to be generated in each stage. Number of simu-
lations in each basic test. There will be nsim repetitions of the basic test, each
involving nsim simulated realisations, together with one independent set of nsim
realisations, so there will be a total of nsim * (nsim + 1) simulations.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

alternative Character string determining whether the envelope corresponds to a two-sided
test (alternative="two.sided", the default) or a one-sided test with a lower
critical boundary (alternative="less") or a one-sided test with an upper crit-
ical boundary (alternative="greater").

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value determining whether to print progress reports.

Details

Computes global simulation envelopes corresponding to the balanced independent two-stage Monte
Carlo test of goodness-of-fit described by Baddeley et al (2017). The envelopes are described in
Baddeley et al (2019).

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

This command is similar to dg.envelope which corresponds to the Dao-Genton test of goodness-
of-fit. It was shown in Baddeley et al (2017) that the Dao-Genton test is biased when the significance
level is very small (small p-values are not reliable) and we recommend bits.envelope in this case.

Value

An object of class "fv".

172 bits.test

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Hardegen, A., Lawrence, T., Milne, R.K., Nair, G. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis 114,
75–87.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2019) Pushing
the envelope: extensions of graphical Monte Carlo tests. In preparation.

See Also

dg.envelope, bits.test, mad.test, envelope

Examples

ns <- if(interactive()) 19 else 4
E <- bits.envelope(swedishpines, Lest, nsim=ns)
E
plot(E)
Eo <- bits.envelope(swedishpines, Lest, alternative="less", nsim=ns)
Ei <- bits.envelope(swedishpines, Lest, interpolate=TRUE, nsim=ns)

bits.test Balanced Independent Two-Stage Monte Carlo Test

Description

Performs a Balanced Independent Two-Stage Monte Carlo test of goodness-of-fit for spatial pattern.

Usage

bits.test(X, ...,
exponent = 2, nsim=19,
alternative=c("two.sided", "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

bits.test 173

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm", "lppm" or "slrm").

... Arguments passed to dclf.test or mad.test or envelope to control the con-
duct of the test. Useful arguments include fun to determine the summary func-
tion, rinterval to determine the range of r values used in the test, and use.theory
described under Details.

exponent Exponent used in the test statistic. Use exponent=2 for the Diggle-Cressie-
Loosmore-Ford test, and exponent=Inf for the Maximum Absolute Deviation
test.

nsim Number of replicates in each stage of the test. A total of nsim * (nsim + 1)
simulated point patterns will be generated, and the p-value will be a multiple of
1/(nsim+1).

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

Performs the Balanced Independent Two-Stage Monte Carlo test proposed by Baddeley et al (2017),
an improvement of the Dao-Genton (2014) test.

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

The argument use.theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use.theory=FALSE).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed -reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

174 blur

Value

A hypothesis test (object of class "htest" which can be printed to show the outcome of the test.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis, in
press.

See Also

Simulation envelopes: bits.envelope.

Other tests: dg.test, dclf.test, mad.test.

Examples

ns <- if(interactive()) 19 else 4
bits.test(cells, nsim=ns)
bits.test(cells, alternative="less", nsim=ns)
bits.test(cells, nsim=ns, interpolate=TRUE)

blur Apply Gaussian Blur to a Pixel Image

Description

Applies a Gaussian blur to a pixel image.

Usage

blur(x, sigma = NULL, ...,
kernel="gaussian", normalise=FALSE, bleed = TRUE, varcov=NULL)

S3 method for class 'im'
Smooth(X, sigma = NULL, ...,

kernel="gaussian",
normalise=FALSE, bleed = TRUE, varcov=NULL)

blur 175

Arguments

x,X The pixel image. An object of class "im".

sigma Standard deviation of isotropic Gaussian smoothing kernel.

... Ignored.

kernel String (partially matched) specifying the smoothing kernel. Current options are
"gaussian", "epanechnikov", "quartic" or "disc".

normalise Logical flag indicating whether the output values should be divided by the cor-
responding blurred image of the window itself. See Details.

bleed Logical flag indicating whether to allow blur to extend outside the original do-
main of the image. See Details.

varcov Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with
sigma.

Details

This command applies a Gaussian blur to the pixel image x.

Smooth.im is a method for the generic Smooth for pixel images. It is currently identical to blur,
apart from the name of the first argument.

The blurring kernel is the isotropic Gaussian kernel with standard deviation sigma, or the anisotropic
Gaussian kernel with variance-covariance matrix varcov. The arguments sigma and varcov are
incompatible. Also sigma may be a vector of length 2 giving the standard deviations of two inde-
pendent Gaussian coordinates, thus equivalent to varcov = diag(sigma^2).

If the pixel values of x include some NA values (meaning that the image domain does not completely
fill the rectangular frame) then these NA values are first reset to zero.

The algorithm then computes the convolution x ∗ G of the (zero-padded) pixel image x with the
specified Gaussian kernel G.

If normalise=FALSE, then this convolution x ∗ G is returned. If normalise=TRUE, then the con-
volution x ∗ G is normalised by dividing it by the convolution w ∗ G of the image domain w with
the same Gaussian kernel. Normalisation ensures that the result can be interpreted as a weighted
average of input pixel values, without edge effects due to the shape of the domain.

If bleed=FALSE, then pixel values outside the original image domain are set to NA. Thus the output
is a pixel image with the same domain as the input. If bleed=TRUE, then no such alteration is
performed, and the result is a pixel image defined everywhere in the rectangular frame containing
the input image.

Computation is performed using the Fast Fourier Transform.

Value

A pixel image with the same pixel array as the input image x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

176 border

See Also

interp.im for interpolating a pixel image to a finer resolution, density.ppp for blurring a point
pattern, Smooth.ppp for interpolating marks attached to points.

Examples

Z <- as.im(function(x,y) { 4 * x^2 + 3 * y }, letterR)
par(mfrow=c(1,3))
plot(Z)
plot(letterR, add=TRUE)
plot(blur(Z, 0.3, bleed=TRUE))
plot(letterR, add=TRUE)
plot(blur(Z, 0.3, bleed=FALSE))
plot(letterR, add=TRUE)
par(mfrow=c(1,1))

border Border Region of a Window

Description

Computes the border region of a window, that is, the region lying within a specified distance of the
boundary of a window.

Usage

border(w, r, outside=FALSE, ...)

Arguments

w A window (object of class "owin") or something acceptable to as.owin.

r Numerical value.

outside Logical value determining whether to compute the border outside or inside w.

... Optional arguments passed to erosion (if outside=FALSE) or to dilation (if
outside=TRUE).

Details

By default (if outside=FALSE), the border region is the subset of w lying within a distance r of the
boundary of w. It is computed by eroding w by the distance r (using erosion) and subtracting this
eroded window from the original window w.

If outside=TRUE, the border region is the set of locations outside w lying within a distance r of w. It
is computed by dilating w by the distance r (using dilation) and subtracting the original window
w from the dilated window.

bounding.box.xy 177

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

erosion, dilation

Examples

rectangle
u <- unit.square()
border(u, 0.1)
border(u, 0.1, outside=TRUE)

polygon

data(letterR)
plot(letterR)
plot(border(letterR, 0.1), add=TRUE)
plot(border(letterR, 0.1, outside=TRUE), add=TRUE)

bounding.box.xy Convex Hull of Points

Description

Computes the smallest rectangle containing a set of points.

Usage

bounding.box.xy(x, y=NULL)

Arguments

x vector of x coordinates of observed points, or a 2-column matrix giving x,y
coordinates, or a list with components x,y giving coordinates (such as a point
pattern object of class "ppp".)

y (optional) vector of y coordinates of observed points, if x is a vector.

Details

Given an observed pattern of points with coordinates given by x and y, this function finds the
smallest rectangle, with sides parallel to the coordinate axes, that contains all the points, and returns
it as a window.

178 boundingbox

Value

A window (an object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, as.owin, convexhull.xy, ripras

Examples

x <- runif(30)
y <- runif(30)
w <- bounding.box.xy(x,y)
plot(owin(), main="bounding.box.xy(x,y)")
plot(w, add=TRUE)
points(x,y)

X <- rpoispp(30)
plot(X, main="bounding.box.xy(X)")
plot(bounding.box.xy(X), add=TRUE)

boundingbox Bounding Box of a Window, Image, or Point Pattern

Description

Find the smallest rectangle containing a given window(s), image(s) or point pattern(s).

Usage

boundingbox(...)

Default S3 method:
boundingbox(...)

S3 method for class 'im'
boundingbox(...)

S3 method for class 'owin'
boundingbox(...)

S3 method for class 'ppp'
boundingbox(...)

boundingbox 179

S3 method for class 'psp'
boundingbox(...)

S3 method for class 'lpp'
boundingbox(...)

S3 method for class 'linnet'
boundingbox(...)

S3 method for class 'solist'
boundingbox(...)

Arguments

... One or more windows (objects of class "owin"), pixel images (objects of class
"im") or point patterns (objects of class "ppp" or "lpp") or line segment patterns
(objects of class "psp") or linear networks (objects of class "linnet") or any
combination of such objects. Alternatively, the argument may be a list of such
objects, of class "solist".

Details

This function finds the smallest rectangle (with sides parallel to the coordinate axes) that contains
all the given objects.

For a window (object of class "owin"), the bounding box is the smallest rectangle that contains all
the vertices of the window (this is generally smaller than the enclosing frame, which is returned by
as.rectangle).

For a point pattern (object of class "ppp" or "lpp"), the bounding box is the smallest rectangle that
contains all the points of the pattern. This is usually smaller than the bounding box of the window
of the point pattern.

For a line segment pattern (object of class "psp") or a linear network (object of class "linnet"),
the bounding box is the smallest rectangle that contains all endpoints of line segments.

For a pixel image (object of class "im"), the image will be converted to a window using as.owin,
and the bounding box of this window is obtained.

If the argument is a list of several objects, then this function finds the smallest rectangle that contains
all the bounding boxes of the objects.

Value

owin, as.owin, as.rectangle

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

180 boundingcircle

Examples

w <- owin(c(0,10),c(0,10), poly=list(x=c(1,2,3,2,1), y=c(2,3,4,6,7)))
r <- boundingbox(w)
returns rectangle [1,3] x [2,7]

w2 <- unit.square()
r <- boundingbox(w, w2)
returns rectangle [0,3] x [0,7]

boundingcircle Smallest Enclosing Circle

Description

Find the smallest circle enclosing a spatial window or other object. Return its radius, or the location
of its centre, or the circle itself.

Usage

boundingradius(x, ...)

boundingcentre(x, ...)

boundingcircle(x, ...)

S3 method for class 'owin'
boundingradius(x, ...)

S3 method for class 'owin'
boundingcentre(x, ...)

S3 method for class 'owin'
boundingcircle(x, ...)

S3 method for class 'ppp'
boundingradius(x, ...)

S3 method for class 'ppp'
boundingcentre(x, ...)

S3 method for class 'ppp'
boundingcircle(x, ...)

Arguments

x A window (object of class "owin"), or another spatial object.
... Arguments passed to as.mask to determine the pixel resolution for the calcula-

tion.

box3 181

Details

The boundingcircle of a spatial regionW is the smallest circle that containsW . The boundingradius
is the radius of this circle, and the boundingcentre is the centre of the circle.

The functions boundingcircle, boundingcentre and boundingradius are generic. There are
methods for objects of class "owin", "ppp" and "linnet".

Value

The result of boundingradius is a single numeric value.

The result of boundingcentre is a point pattern containing a single point.

The result of boundingcircle is a window representing the boundingcircle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

boundingradius.linnet

Examples

boundingradius(letterR)

plot(grow.rectangle(Frame(letterR), 0.2), main="", type="n")
plot(letterR, add=TRUE, col="grey")
plot(boundingcircle(letterR), add=TRUE, border="green", lwd=2)
plot(boundingcentre(letterR), pch="+", cex=2, col="blue", add=TRUE)

X <- runifpoint(5)
plot(X)
plot(boundingcircle(X), add=TRUE)
plot(boundingcentre(X), pch="+", cex=2, col="blue", add=TRUE)

box3 Three-Dimensional Box

Description

Creates an object representing a three-dimensional box.

Usage

box3(xrange = c(0, 1), yrange = xrange, zrange = yrange, unitname = NULL)

182 boxx

Arguments
xrange, yrange, zrange

Dimensions of the box in the x, y, z directions. Each of these arguments should
be a numeric vector of length 2.

unitname Optional. Name of the unit of length. See Details.

Details

This function creates an object representing a three-dimensional rectangular parallelepiped (box)
with sides parallel to the coordinate axes.

The object can be used to specify the domain of a three-dimensional point pattern (see pp3) and in
various geometrical calculations (see volume.box3, diameter.box3, eroded.volumes).

The optional argument unitname specifies the name of the unit of length. See unitname for valid
formats.

The function as.box3 can be used to convert other kinds of data to this format.

Value

An object of class "box3". There is a print method for this class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

as.box3, pp3, volume.box3, diameter.box3, eroded.volumes.

Examples

box3()
box3(c(0,10),c(0,10),c(0,5), unitname=c("metre","metres"))
box3(c(-1,1))

boxx Multi-Dimensional Box

Description

Creates an object representing a multi-dimensional box.

Usage

boxx(..., unitname = NULL)

branchlabelfun 183

Arguments

... Dimensions of the box. Vectors of length 2.

unitname Optional. Name of the unit of length. See Details.

Details

This function creates an object representing a multi-dimensional rectangular parallelepiped (box)
with sides parallel to the coordinate axes.

The object can be used to specify the domain of a multi-dimensional point pattern (see ppx) and in
various geometrical calculations (see volume.boxx, diameter.boxx, eroded.volumes).

The optional argument unitname specifies the name of the unit of length. See unitname for valid
formats.

Value

An object of class "boxx". There is a print method for this class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppx, volume.boxx, diameter.boxx, eroded.volumes.boxx.

Examples

boxx(c(0,10),c(0,10),c(0,5),c(0,1), unitname=c("metre","metres"))

branchlabelfun Tree Branch Membership Labelling Function

Description

Creates a function which returns the tree branch membership label for any location on a linear
network.

Usage

branchlabelfun(L, root = 1)

Arguments

L Linear network (object of class "linnet"). The network must have no loops.

root Root of the tree. An integer index identifying which point in vertices(L) is
the root of the tree.

184 bugfixes

Details

The linear network L must be an acyclic graph (i.e. must not contain any loops) so that it can be
interpreted as a tree.

The result of f <-branchlabelfun(L,root) is a function f which gives, for each location on the
linear network L, the tree branch label at that location.

Tree branch labels are explained in treebranchlabels.

The result f also belongs to the class "linfun". It can be called using several different kinds of
data, as explained in the help for linfun. The values of the function are character strings.

Value

A function (of class "linfun").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

treebranchlabels, linfun

Examples

make a simple tree
m <- simplenet$m
m[8,10] <- m[10,8] <- FALSE
L <- linnet(vertices(simplenet), m)
make function
f <- branchlabelfun(L, 1)
plot(f)
X <- runiflpp(5, L)
f(X)

bugfixes List Recent Bug Fixes

Description

List all bug fixes in a package, starting from a certain date or version of the package. Fixes are
sorted alphabetically by the name of the affected function. The default is to list bug fixes in the
latest version of the spatstat package.

bugfixes 185

Usage

bugfixes(sinceversion = NULL, sincedate = NULL,
package = "spatstat", show = TRUE)

Arguments

sinceversion Earliest version of package for which bugs should be listed. The default is the
current installed version.

sincedate Earliest release date of package for which bugs should be listed. A character
string or a date-time object.

package Character string. The name of the package for which bugs are to be listed.

show Logical value indicating whether to display the bug table on the terminal.

Details

Bug reports are extracted from the NEWS file of the specified package. Only those after a specified
date, or after a specified version of the package, are retained. The bug reports are then sorted
alphabetically, so that all bugs affecting a particular function are listed consecutively. Finally the
table of bug reports is displayed (if show=TRUE) and returned invisibly.

The argument sinceversion should be a character string like "1.2-3". The default is the current
installed version of the package.

The argument sincedate should be a character string like "2015-05-27", or a date-time object.

If sinceversion="all" or sincedate="all" then all recorded bugs will be listed.

If package="spatstat" (the default) then sinceversion="book" and sincedate="book" are in-
terpreted to mean sinceversion="1.42-1", which gives all bugs reported after publication of the
book by Baddeley, Rubak and Turner (2015).

Typing bugfixes without parentheses will display a table of all bugs that were fixed in the current
installed version of spatstat.

Value

A data frame, belonging to the class "bugtable", which has its own print method.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

latest.news, news.

186 bw.abram

Examples

bugfixes
show all bugs reported after publication of the spatstat book
if(interactive()) bugfixes(sinceversion="1.42-1")
equivalent to bugfixes(sinceversion="book")

bw.abram Abramson’s Adaptive Bandwidths

Description

Computes adaptive smoothing bandwidths according to the inverse-square-root rule of Abramson
(1982).

Usage

bw.abram(X, h0,
...,
at=c("points", "pixels"),
hp = h0, pilot = NULL, trim=5, smoother=density.ppp)

Arguments

X A point pattern (object of class "ppp") for which the variable bandwidths should
be computed.

h0 A scalar value giving the global smoothing bandwidth in the same units as the
coordinates of X. The default is h0=bw.ppl(X).

... Additional arguments passed to as.im to control the pixel resolution, or passed
to density.ppp or smoother to control the type of smoothing, when computing
the pilot estimate.

at Character string (partially matched) specifying whether to compute bandwidth
values at the points of X (at="points", the default) or to compute bandwidths
at every pixel in a fine pixel grid (at="pixels").

hp Optional. A scalar pilot bandwidth, used for estimation of the pilot density if
required. Ignored if pilot is a pixel image (object of class "im"); see below.

pilot Optional. Specification of a pilot density (possibly unnormalised). If pilot=NULL
the pilot density is computed by applying fixed-bandwidth density estimation to
X using bandwidth hp. If pilot is a point pattern, the pilot density is is computed
using a fixed-bandwidth estimate based on pilot and hp. If pilot is a pixel im-
age (object of class "im"), this is taken to be the (possibly unnormalised) pilot
density, and hp is ignored.

trim A trimming value required to curb excessively large bandwidths. See Details.
The default is sensible in most cases.

smoother Smoother for the pilot. A function or character string, specifying the function to
be used to compute the pilot estimate when pilot is NULL or is a point pattern.

bw.abram 187

Details

This function computes adaptive smoothing bandwidths using the methods of Abramson (1982) and
Hall and Marron (1988).

If at="points" (the default) a smoothing bandwidth is computed for each point in the pattern X.
Alternatively if at="pixels" a smoothing bandwidth is computed for each spatial location in a
pixel grid.

Under the Abramson-Hall-Marron rule, the bandwidth at location u is

h(u) = h0 ∗min[
f̃(u)−1/2

γ
, trim]

where f̃(u) is a pilot estimate of the spatially varying probability density. The variable bandwidths
are rescaled by γ, the geometric mean of the f̃(u)−1/2 terms evaluated at the data; this allows the
global bandwidth h0 to be considered on the same scale as a corresponding fixed bandwidth. The
trimming value trim has the same interpretation as the required ‘clipping’ of the pilot density at
some small nominal value (see Hall and Marron, 1988), to necessarily prevent extreme bandwidths
(which can occur at very isolated observations).

The pilot density or intensity is determined as follows:

• If pilot is a pixel image, this is taken as the pilot density or intensity.

• If pilot is NULL, then the pilot intensity is computed as a fixed-bandwidth kernel intensity
estimate using density.ppp applied to the data pattern X using the pilot bandwidth hp.

• If pilot is a different point pattern on the same spatial domain as X, then the pilot intensity is
computed as a fixed-bandwidth kernel intensity estimate using density.ppp applied to pilot
using the pilot bandwidth hp.

In each case the pilot density or intensity is renormalised to become a probability density, and then
the Abramson rule is applied.

Instead of calculating the pilot as a fixed-bandwidth density estimate, the user can specify another
density estimation procedure using the argument smoother. This should be either a function or the
character string name of a function. It will replace density.ppp as the function used to calculate
the pilot estimate. The pilot estimate will be computed as smoother(X,sigma=hp,...) if pilot
is NULL, or smoother(pilot,sigma=hp,...) if pilot is a point pattern. If smoother does not
recognise the argument name sigma for the smoothing bandwidth, then hp is effectively ignored, as
shown in the Examples.

Value

Either a numeric vector of length npoints(X) giving the Abramson bandwidth for each point (when
at = "points", the default), or the entire pixel image of the Abramson bandwidths over the relevant
spatial domain (when at = "pixels").

Author(s)

Tilman M. Davies. Adapted by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

188 bw.CvL

References

Abramson, I. (1982) On bandwidth variation in kernel estimates — a square root law. Annals of
Statistics, 10(4), 1217-1223.

Davies, T.M. and Baddeley, A. (2018) Fast computation of spatially adaptive kernel estimates.
Statistics and Computing, 28(4), 937-956.

Davies, T.M., Marshall, J.C., and Hazelton, M.L. (2018) Tutorial on kernel estimation of continu-
ous spatial and spatiotemporal relative risk. Statistics in Medicine, 37(7), 1191-1221.

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability den-
sities. Probability Theory and Related Fields, 80, 37-49.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

Examples

'ch' just 58 laryngeal cancer cases
ch <- split(chorley)[[1]]

h <- bw.abram(ch,h0=1,hp=0.7)
length(h)
summary(h)
if(interactive()) hist(h)

calculate pilot based on all 1036 observations
h.pool <- bw.abram(ch,h0=1,hp=0.7,pilot=chorley)
length(h.pool)
summary(h.pool)
if(interactive()) hist(h.pool)

get full image used for 'h' above
him <- bw.abram(ch,h0=1,hp=0.7,at="pixels")
plot(him);points(ch,col="grey")

use Voronoi-Dirichlet pilot ('hp' is ignored)
hvo <- bw.abram(ch, h0=1, smoother=densityVoronoi)

bw.CvL Cronie and van Lieshout’s Criterion for Bandwidth Selection for Ker-
nel Density

Description

Uses Cronie and van Lieshout’s criterion based on Cambell’s formula to select a smoothing band-
width for the kernel estimation of point process intensity.

bw.CvL 189

Usage

bw.CvL(X, ..., srange = NULL, ns = 16, sigma = NULL, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").

... Ignored.

srange Optional numeric vector of length 2 giving the range of values of bandwidth to
be searched.

ns Optional integer giving the number of values of bandwidth to search.

sigma Optional. Vector of values of the bandwidth to be searched. Overrides the values
of ns and srange.

warn Logical. If TRUE, a warning is issued if the optimal value of the cross-validation
criterion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth σ is chosen to minimise the discrepancy between the area of the observation window
and the sum of reciprocal estimated intensity values at the points of the point process

CvL(σ) = (|W | −
∑
i

1/λ̂(xi))
2

where the sum is taken over all the data points xi, and where λ̂(xi) is the kernel-smoothing estimate
of the intensity at xi with smoothing bandwidth σ.

The value of CvL(σ) is computed directly, using density.ppp, for ns different values of σ between
srange[1] and srange[2].

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" which can be plotted to show the bandwidth selection criterion as a function of sigma.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Author(s)

Ottmar Cronie <ottmar.cronie@umu.se> and Marie-Colette van Lieshout <Marie-Colette.van.Lieshout@cwi.nl>
adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Cronie, O and Van Lieshout, M N M (2018) A non-model-based approach to bandwidth selection
for kernel estimators of spatial intensity functions, Biometrika, 105, 455-462.

190 bw.diggle

See Also

density.ppp, bw.diggle, bw.scott, bw.ppl, bw.frac.

Examples

if(interactive()) {
b <- bw.CvL(redwood)
b
plot(b, main="Cronie and van Lieshout bandwidth criterion for redwoods")
plot(density(redwood, b))
plot(density(redwood, bw.CvL))

}

bw.diggle Cross Validated Bandwidth Selection for Kernel Density

Description

Uses cross-validation to select a smoothing bandwidth for the kernel estimation of point process
intensity.

Usage

bw.diggle(X, ..., correction="good", hmax=NULL, nr=512, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").

... Ignored.

correction Character string passed to Kest determining the edge correction to be used to
calculate the K function.

hmax Numeric. Maximum value of bandwidth that should be considered.

nr Integer. Number of steps in the distance value r to use in computing numerical
integrals.

warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth σ is chosen to minimise the mean-square error criterion defined by Diggle (1985).
The algorithm uses the method of Berman and Diggle (1989) to compute the quantity

M(σ) =
MSE(σ)

λ2
− g(0)

bw.diggle 191

as a function of bandwidth σ, where MSE(σ) is the mean squared error at bandwidth σ, while λ is
the mean intensity, and g is the pair correlation function. See Diggle (2003, pages 115-118) for a
summary of this method.

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of sigma.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Definition of bandwidth

The smoothing parameter sigma returned by bw.diggle (and displayed on the horizontal axis of
the plot) corresponds to h/2, where h is the smoothing parameter described in Diggle (2003, pages
116-118) and Berman and Diggle (1989). In those references, the smoothing kernel is the uniform
density on the disc of radius h. In density.ppp, the smoothing kernel is the isotropic Gaussian
density with standard deviation sigma. When replacing one kernel by another, the usual practice is
to adjust the bandwidths so that the kernels have equal variance (cf. Diggle 2003, page 118). This
implies that sigma = h/2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Berman, M. and Diggle, P. (1989) Estimating weighted integrals of the second-order intensity of a
spatial point process. Journal of the Royal Statistical Society, series B 51, 81–92.

Diggle, P.J. (1985) A kernel method for smoothing point process data. Applied Statistics (Journal
of the Royal Statistical Society, Series C) 34 (1985) 138–147.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

See Also

density.ppp, bw.ppl, bw.scott, bw.CvL, bw.frac.

Examples

data(lansing)
attach(split(lansing))
b <- bw.diggle(hickory)
plot(b, ylim=c(-2, 0), main="Cross validation for hickories")

plot(density(hickory, b))

192 bw.frac

bw.frac Bandwidth Selection Based on Window Geometry

Description

Select a smoothing bandwidth for smoothing a point pattern, based only on the geometry of the
spatial window. The bandwidth is a specified quantile of the distance between two independent
random points in the window.

Usage

bw.frac(X, ..., f=1/4)

Arguments

X A window (object of class "owin") or point pattern (object of class "ppp") or
other data which can be converted to a window using as.owin.

... Arguments passed to distcdf.

f Probability value (between 0 and 1) determining the quantile of the distribution.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth σ is computed as a quantile of the distance between two independent random points
in the window. The default is the lower quartile of this distribution.

If F (r) is the cumulative distribution function of the distance between two independent random
points uniformly distributed in the window, then the value returned is the quantile with probability
f . That is, the bandwidth is the value r such that F (r) = f .

The cumulative distribution function F (r) is computed using distcdf. We then we compute the
smallest number r such that F (r) ≥ f .

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.frac"
which can be plotted to show the cumulative distribution function and the selected quantile.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

For estimating point process intensity, see density.ppp, bw.diggle, bw.ppl, bw.scott, bw.CvL.

For other smoothing purposes, see bw.stoyan, bw.smoothppp, bw.relrisk.

bw.lppl 193

Examples

h <- bw.frac(letterR)
h
plot(h, main="bw.frac(letterR)")

bw.lppl Likelihood Cross Validation Bandwidth Selection for Kernel Density
on a Linear Network

Description

Uses likelihood cross-validation to select a smoothing bandwidth for the kernel estimation of point
process intensity on a linear network.

Usage

bw.lppl(X, ..., srange=NULL, ns=16, sigma=NULL, weights=NULL,
distance=c("euclidean", "path"), shortcut=TRUE, warn=TRUE)

Arguments

X A point pattern on a linear network (object of class "lpp").

srange Optional numeric vector of length 2 giving the range of values of bandwidth to
be searched.

ns Optional integer giving the number of values of bandwidth to search.

sigma Optional. Vector of values of the bandwidth to be searched. Overrides the values
of ns and srange.

weights Optional. Numeric vector of weights for the points of X. Argument passed to
density.lpp.

distance Argument passed to density.lpp controlling the type of kernel estimator.

... Additional arguments passed to density.lpp.

shortcut Logical value indicating whether to speed up the calculation by omitting the
integral term in the cross-validation criterion.

warn Logical. If TRUE, issue a warning if the maximum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.lpp.

The argument X should be a point pattern on a linear network (class "lpp").

The bandwidth σ is chosen to maximise the point process likelihood cross-validation criterion

LCV(σ) =
∑
i

log λ̂−i(xi)−
∫
L

λ̂(u) du

194 bw.lppl

where the sum is taken over all the data points xi, where λ̂−i(xi) is the leave-one-out kernel-
smoothing estimate of the intensity at xi with smoothing bandwidth σ, and λ̂(u) is the kernel-
smoothing estimate of the intensity at a spatial location u with smoothing bandwidth σ. See
Loader(1999, Section 5.3).

The value of LCV(σ) is computed directly, using density.lpp, for ns different values of σ between
srange[1] and srange[2].

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of sigma.

If shortcut=TRUE, the computation is accelerated by omitting the integral term in the equation
above. This is valid because the integral is approximately constant.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Author(s)

Greg McSwiggan, Suman Rakshit and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Loader, C. (1999) Local Regression and Likelihood. Springer, New York.

McSwiggan, G., Baddeley, A. and Nair, G. (2019) Estimation of relative risk for events on a linear
network. Statistics and Computing 30 (2) 469–484.

See Also

density.lpp, bw.scott.

For point patterns in two-dimensional space, use bw.ppl.

Examples

if(interactive()) {
b <- bw.lppl(spiders)
plot(b, main="Likelihood cross validation for spiders")
plot(density(spiders, b, distance="e"))

} else {
b1 <- bw.lppl(spiders, ns=2)
b2 <- bw.lppl(spiders, ns=2, shortcut=TRUE)

}

bw.pcf 195

bw.pcf Cross Validated Bandwidth Selection for Pair Correlation Function

Description

Uses composite likelihood or generalized least squares cross-validation to select a smoothing band-
width for the kernel estimation of pair correlation function.

Usage

bw.pcf(X, rmax=NULL, lambda=NULL, divisor="r",
kernel="epanechnikov", nr=10000, bias.correct=TRUE,
cv.method=c("compLik", "leastSQ"), simple=TRUE, srange=NULL,

..., verbose=FALSE, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").

rmax Numeric. Maximum value of the spatial lag distance r for which g(r) should be
evaluated.

lambda Optional. Values of the estimated intensity function. A vector giving the inten-
sity values at the points of the pattern X.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
pcf.ppp.

kernel Choice of smoothing kernel, passed to density; see pcf and pcfinhom.

nr Integer. Number of subintervals for discretization of [0, rmax] to use in comput-
ing numerical integrals.

bias.correct Logical. Whether to use bias corrected version of the kernel estimate. See
Details.

cv.method Choice of cross validation method: either "compLik" or "leastSQ" (partially
matched).

simple Logical. Whether to use simple removal of spatial lag distances. See Details.

srange Optional. Numeric vector of length 2 giving the range of bandwidth values that
should be searched to find the optimum bandwidth.

... Other arguments, passed to pcf or pcfinhom.

verbose Logical value indicating whether to print progress reports during the optimiza-
tion procedure.

warn Logical. If TRUE, issue a warning if the optimum value of the cross-validation
criterion occurs at one of the ends of the search interval.

196 bw.pcf

Details

This function selects an appropriate bandwidth bw for the kernel estimator of the pair correlation
function of a point process intensity computed by pcf.ppp (homogeneous case) or pcfinhom (in-
homogeneous case).

With cv.method="leastSQ", the bandwidth h is chosen to minimise an unbiased estimate of the
integrated mean-square error criterion M(h) defined in equation (4) in Guan (2007a). The code
implements the fast algorithm of Jalilian and Waagepetersen (2018).

With cv.method="compLik", the bandwidth h is chosen to maximise a likelihood cross-validation
criterion CV (h) defined in equation (6) of Guan (2007b).

M(b) =
MSE(σ)

λ2
− g(0)

The result is a numerical value giving the selected bandwidth.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Definition of bandwidth

The bandwidth bw returned by bw.pcf corresponds to the standard deviation of the smoothoing
kernel. As mentioned in the documentation of density.default and pcf.ppp, this differs from
the scale parameter h of the smoothing kernel which is often considered in the literature as the
bandwidth of the kernel function. For example for the Epanechnikov kernel, bw=h/sqrt(h).

Author(s)

Rasmus Waagepetersen and Abdollah Jalilian. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

Guan, Y. (2007a). A composite likelihood cross-validation approach in selecting bandwidth for the
estimation of the pair correlation function. Scandinavian Journal of Statistics, 34(2), 336–346.

Guan, Y. (2007b). A least-squares cross-validation bandwidth selection approach in pair correlation
function estimations. Statistics & Probability Letters, 77(18), 1722–1729.

Jalilian, A. and Waagepetersen, R. (2018) Fast bandwidth selection for estimation of the pair cor-
relation function. Journal of Statistical Computation and Simulation, 88(10), 2001–2011. https:
//www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606

See Also

pcf.ppp, pcfinhom

https://www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606
https://www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606

bw.ppl 197

Examples

b <- bw.pcf(redwood)
plot(pcf(redwood, bw=b))

bw.ppl Likelihood Cross Validation Bandwidth Selection for Kernel Density

Description

Uses likelihood cross-validation to select a smoothing bandwidth for the kernel estimation of point
process intensity.

Usage

bw.ppl(X, ..., srange=NULL, ns=16, sigma=NULL, weights=NULL,
shortcut=FALSE, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").

srange Optional numeric vector of length 2 giving the range of values of bandwidth to
be searched.

ns Optional integer giving the number of values of bandwidth to search.

sigma Optional. Vector of values of the bandwidth to be searched. Overrides the values
of ns and srange.

weights Optional. Numeric vector of weights for the points of X. Argument passed to
density.ppp.

... Additional arguments passed to density.ppp.

shortcut Logical value indicating whether to speed up the calculation by omitting the
integral term in the cross-validation criterion.

warn Logical. If TRUE, issue a warning if the maximum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth σ is chosen to maximise the point process likelihood cross-validation criterion

LCV(σ) =
∑
i

log λ̂−i(xi)−
∫
W

λ̂(u) du

where the sum is taken over all the data points xi, where λ̂−i(xi) is the leave-one-out kernel-
smoothing estimate of the intensity at xi with smoothing bandwidth σ, and λ̂(u) is the kernel-
smoothing estimate of the intensity at a spatial location u with smoothing bandwidth σ. See
Loader(1999, Section 5.3).

198 bw.relrisk

The value of LCV(σ) is computed directly, using density.ppp, for ns different values of σ between
srange[1] and srange[2].

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of sigma.

If shortcut=TRUE, the computation is accelerated by omitting the integral term in the equation
above. This is valid because the integral is approximately constant.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Loader, C. (1999) Local Regression and Likelihood. Springer, New York.

See Also

density.ppp, bw.diggle, bw.scott, bw.CvL, bw.frac.

For point patterns on a linear network, use bw.lppl.

Examples

if(interactive()) {
b <- bw.ppl(redwood)
plot(b, main="Likelihood cross validation for redwoods")
plot(density(redwood, b))

}

bw.relrisk Cross Validated Bandwidth Selection for Relative Risk Estimation

Description

Uses cross-validation to select a smoothing bandwidth for the estimation of relative risk.

Usage

bw.relrisk(X, method = "likelihood", nh = spatstat.options("n.bandwidth"),
hmin=NULL, hmax=NULL, warn=TRUE)

bw.relrisk 199

Arguments

X A multitype point pattern (object of class "ppp" which has factor valued marks).
method Character string determining the cross-validation method. Current options are

"likelihood", "leastsquares" or "weightedleastsquares".
nh Number of trial values of smoothing bandwith sigma to consider. The default is

32.
hmin, hmax Optional. Numeric values. Range of trial values of smoothing bandwith sigma

to consider. There is a sensible default.
warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-

rion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth for the nonparametric estimation of relative risk
using relrisk.
Consider the indicators yij which equal 1 when data point xi belongs to type j, and equal 0 other-
wise. For a particular value of smoothing bandwidth, let p̂j(u) be the estimated probabilities that a
point at location u will belong to type j. Then the bandwidth is chosen to minimise either the nega-
tive likelihood, the squared error, or the approximately standardised squared error, of the indicators
yij relative to the fitted values p̂j(xi). See Diggle (2003) or Baddeley et al (2015).
The result is a numerical value giving the selected bandwidth sigma. The result also belongs to
the class "bw.optim" allowing it to be printed and plotted. The plot shows the cross-validation
criterion as a function of bandwidth.
The range of values for the smoothing bandwidth sigma is set by the arguments hmin,hmax. There
is a sensible default, based on multiples of Stoyan’s rule of thumb bw.stoyan.
If the optimal bandwidth is achieved at an endpoint of the interval [hmin,hmax], the algorithm will
issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the
interval by changing the arguments hmin,hmax.
Computation time depends on the number nh of trial values considered, and also on the range
[hmin,hmax] of values considered, because larger values of sigma require calculations involving
more pairs of data points.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.
Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.
Kelsall, J.E. and Diggle, P.J. (1995) Kernel estimation of relative risk. Bernoulli 1, 3–16.

200 bw.relrisklpp

See Also

relrisk, bw.stoyan

Examples

data(urkiola)

b <- bw.relrisk(urkiola)
b
plot(b)
b <- bw.relrisk(urkiola, hmax=20)
plot(b)

bw.relrisklpp Cross Validated Bandwidth Selection for Relative Risk Estimation on
a Network

Description

Uses cross-validation to select a smoothing bandwidth for the estimation of relative risk on a linear
network.

Usage

bw.relrisklpp(X, ...,
method = c("likelihood", "leastsquares", "KelsallDiggle", "McSwiggan"),
distance=c("path", "euclidean"),
hmin = NULL, hmax = NULL, nh = NULL,
fast = TRUE, fastmethod = "onestep",
floored = TRUE, reference = c("thumb", "uniform", "sigma"),
allow.infinite = TRUE, epsilon = 1e-20, fudge = 0,
verbose = FALSE, warn = TRUE)

Arguments

X A multitype point pattern on a linear network (object of class "lpp" which has
factor-valued marks).

... Arguments passed to density.lpp to control the resolution of the algorithm.

method Character string (partially matched) determining the cross-validation method.
See Details.

distance Character string (partially matched) specifying the type of smoothing kernel.
See density.lpp.

hmin,hmax Optional. Numeric values. Range of trial values of smoothing bandwith sigma
to consider. There is a sensible default.

nh Number of trial values of smoothing bandwidth sigma to consider.

bw.relrisklpp 201

fast Logical value specifying whether the leave-one-out density estimates should
be computed using a fast approximation (fast=TRUE, the default) or exactly
(fast=FALSE).

fastmethod, floored

Developer use only.

reference Character string (partially matched) specifying the bandwidth for calculating the
reference intensities used in the McSwiggan method (modified Kelsall-Diggle
method). reference="sigma" means the maximum bandwidth considered,
which is given by the argument sigma. reference="thumb" means the band-
widths selected by Scott’s rule of thumb bw.scott.iso. reference="uniform"
means infinite bandwidth corresponding to uniform intensity.

allow.infinite Logical value indicating whether an infinite bandwidth (corresponding to a con-
stant relative risk) should be permitted as a possible choice of bandwidth.

epsilon A small constant value added to the reference density in some of the cross-
validation calculations, to improve performance.

fudge Fudge factor to prevent very small density estimates in the leave-one-out calcu-
lation. If fudge > 0, then the lowest permitted value for a leave-one-out estimate
of intensity is fudge/L, where L is the total length of the network.

verbose Logical value indicating whether to print progress reports,

warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

Details

This function computes an optimal value of smoothing bandwidth for the nonparametric estimation
of relative risk on a linear network using relrisk.lpp. The optimal value is found by optimising a
cross-validation criterion.

The cross-validation criterion is selected by the argument method:

method="likelihood" likelihood cross-validation
method="leastsquares" least squares cross-validation
method="KelsallDiggle" Kelsall and Diggle (1995) density ratio cross-validation
method="McSwiggan" McSwiggan et al (2019) modified density ratio cross-validation

See McSwiggan et al (2019) for details.

The result is a numerical value giving the selected bandwidth sigma. The result also belongs to
the class "bw.optim" allowing it to be printed and plotted. The plot shows the cross-validation
criterion as a function of bandwidth.

The range of values for the smoothing bandwidth sigma is set by the arguments hmin,hmax. There
is a sensible default, based on the linear network version of Scott’s rule bw.scott.iso.

If the optimal bandwidth is achieved at an endpoint of the interval [hmin,hmax], the algorithm will
issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the
interval by changing the arguments hmin,hmax.

The cross-validation procedure is based on kernel estimates of intensity, which are computed by

202 bw.scott

density.lpp. Any arguments ... are passed to density.lpp to control the kernel estimation
procedure. This includes the argument distance which specifies the type of kernel. The default is
distance="path"; the fastest option is distance="euclidean".

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Author(s)

Greg McSwiggan and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Kelsall, J.E. and Diggle, P.J. (1995) Kernel estimation of relative risk. Bernoulli 1, 3–16.

McSwiggan, G., Baddeley, A. and Nair, G. (2019) Estimation of relative risk for events on a linear
network. Statistics and Computing 30 (2) 469–484.

See Also

relrisk.lpp

Examples

set.seed(2020)
X <- superimpose(A=runiflpp(20, simplenet),

B=runifpointOnLines(20, as.psp(simplenet)[1]))
plot(bw.relrisklpp(X, hmin=0.1, hmax=0.3, method="McSwiggan"))
plot(bw.relrisklpp(X, hmin=0.1, hmax=0.3, distance="euclidean"))

bw.scott Scott’s Rule for Bandwidth Selection for Kernel Density

Description

Use Scott’s rule of thumb to determine the smoothing bandwidth for the kernel estimation of point
process intensity.

Usage

bw.scott(X, isotropic=FALSE, d=NULL)

bw.scott.iso(X)

bw.scott 203

Arguments

X A point pattern (object of class "ppp", "lpp", "pp3" or "ppx").

isotropic Logical value indicating whether to compute a single bandwidth for an isotropic
Gaussian kernel (isotropic=TRUE) or separate bandwidths for each coordinate
axis (isotropic=FALSE, the default).

d Advanced use only. An integer value that should be used in Scott’s formula
instead of the true number of spatial dimensions.

Details

These functions select a bandwidth sigma for the kernel estimator of point process intensity com-
puted by density.ppp or density.lpp or other appropriate functions. They can be applied to a
point pattern belonging to any class "ppp", "lpp", "pp3" or "ppx".

The bandwidth σ is computed by the rule of thumb of Scott (1992, page 152, equation 6.42). The
bandwidth is proportional to n−1/(d+4) where n is the number of points and d is the number of
spatial dimensions.

This rule is very fast to compute. It typically produces a larger bandwidth than bw.diggle. It is
useful for estimating gradual trend.

If isotropic=FALSE (the default), bw.scott provides a separate bandwidth for each coordinate
axis, and the result of the function is a vector, of length equal to the number of coordinates. If
isotropic=TRUE, a single bandwidth value is computed and the result is a single numeric value.

bw.scott.iso(X) is equivalent to bw.scott(X,isotropic=TRUE).

The default value of d is as follows:

class dimension
"ppp" 2
"lpp" 1
"pp3" 3
"ppx" number of spatial coordinates

The use of d=1 for point patterns on a linear network (class "lpp") was proposed by McSwiggan et
al (2016) and Rakshit et al (2019).

Value

A numerical value giving the selected bandwidth, or a numerical vector giving the selected band-
widths for each coordinate.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Scott, D.W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization. New York:
Wiley.

204 bw.smoothppp

McSwiggan, G., Baddeley, A. and Nair, G. (2016) Kernel density estimation on a linear network.
Scandinavian Journal of Statistics 44 (2) 324–345.

Rakshit, S., Davies, T., Moradi, M., McSwiggan, G., Nair, G., Mateu, J. and Baddeley, A. (2019)
Fast kernel smoothing of point patterns on a large network using 2D convolution. International
Statistical Review 87 (3) 531–556. DOI: 10.1111/insr.12327.

See Also

density.ppp, bw.diggle, bw.ppl, bw.CvL, bw.frac.

Examples

hickory <- split(lansing)[["hickory"]]
b <- bw.scott(hickory)
b

plot(density(hickory, b))

bw.scott.iso(hickory)
bw.scott(chicago)
bw.scott(osteo$pts[[1]])

bw.smoothppp Cross Validated Bandwidth Selection for Spatial Smoothing

Description

Uses least-squares cross-validation to select a smoothing bandwidth for spatial smoothing of marks.

Usage

bw.smoothppp(X, nh = spatstat.options("n.bandwidth"),
hmin=NULL, hmax=NULL, warn=TRUE, kernel="gaussian")

Arguments

X A marked point pattern with numeric marks.

nh Number of trial values of smoothing bandwith sigma to consider. The default is
32.

hmin, hmax Optional. Numeric values. Range of trial values of smoothing bandwith sigma
to consider. There is a sensible default.

warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

kernel The smoothing kernel. A character string specifying the smoothing kernel (cur-
rent options are "gaussian", "epanechnikov", "quartic" or "disc").

bw.smoothppp 205

Details

This function selects an appropriate bandwidth for the nonparametric smoothing of mark values
using Smooth.ppp.

The argument X must be a marked point pattern with a vector or data frame of marks. All mark
values must be numeric.

The bandwidth is selected by least-squares cross-validation. Let yi be the mark value at the ith
data point. For a particular choice of smoothing bandwidth, let ŷi be the smoothed value at the ith
data point. Then the bandwidth is chosen to minimise the squared error of the smoothed values∑
i(yi − ŷi)2.

The result of bw.smoothppp is a numerical value giving the selected bandwidth sigma. The result
also belongs to the class "bw.optim" allowing it to be printed and plotted. The plot shows the
cross-validation criterion as a function of bandwidth.

The range of values for the smoothing bandwidth sigma is set by the arguments hmin,hmax. There
is a sensible default, based on the nearest neighbour distances.

If the optimal bandwidth is achieved at an endpoint of the interval [hmin,hmax], the algorithm will
issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the
interval by changing the arguments hmin,hmax.

Computation time depends on the number nh of trial values considered, and also on the range
[hmin,hmax] of values considered, because larger values of sigma require calculations involving
more pairs of data points.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Smooth.ppp

Examples

data(longleaf)

b <- bw.smoothppp(longleaf)
b
plot(b)

206 bw.stoyan

bw.stoyan Stoyan’s Rule of Thumb for Bandwidth Selection

Description

Computes a rough estimate of the appropriate bandwidth for kernel smoothing estimators of the
pair correlation function and other quantities.

Usage

bw.stoyan(X, co=0.15)

Arguments

X A point pattern (object of class "ppp").

co Coefficient appearing in the rule of thumb. See Details.

Details

Estimation of the pair correlation function and other quantities by smoothing methods requires a
choice of the smoothing bandwidth. Stoyan and Stoyan (1995, equation (15.16), page 285) proposed
a rule of thumb for choosing the smoothing bandwidth.

For the Epanechnikov kernel, the rule of thumb is to set the kernel’s half-width h to 0.15/
√
λ where

λ is the estimated intensity of the point pattern, typically computed as the number of points of X
divided by the area of the window containing X.

For a general kernel, the corresponding rule is to set the standard deviation of the kernel to σ =
0.15/

√
5λ.

The coefficient 0.15 can be tweaked using the argument co.

To ensure the bandwidth is finite, an empty point pattern is treated as if it contained 1 point.

Value

A finite positive numerical value giving the selected bandwidth (the standard deviation of the
smoothing kernel).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Stoyan, D. and Stoyan, H. (1995) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

bw.voronoi 207

See Also

pcf, bw.relrisk

Examples

data(shapley)
bw.stoyan(shapley)

bw.voronoi Cross Validated Bandwidth Selection for Voronoi Estimator of Inten-
sity on a Network

Description

Uses cross-validation to select a smoothing bandwidth for the Voronoi estimate of point process
intensity on a linear network.

Usage

bw.voronoi(X, ..., probrange = c(0.2, 0.8), nprob = 10,
prob = NULL, nrep = 100, verbose = TRUE, warn=TRUE)

Arguments

X Point pattern on a linear network (object of class "lpp").

... Ignored.

probrange Numeric vector of length 2 giving the range of bandwidths (retention probabili-
ties) to be assessed.

nprob Integer. Number of bandwidths to be assessed.

prob Optional. A numeric vector of bandwidths (retention probabilities) to be as-
sessed. Entries must be probabilities between 0 and 1. Overrides nprob and
probrange.

nrep Number of simulated realisations to be used for the computation.

verbose Logical value indicating whether to print progress reports.

warn Logical. If TRUE, issue a warning if the maximum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

Details

This function uses likelihood cross-validation to choose the optimal value of the thinning fraction f
(the retention probability) to be used in the smoothed Voronoi estimator of point process intensity
densityVoronoi.lpp.

208 by.im

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi.

References

Moradi, M., Cronie, 0., Rubak, E., Lachieze-Rey, R., Mateu, J. and Baddeley, A. (2019) Resample-
smoothing of Voronoi intensity estimators. Statistics and Computing, in press.

See Also

densityVoronoi.lpp

Examples

np <- if(interactive()) 10 else 3
nr <- if(interactive()) 100 else 2
b <- bw.voronoi(spiders, nprob=np, nrep=nr)
b
plot(b)

by.im Apply Function to Image Broken Down by Factor

Description

Splits a pixel image into sub-images and applies a function to each sub-image.

Usage

S3 method for class 'im'
by(data, INDICES, FUN, ...)

Arguments

data A pixel image (object of class "im").

INDICES Grouping variable. Either a tessellation (object of class "tess") or a factor-
valued pixel image.

FUN Function to be applied to each sub-image of data.

... Extra arguments passed to FUN.

by.ppp 209

Details

This is a method for the generic function by for pixel images (class "im").

The pixel image data is first divided into sub-images according to INDICES. Then the function FUN
is applied to each subset. The results of each computation are returned in a list.

The grouping variable INDICES may be either

• a tessellation (object of class "tess"). Each tile of the tessellation delineates a subset of the
spatial domain.

• a pixel image (object of class "im") with factor values. The levels of the factor determine
subsets of the spatial domain.

Value

A list containing the results of each evaluation of FUN.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

split.im, tess, im

Examples

W <- square(1)
X <- as.im(function(x,y){sqrt(x^2+y^2)}, W)
Y <- dirichlet(runifpoint(12, W))
mean pixel value in each subset
unlist(by(X, Y, mean))
trimmed mean
unlist(by(X, Y, mean, trim=0.05))

by.ppp Apply a Function to a Point Pattern Broken Down by Factor

Description

Splits a point pattern into sub-patterns, and applies the function to each sub-pattern.

Usage

S3 method for class 'ppp'
by(data, INDICES=marks(data), FUN, ...)

210 by.ppp

Arguments

data Point pattern (object of class "ppp").

INDICES Grouping variable. Either a factor, a pixel image with factor values, or a tessel-
lation.

FUN Function to be applied to subsets of data.

... Additional arguments to FUN.

Details

This is a method for the generic function by for point patterns (class "ppp").

The point pattern data is first divided into subsets according to INDICES. Then the function FUN is
applied to each subset. The results of each computation are returned in a list.

The argument INDICES may be

• a factor, of length equal to the number of points in data. The levels of INDICES determine
the destination of each point in data. The ith point of data will be placed in the sub-pattern
split.ppp(data)$l where l = f[i].

• a pixel image (object of class "im") with factor values. The pixel value of INDICES at each
point of data will be used as the classifying variable.

• a tessellation (object of class "tess"). Each point of data will be classified according to the
tile of the tessellation into which it falls.

If INDICES is missing, then data must be a multitype point pattern (a marked point pattern whose
marks vector is a factor). Then the effect is that the points of each type are separated into different
point patterns.

Value

A list (also of class "anylist" or "solist" as appropriate) containing the results returned from
FUN for each of the subpatterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp, split.ppp, cut.ppp, tess, im.

Examples

multitype point pattern, broken down by type
data(amacrine)
by(amacrine, FUN=density)
by(amacrine, FUN=function(x) { min(nndist(x)) })

how to pass additional arguments to FUN

cauchy.estK 211

by(amacrine, FUN=clarkevans, correction=c("Donnelly","cdf"))

point pattern broken down by tessellation
data(swedishpines)
tes <- quadrats(swedishpines, 5, 5)
B <- by(swedishpines, tes, clarkevans, correction="Donnelly")
unlist(lapply(B, as.numeric))

cauchy.estK Fit the Neyman-Scott cluster process with Cauchy kernel

Description

Fits the Neyman-Scott Cluster point process with Cauchy kernel to a point pattern dataset by the
Method of Minimum Contrast.

Usage

cauchy.estK(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits the Neyman-Scott cluster point process model with Cauchy kernel to a point
pattern dataset by the Method of Minimum Contrast, using the K function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

212 cauchy.estK

The algorithm fits the Neyman-Scott cluster point process with Cauchy kernel to X, by finding the
parameters of the Matérn Cluster model which give the closest match between the theoretical K
function of the Matérn Cluster process and the observed K function. For a more detailed explana-
tion of the Method of Minimum Contrast, see mincontrast.

The model is described in Jalilian et al (2013). It is a cluster process formed by taking a pattern
of parent points, generated according to a Poisson process with intensity κ, and around each parent
point, generating a random number of offspring points, such that the number of offspring of each
parent is a Poisson random variable with mean µ, and the locations of the offspring points of one
parent follow a common distribution described in Jalilian et al (2013).

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and
lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rCauchy.

For computational reasons, the optimisation procedure uses the parameter eta2, which is equivalent
to 4 * scale^2 where scale is the scale parameter for the model as used in rCauchy.

Homogeneous or inhomogeneous Neyman-Scott/Cauchy models can also be fitted using the func-
tion kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ghorbani, M. (2012) Cauchy cluster process. Metrika, to appear.

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

cauchy.estpcf 213

See Also

kppm, cauchy.estpcf, lgcp.estK, thomas.estK, vargamma.estK, mincontrast, Kest, Kmodel.

rCauchy to simulate the model.

Examples

u <- cauchy.estK(redwood)
u
plot(u)

cauchy.estpcf Fit the Neyman-Scott cluster process with Cauchy kernel

Description

Fits the Neyman-Scott Cluster point process with Cauchy kernel to a point pattern dataset by the
Method of Minimum Contrast, using the pair correlation function.

Usage

cauchy.estpcf(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...,
pcfargs = list())

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits the Neyman-Scott cluster point process model with Cauchy kernel to a point
pattern dataset by the Method of Minimum Contrast, using the pair correlation function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

214 cauchy.estpcf

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Neyman-Scott cluster point process with Cauchy kernel to X, by finding the
parameters of the Matérn Cluster model which give the closest match between the theoretical pair
correlation function of the Matérn Cluster process and the observed pair correlation function. For a
more detailed explanation of the Method of Minimum Contrast, see mincontrast.

The model is described in Jalilian et al (2013). It is a cluster process formed by taking a pattern
of parent points, generated according to a Poisson process with intensity κ, and around each parent
point, generating a random number of offspring points, such that the number of offspring of each
parent is a Poisson random variable with mean µ, and the locations of the offspring points of one
parent follow a common distribution described in Jalilian et al (2013).

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and
lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rCauchy.

For computational reasons, the optimisation procedure internally uses the parameter eta2, which is
equivalent to 4 * scale^2 where scale is the scale parameter for the model as used in rCauchy.

Homogeneous or inhomogeneous Neyman-Scott/Cauchy models can also be fitted using the func-
tion kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ghorbani, M. (2012) Cauchy cluster process. Metrika, to appear.

cbind.hyperframe 215

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, cauchy.estK, lgcp.estpcf, thomas.estpcf, vargamma.estpcf, mincontrast, pcf, pcfmodel.

rCauchy to simulate the model.

Examples

u <- cauchy.estpcf(redwood)
u
plot(u, legendpos="topright")

cbind.hyperframe Combine Hyperframes by Rows or by Columns

Description

Methods for cbind and rbind for hyperframes.

Usage

S3 method for class 'hyperframe'
cbind(...)
S3 method for class 'hyperframe'
rbind(...)

Arguments

... Any number of hyperframes (objects of class hyperframe).

Details

These are methods for cbind and rbind for hyperframes.

Note that all the arguments must be hyperframes (because of the peculiar dispatch rules of cbind
and rbind).

To combine a hyperframe with a data frame, one should either convert the data frame to a hyper-
frame using as.hyperframe, or explicitly invoke the function cbind.hyperframe or rbind.hyperframe.

In other words: if h is a hyperframe and d is a data frame, the result of cbind(h,d) will be
the same as cbind(as.data.frame(h),d), so that all hypercolumns of h will be deleted (and a
warning will be issued). To combine h with d so that all columns of h are retained, type either
cbind(h,as.hyperframe(d)) or cbind.hyperframe(h,d).

216 CDF

Value

Another hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

hyperframe, as.hyperframe

Examples

lambda <- runif(5, min=10, max=30)
X <- lapply(as.list(lambda), function(x) { rpoispp(x) })
h <- hyperframe(lambda=lambda, X=X)
g <- hyperframe(id=letters[1:5], Y=rev(X))
gh <- cbind(h, g)
hh <- rbind(h[1:2,], h[3:5,])

CDF Cumulative Distribution Function From Kernel Density Estimate

Description

Given a kernel estimate of a probability density, compute the corresponding cumulative distribution
function.

Usage

CDF(f, ...)

S3 method for class 'density'
CDF(f, ..., warn = TRUE)

Arguments

f Density estimate (object of class "density").

... Ignored.

warn Logical value indicating whether to issue a warning if the density estimate f had
to be renormalised because it was computed in a restricted interval.

cdf.test 217

Details

CDF is generic, with a method for class "density".

This calculates the cumulative distribution function whose probability density has been estimated
and stored in the object f. The object f must belong to the class "density", and would typically
have been obtained from a call to the function density.

Value

A function, which can be applied to any numeric value or vector of values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

density, quantile.density

Examples

b <- density(runif(10))
f <- CDF(b)
f(0.5)
plot(f)

cdf.test Spatial Distribution Test for Point Pattern or Point Process Model

Description

Performs a test of goodness-of-fit of a point process model. The observed and predicted distribu-
tions of the values of a spatial covariate are compared using either the Kolmogorov-Smirnov test,
Cramér-von Mises test or Anderson-Darling test. For non-Poisson models, a Monte Carlo test is
used.

Usage

cdf.test(...)

S3 method for class 'ppp'
cdf.test(X, covariate, test=c("ks", "cvm", "ad"), ...,

interpolate=TRUE, jitter=TRUE)

S3 method for class 'ppm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,

interpolate=TRUE, jitter=TRUE, nsim=99, verbose=TRUE)

218 cdf.test

S3 method for class 'lpp'
cdf.test(X, covariate, test=c("ks", "cvm", "ad"), ...,

interpolate=TRUE, jitter=TRUE)

S3 method for class 'lppm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"),
...,

interpolate=TRUE, jitter=TRUE, nsim=99, verbose=TRUE)

S3 method for class 'slrm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ..., modelname=NULL, covname=NULL)

Arguments

X A point pattern (object of class "ppp" or "lpp").

model A fitted point process model (object of class "ppm" or "lppm") or fitted spatial
logistic regression (object of class "slrm").

covariate The spatial covariate on which the test will be based. A function, a pixel image
(object of class "im"), a list of pixel images, or one of the characters "x" or "y"
indicating the Cartesian coordinates.

test Character string identifying the test to be performed: "ks" for Kolmogorov-
Smirnov test, "cvm" for Cramér-von Mises test or "ad" for Anderson-Darling
test.

... Arguments passed to ks.test (from the stats package) or cvm.test or ad.test
(from the goftest package) to control the test.

interpolate Logical flag indicating whether to interpolate pixel images. If interpolate=TRUE,
the value of the covariate at each point of X will be approximated by interpolat-
ing the nearby pixel values. If interpolate=FALSE, the nearest pixel value will
be used.

jitter Logical flag. If jitter=TRUE, values of the covariate will be slightly perturbed
at random, to avoid tied values in the test.

modelname,covname

Character strings giving alternative names for model and covariate to be used
in labelling plot axes.

nsim Number of simulated realisations from the model to be used for the Monte Carlo
test, when model is not a Poisson process.

verbose Logical value indicating whether to print progress reports when performing a
Monte Carlo test.

Details

These functions perform a goodness-of-fit test of a Poisson or Gibbs point process model fitted
to point pattern data. The observed distribution of the values of a spatial covariate at the data
points, and the predicted distribution of the same values under the model, are compared using the
Kolmogorov-Smirnov test, the Cramér-von Mises test or the Anderson-Darling test. For Gibbs
models, a Monte Carlo test is performed using these test statistics.

cdf.test 219

The function cdf.test is generic, with methods for point patterns ("ppp" or "lpp"), point process
models ("ppm" or "lppm") and spatial logistic regression models ("slrm").

• If X is a point pattern dataset (object of class "ppp"), then cdf.test(X,...) performs a
goodness-of-fit test of the uniform Poisson point process (Complete Spatial Randomness,
CSR) for this dataset. For a multitype point pattern, the uniform intensity is assumed to de-
pend on the type of point (sometimes called Complete Spatial Randomness and Independence,
CSRI).

• If model is a fitted point process model (object of class "ppm" or "lppm") then cdf.test(model,...)
performs a test of goodness-of-fit for this fitted model.

• If model is a fitted spatial logistic regression (object of class "slrm") then cdf.test(model,...)
performs a test of goodness-of-fit for this fitted model.

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model, using a
classical goodness-of-fit test. Thus, you must nominate a spatial covariate for this test.

If X is a point pattern that does not have marks, the argument covariate should be either a
function(x,y) or a pixel image (object of class "im" containing the values of a spatial func-
tion, or one of the characters "x" or "y" indicating the Cartesian coordinates. If covariate is an
image, it should have numeric values, and its domain should cover the observation window of the
model. If covariate is a function, it should expect two arguments x and y which are vectors of
coordinates, and it should return a numeric vector of the same length as x and y.

If X is a multitype point pattern, the argument covariate can be either a function(x,y,marks),
or a pixel image, or a list of pixel images corresponding to each possible mark value, or one of the
characters "x" or "y" indicating the Cartesian coordinates.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

The predicted distribution of the values of the covariate under the fitted model is computed as
follows. The values of the covariate at all locations in the observation window are evaluated,
weighted according to the point process intensity of the fitted model, and compiled into a cumulative
distribution function F using ewcdf.

The probability integral transformation is then applied: the values of the covariate at the original
data points are transformed by the predicted cumulative distribution function F into numbers be-
tween 0 and 1. If the model is correct, these numbers are i.i.d. uniform random numbers. The A
goodness-of-fit test of the uniform distribution is applied to these numbers using stats::ks.test,
goftest::cvm.test or goftest::ad.test.

This test was apparently first described (in the context of spatial data, and using Kolmogorov-
Smirnov) by Berman (1986). See also Baddeley et al (2005).

If model is not a Poisson process, then a Monte Carlo test is performed, by generating nsim point
patterns which are simulated realisations of the model, re-fitting the model to each simulated point
pattern, and calculating the test statistic for each fitted model. The Monte Carlo p value is deter-
mined by comparing the simulated values of the test statistic with the value for the original data.

The return value is an object of class "htest" containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

The return value also belongs to the class "cdftest" for which there is a plot method plot.cdftest.
The plot method displays the empirical cumulative distribution function of the covariate at the data

220 cdf.test

points, and the predicted cumulative distribution function of the covariate under the model, plotted
against the value of the covariate.

The argument jitter controls whether covariate values are randomly perturbed, in order to avoid
ties. If the original data contains any ties in the covariate (i.e. points with equal values of the
covariate), and if jitter=FALSE, then the Kolmogorov-Smirnov test implemented in ks.test will
issue a warning that it cannot calculate the exact p-value. To avoid this, if jitter=TRUE each value
of the covariate will be perturbed by adding a small random value. The perturbations are normally
distributed with standard deviation equal to one hundredth of the range of values of the covariate.
This prevents ties, and the p-value is still correct. There is a very slight loss of power.

Value

An object of class "htest" containing the results of the test. See ks.test for details. The return
value can be printed to give an informative summary of the test.

The value also belongs to the class "cdftest" for which there is a plot method.

Warning

The outcome of the test involves a small amount of random variability, because (by default) the
coordinates are randomly perturbed to avoid tied values. Hence, if cdf.test is executed twice, the
p-values will not be exactly the same. To avoid this behaviour, set jitter=FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

See Also

plot.cdftest, quadrat.test, berman.test, ks.test, cvm.test, ad.test, ppm

Examples

op <- options(useFancyQuotes=FALSE)

test of CSR using x coordinate
cdf.test(nztrees, "x")
cdf.test(nztrees, "x", "cvm")
cdf.test(nztrees, "x", "ad")

test of CSR using a function of x and y
fun <- function(x,y){2* x + y}

cdf.test.mppm 221

cdf.test(nztrees, fun)

test of CSR using an image covariate
funimage <- as.im(fun, W=Window(nztrees))
cdf.test(nztrees, funimage)

fit inhomogeneous Poisson model and test
model <- ppm(nztrees ~x)
cdf.test(model, "x")

if(interactive()) {
synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(x) }, win=square(1))

fit uniform Poisson process
fit0 <- ppm(X ~1)
fit correct nonuniform Poisson process
fit1 <- ppm(X ~x)

test wrong model
cdf.test(fit0, "x")
test right model
cdf.test(fit1, "x")

}

multitype point pattern
cdf.test(amacrine, "x")
yimage <- as.im(function(x,y){y}, W=Window(amacrine))
cdf.test(ppm(amacrine ~marks+y), yimage)

options(op)

cdf.test.mppm Spatial Distribution Test for Multiple Point Process Model

Description

Performs a spatial distribution test of a point process model fitted to multiple spatial point patterns.
The test compares the observed and predicted distributions of the values of a spatial covariate, using
either the Kolmogorov-Smirnov, Cramér-von Mises or Anderson-Darling test of goodness-of-fit.

Usage

S3 method for class 'mppm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,

nsim=19, verbose=TRUE, interpolate=FALSE, fast=TRUE, jitter=TRUE)

222 cdf.test.mppm

Arguments

model An object of class "mppm" representing a point process model fitted to multiple
spatial point patterns.

covariate The spatial covariate on which the test will be based. A function, a pixel image,
a list of functions, a list of pixel images, a hyperframe, a character string con-
taining the name of one of the covariates in model, or one of the strings "x" or
"y".

test Character string identifying the test to be performed: "ks" for Kolmogorov-
Smirnov test, "cvm" for Cramér-von Mises test or "ad" for Anderson-Darling
test.

... Arguments passed to cdf.test to control the test.

nsim Number of simulated realisations which should be generated, if a Monte Carlo
test is required.

verbose Logical flag indicating whether to print progress reports.

interpolate Logical flag indicating whether to interpolate between pixel values when code-
covariate is a pixel image. See Details.

fast Logical flag. If TRUE, values of the covariate are only sampled at the original
quadrature points used to fit the model. If FALSE, values of the covariate are
sampled at all pixels, which can be slower by three orders of magnitude.

jitter Logical flag. If TRUE, observed values of the covariate are perturbed by adding
small random values, to avoid tied observations.

Details

This function is a method for the generic function cdf.test for the class mppm.

This function performs a goodness-of-fit test of a point process model that has been fitted to multiple
point patterns. The observed distribution of the values of a spatial covariate at the data points, and
the predicted distribution of the same values under the model, are compared using the Kolmogorov-
Smirnov, Cramér-von Mises or Anderson-Darling test of goodness-of-fit. These are exact tests if the
model is Poisson; otherwise, for a Gibbs model, a Monte Carlo p-value is computed by generating
simulated realisations of the model and applying the selected goodness-of-fit test to each simulation.

The argument model should be a fitted point process model fitted to multiple point patterns (object
of class "mppm").

The argument covariate contains the values of a spatial function. It can be

• a function(x,y)

• a pixel image (object of class "im"

• a list of function(x,y), one for each point pattern

• a list of pixel images, one for each point pattern

• a hyperframe (see hyperframe) of which the first column will be taken as containing the
covariate

• a character string giving the name of one of the covariates in model

• one of the character strings "x" or "y", indicating the spatial coordinates.

cdf.test.mppm 223

If covariate is an image, it should have numeric values, and its domain should cover the obser-
vation window of the model. If covariate is a function, it should expect two arguments x and y
which are vectors of coordinates, and it should return a numeric vector of the same length as x and
y.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

The predicted distribution of the values of the covariate under the fitted model is computed as
follows. The values of the covariate at all locations in the observation window are evaluated,
weighted according to the point process intensity of the fitted model, and compiled into a cumulative
distribution function F using ewcdf.

The probability integral transformation is then applied: the values of the covariate at the orig-
inal data points are transformed by the predicted cumulative distribution function F into num-
bers between 0 and 1. If the model is correct, these numbers are i.i.d. uniform random num-
bers. A goodness-of-fit test of the uniform distribution is applied to these numbers using ks.test,
cvm.test or ad.test.

The argument interpolate determines how pixel values will be handled when codecovariate is a
pixel image. The value of the covariate at a data point is obtained by looking up the value of the
nearest pixel if interpolate=FALSE, or by linearly interpolating between the values of the four
nearest pixels if interpolate=TRUE. Linear interpolation is slower, but is sometimes necessary to
avoid tied values of the covariate arising when the pixel grid is coarse.

If model is a Poisson point process, then the Kolmogorov-Smirnov, Cramér-von Mises and Anderson-
Darling tests are theoretically exact. This test was apparently first described (in the context of spatial
data, and for Kolmogorov-Smirnov) by Berman (1986). See also Baddeley et al (2005).

If model is not a Poisson point process, then the Kolmogorov-Smirnov, Cramér-von Mises and
Anderson-Darling tests are biased. Instead they are used as the basis of a Monte Carlo test. First
nsim simulated realisations of the model will be generated. Each simulated realisation consists of
a list of simulated point patterns, one for each of the original data patterns. This can take a very
long time. The model is then re-fitted to each simulation, and the refitted model is subjected to the
goodness-of-fit test described above. A Monte Carlo p-value is then computed by comparing the
p-value of the original test with the p-values obtained from the simulations.

Value

An object of class "cdftest" and "htest" containing the results of the test. See cdf.test for
details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

224 centroid.owin

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

See Also

cdf.test, quadrat.test, mppm

Examples

three i.i.d. realisations of nonuniform Poisson process
lambda <- as.im(function(x,y) { 300 * exp(x) }, square(1))
dat <- hyperframe(X=list(rpoispp(lambda), rpoispp(lambda), rpoispp(lambda)))

fit uniform Poisson process
fit0 <- mppm(X~1, dat)
fit correct nonuniform Poisson process
fit1 <- mppm(X~x, dat)

test wrong model
cdf.test(fit0, "x")
test right model
cdf.test(fit1, "x")

Gibbs model
fitGibbs <- update(fit0, interaction=Strauss(0.07))
ns <- if(interactive()) 19 else 3
cdf.test(fitGibbs, "x", nsim=ns)

centroid.owin Centroid of a window

Description

Computes the centroid (centre of mass) of a window

Usage

centroid.owin(w, as.ppp = FALSE)

Arguments

w A window

as.ppp Logical flag indicating whether to return the centroid as a point pattern (ppp
object)

centroid.owin 225

Details

The centroid of the window w is computed. The centroid (“centre of mass”) is the point whose x
and y coordinates are the mean values of the x and y coordinates of all points in the window.

The argument w should be a window (an object of class "owin", see owin.object for details) or
can be given in any format acceptable to as.owin().

The calculation uses an exact analytic formula for the case of polygonal windows.

Note that the centroid of a window is not necessarily inside the window, unless the window is
convex. If as.ppp=TRUE and the centroid of w lies outside w, then the window of the returned point
pattern will be a rectangle containing the original window (using as.rectangle.

Value

Either a list with components x,y, or a point pattern (of class ppp) consisting of a single point,
giving the coordinates of the centroid of the window w.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

owin, as.owin

Examples

w <- owin(c(0,1),c(0,1))
centroid.owin(w)
returns 0.5, 0.5

data(demopat)
w <- Window(demopat)
an irregular window
cent <- centroid.owin(w, as.ppp = TRUE)
Not run:
plot(cent)
plot the window and its centroid

End(Not run)

wapprox <- as.mask(w)
pixel approximation of window
Not run:
points(centroid.owin(wapprox))
should be indistinguishable

End(Not run)

226 chop.linnet

chop.linnet Divide a Linear Network into Tiles Using Infinite Lines

Description

Given a linear network and a set of infinite lines, divide the network into tiles demarcated by the
lines. The result is a tessellation of the network.

Usage

chop.linnet(X, L)

Arguments

X Linear network (object of class "linnet") or data acceptable to as.linnet.

L Infinite line or lines (object of class "infline").

Details

The first line of L divides X into two tiles. Subsequent lines divide each of these tiles. The result is
a tessellation of X. Tiles are not necessarily connected sets.

Value

Tessellation on a linear network (object of class "lintess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

crossing.linnet

Examples

L <- infline(p=runif(3), theta=runif(3, max=pi/2))
Y <- chop.linnet(simplenet, L)
plot(Y, main="")
plot(L, col="red")

chop.tess 227

chop.tess Subdivide a Window or Tessellation using a Set of Lines

Description

Divide a given window into tiles delineated by a set of infinite straight lines, obtaining a tessellation
of the window. Alternatively, given a tessellation, divide each tile of the tessellation into sub-tiles
delineated by the lines.

Usage

chop.tess(X, L)

Arguments

X A window (object of class "owin") or tessellation (object of class "tess") to be
subdivided by lines.

L A set of infinite straight lines (object of class "infline")

Details

The argument L should be a set of infinite straight lines in the plane (stored in an object L of class
"infline" created by the function infline).

If X is a window, then it is divided into tiles delineated by the lines in L.

If X is a tessellation, then each tile of X is subdivided into sub-tiles delineated by the lines in L.

The result is a tessellation.

Value

A tessellation (object of class "tess").

Warning

If X is a non-convex window, or a tessellation containing non-convex tiles, then chop.tess(X,L)
may contain a tile which consists of several unconnected pieces.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

infline, clip.infline

228 circdensity

Examples

L <- infline(p=1:3, theta=pi/4)
W <- square(4)
chop.tess(W, L)

circdensity Density Estimation for Circular Data

Description

Computes a kernel smoothed estimate of the probability density for angular data.

Usage

circdensity(x, sigma = "nrd0", ...,
bw = NULL,
weights=NULL, unit = c("degree", "radian"))

Arguments

x Numeric vector, containing angular data.

sigma Smoothing bandwidth, or bandwidth selection rule, passed to density.default.

bw Alternative to sigma for consistency with other functions.

... Additional arguments passed to density.default, such as kernel and weights.

weights Optional numeric vector of weights for the data in x.

unit The unit of angle in which x is expressed.

Details

The angular values x are smoothed using (by default) the wrapped Gaussian kernel with standard
deviation sigma.

Value

An object of class "density" (produced by density.default) which can be plotted by plot or
by rose.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

density.default), rose.

clarkevans 229

Examples

ang <- runif(1000, max=360)
rose(circdensity(ang, 12))

clarkevans Clark and Evans Aggregation Index

Description

Computes the Clark and Evans aggregation index R for a spatial point pattern.

Usage

clarkevans(X, correction=c("none", "Donnelly", "cdf"),
clipregion=NULL)

Arguments

X A spatial point pattern (object of class "ppp").

correction Character vector. The type of edge correction(s) to be applied.

clipregion Clipping region for the guard area correction. A window (object of class "owin").
See Details.

Details

The Clark and Evans (1954) aggregation index R is a crude measure of clustering or ordering of a
point pattern. It is the ratio of the observed mean nearest neighbour distance in the pattern to that
expected for a Poisson point process of the same intensity. A value R > 1 suggests ordering, while
R < 1 suggests clustering.

Without correction for edge effects, the value of R will be positively biased. Edge effects arise
because, for a point of X close to the edge of the window, the true nearest neighbour may actually
lie outside the window. Hence observed nearest neighbour distances tend to be larger than the true
nearest neighbour distances.

The argument correction specifies an edge correction or several edge corrections to be applied.
It is a character vector containing one or more of the options "none", "Donnelly", "guard" and
"cdf" (which are recognised by partial matching). These edge corrections are:

"none": No edge correction is applied.

"Donnelly": Edge correction of Donnelly (1978), available for rectangular windows only. The
theoretical expected value of mean nearest neighbour distance under a Poisson process is
adjusted for edge effects by the edge correction of Donnelly (1978). The value of R is the
ratio of the observed mean nearest neighbour distance to this adjusted theoretical mean.

"guard": Guard region or buffer area method. The observed mean nearest neighbour distance for
the point pattern X is re-defined by averaging only over those points of X that fall inside the
sub-window clipregion.

230 clarkevans

"cdf": Cumulative Distribution Function method. The nearest neighbour distance distribution
function G(r) of the stationary point process is estimated by Gest using the Kaplan-Meier
type edge correction. Then the mean of the distribution is calculated from the cdf.

Alternatively correction="all" selects all options.

If the argument clipregion is given, then the selected edge corrections will be assumed to include
correction="guard".

To perform a test based on the Clark-Evans index, see clarkevans.test.

Value

A numeric value, or a numeric vector with named components

naive R without edge correction

Donnelly R using Donnelly edge correction

guard R using guard region

cdf R using cdf method

(as selected by correction). The value of the Donnelly component will be NA if the window of X
is not a rectangle.

Author(s)

John Rudge <rudge@esc.cam.ac.uk> with modifications by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbour as a measure of spatial relationships
in populations Ecology 35, 445–453.

Donnelly, K. (1978) Simulations to determine the variance and edge-effect of total nearest neigh-
bour distance. In I. Hodder (ed.) Simulation studies in archaeology, Cambridge/New York: Cam-
bridge University Press, pp 91–95.

See Also

clarkevans.test, hopskel, nndist, Gest

Examples

Example of a clustered pattern
clarkevans(redwood)

Example of an ordered pattern
clarkevans(cells)

Random pattern
X <- rpoispp(100)
clarkevans(X)

How to specify a clipping region

clarkevans.test 231

clip1 <- owin(c(0.1,0.9),c(0.1,0.9))
clip2 <- erosion(Window(cells), 0.1)
clarkevans(cells, clipregion=clip1)
clarkevans(cells, clipregion=clip2)

clarkevans.test Clark and Evans Test

Description

Performs the Clark-Evans test of aggregation for a spatial point pattern.

Usage

clarkevans.test(X, ...,
correction="none",
clipregion=NULL,
alternative=c("two.sided", "less", "greater",

"clustered", "regular"),
nsim=999)

Arguments

X A spatial point pattern (object of class "ppp").

... Ignored.

correction Character string. The type of edge correction to be applied. See clarkevans

clipregion Clipping region for the guard area correction. A window (object of class "owin").
See clarkevans

alternative String indicating the type of alternative for the hypothesis test. Partially matched.

nsim Number of Monte Carlo simulations to perform, if a Monte Carlo p-value is
required.

Details

This command uses the Clark and Evans (1954) aggregation index R as the basis for a crude test of
clustering or ordering of a point pattern.

The Clark-Evans index is computed by the function clarkevans. See the help for clarkevans for
information about the Clark-Evans indexR and about the arguments correction and clipregion.

This command performs a hypothesis test of clustering or ordering of the point pattern X. The
null hypothesis is Complete Spatial Randomness, i.e.\ a uniform Poisson process. The alternative
hypothesis is specified by the argument alternative:

• alternative="less" or alternative="clustered": the alternative hypothesis is that R <
1 corresponding to a clustered point pattern;

• alternative="greater" or alternative="regular": the alternative hypothesis is thatR >
1 corresponding to a regular or ordered point pattern;

232 clickbox

• alternative="two.sided": the alternative hypothesis is that R 6= 1 corresponding to a
clustered or regular pattern.

The Clark-Evans index R is computed for the data as described in clarkevans.

If correction="none" and nsim is missing, the p-value for the test is computed by standardis-
ing R as proposed by Clark and Evans (1954) and referring the statistic to the standard Normal
distribution.

Otherwise, the p-value for the test is computed by Monte Carlo simulation of nsim realisations of
Complete Spatial Randomness conditional on the observed number of points.

Value

An object of class "htest" representing the result of the test.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbour as a measure of spatial relationships
in populations. Ecology 35, 445–453.

Donnelly, K. (1978) Simulations to determine the variance and edge-effect of total nearest neigh-
bour distance. In Simulation methods in archaeology, Cambridge University Press, pp 91–95.

See Also

clarkevans, hopskel.test

Examples

Redwood data - clustered
clarkevans.test(redwood)
clarkevans.test(redwood, alternative="clustered")
clarkevans.test(redwood, correction="cdf", nsim=39)

clickbox Interactively Define a Rectangle

Description

Allows the user to specify a rectangle by point-and-click in the display.

Usage

clickbox(add=TRUE, ...)

clickdist 233

Arguments

add Logical value indicating whether to create a new plot (add=FALSE) or draw over
the existing plot (add=TRUE).

... Graphics arguments passed to polygon to plot the box.

Details

This function allows the user to create a rectangular window by interactively clicking on the screen
display.

The user is prompted to point the mouse at any desired locations for two corners of the rectangle,
and click the left mouse button to add each point.

The return value is a window (object of class "owin") representing the rectangle.

This function uses the R command locator to input the mouse clicks. It only works on screen
devices such as ‘X11’, ‘windows’ and ‘quartz’.

Value

A window (object of class "owin") representing the selected rectangle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

clickpoly, clickppp, clickdist, locator

clickdist Interactively Measure Distance

Description

Measures the distance between two points which the user has clicked on.

Usage

clickdist()

Details

This function allows the user to measure the distance between two spatial locations, interactively,
by clicking on the screen display.

When clickdist() is called, the user is expected to click two points in the current graphics device.
The distance between these points will be returned.

This function uses the R command locator to input the mouse clicks. It only works on screen
devices such as ‘X11’, ‘windows’ and ‘quartz’.

234 clickjoin

Value

A single nonnegative number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

locator, clickppp, clicklpp, clickpoly, clickbox

clickjoin Interactively join vertices on a plot

Description

Given a point pattern representing a set of vertices, this command gives a point-and-click interface
allowing the user to join pairs of selected vertices by edges.

Usage

clickjoin(X, ..., add = TRUE, m = NULL, join = TRUE)

Arguments

X Point pattern of vertices. An object of class "ppp".

... Arguments passed to segments to control the plotting of the new edges.

add Logical. Whether the point pattern X should be added to the existing plot (add=TRUE)
or a new plot should be created (add=FALSE).

m Optional. Logical matrix specifying an initial set of edges. There is an edge
between vertices i and j if m[i,j] = TRUE.

join Optional. If TRUE, then each user click will join a pair of vertices. If FALSE, then
each user click will delete an existing edge. This is only relevant if m is supplied.

Details

This function makes it easier for the user to create a linear network or a planar graph, given a set of
vertices.

The function first displays the point pattern X, then repeatedly prompts the user to click on a pair of
points in X. Each selected pair of points will be joined by an edge. The function returns a logical
matrix which has entries equal to TRUE for each pair of vertices joined by an edge.

The selection of points is performed using identify.ppp which typically expects the user to click
the left mouse button. This point-and-click interaction continues until the user terminates it, by
pressing the middle mouse button, or pressing the right mouse button and selecting stop.

The return value can be used in linnet to create a linear network.

clicklpp 235

Value

Logical matrix m with value m[i,j] = TRUE for every pair of vertices X[i] and X[j] that should be
joined by an edge.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

linnet, clickppp

clicklpp Interactively Add Points on a Linear Network

Description

Allows the user to create a point pattern on a linear network by point-and-click in the display.

Usage

clicklpp(L, n=NULL, types=NULL, ...,
add=FALSE, main=NULL, hook=NULL)

Arguments

L Linear network on which the points will be placed. An object of class "linnet".

n Number of points to be added (if this is predetermined).

types Vector of types, when creating a multitype point pattern.

... Optional extra arguments to be passed to locator to control the display.

add Logical value indicating whether to create a new plot (add=FALSE) or draw over
the existing plot (add=TRUE).

main Main heading for plot.

hook For internal use only. Do not use this argument.

Details

This function allows the user to create a point pattern on a linear network by interactively clicking
on the screen display.

First the linear network L is plotted on the current screen device. Then the user is prompted to point
the mouse at any desired locations and click the left mouse button to add each point. Interactive
input stops after n clicks (if n was given) or when the middle mouse button is pressed.

The return value is a point pattern on the network L, containing the locations of all the clicked
points, after they have been projected onto the network L. Any points that were clicked outside the
bounding window of the network will be ignored.

236 clickpoly

If the argument types is given, then a multitype point pattern will be created. The user is prompted
to input the locations of points of type type[i], for each successive index i. (If the argument n was
given, there will be n points of each type.) The return value is a multitype point pattern on a linear
network.

This function uses the R command locator to input the mouse clicks. It only works on screen de-
vices such as ‘X11’, ‘windows’ and ‘quartz’. Arguments that can be passed to locator through ...
include pch (plotting character), cex (character expansion factor) and col (colour). See locator
and par.

Value

A point pattern (object of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>, based on an idea by Dominic Schuhmacher.

See Also

clickppp, identify.lpp, locator, clickpoly, clickbox, clickdist

clickpoly Interactively Define a Polygon

Description

Allows the user to create a polygon by point-and-click in the display.

Usage

clickpoly(add=FALSE, nv=NULL, np=1, ...)

Arguments

add Logical value indicating whether to create a new plot (add=FALSE) or draw over
the existing plot (add=TRUE).

nv Number of vertices of the polygon (if this is predetermined).

np Number of polygons to create.

... Arguments passed to locator to control the interactive plot, and to polygon to
plot the polygons.

clickppp 237

Details

This function allows the user to create a polygonal window by interactively clicking on the screen
display.

The user is prompted to point the mouse at any desired locations for the polygon vertices, and click
the left mouse button to add each point. Interactive input stops after nv clicks (if nv was given) or
when the middle mouse button is pressed.

The return value is a window (object of class "owin") representing the polygon.

This function uses the R command locator to input the mouse clicks. It only works on screen de-
vices such as ‘X11’, ‘windows’ and ‘quartz’. Arguments that can be passed to locator through ...
include pch (plotting character), cex (character expansion factor) and col (colour). See locator
and par.

Multiple polygons can also be drawn, by specifying np > 1. The polygons must be disjoint. The
result is a single window object consisting of all the polygons.

Value

A window (object of class "owin") representing the polygon.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

identify.ppp, clickbox, clickppp, clickdist, locator

clickppp Interactively Add Points

Description

Allows the user to create a point pattern by point-and-click in the display.

Usage

clickppp(n=NULL, win=square(1), types=NULL, ..., add=FALSE,
main=NULL, hook=NULL)

Arguments

n Number of points to be added (if this is predetermined).

win Window in which to create the point pattern. An object of class "owin".

types Vector of types, when creating a multitype point pattern.

... Optional extra arguments to be passed to locator to control the display.

238 clip.infline

add Logical value indicating whether to create a new plot (add=FALSE) or draw over
the existing plot (add=TRUE).

main Main heading for plot.

hook For internal use only. Do not use this argument.

Details

This function allows the user to create a point pattern by interactively clicking on the screen display.

First the window win is plotted on the current screen device. Then the user is prompted to point the
mouse at any desired locations and click the left mouse button to add each point. Interactive input
stops after n clicks (if n was given) or when the middle mouse button is pressed.

The return value is a point pattern containing the locations of all the clicked points inside the original
window win, provided that all of the clicked locations were inside this window. Otherwise, the
window is expanded to a box large enough to contain all the points (as well as containing the
original window).

If the argument types is given, then a multitype point pattern will be created. The user is prompted
to input the locations of points of type type[i], for each successive index i. (If the argument n was
given, there will be n points of each type.) The return value is a multitype point pattern.

This function uses the R command locator to input the mouse clicks. It only works on screen de-
vices such as ‘X11’, ‘windows’ and ‘quartz’. Arguments that can be passed to locator through ...
include pch (plotting character), cex (character expansion factor) and col (colour). See locator
and par.

Value

A point pattern (object of class "ppp").

Author(s)

Original by Dominic Schuhmacher. Adapted by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

identify.ppp, locator, clickpoly, clickbox, clickdist

clip.infline Intersect Infinite Straight Lines with a Window

Description

Take the intersection between a set of infinite straight lines and a window, yielding a set of line
segments.

Usage

clip.infline(L, win)

closepairs 239

Arguments

L Object of class "infline" specifying a set of infinite straight lines in the plane.

win Window (object of class "owin").

Details

This function computes the intersection between a set of infinite straight lines in the plane (stored
in an object L of class "infline" created by the function infline) and a window win. The result
is a pattern of line segments. Each line segment carries a mark indicating which line it belongs to.

Value

A line segment pattern (object of class "psp") with a single column of marks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

infline,psp.

To divide a window into pieces using infinite lines, use chop.tess.

Examples

L <- infline(p=1:3, theta=pi/4)
W <- square(4)
clip.infline(L, W)

closepairs Close Pairs of Points

Description

Low-level functions to find all close pairs of points.

Usage

closepaircounts(X, r)

crosspaircounts(X, Y, r)

closepairs(X, rmax, ...)

S3 method for class 'ppp'
closepairs(X, rmax, twice=TRUE,

what=c("all","indices","ijd"),

240 closepairs

distinct=TRUE, neat=TRUE,
periodic=FALSE, ...)

crosspairs(X, Y, rmax, ...)

S3 method for class 'ppp'
crosspairs(X, Y, rmax, what=c("all", "indices", "ijd"), ...)

Arguments

X,Y Point patterns (objects of class "ppp").

r,rmax Maximum distance between pairs of points to be counted as close pairs.

twice Logical value indicating whether all ordered pairs of close points should be re-
turned. If twice=TRUE (the default), each pair will appear twice in the output,
as (i,j) and again as (j,i). If twice=FALSE, then each pair will appear only
once, as the pair (i,j) with i < j.

what String specifying the data to be returned for each close pair of points. If what="all"
(the default) then the returned information includes the indices i,j of each pair,
their x,y coordinates, and the distance between them. If what="indices" then
only the indices i,j are returned. If what="ijd" then the indices i,j and the
distance d are returned.

distinct Logical value indicating whether to return only the pairs of points with different
indices i and j (distinct=TRUE, the default) or to also include the pairs where
i=j (distinct=FALSE).

neat Logical value indicating whether to ensure that i < j in each output pair, when
twice=FALSE.

periodic Logical value indicating whether to use the periodic edge correction. The win-
dow of X should be a rectangle. Opposite pairs of edges of the window will be
treated as identical.

... Extra arguments, ignored by methods.

Details

These are the efficient low-level functions used by spatstat to find all close pairs of points in a point
pattern or all close pairs between two point patterns.

closepaircounts(X,r) counts the number of neighbours for each point in the pattern X. That is,
for each point X[i], it counts the number of other points X[j] with j != i such that d(X[i],X[j])
<= r where d denotes Euclidean distance. The result is an integer vector v such that v[i] is the
number of neighbours of X[i].

crosspaircounts(X,Y,r) counts, for each point in the pattern X, the number of neighbours in the
pattern Y. That is, for each point X[i], it counts the number of points Y[j] such that d(X[i],X[j])
<= r. The result is an integer vector v such that v[i] is the number of neighbours of X[i] in the
pattern Y.

closepairs(X,rmax) identifies all pairs of distinct neighbours in the pattern X and returns them.
The result is a list with the following components:

closepairs 241

i Integer vector of indices of the first point in each pair.

j Integer vector of indices of the second point in each pair.

xi,yi Coordinates of the first point in each pair.

xj,yj Coordinates of the second point in each pair.

dx Equal to xj-xi

dy Equal to yj-yi

d Euclidean distance between each pair of points.

If what="indices" then only the components i and j are returned. This is slightly faster and more
efficient with use of memory.

crosspairs(X,rmax) identifies all pairs of neighbours (X[i],Y[j]) between the patterns X and Y,
and returns them. The result is a list with the same format as for closepairs.

Value

For closepaircounts and crosspaircounts, an integer vector of length equal to the number of
points in X.

For closepairs and crosspairs, a list with components i and j, and possibly other components
as described under Details.

Warning about accuracy

The results of these functions may not agree exactly with the correct answer (as calculated by a
human) and may not be consistent between different computers and different installations of R. The
discrepancies arise in marginal cases where the interpoint distance is equal to, or very close to, the
threshold rmax.

Floating-point numbers in a computer are not mathematical Real Numbers: they are approximations
using finite-precision binary arithmetic. The approximation is accurate to a tolerance of about
.Machine$double.eps.

If the true interpoint distance d and the threshold rmax are equal, or if their difference is no more
than .Machine$double.eps, the result may be incorrect.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

closepairs.pp3 for the corresponding functions for 3D point patterns.

Kest, Kcross, nndist, nncross, applynbd, markstat for functions which use these capabilities.

242 closepairs.pp3

Examples

a <- closepaircounts(cells, 0.1)
sum(a)

Y <- split(amacrine)
b <- crosspaircounts(Yon, Yoff, 0.1)

d <- closepairs(cells, 0.1)
e <- crosspairs(Yon, Yoff, 0.1)

closepairs.pp3 Close Pairs of Points in 3 Dimensions

Description

Low-level functions to find all close pairs of points in three-dimensional point patterns.

Usage

S3 method for class 'pp3'
closepairs(X, rmax, twice=TRUE,

what=c("all", "indices", "ijd"),
distinct=TRUE, neat=TRUE, ...)

S3 method for class 'pp3'
crosspairs(X, Y, rmax, what=c("all", "indices", "ijd"), ...)

Arguments

X,Y Point patterns in three dimensions (objects of class "pp3").

rmax Maximum distance between pairs of points to be counted as close pairs.

twice Logical value indicating whether all ordered pairs of close points should be re-
turned. If twice=TRUE, each pair will appear twice in the output, as (i,j) and
again as (j,i). If twice=FALSE, then each pair will appear only once, as the
pair (i,j) such that i < j.

what String specifying the data to be returned for each close pair of points. If what="all"
(the default) then the returned information includes the indices i,j of each pair,
their x,y,z coordinates, and the distance between them. If what="indices"
then only the indices i,j are returned. If what="ijd" then the indices i,j and
the distance d are returned.

distinct Logical value indicating whether to return only the pairs of points with different
indices i and j (distinct=TRUE, the default) or to also include the pairs where
i=j (distinct=FALSE).

neat Logical value indicating whether to ensure that i < j in each output pair, when
twice=FALSE.

... Ignored.

closepairs.pp3 243

Details

These are the efficient low-level functions used by spatstat to find all close pairs of points in a
three-dimensional point pattern or all close pairs between two point patterns in three dimensions.

closepairs(X,rmax) identifies all pairs of neighbours in the pattern X and returns them. The result
is a list with the following components:

i Integer vector of indices of the first point in each pair.

j Integer vector of indices of the second point in each pair.

xi,yi,zi Coordinates of the first point in each pair.

xj,yj,zj Coordinates of the second point in each pair.

dx Equal to xj-xi

dy Equal to yj-yi

dz Equal to zj-zi

d Euclidean distance between each pair of points.

If what="indices" then only the components i and j are returned. This is slightly faster.

crosspairs(X,rmax) identifies all pairs of neighbours (X[i],Y[j]) between the patterns X and Y,
and returns them. The result is a list with the same format as for closepairs.

Value

A list with components i and j, and possibly other components as described under Details.

Warning about accuracy

The results of these functions may not agree exactly with the correct answer (as calculated by a
human) and may not be consistent between different computers and different installations of R. The
discrepancies arise in marginal cases where the interpoint distance is equal to, or very close to, the
threshold rmax.

Floating-point numbers in a computer are not mathematical Real Numbers: they are approximations
using finite-precision binary arithmetic. The approximation is accurate to a tolerance of about
.Machine$double.eps.

If the true interpoint distance d and the threshold rmax are equal, or if their difference is no more
than .Machine$double.eps, the result may be incorrect.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

See Also

closepairs

244 closetriples

Examples

X <- pp3(runif(10), runif(10), runif(10), box3(c(0,1)))
Y <- pp3(runif(10), runif(10), runif(10), box3(c(0,1)))
a <- closepairs(X, 0.1)
b <- crosspairs(X, Y, 0.1)

closetriples Close Triples of Points

Description

Low-level function to find all close triples of points.

Usage

closetriples(X, rmax)

Arguments

X Point pattern (object of class "ppp" or "pp3").

rmax Maximum distance between each pair of points in a triple.

Details

This low-level function finds all triples of points in a point pattern in which each pair lies closer
than rmax.

Value

A data frame with columns i,j,k giving the indices of the points in each triple, and a column diam
giving the diameter (maximum pairwise distance) in the triple.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

closepairs, Tstat.

Examples

closetriples(redwoodfull, 0.02)
closetriples(redwoodfull, 0.005)

closing 245

closing Morphological Closing

Description

Perform morphological closing of a window, a line segment pattern or a point pattern.

Usage

closing(w, r, ...)

S3 method for class 'owin'
closing(w, r, ..., polygonal=NULL)

S3 method for class 'ppp'
closing(w, r, ..., polygonal=TRUE)

S3 method for class 'psp'
closing(w, r, ..., polygonal=TRUE)

Arguments

w A window (object of class "owin" or a line segment pattern (object of class
"psp") or a point pattern (object of class "ppp").

r positive number: the radius of the closing.

... extra arguments passed to as.mask controlling the pixel resolution, if a pixel
approximation is used

polygonal Logical flag indicating whether to compute a polygonal approximation to the
erosion (polygonal=TRUE) or a pixel grid approximation (polygonal=FALSE).

Details

The morphological closing (Serra, 1982) of a set W by a distance r > 0 is the set of all points that
cannot be separated from W by any circle of radius r. That is, a point x belongs to the closing W∗
if it is impossible to draw any circle of radius r that has x on the inside and W on the outside. The
closing W∗ contains the original set W .

For a small radius r, the closing operation has the effect of smoothing out irregularities in the bound-
ary of W . For larger radii, the closing operation smooths out concave features in the boundary. For
very large radii, the closed set W∗ becomes more and more convex.

The algorithm applies dilation followed by erosion.

Value

If r > 0, an object of class "owin" representing the closed region. If r=0, the result is identical to w.

246 clusterfield

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Serra, J. (1982) Image analysis and mathematical morphology. Academic Press.

See Also

opening for the opposite operation.

dilation, erosion for the basic operations.

owin, as.owin for information about windows.

Examples

v <- closing(letterR, 0.25)
plot(v, main="closing")
plot(letterR, add=TRUE)

plot(closing(cells, 0.1))
points(cells)

clusterfield Field of clusters

Description

Calculate the superposition of cluster kernels at the location of a point pattern.

Usage

clusterfield(model, locations = NULL, ...)

S3 method for class 'character'
clusterfield(model, locations = NULL, ...)

S3 method for class 'function'
clusterfield(model, locations = NULL, ..., mu = NULL)

S3 method for class 'kppm'
clusterfield(model, locations = NULL, ...)

clusterfield 247

Arguments

model Cluster model. Either a fitted cluster model (object of class "kppm"), a character
string specifying the type of cluster model, or a function defining the cluster
kernel. See Details.

locations A point pattern giving the locations of the kernels. Defaults to the centroid of
the observation window for the "kppm" method and to the center of a unit square
otherwise.

... Additional arguments passed to density.ppp or the cluster kernel. See Details.

mu Mean number of offspring per cluster. A single number or a pixel image.

Details

The actual calculations are preformed by density.ppp and ... arguments are passed thereto for
control over the pixel resolution etc. (These arguments are then passed on to pixellate.ppp and
as.mask.)

For the function method the given kernel function should accept vectors of x and y coordinates as
its first two arguments. Any additional arguments may be passed through the

The function method also accepts the optional parameter mu (defaulting to 1) specifying the mean
number of points per cluster (as a numeric) or the inhomogeneous reference cluster intensity (as
an "im" object or a function(x,y)). The interpretation of mu is as explained in the simulation
functions referenced in the See Also section below.

For the character method model must be one of: model="Thomas" for the Thomas process, model="MatClust"
for the Matérn cluster process, model="Cauchy" for the Neyman-Scott cluster process with Cauchy
kernel, or model="VarGamma" for the Neyman-Scott cluster process with Variance Gamma kernel.
For all these models the parameter scale is required and passed through ... as well as the parame-
ter nu when model="VarGamma". This method calls clusterfield.function so the parameter mu
may also be passed through ... and will be interpreted as explained above.

The kppm method extracts the relevant information from the fitted model (including mu) and calls
clusterfield.function.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk> .

See Also

density.ppp and kppm

Simulation algorithms for cluster models: rCauchy rMatClust rThomas rVarGamma

248 clusterfit

Examples

method for fitted model
fit <- kppm(redwood~1, "Thomas")
clusterfield(fit, eps = 0.01)

method for functions
kernel <- function(x,y,scal) {

r <- sqrt(x^2 + y^2)
ifelse(r > 0,

dgamma(r, shape=5, scale=scal)/(2 * pi * r),
0)

}
X <- runifpoint(10)
clusterfield(kernel, X, scal=0.05)

clusterfit Fit Cluster or Cox Point Process Model via Minimum Contrast

Description

Fit a homogeneous or inhomogeneous cluster process or Cox point process model to a point pattern
by the Method of Minimum Contrast.

Usage

clusterfit(X, clusters, lambda = NULL, startpar = NULL, ...,
q = 1/4, p = 2, rmin = NULL, rmax = NULL,
ctrl=list(q=q, p=p, rmin=rmin, rmax=rmax),

statistic = NULL, statargs = NULL, algorithm="Nelder-Mead", verbose=FALSE)

Arguments

X Data to which the cluster or Cox model will be fitted. Either a point pattern or a
summary statistic. See Details.

clusters Character string determining the cluster or Cox model. Partially matched. Op-
tions are "Thomas", "MatClust", "Cauchy", "VarGamma" and "LGCP".

lambda Optional. An estimate of the intensity of the point process. Either a single
numeric specifying a constant intensity, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give
the intensity value at any location.

startpar Vector of initial values of the parameters of the point process mode. If X is a
point pattern sensible defaults are used. Otherwise rather arbitrary values are
used.

q,p Optional. Exponents for the contrast criterion. See mincontrast.

rmin, rmax Optional. The interval of r values for the contrast criterion. See mincontrast.

clusterfit 249

ctrl Optional. Named list containing values of the parameters q,p,rmin,rmax.

... Additional arguments passed to mincontrast.

statistic Optional. Name of the summary statistic to be used for minimum contrast esti-
mation: either "K" or "pcf".

statargs Optional list of arguments to be used when calculating the statistic. See
Details.

algorithm Character string determining the mathematical optimisation algorithm to be used
by optim. See the argument method of optim.

verbose Logical value indicating whether to print detailed progress reports for debugging
purposes.

Details

This function fits the clustering parameters of a cluster or Cox point process model by the Method
of Minimum Contrast, that is, by matching the theoretical K-function of the model to the empirical
K-function of the data, as explained in mincontrast.

If statistic="pcf" (or X appears to be an estimated pair correlation function) then instead of using
the K-function, the algorithm will use the pair correlation function.

If X is a point pattern of class "ppp" an estimate of the summary statistic specfied by statistic
(defaults to "K") is first computed before minimum contrast estimation is carried out as described
above. In this case the argument statargs can be used for controlling the summary statistic estima-
tion. The precise algorithm for computing the summary statistic depends on whether the intensity
specification (lambda) is:

homogeneous: If lambda is NUll or a single numeric the pattern is considered homogeneous and
either Kest or pcf is invoked. In this case lambda is not used for anything when estimating
the summary statistic.

inhomogeneous: If lambda is a pixel image (object of class "im"), a fitted point process model (ob-
ject of class "ppm" or "kppm") or a function(x,y) the pattern is considered inhomogeneous.
In this case either Kinhom or pcfinhom is invoked with lambda as an argument.

After the clustering parameters of the model have been estimated by minimum contrast lambda (if
non-null) is used to compute the additional model parameter µ.

The algorithm parameters q,p,rmax,rmin are described in the help for mincontrast. They may
be provided either as individually-named arguments, or as entries in the list ctrl. The individually-
named arguments q,p,rmax,rmin override the entries in the list ctrl.

Value

An object of class "minconfit". There are methods for printing and plotting this object. See
mincontrast.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

250 clusterkernel

References

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007). An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63 (2007) 252–258.

See Also

kppm

Examples

fit <- clusterfit(redwood, "Thomas")
fit
if(interactive()){

plot(fit)
}
K <- Kest(redwood)
fit2 <- clusterfit(K, "MatClust")

clusterkernel Extract Cluster Offspring Kernel

Description

Given a cluster point process model, this command returns the probability density of the cluster
offspring.

Usage

clusterkernel(model, ...)

S3 method for class 'kppm'
clusterkernel(model, ...)

S3 method for class 'character'
clusterkernel(model, ...)

Arguments

model Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or
a character string specifying the type of cluster model.

... Parameter values for the model, when model is a character string.

clusterradius 251

Details

Given a specification of a cluster point process model, this command returns a function(x,y)
giving the two-dimensional probability density of the cluster offspring points assuming a cluster
parent located at the origin.

Value

A function in the R\ language with arguments x,y,....

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

clusterfield, kppm

Examples

fit <- kppm(redwood ~ x, "MatClust")
f <- clusterkernel(fit)
f(0.1, 0.2)

clusterradius Compute or Extract Effective Range of Cluster Kernel

Description

Given a cluster point process model, this command returns a value beyond which the the probability
density of the cluster offspring is neglible.

Usage

clusterradius(model, ...)

S3 method for class 'kppm'
clusterradius(model, ..., thresh = NULL, precision = FALSE)

S3 method for class 'character'
clusterradius(model, ..., thresh = NULL, precision = FALSE)

252 clusterradius

Arguments

model Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or
a character string specifying the type of cluster model.

... Parameter values for the model, when model is a character string.

thresh Numerical threshold relative to the cluster kernel value at the origin (parent loca-
tion) determining when the cluster kernel will be considered neglible. A sensible
default is provided.

precision Logical. If precision=TRUE the precision of the calculated range is returned as
an attribute to the range. See details.

Details

Given a cluster model this function by default returns the effective range of the model with the given
parameters as used in spatstat. For the Matérn cluster model (see e.g. rMatClust) this is simply the
finite radius of the offsring density given by the paramter scale irrespective of other options given
to this function. The remaining models in spatstat have infinite theoretical range, and an effective
finite value is given as follows: For the Thomas model (see e.g. rThomas the default is 4*scale
where scale is the scale or standard deviation parameter of the model. If thresh is given the value
is instead found as described for the other models below.

For the Cauchy model (see e.g. rCauchy) and the Variance Gamma (Bessel) model (see e.g.
rVarGamma) the value of thresh defaults to 0.001, and then this is used to compute the range
numerically as follows. If k(x, y) = k0(r) with r =

√
(x2 + y2) denotes the isotropic cluster

kernel then f(r) = 2πrk0(r) is the density function of the offspring distance from the parent. The
range is determined as the value of r where f(r) falls below thresh times k0(r).

If precision=TRUE the precision related to the chosen range is returned as an attribute. Here the
precision is defined as the polar integral of the kernel from distance 0 to the calculated range. Ideally
this should be close to the value 1 which would be obtained for the true theretical infinite range.

Value

A positive numeric.

Additionally, the precision related to this range value is returned as an attribute "prec", if precision=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

clusterkernel, kppm, rMatClust, rThomas, rCauchy, rVarGamma, rNeymanScott.

clusterset 253

Examples

fit <- kppm(redwood ~ x, "MatClust")
clusterradius(fit)

clusterradius("Thomas", scale = .1)
clusterradius("Thomas", scale = .1, thresh = 0.001)
clusterradius("VarGamma", scale = .1, nu = 2, precision = TRUE)

clusterset Allard-Fraley Estimator of Cluster Feature

Description

Detect high-density features in a spatial point pattern using the (unrestricted) Allard-Fraley estima-
tor.

Usage

clusterset(X, what=c("marks", "domain"),
..., verbose=TRUE,
fast=FALSE,
exact=!fast)

Arguments

X A dimensional spatial point pattern (object of class "ppp").

what Character string or character vector specifying the type of result. See Details.

verbose Logical value indicating whether to print progress reports.

fast Logical. If FALSE (the default), the Dirichlet tile areas will be computed exactly
using polygonal geometry, so that the optimal choice of tiles will be computed
exactly. If TRUE, the Dirichlet tile areas will be approximated using pixel count-
ing, so the optimal choice will be approximate.

exact Logical. If TRUE, the Allard-Fraley estimator of the domain will be computed
exactly using polygonal geometry. If FALSE, the Allard-Fraley estimator of the
domain will be approximated by a binary pixel mask. The default is initially set
to FALSE.

... Optional arguments passed to as.mask to control the pixel resolution if exact=FALSE.

Details

Allard and Fraley (1997) developed a technique for recognising features of high density in a spatial
point pattern in the presence of random clutter.

This algorithm computes the unrestricted Allard-Fraley estimator. The Dirichlet (Voronoi) tessel-
lation of the point pattern X is computed. The smallest m Dirichlet cells are selected, where the
number m is determined by a maximum likelihood criterion.

254 clusterset

• If fast=FALSE (the default), the areas of the tiles of the Dirichlet tessellation will be computed
exactly using polygonal geometry. This ensures that the optimal selection of tiles is computed
exactly.

• If fast=TRUE, the Dirichlet tile areas will be approximated by counting pixels. This is faster,
and is usually correct (depending on the pixel resolution, which is controlled by the arguments
...).

The type of result depends on the character vector what.

• If what="marks" the result is the point pattern X with a vector of marks labelling each point
with a value yes or no depending on whether the corresponding Dirichlet cell is selected by
the Allard-Fraley estimator. In other words each point of X is labelled as either a cluster point
or a non-cluster point.

• If what="domain", the result is the Allard-Fraley estimator of the cluster feature set, which is
the union of all the selected Dirichlet cells, represented as a window (object of class "owin").

• If what=c("marks","domain") the result is a list containing both of the results described
above.

Computation of the Allard-Fraley set estimator depends on the argument exact.

• If exact=TRUE (the default), the Allard-Fraley set estimator will be computed exactly using
polygonal geometry. The result is a polygonal window.

• If exact=FALSE, the Allard-Fraley set estimator will be approximated by a binary pixel mask.
This is faster than the exact computation. The result is a binary mask.

Value

If what="marks", a multitype point pattern (object of class "ppp").

If what="domain", a window (object of class "owin").

If what=c("marks","domain") (the default), a list consisting of a multitype point pattern and a
window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Allard, D. and Fraley, C. (1997) Nonparametric maximum likelihood estimation of features in spa-
tial point processes using Voronoi tessellation. Journal of the American Statistical Association 92,
1485–1493.

See Also

nnclean, sharpen

coef.mppm 255

Examples

opa <- par(mfrow=c(1,2))
W <- grow.rectangle(as.rectangle(letterR), 1)
X <- superimpose(runifpoint(300, letterR),

runifpoint(50, W), W=W)
plot(W, main="clusterset(X, 'm')")
plot(clusterset(X, "marks", fast=TRUE), add=TRUE, chars=c(1, 3), cols=1:2)
plot(letterR, add=TRUE)
plot(W, main="clusterset(X, 'd')")
plot(clusterset(X, "domain", exact=FALSE), add=TRUE)
plot(letterR, add=TRUE)
par(opa)

coef.mppm Coefficients of Point Process Model Fitted to Multiple Point Patterns

Description

Given a point process model fitted to a list of point patterns, extract the coefficients of the fitted
model. A method for coef.

Usage

S3 method for class 'mppm'
coef(object, ...)

Arguments

object The fitted point process model (an object of class "mppm")

... Ignored.

Details

This function is a method for the generic function coef.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

This function extracts the vector of coefficients of the fitted model. This is the estimate of the
parameter vector θ such that the conditional intensity of the model is of the form

λ(u, x) = exp(θS(u, x))

where S(u, x) is a (vector-valued) statistic.

For example, if the model object is the uniform Poisson process, then coef(object) will yield a
single value (named "(Intercept)") which is the logarithm of the fitted intensity of the Poisson
process.

256 coef.mppm

If the fitted model includes random effects (i.e. if the argument random was specified in the call
to mppm), then the fitted coefficients are different for each point pattern in the original data, so
coef(object) is a data frame with one row for each point pattern, and one column for each param-
eter. Use fixef.mppm to extract the vector of fixed effect coefficients, and ranef.mppm to extract
the random effect coefficients at each level.

Use print.mppm to print a more useful description of the fitted model.

Value

Either a vector containing the fitted coefficients, or a data frame containing the fitted coefficients
for each point pattern.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and
Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

fixef.mppm and ranef.mppm for the fixed and random effect coefficients in a model that includes
random effects.

print.mppm, mppm

Examples

H <- hyperframe(X=waterstriders)

fit.Poisson <- mppm(X ~ 1, H)
coef(fit.Poisson)

The single entry "(Intercept)"
is the log of the fitted intensity of the Poisson process

fit.Strauss <- mppm(X~1, H, Strauss(7))
coef(fit.Strauss)

The two entries "(Intercept)" and "Interaction"
are respectively log(beta) and log(gamma)
in the usual notation for Strauss(beta, gamma, r)

Tweak data to exaggerate differences
H$X[[1]] <- rthin(H$X[[1]], 0.3)
Model with random effects
fitran <- mppm(X ~ 1, H, random=~1|id)
coef(fitran)

coef.ppm 257

coef.ppm Coefficients of Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, extract the coefficients of the fitted model. A
method for coef.

Usage

S3 method for class 'ppm'
coef(object, ...)

Arguments

object The fitted point process model (an object of class "ppm")

... Ignored.

Details

This function is a method for the generic function coef.

The argument object must be a fitted point process model (object of class "ppm"). Such objects
are produced by the maximum pseudolikelihood fitting algorithm ppm).

This function extracts the vector of coefficients of the fitted model. This is the estimate of the
parameter vector θ such that the conditional intensity of the model is of the form

λ(u, x) = exp(θS(u, x))

where S(u, x) is a (vector-valued) statistic.

For example, if the model object is the uniform Poisson process, then coef(object) will yield a
single value (named "(Intercept)") which is the logarithm of the fitted intensity of the Poisson
process.

Use print.ppm to print a more useful description of the fitted model.

Value

A vector containing the fitted coefficients.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

print.ppm, ppm.object, ppm

258 coef.slrm

Examples

data(cells)

poi <- ppm(cells, ~1, Poisson())
coef(poi)
This is the log of the fitted intensity of the Poisson process

stra <- ppm(cells, ~1, Strauss(r=0.07))
coef(stra)

The two entries "(Intercept)" and "Interaction"
are respectively log(beta) and log(gamma)
in the usual notation for Strauss(beta, gamma, r)

coef.slrm Coefficients of Fitted Spatial Logistic Regression Model

Description

Extracts the coefficients (parameters) from a fitted Spatial Logistic Regression model.

Usage

S3 method for class 'slrm'
coef(object, ...)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... Ignored.

Details

This is a method for coef for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm).

It extracts the fitted canonical parameters, i.e.\ the coefficients in the linear predictor of the spatial
logistic regression.

Value

Numeric vector of coefficients.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

collapse.fv 259

See Also

slrm

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
coef(fit)

collapse.fv Collapse Several Function Tables into One

Description

Combines several function tables (objects of class "fv") into a single function table, merging
columns that are identical and relabelling columns that are different.

Usage

S3 method for class 'fv'
collapse(object, ..., same = NULL, different = NULL)

S3 method for class 'anylist'
collapse(object, ..., same = NULL, different = NULL)

Arguments

object An object of class "fv", or a list of such objects.

... Additional objects of class "fv".

same Character string or character vector specifying a column or columns, present in
each "fv" object, that are identical in each object. This column or columns will
be included only once.

different Character string or character vector specifying a column or columns, present in
each "fv" object, that contain different values in each object. Each of these
columns of data will be included, with labels that distinguish them from each
other.

Details

This is a method for the generic function collapse.

It combines the data in several function tables (objects of class "fv", see fv.object) to make a
single function table. It is essentially a smart wrapper for cbind.fv.

A typical application is to calculate the same summary statistic (such as theK function) for different
point patterns, and then to use collapse.fv to combine the results into a single object that can
easily be plotted. See the Examples.

260 colourmap

The arguments object and ... should be function tables (objects of class "fv", see fv.object)
that are compatible in the sense that they have the same values of the function argument.

The argument same identifies any columns that are present in each function table, and which are
known to contain exactly the same values in each table. This column or columns will be included
only once in the result.

The argument different identifies any columns that are present in each function table, and which
contain different numerical values in each table. Each of these columns will be included, with labels
to distinguish them.

Columns that are not named in same or different will not be included.

The arguments same and different can be NULL, or they can be character vectors containing the
names of columns of object. The argument different can be one of the abbreviations recognised
by fvnames.

Value

Object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, cbind.fv

Examples

generate simulated data
X <- replicate(3, rpoispp(100), simplify=FALSE)
names(X) <- paste("Simulation", 1:3)
compute K function estimates
Klist <- anylapply(X, Kest)
collapse
K <- collapse(Klist, same="theo", different="iso")
K

colourmap Colour Lookup Tables

Description

Create a colour map (colour lookup table).

Usage

colourmap(col, ..., range=NULL, breaks=NULL, inputs=NULL, gamma=1)

colourmap 261

Arguments

col Vector of values specifying colours

... Ignored.

range Interval to be mapped. A numeric vector of length 2, specifying the endpoints
of the range of values to be mapped. Incompatible with breaks or inputs.

inputs Values to which the colours are associated. A factor or vector of the same length
as col. Incompatible with breaks or range.

breaks Breakpoints for the colour map. A numeric vector of length equal to length(col)+1.
Incompatible with range or inputs.

gamma Exponent for the gamma correction, when range is given. A single positive
number. See Details.

Details

A colour map is a mechanism for associating colours with data. It can be regarded as a function,
mapping data to colours.

The command colourmap creates an object representing a colour map, which can then be used
to control the plot commands in the spatstat package. It can also be used to compute the colour
assigned to any data value.

The argument col specifies the colours to which data values will be mapped. It should be a vector
whose entries can be interpreted as colours by the standard R graphics system. The entries can be
string names of colours like "red", or integers that refer to colours in the standard palette, or strings
containing six-letter hexadecimal codes like "#F0A0FF".

Exactly one of the arguments range, inputs or breaks must be specified by name.

• If inputs is given, then it should be a vector or factor, of the same length as col. The
entries of inputs can be any atomic type (e.g. numeric, logical, character, complex) or factor
values. The resulting colour map associates the value inputs[i] with the colour col[i]. The
argument col should have the same length as inputs.

• If range is given, then it determines the interval of the real number line that will be mapped.
It should be a numeric vector of length 2. The interval will be divided evenly into bands, each
of which is assigned one of the colours in col. (If gamma is given, then the bands are equally
spaced on a scale where the original values are raised to the power gamma.)

• If breaks is given, then it determines the precise intervals of the real number line which are
mapped to each colour. It should be a numeric vector, of length at least 2, with entries that are
in increasing order. Infinite values are allowed. Any number in the range between breaks[i]
and breaks[i+1] will be mapped to the colour col[i]. The argument col should have length
equal to length(breaks) -1.

It is also permissible for col to be a single colour value, representing a trivial colour map in which
all data values are mapped to the same colour.

The result is an object of class "colourmap". There are print and plot methods for this class.
Some plot commands in the spatstat package accept an object of this class as a specification of the
colour map.

262 colouroutputs

The result is also a function f which can be used to compute the colour assigned to any data value.
That is, f(x) returns the character value of the colour assigned to x. This also works for vectors of
data values.

Value

A function, which is also an object of class "colourmap".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

The plot method plot.colourmap.

See the R help file on colours for information about the colours that R recognises, and how to
manipulate them.

To make a smooth transition between colours, see interp.colourmap. To alter individual colour
values, see tweak.colourmap. To extract or replace all colour values, see colouroutputs.

See colourtools for more tools to manipulate colour values.

See lut for lookup tables.

Examples

colour map for real numbers, using breakpoints
cr <- colourmap(c("red", "blue", "green"), breaks=c(0,5,10,15))
cr
cr(3.2)
cr(c(3,5,7))
a large colour map
co <- colourmap(rainbow(100), range=c(-1,1))
co(0.2)
colour map for discrete set of values
ct <- colourmap(c("red", "green"), inputs=c(FALSE, TRUE))
ct(TRUE)

colouroutputs Extract or Assign Colour Values in a Colour Map

Description

Extract the colour values in a colour map, or assign new colour values.

Usage

colouroutputs(x)

colouroutputs(x) <- value

colourtools 263

Arguments

x A colour map (object of class "colourmap").

value A vector of values that can be interpreted as colours.

Details

An object of class "colourmap" is effectively a function that maps its inputs (numbers or factor
levels) to colour values.

The command colouroutputs(x) extracts the colour values in the colour map x.

The assignment colouroutputs(x) <-value replaces the colour values in the colour map x by the
entries in value. The replacement vector value should have the same length as colouroutputs(x),
and its entries should be interpretable as colours.

To change only some of the colour values in a colour map, it may be easier to use tweak.colourmap.

Value

The result of colouroutputs is a character vector of colour values. The result of the assignment
colouroutputs(x) <-value is another colour map (object of class "colourmap").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

colourmap, interp.colourmap, tweak.colourmap, colourtools.

Examples

m <- colourmap(rainbow(5), range=c(0,1))
m
reverse order of colours
colouroutputs(m) <- rev(colouroutputs(m))
m

colourtools Convert and Compare Colours in Different Formats

Description

These functions convert between different formats for specifying a colour in R, determine whether
colours are equivalent, and convert colour to greyscale.

264 colourtools

Usage

col2hex(x)
rgb2hex(v, maxColorValue=255)
rgb2hsva(red, green=NULL, blue=NULL, alpha=NULL, maxColorValue=255)
paletteindex(x)
samecolour(x,y)
complementarycolour(x)
interp.colours(x, length.out=512)
is.colour(x)
to.grey(x, weights=c(0.299, 0.587, 0.114), transparent=FALSE)
is.grey(x)
to.opaque(x)
to.transparent(x, fraction)
to.saturated(x, s=1)

Arguments

x,y Any valid specification for a colour or sequence of colours accepted by col2rgb.

v A numeric vector of length 3, giving the RGB values of a single colour, or a 3-
column matrix giving the RGB values of several colours. Alternatively a vector
of length 4 or a matrix with 4 columns, giving the RGB and alpha (transparency)
values.

red,green,blue,alpha

Arguments acceptable to rgb determining the red, green, blue channels and op-
tionally the alpha (transparency) channel. Note that red can also be a matrix
with 3 rows giving the RGB values, or a matrix with 4 rows giving RGB and
alpha values.

maxColorValue Number giving the maximum possible value for the entries in v or red,green,blue,alpha.

weights Numeric vector of length 3 giving relative weights for the red, green, and blue
channels respectively.

transparent Logical value indicating whether transparent colours should be converted to
transparent grey values (transparent=TRUE) or converted to opaque grey val-
ues (transparent=FALSE, the default).

fraction Transparency fraction. Numerical value or vector of values between 0 and 1,
giving the opaqueness of a colour. A fully opaque colour has fraction=1.

length.out Integer. Length of desired sequence.

s Saturation value (between 0 and 1).

Details

is.colour(x) can be applied to any kind of data x and returns TRUE if x can be interpreted as a
colour or colours. The remaining functions expect data that can be interpreted as colours.

col2hex converts colours specified in any format into their hexadecimal character codes.

rgb2hex converts RGB colour values into their hexadecimal character codes. It is a very minor
extension to rgb. Arguments to rgb2hex should be similar to arguments to rgb.

colourtools 265

rgb2hsva converts RGB colour values into HSV colour values including the alpha (transparency)
channel. It is an extension of rgb2hsv. Arguments to rgb2hsva should be similar to arguments to
rgb2hsv.

paletteindex checks whether the colour or colours specified by x are available in the default
palette returned by palette(). If so, it returns the index or indices of the colours in the palette. If
not, it returns NA.

samecolour decides whether two colours x and y are equivalent.

is.grey determines whether each entry of x is a greyscale colour, and returns a logical vector.

to.grey converts the colour data in x to greyscale colours. Alternatively x can be an object of class
"colourmap" and to.grey(x) is the modified colour map.

to.opaque converts the colours in x to opaque (non-transparent) colours, and to.transparent
converts them to transparent colours with a specified transparency value. Note that to.transparent(x,1)
is equivalent to to.opaque(x).

For to.grey, to.opaque and to.transparent, if all the data in x specifies colours from the stan-
dard palette, and if the result would be equivalent to x, then the result is identical to x.

to.saturated converts each colour in x to its fully-saturated equivalent. For example, pink is
mapped to red. Shades of grey are converted to black; white is unchanged.

complementarycolour replaces each colour by its complementary colour in RGB space (the colour
obtained by replacing RGB values (r,g,b) by (255-r,255-g,255-b)). The transparency value is
not changed. Alternatively x can be an object of class "colourmap" and complementarycolour(x)
is the modified colour map.

interp.colours interpolates between each successive pair of colours in a sequence of colours,
to generate a more finely-spaced sequence. It uses linear interpolation in HSV space (with hue
represented as a two-dimensional unit vector).

Value

For col2hex and rgb2hex a character vector containing hexadecimal colour codes.

For to.grey, to.opaque and to.transparent, either a character vector containing hexadecimal
colour codes, or a value identical to the input x.

For rgb2hsva, a matrix with 3 or 4 rows containing HSV colour values.

For paletteindex, an integer vector, possibly containing NA values.

For samecolour and is.grey, a logical value or logical vector.

Warning

paletteindex("green") returns NA because the green colour in the default palette is called "green3".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

266 commonGrid

See Also

col2rgb, rgb2hsv, palette.

See also the class of colour map objects in the spatstat package: colourmap, interp.colourmap,
tweak.colourmap.

Examples

samecolour("grey", "gray")
paletteindex("grey")
col2hex("orange")
to.grey("orange")
to.saturated("orange")
complementarycolour("orange")
is.grey("lightgrey")
is.grey(8)
to.transparent("orange", 0.5)
to.opaque("red")
interp.colours(c("orange", "red", "violet"), 5)

commonGrid Determine A Common Spatial Domain And Pixel Resolution

Description

Determine a common spatial domain and pixel resolution for several spatial objects such as images,
masks, windows and point patterns.

Usage

commonGrid(...)

Arguments

... Any number of pixel images (objects of class "im"), binary masks (objects of
class "owin" of type "mask") or data which can be converted to binary masks
by as.mask.

Details

This function determines a common spatial resolution and spatial domain for several spatial objects.

The arguments ... may be pixel images, binary masks, or other spatial objects acceptable to
as.mask.

The common pixel grid is determined by inspecting all the pixel images and binary masks in the
argument list, finding the pixel grid with the highest spatial resolution, and extending this pixel grid
to cover the bounding box of all the spatial objects.

The return value is a binary mask M, representing the bounding box at the chosen pixel resolution.
Use as.im(X,W=M) to convert a pixel image X to this new pixel resolution. Use as.mask(W,xy=M)
to convert a window W to a binary mask at this new pixel resolution. See the Examples.

compareFit 267

Value

A binary mask (object of class "owin" and type "mask").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

harmonise.im, compatible.im, as.im

Examples

A <- setcov(square(1))
G <- density(runifpoint(42), dimyx=16)
H <- commonGrid(A, letterR, G)
newR <- as.mask(letterR, xy=H)
newG <- as.im(G, W=H)

compareFit Residual Diagnostics for Multiple Fitted Models

Description

Compares several fitted point process models using the same residual diagnostic.

Usage

compareFit(object, Fun, r = NULL, breaks = NULL, ...,
trend = ~1, interaction = Poisson(), rbord = NULL,
modelnames = NULL, same = NULL, different = NULL)

Arguments

object Object or objects to be analysed. Either a fitted point process model (object of
class "ppm"), a point pattern (object of class "ppp"), or a list of these objects.

Fun Diagnostic function to be computed for each model. One of the functions Kcom,
Kres, Gcom, Gres, psst, psstA or psstG or a string containing one of these
names.

r Optional. Vector of values of the argument r at which the diagnostic should be
computed. This argument is usually not specified. There is a sensible default.

breaks Optional alternative to r for advanced use.

... Extra arguments passed to Fun.

268 compareFit

trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern or list of point patterns. See ppm for details. Each of
these arguments can be a list, specifying different trend, interaction and/or
rbord values to be used to generate different fitted models.

modelnames Character vector. Short descriptive names for the different models.

same,different Character strings or character vectors passed to collapse.fv to determine the
format of the output.

Details

This is a convenient way to collect diagnostic information for several different point process models
fitted to the same point pattern dataset, or for point process models of the same form fitted to several
different datasets, etc.

The first argument, object, is usually a list of fitted point process models (objects of class "ppm"),
obtained from the model-fitting function ppm.

For convenience, object can also be a list of point patterns (objects of class "ppp"). In that case,
point process models will be fitted to each of the point pattern datasets, by calling ppm using the
arguments trend (for the first order trend), interaction (for the interpoint interaction) and rbord
(for the erosion distance in the border correction for the pseudolikelihood). See ppm for details of
these arguments.

Alternatively object can be a single point pattern (object of class "ppp") and one or more of the
arguments trend, interaction or rbord can be a list. In this case, point process models will be
fitted to the same point pattern dataset, using each of the model specifications listed.

The diagnostic function Fun will be applied to each of the point process models. The results will be
collected into a single function value table. The modelnames are used to label the results from each
fitted model.

Value

Function value table (object of class "fv").

Author(s)

Ege Rubak <rubak@math.aau.dk>, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and
Jesper Møller.

See Also

ppm, Kcom, Kres, Gcom, Gres, psst, psstA, psstG, collapse.fv

Examples

nd <- 40

ilist <- list(Poisson(), Geyer(7, 2), Strauss(7))
iname <- c("Poisson", "Geyer", "Strauss")

compatible 269

K <- compareFit(swedishpines, Kcom, interaction=ilist, rbord=9,
correction="translate",
same="trans", different="tcom", modelnames=iname, nd=nd)

K

compatible Test Whether Objects Are Compatible

Description

Tests whether two or more objects of the same class are compatible.

Usage

compatible(A, B, ...)

Arguments

A,B,... Two or more objects of the same class

Details

This generic function is used to check whether the objects A and B (and any additional objects ...)
are compatible.

What is meant by ‘compatible’ depends on the class of object.

There are methods for the classes "fv", "fasp", "im" and "unitname".

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

compatible.fv, compatible.fasp, compatible.im, compatible.unitname

270 compatible.fasp

compatible.fasp Test Whether Function Arrays Are Compatible

Description

Tests whether two or more function arrays (class "fasp") are compatible.

Usage

S3 method for class 'fasp'
compatible(A, B, ...)

Arguments

A,B,... Two or more function arrays (object of class "fasp").

Details

An object of class "fasp" can be regarded as an array of functions. Such objects are returned by
the command alltypes.

This command tests whether such objects are compatible (so that, for example, they could be added
or subtracted). It is a method for the generic command compatible.

The function arrays are compatible if the arrays have the same dimensions, and the corresponding
elements in each cell of the array are compatible as defined by compatible.fv.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

eval.fasp

compatible.fv 271

compatible.fv Test Whether Function Objects Are Compatible

Description

Tests whether two or more function objects (class "fv") are compatible.

Usage

S3 method for class 'fv'
compatible(A, B, ..., samenames=TRUE)

Arguments

A,B,... Two or more function value objects (class "fv").

samenames Logical value indicating whether to check for complete agreement between the
column names of the objects (samenames=TRUE, the default) or just to check that
the name of the function argument is the same (samenames=FALSE).

Details

An object of class "fv" is essentially a data frame containing several different statistical estimates
of the same function. Such objects are returned by Kest and its relatives.

This command tests whether such objects are compatible (so that, for example, they could be added
or subtracted). It is a method for the generic command compatible.

The functions are compatible if they have been evaluated at the same sequence of values of the
argument r, and if the statistical estimates have the same names.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

eval.fv

272 compatible.im

compatible.im Test Whether Pixel Images Are Compatible

Description

Tests whether two or more pixel image objects have compatible dimensions.

Usage

S3 method for class 'im'
compatible(A, B, ..., tol=1e-6)

Arguments

A,B,... Two or more pixel images (objects of class "im").

tol Tolerance factor

Details

This function tests whether the pixel images A and B (and any additional images ...) have compat-
ible pixel dimensions. They are compatible if they have the same number of rows and columns, the
same physical pixel dimensions, and occupy the same rectangle in the plane.

The argument tol specifies the maximum tolerated error in the pixel coordinates, expressed as a
fraction of the dimensions of a single pixel.

Value

Logical value: TRUE if the images are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

eval.im, harmonise.im, commonGrid

compileK 273

compileK Generic Calculation of K Function and Pair Correlation Function

Description

Low-level functions which calculate the estimated K function and estimated pair correlation func-
tion (or any similar functions) from a matrix of pairwise distances and optional weights.

Usage

compileK(D, r, weights = NULL, denom = 1,
check = TRUE, ratio = FALSE, fname = "K")

compilepcf(D, r, weights = NULL, denom = 1,
check = TRUE, endcorrect = TRUE, ratio=FALSE,

..., fname = "g")

Arguments

D A square matrix giving the distances between all pairs of points.

r An equally spaced, finely spaced sequence of distance values.

weights Optional numerical weights for the pairwise distances. A numeric matrix with
the same dimensions as D. If absent, the weights are taken to equal 1.

denom Denominator for the estimator. A single number, or a numeric vector with the
same length as r. See Details.

check Logical value specifying whether to check that D is a valid matrix of pairwise
distances.

ratio Logical value indicating whether to store ratio information. See Details.

... Optional arguments passed to density.default controlling the kernel smooth-
ing.

endcorrect Logical value indicating whether to apply End Correction of the pair correlation
estimate at r=0.

fname Character string giving the name of the function being estimated.

Details

These low-level functions construct estimates of the K function or pair correlation function, or any
similar functions, given only the matrix of pairwise distances and optional weights associated with
these distances.

These functions are useful for code development and for teaching, because they perform a common
task, and do the housekeeping required to make an object of class "fv" that represents the estimated
function. However, they are not very efficient.

274 compileK

compileK calculates the weighted estimate of the K function,

K̂(r) = (1/v(r))
∑
i

∑
j

1{dij ≤ r}wij

and compilepcf calculates the weighted estimate of the pair correlation function,

ĝ(r) = (1/v(r))
∑
i

∑
j

κ(dij − r)wij

where dij is the distance between spatial points i and j, with corresponding weight wij , and v(r) is
a specified denominator. Here κ is a fixed-bandwidth smoothing kernel.

For a point pattern in two dimensions, the usual denominator v(r) is constant for the K function,
and proportional to r for the pair correlation function. See the Examples.

The result is an object of class "fv" representing the estimated function. This object has only one
column of function values. Additional columns (such as a column giving the theoretical value) must
be added by the user, with the aid of bind.fv.

If ratio=TRUE, the result also belongs to class "rat" and has attributes containing the numerator
and denominator of the function estimate. This allows function estimates from several datasets to
be pooled using pool.

Value

An object of class "fv" representing the estimated function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

Kest, pcf for definitions of the K function and pair correlation function.

bind.fv to add more columns.

Examples

X <- japanesepines
D <- pairdist(X)
Wt <- edge.Ripley(X, D)
lambda <- intensity(X)
a <- (npoints(X)-1) * lambda
r <- seq(0, 0.25, by=0.01)
K <- compileK(D=D, r=r, weights=Wt, denom=a)
g <- compilepcf(D=D, r=r, weights=Wt, denom= a * 2 * pi * r)

complement.owin 275

complement.owin Take Complement of a Window

Description

Take the set complement of a window, within its enclosing rectangle or in a larger rectangle.

Usage

complement.owin(w, frame=as.rectangle(w))

Arguments

w an object of class "owin" describing a window of observation for a point pattern.

frame Optional. The enclosing rectangle, with respect to which the set complement is
taken.

Details

This yields a window object (of class "owin", see owin.object) representing the set complement
of w with respect to the rectangle frame.

By default, frame is the enclosing box of w (originally specified by the arguments xrange and
yrange given to owin when w was created). If frame is specified, it must be a rectangle (an object
of class "owin" whose type is "rectangle") and it must be larger than the enclosing box of w. This
rectangle becomes the enclosing box for the resulting window.

If w is a rectangle, then frame must be specified. Otherwise an error will occur (since the comple-
ment of w in itself is empty).

For rectangular and polygonal windows, the complement is computed by reversing the sign of each
boundary polygon, while for binary masks it is computed by negating the pixel values.

Value

Another object of class "owin" representing the complement of the window, i.e. the inside of the
window becomes the outside.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, owin.object

276 concatxy

Examples

rectangular
a <- owin(c(0,1),c(0,1))
b <- owin(c(-1,2),c(-1,2))
bmina <- complement.owin(a, frame=b)
polygonal
data(demopat)
w <- Window(demopat)
outside <- complement.owin(w)
mask
w <- as.mask(Window(demopat))
outside <- complement.owin(w)

concatxy Concatenate x,y Coordinate Vectors

Description

Concatenate any number of pairs of x and y coordinate vectors.

Usage

concatxy(...)

Arguments

... Any number of arguments, each of which is a structure containing elements x
and y.

Details

This function can be used to superimpose two or more point patterns of unmarked points (but see
also superimpose which is recommended).

It assumes that each of the arguments in ... is a structure containing (at least) the elements x and y.
It concatenates all the x elements into a vector x, and similarly for y, and returns these concatenated
vectors.

Value

A list with two components x and y, which are the concatenations of all the corresponding x and y
vectors in the argument list.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Concom 277

See Also

superimpose, quadscheme

Examples

dat <- runifrect(30)
xy <- list(x=runif(10),y=runif(10))
new <- concatxy(dat, xy)

Concom The Connected Component Process Model

Description

Creates an instance of the Connected Component point process model which can then be fitted to
point pattern data.

Usage

Concom(r)

Arguments

r Threshold distance

Details

This function defines the interpoint interaction structure of a point process called the connected
component process. It can be used to fit this model to point pattern data.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The ap-
propriate description of the connected component interaction is yielded by the function Concom().
See the examples below.

In standard form, the connected component process (Baddeley and Møller, 1989) with disc radius
r, intensity parameter κ and interaction parameter γ is a point process with probability density

f(x1, . . . , xn) = ακn(x)γ−C(x)

for a point pattern x, where x1, . . . , xn represent the points of the pattern, n(x) is the number of
points in the pattern, and C(x) is defined below. Here α is a normalising constant.

To define the term C(x), suppose that we construct a planar graph by drawing an edge between each
pair of points xi, xj which are less than r units apart. Two points belong to the same connected
component of this graph if they are joined by a path in the graph. Then C(x) is the number of
connected components of the graph.

The interaction parameter γ can be any positive number. If γ = 1 then the model reduces to a
Poisson process with intensity κ. If γ < 1 then the process is regular, while if γ > 1 the process is

278 Concom

clustered. Thus, a connected-component interaction process can be used to model either clustered
or regular point patterns.

In spatstat, the model is parametrised in a different form, which is easier to interpret. In canonical
form, the probability density is rewritten as

f(x1, . . . , xn) = αβn(x)γ−U(x)

where β is the new intensity parameter and U(x) = C(x) − n(x) is the interaction potential. In
this formulation, each isolated point of the pattern contributes a factor β to the probability density
(so the first order trend is β). The quantity U(x) is a true interaction potential, in the sense that
U(x) = 0 if the point pattern x does not contain any points that lie close together.

When a new point u is added to an existing point pattern x, the rescaled potential −U(x) increases
by zero or a positive integer. The increase is zero if u is not close to any point of x. The increase is
a positive integer k if there are k different connected components of x that lie close to u. Addition
of the point u contributes a factor βηδ to the probability density, where δ is the increase in potential.

If desired, the original parameter κ can be recovered from the canonical parameter by κ = βγ.

The nonstationary connected component process is similar except that the contribution of each
individual point xi is a function β(xi) of location, rather than a constant beta.

Note the only argument of Concom() is the threshold distance r. When r is fixed, the model be-
comes an exponential family. The canonical parameters log(β) and log(γ) are estimated by ppm(),
not fixed in Concom().

Value

An object of class "interact" describing the interpoint interaction structure of the connected com-
ponent process with disc radius r.

Edge correction

The interaction distance of this process is infinite. There are no well-established procedures for
edge correction for fitting such models, and accordingly the model-fitting function ppm will give an
error message saying that the user must specify an edge correction. A reasonable solution is to use
the border correction at the same distance r, as shown in the Examples.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A.J. and Møller, J. (1989) Nearest-neighbour Markov point processes and random sets.
International Statistical Review 57, 89–121.

See Also

ppm, pairwise.family, ppm.object

connected 279

Examples

prints a sensible description of itself
Concom(r=0.1)

Fit the stationary connected component process to redwood data
ppm(redwood, ~1, Concom(r=0.07), rbord=0.07)

Fit the stationary connected component process to `cells' data
ppm(cells, ~1, Concom(r=0.06), rbord=0.06)
eta=0 indicates hard core process.

Fit a nonstationary connected component model
with log-cubic polynomial trend
Not run:
ppm(swedishpines, ~polynom(x/10,y/10,3), Concom(r=7), rbord=7)

End(Not run)

connected Connected components

Description

Finds the topologically-connected components of a spatial object, such as the connected clumps of
pixels in a binary image.

Usage

connected(X, ...)

S3 method for class 'owin'
connected(X, ..., method="C")

S3 method for class 'im'
connected(X, ..., background = NA, method="C")

Arguments

X A spatial object such as a pixel image (object of class "im") or a window (object
of class "owin").

background Optional. Treat pixels with this value as being part of the background.

method String indicating the algorithm to be used. Either "C" or "interpreted". See
Details.

... Arguments passed to as.mask to determine the pixel resolution.

280 connected

Details

The function connected is generic, with methods for pixel images (class "im") and windows (class
"owin") described here. There are also methods for tessellations (connected.tess), point patterns
(connected.ppp and connected.lpp), and linear networks (connected.linnet).

The functions described here compute the connected component transform (Rosenfeld and Pfalz,
1966) of a binary image or binary mask. The argument X is first converted into a pixel image with
logical values. Then the algorithm identifies the connected components (topologically-connected
clumps of pixels) in the foreground.

Two pixels belong to the same connected component if they have the value TRUE and if they are
neighbours (in the 8-connected sense). This rule is applied repeatedly until it terminates. Then
each connected component contains all the pixels that can be reached by stepping from neighbour
to neighbour.

If method="C", the computation is performed by a compiled C language implementation of the
classical algorithm of Rosenfeld and Pfalz (1966). If method="interpreted", the computation is
performed by an R implementation of the algorithm of Park et al (2000).

The result is a factor-valued image, with levels that correspond to the connected components. The
Examples show how to extract each connected component as a separate window object.

Value

A pixel image (object of class "im") with factor values. The levels of the factor correspond to the
connected components.

Warnings

It may be hard to distinguish different components in the default plot because the colours of nearby
components may be very similar. See the Examples for a randomised colour map.

The algorithm for method="interpreted" can be very slow for large images (or images where the
connected components include a large number of pixels).

Author(s)

Original R code by Julian Burgos, University of Washington. Adapted for spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Park, J.-M., Looney, C.G. and Chen, H.-C. (2000) Fast connected component labeling algorithm
using a divide and conquer technique. Pages 373-376 in S.Y. Shin (ed) Computers and Their Appli-
cations: Proceedings of the ISCA 15th International Conference on Computers and Their Applica-
tions, March 29-31, 2000, New Orleans, Louisiana USA. ISCA 2000, ISBN 1-880843-32-3.

Rosenfeld, A. and Pfalz, J.L. (1966) Sequential operations in digital processing. Journal of the
Association for Computing Machinery 13 471-494.

See Also

connected.ppp, connected.tess, connected.lpp, connected.linnet, im.object, tess

connected.linnet 281

Examples

d <- distmap(cells, dimyx=256)
X <- levelset(d, 0.07)
plot(X)
Z <- connected(X)
plot(Z)
or equivalently
Z <- connected(d <= 0.07)

number of components
nc <- length(levels(Z))
plot with randomised colour map
plot(Z, col=hsv(h=sample(seq(0,1,length=nc), nc)))

how to extract the components as a list of windows
W <- tiles(tess(image=Z))

connected.linnet Connected Components of a Linear Network

Description

Find the topologically-connected components of a linear network.

Usage

S3 method for class 'linnet'
connected(X, ..., what = c("labels", "components"))

Arguments

X A linear network (object of class "linnet").

... Ignored.

what Character string specifying the kind of result.

Details

The function connected is generic. This is the method for linear networks (objects of class
"linnet").

Two vertices of the network are connected if they are joined by a path in the network. This function
divides the network into subsets, such that all points in a subset are connected to each other.

If what="labels" the return value is a factor with one entry for each vertex of X, identifying which
connected component the vertex belongs to.

If what="components" the return value is a list of linear networks, which are the connected com-
ponents of X.

282 connected.lpp

Value

If what="labels", a factor. If what="components", a list of linear networks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Suman Rakshit.

See Also

thinNetwork

Examples

remove some edges from a network to make it disconnected
plot(simplenet, col="grey", main="", lty=2)
A <- thinNetwork(simplenet, retainedges=-c(3,5))
plot(A, add=TRUE, lwd=2)
find the connected components
connected(A)
cA <- connected(A, what="components")
plot(cA[[1]], add=TRUE, col="green", lwd=2)
plot(cA[[2]], add=TRUE, col="blue", lwd=2)

connected.lpp Connected Components of a Point Pattern on a Linear Network

Description

Finds the topologically-connected components of a point pattern on a linear network, when all pairs
of points closer than a threshold distance are joined.

Usage

S3 method for class 'lpp'
connected(X, R=Inf, ..., dismantle=TRUE)

Arguments

X A linear network (object of class "lpp").

R Threshold distance. Pairs of points will be joined together if they are closer than
R units apart, measured by the shortest path in the network. The default R=Inf
implies that points will be joined together if they are mutually connected by any
path in the network.

dismantle Logical. If TRUE (the default), the network itself will be divided into its path-
connected components using connected.linnet.

... Ignored.

connected.lpp 283

Details

The function connected is generic. This is the method for point patterns on a linear network
(objects of class "lpp"). It divides the point pattern X into one or more groups of points.

If R=Inf (the default), then X is divided into groups such that any pair of points in the same group
can be joined by a path in the network.

If R is a finite number, then two points of X are declared to be R-close if they lie closer than R units
apart, measured by the length of the shortest path in the network. Two points are R-connected if
they can be reached by a series of steps between R-close pairs of points of X. Then X is divided into
groups such that any pair of points in the same group is R-connected.

If dismantle=TRUE (the default) the algorithm first checks whether the network is connected (i.e.
whether any pair of vertices can be joined by a path in the network), and if not, the network is
decomposed into its connected components.

Value

A point pattern (of class "lpp") with marks indicating the grouping, or a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

thinNetwork

Examples

behaviour like connected.ppp
U <- runiflpp(20, simplenet)
plot(connected(U, 0.15, dismantle=FALSE))

behaviour like connected.owin
remove some edges from a network to make it disconnected
plot(simplenet, col="grey", main="", lty=2)
A <- thinNetwork(simplenet, retainedges=-c(3,5))
plot(A, add=TRUE, lwd=2)
X <- runiflpp(10, A)
find the connected components
cX <- connected(X)
plot(cX[[1]], add=TRUE, col="blue", lwd=2)

284 connected.ppp

connected.ppp Connected Components of a Point Pattern

Description

Finds the topologically-connected components of a point pattern, when all pairs of points closer
than a threshold distance are joined.

Usage

S3 method for class 'ppp'
connected(X, R, ...)

S3 method for class 'pp3'
connected(X, R, ...)

Arguments

X A point pattern (object of class "ppp" or "pp3").

R Threshold distance. Pairs of points closer than R units apart will be joined to-
gether.

... Other arguments, not recognised by these methods.

Details

This function can be used to identify clumps of points in a point pattern.

The function connected is generic. This file documents the methods for point patterns in dimension
two or three (objects of class "ppp" or "pp3").

The point pattern X is first converted into an abstract graph by joining every pair of points that lie
closer than R units apart. Then the connected components of this graph are identified.

Two points in X belong to the same connected component if they can be reached by a series of steps
between points of X, each step being shorter than R units in length.

The result is a vector of labels for the points of X where all the points in a connected component
have the same label.

Value

A point pattern, equivalent to X except that the points have factor-valued marks, with levels corre-
sponding to the connected components.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

connected.tess 285

See Also

connected.im, im.object, tess

Examples

Y <- connected(redwoodfull, 0.1)
if(interactive()) {
plot(Y, cols=1:length(levels(marks(Y))),

main="connected(redwoodfull, 0.1)")
}
X <- osteo$pts[[1]]
Z <- connected(X, 32)
if(interactive()) {
plot(Z, col=marks(Z), main="")
}

connected.tess Connected Components of Tiles of a Tessellation

Description

Given a tessellation, find the topologically-connected pieces of each tile, and make a new tessella-
tion using these pieces.

Usage

S3 method for class 'tess'
connected(X, ...)

Arguments

X A tessellation (object of class "tess").

... Arguments passed to as.mask to determine the pixel resolution.

Details

The function connected is generic. This function connected.tess is the method for tessellations.

Given the tessellation X, the algorithm considers each tile of the tessellation, and identifies its con-
nected components (topologically-connected pieces) using connected.owin. Each of these pieces
is treated as a distinct tile and a new tessellation is made from these pieces.

The result is another tessellation obtained by subdividing each tile of X into one or more new tiles.

Value

Another tessellation (object of class "tess").

286 contour.im

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

connected.owin

Examples

BB <- grow.rectangle(Frame(letterR), 0.2)
H <- tess(tiles=list(IN=letterR, OUT=complement.owin(letterR, BB)))
opa <- par(mfrow=c(1,2))
plot(H, do.col=TRUE)
plot(connected(H), do.col=TRUE, col=2:4)
par(opa)

contour.im Contour plot of pixel image

Description

Generates a contour plot of a pixel image.

Usage

S3 method for class 'im'
contour(x, ..., main,

axes=FALSE, add=FALSE, col=par("fg"),
clipwin=NULL, show.all=!add, do.plot=TRUE)

Arguments

x Pixel image to be plotted. An object of class "im".

main Character string to be displayed as the main title.

axes Logical. If TRUE, coordinate axes are plotted (with tick marks) around a region
slightly larger than the image window. If FALSE (the default), no axes are plotted,
and a box is drawn tightly around the image window. Ignored if add=TRUE.

add Logical. If FALSE, a new plot is created. If TRUE, the contours are drawn over
the existing plot.

col Colour in which to draw the contour lines. Either a single value that can be
interpreted as a colour value, or a colourmap object.

clipwin Optional. A window (object of class "owin"). Only this subset of the data will
be displayed.

... Other arguments passed to contour.default controlling the contour plot; see
Details.

contour.im 287

show.all Logical value indicating whether to display all plot elements including the main
title, bounding box, and (if axis=TRUE) coordinate axis markings. Default is
TRUE for new plots and FALSE for added plots.

do.plot Logical value indicating whether to actually perform the plot.

Details

This is a method for the generic contour function, for objects of the class "im".

An object of class "im" represents a pixel image; see im.object.

This function displays the values of the pixel image x as a contour plot on the current plot device,
using equal scales on the x and y axes.

The appearance of the plot can be modified using any of the arguments listed in the help for
contour.default. Useful ones include:

nlevels Number of contour levels to plot.

drawlabels Whether to label the contour lines with text.

col,lty,lwd Colour, type, and width of contour lines.

See contour.default for a full list of these arguments.

The defaults for any of the abovementioned arguments can be reset using spatstat.options("par.contour").

If col is a colour map (object of class "colourmap", see colourmap) then the contours will be
plotted in different colours as determined by the colour map. The contour at level z will be plotted
in the colour col(z) associated with this level in the colour map.

Value

none.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

im.object, plot.im, persp.im

Examples

an image
Z <- setcov(owin())
contour(Z, axes=TRUE)
contour(Z)

co <- colourmap(rainbow(100), range=c(0,1))
contour(Z, col=co, lwd=2)

288 contour.imlist

contour.imlist Array of Contour Plots

Description

Generates an array of contour plots.

Usage

S3 method for class 'imlist'
contour(x, ...)

S3 method for class 'listof'
contour(x, ...)

Arguments

x An object of the class "imlist" representing a list of pixel images. Alternatively
x may belong to the outdated class "listof".

... Arguments passed to plot.solist to control the spatial arrangement of panels,
and arguments passed to contour.im to control the display of each panel.

Details

This is a method for the generic command contour for the class "imlist". An object of class
"imlist" represents a list of pixel images.

(The outdated class "listof" is also handled.)

Each entry in the list x will be displayed as a contour plot, in an array of panels laid out on the same
graphics display, using plot.solist. Invididual panels are plotted by contour.im.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

plot.solist, contour.im

convexhull 289

Examples

Multitype point pattern
contour(D <- density(split(amacrine)))

convexhull Convex Hull

Description

Computes the convex hull of a spatial object.

Usage

convexhull(x)

Arguments

x a window (object of class "owin"), a point pattern (object of class "ppp"), a line
segment pattern (object of class "psp"), or an object that can be converted to a
window by as.owin.

Details

This function computes the convex hull of the spatial object x.

Value

A window (an object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, convexhull.xy, is.convex

Examples

data(demopat)
W <- Window(demopat)
plot(convexhull(W), col="lightblue", border=NA)
plot(W, add=TRUE, lwd=2)

290 convexhull.xy

convexhull.xy Convex Hull of Points

Description

Computes the convex hull of a set of points in two dimensions.

Usage

convexhull.xy(x, y=NULL)

Arguments

x vector of x coordinates of observed points, or a 2-column matrix giving x,y
coordinates, or a list with components x,y giving coordinates (such as a point
pattern object of class "ppp".)

y (optional) vector of y coordinates of observed points, if x is a vector.

Details

Given an observed pattern of points with coordinates given by x and y, this function computes the
convex hull of the points, and returns it as a window.

Value

A window (an object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, as.owin, convexhull, bounding.box.xy, ripras

Examples

x <- runif(30)
y <- runif(30)
w <- convexhull.xy(x,y)
plot(owin(), main="convexhull.xy(x,y)", lty=2)
plot(w, add=TRUE)
points(x,y)

X <- rpoispp(30)
plot(X, main="convexhull.xy(X)")
plot(convexhull.xy(X), add=TRUE)

convexify 291

convexify Weil’s Convexifying Operation

Description

Converts the window W into a convex set by rearranging the edges, preserving spatial orientation of
each edge.

Usage

convexify(W, eps)

Arguments

W A window (object of class "owin").

eps Optional. Minimum edge length of polygonal approximation, if W is not a poly-
gon.

Details

Weil (1995) defined a convexification operation for windows W that belong to the convex ring (that
is, for any W which is a finite union of convex sets). Note that this is not the same as the convex
hull.

The convexified set f(W) has the same total boundary length as W and the same distribution of
orientations of the boundary. If W is a polygonal set, then the convexification f(W) is obtained by
rearranging all the edges of W in order of their spatial orientation.

The argument W must be a window. If it is not already a polygonal window, it is first converted
to one, using simplify.owin. The edges are sorted in increasing order of angular orientation and
reassembled into a convex polygon.

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Weil, W. (1995) The estimation of mean particle shape and mean particle number in overlapping
particle systems in the plane. Advances in Applied Probability 27, 102–119.

292 convolve.im

See Also

convexhull for the convex hull of a window.

Examples

opa <- par(mfrow=c(1,2))
plot(letterR)
plot(convexify(letterR))
par(opa)

convolve.im Convolution of Pixel Images

Description

Computes the convolution of two pixel images.

Usage

convolve.im(X, Y=X, ..., reflectX=FALSE, reflectY=FALSE)

Arguments

X A pixel image (object of class "im".

Y Optional. Another pixel image.

... Ignored.
reflectX,reflectY

Logical values specifying whether the images X and Y (respectively) should be
reflected in the origin before computing the convolution.

Details

The convolution of two pixel images X and Y in the plane is the function C(v) defined for each
vector v as

C(v) =

∫
X(u)Y (v − u) du

where the integral is over all spatial locations u, and where X(u) and Y (u) denote the pixel values
of X and Y respectively at location u.

This command computes a discretised approximation to the convolution, using the Fast Fourier
Transform. The return value is another pixel image (object of class "im") whose greyscale values
are values of the convolution.

If reflectX = TRUE then the pixel image X is reflected in the origin (see reflect) before the con-
volution is computed, so that convolve.im(X,Y,reflectX=TRUE) is mathematically equivalent to
convolve.im(reflect(X),Y). (These two commands are not exactly equivalent, because the re-
flection is performed in the Fourier domain in the first command, and reflection is performed in the
spatial domain in the second command).

coords 293

Similarly if reflectY = TRUE then the pixel image Y is reflected in the origin before the convo-
lution is computed, so that convolve.im(X,Y,reflectY=TRUE) is mathematically equivalent to
convolve.im(X,reflect(Y)).

Value

A pixel image (an object of class "im") representing the convolution of X and Y.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

imcov, reflect

Examples

X <- as.im(letterR)
Y <- as.im(square(1))
plot(convolve.im(X, Y))
plot(convolve.im(X, Y, reflectX=TRUE))
plot(convolve.im(X))

coords Extract or Change Coordinates of a Spatial or Spatiotemporal Point
Pattern

Description

Given any kind of spatial or space-time point pattern, this function extracts the (space and/or time
and/or local) coordinates of the points and returns them as a data frame.

Usage

coords(x, ...)
S3 method for class 'ppp'

coords(x, ...)
S3 method for class 'ppx'

coords(x, ..., spatial = TRUE, temporal = TRUE, local=TRUE)
coords(x, ...) <- value
S3 replacement method for class 'ppp'

coords(x, ...) <- value
S3 replacement method for class 'ppx'

coords(x, ..., spatial = TRUE, temporal = TRUE, local=TRUE) <- value
S3 method for class 'quad'

coords(x, ...)

294 coords

Arguments

x A point pattern: either a two-dimensional point pattern (object of class "ppp"),
a three-dimensional point pattern (object of class "pp3"), or a general multi-
dimensional space-time point pattern (object of class "ppx") or a quadrature
scheme (object of class "quad").

... Further arguments passed to methods.

spatial,temporal,local

Logical values indicating whether to extract spatial, temporal and local coordi-
nates, respectively. The default is to return all such coordinates. (Only relevant
to ppx objects).

value New values of the coordinates. A numeric vector with one entry for each point
in x, or a numeric matrix or data frame with one row for each point in x.

Details

The function coords extracts the coordinates from a point pattern. The function coords<- replaces
the coordinates of the point pattern with new values.

Both functions coords and coords<- are generic, with methods for the classes "ppp") and "ppx".
An object of class "pp3" also inherits from "ppx" and is handled by the method for "ppx".

Value

coords returns a data.frame with one row for each point, containing the coordinates. coords<-
returns the altered point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppx, pp3, ppp, as.hyperframe.ppx, as.data.frame.ppx.

Examples

df <- data.frame(x=runif(4),y=runif(4),t=runif(4))
X <- ppx(data=df, coord.type=c("s","s","t"))
coords(X)
coords(X, temporal=FALSE)
coords(X) <- matrix(runif(12), ncol=3)

corners 295

corners Corners of a rectangle

Description

Returns the four corners of a rectangle

Usage

corners(window)

Arguments

window A window. An object of class owin, or data in any format acceptable to as.owin().

Details

This trivial function is occasionally convenient. If window is of type "rectangle" this returns the
four corners of the window itself; otherwise, it returns the corners of the bounding rectangle of the
window.

Value

A list with two components x and y, which are numeric vectors of length 4 giving the coordinates
of the four corner points of the (bounding rectangle of the) window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, quadscheme

Examples

w <- unit.square()
corners(w)

returns list(x=c(0,1,0,1),y=c(0,0,1,1))

296 covering

covering Cover Region with Discs

Description

Given a spatial region, this function finds an efficient covering of the region using discs of a chosen
radius.

Usage

covering(W, r, ..., giveup=1000)

Arguments

W A window (object of class "owin").

r positive number: the radius of the covering discs.

... extra arguments passed to as.mask controlling the pixel resolution for the cal-
culations.

giveup Maximum number of attempts to place additional discs.

Details

This function finds an efficient covering of the window W using discs of the given radius r. The
result is a point pattern giving the centres of the discs.

The algorithm tries to use as few discs as possible, but is not guaranteed to find the minimal number
of discs. It begins by placing a hexagonal grid of points inside W, then adds further points until every
location inside W lies no more than r units away from one of the points.

Value

A point pattern (object of class "ppp") giving the centres of the discs.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Examples

rr <- 0.5
X <- covering(letterR, rr)
plot(grow.rectangle(Frame(X), rr), type="n", main="")
plot(X, pch=16, add=TRUE, col="red")
plot(letterR, add=TRUE, lwd=3)
plot(X %mark% (2*rr), add=TRUE, markscale=1)

crossdist 297

crossdist Pairwise distances

Description

Computes the distances between pairs of ‘things’ taken from two different datasets.

Usage

crossdist(X, Y, ...)

Arguments

X,Y Two objects of the same class.

... Additional arguments depending on the method.

Details

Given two datasets X and Y (representing either two point patterns or two line segment patterns)
crossdist computes the Euclidean distance from each thing in the first dataset to each thing in the
second dataset, and returns a matrix containing these distances.

The function crossdist is generic, with methods for point patterns (objects of class "ppp"),
line segment patterns (objects of class "psp"), and a default method. See the documentation for
crossdist.ppp, crossdist.psp or crossdist.default for further details.

Value

A matrix whose [i,j] entry is the distance from the i-th thing in the first dataset to the j-th thing
in the second dataset.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

crossdist.ppp, crossdist.psp, crossdist.default, pairdist, nndist

298 crossdist.default

crossdist.default Pairwise distances between two different sets of points

Description

Computes the distances between each pair of points taken from two different sets of points.

Usage

Default S3 method:
crossdist(X, Y, x2, y2, ...,

period=NULL, method="C", squared=FALSE)

Arguments

X,Y Numeric vectors of equal length specifying the coordinates of the first set of
points.

x2,y2 Numeric vectors of equal length specifying the coordinates of the second set of
points.

... Ignored.

period Optional. Dimensions for periodic edge correction.

method String specifying which method of calculation to use. Values are "C" and "interpreted".

squared Logical. If squared=TRUE, the squared distances are returned instead (this com-
putation is faster).

Details

Given two sets of points, this function computes the Euclidean distance from each point in the first
set to each point in the second set, and returns a matrix containing these distances.

This is a method for the generic function crossdist.

This function expects X and Y to be numeric vectors of equal length specifying the coordinates of
the first set of points. The arguments x2,y2 specify the coordinates of the second set of points.

Alternatively if period is given, then the distances will be computed in the ‘periodic’ sense (also
known as ‘torus’ distance). The points will be treated as if they are in a rectangle of width
period[1] and height period[2]. Opposite edges of the rectangle are regarded as equivalent.

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted" then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is faster by a factor of 4.

Value

A matrix whose [i,j] entry is the distance from the i-th point in the first set of points to the j-th
point in the second set of points.

crossdist.lpp 299

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

crossdist, crossdist.ppp, crossdist.psp, pairdist, nndist, Gest

Examples

d <- crossdist(runif(7), runif(7), runif(12), runif(12))
d <- crossdist(runif(7), runif(7), runif(12), runif(12), period=c(1,1))

crossdist.lpp Pairwise distances between two point patterns on a linear network

Description

Computes the distances between pairs of points taken from two different point patterns on the same
linear network.

Usage

S3 method for class 'lpp'
crossdist(X, Y, ..., method="C", check=TRUE)

Arguments

X,Y Point patterns on a linear network (objects of class "lpp"). They must lie on the
same network.

... Ignored.

method String specifying which method of calculation to use when the network data use
the non-sparse representation. Values are "C" and "interpreted".

check Logical value specifying whether to check that X and Y are defined on the same
network. Default is check=TRUE. Setting check=FALSE will save time, but should
only be used if it is certain that the two networks are identical.

Details

Given two point patterns on a linear network, this function computes the distance from each point
in the first pattern to each point in the second pattern, measuring distance by the shortest path along
the network.

This is a method for the generic function crossdist for the class of point patterns on a linear
network (objects of class "lpp").

This function expects two point pattern objects X and Y on the same linear network, and returns the
matrix whose [i,j] entry is the shortest-path distance from X[i] to Y[j].

If two points cannot be joined by a path, the distance between them is infinite (Inf).

300 crossdist.pp3

The argument method is not normally used. It is retained only for developers to check the validity
of the software.

Value

A matrix whose [i,j] entry is the distance from the i-th point in X to the j-th point in Y. Matrix
entries are nonnegative numbers or infinity (Inf).

Algorithms and accuracy

Distances are accurate within the numerical tolerance of the network, summary(X)$toler.

For network data stored in the non-sparse representation described in linnet, then pairwise dis-
tances are computed using the matrix of path distances between vertices of the network, using R
code if method = "interpreted", or using C code if method="C" (the default).

For networks stored in the sparse representation, the argument method has no effect, and the dis-
tances are computed using an efficient C algorithm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

crossdist, crossdist.ppp, pairdist, nndist

Examples

v <- split(chicago)
X <- v$cartheft
Y <- v$burglary
d <- crossdist(X, Y)
d[1:3,1:4]

crossdist.pp3 Pairwise distances between two different three-dimensional point pat-
terns

Description

Computes the distances between pairs of points taken from two different three-dimensional point
patterns.

Usage

S3 method for class 'pp3'
crossdist(X, Y, ..., periodic=FALSE, squared=FALSE)

crossdist.pp3 301

Arguments

X,Y Point patterns in three dimensions (objects of class "pp3").

... Ignored.

periodic Logical. Specifies whether to apply a periodic edge correction.

squared Logical. If squared=TRUE, the squared distances are returned instead (this com-
putation is faster).

Details

Given two point patterns in three-dimensional space, this function computes the Euclidean distance
from each point in the first pattern to each point in the second pattern, and returns a matrix contain-
ing these distances.

This is a method for the generic function crossdist for three-dimensional point patterns (objects
of class "pp3").

This function expects two point patterns X and Y, and returns the matrix whose [i,j] entry is the
distance from X[i] to Y[j].

Alternatively if periodic=TRUE, then provided the windows containing X and Y are identical and
are rectangular, then the distances will be computed in the ‘periodic’ sense (also known as ‘torus’
distance): opposite edges of the rectangle are regarded as equivalent. This is meaningless if the
window is not a rectangle.

Value

A matrix whose [i,j] entry is the distance from the i-th point in X to the j-th point in Y.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

based on code for two dimensions by Pavel Grabarnik.

See Also

crossdist, pairdist, nndist, G3est

Examples

X <- runifpoint3(20)
Y <- runifpoint3(30)
d <- crossdist(X, Y)
d <- crossdist(X, Y, periodic=TRUE)

302 crossdist.ppp

crossdist.ppp Pairwise distances between two different point patterns

Description

Computes the distances between pairs of points taken from two different point patterns.

Usage

S3 method for class 'ppp'
crossdist(X, Y, ..., periodic=FALSE, method="C", squared=FALSE)

Arguments

X,Y Point patterns (objects of class "ppp").

... Ignored.

periodic Logical. Specifies whether to apply a periodic edge correction.

method String specifying which method of calculation to use. Values are "C" and "interpreted".

squared Logical. If squared=TRUE, the squared distances are returned instead (this com-
putation is faster).

Details

Given two point patterns, this function computes the Euclidean distance from each point in the first
pattern to each point in the second pattern, and returns a matrix containing these distances.

This is a method for the generic function crossdist for point patterns (objects of class "ppp").

This function expects two point patterns X and Y, and returns the matrix whose [i,j] entry is the
distance from X[i] to Y[j].

Alternatively if periodic=TRUE, then provided the windows containing X and Y are identical and
are rectangular, then the distances will be computed in the ‘periodic’ sense (also known as ‘torus’
distance): opposite edges of the rectangle are regarded as equivalent. This is meaningless if the
window is not a rectangle.

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted" then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is faster by a factor of 4.

Value

A matrix whose [i,j] entry is the distance from the i-th point in X to the j-th point in Y.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

crossdist.ppx 303

See Also

crossdist, crossdist.default, crossdist.psp, pairdist, nndist, Gest

Examples

data(cells)
d <- crossdist(cells, runifpoint(6))
d <- crossdist(cells, runifpoint(6), periodic=TRUE)

crossdist.ppx Pairwise Distances Between Two Different Multi-Dimensional Point
Patterns

Description

Computes the distances between pairs of points taken from two different multi-dimensional point
patterns.

Usage

S3 method for class 'ppx'
crossdist(X, Y, ...)

Arguments

X,Y Multi-dimensional point patterns (objects of class "ppx").

... Arguments passed to coords.ppx to determine which coordinates should be
used.

Details

Given two point patterns in multi-dimensional space, this function computes the Euclidean dis-
tance from each point in the first pattern to each point in the second pattern, and returns a matrix
containing these distances.

This is a method for the generic function crossdist for three-dimensional point patterns (objects
of class "ppx").

This function expects two multidimensional point patterns X and Y, and returns the matrix whose
[i,j] entry is the distance from X[i] to Y[j].

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance
between points in a space-time point pattern, set temporal=FALSE.

Value

A matrix whose [i,j] entry is the distance from the i-th point in X to the j-th point in Y.

304 crossdist.psp

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

crossdist, pairdist, nndist

Examples

df <- data.frame(x=runif(3),y=runif(3),z=runif(3),w=runif(3))
X <- ppx(data=df)
df <- data.frame(x=runif(5),y=runif(5),z=runif(5),w=runif(5))
Y <- ppx(data=df)
d <- crossdist(X, Y)

crossdist.psp Pairwise distances between two different line segment patterns

Description

Computes the distances between all pairs of line segments taken from two different line segment
patterns.

Usage

S3 method for class 'psp'
crossdist(X, Y, ..., method="C", type="Hausdorff")

Arguments

X,Y Line segment patterns (objects of class "psp").

... Ignored.

method String specifying which method of calculation to use. Values are "C" and "interpreted".
Usually not specified.

type Type of distance to be computed. Options are "Hausdorff" and "separation".
Partial matching is used.

Details

This is a method for the generic function crossdist.

Given two line segment patterns, this function computes the distance from each line segment in
the first pattern to each line segment in the second pattern, and returns a matrix containing these
distances.

The distances between line segments are measured in one of two ways:

crossing.linnet 305

• if type="Hausdorff", distances are computed in the Hausdorff metric. The Hausdorff dis-
tance between two line segments is the maximum distance from any point on one of the seg-
ments to the nearest point on the other segment.

• if type="separation", distances are computed as the minimum distance from a point on one
line segment to a point on the other line segment. For example, line segments which cross
over each other have separation zero.

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted" then the distances are computed using interpreted R code
only. If method="C" (the default) then compiled C code is used. The C code is several times faster.

Value

A matrix whose [i,j] entry is the distance from the i-th line segment in X to the j-th line segment
in Y.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pairdist, nndist, Gest

Examples

L1 <- psp(runif(5), runif(5), runif(5), runif(5), owin())
L2 <- psp(runif(10), runif(10), runif(10), runif(10), owin())
D <- crossdist(L1, L2)
#result is a 5 x 10 matrix
S <- crossdist(L1, L2, type="sep")

crossing.linnet Crossing Points between Linear Network and Other Lines

Description

Find all the crossing-points between a linear network and another pattern of lines or line segments.

Usage

crossing.linnet(X, Y)

Arguments

X Linear network (object of class "linnet").

Y A linear network, or a spatial pattern of line segments (class "psp") or infinite
lines (class "infline").

306 crossing.psp

Details

All crossing-points between X and Y are determined. The result is a point pattern on the network X.

Value

Point pattern on a linear network (object of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

crossing.psp

Examples

plot(simplenet, main="")
L <- infline(p=runif(3), theta=runif(3, max=pi/2))
plot(L, col="red")
Y <- crossing.linnet(simplenet, L)
plot(Y, add=TRUE, cols="blue")

crossing.psp Crossing Points of Two Line Segment Patterns

Description

Finds any crossing points between two line segment patterns.

Usage

crossing.psp(A,B,fatal=TRUE,details=FALSE)

Arguments

A,B Line segment patterns (objects of class "psp").

details Logical value indicating whether to return additional information. See below.

fatal Logical value indicating what to do if the windows of A and B do not overlap.
See Details.

cut.im 307

Details

This function finds any crossing points between the line segment patterns A and B.

A crossing point occurs whenever one of the line segments in A intersects one of the line segments
in B, at a nonzero angle of intersection.

The result is a point pattern consisting of all the intersection points.

If details=TRUE, additional information is computed, specifying where each intersection point
came from. The resulting point pattern has a data frame of marks, with columns named iA,jB,tA,tB.
The marks iA and jB are the indices of the line segments in A and B, respectively, which produced
each intersection point. The marks tA and tB are numbers between 0 and 1 specifying the position
of the intersection point along the original segments.

If the windows Window(A) and Window(B) do not overlap, then an error will be reported if fatal=TRUE,
while if fatal=FALSE an error will not occur and the result will be NULL.

Value

Point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

selfcrossing.psp, psp.object, ppp.object.

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
b <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(a, col="green", main="crossing.psp")
plot(b, add=TRUE, col="blue")
P <- crossing.psp(a,b)
plot(P, add=TRUE, col="red")
as.data.frame(crossing.psp(a,b,details=TRUE))

cut.im Convert Pixel Image from Numeric to Factor

Description

Transform the values of a pixel image from numeric values into a factor.

Usage

S3 method for class 'im'
cut(x, ...)

308 cut.im

Arguments

x A pixel image. An object of class "im".

... Arguments passed to cut.default. They determine the breakpoints for the
mapping from numerical values to factor values. See cut.default.

Details

This simple function applies the generic cut operation to the pixel values of the image x. The range
of pixel values is divided into several intervals, and each interval is associated with a level of a
factor. The result is another pixel image, with the same window and pixel grid as x, but with the
numeric value of each pixel discretised by replacing it by the factor level.

This function is a convenient way to inspect an image and to obtain summary statistics. See the
examples.

To select a subset of an image, use the subset operator [.im instead.

Value

A pixel image (object of class "im") with pixel values that are a factor. See im.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

cut, im.object

Examples

artificial image data
Z <- setcov(square(1))

Y <- cut(Z, 3)
Y <- cut(Z, breaks=seq(0,1,length=5))

cut at the quartiles
(divides the image into 4 equal areas)
Y <- cut(Z, quantile(Z))

cut.lpp 309

cut.lpp Classify Points in a Point Pattern on a Network

Description

For a point pattern on a linear network, classify the points into distinct types according to the
numerical marks in the pattern, or according to another variable.

Usage

S3 method for class 'lpp'
cut(x, z=marks(x), ...)

Arguments

x A point pattern on a linear network (object of class "lpp").

z Data determining the classification. A numeric vector, a factor, a pixel im-
age on a linear network (class "linim"), a function on a linear network (class
"linfun"), a tessellation on a linear network (class "lintess"), a string giving
the name of a column of marks, or one of the coordinate names "x", "y", "seg"
or "tp".

... Arguments passed to cut.default. They determine the breakpoints for the
mapping from numerical values in z to factor values in the output. See cut.default.

Details

This function has the effect of classifying each point in the point pattern x into one of several
possible types. The classification is based on the dataset z, which may be either

• a factor (of length equal to the number of points in z) determining the classification of each
point in x. Levels of the factor determine the classification.

• a numeric vector (of length equal to the number of points in z). The range of values of z will
be divided into bands (the number of bands is determined by ...) and z will be converted to
a factor using cut.default.

• a pixel image on a network (object of class "linim"). The value of z at each point of x will
be used as the classifying variable.

• a function on a network (object of class "linfun", see linfun). The value of z at each point
of x will be used as the classifying variable.

• a tessellation on a network (object of class "lintess", see lintess). Each point of x will be
classified according to the tile of the tessellation into which it falls.

• a character string, giving the name of one of the columns of marks(x), if this is a data frame.

• a character string identifying one of the coordinates: the spatial coordinates "x", "y" or the
segment identifier "seg" or the fractional coordinate along the segment, "tp".

310 cut.ppp

The default is to take z to be the vector of marks in x (or the first column in the data frame of marks
of x, if it is a data frame). If the marks are numeric, then the range of values of the numerical marks
is divided into several intervals, and each interval is associated with a level of a factor. The result
is a marked point pattern, on the same linear network, with the same point locations as x, but with
the numeric mark of each point discretised by replacing it by the factor level. This is a convenient
way to transform a marked point pattern which has numeric marks into a multitype point pattern,
for example to plot it or analyse it. See the examples.

To select some points from x, use the subset operators [.lpp or subset.lpp instead.

Value

A multitype point pattern on the same linear network, that is, a point pattern object (of class "lpp")
with a marks vector that is a factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

cut, lpp, lintess, linfun, linim

Examples

X <- runiflpp(20, simplenet)
f <- linfun(function(x,y,seg,tp) { x }, simplenet)
plot(cut(X, f, breaks=4))
plot(cut(X, "x", breaks=4))
plot(cut(X, "seg"))

cut.ppp Classify Points in a Point Pattern

Description

Classifies the points in a point pattern into distinct types according to the numerical marks in the
pattern, or according to another variable.

Usage

S3 method for class 'ppp'
cut(x, z=marks(x), ...)

cut.ppp 311

Arguments

x A two-dimensional point pattern. An object of class "ppp".

z Data determining the classification. A numeric vector, a factor, a pixel image, a
window, a tessellation, or a string giving the name of a column of marks or the
name of a spatial coordinate.

... Arguments passed to cut.default. They determine the breakpoints for the
mapping from numerical values in z to factor values in the output. See cut.default.

Details

This function has the effect of classifying each point in the point pattern x into one of several
possible types. The classification is based on the dataset z, which may be either

• a factor (of length equal to the number of points in z) determining the classification of each
point in x. Levels of the factor determine the classification.

• a numeric vector (of length equal to the number of points in z). The range of values of z will
be divided into bands (the number of bands is determined by ...) and z will be converted to
a factor using cut.default.

• a pixel image (object of class "im"). The value of z at each point of x will be used as the
classifying variable.

• a tessellation (object of class "tess", see tess). Each point of x will be classified according
to the tile of the tessellation into which it falls.

• a window (object of class "owin"). Each point of x will be classified according to whether it
falls inside or outside this window.

• a character string, giving the name of one of the columns of marks(x), if this is a data frame.

• a character string "x" or "y" identifying one of the spatial coordinates.

The default is to take z to be the vector of marks in x (or the first column in the data frame of marks
of x, if it is a data frame). If the marks are numeric, then the range of values of the numerical marks
is divided into several intervals, and each interval is associated with a level of a factor. The result is
a marked point pattern, with the same window and point locations as x, but with the numeric mark
of each point discretised by replacing it by the factor level. This is a convenient way to transform a
marked point pattern which has numeric marks into a multitype point pattern, for example to plot it
or analyse it. See the examples.

To select some points from a point pattern, use the subset operators [.ppp or subset.ppp instead.

Value

A multitype point pattern, that is, a point pattern object (of class "ppp") with a marks vector that is
a factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

312 cut.ppp

See Also

cut, ppp.object, tess

Examples

(1) cutting based on numeric marks of point pattern

trees <- longleaf
Longleaf Pines data
the marks are positive real numbers indicating tree diameters.

Not run:
plot(trees)

End(Not run)

cut the range of tree diameters into three intervals
long3 <- cut(trees, breaks=3)
Not run:
plot(long3)

End(Not run)

adult trees defined to have diameter at least 30 cm
long2 <- cut(trees, breaks=c(0,30,100), labels=c("Sapling", "Adult"))
plot(long2)
plot(long2, cols=c("green","blue"))

(2) cutting based on another numeric vector
Divide Swedish Pines data into 3 classes
according to nearest neighbour distance

swedishpines
plot(cut(swedishpines, nndist(swedishpines), breaks=3))

(3) cutting based on tessellation
Divide Swedish Pines study region into a 4 x 4 grid of rectangles
and classify points accordingly

tes <- tess(xgrid=seq(0,96,length=5),ygrid=seq(0,100,length=5))
plot(cut(swedishpines, tes))
plot(tes, lty=2, add=TRUE)

(4) inside/outside a given region
with(murchison, cut(gold, greenstone))

(5) multivariate marks
finpines
cut(finpines, "height", breaks=4)

data.lppm 313

data.lppm Extract Original Data from a Fitted Point Process Model on a Network

Description

Given a fitted point process model on a linear network, this function extracts the original point
pattern dataset to which the model was fitted.

Usage

data.lppm(object)

Arguments

object fitted point process model on a linear network (an object of class "lppm").

Details

An object of class "lppm" represents a point process model that has been fitted to a point pattern
dataset on a linear network. It is typically produced by the model-fitting algorithm lppm. The object
contains complete information about the original data point pattern to which the model was fitted.
This function extracts the original data pattern.

Value

A point pattern on a linear network (object of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

lppm, data.ppm

Examples

fit <- lppm(spiders ~ x)
X <- data.lppm(fit)
'X' is identical to 'spiders'

314 data.ppm

data.ppm Extract Original Data from a Fitted Point Process Model

Description

Given a fitted point process model, this function extracts the original point pattern dataset to which
the model was fitted.

Usage

data.ppm(object)

Arguments

object fitted point process model (an object of class "ppm").

Details

An object of class "ppm" represents a point process model that has been fitted to data. It is typically
produced by the model-fitting algorithm ppm. The object contains complete information about the
original data point pattern to which the model was fitted. This function extracts the original data
pattern.

See ppm.object for a list of all operations that can be performed on objects of class "ppm".

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

ppm.object, ppp.object

Examples

fit <- ppm(cells, ~1, Strauss(r=0.1))
X <- data.ppm(fit)
'X' is identical to 'cells'

dclf.progress 315

dclf.progress Progress Plot of Test of Spatial Pattern

Description

Generates a progress plot (envelope representation) of the Diggle-Cressie-Loosmore-Ford test or
the Maximum Absolute Deviation test for a spatial point pattern.

Usage

dclf.progress(X, ...)
mad.progress(X, ...)
mctest.progress(X, fun = Lest, ...,

exponent = 1, nrank = 1,
interpolate = FALSE, alpha, rmin=0)

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

... Arguments passed to mctest.progress or to envelope. Useful arguments in-
clude fun to determine the summary function, nsim to specify the number of
Monte Carlo simulations, alternative to specify one-sided or two-sided en-
velopes, and verbose=FALSE to turn off the messages.

fun Function that computes the desired summary statistic for a point pattern.

exponent Positive number. The exponent of the Lp distance. See Details.

nrank Integer. The rank of the critical value of the Monte Carlo test, amongst the nsim
simulated values. A rank of 1 means that the minimum and maximum simulated
values will become the critical values for the test.

interpolate Logical value indicating how to compute the critical value. If interpolate=FALSE
(the default), a standard Monte Carlo test is performed, and the critical value
is the largest simulated value of the test statistic (if nrank=1) or the nrank-th
largest (if nrank is another number). If interpolate=TRUE, kernel density es-
timation is applied to the simulated values, and the critical value is the upper
alpha quantile of this estimated distribution.

alpha Optional. The significance level of the test. Equivalent to nrank/(nsim+1)
where nsim is the number of simulations.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

316 dclf.progress

Details

The Diggle-Cressie-Loosmore-Ford test and the Maximum Absolute Deviation test for a spatial
point pattern are described in dclf.test. These tests depend on the choice of an interval of distance
values (the argument rinterval). A progress plot or envelope representation of the test (Baddeley
et al, 2014) is a plot of the test statistic (and the corresponding critical value) against the length of
the interval rinterval.

The command dclf.progress performs dclf.test on X using all possible intervals of the form
[0, R], and returns the resulting values of the test statistic, and the corresponding critical values of
the test, as a function of R.

Similarly mad.progress performs mad.test using all possible intervals and returns the test statistic
and critical value.

More generally, mctest.progress performs a test based on the Lp discrepancy between the curves.
The deviation between two curves is measured by the pth root of the integral of the pth power of the
absolute value of the difference between the two curves. The exponent p is given by the argument
exponent. The case exponent=2 is the Cressie-Loosmore-Ford test, while exponent=Inf is the
MAD test.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

The result of each command is an object of class "fv" that can be plotted to obtain the progress
plot. The display shows the test statistic (solid black line) and the Monte Carlo acceptance region
(grey shading).

The significance level for the Monte Carlo test is nrank/(nsim+1). Note that nsim defaults to 99,
so if the values of nrank and nsim are not given, the default is a test with significance level 0.01.

If X is an envelope object, then some of the data stored in X may be re-used:

• If X is an envelope object containing simulated functions, and fun=NULL, then the code will
re-use the simulated functions stored in X.

• If X is an envelope object containing simulated point patterns, then fun will be applied to the
stored point patterns to obtain the simulated functions. If fun is not specified, it defaults to
Lest.

• Otherwise, new simulations will be performed, and fun defaults to Lest.

Value

An object of class "fv" that can be plotted to obtain the progress plot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Andrew Hardegen, Tom Lawrence, Gopal Nair and Robin Milne.

References

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

dclf.sigtrace 317

See Also

dclf.test and mad.test for the tests.

See plot.fv for information on plotting objects of class "fv".

Examples

plot(dclf.progress(cells, nsim=19))

dclf.sigtrace Significance Trace of Cressie-Loosmore-Ford or Maximum Absolute
Deviation Test

Description

Generates a Significance Trace of the Diggle(1986)/ Cressie (1991)/ Loosmore and Ford (2006) test
or the Maximum Absolute Deviation test for a spatial point pattern.

Usage

dclf.sigtrace(X, ...)
mad.sigtrace(X, ...)
mctest.sigtrace(X, fun=Lest, ...,

exponent=1, interpolate=FALSE, alpha=0.05,
confint=TRUE, rmin=0)

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

... Arguments passed to envelope or mctest.progress. Useful arguments in-
clude fun to determine the summary function, nsim to specify the number of
Monte Carlo simulations, alternative to specify a one-sided test, and verbose=FALSE
to turn off the messages.

fun Function that computes the desired summary statistic for a point pattern.

exponent Positive number. The exponent of the Lp distance. See Details.

interpolate Logical value specifying whether to calculate the p-value by interpolation. If
interpolate=FALSE (the default), a standard Monte Carlo test is performed,
yielding a p-value of the form (k + 1)/(n + 1) where n is the number of sim-
ulations and k is the number of simulated values which are more extreme than
the observed value. If interpolate=TRUE, the p-value is calculated by apply-
ing kernel density estimation to the simulated values, and computing the tail
probability for this estimated distribution.

alpha Significance level to be plotted (this has no effect on the calculation but is simply
plotted as a reference value).

318 dclf.sigtrace

confint Logical value indicating whether to compute a confidence interval for the ‘true’
p-value.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

Details

The Diggle (1986)/ Cressie (1991)/Loosmore and Ford (2006) test and the Maximum Absolute
Deviation test for a spatial point pattern are described in dclf.test. These tests depend on the
choice of an interval of distance values (the argument rinterval). A significance trace (Bowman
and Azzalini, 1997; Baddeley et al, 2014, 2015) of the test is a plot of the p-value obtained from the
test against the length of the interval rinterval.

The command dclf.sigtrace performs dclf.test on X using all possible intervals of the form
[0, R], and returns the resulting p-values as a function of R.

Similarly mad.sigtrace performs mad.test using all possible intervals and returns the p-values.

More generally, mctest.sigtrace performs a test based on the Lp discrepancy between the curves.
The deviation between two curves is measured by the pth root of the integral of the pth power of the
absolute value of the difference between the two curves. The exponent p is given by the argument
exponent. The case exponent=2 is the Cressie-Loosmore-Ford test, while exponent=Inf is the
MAD test.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

The result of each command is an object of class "fv" that can be plotted to obtain the significance
trace. The plot shows the Monte Carlo p-value (solid black line), the critical value 0.05 (dashed
red line), and a pointwise 95% confidence band (grey shading) for the ‘true’ (Neyman-Pearson)
p-value. The confidence band is based on the Agresti-Coull (1998) confidence interval for a bino-
mial proportion (when interpolate=FALSE) or the delta method and normal approximation (when
interpolate=TRUE).

If X is an envelope object and fun=NULL then the code will re-use the simulated functions stored in
X.

Value

An object of class "fv" that can be plotted to obtain the significance trace.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Andrew Hardegen, Tom Lawrence, Robin
Milne, Gopalan Nair and Suman Rakshit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Agresti, A. and Coull, B.A. (1998) Approximate is better than “Exact” for interval estimation of
binomial proportions. American Statistician 52, 119–126.

dclf.test 319

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Submitted for publication.

Bowman, A.W. and Azzalini, A. (1997) Applied smoothing techniques for data analysis: the kernel
approach with S-Plus illustrations. Oxford University Press, Oxford.

See Also

dclf.test for the tests; dclf.progress for progress plots.

See plot.fv for information on plotting objects of class "fv".

See also dg.sigtrace.

Examples

plot(dclf.sigtrace(cells, Lest, nsim=19))

dclf.test Diggle-Cressie-Loosmore-Ford and Maximum Absolute Deviation
Tests

Description

Perform the Diggle (1986) / Cressie (1991) / Loosmore and Ford (2006) test or the Maximum
Absolute Deviation test for a spatial point pattern.

Usage

dclf.test(X, ..., alternative=c("two.sided", "less", "greater"),
rinterval = NULL, leaveout=1,
scale=NULL, clamp=FALSE, interpolate=FALSE)

mad.test(X, ..., alternative=c("two.sided", "less", "greater"),
rinterval = NULL, leaveout=1,
scale=NULL, clamp=FALSE, interpolate=FALSE)

Arguments

X Data for the test. Either a point pattern (object of class "ppp", "lpp" or other
class), a fitted point process model (object of class "ppm", "kppm" or other
class), a simulation envelope (object of class "envelope") or a previous result
of dclf.test or mad.test.

... Arguments passed to envelope. Useful arguments include fun to determine
the summary function, nsim to specify the number of Monte Carlo simulations,
verbose=FALSE to turn off the messages, savefuns or savepatterns to save
the simulation results, and use.theory described under Details.

320 dclf.test

alternative The alternative hypothesis. A character string. The default is a two-sided alter-
native. See Details.

rinterval Interval of values of the summary function argument r over which the maximum
absolute deviation, or the integral, will be computed for the test. A numeric
vector of length 2.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

scale Optional. A function in the R language which determines the relative scale of
deviations, as a function of distance r. Summary function values for distance r
will be divided by scale(r) before the test statistic is computed.

clamp Logical value indicating how to compute deviations in a one-sided test. Devia-
tions of the observed summary function from the theoretical summary function
are initially evaluated as signed real numbers, with large positive values indicat-
ing consistency with the alternative hypothesis. If clamp=FALSE (the default),
these values are not changed. If clamp=TRUE, any negative values are replaced
by zero.

interpolate Logical value specifying whether to calculate the p-value by interpolation. If
interpolate=FALSE (the default), a standard Monte Carlo test is performed,
yielding a p-value of the form (k + 1)/(n + 1) where n is the number of sim-
ulations and k is the number of simulated values which are more extreme than
the observed value. If interpolate=TRUE, the p-value is calculated by apply-
ing kernel density estimation to the simulated values, and computing the tail
probability for this estimated distribution.

Details

These functions perform hypothesis tests for goodness-of-fit of a point pattern dataset to a point
process model, based on Monte Carlo simulation from the model.

dclf.test performs the test advocated by Loosmore and Ford (2006) which is also described
in Diggle (1986), Cressie (1991, page 667, equation (8.5.42)) and Diggle (2003, page 14). See
Baddeley et al (2014) for detailed discussion.

mad.test performs the ‘global’ or ‘Maximum Absolute Deviation’ test described by Ripley (1977,
1981). See Baddeley et al (2014).

The type of test depends on the type of argument X.

• If X is some kind of point pattern, then a test of Complete Spatial Randomness (CSR) will be
performed. That is, the null hypothesis is that the point pattern is completely random.

• If X is a fitted point process model, then a test of goodness-of-fit for the fitted model will be
performed. The model object contains the data point pattern to which it was originally fitted.
The null hypothesis is that the data point pattern is a realisation of the model.

• If X is an envelope object generated by envelope, then it should have been generated with
savefuns=TRUE or savepatterns=TRUE so that it contains simulation results. These simula-
tions will be treated as realisations from the null hypothesis.

dclf.test 321

• Alternatively X could be a previously-performed test of the same kind (i.e. the result of calling
dclf.test or mad.test). The simulations used to perform the original test will be re-used
to perform the new test (provided these simulations were saved in the original test, by setting
savefuns=TRUE or savepatterns=TRUE).

The argument alternative specifies the alternative hypothesis, that is, the direction of deviation
that will be considered statistically significant. If alternative="two.sided" (the default), both
positive and negative deviations (between the observed summary function and the theoretical func-
tion) are significant. If alternative="less", then only negative deviations (where the observed
summary function is lower than the theoretical function) are considered. If alternative="greater",
then only positive deviations (where the observed summary function is higher than the theoretical
function) are considered.

In all cases, the algorithm will first call envelope to generate or extract the simulated summary
functions. The number of simulations that will be generated or extracted, is determined by the
argument nsim, and defaults to 99. The summary function that will be computed is determined by
the argument fun (or the first unnamed argument in the list ...) and defaults to Kest (except when
X is an envelope object generated with savefuns=TRUE, when these functions will be taken).

The choice of summary function fun affects the power of the test. It is normally recommended
to apply a variance-stabilising transformation (Ripley, 1981). If you are using the K function,
the normal practice is to replace this by the L function (Besag, 1977) computed by Lest. If you
are using the F or G functions, the recommended practice is to apply Fisher’s variance-stabilising
transformation sin−1

√
x using the argument transform. See the Examples.

The argument rinterval specifies the interval of distance values r which will contribute to the test
statistic (either maximising over this range of values for mad.test, or integrating over this range
of values for dclf.test). This affects the power of the test. General advice and experiments in
Baddeley et al (2014) suggest that the maximum r value should be slightly larger than the maximum
possible range of interaction between points. The dclf.test is quite sensitive to this choice, while
the mad.test is relatively insensitive.

It is also possible to specify a pointwise test (i.e. taking a single, fixed value of distance r) by
specifing rinterval = c(r,r).

The argument use.theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use.theory=FALSE).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed -reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "htest". Printing this object gives a report on the result of the test. The p-value
is contained in the component p.value.

322 dclf.test

Handling Ties

If the observed value of the test statistic is equal to one or more of the simulated values (called a
tied value), then the tied values will be assigned a random ordering, and a message will be printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Andrew Hardegen and Suman Rakshit.

References

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2015) Pushing the envelope.
In preparation.

Besag, J. (1977) Discussion of Dr Ripley’s paper. Journal of the Royal Statistical Society, Series B,
39, 193–195.

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neuroscience Methods 18, 115–125.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Loosmore, N.B. and Ford, E.D. (2006) Statistical inference using the G or K point pattern spatial
statistics. Ecology 87, 1925–1931.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

See Also

envelope, dclf.progress

Examples

dclf.test(cells, Lest, nsim=39)
m <- mad.test(cells, Lest, verbose=FALSE, rinterval=c(0, 0.1), nsim=19)
m
extract the p-value
m$p.value
variance stabilised G function
dclf.test(cells, Gest, transform=expression(asin(sqrt(.))),

verbose=FALSE, nsim=19)

one-sided test
ml <- mad.test(cells, Lest, verbose=FALSE, nsim=19, alternative="less")

default.dummy 323

scaled
mad.test(cells, Kest, verbose=FALSE, nsim=19,

rinterval=c(0.05, 0.2),
scale=function(r) { r })

default.dummy Generate a Default Pattern of Dummy Points

Description

Generates a default pattern of dummy points for use in a quadrature scheme.

Usage

default.dummy(X, nd, random=FALSE, ntile=NULL, npix=NULL,
quasi=FALSE, ..., eps=NULL, verbose=FALSE)

Arguments

X The observed data point pattern. An object of class "ppp" or in a format recog-
nised by as.ppp()

nd Optional. Integer, or integer vector of length 2, specifying an nd * nd or nd[1]
* nd[2] rectangular array of dummy points.

random Logical value. If TRUE, the dummy points are generated randomly.

quasi Logical value. If TRUE, the dummy points are generated by a quasirandom se-
quence.

ntile Optional. Integer or pair of integers specifying the number of rows and columns
of tiles used in the counting rule.

npix Optional. Integer or pair of integers specifying the number of rows and columns
of pixels used in computing approximate areas.

... Ignored.

eps Optional. Grid spacing. A positive number, or a vector of two positive numbers,
giving the horizontal and vertical spacing, respectively, of the grid of dummy
points. Incompatible with nd.

verbose If TRUE, information about the construction of the quadrature scheme is printed.

Details

This function provides a sensible default for the dummy points in a quadrature scheme.

A quadrature scheme consists of the original data point pattern, an additional pattern of dummy
points, and a vector of quadrature weights for all these points. See quad.object for further infor-
mation about quadrature schemes.

If random and quasi are both false (the default), then the function creates dummy points in a regular
nd[1] by nd[1] rectangular grid. If random is true and quasi is false, then the frame of the window

324 default.expand

is divided into an nd[1] by nd[1] array of tiles, and one dummy point is generated at random inside
each tile. If quasi is true, a quasirandom pattern of nd[1] * nd[2] points is generated. In all cases,
the four corner points of the frame of the window are added. Then if the window is not rectangular,
any dummy points lying outside it are deleted.

If nd is missing, a default value (depending on the data pattern X) is computed by default.ngrid.

Alternative functions for creating dummy patterns include corners, gridcentres, stratrand and
spokes.

Value

A point pattern (an object of class "ppp", see ppp.object) containing the dummy points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, quadscheme, corners, gridcentres, stratrand, spokes

Examples

data(simdat)
P <- simdat
D <- default.dummy(P, 100)
Not run: plot(D)
Q <- quadscheme(P, D, "grid")
Not run: plot(union.quad(Q))

default.expand Default Expansion Rule for Simulation of Model

Description

Defines the default expansion window or expansion rule for simulation of a fitted point process
model.

Usage

default.expand(object, m=2, epsilon=1e-6, w=Window(object))

default.expand 325

Arguments

object A point process model (object of class "ppm" or "rmhmodel").

m A single numeric value. The window will be expanded by a distance m * reach(object)
along each side.

epsilon Threshold argument passed to reach to determine reach(object).

w Optional. The un-expanded window in which the model is defined. The result-
ing simulated point patterns will lie in this window.

Details

This function computes a default value for the expansion rule (the argument expand in rmhcontrol)
given a fitted point process model object. This default is used by envelope, qqplot.ppm, simulate.ppm
and other functions.

Suppose we wish to generate simulated realisations of a fitted point process model inside a window
w. It is advisable to first simulate the pattern on a larger window, and then clip it to the original
window w. This avoids edge effects in the simulation. It is called expansion of the simulation
window.

Accordingly, for the Metropolis-Hastings simulation algorithm rmh, the algorithm control param-
eters specified by rmhcontrol include an argument expand that determines the expansion of the
simulation window.

The function default.expand determines the default expansion rule for a fitted point process
model object.

If the model is Poisson, then no expansion is necessary. No expansion is performed by default, and
default.expand returns a rule representing no expansion. The simulation window is the original
window w = Window(object).

If the model depends on external covariates (i.e.\ covariates other than the Cartesian covariates x
and y and the marks) then no expansion is feasible, in general, because the spatial domain of the
covariates is not guaranteed to be large enough. default.expand returns a rule representing no
expansion. The simulation window is the original window w = Window(object).

If the model depends on the Cartesian covariates x and y, it would be feasible to expand the sim-
ulation window, and this was the default for spatstat version 1.24-1 and earlier. However this
sometimes produces artefacts (such as an empty point pattern) or memory overflow, because the fit-
ted trend, extrapolated outside the original window of the data, may become very large. In spatstat
version 1.24-2 and later, the default rule is not to expand if the model depends on x or y. Again
default.expand returns a rule representing no expansion.

Otherwise, expansion will occur. The original window w = Window(object) is expanded by a dis-
tance m * rr, where rr is the interaction range of the model, computed by reach. If w is a rectangle
then each edge of w is displaced outward by distance m * rr. If w is not a rectangle then w is dilated
by distance m * rr using dilation.

Value

A window expansion rule (object of class "rmhexpand").

326 default.rmhcontrol

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rmhexpand, rmhcontrol, rmh, envelope, qqplot.ppm

Examples

data(cells)
fit <- ppm(cells, ~1, Strauss(0.07))
default.expand(fit)
mod <- rmhmodel(cif="strauss", par=list(beta=100, gamma=0.5, r=0.07))
default.expand(fit)

default.rmhcontrol Set Default Control Parameters for Metropolis-Hastings Algorithm.

Description

Given a fitted point process model, this command sets appropriate default values of the parameters
controlling the iterative behaviour of the Metropolis-Hastings algorithm.

Usage

default.rmhcontrol(model, w=NULL)

Arguments

model A fitted point process model (object of class "ppm")

w Optional. Window for the resulting simulated patterns.

Details

This function sets the values of the parameters controlling the iterative behaviour of the Metropolis-
Hastings simulation algorithm. It uses default values that would be appropriate for the fitted point
process model model.

The expansion parameter expand is set to default.expand(model,w).

All other parameters revert to their defaults given in rmhcontrol.default.

See rmhcontrol for the full list of control parameters. To override default parameters, use update.rmhcontrol.

Value

An object of class "rmhcontrol". See rmhcontrol.

delaunay 327

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rmhcontrol, update.rmhcontrol, ppm, default.expand

Examples

fit <- ppm(cells, ~1, Strauss(0.1))
default.rmhcontrol(fit)
default.rmhcontrol(fit, w=square(2))

delaunay Delaunay Triangulation of Point Pattern

Description

Computes the Delaunay triangulation of a spatial point pattern.

Usage

delaunay(X)

Arguments

X Spatial point pattern (object of class "ppp").

Details

The Delaunay triangulation of a spatial point pattern X is defined as follows. First the Dirich-
let/Voronoi tessellation of X computed; see dirichlet. Then two points of X are defined to be
Delaunay neighbours if their Dirichlet/Voronoi tiles share a common boundary. Every pair of De-
launay neighbours is joined by a straight line. The result is a tessellation, consisting of disjoint
triangles. The union of these triangles is the convex hull of X.

Value

A tessellation (object of class "tess"). The window of the tessellation is the convex hull of X, not
the original window of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

328 delaunayDistance

See Also

tess, dirichlet, convexhull.xy, ppp, delaunayDistance, delaunayNetwork

Examples

X <- runifpoint(42)
plot(delaunay(X))
plot(X, add=TRUE)

delaunayDistance Distance on Delaunay Triangulation

Description

Computes the graph distance in the Delaunay triangulation of a point pattern.

Usage

delaunayDistance(X)

Arguments

X Spatial point pattern (object of class "ppp").

Details

The Delaunay triangulation of a spatial point pattern X is defined as follows. First the Dirich-
let/Voronoi tessellation of X computed; see dirichlet. Then two points of X are defined to be
Delaunay neighbours if their Dirichlet/Voronoi tiles share a common boundary. Every pair of De-
launay neighbours is joined by a straight line.

The graph distance in the Delaunay triangulation between two points X[i] and X[j] is the min-
imum number of edges of the Delaunay triangulation that must be traversed to go from X[i] to
X[j].

This command returns a matrix D such that D[i,j] is the graph distance between X[i] and X[j].

Value

A symmetric square matrix with integer entries.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

delaunayNetwork 329

See Also

delaunay, delaunayNetwork

Examples

X <- runifpoint(20)
M <- delaunayDistance(X)
plot(delaunay(X), lty=3)
text(X, labels=M[1,], cex=2)

delaunayNetwork Linear Network of Delaunay Triangulation or Dirichlet Tessellation

Description

Computes the edges of the Delaunay triangulation or Dirichlet tessellation of a point pattern, and
returns the result as a linear network object.

Usage

delaunayNetwork(X)

dirichletNetwork(X, ...)

Arguments

X A point pattern (object of class "ppp").

... Arguments passed to as.linnet.psp

Details

For delaunayNetwork, points of X which are neighbours in the Delaunay triangulation (see delaunay)
will be joined by a straight line. The result will be returned as a linear network (object of class
"linnet").

For dirichletNetwork, the Dirichlet tessellation is computed (see dirichlet) and the edges of the
tiles of the tessellation are extracted. This is converted to a linear network using as.linnet.psp.

Value

Linear network (object of class "linnet") or NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

330 deletebranch

See Also

delaunay, dirichlet, delaunayDistance

Examples

LE <- delaunayNetwork(cells)
LI <- dirichletNetwork(cells)

deletebranch Delete or Extract a Branch of a Tree

Description

Deletes or extracts a given branch of a tree.

Usage

deletebranch(X, ...)

S3 method for class 'linnet'
deletebranch(X, code, labels, ...)

S3 method for class 'lpp'
deletebranch(X, code, labels, ...)

extractbranch(X, ...)

S3 method for class 'linnet'
extractbranch(X, code, labels, ..., which=NULL)

S3 method for class 'lpp'
extractbranch(X, code, labels, ..., which=NULL)

Arguments

X Linear network (object of class "linnet") or point pattern on a linear network
(object of class "lpp").

code Character string. Label of the branch to be deleted or extracted.

labels Vector of character strings. Branch labels for the vertices of the network, usually
obtained from treebranchlabels.

... Arguments passed to methods.

which Logical vector indicating which vertices of the network should be extracted.
Overrides code and labels.

deltametric 331

Details

The linear network L <-X or L <-as.linnet(X) must be a tree, that is, it has no loops.

The argument labels should be a character vector giving tree branch labels for each vertex of the
network. It is usually obtained by calling treebranchlabels.

The branch designated by the string code will be deleted or extracted.

The return value is the result of deleting or extracting this branch from X along with any data
associated with this branch (such as points or marks).

Value

Another object of the same type as X obtained by deleting or extracting the specified branch.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

treebranchlabels, branchlabelfun, linnet

Examples

make a simple tree
m <- simplenet$m
m[8,10] <- m[10,8] <- FALSE
L <- linnet(vertices(simplenet), m)
plot(L, main="")
compute branch labels
tb <- treebranchlabels(L, 1)
tbc <- paste0("[", tb, "]")
text(vertices(L), labels=tbc, cex=2)

delete branch B
LminusB <- deletebranch(L, "b", tb)
plot(LminusB, add=TRUE, col="green")

extract branch B
LB <- extractbranch(L, "b", tb)
plot(LB, add=TRUE, col="red")

deltametric Delta Metric

Description

Computes the discrepancy between two sets A and B according to Baddeley’s delta-metric.

332 deltametric

Usage

deltametric(A, B, p = 2, c = Inf, ...)

Arguments

A,B The two sets which will be compared. Windows (objects of class "owin"),
point patterns (objects of class "ppp") or line segment patterns (objects of class
"psp").

p Index of the Lp metric. Either a positive numeric value, or Inf.

c Distance threshold. Either a positive numeric value, or Inf.

... Arguments passed to as.mask to determine the pixel resolution of the distance
maps computed by distmap.

Details

Baddeley (1992a, 1992b) defined a distance between two sets A and B contained in a space W by

∆(A,B) =

[
1

|W |

∫
W

|min(c, d(x,A))−min(c, d(x,B))|p dx

]1/p
where c ≥ 0 is a distance threshold parameter, 0 < p ≤ ∞ is the exponent parameter, and d(x,A)
denotes the shortest distance from a point x to the set A. Also |W| denotes the area or volume of
the containing space W .

This is defined so that it is a metric, i.e.

• ∆(A,B) = 0 if and only if A = B

• ∆(A,B) = ∆(B,A)

• ∆(A,C) ≤ ∆(A,B) + ∆(B,C)

It is topologically equivalent to the Hausdorff metric (Baddeley, 1992a) but has better stability
properties in practical applications (Baddeley, 1992b).

If p =∞ and c =∞ the Delta metric is equal to the Hausdorff metric.

The algorithm uses distmap to compute the distance maps d(x,A) and d(x,B), then approximates
the integral numerically. The accuracy of the computation depends on the pixel resolution which is
controlled through the extra arguments ... passed to as.mask.

Value

A numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

density.lpp 333

References

Baddeley, A.J. (1992a) Errors in binary images and an Lp version of the Hausdorff metric. Nieuw
Archief voor Wiskunde 10, 157–183.

Baddeley, A.J. (1992b) An error metric for binary images. In W. Foerstner and S. Ruwiedel (eds)
Robust Computer Vision. Karlsruhe: Wichmann. Pages 59–78.

See Also

distmap

Examples

X <- runifpoint(20)
Y <- runifpoint(10)
deltametric(X, Y, p=1,c=0.1)

density.lpp Kernel Estimate of Intensity on a Linear Network

Description

Estimates the intensity of a point process on a linear network by applying kernel smoothing to the
point pattern data.

Usage

S3 method for class 'lpp'
density(x, sigma=NULL, ...,

weights=NULL,
distance=c("path", "euclidean"),
continuous=TRUE,
kernel="gaussian")

S3 method for class 'splitppx'
density(x, sigma=NULL, ...)

Arguments

x Point pattern on a linear network (object of class "lpp") to be smoothed.

sigma Smoothing bandwidth (standard deviation of the kernel). A single numerical
value in the same units as the spatial coordinates of x.

... Additional arguments controlling the algorithm and the spatial resolution of the
result. These arguments are passed either to densityQuick.lpp, densityHeat
or densityEqualSplit depending on the algorithm chosen.

weights Optional. Numeric vector of weights associated with the points of x. Weights
may be positive, negative or zero.

334 density.lpp

distance Character string (partially matched) specifying whether to use a kernel based
on paths in the network (distance="path", the default) or a two-dimensional
kernel (distance="euclidean").

kernel Character string specifying the smoothing kernel. See dkernel for possible
options.

continuous Logical value indicating whether to compute the “equal-split continuous” smoother
(continuous=TRUE, the default) or the “equal-split discontinuous” smoother
(continuous=FALSE). Applies only when distance="path".

Details

Kernel smoothing is applied to the points of x using either a kernel based on path distances in the
network, or a two-dimensional kernel. The result is a pixel image on the linear network (class
"linim") which can be plotted.

• If distance="path" (the default) then the smoothing is performed using a kernel based on
path distances in the network, as described in described in Okabe and Sugihara (2012) and
McSwiggan et al (2016).

– If continuous=TRUE (the default), smoothing is performed using the “equal-split con-
tinuous” rule described in Section 9.2.3 of Okabe and Sugihara (2012). The resulting
function is continuous on the linear network.

– If continuous=FALSE, smoothing is performed using the “equal-split discontinuous” rule
described in Section 9.2.2 of Okabe and Sugihara (2012). The resulting function is con-
tinuous except at the network vertices.

– In the default case (where distance="path" and continuous=TRUE and kernel="gaussian",
computation is performed rapidly by solving the classical heat equation on the network, as
described in McSwiggan et al (2016). The arguments are passed to densityHeat which
performs the computation. Computational time is short, but increases quadratically with
sigma.

– In all other cases, computation is performed by path-tracing as described in Okabe and
Sugihara (2012); the arguments are passed to densityEqualSplit which performs the
computation. Computation time can be extremely long, and increases exponentially with
sigma.

• If distance="euclidean", the smoothing is performed using a two-dimensional kernel. The
arguments are passed to densityQuick.lpp to perform the computation. Computation time
is very short. See the help for densityQuick.lpp for further details.

There is also a method for split point patterns on a linear network (class "splitppx") which will
return a list of pixel images.

Value

A pixel image on the linear network (object of class "linim").

Infinite bandwidth

If sigma=Inf, the resulting density estimate is constant over all locations, and is equal to the average
density of points per unit length. (If the network is not connected, then this rule is applied separately
to each connected component of the network).

density.ppp 335

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

References

McSwiggan, G., Baddeley, A. and Nair, G. (2016) Kernel density estimation on a linear network.
Scandinavian Journal of Statistics 44, 324–345.

Okabe, A. and Sugihara, K. (2012) Spatial analysis along networks. Wiley.

See Also

lpp, linim, densityQuick.lpp

Examples

X <- runiflpp(3, simplenet)
D <- density(X, 0.2, verbose=FALSE)
plot(D, style="w", main="", adjust=2)
Dq <- density(X, 0.2, distance="euclidean")
plot(Dq, style="w", main="", adjust=2)
Dw <- density(X, 0.2, weights=c(1,2,-1), verbose=FALSE)
De <- density(X, 0.2, kernel="epanechnikov", verbose=FALSE)
Ded <- density(X, 0.2, kernel="epanechnikov", continuous=FALSE, verbose=FALSE)

density.ppp Kernel Smoothed Intensity of Point Pattern

Description

Compute a kernel smoothed intensity function from a point pattern.

Usage

S3 method for class 'ppp'
density(x, sigma=NULL, ...,

weights=NULL, edge=TRUE, varcov=NULL,
at="pixels", leaveoneout=TRUE,
adjust=1, diggle=FALSE, se=FALSE,
kernel="gaussian",
scalekernel=is.character(kernel),
positive=FALSE, verbose=TRUE)

336 density.ppp

Arguments

x Point pattern (object of class "ppp").

sigma Standard deviation of isotropic smoothing kernel. Either a numerical value, or a
function that computes an appropriate value of sigma.

weights Optional weights to be attached to the points. A numeric vector, numeric matrix,
an expression, or a pixel image.

... Additional arguments passed to pixellate.ppp and as.mask to determine the
pixel resolution, or passed to sigma if it is a function.

edge Logical value indicating whether to apply edge correction.

varcov Variance-covariance matrix of anisotropic smoothing kernel. Incompatible with
sigma.

at String specifying whether to compute the intensity values at a grid of pixel lo-
cations (at="pixels") or only at the points of x (at="points").

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

adjust Optional. Adjustment factor for the smoothing parameter.

diggle Logical. If TRUE, use the Jones-Diggle improved edge correction, which is more
accurate but slower to compute than the default correction.

kernel The smoothing kernel. A character string specifying the smoothing kernel (cur-
rent options are "gaussian", "epanechnikov", "quartic" or "disc"), or a
pixel image (object of class "im") containing values of the kernel, or a function(x,y)
which yields values of the kernel.

scalekernel Logical value. If scalekernel=TRUE, then the kernel will be rescaled to the
bandwidth determined by sigma and varcov: this is the default behaviour when
kernel is a character string. If scalekernel=FALSE, then sigma and varcov
will be ignored: this is the default behaviour when kernel is a function or a
pixel image.

se Logical value indicating whether to compute standard errors as well.

positive Logical value indicating whether to force all density values to be positive num-
bers. Default is FALSE.

verbose Logical value indicating whether to issue warnings about numerical problems
and conditions.

Details

This is a method for the generic function density.

It computes a fixed-bandwidth kernel estimate (Diggle, 1985) of the intensity function of the point
process that generated the point pattern x.

By default it computes the convolution of the isotropic Gaussian kernel of standard deviation sigma
with point masses at each of the data points in x. Anisotropic Gaussian kernels, and non-Gaussian
kernels, are also supported. Each point has unit weight, unless the argument weights is given.

If edge=TRUE, the intensity estimate is corrected for edge effect bias in one of two ways:

density.ppp 337

• If diggle=FALSE (the default) the intensity estimate is correted by dividing it by the convolu-
tion of the Gaussian kernel with the window of observation. This is the approach originally
described in Diggle (1985). Thus the intensity value at a point u is

λ̂(u) = e(u)
∑
i

k(xi − u)wi

where k is the Gaussian smoothing kernel, e(u) is an edge correction factor, and wi are the
weights.

• If diggle=TRUE then the code uses the improved edge correction described by Jones (1993)
and Diggle (2010, equation 18.9). This has been shown to have better performance (Jones,
1993) but is slightly slower to compute. The intensity value at a point u is

λ̂(u) =
∑
i

k(xi − u)wie(xi)

where again k is the Gaussian smoothing kernel, e(xi) is an edge correction factor, and wi are
the weights.

In both cases, the edge correction term e(u) is the reciprocal of the kernel mass inside the window:

1

e(u)
=

∫
W

k(v − u) dv

where W is the observation window.

By default, smoothing is performed using a Gaussian kernel, with smoothing bandwidth determined
by the arguments sigma, varcov and adjust.

• if sigma is a single numerical value, this is taken as the standard deviation of the isotropic
Gaussian kernel.

• alternatively sigma may be a function that computes an appropriate bandwidth from the data
point pattern by calling sigma(x). To perform automatic bandwidth selection using cross-
validation, it is recommended to use the functions bw.diggle, bw.CvL, bw.scott or bw.ppl.

• The smoothing kernel may be made anisotropic by giving the variance-covariance matrix
varcov. The arguments sigma and varcov are incompatible.

• Alternatively sigma may be a vector of length 2 giving the standard deviations of the x and y
coordinates, thus equivalent to varcov = diag(rep(sigma^2,2)).

• if neither sigma nor varcov is specified, an isotropic Gaussian kernel will be used, with a
default value of sigma calculated by a simple rule of thumb that depends only on the size of
the window.

• The argument adjust makes it easy for the user to change the bandwidth specified by any
of the rules above. The value of sigma will be multiplied by the factor adjust. The matrix
varcov will be multiplied by adjust^2. To double the smoothing bandwidth, set adjust=2.

• An infinite bandwidth, sigma=Inf or adjust=Inf, is permitted, and yields an intensity esti-
mate which is constant over the spatial domain.

The choice of smoothing kernel is determined by the argument kernel. This should be a character
string giving the name of a recognised two-dimensional kernel (current options are "gaussian",
"epanechnikov", "quartic" or "disc"), or a pixel image (object of class "im") containing values

338 density.ppp

of the kernel, or a function(x,y) which yields values of the kernel. The default is a Gaussian
kernel.

If scalekernel=TRUE then the kernel values will be rescaled according to the arguments sigma,
varcov and adjust as explained above, effectively treating kernel as the template kernel with
standard deviation equal to 1. This is the default behaviour when kernel is a character string. If
scalekernel=FALSE, the kernel values will not be altered, and the arguments sigma, varcov and
adjust are ignored. This is the default behaviour when kernel is a pixel image or a function.

If at="pixels" (the default), intensity values are computed at every location u in a fine grid,
and are returned as a pixel image. The point pattern is first discretised using pixellate.ppp,
then the intensity is computed using the Fast Fourier Transform. Accuracy depends on the pixel
resolution and the discretisation rule. The pixel resolution is controlled by the arguments ... passed
to as.mask (specify the number of pixels by dimyx or the pixel size by eps). The discretisation rule
is controlled by the arguments ... passed to pixellate.ppp (the default rule is that each point
is allocated to the nearest pixel centre; this can be modified using the arguments fractional and
preserve).

If at="points", the intensity values are computed to high accuracy at the points of x only. Compu-
tation is performed by directly evaluating and summing the kernel contributions without discretising
the data. The result is a numeric vector giving the density values. The intensity value at a point xi
is (if diggle=FALSE)

λ̂(xi) = e(xi)
∑
j

k(xj − xi)wj

or (if diggle=TRUE)
λ̂(xi) =

∑
j

k(xj − xi)wje(xj)

If leaveoneout=TRUE (the default), then the sum in the equation is taken over all j not equal to i, so
that the intensity value at a data point is the sum of kernel contributions from all other data points.
If leaveoneout=FALSE then the sum is taken over all j, so that the intensity value at a data point
includes a contribution from the same point.

If weights is a matrix with more than one column, then the calculation is effectively repeated for
each column of weights. The result is a list of images (if at="pixels") or a matrix of numerical
values (if at="points").

The argument weights can also be an expression. It will be evaluated in the data frame as.data.frame(x)
to obtain a vector or matrix of weights. The expression may involve the symbols x and y represent-
ing the Cartesian coordinates, the symbol marks representing the mark values if there is only one
column of marks, and the names of the columns of marks if there are several columns.

The argument weights can also be a pixel image (object of class "im"). numerical weights for the
data points will be extracted from this image (by looking up the pixel values at the locations of the
data points in x).

To select the bandwidth sigma automatically by cross-validation, use bw.diggle, bw.CvL, bw.scott
or bw.ppl.

To perform spatial interpolation of values that were observed at the points of a point pattern, use
Smooth.ppp.

For adaptive nonparametric estimation, see adaptive.density. For data sharpening, see sharpen.ppp.

To compute a relative risk surface or probability map for two (or more) types of points, use relrisk.

density.ppp 339

Value

By default, the result is a pixel image (object of class "im"). Pixel values are estimated intensity
values, expressed in “points per unit area”.

If at="points", the result is a numeric vector of length equal to the number of points in x. Values
are estimated intensity values at the points of x.

In either case, the return value has attributes "sigma" and "varcov" which report the smoothing
bandwidth that was used.

If weights is a matrix with more than one column, then the result is a list of images (if at="pixels")
or a matrix of numerical values (if at="points").

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

Negative Values

Negative and zero values of the density estimate are possible when at="pixels" because of nu-
merical errors in finite-precision arithmetic.

By default, density.ppp does not try to repair such errors. This would take more computation time
and is not always needed. (Also it would not be appropriate if weights include negative values.)

To ensure that the resulting density values are always positive, set positive=TRUE.

Note

This function is often misunderstood.

The result of density.ppp is not a spatial smoothing of the marks or weights attached to the point
pattern. To perform spatial interpolation of values that were observed at the points of a point pattern,
use Smooth.ppp.

The result of density.ppp is not a probability density. It is an estimate of the intensity function of
the point process that generated the point pattern data. Intensity is the expected number of random
points per unit area. The units of intensity are “points per unit area”. Intensity is usually a function
of spatial location, and it is this function which is estimated by density.ppp. The integral of the
intensity function over a spatial region gives the expected number of points falling in this region.

Inspecting an estimate of the intensity function is usually the first step in exploring a spatial point
pattern dataset. For more explanation, see Baddeley, Rubak and Turner (2015) or Diggle (2003,
2010).

If you have two (or more) types of points, and you want a probability map or relative risk surface
(the spatially-varying probability of a given type), use relrisk.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

340 density.ppp

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Diggle, P.J. (1985) A kernel method for smoothing point process data. Applied Statistics (Journal
of the Royal Statistical Society, Series C) 34 (1985) 138–147.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Diggle, P.J. (2010) Nonparametric methods. Chapter 18, pp. 299–316 in A.E. Gelfand, P.J. Diggle,
M. Fuentes and P. Guttorp (eds.) Handbook of Spatial Statistics, CRC Press, Boca Raton, FL.

Jones, M.C. (1993) Simple boundary corrections for kernel density estimation. Statistics and Com-
puting 3, 135–146.

See Also

bw.diggle, bw.CvL, bw.scott bw.ppl for bandwidth selection.

Smooth.ppp, sharpen.ppp, adaptive.density, relrisk, ppp.object, im.object.

Examples

if(interactive()) {
opa <- par(mfrow=c(1,2))
plot(density(cells, 0.05))
plot(density(cells, 0.05, diggle=TRUE))
par(opa)
v <- diag(c(0.05, 0.07)^2)
plot(density(cells, varcov=v))

}

Z <- density(cells, 0.05)
Z <- density(cells, 0.05, diggle=TRUE)
Z <- density(cells, 0.05, se=TRUE)
Z <- density(cells, varcov=diag(c(0.05^2, 0.07^2)))
Z <- density(cells, 0.05, weights=data.frame(a=1:42,b=42:1))
Z <- density(cells, 0.05, weights=expression(x))

automatic bandwidth selection
plot(density(cells, sigma=bw.diggle(cells)))
equivalent:
plot(density(cells, bw.diggle))
evaluate intensity at points
density(cells, 0.05, at="points")

plot(density(cells, sigma=0.4, kernel="epanechnikov"))

relative risk calculation by hand (see relrisk.ppp)
lung <- split(chorley)$lung
larynx <- split(chorley)$larynx
D <- density(lung, sigma=2)
plot(density(larynx, sigma=2, weights=1/D))

density.psp 341

density.psp Kernel Smoothing of Line Segment Pattern or Linear Network

Description

Compute a kernel smoothed intensity function from a line segment pattern or a linear network.

Usage

S3 method for class 'psp'
density(x, sigma, ..., edge=TRUE,

method=c("FFT", "C", "interpreted"),
at=NULL)

S3 method for class 'linnet'
density(x, ...)

Arguments

x Line segment pattern (object of class "psp") or linear network (object of class
"linnet") to be smoothed.

sigma Standard deviation of isotropic Gaussian smoothing kernel.

... Extra arguments, including arguments passed to as.mask to determine the reso-
lution of the resulting image.

edge Logical flag indicating whether to apply edge correction.

method Character string (partially matched) specifying the method of computation. Op-
tion "FFT" is the fastest, while "C" is the most accurate.

at Optional. An object specifying the locations where density values should be
computed. Either a window (object of class "owin") or a point pattern (object
of class "ppp" or "lpp").

Details

These are methods for the generic function density for the classes "psp" (line segment patterns)
and "linnet" (linear networks). If x is a linear network, it is first converted to a line segment
pattern.

A kernel estimate of the intensity of the line segment pattern is computed. The result is the convo-
lution of the isotropic Gaussian kernel, of standard deviation sigma, with the line segments. The
result is computed as follows:

• if method="FFT" (the default), the line segments are discretised using pixellate.psp, then
the Fast Fourier Transform is used to calculate the convolution. This method is the fastest, but
is slightly less accurate. Accuracy can be improved by increasing pixel resolution.

• if method="C" the exact value of the convolution at the centre of each pixel is computed
analytically using C code;

342 density.splitppp

• if method="interpreted", the exact value of the convolution at the centre of each pixel is
computed analytically using R code. This method is the slowest.

If edge=TRUE this result is adjusted for edge effects by dividing it by the convolution of the same
Gaussian kernel with the observation window.

If the argument at is given, then it specifies the locations where density values should be computed.

• If at is a window, then the window is converted to a binary mask using the arguments ...,
and density values are computed at the centre of each pixel in this mask. The result is a pixel
image.

• If at is a point pattern, then density values are computed at each point location, and the result
is a numeric vector.

Value

A pixel image (object of class "im") or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp.object, im.object, density

Examples

L <- psp(runif(20),runif(20),runif(20),runif(20), window=owin())
D <- density(L, sigma=0.03)
plot(D, main="density(L)")
plot(L, add=TRUE)

density.splitppp Kernel Smoothed Intensity of Split Point Pattern

Description

Compute a kernel smoothed intensity function for each of the components of a split point pattern,
or each of the point patterns in a list.

Usage

S3 method for class 'splitppp'
density(x, ..., weights=NULL, se=FALSE)

S3 method for class 'ppplist'
density(x, ..., weights=NULL, se=FALSE)

density.splitppp 343

Arguments

x Split point pattern (object of class "splitppp" created by split.ppp) to be
smoothed. Alternatively a list of point patterns, of class "ppplist".

... Arguments passed to density.ppp to control the smoothing, pixel resolution,
edge correction etc.

weights Numerical weights for the points. See Details.

se Logical value indicating whether to compute standard errors as well.

Details

This is a method for the generic function density.

The argument x should be a list of point patterns, and should belong to one of the classes "ppplist"
or "splitppp".

Typically x is obtained by applying the function split.ppp to a point pattern y by calling split(y).
This splits the points of y into several sub-patterns.

A kernel estimate of the intensity function of each of the point patterns is computed using density.ppp.

The return value is usually a list, each of whose entries is a pixel image (object of class "im"). The
return value also belongs to the class "solist" and can be plotted or printed.

If the argument at="points" is given, the result is a list of numeric vectors giving the intensity
values at the data points.

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

The argument weights specifies numerical case weights for the data points. Normally it should
be a list, with the same length as x. The entry weights[[i]] will determine the case weights for
the pattern x[[i]], and may be given in any format acceptable to density.ppp. For example,
weights[[i]] can be a numeric vector of length equal to npoints(x[[i]]), a single numeric
value, a numeric matrix, a pixel image (object of class "im"), or an expression.

For convenience, weights can also be a single expression or a single pixel image (object of class
"im").

Value

A list of pixel images (objects of class "im") which can be plotted or printed; or a list of numeric
vectors giving the values at specified points.

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppp.object, im.object

344 densityAdaptiveKernel

Examples

Z <- density(split(amacrine), 0.05)
plot(Z)

densityAdaptiveKernel Adaptive Kernel Estimate of Intensity of Point Pattern

Description

Computes an adaptive estimate of the intensity function of a point pattern using a variable-bandwidth
smoothing kernel.

Usage

densityAdaptiveKernel(X, ...)

S3 method for class 'ppp'
densityAdaptiveKernel(X, bw, ...,

weights=NULL,
at=c("pixels", "points"),
edge=TRUE, ngroups)

Arguments

X Point pattern (object of class "ppp").

bw Numeric vector of smoothing bandwidths for each point in X, or a pixel image
giving the smoothing bandwidth at each spatial location, or a spatial function of
class "funxy" giving the smoothing bandwidth at each location. The default is
to compute bandwidths using bw.abram.

... Arguments passed to bw.abram to compute the smoothing bandwidths if bw is
missing, or passed to as.mask to control the spatial resolution of the result.

weights Optional vector of numeric weights for the points of X.

at String specifying whether to compute the intensity values at a grid of pixel lo-
cations (at="pixels") or only at the points of x (at="points").

edge Logical value indicating whether to perform edge correction.

ngroups Number of groups into which the bandwidth values should be partitioned and
discretised.

Details

This function computes a spatially-adaptive kernel estimate of the spatially-varying intensity from
the point pattern X using the partitioning technique of Davies and Baddeley (2018).

The argument bw specifies the smoothing bandwidths to be applied to each of the points in X. It
may be a numeric vector of bandwidth values, or a pixel image or function yielding the bandwidth
values.

densityAdaptiveKernel 345

If the points of X are x1, . . . , xn and the corresponding bandwidths are σ1, . . . , σn then the adaptive
kernel estimate of intensity at a location u is

λ̂(u) =

n∑
i=1

k(u, xi, σi)

where k(u, v, σ) is the value at u of the (possibly edge-corrected) smoothing kernel with bandwidth
σ induced by a data point at v.

Exact computation of the estimate above can be time-consuming: it takes n times longer than fixed-
bandwidth smoothing.

The partitioning method of Davies and Baddeley (2018) accelerates this computation by partitioning
the range of bandwidths into ngroups intervals, correspondingly subdividing the points of the pat-
tern X into ngroups sub-patterns according to bandwidth, and applying fixed-bandwidth smoothing
to each sub-pattern.

The default value of ngroups is the integer part of the square root of the number of points in
X, so that the computation time is only about

√
n times slower than fixed-bandwidth smoothing.

Any positive value of ngroups can be specified by the user. Specifying ngroups=Inf enforces
exact computation of the estimate without partitioning. Specifying ngroups=1 is the same as fixed-
bandwidth smoothing with bandwidth sigma=median(bw).

Value

If at="pixels" (the default), the result is a pixel image. If at="points", the result is a numeric
vector with one entry for each data point in X.

Bandwidths and Bandwidth Selection

The function densityAdaptiveKernel computes one adaptive estimate of the intensity, determined
by the smoothing bandwidth values bw.

Typically the bandwidth values are computed by first computing a pilot estimate of the intensity,
then using bw.abram to compute the vector of bandwidths according to Abramson’s rule. This
involves specifying a global bandwidth h0.

The default bandwidths may work well in many contexts, but for optimal bandwidth selection, this
calculation should be performed repeatedly with different values of h0 to optimise the value of h0.
This can be computationally demanding; we recommend the function multiscale.density in the
sparr package which supports much faster bandwidth selection, using the FFT method of Davies
and Baddeley (2018).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Tilman Davies.

References

Davies, T.M. and Baddeley, A. (2018) Fast computation of spatially adaptive kernel estimates.
Statistics and Computing, 28(4), 937-956.

346 densityEqualSplit

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability den-
sities. Probability Theory and Related Fields, 80, 37-49.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

See Also

density.ppp, adaptive.density, densityVoronoi, im.object.

See the function bivariate.density in the sparr package for a more flexible implementation, and
multiscale.density for an implementation that is more efficient for bandwidth selection.

Examples

Z <- densityAdaptiveKernel(redwood, h0=0.1)
plot(Z, main="Adaptive kernel estimate")
points(redwood, col="white")

densityEqualSplit Equal-Split Algorithm for Kernel Density on a Network

Description

Computes a kernel density estimate on a linear network using the Okabe-Sugihara equal-split algo-
rithms.

Usage

densityEqualSplit(x, sigma = NULL, ..., weights = NULL,
kernel = "epanechnikov", continuous = TRUE,

epsilon = 1e-06, verbose = TRUE, debug = FALSE, savehistory = TRUE)

Arguments

x Point pattern on a linear network (object of class "lpp") to be smoothed.

sigma Smoothing bandwidth (standard deviation of the kernel) in the same units as the
spatial coordinates of x.

... Arguments passed to as.mask determining the resolution of the result.

weights Optional. Numeric vector of weights associated with the points of x. Weights
may be positive, negative or zero.

kernel Character string specifying the smoothing kernel. See dkernel for possible
options.

continuous Logical value indicating whether to compute the “equal-split continuous” smoother
(continuous=TRUE, the default) or the “equal-split discontinuous” smoother
(continuous=FALSE).

densityEqualSplit 347

epsilon Tolerance value. A tail of the kernel with total mass less than epsilon may be
deleted.

verbose Logical value indicating whether to print progress reports.

debug Logical value indicating whether to print debugging information.

savehistory Logical value indicating whether to save the entire history of the algorithm, for
the purposes of evaluating performance.

Details

Kernel smoothing is applied to the points of x using a kernel based on path distances in the network.
The result is a pixel image on the linear network (class "linim") which can be plotted.

Smoothing is performed using one of the “equal-split” rules described in Okabe and Sugihara
(2012).

• If continuous=TRUE (the default), smoothing is performed using the “equal-split continu-
ous” rule described in Section 9.2.3 of Okabe and Sugihara (2012). The resulting function is
continuous on the linear network.

• If continuous=FALSE, smoothing is performed using the “equal-split discontinuous” rule de-
scribed in Section 9.2.2 of Okabe and Sugihara (2012). The resulting function is not continu-
ous.

Computation is performed by path-tracing as described in Okabe and Sugihara (2012).

It is advisable to choose a kernel with bounded support such as kernel="epanechnikov". With a
Gaussian kernel, computation time can be long, and increases exponentially with sigma.

Faster algorithms are available through density.lpp.

Value

A pixel image on the linear network (object of class "linim").

Infinite bandwidth

If sigma=Inf, the resulting density estimate is constant over all locations, and is equal to the average
density of points per unit length. (If the network is not connected, then this rule is applied separately
to each connected component of the network).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

References

Okabe, A. and Sugihara, K. (2012) Spatial analysis along networks. Wiley.

See Also

density.lpp

348 densityfun.lpp

Examples

X <- runiflpp(3, simplenet)
De <- density(X, 0.2, kernel="epanechnikov", verbose=FALSE)
Ded <- density(X, 0.2, kernel="epanechnikov", continuous=FALSE, verbose=FALSE)

densityfun.lpp Kernel Estimate of Intensity on a Linear Network as a Spatial Function

Description

Computes a kernel estimate of the intensity of a point process on a linear network, and returns the
intensity estimate as a function of spatial location.

Usage

S3 method for class 'lpp'
densityfun(X, sigma, ..., weights=NULL, nsigma=1, verbose=FALSE)

Arguments

X Point pattern on a linear network (object of class "lpp").

sigma Bandwidth of kernel (standard deviation of Gaussian kernel), in the same units
of length as X.

... Arguments passed to density.lpp to control the discretisation.

weights Optional numeric vector of weights associated with the points of X.

nsigma Integer. The number of different bandwidths for which a result should be re-
turned. If nsigma=1 (the default), the result is a function giving kernel estimate
with bandwidth sigma. If nsigma > 1, the result is a function with an additional
argument k containing the kernel estimates for the nsigma+1 equally-spaced
time steps from 0 to sigma^2.

verbose Logical value indicating whether to print progress reports.

Details

Kernel smoothing is applied to the points of X using the diffusion algorithm of McSwiggan et al
(2016). The result is a function on the linear network (object of class "linfun") that can be printed,
plotted and evaluated at any location.

This is a method for the generic function densityfun for the class "lpp" of point patterns on a
linear network.

densityfun.lpp 349

Value

Function on a linear network (object of class "linfun").

If nsigma=1 (the default), the result is a function giving kernel estimate with bandwidth sigma.

If nsigma > 1, the result is a function with an additional argument k. If k is specified, the function
returns the kernel estimate for bandwidth tau = sigma * sqrt(k/nsigma). If k is not specified,
results are returned for all k = 1,2,...,nsigma.

The result also has attributes

• attr(result,"dt") giving the time step ∆t;

• attr(result,"dx") giving the spacing ∆x between sample points in the numerical algo-
rithm;

• attr(result,"sigma") giving the smoothing bandwidth σ used (or the successive band-
widths used at each sampled time step, if nsigma > 1).

Author(s)

Greg McSwiggan, with tweaks by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

McSwiggan, G., Baddeley, A. and Nair, G. (2016) Kernel Density Estimation on a Linear Network.
Scandinavian Journal of Statistics 44, 324–345.

See Also

density.lpp which returns a pixel image on the linear network.

methods.linfun for methods applicable to "linfun" objects.

Examples

X <- unmark(chicago)
single bandwidth
g <- densityfun(X, 30)
plot(g)
Y <- X[1:5]
g(Y)
weighted
gw <- densityfun(X, 30, weights=runif(npoints(X)))
sequence of bandwidths
g10 <- densityfun(X, 30, nsigma=10)
g10(Y, k=10)
g10(Y)
plot(as.linim(g10, k=5))

350 densityfun.ppp

densityfun.ppp Kernel Estimate of Intensity as a Spatial Function

Description

Compute a kernel estimate of intensity for a point pattern, and return the result as a function of
spatial location.

Usage

densityfun(X, ...)

S3 method for class 'ppp'
densityfun(X, sigma = NULL, ...,

weights = NULL, edge = TRUE, diggle = FALSE)

Arguments

X Point pattern (object of class "ppp").

sigma Smoothing bandwidth, or bandwidth selection function, passed to density.ppp.

... Additional arguments passed to density.ppp.

weights Optional vector of weights associated with the points of X.

edge,diggle Logical arguments controlling the edge correction. Arguments passed to density.ppp.

Details

The commands densityfun and density both perform kernel estimation of the intensity of a point
pattern. The difference is that density returns a pixel image, containing the estimated intensity
values at a grid of locations, while densityfun returns a function(x,y) which can be used to
compute the intensity estimate at any spatial location. For purposes such as model-fitting it is more
accurate to use densityfun.

Value

A function with arguments x,y returning values of the intensity. The function also belongs to the
class "densityfun" which has methods for print and as.im. It also belongs to the class "funxy"
which has methods for plot, contour and persp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

density.

To interpolate values observed at the points, use Smoothfun.

densityHeat 351

Examples

f <- densityfun(swedishpines)
f
f(42, 60)
plot(f)

densityHeat Kernel Density on a Network using Heat Equation

Description

Computes a kernel density estimate on a linear network using the heat equation.

Usage

densityHeat(x, sigma, ...,
at=c("pixels", "points"), leaveoneout=TRUE,
weights = NULL,
dx = NULL, dt = NULL, iterMax = 1e+06, verbose=FALSE)

Arguments

x Point pattern on a linear network (object of class "lpp") to be smoothed.

sigma Smoothing bandwidth (standard deviation of the kernel) in the same units as the
spatial coordinates of x.

... Arguments passed to as.mask determining the resolution of the result. (Any
other arguments are ignored.)

at String specifying whether to compute the intensity values at a grid of pixel lo-
cations (at="pixels") or only at the points of x (at="points").

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

weights Optional. Numeric vector of weights associated with the points of x. Weights
may be positive, negative or zero.

dx Optional. Spacing of the sampling points along the network. A single number
giving a distance value in the same units as x.

dt Optional. Time step in the heat equation solver. A single number.

iterMax Maximum number of iterations.

verbose Logical value specifying whether to print progress reports.

352 densityHeat

Details

Kernel smoothing is applied to the points of x using a kernel based on path distances in the network.
If at="pixels" (the default), the result is a pixel image on the linear network (class "linim") which
can be plotted. If at="points" the result is a numeric vector giving the density estimates at the
data points of x.

Smoothing is performed using the “equal-split continuous” rule described in Section 9.2.3 of Ok-
abe and Sugihara (2012). However, the actual computation is performed rapidly, by solving the
classical time-dependent heat equation on the network, as described in McSwiggan et al (2016).
Computational time is short, but increases quadratically with sigma.

If at="points" and leaveoneout=TRUE, a leave-one-out estimate is computed at each data point
(that is, the estimate at each data point x[i] is based on all of the points except x[i]) using the
truncated series approximation of McSwiggan et al (2019).

Value

A pixel image on the linear network (object of class "linim").

Infinite bandwidth

If sigma=Inf, the resulting density estimate is constant over all locations, and is equal to the average
density of points per unit length. (If the network is not connected, then this rule is applied separately
to each connected component of the network).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

References

McSwiggan, G., Baddeley, A. and Nair, G. (2016) Kernel density estimation on a linear network.
Scandinavian Journal of Statistics 44, 324–345.

McSwiggan, G., Baddeley, A. and Nair, G. (2019) Estimation of relative risk for events on a linear
network. Statistics and Computing 30, 469–484.

Okabe, A. and Sugihara, K. (2012) Spatial analysis along networks. Wiley.

See Also

density.lpp

Examples

X <- runiflpp(3, simplenet)
D <- densityHeat(X, 0.2)
plot(D, style="w", main="", adjust=2)
densityHeat(X, 0.2, at="points")
Dw <- densityHeat(X, 0.2, weights=c(1,2,-1))

densityQuick.lpp 353

densityQuick.lpp Kernel Estimation of Intensity on a Network using a 2D Kernel

Description

Estimates the intensity of a point process on a linear network using a two-dimensional smoothing
kernel.

Usage

densityQuick.lpp(X, sigma=NULL, ...,
kernel="gaussian",
at = c("pixels", "points"),
what = c("estimate", "se", "var"),
leaveoneout = TRUE,
diggle = FALSE,
edge2D = FALSE,
weights = NULL,
positive = FALSE)

Arguments

X Point pattern on a linear network (object of class "lpp").

sigma Smoothing bandwidth. A single numeric value, in the same units as the coor-
dinates of X. Alternatively sigma may be a function which selects a bandwidth
when applied to X, for example, bw.scott.iso.

... Additional arguments passed to as.mask to determine the pixel resolution.

kernel String (partially matched) specifying the smoothing kernel. Current options are
"gaussian", "epanechnikov", "quartic" or "disc".

at String (partially matched) specifying whether to compute the intensity values at
a grid of pixel locations (at="pixels") or only at the points of x (at="points").

what String (partially matched) specifying whether to calculate the intensity estimate,
or its estimated standard error, or its estimated variance.

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

diggle Logical value specifying whether to use the ‘Diggle’ correction.

edge2D Logical value specifying whether to apply the usual two-dimensional edge cor-
rection procedure to the numerator and denominator of the estimate.

weights Optional weights to be attached to the points. A numeric vector, an expression,
or a pixel image.

positive Logical value indicating whether to force the resulting values to be positive.
Default is FALSE for the sake of speed.

354 densityQuick.lpp

Details

Kernel smoothing is applied to the points of x using a two-dimensional Gaussian kernel, as de-
scribed in Rakshit et al (2019). The result is a pixel image on the linear network (class "linim")
which can be plotted.

Other techniques for kernel smoothing on a network are implemented in density.lpp. The main
advantages of using a two-dimensional kernel are very fast computation and insensitivity to changes
in the network geometry. The main disadvantage is that it ignores the connectivity of the network.
See Rakshit et al (2019) for further explanation.

Value

Image on a linear network (object of class "linim").

Infinite bandwidth

If sigma=Inf, the resulting density estimate is constant over all locations, and is equal to the average
density of points per unit length. (If the network is not connected, then this rule is applied separately
to each connected component of the network).

Author(s)

Adrian Baddeley, Suman Rakshit and Tilman Davies

References

Rakshit, S., Davies, T., Moradi, M., McSwiggan, G., Nair, G., Mateu, J. and Baddeley, A. (2019)
Fast kernel smoothing of point patterns on a large network using 2D convolution. International
Statistical Review 87 (3) 531–556. DOI: 10.1111/insr.12327.

See Also

density.lpp, the main function for density estimation on a network.

bw.scott, bw.scott.iso for bandwidth selection.

Examples

X <- unmark(chicago)
plot(densityQuick.lpp(X, 500))
plot(densityQuick.lpp(X, 500, diggle=TRUE))
plot(densityQuick.lpp(X, bw.scott.iso))
plot(densityQuick.lpp(X, 500, what="se"))

densityVoronoi 355

densityVoronoi Intensity Estimate of Point Pattern Using Voronoi-Dirichlet Tessella-
tion

Description

Computes an adaptive estimate of the intensity function of a point pattern using the Dirichlet-
Voronoi tessellation.

Usage

densityVoronoi(X, ...)

S3 method for class 'ppp'
densityVoronoi(X, f = 1, ...,

counting=FALSE,
fixed=FALSE,
nrep = 1, verbose=TRUE)

Arguments

X Point pattern dataset (object of class "ppp").

f Fraction (between 0 and 1 inclusive) of the data points that will be used to build
a tessellation for the intensity estimate.

... Arguments passed to as.im determining the pixel resolution of the result.

counting Logical value specifying the choice of estimation method. See Details.

fixed Logical. If FALSE (the default), the data points are independently randomly
thinned, so the number of data points that are retained is random. If TRUE, the
number of data points retained is fixed. See Details.

nrep Number of independent repetitions of the randomised procedure.

verbose Logical value indicating whether to print progress reports.

Details

This function is an alternative to density.ppp. It computes an estimate of the intensity function of
a point pattern dataset. The result is a pixel image giving the estimated intensity.

If f=1 (the default), the Voronoi estimate (Barr and Schoenberg, 2010) is computed: the point
pattern X is used to construct a Voronoi/Dirichlet tessellation (see dirichlet); the areas of the
Dirichlet tiles are computed; the estimated intensity in each tile is the reciprocal of the tile area.
The result is a pixel image of intensity estimates which are constant on each tile of the tessellation.

If f=0, the intensity estimate at every location is equal to the average intensity (number of points
divided by window area). The result is a pixel image of intensity estimates which are constant.

If f is strictly between 0 and 1, the estimation method is applied to a random subset of X. This
randomised procedure is repeated nrep times, and the results are averaged. The subset is selected
as follows:

356 densityVoronoi

• if fixed=FALSE, the dataset X is randomly thinned by deleting or retaining each point inde-
pendently, with probability f of retaining a point.

• if fixed=TRUE, a random sample of fixed size m is taken from the dataset X, where m is the
largest integer less than or equal to f*n and n is the number of points in X.

Then the intensity estimate is calculated as follows:

• if counting = FALSE (the default), the thinned pattern is used to construct a Dirichlet tessella-
tion and form the Voronoi estimate (Barr and Schoenberg, 2010) which is then adjusted by a
factor 1/f or n/m as appropriate. to obtain an estimate of the intensity of X in the tile.

• if counting = TRUE, the randomly selected subset A is used to construct a Dirichlet tessellation,
while the complementary subset B (consisting of points that were not selected in the sample)
is used for counting to calculate a quadrat count estimate of intensity. For each tile of the
Dirichlet tessellation formed by A, we count the number of points of B falling in the tile, and
divide by the area of the same tile, to obtain an estimate of the intensity of the pattern B in the
tile. This estimate is adjusted by 1/(1-f) or n/(n-m) as appropriate to obtain an estimate of
the intensity of X in the tile.

Ogata et al. (2003) and Ogata (2004) estimated intensity using the Dirichlet-Voronoi tessellation
in a modelling context. Baddeley (2007) proposed intensity estimation by subsampling with 0 <
f < 1, and used the technique described above with fixed=TRUE and counting=TRUE. Barr and
Schoenberg (2010) described and analysed the Voronoi estimator (corresponding to f=1). Moradi
et al (2019) developed the subsampling technique with fixed=FALSE and counting=FALSE and
called it the smoothed Voronoi estimator.

Value

A pixel image (object of class "im") whose values are estimates of the intensity of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi.

References

Baddeley, A. (2007) Validation of statistical models for spatial point patterns. In J.G. Babu and
E.D. Feigelson (eds.) SCMA IV: Statistical Challenges in Modern Astronomy IV, volume 317 of
Astronomical Society of the Pacific Conference Series, San Francisco, California USA, 2007. Pages
22–38.

Barr, C., and Schoenberg, F.P. (2010). On the Voronoi estimator for the intensity of an inhomoge-
neous planar Poisson process. Biometrika 97 (4), 977–984.

Moradi, M., Cronie, 0., Rubak, E., Lachieze-Rey, R., Mateu, J. and Baddeley, A. (2019) Resample-
smoothing of Voronoi intensity estimators. Statistics and Computing, in press.

Ogata, Y. (2004) Space-time model for regional seismicity and detection of crustal stress changes.
Journal of Geophysical Research, 109, 2004.

Ogata, Y., Katsura, K. and Tanemura, M. (2003). Modelling heterogeneous space-time occurrences
of earthquakes and its residual analysis. Applied Statistics 52 499–509.

densityVoronoi.lpp 357

See Also

densityVoronoi.lpp, adaptive.density, density.ppp, dirichlet, im.object.

Examples

plot(densityVoronoi(nztrees, 1, f=1), main="Voronoi estimate")
nr <- if(interactive()) 100 else 5
plot(densityVoronoi(nztrees, f=0.5, nrep=nr), main="smoothed Voronoi estimate")

densityVoronoi.lpp Intensity Estimate of Point Pattern on Linear Network Using Voronoi-
Dirichlet Tessellation

Description

Computes an adaptive estimate of the intensity function of a point pattern on a linear network, using
the Dirichlet-Voronoi tessellation on the network.

Usage

S3 method for class 'lpp'
densityVoronoi(X, f = 1, ..., nrep = 1, verbose = TRUE)

Arguments

X Point pattern on a linear network (object of class "lpp").

f Fraction (between 0 and 1 inclusive) of the data points that will be used to build
a tessellation for the intensity estimate.

... Arguments passed to linim determining the pixel resolution of the result.

nrep Number of independent repetitions of the randomised procedure.

verbose Logical value indicating whether to print progress reports.

Details

This function is an alternative to density.lpp. It computes an estimate of the intensity function of
a point pattern dataset on a linear network. The result is a pixel image on the network, giving the
estimated intensity.

This function is a method for the generic densityVoronoi for the class "lpp" of point patterns on
a linear network.

If f=1 (the default), the Voronoi estimate (Barr and Schoenberg, 2010) is computed: the point pat-
tern X is used to construct a Voronoi/Dirichlet tessellation on the network (see lineardirichlet);
the lengths of the Dirichlet tiles are computed; the estimated intensity in each tile is the reciprocal
of the tile length. The result is a pixel image of intensity estimates which are constant on each tile
of the tessellation.

If f=0, the intensity estimate at every location is equal to the average intensity (number of points
divided by network length). The result is a pixel image of intensity estimates which are constant.

358 deriv.fv

If f is strictly between 0 and 1, the smoothed Voronoi estimate (Moradi et al, 2019) is computed.
The dataset X is randomly thinned by deleting or retaining each point independently, with probability
f of retaining a point. The thinned pattern is used to construct a Dirichlet tessellation and form the
Voronoi estimate, which is then adjusted by a factor 1/f. This procedure is repeated nrep times
and the results are averaged to obtain the smoothed Voronoi estimate.

The value f can be chosen automatically by bandwidth selection using bw.voronoi.

Value

Pixel image on a linear network (object of class "linim").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi.

References

Moradi, M., Cronie, 0., Rubak, E., Lachieze-Rey, R., Mateu, J. and Baddeley, A. (2019) Resample-
smoothing of Voronoi intensity estimators. Statistics and Computing, in press.

See Also

densityVoronoi is the generic, with a method for class "ppp".

lineardirichlet computes the Dirichlet-Voronoi tessellation on a network.

bw.voronoi performs bandwidth selection of the fraction f.

See also density.lpp.

Examples

nr <- if(interactive()) 100 else 3
plot(densityVoronoi(spiders, 0.1, nrep=nr))

deriv.fv Calculate Derivative of Function Values

Description

Applies numerical differentiation to the values in selected columns of a function value table.

Usage

S3 method for class 'fv'
deriv(expr, which = "*", ...,

method=c("spline", "numeric"),
kinks=NULL,
periodic=FALSE,
Dperiodic=periodic)

deriv.fv 359

Arguments

expr Function values to be differentiated. A function value table (object of class "fv",
see fv.object).

which Character vector identifying which columns of the table should be differentiated.
Either a vector containing names of columns, or one of the wildcard strings "*"
or "." explained below.

... Extra arguments passed to smooth.spline to control the differentiation algo-
rithm, if method="spline".

method Differentiation method. A character string, partially matched to either "spline"
or "numeric".

kinks Optional vector of x values where the derivative is allowed to be discontinuous.

periodic Logical value indicating whether the function expr is periodic.

Dperiodic Logical value indicating whether the resulting derivative should be a periodic
function.

Details

This command performs numerical differentiation on the function values in a function value table
(object of class "fv"). The differentiation is performed either by smooth.spline or by a naive
numerical difference algorithm.

The command deriv is generic. This is the method for objects of class "fv".

Differentiation is applied to every column (or to each of the selected columns) of function values in
turn, using the function argument as the x coordinate and the selected column as the y coordinate.
The original function values are then replaced by the corresponding derivatives.

The optional argument which specifies which of the columns of function values in expr will be
differentiated. The default (indicated by the wildcard which="*") is to differentiate all function
values, i.e.\ all columns except the function argument. Alternatively which="." designates the sub-
set of function values that are displayed in the default plot. Alternatively which can be a character
vector containing the names of columns of expr.

If the argument kinks is given, it should be a numeric vector giving the discontinuity points of the
function: the value or values of the function argument at which the function is not differentiable.
Differentiation will be performed separately on intervals between the discontinuity points.

If periodic=TRUE then the function expr is taken to be periodic, with period equal to the range of
the function argument in expr. The resulting derivative is periodic.

If periodic=FALSE but Dperiodic=TRUE, then the derivative is assumed to be periodic. This would
be appropriate if expr is the cumulative distribution function of an angular variable, for example.

Value

Another function value table (object of class "fv") of the same format.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

360 detpointprocfamilyfun

See Also

with.fv, fv.object, smooth.spline

Examples

G <- Gest(cells)
plot(deriv(G, which=".", spar=0.5))
A <- pairorient(redwood, 0.05, 0.15)
DA <- deriv(A, spar=0.6, Dperiodic=TRUE)

detpointprocfamilyfun Construct a New Determinantal Point Process Model Family Function

Description

Function to ease the implementation of a new determinantal point process model family.

Usage

detpointprocfamilyfun(kernel = NULL,
specden = NULL, basis = "fourierbasis",
convkernel = NULL, Kfun = NULL, valid = NULL, intensity = NULL,
dim = 2, name = "User-defined", isotropic = TRUE, range = NULL,
parbounds = NULL, specdenrange = NULL, startpar = NULL, ...)

Arguments

kernel function specifying the kernel. May be set to NULL. See Details.

specden function specifying the spectral density. May be set to NULL. See Details.

basis character string giving the name of the basis. Defaults to the Fourier basis. See
Details.

convkernel function specifying the k-fold auto-convolution of the kernel. May be set to
NULL. See Details.

Kfun function specifying the K-function. May be set to NULL. See Details.

valid function determining whether a given set of parameter values yields a valid
model. May be set to NULL. See Examples.

intensity character string specifying which parameter is the intensity in the model family.
Should be NULL if the model family has no intensity parameter.

dim character strig specifying which parameter is the dimension of the state space
in this model family (if any). Alternatively a positive integer specifying the
dimension.

name character string giving the name of the model family used for printing.

isotropic logical value indicating whether or not the model is isotropic.

detpointprocfamilyfun 361

range function determining the interaction range of the model. May be set to NULL.
See Examples.

parbounds function determining the bounds for each model parameter when all other pa-
rameters are fixed. May be set to NULL. See Examples.

specdenrange function specifying the the range of the spectral density if it is finite (only the
case for very few models). May be set to NULL.

startpar function determining starting values for parameters in any estimation algorithm.
May be set to NULL. See Examples.

... Additional arguments for inclusion in the returned model object. These are not
checked in any way.

Details

A determinantal point process family is specified either in terms of a kernel (a positive semi-definite
function, i.e. a covariance function) or a spectral density, or preferably both. One of these can be
NULL if it is unknown, but not both. When both are supplied they must have the same arguments. The
first argument gives the values at which the function should be evaluated. In general the function
should accept an n by d matrix or data.frame specifying n(>= 0) points in dimension d. If the
model is isotropic it only needs to accept a non-negative valued numeric of length n. (In fact there
is currently almost no support for non-isotropic models, so it is recommended not to specify such a
model.) The name of this argument could be chosen freely, but x is recommended. The remaining
arguments are the parameters of the model. If one of these is an intensity parameter the name should
be mentioned in the argument intensity. If one of these specifies the dimension of the model it
should be mentioned in the argument dim.

The kernel and spectral density is with respect to a specific set of basis functions, which is typically
the Fourier basis. However this can be changed to any user-supplied basis in the argument basis.
If such an alternative is supplied it must be the name of a function expecting the same arguments as
fourierbasis and returning the results in the same form as fourierbasis.

If supplied, the arguments of convkernel must obey the following: first argument should be like
the first argument of kernel and/or specden (see above). The second argument (preferably called k)
should be the positive integer specifying how many times the auto-convolution is done (i.e. the k
in k-fold auto-convolution). The remaining arguments must agree with the arguments of kernel
and/or specden (see above).

If supplied, the arguments of Kfun should be like the arguments of kernel and specden (see above).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

Example of how to define the Gauss family
exGauss <- detpointprocfamilyfun(

name="Gaussian",
kernel=function(x, lambda, alpha, d){

362 dfbetas.ppm

lambda*exp(-(x/alpha)^2)
},
specden=function(x, lambda, alpha, d){

lambda * (sqrt(pi)*alpha)^d * exp(-(x*alpha*pi)^2)
},
convkernel=function(x, k, lambda, alpha, d){

logres <- k*log(lambda*pi*alpha^2) - log(pi*k*alpha^2) - x^2/(k*alpha^2)
return(exp(logres))

},
Kfun = function(x, lambda, alpha, d){

pi*x^2 - pi*alpha^2/2*(1-exp(-2*x^2/alpha^2))
},
valid=function(lambda, alpha, d){

lambda>0 && alpha>0 && d>=1 && lambda <= (sqrt(pi)*alpha)^(-d)
},
isotropic=TRUE,
intensity="lambda",
dim="d",
range=function(alpha, bound = .99){

if(missing(alpha))
stop("The parameter alpha is missing.")

if(!(is.numeric(bound)&&bound>0&&bound<1))
stop("Argument bound must be a numeric between 0 and 1.")

return(alpha*sqrt(-log(sqrt(1-bound))))
},
parbounds=function(name, lambda, alpha, d){

switch(name,
lambda = c(0, (sqrt(pi)*alpha)^(-d)),
alpha = c(0, lambda^(-1/d)/sqrt(pi)),
stop("Parameter name misspecified")
)

},
startpar=function(model, X){

rslt <- NULL
if("lambda" %in% model$freepar){

lambda <- intensity(X)
rslt <- c(rslt, "lambda" = lambda)
model <- update(model, lambda=lambda)

}
if("alpha" %in% model$freepar){

alpha <- .8*dppparbounds(model, "alpha")[2]
rslt <- c(rslt, "alpha" = alpha)

}
return(rslt)

}
)

exGauss
m <- exGauss(lambda=100, alpha=.05, d=2)
m

dfbetas.ppm 363

dfbetas.ppm Parameter Influence Measure

Description

Computes the deletion influence measure for each parameter in a fitted point process model.

Usage

S3 method for class 'ppm'
dfbetas(model, ...,

drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)

Arguments

model Fitted point process model (object of class "ppm").

... Ignored, except for the arguments dimyx and eps which are passed to as.mask
to control the spatial resolution of the image of the density component.

drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-
tions from quadrature points that were not used to fit the model.

iScore,iHessian

Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

Details

Given a fitted spatial point process model, this function computes the influence measure for each
parameter, as described in Baddeley, Chang and Song (2013) and Baddeley, Rubak and Turner
(2019).

This is a method for the generic function dfbetas.

The influence measure for each parameter θ is a signed measure in two-dimensional space. It
consists of a discrete mass on each data point (i.e. each point in the point pattern to which the
model was originally fitted) and a continuous density at all locations. The mass at a data point
represents the change in the fitted value of the parameter θ that would occur if this data point were
to be deleted. The density at other non-data locations represents the effect (on the fitted value of
θ) of deleting these locations (and their associated covariate values) from the input to the fitting
procedure.

If the point process model trend has irregular parameters that were fitted (using ippm) then the
influence calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

364 dffit.ppm

Value

An object of class "msr" representing a signed or vector-valued measure. This object can be printed
and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial
point process models. Scandinavian Journal of Statistics 40, 86–104.

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

leverage.ppm, influence.ppm, ppmInfluence.

See msr for information on how to use a measure.

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)

plot(dfbetas(fit))
plot(Smooth(dfbetas(fit)))

dffit.ppm Case Deletion Effect Measure of Fitted Model

Description

Computes the case deletion effect measure DFFIT for a fitted model.

Usage

dffit(object, ...)

S3 method for class 'ppm'
dffit(object, ..., collapse = FALSE, dfb = NULL)

dffit.ppm 365

Arguments

object A fitted model, such as a point process model (object of class "ppm").

... Additional arguments passed to dfbetas.ppm.

collapse Logical value specifying whether to collapse the vector-valued measure to a
scalar-valued measure by adding all the components.

dfb Optional. The result of dfbetas(object), if it has already been computed.

Details

The case deletion effect measure DFFIT is a model diagnostic traditionally used for regression mod-
els. In that context, DFFIT[i,j] is the negative change, in the value of the jth term in the linear
predictor, that would occur if the ith data value was deleted. It is closely related to the diagnostic
DFBETA.

For a spatial point process model, dffit computes the analogous spatial case deletion diagnostic,
described in Baddeley, Rubak and Turner (2019).

Value

A measure (object of class "msr").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

dfbetas.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)

plot(dffit(fit))
plot(dffit(fit, collapse=TRUE))

366 dg.envelope

dg.envelope Global Envelopes for Dao-Genton Test

Description

Computes the global envelopes corresponding to the Dao-Genton test of goodness-of-fit.

Usage

dg.envelope(X, ...,
nsim = 19, nsimsub=nsim-1, nrank = 1,
alternative=c("two.sided", "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm" or "slrm").

... Arguments passed to mad.test or envelope to control the conduct of the test.
Useful arguments include fun to determine the summary function, rinterval
to determine the range of r values used in the test, and verbose=FALSE to turn
off the messages.

nsim Number of simulated patterns to be generated in the primary experiment.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

alternative Character string determining whether the envelope corresponds to a two-sided
test (alternative="two.sided", the default) or a one-sided test with a lower
critical boundary (alternative="less") or a one-sided test with an upper crit-
ical boundary (alternative="greater").

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value determining whether to print progress reports.

dg.envelope 367

Details

Computes global simulation envelopes corresponding to the Dao-Genton (2014) adjusted Monte
Carlo goodness-of-fit test. The envelopes are described in Baddeley et al (2015).

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

The Dao-Genton test is biased when the significance level is very small (small p-values are not
reliable) and we recommend bits.envelope in this case.

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Andrew Hardegen, Tom Lawrence, Robin
Milne, Gopalan Nair and Suman Rakshit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Submitted for publication.

See Also

dg.test, mad.test, envelope

Examples

ns <- if(interactive()) 19 else 4
E <- dg.envelope(swedishpines, Lest, nsim=ns)
E
plot(E)
Eo <- dg.envelope(swedishpines, Lest, alternative="less", nsim=ns)
Ei <- dg.envelope(swedishpines, Lest, interpolate=TRUE, nsim=ns)

368 dg.progress

dg.progress Progress Plot of Dao-Genton Test of Spatial Pattern

Description

Generates a progress plot (envelope representation) of the Dao-Genton test for a spatial point pat-
tern.

Usage

dg.progress(X, fun = Lest, ...,
exponent = 2, nsim = 19, nsimsub = nsim - 1,
nrank = 1, alpha, leaveout=1, interpolate = FALSE, rmin=0,
savefuns = FALSE, savepatterns = FALSE, verbose=TRUE)

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

fun Function that computes the desired summary statistic for a point pattern.

... Arguments passed to envelope. Useful arguments include alternative to
specify one-sided or two-sided envelopes.

exponent Positive number. The exponent of the Lp distance. See Details.

nsim Number of repetitions of the basic test.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

nrank Integer. The rank of the critical value of the Monte Carlo test, amongst the nsim
simulated values. A rank of 1 means that the minimum and maximum simulated
values will become the critical values for the test.

alpha Optional. The significance level of the test. Equivalent to nrank/(nsim+1)
where nsim is the number of simulations.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating how to compute the critical value. If interpolate=FALSE
(the default), a standard Monte Carlo test is performed, and the critical value
is the largest simulated value of the test statistic (if nrank=1) or the nrank-th
largest (if nrank is another number). If interpolate=TRUE, kernel density es-
timation is applied to the simulated values, and the critical value is the upper
alpha quantile of this estimated distribution.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

dg.progress 369

savefuns Logical value indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical value indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

The Dao and Genton (2014) test for a spatial point pattern is described in dg.test. This test
depends on the choice of an interval of distance values (the argument rinterval). A progress plot
or envelope representation of the test (Baddeley et al, 2014) is a plot of the test statistic (and the
corresponding critical value) against the length of the interval rinterval.

The command dg.progress effectively performs dg.test on X using all possible intervals of the
form [0, R], and returns the resulting values of the test statistic, and the corresponding critical values
of the test, as a function of R.

The result is an object of class "fv" that can be plotted to obtain the progress plot. The display
shows the test statistic (solid black line) and the test acceptance region (grey shading). If X is an
envelope object, then some of the data stored in X may be re-used:

• If X is an envelope object containing simulated functions, and fun=NULL, then the code will
re-use the simulated functions stored in X.

• If X is an envelope object containing simulated point patterns, then fun will be applied to the
stored point patterns to obtain the simulated functions. If fun is not specified, it defaults to
Lest.

• Otherwise, new simulations will be performed, and fun defaults to Lest.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed -reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "fv" that can be plotted to obtain the progress plot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Andrew Hardegen, Tom Lawrence, Robin
Milne, Gopalan Nair and Suman Rakshit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

370 dg.sigtrace

References

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Submitted for publication.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

See Also

dg.test, dclf.progress

Examples

ns <- if(interactive()) 19 else 5
plot(dg.progress(cells, nsim=ns))

dg.sigtrace Significance Trace of Dao-Genton Test

Description

Generates a Significance Trace of the Dao and Genton (2014) test for a spatial point pattern.

Usage

dg.sigtrace(X, fun = Lest, ...,
exponent = 2, nsim = 19, nsimsub = nsim - 1,
alternative = c("two.sided", "less", "greater"),
rmin=0, leaveout=1,
interpolate = FALSE, confint = TRUE, alpha = 0.05,
savefuns=FALSE, savepatterns=FALSE, verbose=FALSE)

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

fun Function that computes the desired summary statistic for a point pattern.

... Arguments passed to envelope.

exponent Positive number. Exponent used in the test statistic. Use exponent=2 for the
Diggle-Cressie-Loosmore-Ford test, and exponent=Inf for the Maximum Ab-
solute Deviation test. See Details.

nsim Number of repetitions of the basic test.

dg.sigtrace 371

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

confint Logical value indicating whether to compute a confidence interval for the ‘true’
p-value.

alpha Significance level to be plotted (this has no effect on the calculation but is simply
plotted as a reference value).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical flag indicating whether to print progress reports.

Details

The Dao and Genton (2014) test for a spatial point pattern is described in dg.test. This test
depends on the choice of an interval of distance values (the argument rinterval). A significance
trace (Bowman and Azzalini, 1997; Baddeley et al, 2014, 2015) of the test is a plot of the p-value
obtained from the test against the length of the interval rinterval.

The command dg.sigtrace effectively performs dg.test on X using all possible intervals of the
form [0, R], and returns the resulting p-values as a function of R.

The result is an object of class "fv" that can be plotted to obtain the significance trace. The plot
shows the Dao-Genton adjusted p-value (solid black line), the critical value 0.05 (dashed red line),
and a pointwise 95% confidence band (grey shading) for the ‘true’ (Neyman-Pearson) p-value. The
confidence band is based on the Agresti-Coull (1998) confidence interval for a binomial proportion.

If X is an envelope object and fun=NULL then the code will re-use the simulated functions stored in
X.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,

372 dg.test

2014, Appendix) to computing the difference observed -reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "fv" that can be plotted to obtain the significance trace.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Andrew Hardegen, Tom Lawrence, Robin
Milne, Gopalan Nair and Suman Rakshit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

Agresti, A. and Coull, B.A. (1998) Approximate is better than “Exact” for interval estimation of
binomial proportions. American Statistician 52, 119–126.

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Submitted for publication.

Bowman, A.W. and Azzalini, A. (1997) Applied smoothing techniques for data analysis: the kernel
approach with S-Plus illustrations. Oxford University Press, Oxford.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

See Also

dg.test for the Dao-Genton test, dclf.sigtrace for significance traces of other tests.

Examples

ns <- if(interactive()) 19 else 5
plot(dg.sigtrace(cells, nsim=ns))

dg.test Dao-Genton Adjusted Goodness-Of-Fit Test

Description

Performs the Dao and Genton (2014) adjusted goodness-of-fit test of spatial pattern.

dg.test 373

Usage

dg.test(X, ...,
exponent = 2, nsim=19, nsimsub=nsim-1,
alternative=c("two.sided", "less", "greater"),
reuse = TRUE, leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm", "lppm" or "slrm").

... Arguments passed to dclf.test or mad.test or envelope to control the con-
duct of the test. Useful arguments include fun to determine the summary func-
tion, rinterval to determine the range of r values used in the test, and use.theory
described under Details.

exponent Exponent used in the test statistic. Use exponent=2 for the Diggle-Cressie-
Loosmore-Ford test, and exponent=Inf for the Maximum Absolute Deviation
test.

nsim Number of repetitions of the basic test.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

reuse Logical value indicating whether to re-use the first stage simulations at the sec-
ond stage, as described by Dao and Genton (2014).

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

Performs the Dao-Genton (2014) adjusted Monte Carlo goodness-of-fit test, in the equivalent form
described by Baddeley et al (2014).

374 dg.test

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

The argument use.theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use.theory=FALSE).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed -reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

The Dao-Genton test is biased when the significance level is very small (small p-values are not
reliable) and we recommend bits.test in this case.

Value

A hypothesis test (object of class "htest" which can be printed to show the outcome of the test.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis, in
press.

See Also

bits.test, dclf.test, mad.test

Examples

ns <- if(interactive()) 19 else 4
dg.test(cells, nsim=ns)
dg.test(cells, alternative="less", nsim=ns)
dg.test(cells, nsim=ns, interpolate=TRUE)

diagnose.ppm 375

diagnose.ppm Diagnostic Plots for Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, produce diagnostic plots based on residuals.

Usage

diagnose.ppm(object, ..., type="raw", which="all", sigma=NULL,
rbord=reach(object), cumulative=TRUE,
plot.it=TRUE, rv = NULL,
compute.sd=is.poisson(object), compute.cts=TRUE,
envelope=FALSE, nsim=39, nrank=1,
typename, check=TRUE, repair=TRUE,
oldstyle=FALSE, splineargs=list(spar=0.5))

S3 method for class 'diagppm'
plot(x, ..., which,

plot.neg=c("image", "discrete", "contour", "imagecontour"),
plot.smooth=c("imagecontour", "image", "contour", "persp"),
plot.sd, spacing=0.1, outer=3,
srange=NULL, monochrome=FALSE, main=NULL)

Arguments

object The fitted point process model (an object of class "ppm") for which diagnostics
should be produced. This object is usually obtained from ppm.

type String indicating the type of residuals or weights to be used. Current options are
"eem" for the Stoyan-Grabarnik exponential energy weights, "raw" for the raw
residuals, "inverse" for the inverse-lambda residuals, and "pearson" for the
Pearson residuals. A partial match is adequate.

which Character string or vector indicating the choice(s) of plots to be generated. Op-
tions are "all", "marks", "smooth", "x", "y" and "sum". Multiple choices
may be given but must be matched exactly. See Details.

sigma Bandwidth for kernel smoother in "smooth" option.

rbord Width of border to avoid edge effects. The diagnostic calculations will be con-
fined to those points of the data pattern which are at least rbord units away from
the edge of the window. (An infinite value of rbord will be ignored.)

cumulative Logical flag indicating whether the lurking variable plots for the x and y coordi-
nates will be the plots of cumulative sums of marks (cumulative=TRUE) or the
plots of marginal integrals of the smoothed residual field (cumulative=FALSE).

plot.it Logical value indicating whether plots should be shown. If plot.it=FALSE, the
computed diagnostic quantities are returned without plotting them.

plot.neg String indicating how the density part of the residual measure should be plotted.

376 diagnose.ppm

plot.smooth String indicating how the smoothed residual field should be plotted.

compute.sd,plot.sd

Logical values indicating whether error bounds should be computed and added
to the "x" and "y" plots. The default is TRUE for Poisson models and FALSE for
non-Poisson models. See Details.

envelope,nsim,nrank

Arguments passed to lurking in order to plot simulation envelopes for the lurk-
ing variable plots.

rv Usually absent. Advanced use only. If this argument is present, the values of the
residuals will not be calculated from the fitted model object but will instead be
taken directly from rv.

spacing The spacing between plot panels (when a four-panel plot is generated) expressed
as a fraction of the width of the window of the point pattern.

outer The distance from the outermost line of text to the nearest plot panel, expressed
as a multiple of the spacing between plot panels.

srange Vector of length 2 that will be taken as giving the range of values of the smoothed
residual field, when generating an image plot of this field. This is useful if you
want to generate diagnostic plots for two different fitted models using the same
colour map.

monochrome Flag indicating whether images should be displayed in greyscale (suitable for
publication) or in colour (suitable for the screen). The default is to display in
colour.

check Logical value indicating whether to check the internal format of object. If
there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

repair Logical value indicating whether to repair the internal format of object, if it is
found to be damaged.

oldstyle Logical flag indicating whether error bounds should be plotted using the ap-
proximation given in the original paper (oldstyle=TRUE), or using the correct
asymptotic formula (oldstyle=FALSE).

splineargs Argument passed to lurking to control the smoothing in the lurking variable
plot.

x The value returned from a previous call to diagnose.ppm. An object of class
"diagppm".

typename String to be used as the name of the residuals.

main Main title for the plot.

... Extra arguments, controlling either the resolution of the smoothed image (passed
from diagnose.ppm to density.ppp) or the appearance of the plots (passed
from diagnose.ppm to plot.diagppm and from plot.diagppm to plot.default).

compute.cts Advanced use only.

diagnose.ppm 377

Details

The function diagnose.ppm generates several diagnostic plots for a fitted point process model. The
plots display the residuals from the fitted model (Baddeley et al, 2005) or alternatively the ‘exponen-
tial energy marks’ (Stoyan and Grabarnik, 1991). These plots can be used to assess goodness-of-fit,
to identify outliers in the data, and to reveal departures from the fitted model. See also the compan-
ion function qqplot.ppm.

The argument object must be a fitted point process model (object of class "ppm") typically pro-
duced by the maximum pseudolikelihood fitting algorithm ppm).

The argument type selects the type of residual or weight that will be computed. Current options
are:

"eem": exponential energy marks (Stoyan and Grabarnik, 1991) computed by eem. These are pos-
itive weights attached to the data points (i.e. the points of the point pattern dataset to which
the model was fitted). If the fitted model is correct, then the sum of these weights for all data
points in a spatial region B has expected value equal to the area of B. See eem for further
explanation.

"raw", "inverse" or "pearson": point process residuals (Baddeley et al, 2005) computed by the
function residuals.ppm. These are residuals attached both to the data points and to some
other points in the window of observation (namely, to the dummy points of the quadrature
scheme used to fit the model). If the fitted model is correct, then the sum of the residuals in a
spatial region B has mean zero. The options are

• "raw": the raw residuals;
• "inverse": the ‘inverse-lambda’ residuals, a counterpart of the exponential energy weights;
• "pearson": the Pearson residuals.

See residuals.ppm for further explanation.

The argument which selects the type of plot that is produced. Options are:

"marks": plot the residual measure. For the exponential energy weights (type="eem") this dis-
plays circles centred at the points of the data pattern, with radii proportional to the exponen-
tial energy weights. For the residuals (type="raw", type="inverse" or type="pearson")
this again displays circles centred at the points of the data pattern with radii proportional to
the (positive) residuals, while the plotting of the negative residuals depends on the argument
plot.neg. If plot.neg="image" then the negative part of the residual measure, which is a
density, is plotted as a colour image. If plot.neg="discrete" then the discretised negative
residuals (obtained by approximately integrating the negative density using the quadrature
scheme of the fitted model) are plotted as squares centred at the dummy points with side
lengths proportional to the (negative) residuals. [To control the size of the circles and squares,
use the argument maxsize.]

"smooth": plot a kernel-smoothed version of the residual measure. Each data or dummy point is
taken to have a ‘mass’ equal to its residual or exponential energy weight. (Note that residuals
can be negative). This point mass is then replaced by a bivariate isotropic Gaussian density
with standard deviation sigma. The value of the smoothed residual field at any point in the
window is the sum of these weighted densities. If the fitted model is correct, this smoothed
field should be flat, and its height should be close to 0 (for the residuals) or 1 (for the exponen-
tial energy weights). The field is plotted either as an image, contour plot or perspective view

378 diagnose.ppm

of a surface, according to the argument plot.smooth. The range of values of the smoothed
field is printed if the option which="sum" is also selected.

"x": produce a ‘lurking variable’ plot for the x coordinate. This is a plot of h(x) against x (solid
lines) and of E(h(x)) against x (dashed lines), where h(x) is defined below, and E(h(x))
denotes the expectation of h(x) assuming the fitted model is true.

• if cumulative=TRUE then h(x) is the cumulative sum of the weights or residuals for all
points which have X coordinate less than or equal to x. For the residuals E(h(x)) = 0,
and for the exponential energy weights E(h(x)) = area of the subset of the window to
the left of the line X = x.

• if cumulative=FALSE then h(x) is the marginal integral of the smoothed residual field
(see the case which="smooth" described above) on the x axis. This is approximately the
derivative of the plot for cumulative=TRUE. The value of h(x) is computed by summing
the values of the smoothed residual field over all pixels with the given x coordinate. For
the residuals E(h(x)) = 0, and for the exponential energy weights E(h(x)) = length of
the intersection between the observation window and the line X = x.

If plot.sd = TRUE, then superimposed on the lurking variable plot are the pointwise two-
standard-deviation error limits for h(x) calculated for the inhomogeneous Poisson process.
The default is plot.sd = TRUE for Poisson models and plot.sd = FALSE for non-Poisson
models.

"y": produce a similar lurking variable plot for the y coordinate.

"sum": print the sum of the weights or residuals for all points in the window (clipped by a margin
rbord if required) and the area of the same window. If the fitted model is correct the sum
of the exponential energy weights should equal the area of the window, while the sum of the
residuals should equal zero. Also print the range of values of the smoothed field displayed in
the "smooth" case.

"all": All four of the diagnostic plots listed above are plotted together in a two-by-two display.
Top left panel is "marks" plot. Bottom right panel is "smooth" plot. Bottom left panel is "x"
plot. Top right panel is "y" plot, rotated 90 degrees.

The argument rbord ensures there are no edge effects in the computation of the residuals. The
diagnostic calculations will be confined to those points of the data pattern which are at least rbord
units away from the edge of the window. The value of rbord should be greater than or equal to the
range of interaction permitted in the model.

By default, the two-standard-deviation limits are calculated from the exact formula for the asymp-
totic variance of the residuals under the asymptotic normal approximation, equation (37) of Bad-
deley et al (2006). However, for compatibility with the original paper of Baddeley et al (2005),
if oldstyle=TRUE, the two-standard-deviation limits are calculated using the innovation variance,
an over-estimate of the true variance of the residuals. (However, see the section about Replicated
Data).

The argument rv would normally be used only by experts. It enables the user to substitute arbitrary
values for the residuals or marks, overriding the usual calculations. If rv is present, then instead
of calculating the residuals from the fitted model, the algorithm takes the residuals from the object
rv, and plots them in the manner appropriate to the type of residual or mark selected by type. If
type ="eem" then rv should be similar to the return value of eem, namely, a numeric vector of
length equal to the number of points in the original data point pattern. Otherwise, rv should be
similar to the return value of residuals.ppm, that is, it should be an object of class "msr" (see
msr) representing a signed measure.

diagnose.ppm 379

The return value of diagnose.ppm is an object of class "diagppm". The plot method for this class
is documented here. There is also a print method. See the Examples.

In plot.diagppm, if a four-panel diagnostic plot is produced (the default), then the extra arguments
xlab, ylab, rlab determine the text labels for the x and y coordinates and the residuals, respec-
tively. The undocumented arguments col.neg and col.smooth control the colour maps used in the
top left and bottom right panels respectively.

See also the companion functions qqplot.ppm, which produces a Q-Q plot of the residuals, and
lurking, which produces lurking variable plots for any spatial covariate.

Value

An object of class "diagppm" which contains the coordinates needed to reproduce the selected
plots. This object can be plotted using plot.diagppm and printed using print.diagppm.

Replicated Data

Note that if object is a model that was obtained by first fitting a model to replicated point pattern
data using mppm and then using subfits to extract a model for one of the individual point patterns,
then the variance calculations are only implemented for the innovation variance (oldstyle=TRUE)
and this is the default in such cases.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

residuals.ppm, eem, ppm.object, qqplot.ppm, lurking, ppm

Examples

fit <- ppm(cells ~x, Strauss(r=0.15))
diagnose.ppm(fit)
Not run:
diagnose.ppm(fit, type="pearson")

End(Not run)

diagnose.ppm(fit, which="marks")

380 diameter

diagnose.ppm(fit, type="raw", plot.neg="discrete")

diagnose.ppm(fit, type="pearson", which="smooth")

save the diagnostics and plot them later
u <- diagnose.ppm(fit, rbord=0.15, plot.it=FALSE)
Not run:
plot(u)
plot(u, which="marks")

End(Not run)

diameter Diameter of an Object

Description

Computes the diameter of an object such as a two-dimensional window or three-dimensional box.

Usage

diameter(x)

Arguments

x A window or other object whose diameter will be computed.

Details

This function computes the diameter of an object such as a two-dimensional window or a three-
dimensional box. The diameter is the maximum distance between any two points in the object.

The function diameter is generic, with methods for the class "owin" (two-dimensional windows),
"box3" (three-dimensional boxes), "boxx" (multi-dimensional boxes) and "linnet" (linear net-
works).

Value

The numerical value of the diameter of the object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

diameter.owin, diameter.box3, diameter.boxx, diameter.linnet

diameter.box3 381

diameter.box3 Geometrical Calculations for Three-Dimensional Box

Description

Calculates the volume, diameter, shortest side, side lengths, or eroded volume of a three-dimensional
box.

Usage

S3 method for class 'box3'
diameter(x)

S3 method for class 'box3'
volume(x)

shortside(x)
sidelengths(x)
eroded.volumes(x, r)

S3 method for class 'box3'
shortside(x)

S3 method for class 'box3'
sidelengths(x)

S3 method for class 'box3'
eroded.volumes(x, r)

Arguments

x Three-dimensional box (object of class "box3").
r Numeric value or vector of numeric values for which eroded volumes should be

calculated.

Details

diameter.box3 computes the diameter of the box. volume.box3 computes the volume of the box.
shortside.box3 finds the shortest of the three side lengths of the box. sidelengths.box3 returns
all three side lengths of the box.

eroded.volumes computes, for each entry r[i], the volume of the smaller box obtained by remov-
ing a slab of thickness r[i] from each face of the box. This smaller box is the subset consisting of
points that lie at least r[i] units away from the boundary of the box.

Value

For diameter.box3, shortside.box3 and volume.box3, a single numeric value. For sidelengths.box3,
a vector of three numbers. For eroded.volumes, a numeric vector of the same length as r.

382 diameter.boxx

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

as.box3

Examples

X <- box3(c(0,10),c(0,10),c(0,5))
diameter(X)
volume(X)
sidelengths(X)
shortside(X)
hd <- shortside(X)/2
eroded.volumes(X, seq(0,hd, length=10))

diameter.boxx Geometrical Calculations for Multi-Dimensional Box

Description

Calculates the volume, diameter, shortest side, side lengths, or eroded volume of a multi-dimensional
box.

Usage

S3 method for class 'boxx'
diameter(x)

S3 method for class 'boxx'
volume(x)

S3 method for class 'boxx'
shortside(x)

S3 method for class 'boxx'
sidelengths(x)

S3 method for class 'boxx'
eroded.volumes(x, r)

Arguments

x Multi-dimensional box (object of class "boxx").

r Numeric value or vector of numeric values for which eroded volumes should be
calculated.

diameter.linnet 383

Details

diameter.boxx, volume.boxx and shortside.boxx compute the diameter, volume and shortest
side length of the box. sidelengths.boxx returns the lengths of each side of the box.

eroded.volumes.boxx computes, for each entry r[i], the volume of the smaller box obtained
by removing a slab of thickness r[i] from each face of the box. This smaller box is the subset
consisting of points that lie at least r[i] units away from the boundary of the box.

Value

For diameter.boxx, shortside.boxx and volume.boxx, a single numeric value. For sidelengths.boxx,
a numeric vector of length equal to the number of spatial dimensions. For eroded.volumes.boxx,
a numeric vector of the same length as r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

boxx

Examples

X <- boxx(c(0,10),c(0,10),c(0,5),c(0,2))
diameter(X)
volume(X)
shortside(X)
sidelengths(X)
hd <- shortside(X)/2
eroded.volumes(X, seq(0,hd, length=10))

diameter.linnet Diameter and Bounding Radius of a Linear Network

Description

Compute the diameter or bounding radius of a linear network measured using the shortest path
distance.

Usage

S3 method for class 'linnet'
diameter(x)

S3 method for class 'linnet'
boundingradius(x, ...)

384 diameter.owin

Arguments

x Linear network (object of class "linnet").

... Ignored.

Details

The diameter of a linear network (in the shortest path distance) is the maximum value of the shortest-
path distance between any two points u and v on the network.

The bounding radius of a linear network (in the shortest path distance) is the minimum value, over
all points u on the network, of the maximum shortest-path distance from u to another point v on the
network.

The functions boundingradius and diameter are generic; the functions boundingradius.linnet
and diameter.linnet are the methods for objects of class linnet.

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

boundingradius, diameter, linnet

Examples

diameter(simplenet)
boundingradius(simplenet)

diameter.owin Diameter of a Window

Description

Computes the diameter of a window.

Usage

S3 method for class 'owin'
diameter(x)

Arguments

x A window whose diameter will be computed.

DiggleGatesStibbard 385

Details

This function computes the diameter of a window of arbitrary shape, i.e. the maximum distance
between any two points in the window.

The argument x should be a window (an object of class "owin", see owin.object for details) or
can be given in any format acceptable to as.owin().

The function diameter is generic. This function is the method for the class "owin".

Value

The numerical value of the diameter of the window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

area.owin, perimeter, edges, owin, as.owin

Examples

w <- owin(c(0,1),c(0,1))
diameter(w)
returns sqrt(2)
data(letterR)
diameter(letterR)

DiggleGatesStibbard Diggle-Gates-Stibbard Point Process Model

Description

Creates an instance of the Diggle-Gates-Stibbard point process model which can then be fitted to
point pattern data.

Usage

DiggleGatesStibbard(rho)

Arguments

rho Interaction range

386 DiggleGatesStibbard

Details

Diggle, Gates and Stibbard (1987) proposed a pairwise interaction point process in which each pair
of points separated by a distance d contributes a factor e(d) to the probability density, where

e(d) = sin2

(
πd

2ρ

)
for d < ρ, and e(d) is equal to 1 for d ≥ ρ.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the Diggle-Gates-Stibbard pairwise interaction is yielded by the function
DiggleGatesStibbard(). See the examples below.

Note that this model does not have any regular parameters (as explained in the section on Interaction
Parameters in the help file for ppm). The parameter ρ is not estimated by ppm.

Value

An object of class "interact" describing the interpoint interaction structure of the Diggle-Gates-
Stibbard process with interaction range rho.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770. Scandinavian Journal of Statistics 21, 359–373.

See Also

ppm, pairwise.family, DiggleGratton, rDGS, ppm.object

Examples

DiggleGatesStibbard(0.02)
prints a sensible description of itself

Not run:
ppm(cells ~1, DiggleGatesStibbard(0.05))
fit the stationary D-G-S process to `cells'

End(Not run)

ppm(cells ~ polynom(x,y,3), DiggleGatesStibbard(0.05))

DiggleGratton 387

fit a nonstationary D-G-S process
with log-cubic polynomial trend

DiggleGratton Diggle-Gratton model

Description

Creates an instance of the Diggle-Gratton pairwise interaction point process model, which can then
be fitted to point pattern data.

Usage

DiggleGratton(delta=NA, rho)

Arguments

delta lower threshold δ

rho upper threshold ρ

Details

Diggle and Gratton (1984, pages 208-210) introduced the pairwise interaction point process with
pair potential h(t) of the form

h(t) =

(
t− δ
ρ− δ

)κ
if δ ≤ t ≤ ρ

with h(t) = 0 for t < δ and h(t) = 1 for t > ρ. Here δ, ρ and κ are parameters.

Note that we use the symbol κ where Diggle and Gratton (1984) and Diggle, Gates and Stibbard
(1987) use β, since in spatstat we reserve the symbol β for an intensity parameter.

The parameters must all be nonnegative, and must satisfy δ ≤ ρ.

The potential is inhibitory, i.e.\ this model is only appropriate for regular point patterns. The strength
of inhibition increases with κ. For κ = 0 the model is a hard core process with hard core radius δ.
For κ =∞ the model is a hard core process with hard core radius ρ.

The irregular parameters δ, ρ must be given in the call to DiggleGratton, while the regular param-
eter κ will be estimated.

If the lower threshold delta is missing or NA, it will be estimated from the data when ppm is called.
The estimated value of delta is the minimum nearest neighbour distance multiplied by n/(n+ 1),
where n is the number of data points.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

388 dilated.areas

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Diggle, P.J., Gates, D.J. and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

See Also

ppm, ppm.object, Pairwise

Examples

ppm(cells ~1, DiggleGratton(0.05, 0.1))

dilated.areas Areas of Morphological Dilations

Description

Computes the areas of successive morphological dilations.

Usage

dilated.areas(X, r, W=as.owin(X), ..., constrained=TRUE, exact = FALSE)

Arguments

X Object to be dilated. A point pattern (object of class "ppp"), a line segment
pattern (object of class "psp"), or a window (object of class "owin").

r Numeric vector of radii for the dilations.

W Window (object of class "owin") inside which the areas will be computed, if
constrained=TRUE.

... Arguments passed to distmap to control the pixel resolution, if exact=FALSE.

constrained Logical flag indicating whether areas should be restricted to the window W.

exact Logical flag indicating whether areas should be computed using analytic geom-
etry (which is slower but more accurate). Currently available only when X is a
point pattern.

dilation 389

Details

This function computes the areas of the dilations of X by each of the radii r[i]. Areas may also be
computed inside a specified window W.

The morphological dilation of a set X by a distance r > 0 is the subset consisting of all points x
such that the distance from x to X is less than or equal to r.

When X is a point pattern, the dilation by a distance r is the union of discs of radius r centred at the
points of X.

The argument r should be a vector of nonnegative numbers.

If exact=TRUE and if X is a point pattern, then the areas are computed using analytic geometry,
which is slower but much more accurate. Otherwise the computation is performed using distmap.

To compute the dilated object itself, use dilation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, as.owin, dilation, eroded.areas

Examples

X <- runifpoint(10)
a <- dilated.areas(X, c(0.1,0.2), W=square(1), exact=TRUE)

dilation Morphological Dilation

Description

Perform morphological dilation of a window, a line segment pattern or a point pattern

Usage

dilation(w, r, ...)
S3 method for class 'owin'

dilation(w, r, ..., polygonal=NULL, tight=TRUE)
S3 method for class 'ppp'

dilation(w, r, ..., polygonal=TRUE, tight=TRUE)
S3 method for class 'psp'

dilation(w, r, ..., polygonal=TRUE, tight=TRUE)

390 dilation

Arguments

w A window (object of class "owin" or a line segment pattern (object of class
"psp") or a point pattern (object of class "ppp").

r positive number: the radius of dilation.

... extra arguments passed to as.mask controlling the pixel resolution, if the pixel
approximation is used; or passed to disc if the polygonal approximation is used.

polygonal Logical flag indicating whether to compute a polygonal approximation to the
dilation (polygonal=TRUE) or a pixel grid approximation (polygonal=FALSE).

tight Logical flag indicating whether the bounding frame of the window should be
taken as the smallest rectangle enclosing the dilated region (tight=TRUE), or
should be the dilation of the bounding frame of w (tight=FALSE).

Details

The morphological dilation of a set W by a distance r > 0 is the set consisting of all points lying
at most r units away from W . Effectively, dilation adds a margin of width r onto the set W .

If polygonal=TRUE then a polygonal approximation to the dilation is computed. If polygonal=FALSE
then a pixel approximation to the dilation is computed from the distance map of w. The arguments
"..." are passed to as.mask to control the pixel resolution.

When w is a window, the default (when polygonal=NULL) is to compute a polygonal approximation
if w is a rectangle or polygonal window, and to compute a pixel approximation if w is a window of
type "mask".

Value

If r > 0, an object of class "owin" representing the dilated region. If r=0, the result is identical to w.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

erosion for the opposite operation.

dilationAny for morphological dilation using any shape.

owin, as.owin

Examples

plot(dilation(redwood, 0.05))
points(redwood)

plot(dilation(letterR, 0.2))
plot(letterR, add=TRUE, lwd=2, border="red")

X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())

dim.detpointprocfamily 391

plot(dilation(X, 0.1))
plot(X, add=TRUE, col="red")

dim.detpointprocfamily

Dimension of Determinantal Point Process Model

Description

Extracts the dimension of a determinantal point process model.

Usage

S3 method for class 'detpointprocfamily'
dim(x)

Arguments

x object of class "detpointprocfamily".

Value

A numeric (or NULL if the dimension of the model is unspecified).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

dimhat Estimate Dimension of Central Subspace

Description

Given the kernel matrix that characterises a central subspace, this function estimates the dimension
of the subspace.

Usage

dimhat(M)

Arguments

M Kernel of subspace. A symmetric, non-negative definite, numeric matrix, typi-
cally obtained from sdr.

392 dirichlet

Details

This function computes the maximum descent estimate of the dimension of the central subspace
with a given kernel matrix M.

The matrix M should be the kernel matrix of a central subspace, which can be obtained from sdr. It
must be a symmetric, non-negative-definite, numeric matrix.

The algorithm finds the eigenvalues λ1 ≥ . . . ≥ λn of M , and then determines the index k for
which λk/λk−1 is greatest.

Value

A single integer giving the estimated dimension.

Author(s)

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References

Guan, Y. and Wang, H. (2010) Sufficient dimension reduction for spatial point processes directed
by Gaussian random fields. Journal of the Royal Statistical Society, Series B, 72, 367–387.

See Also

sdr, subspaceDistance

dirichlet Dirichlet Tessellation of Point Pattern

Description

Computes the Dirichlet tessellation of a spatial point pattern. Also known as the Voronoi or Thiessen
tessellation.

Usage

dirichlet(X)

Arguments

X Spatial point pattern (object of class "ppp").

dirichletAreas 393

Details

In a spatial point pattern X, the Dirichlet tile associated with a particular point X[i] is the region
of space that is closer to X[i] than to any other point in X. The Dirichlet tiles divide the two-
dimensional plane into disjoint regions, forming a tessellation.

The Dirichlet tessellation is also known as the Voronoi or Thiessen tessellation.

This function computes the Dirichlet tessellation (within the original window of X) using the func-
tion deldir in the package deldir.

To ensure that there is a one-to-one correspondence between the points of X and the tiles of dirichlet(X),
duplicated points in X should first be removed by X <-unique(X,rule="deldir").

The tiles of the tessellation will be computed as polygons if the original window is a rectangle or a
polygon. Otherwise the tiles will be computed as binary masks.

Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

tess, delaunay, ppp, dirichletVertices

Examples

X <- runifpoint(42)
plot(dirichlet(X))
plot(X, add=TRUE)

dirichletAreas Compute Areas of Tiles in Dirichlet Tessellation

Description

Calculates the area of each tile in the Dirichlet-Voronoi tessellation of a point pattern.

Usage

dirichletAreas(X)

Arguments

X Point pattern (object of class "ppp").

394 dirichletVertices

Details

This is an efficient algorithm to calculate the areas of the tiles in the Dirichlet-Voronoi tessellation.

If the window of X is a binary pixel mask, the tile areas are computed by counting pixels. Otherwise
the areas are computed exactly using analytic geometry.

If any points of X are duplicated, the duplicates will have tile area zero.

Value

Numeric vector with one entry for each point of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

dirichlet, dirichletVertices

Examples

aa <- dirichletAreas(cells)

dirichletVertices Vertices and Edges of Dirichlet Tessellation

Description

Computes the Dirichlet-Voronoi tessellation of a point pattern and extracts the vertices or edges of
the tiles.

Usage

dirichletVertices(X)

dirichletEdges(X)

Arguments

X Point pattern (object of class "ppp").

dirichletWeights 395

Details

These function compute the Dirichlet-Voronoi tessellation of X (see dirichlet) and extract the
vertices or edges of the tiles of the tessellation.

The Dirichlet vertices are the spatial locations which are locally farthest away from X, that is, where
the distance function of X reaches a local maximum.

The Dirichlet edges are the dividing lines equally distant between a pair of points of X.

The Dirichlet tessellation of X is computed using dirichlet. The vertices or edges of all tiles of
the tessellation are extracted.

For dirichletVertices, any vertex which lies on the boundary of the window of X is deleted. The
remaining vertices are returned, as a point pattern, without duplicated entries.

Value

dirichletVertices returns a point pattern (object of class "ppp") in the same window as X.

dirichletEdges returns a line segment pattern (object of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

dirichlet, dirichletAreas

Examples

plot(dirichlet(cells))

plot(dirichletVertices(cells), add=TRUE)

ed <- dirichletEdges(cells)

dirichletWeights Compute Quadrature Weights Based on Dirichlet Tessellation

Description

Computes quadrature weights for a given set of points, using the areas of tiles in the Dirichlet
tessellation.

Usage

dirichletWeights(X, window=NULL, exact=TRUE, ...)

396 dirichletWeights

Arguments

X Data defining a point pattern.

window Default window for the point pattern

exact Logical value. If TRUE, compute exact areas using the package deldir. If FALSE,
compute approximate areas using a pixel raster.

... Ignored.

Details

This function computes a set of quadrature weights for a given pattern of points (typically compris-
ing both “data” and ‘dummy” points). See quad.object for an explanation of quadrature weights
and quadrature schemes.

The weights are computed using the Dirichlet tessellation. First X and (optionally) window are
converted into a point pattern object. Then the Dirichlet tessellation of the points of X is computed.
The weight attached to a point of X is the area of its Dirichlet tile (inside the window Window(X)).

If exact=TRUE the Dirichlet tessellation is computed exactly by the Lee-Schachter algorithm us-
ing the package deldir. Otherwise a pixel raster approximation is constructed and the areas are
approximations to the true weights. In all cases the sum of the weights is equal to the area of the
window.

Value

Vector of nonnegative weights for each point in X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, gridweights

Examples

Q <- quadscheme(runifpoispp(10))
X <- as.ppp(Q) # data and dummy points together
w <- dirichletWeights(X, exact=FALSE)

disc 397

disc Circular Window

Description

Creates a circular window

Usage

disc(radius=1, centre=c(0,0), ..., mask=FALSE, npoly=128, delta=NULL)

Arguments

radius Radius of the circle.

centre The centre of the circle.

mask Logical flag controlling the type of approximation to a perfect circle. See De-
tails.

npoly Number of edges of the polygonal approximation, if mask=FALSE. Incompatible
with delta.

delta Tolerance of polygonal approximation: the length of arc that will be replaced by
one edge of the polygon. Incompatible with npoly.

... Arguments passed to as.mask determining the pixel resolution, if mask=TRUE.

Details

This command creates a window object representing a disc, with the given radius and centre.

By default, the circle is approximated by a polygon with npoly edges.

If mask=TRUE, then the disc is approximated by a binary pixel mask. The resolution of the mask is
controlled by the arguments ... which are passed to as.mask.

The argument radius must be a single positive number. The argument centre specifies the disc
centre: it can be either a numeric vector of length 2 giving the coordinates, or a list(x,y) giving
the coordinates of exactly one point, or a point pattern (object of class "ppp") containing exactly
one point.

Value

An object of class "owin" (see owin.object) specifying a window.

Note

This function can also be used to generate regular polygons, by setting npoly to a small integer
value. For example npoly=5 generates a pentagon and npoly=13 a triskaidecagon.

398 discpartarea

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ellipse, discs, owin.object, owin, as.mask

Examples

unit disc
W <- disc()
disc of radius 3 centred at x=10, y=5
W <- disc(3, c(10,5))
#
plot(disc())
plot(disc(mask=TRUE))
nice smooth circle
plot(disc(npoly=256))
how to control the resolution of the mask
plot(disc(mask=TRUE, dimyx=256))
check accuracy of approximation
area(disc())/pi
area(disc(mask=TRUE))/pi

discpartarea Area of Part of Disc

Description

Compute area of intersection between a disc and a window

Usage

discpartarea(X, r, W=as.owin(X))

Arguments

X Point pattern (object of class "ppp") specifying the centres of the discs. Alter-
natively, X may be in any format acceptable to as.ppp.

r Matrix, vector or numeric value specifying the radii of the discs.

W Window (object of class "owin") with which the discs should be intersected.

discretise 399

Details

This algorithm computes the exact area of the intersection between a window W and a disc (or each
of several discs). The centres of the discs are specified by the point pattern X, and their radii are
specified by r.

If r is a single numeric value, then the algorithm computes the area of intersection between W and
the disc of radius r centred at each point of X, and returns a one-column matrix containing one entry
for each point of X.

If r is a vector of length m, then the algorithm returns an n * m matrix in which the entry on row i,
column j is the area of the intersection between W and the disc centred at X[i] with radius r[j].

If r is a matrix, it should have one row for each point in X. The algorithm returns a matrix in which
the entry on row i, column j is the area of the intersection between W and the disc centred at X[i]
with radius r[i,j].

Areas are computed by analytic geometry.

Value

Numeric matrix, with one row for each point of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, disc

Examples

data(letterR)
X <- runifpoint(3, letterR)
discpartarea(X, 0.2)

discretise Safely Convert Point Pattern Window to Binary Mask

Description

Given a point pattern, discretise its window by converting it to a binary pixel mask, adjusting the
mask so that it still contains all the points.

Usage

discretise(X, eps = NULL, dimyx = NULL, xy = NULL)

400 discretise

Arguments

X A point pattern (object of class "ppp") to be converted.

eps (optional) width and height of each pixel

dimyx (optional) pixel array dimensions

xy (optional) pixel coordinates

Details

This function modifies the point pattern X by converting its observation window Window(X) to a
binary pixel image (a window of type "mask"). It ensures that no points of X are deleted by the
discretisation.

The window is first discretised using as.mask. It can happen that points of X that were inside
the original window may fall outside the new mask. The discretise function corrects this by
augmenting the mask (so that the mask includes any pixel that contains a point of the pattern).

The arguments eps, dimyx and xy control the fineness of the pixel array. They are passed to
as.mask.

If eps, dimyx and xy are all absent or NULL, and if the window of X is of type "mask" to start with,
then discretise(X) returns X unchanged.

See as.mask for further details about the arguments eps, dimyx, and xy, and the process of con-
verting a window to one of type mask.

Value

A point pattern (object of class "ppp"), identical to X, except that its observation window has been
converted to one of type mask.

Error checking

Before doing anything, discretise checks that all the points of the pattern are actually inside the
original window. This is guaranteed to be the case if the pattern was constructed using ppp or
as.ppp. However anomalies are possible if the point pattern was created or manipulated inappro-
priately. These will cause an error.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

as.mask

discs 401

Examples

data(demopat)
X <- demopat
plot(X, main="original pattern")
Y <- discretise(X, dimyx=50)
plot(Y, main="discretise(X)")
stopifnot(npoints(X) == npoints(Y))

what happens if we just convert the window to a mask?
W <- Window(X)
M <- as.mask(W, dimyx=50)
plot(M, main="window of X converted to mask")
plot(X, add=TRUE, pch=16)
plot(X[M], add=TRUE, pch=1, cex=1.5)
XM <- X[M]
cat(paste(npoints(X) - npoints(XM), "points of X lie outside M\n"))

discs Union of Discs

Description

Make a spatial region composed of discs with given centres and radii.

Usage

discs(centres, radii = marks(centres)/2, ...,
separate = FALSE, mask = FALSE, trim = TRUE,
delta = NULL, npoly=NULL)

Arguments

centres Point pattern giving the locations of centres for the discs.

radii Vector of radii for each disc, or a single number giving a common radius. (No-
tice that the default assumes that the marks of X are diameters.)

... Optional arguments passed to as.mask to determine the pixel resolution, if
mask=TRUE.

separate Logical. If TRUE, the result is a list containing each disc as a separate entry. If
FALSE (the default), the result is a window obtained by forming the union of the
discs.

mask Logical. If TRUE, the result is a binary mask window. If FALSE, the result is a
polygonal window. Applies only when separate=FALSE.

trim Logical value indicating whether to restrict the result to the original window of
the centres. Applies only when separate=FALSE.

delta Argument passed to disc to determine the tolerance for the polygonal approxi-
mation of each disc. Applies only when mask=FALSE. Incompatible with npoly.

402 distcdf

npoly Argument passed to disc to determine the number of edges in the polygonal
approximation of each disc. Applies only when mask=FALSE. Incompatible with
delta.

Details

This command is typically applied to a marked point pattern dataset X in which the marks represent
the sizes of objects. The result is a spatial region representing the space occupied by the objects.

If the marks of X represent the diameters of circular objects, then the result of discs(X) is a spa-
tial region constructed by taking discs, of the specified diameters, centred at the points of X, and
forming the union of these discs. If the marks of X represent the areas of objects, one could take
discs(X,sqrt(marks(X)/pi)) to produce discs of equivalent area.

A fast algorithm is used to compute the result as a binary mask, when mask=TRUE. This option is
recommended unless polygons are really necessary.

If mask=FALSE, the discs will be constructed as polygons by the function disc. To avoid compu-
tational problems, by default, the discs will all be constructed using the same physical tolerance
value delta passed to disc. The default is such that the smallest disc will be approximated by
a 16-sided polygon. (The argument npoly should not normally be used, to avoid computational
problems arising with small radii.)

Value

If separate=FALSE, a window (object of class "owin").

If separate=TRUE, a list of windows.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

disc, union.owin

Examples

plot(discs(anemones, mask=TRUE, eps=0.5))

distcdf Distribution Function of Interpoint Distance

Description

Computes the cumulative distribution function of the distance between two independent random
points in a given window or windows.

distcdf 403

Usage

distcdf(W, V=W, ..., dW=1, dV=dW, nr=1024, regularise=TRUE)

Arguments

W A window (object of class "owin") containing the first random point.

V Optional. Another window containing the second random point. Defaults to W.

... Arguments passed to as.mask to determine the pixel resolution for the calcula-
tion.

dV, dW Optional. Probability densities (not necessarily normalised) for the first and
second random points respectively. Data in any format acceptable to as.im, for
example, a function(x,y) or a pixel image or a numeric value. The default
corresponds to a uniform distribution over the window.

nr Integer. The number of values of interpoint distance r for which the CDF will
be computed. Should be a large value!

regularise Logical value indicating whether to smooth the results for very small distances,
to avoid discretisation artefacts.

Details

This command computes the Cumulative Distribution Function CDF (r) = Prob(T ≤ r) of the
Euclidean distance T = ‖X1 −X2‖ between two independent random points X1 and X2.

In the simplest case, the command distcdf(W), the random points are assumed to be uniformly
distributed in the same window W.

Alternatively the two random points may be uniformly distributed in two different windows W and
V.

In the most general case the first point X1 is random in the window W with a probability density
proportional to dW, and the second point X2 is random in a different window V with probability
density proportional to dV. The values of dW and dV must be finite and nonnegative.

The calculation is performed by numerical integration of the set covariance function setcov for
uniformly distributed points, and by computing the covariance function imcov in the general case.
The accuracy of the result depends on the pixel resolution used to represent the windows: this is
controlled by the arguments ... which are passed to as.mask. For example use eps=0.1 to specify
pixels of size 0.1 units.

The arguments W or V may also be point patterns (objects of class "ppp"). The result is the cumu-
lative distribution function of the distance from a randomly selected point in the point pattern, to a
randomly selected point in the other point pattern or window.

If regularise=TRUE (the default), values of the cumulative distribution function for very short
distances are smoothed to avoid discretisation artefacts. Smoothing is applied to all distances shorter
than the width of 7 pixels.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

404 distfun

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

setcov, as.mask.

Examples

The unit disc
B <- disc()
plot(distcdf(B))

distfun Distance Map as a Function

Description

Compute the distance function of an object, and return it as a function.

Usage

distfun(X, ...)

S3 method for class 'ppp'
distfun(X, ..., k=1, undef=Inf)

S3 method for class 'psp'
distfun(X, ...)

S3 method for class 'owin'
distfun(X, ..., invert=FALSE)

Arguments

X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), a window (object of class "owin") or a line segment
pattern (object of class "psp").

... Extra arguments are ignored.

k An integer. The distance to the kth nearest point will be computed.

undef The value that should be returned if the distance is undefined (that is, if X con-
tains fewer than k points).

invert If TRUE, compute the distance transform of the complement of X.

distfun 405

Details

The “distance function” of a set of points A is the mathematical function f such that, for any two-
dimensional spatial location (x, y), the function value f(x,y) is the shortest distance from (x, y) to
A.

The command f <-distfun(X) returns a function in the R language, with arguments x,y, that
represents the distance function of X. Evaluating the function f in the form v <-f(x,y), where x
and y are any numeric vectors of equal length containing coordinates of spatial locations, yields the
values of the distance function at these locations. Alternatively x can be a point pattern (object of
class "ppp" or "lpp") of locations at which the distance function should be computed (and then y
should be missing).

This should be contrasted with the related command distmap which computes the distance function
of X on a grid of locations, and returns the distance values in the form of a pixel image.

The result of f <-distfun(X) also belongs to the class "funxy" and to the special class "distfun".
It can be printed and plotted immediately as shown in the Examples.

A distfun object can be converted to a pixel image using as.im.

Value

A function with arguments x,y. The function belongs to the class "distfun" which has methods
for print and summary, and for geometric operations like shift. It also belongs to the class
"funxy" which has methods for plot, contour and persp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

distmap, summary.distfun, methods.distfun, methods.funxy, plot.funxy

Examples

data(letterR)
f <- distfun(letterR)
f
plot(f)
f(0.2, 0.3)

plot(distfun(letterR, invert=TRUE), eps=0.1)

d <- distfun(cells)
d2 <- distfun(cells, k=2)
d(0.5, 0.5)
d2(0.5, 0.5)
domain(d)
summary(d)

z <- d(japanesepines)

406 distfun.lpp

distfun.lpp Distance Map on Linear Network

Description

Compute the distance function of a point pattern on a linear network.

Usage

S3 method for class 'lpp'
distfun(X, ..., k=1)

Arguments

X A point pattern on a linear network (object of class "lpp").

k An integer. The distance to the kth nearest point will be computed.

... Extra arguments are ignored.

Details

On a linear network L, the “geodesic distance function” of a set of pointsA in L is the mathematical
function f such that, for any location s on L, the function value f(s) is the shortest-path distance
from s to A.

The command distfun.lpp is a method for the generic command distfun for the class "lpp" of
point patterns on a linear network.

If X is a point pattern on a linear network, f <-distfun(X) returns a function in the R language
that represents the distance function of X. Evaluating the function f in the form v <-f(x,y), where
x and y are any numeric vectors of equal length containing coordinates of spatial locations, yields
the values of the distance function at these locations. More efficiently f can be called in the form v
<-f(x,y,seg,tp) where seg and tp are the local coordinates on the network. It can also be called
as v <-f(x) where x is a point pattern on the same linear network.

The function f obtained from f <-distfun(X) also belongs to the class "linfun". It can be printed
and plotted immediately as shown in the Examples. It can be converted to a pixel image using
as.linim.

Value

A function with arguments x,y and optional arguments seg,tp. It also belongs to the class
"linfun" which has methods for plot, print etc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

distmap 407

See Also

linfun, methods.linfun.

To identify which point is the nearest neighbour, see nnfun.lpp.

Examples

data(letterR)
X <- runiflpp(3, simplenet)
f <- distfun(X)
f
plot(f)

using a distfun as a covariate in a point process model:
Y <- runiflpp(4, simplenet)
fit <- lppm(Y ~D, covariates=list(D=f))

f(Y)

distmap Distance Map

Description

Compute the distance map of an object, and return it as a pixel image. Generic.

Usage

distmap(X, ...)

Arguments

X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), a window (object of class "owin") or a line segment
pattern (object of class "psp").

... Arguments passed to as.mask to control pixel resolution.

Details

The “distance map” of a set of points A is the function f whose value f(x) is defined for any
two-dimensional location x as the shortest distance from x to A.

This function computes the distance map of the set X and returns the distance map as a pixel image.

This is generic. Methods are provided for point patterns (distmap.ppp), line segment patterns
(distmap.psp) and windows (distmap.owin).

Value

A pixel image (object of class "im") whose grey scale values are the values of the distance map.

408 distmap.owin

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

distmap.ppp, distmap.psp, distmap.owin, distfun

Examples

data(cells)
U <- distmap(cells)
data(letterR)
V <- distmap(letterR)
Not run:
plot(U)
plot(V)

End(Not run)

distmap.owin Distance Map of Window

Description

Computes the distance from each pixel to the nearest point in the given window.

Usage

S3 method for class 'owin'
distmap(X, ..., discretise=FALSE, invert=FALSE)

Arguments

X A window (object of class "owin").

... Arguments passed to as.mask to control pixel resolution.

discretise Logical flag controlling the choice of algorithm when X is a polygonal window.
See Details.

invert If TRUE, compute the distance transform of the complement of the window.

distmap.owin 409

Details

The “distance map” of a window W is the function f whose value f(u) is defined for any two-
dimensional location u as the shortest distance from u to W .

This function computes the distance map of the window X and returns the distance map as a pixel
image. The greyscale value at a pixel u equals the distance from u to the nearest pixel in X.

Additionally, the return value has an attribute "bdry" which is also a pixel image. The grey values
in "bdry" give the distance from each pixel to the bounding rectangle of the image.

If X is a binary pixel mask, the distance values computed are not the usual Euclidean distances.
Instead the distance between two pixels is measured by the length of the shortest path connecting
the two pixels. A path is a series of steps between neighbouring pixels (each pixel has 8 neighbours).
This is the standard ‘distance transform’ algorithm of image processing (Rosenfeld and Kak, 1968;
Borgefors, 1986).

If X is a polygonal window, then exact Euclidean distances will be computed if discretise=FALSE.
If discretise=TRUE then the window will first be converted to a binary pixel mask and the discrete
path distances will be computed.

The arguments ... are passed to as.mask to control the pixel resolution.

This function is a method for the generic distmap.

Value

A pixel image (object of class "im") whose greyscale values are the values of the distance map. The
return value has an attribute "bdry" which is a pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Borgefors, G. Distance transformations in digital images. Computer Vision, Graphics and Image
Processing 34 (1986) 344–371.

Rosenfeld, A. and Pfalz, J.L. Distance functions on digital pictures. Pattern Recognition 1 (1968)
33-61.

See Also

distmap, distmap.ppp, distmap.psp

Examples

data(letterR)
U <- distmap(letterR)
Not run:
plot(U)
plot(attr(U, "bdry"))

End(Not run)

410 distmap.ppp

distmap.ppp Distance Map of Point Pattern

Description

Computes the distance from each pixel to the nearest point in the given point pattern.

Usage

S3 method for class 'ppp'
distmap(X, ...)

Arguments

X A point pattern (object of class "ppp").
... Arguments passed to as.mask to control pixel resolution.

Details

The “distance map” of a point pattern X is the function f whose value f(u) is defined for any
two-dimensional location u as the shortest distance from u to X .

This function computes the distance map of the point pattern X and returns the distance map as a
pixel image. The greyscale value at a pixel u equals the distance from u to the nearest point of the
pattern X.

Additionally, the return value has two attributes, "index" and "bdry", which are also pixel images.
The grey values in "bdry" give the distance from each pixel to the bounding rectangle of the image.
The grey values in "index" are integers identifying which point of X is closest.

This is a method for the generic function distmap.

Note that this function gives the distance from the centre of each pixel to the nearest data point. To
compute the exact distance from a given spatial location to the nearest data point in X, use distfun
or nncross.

Value

A pixel image (object of class "im") whose greyscale values are the values of the distance map. The
return value has attributes "index" and "bdry" which are also pixel images.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Generic function distmap and other methods distmap.psp, distmap.owin.

Generic function distfun.

Nearest neighbour distance nncross

distmap.psp 411

Examples

data(cells)
U <- distmap(cells)
Not run:
plot(U)
plot(attr(U, "bdry"))
plot(attr(U, "index"))

End(Not run)

distmap.psp Distance Map of Line Segment Pattern

Description

Computes the distance from each pixel to the nearest line segment in the given line segment pattern.

Usage

S3 method for class 'psp'
distmap(X, ...)

Arguments

X A line segment pattern (object of class "psp").

... Arguments passed to as.mask to control pixel resolution.

Details

The “distance map” of a line segment pattern X is the function f whose value f(u) is defined for
any two-dimensional location u as the shortest distance from u to X .

This function computes the distance map of the line segment pattern X and returns the distance map
as a pixel image. The greyscale value at a pixel u equals the distance from u to the nearest line
segment of the pattern X. Distances are computed using analytic geometry.

Additionally, the return value has two attributes, "index" and "bdry", which are also pixel images.
The grey values in "bdry" give the distance from each pixel to the bounding rectangle of the image.
The grey values in "index" are integers identifying which line segment of X is closest.

This is a method for the generic function distmap.

Note that this function gives the exact distance from the centre of each pixel to the nearest line seg-
ment. To compute the exact distance from the points in a point pattern to the nearest line segment,
use distfun or one of the low-level functions nncross or project2segment.

Value

A pixel image (object of class "im") whose greyscale values are the values of the distance map. The
return value has attributes "index" and "bdry" which are also pixel images.

412 divide.linnet

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

distmap, distmap.owin, distmap.ppp, distfun, nncross, nearestsegment, project2segment.

Examples

a <- psp(runif(20),runif(20),runif(20),runif(20), window=owin())
Z <- distmap(a)
plot(Z)
plot(a, add=TRUE)

divide.linnet Divide Linear Network at Cut Points

Description

Make a tessellation of a linear network by dividing it into pieces demarcated by the points of a point
pattern.

Usage

divide.linnet(X)

Arguments

X Point pattern on a linear network (object of class "lpp").

Details

The points X are interpreted as dividing the linear network L=as.linnet(X) into separate pieces.

Two locations on L belong to the same piece if and only if they can be joined by a path in L that
does not cross any of the points of X.

The result is a tessellation of the network (object of class "lintess") representing the division of
L into pieces.

Value

A tessellation on a linear network (object of class "lintess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Greg McSwiggan.

dkernel 413

See Also

linnet, lintess.

Examples

X <- runiflpp(5, simplenet)
plot(divide.linnet(X))
plot(X, add=TRUE, pch=16, show.network=FALSE)

dkernel Kernel distributions and random generation

Description

Density, distribution function, quantile function and random generation for several distributions
used in kernel estimation for numerical data.

Usage

dkernel(x, kernel = "gaussian", mean = 0, sd = 1)
pkernel(q, kernel = "gaussian", mean = 0, sd = 1, lower.tail = TRUE)
qkernel(p, kernel = "gaussian", mean = 0, sd = 1, lower.tail = TRUE)
rkernel(n, kernel = "gaussian", mean = 0, sd = 1)

Arguments

x, q Vector of quantiles.
p Vector of probabilities.
kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",

"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

n Number of observations.
mean Mean of distribution.
sd Standard deviation of distribution.
lower.tail logical; if TRUE (the default), then probabilities are P (X ≤ x), otherwise,

P (X > x).

Details

These functions give the probability density, cumulative distribution function, quantile function and
random generation for several distributions used in kernel estimation for one-dimensional (numeri-
cal) data.

The available kernels are those used in density.default, namely "gaussian", "rectangular",
"triangular", "epanechnikov", "biweight", "cosine" and "optcosine". For more informa-
tion about these kernels, see density.default.

dkernel gives the probability density, pkernel gives the cumulative distribution function, qkernel
gives the quantile function, and rkernel generates random deviates.

414 dmixpois

Value

A numeric vector. For dkernel, a vector of the same length as x containing the corresponding
values of the probability density. For pkernel, a vector of the same length as x containing the
corresponding values of the cumulative distribution function. For qkernel, a vector of the same
length as p containing the corresponding quantiles. For rkernel, a vector of length n containing
randomly generated values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Martin Hazelton

See Also

density.default, kernel.factor

Examples

x <- seq(-3,3,length=100)
plot(x, dkernel(x, "epa"), type="l",

main=c("Epanechnikov kernel", "probability density"))
plot(x, pkernel(x, "opt"), type="l",

main=c("OptCosine kernel", "cumulative distribution function"))
p <- seq(0,1, length=256)
plot(p, qkernel(p, "biw"), type="l",

main=c("Biweight kernel", "cumulative distribution function"))
y <- rkernel(100, "tri")
hist(y, main="Random variates from triangular density")
rug(y)

dmixpois Mixed Poisson Distribution

Description

Density, distribution function, quantile function and random generation for a mixture of Poisson
distributions.

Usage

dmixpois(x, mu, sd, invlink = exp, GHorder = 5)
pmixpois(q, mu, sd, invlink = exp, lower.tail = TRUE, GHorder = 5)
qmixpois(p, mu, sd, invlink = exp, lower.tail = TRUE, GHorder = 5)
rmixpois(n, mu, sd, invlink = exp)

dmixpois 415

Arguments

x vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of random values to return.

mu Mean of the linear predictor. A single numeric value.

sd Standard deviation of the linear predictor. A single numeric value.

invlink Inverse link function. A function in the R language, used to transform the linear
predictor into the parameter lambda of the Poisson distribution.

lower.tail Logical. If TRUE (the default), probabilities are P [X ≤ x], otherwise, P [X >
x].

GHorder Number of quadrature points in the Gauss-Hermite quadrature approximation.
A small positive integer.

Details

These functions are analogous to dpois ppois, qpois and rpois except that they apply to a mixture
of Poisson distributions.

In effect, the Poisson mean parameter lambda is randomised by setting lambda = invlink(Z)
where Z has a Gaussian N(µ, σ2) distribution. The default is invlink=exp which means that
lambda is lognormal. Set invlink=I to assume that lambda is approximately Normal.

For dmixpois, pmixpois and qmixpois, the probability distribution is approximated using Gauss-
Hermite quadrature. For rmixpois, the deviates are simulated exactly.

Value

Numeric vector: dmixpois gives probability masses, ppois gives cumulative probabilities, qpois
gives (non-negative integer) quantiles, and rpois generates (non-negative integer) random deviates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

dpois, gauss.hermite.

Examples

dmixpois(7, 10, 1, invlink = I)
dpois(7, 10)

pmixpois(7, log(10), 0.2)
ppois(7, 10)

416 domain

qmixpois(0.95, log(10), 0.2)
qpois(0.95, 10)

x <- rmixpois(100, log(10), log(1.2))
mean(x)
var(x)

domain Extract the Domain of any Spatial Object

Description

Given a spatial object such as a point pattern, in any number of dimensions, this function extracts
the spatial domain in which the object is defined.

Usage

domain(X, ...)

S3 method for class 'ppp'
domain(X, ...)

S3 method for class 'psp'
domain(X, ...)

S3 method for class 'im'
domain(X, ...)

S3 method for class 'ppx'
domain(X, ...)

S3 method for class 'pp3'
domain(X, ...)

S3 method for class 'lpp'
domain(X, ...)

S3 method for class 'ppm'
domain(X, ..., from=c("points", "covariates"))

S3 method for class 'kppm'
domain(X, ..., from=c("points", "covariates"))

S3 method for class 'dppm'
domain(X, ..., from=c("points", "covariates"))

domain 417

S3 method for class 'lpp'
domain(X, ...)

S3 method for class 'lppm'
domain(X, ...)

S3 method for class 'msr'
domain(X, ...)

S3 method for class 'quad'
domain(X, ...)

S3 method for class 'quadratcount'
domain(X, ...)

S3 method for class 'quadrattest'
domain(X, ...)

S3 method for class 'tess'
domain(X, ...)

S3 method for class 'linfun'
domain(X, ...)

S3 method for class 'lintess'
domain(X, ...)

S3 method for class 'im'
domain(X, ...)

S3 method for class 'layered'
domain(X, ...)

S3 method for class 'distfun'
domain(X, ...)

S3 method for class 'nnfun'
domain(X, ...)

S3 method for class 'funxy'
domain(X, ...)

S3 method for class 'rmhmodel'
domain(X, ...)

S3 method for class 'leverage.ppm'
domain(X, ...)

418 domain

S3 method for class 'influence.ppm'
domain(X, ...)

Arguments

X A spatial object such as a point pattern (in any number of dimensions), line
segment pattern or pixel image.

... Extra arguments. They are ignored by all the methods listed here.

from Character string. See Details.

Details

The function domain is generic.

For a spatial object X in any number of dimensions, domain(X) extracts the spatial domain in which
X is defined.

For a two-dimensional object X, typically domain(X) is the same as Window(X).

The exception is that, if X is a point pattern on a linear network (class "lpp") or a point process
model on a linear network (class "lppm"), then domain(X) is the linear network on which the points
lie, while Window(X) is the two-dimensional window containing the linear network.

The argument from applies when X is a fitted point process model (object of class "ppm", "kppm"
or "dppm"). If from="data" (the default), domain extracts the window of the original point pattern
data to which the model was fitted. If from="covariates" then domain returns the window in
which the spatial covariates of the model were provided.

Value

A spatial object representing the domain of X. Typically a window (object of class "owin"), a three-
dimensional box ("box3"), a multidimensional box ("boxx") or a linear network ("linnet").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Window, Frame

Examples

domain(cells)
domain(bei.extra$elev)
domain(chicago)

dppapproxkernel 419

dppapproxkernel Approximate Determinantal Point Process Kernel

Description

Returns an approximation to the kernel of a determinantal point process, as a function of one argu-
ment x.

Usage

dppapproxkernel(model, trunc = 0.99, W = NULL)

Arguments

model Object of class "detpointprocfamily".

trunc Numeric specifying how the model truncation is performed. See Details section
of simulate.detpointprocfamily.

W Optional window – undocumented at the moment.

Value

A function

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

dppapproxpcf Approximate Pair Correlation Function of Determinantal Point Pro-
cess Model

Description

Returns an approximation to the theoretical pair correlation function of a determinantal point pro-
cess model, as a function of one argument x.

Usage

dppapproxpcf(model, trunc = 0.99, W = NULL)

420 dppBessel

Arguments

model Object of class "detpointprocfamily".

trunc Numeric specifying how the model truncation is performed. See Details section
of simulate.detpointprocfamily.

W Optional window – undocumented at the moment.

Details

This function is usually NOT needed for anything. It only exists for investigative purposes.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

f <- dppapproxpcf(dppMatern(lambda = 100, alpha=.028, nu=1, d=2))
plot(f, xlim = c(0,0.1))

dppBessel Bessel Type Determinantal Point Process Model

Description

Function generating an instance of the Bessel-type determinantal point process model.

Usage

dppBessel(...)

Arguments

... arguments of the form tag=value specifying the model parameters. See Details.

Details

The possible parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the shape parameter sigma as a non-negative numeric

• the dimension d as a positive integer

dppCauchy 421

Value

An object of class "detpointprocfamily".

Author(s)

Frederic Lavancier and Christophe Biscio. Modified by Ege Rubak <rubak@math.aau.dk> , Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

dppCauchy, dppGauss, dppMatern, dppPowerExp

Examples

m <- dppBessel(lambda=100, alpha=.05, sigma=0, d=2)

dppCauchy Generalized Cauchy Determinantal Point Process Model

Description

Function generating an instance of the (generalized) Cauchy determinantal point process model.

Usage

dppCauchy(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The (generalized) Cauchy DPP is defined in (Lavancier, Møller and Rubak, 2015) The possible
parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the shape parameter nu as a positive numeric (artificially required to be less than 20 in the
code for numerical stability)

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

422 dppeigen

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

dppBessel, dppGauss, dppMatern, dppPowerExp

Examples

m <- dppCauchy(lambda=100, alpha=.05, nu=1, d=2)

dppeigen Internal function calculating eig and index

Description

This function is mainly for internal package use and is usually not called by the user.

Usage

dppeigen(model, trunc, Wscale, stationary = FALSE)

Arguments

model object of class "detpointprocfamily"

trunc numeric giving the truncation

Wscale numeric giving the scale of the window relative to a unit box

stationary logical indicating whether the stationarity of the model should be used (only
works in dimension 2).

Value

A list

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

dppGauss 423

dppGauss Gaussian Determinantal Point Process Model

Description

Function generating an instance of the Gaussian determinantal point process model.

Usage

dppGauss(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The Gaussian DPP is defined in (Lavancier, Møller and Rubak, 2015) The possible parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

dppBessel, dppCauchy, dppMatern, dppPowerExp

Examples

m <- dppGauss(lambda=100, alpha=.05, d=2)

424 dppm

dppkernel Extract Kernel from Determinantal Point Process Model Object

Description

Returns the kernel of a determinantal point process model as a function of one argument x.

Usage

dppkernel(model, ...)

Arguments

model Model of class "detpointprocfamily".

... Arguments passed to dppapproxkernel if the exact kernel is unknown

Value

A function

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

kernelMatern <- dppkernel(dppMatern(lambda = 100, alpha=.01, nu=1, d=2))
plot(kernelMatern, xlim = c(0,0.1))

dppm Fit Determinantal Point Process Model

Description

Fit a determinantal point process model to a point pattern.

dppm 425

Usage

dppm(formula, family, data=NULL,
...,
startpar = NULL,
method = c("mincon", "clik2", "palm"),
weightfun=NULL,
control=list(),
algorithm="Nelder-Mead",
statistic="K",
statargs=list(),
rmax = NULL,
covfunargs=NULL,
use.gam=FALSE,
nd=NULL, eps=NULL)

Arguments

formula A formula in the R language specifying the data (on the left side) and the form
of the model to be fitted (on the right side). For a stationary model it suffices to
provide a point pattern without a formula. See Details.

family Information specifying the family of point processes to be used in the model.
Typically one of the family functions dppGauss, dppMatern, dppCauchy, dppBessel
or dppPowerExp. Alternatively a character string giving the name of a family
function, or the result of calling one of the family functions. See Details.

data The values of spatial covariates (other than the Cartesian coordinates) required
by the model. A named list of pixel images, functions, windows, tessellations
or numeric constants.

... Additional arguments. See Details.

startpar Named vector of starting parameter values for the optimization.

method The fitting method. Either "mincon" for minimum contrast, "clik2" for second
order composite likelihood, or "palm" for Palm likelihood. Partially matched.

weightfun Optional weighting function w in the composite likelihood or Palm likelihood.
A function in the R language. See Details.

control List of control parameters passed to the optimization function optim.

algorithm Character string determining the mathematical optimisation algorithm to be used
by optim. See the argument method of optim.

statistic Name of the summary statistic to be used for minimum contrast estimation:
either "K" or "pcf".

statargs Optional list of arguments to be used when calculating the statistic. See
Details.

rmax Maximum value of interpoint distance to use in the composite likelihood.

covfunargs,use.gam,nd,eps

Arguments passed to ppm when fitting the intensity.

426 dppm

Details

This function fits a determinantal point process model to a point pattern dataset as described in
Lavancier et al. (2015).

The model to be fitted is specified by the arguments formula and family.

The argument formula should normally be a formula in the R language. The left hand side of
the formula specifies the point pattern dataset to which the model should be fitted. This should be
a single argument which may be a point pattern (object of class "ppp") or a quadrature scheme
(object of class "quad"). The right hand side of the formula is called the trend and specifies the
form of the logarithm of the intensity of the process. Alternatively the argument formula may be a
point pattern or quadrature scheme, and the trend formula is taken to be ~1.

The argument family specifies the family of point processes to be used in the model. It is typically
one of the family functions dppGauss, dppMatern, dppCauchy, dppBessel or dppPowerExp. Alter-
natively it may be a character string giving the name of a family function, or the result of calling one
of the family functions. A family function belongs to class "detpointprocfamilyfun". The result
of calling a family function is a point process family, which belongs to class "detpointprocfamily".

The algorithm first estimates the intensity function of the point process using ppm. If the trend
formula is ~1 (the default if a point pattern or quadrature scheme is given rather than a "formula")
then the model is homogeneous. The algorithm begins by estimating the intensity as the number of
points divided by the area of the window. Otherwise, the model is inhomogeneous. The algorithm
begins by fitting a Poisson process with log intensity of the form specified by the formula trend.
(See ppm for further explanation).

The interaction parameters of the model are then fitted either by minimum contrast estimation, or
by maximum composite likelihood.

Minimum contrast: If method = "mincon" (the default) interaction parameters of the model will
be fitted by minimum contrast estimation, that is, by matching the theoretical K-function of
the model to the empirical K-function of the data, as explained in mincontrast.
For a homogeneous model (trend = ~1) the empirical K-function of the data is computed
using Kest, and the interaction parameters of the model are estimated by the method of mini-
mum contrast.
For an inhomogeneous model, the inhomogeneous K function is estimated by Kinhom using
the fitted intensity. Then the interaction parameters of the model are estimated by the method
of minimum contrast using the inhomogeneous K function. This two-step estimation proce-
dure is heavily inspired by Waagepetersen (2007).
If statistic="pcf" then instead of using the K-function, the algorithm will use the pair
correlation function pcf for homogeneous models and the inhomogeneous pair correlation
function pcfinhom for inhomogeneous models. In this case, the smoothing parameters of the
pair correlation can be controlled using the argument statargs, as shown in the Examples.
Additional arguments ... will be passed to clusterfit to control the minimum contrast
fitting algorithm.

Composite likelihood: If method = "clik2" the interaction parameters of the model will be fit-
ted by maximising the second-order composite likelihood (Guan, 2006). The log composite
likelihood is

∑
i,j

w(dij) log ρ(dij ; θ)−

∑
i,j

w(dij)

 log

∫
D

∫
D

w(‖u− v‖)ρ(‖u− v‖; θ) du dv

dppm 427

where the sums are taken over all pairs of data points xi, xj separated by a distance dij =
‖xi − xj‖ less than rmax, and the double integral is taken over all pairs of locations u, v in
the spatial window of the data. Here ρ(d; θ) is the pair correlation function of the model with
cluster parameters θ.
The function w in the composite likelihood is a weighting function and may be chosen arbi-
trarily. It is specified by the argument weightfun. If this is missing or NULL then the default
is a threshold weight function, w(d) = 1(d ≤ R), where R is rmax/2.

Palm likelihood: If method = "palm" the interaction parameters of the model will be fitted by
maximising the Palm loglikelihood (Tanaka et al, 2008)∑

i,j

w(xi, xj) log λP (xj | xi; θ)−
∫
D

w(xi, u)λP (u | xi; θ)du

with the same notation as above. Here λP (u|v; θ is the Palm intensity of the model at location
u given there is a point at v.

In all three methods, the optimisation is performed by the generic optimisation algorithm optim.
The behaviour of this algorithm can be modified using the argument control. Useful control
arguments include trace, maxit and abstol (documented in the help for optim).

Finally, it is also possible to fix any parameters desired before the optimisation by specifying them
as name=value in the call to the family function. See Examples.

Value

An object of class "dppm" representing the fitted model. There are methods for printing, plotting,
predicting and simulating objects of this class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

Guan, Y. (2006) A composite likelihood approach in fitting spatial point process models. Journal
of the American Statistical Association 101, 1502–1512.

Tanaka, U. and Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for
Neyman-Scott point processes. Biometrical Journal 50, 43–57.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

methods for dppm objects: plot.dppm, fitted.dppm, predict.dppm, simulate.dppm, methods.dppm,
as.ppm.dppm, Kmodel.dppm, pcfmodel.dppm.

Minimum contrast fitting algorithm: higher level interface clusterfit; low-level algorithm mincontrast.

428 dppMatern

Deterimantal point process models: dppGauss, dppMatern, dppCauchy, dppBessel, dppPowerExp,

Summary statistics: Kest, Kinhom, pcf, pcfinhom.

See also ppm

Examples

jpines <- residualspaper$Fig1

dppm(jpines ~ 1, dppGauss)

dppm(jpines ~ 1, dppGauss, method="c")
dppm(jpines ~ 1, dppGauss, method="p")

Fixing the intensity to lambda=2 rather than the Poisson MLE 2.04:
dppm(jpines ~ 1, dppGauss(lambda=2))

if(interactive()) {
The following is quite slow (using K-function)
dppm(jpines ~ x, dppMatern)
}

much faster using pair correlation function
dppm(jpines ~ x, dppMatern, statistic="pcf", statargs=list(stoyan=0.2))

Fixing the Matern shape parameter to nu=2 rather than estimating it:
dppm(jpines ~ x, dppMatern(nu=2))

dppMatern Whittle-Matern Determinantal Point Process Model

Description

Function generating an instance of the Whittle-Matérn determinantal point process model

Usage

dppMatern(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The Whittle-Matérn DPP is defined in (Lavancier, Møller and Rubak, 2015) The possible parame-
ters are:

• the intensity lambda as a positive numeric

dppparbounds 429

• the scale parameter alpha as a positive numeric

• the shape parameter nu as a positive numeric (artificially required to be less than 20 in the
code for numerical stability)

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

dppBessel, dppCauchy, dppGauss, dppPowerExp

Examples

m <- dppMatern(lambda=100, alpha=.02, nu=1, d=2)

dppparbounds Parameter Bound for a Determinantal Point Process Model

Description

Returns the lower and upper bound for a specific parameter of a determinantal point process model
when all other parameters are fixed.

Usage

dppparbounds(model, name, ...)

Arguments

model Model of class "detpointprocfamily".

name name of the parameter for which the bound should be computed.

... Additional arguments passed to the parbounds function of the given model

430 dppPowerExp

Value

A data.frame containing lower and upper bounds.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

model <- dppMatern(lambda=100, alpha=.01, nu=1, d=2)
dppparbounds(model, "lambda")

dppPowerExp Power Exponential Spectral Determinantal Point Process Model

Description

Function generating an instance of the Power Exponential Spectral determinantal point process
model.

Usage

dppPowerExp(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The Power Exponential Spectral DPP is defined in (Lavancier, Møller and Rubak, 2015) The possi-
ble parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the shape parameter nu as a positive numeric (artificially required to be less than 20 in the
code for numerical stability)

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

dppspecden 431

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

dppBessel, dppCauchy, dppGauss, dppMatern

Examples

m <- dppPowerExp(lambda=100, alpha=.01, nu=1, d=2)

dppspecden Extract Spectral Density from Determinantal Point Process Model Ob-
ject

Description

Returns the spectral density of a determinantal point process model as a function of one argument
x.

Usage

dppspecden(model)

Arguments

model Model of class "detpointprocfamily".

Value

A function

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

432 dppspecdenrange

See Also

dppspecdenrange

Examples

model <- dppMatern(lambda = 100, alpha=.01, nu=1, d=2)
dppspecden(model)

dppspecdenrange Range of Spectral Density of a Determinantal Point Process Model

Description

Computes the range of the spectral density of a determinantal point process model.

Usage

dppspecdenrange(model)

Arguments

model Model of class "detpointprocfamily".

Value

Numeric value (possibly Inf).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

dppspecden

Examples

m <- dppBessel(lambda=100, alpha=0.05, sigma=1, d=2)
dppspecdenrange(m)

dummify 433

dummify Convert Data to Numeric Values by Constructing Dummy Variables

Description

Converts data of any kind to numeric values. A factor is expanded to a set of dummy variables.

Usage

dummify(x)

Arguments

x Vector, factor, matrix or data frame to be converted.

Details

This function converts data (such as a factor) to numeric values in order that the user may calculate,
for example, the mean, variance, covariance and correlation of the data.

If x is a numeric vector or integer vector, it is returned unchanged.

If x is a logical vector, it is converted to a 0-1 matrix with 2 columns. The first column contains a 1
if the logical value is FALSE, and the second column contains a 1 if the logical value is TRUE.

If x is a complex vector, it is converted to a matrix with 2 columns, containing the real and imaginary
parts.

If x is a factor, the result is a matrix of 0-1 dummy variables. The matrix has one column for each
possible level of the factor. The (i,j) entry is equal to 1 when the ith factor value equals the jth
level, and is equal to 0 otherwise.

If x is a matrix or data frame, the appropriate conversion is applied to each column of x.

Note that, unlike model.matrix, this command converts a factor into a full set of dummy variables
(one column for each level of the factor).

Value

A numeric matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Examples

chara <- sample(letters[1:3], 8, replace=TRUE)
logi <- (runif(8) < 0.3)
comp <- round(4*runif(8) + 3*runif(8) * 1i, 1)
nume <- 8:1 + 0.1
df <- data.frame(nume, chara, logi, comp)

434 dummy.ppm

df
dummify(df)

dummy.ppm Extract Dummy Points Used to Fit a Point Process Model

Description

Given a fitted point process model, this function extracts the ‘dummy points’ of the quadrature
scheme used to fit the model.

Usage

dummy.ppm(object, drop=FALSE)

Arguments

object fitted point process model (an object of class "ppm").

drop Logical value determining whether to delete dummy points that were not used
to fit the model.

Details

An object of class "ppm" represents a point process model that has been fitted to data. It is typically
produced by the model-fitting algorithm ppm.

The maximum pseudolikelihood algorithm in ppm approximates the pseudolikelihood integral by
a sum over a finite set of quadrature points, which is constructed by augmenting the original data
point pattern by a set of “dummy” points. The fitted model object returned by ppm contains complete
information about this quadrature scheme. See ppm or ppm.object for further information.

This function dummy.ppm extracts the dummy points of the quadrature scheme. A typical use of this
function would be to count the number of dummy points, to gauge the accuracy of the approximation
to the exact pseudolikelihood.

It may happen that some dummy points are not actually used in fitting the model (typically because
the value of a covariate is NA at these points). The argument drop specifies whether these unused
dummy points shall be deleted (drop=TRUE) or retained (drop=FALSE) in the return value.

See ppm.object for a list of all operations that can be performed on objects of class "ppm".

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

duplicated.ppp 435

See Also

ppm.object, ppp.object, ppm

Examples

data(cells)
fit <- ppm(cells, ~1, Strauss(r=0.1))
X <- dummy.ppm(fit)
npoints(X)
this is the number of dummy points in the quadrature scheme

duplicated.ppp Determine Duplicated Points in a Spatial Point Pattern

Description

Determines which points in a spatial point pattern are duplicates of previous points, and returns a
logical vector.

Usage

S3 method for class 'ppp'
duplicated(x, ..., rule=c("spatstat", "deldir", "unmark"))

S3 method for class 'ppx'
duplicated(x, ...)

S3 method for class 'ppp'
anyDuplicated(x, ...)

S3 method for class 'ppx'
anyDuplicated(x, ...)

Arguments

x A spatial point pattern (object of class "ppp" or "ppx").

... Ignored.

rule Character string. The rule for determining duplicated points.

Details

These are methods for the generic functions duplicated and anyDuplicated for point pattern
datasets (of class "ppp", see ppp.object, or class "ppx").

anyDuplicated(x) is a faster version of any(duplicated(x)).

Two points in a point pattern are deemed to be identical if their x, y coordinates are the same, and
their marks are also the same (if they carry marks). The Examples section illustrates how it is
possible for a point pattern to contain a pair of identical points.

436 edge.Ripley

This function determines which points in x duplicate other points that appeared earlier in the se-
quence. It returns a logical vector with entries that are TRUE for duplicated points and FALSE for
unique (non-duplicated) points.

If rule="spatstat" (the default), two points are deemed identical if their coordinates are equal
according to ==, and their marks are equal according to ==. This is the most stringent possible
test. If rule="unmark", duplicated points are determined by testing equality of their coordinates
only, using ==. If rule="deldir", duplicated points are determined by testing equality of their
coordinates only, using the function duplicatedxy in the package deldir, which currently uses
duplicated.data.frame. Setting rule="deldir" will ensure consistency with functions in the
deldir package.

Value

duplicated(x) returns a logical vector of length equal to the number of points in x.

anyDuplicated(x) is a number equal to 0 if there are no duplicated points, and otherwise is equal
to the index of the first duplicated point.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, unique.ppp, multiplicity.ppp

Examples

X <- ppp(c(1,1,0.5), c(2,2,1), window=square(3))
duplicated(X)
duplicated(X, rule="deldir")

edge.Ripley Ripley’s Isotropic Edge Correction

Description

Computes Ripley’s isotropic edge correction weights for a point pattern.

Usage

edge.Ripley(X, r, W = Window(X), method = c("C", "interpreted"),
maxweight = 100, internal=list())

rmax.Ripley(W)

edge.Ripley 437

Arguments

X Point pattern (object of class "ppp").
W Window for which the edge correction is required.
r Vector or matrix of interpoint distances for which the edge correction should be

computed.
method Choice of algorithm. Either "interpreted" or "C". This is needed only for

debugging purposes.
maxweight Maximum permitted value of the edge correction weight.
internal For developer use only.

Details

The function edge.Ripley computes Ripley’s (1977) isotropic edge correction weight, which is
used in estimating the K function and in many other contexts.

The function rmax.Ripley computes the maximum value of distance r for which the isotropic edge
correction estimate of K(r) is valid.

For a single point x in a window W , and a distance r > 0, the isotropic edge correction weight is

e(u, r) =
2πr

length(c(u, r) ∩W)

where c(u, r) is the circle of radius r centred at the point u. The denominator is the length of the
overlap between this circle and the window W .

The function edge.Ripley computes this edge correction weight for each point in the point pattern
X and for each corresponding distance value in the vector or matrix r.

If r is a vector, with one entry for each point in X, then the result is a vector containing the edge
correction weights e(X[i],r[i]) for each i.

If r is a matrix, with one row for each point in X, then the result is a matrix whose i,j entry gives the
edge correction weight e(X[i],r[i,j]). For example edge.Ripley(X,pairdist(X)) computes
all the edge corrections required for the K-function.

If any value of the edge correction weight exceeds maxwt, it is set to maxwt.

The function rmax.Ripley computes the smallest distance r such that it is possible to draw a circle
of radius r, centred at a point of W, such that the circle does not intersect the interior of W.

Value

A numeric vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

438 edge.Trans

See Also

edge.Trans, rmax.Trans, Kest

Examples

v <- edge.Ripley(cells, pairdist(cells))

rmax.Ripley(Window(cells))

edge.Trans Translation Edge Correction

Description

Computes Ohser and Stoyan’s translation edge correction weights for a point pattern.

Usage

edge.Trans(X, Y = X, W = Window(X),
exact = FALSE, paired = FALSE,
...,
trim = spatstat.options("maxedgewt"),
dx=NULL, dy=NULL,
give.rmax=FALSE, gW=NULL)

rmax.Trans(W, g=setcov(W))

Arguments

X,Y Point patterns (objects of class "ppp").

W Window for which the edge correction is required.

exact Logical. If TRUE, a slow algorithm will be used to compute the exact value. If
FALSE, a fast algorithm will be used to compute the approximate value.

paired Logical value indicating whether X and Y are paired. If TRUE, compute the edge
correction for corresponding points X[i],Y[i] for all i. If FALSE, compute the
edge correction for each possible pair of points X[i],Y[j] for all i and j.

... Ignored.

trim Maximum permitted value of the edge correction weight.

dx,dy Alternative data giving the x and y coordinates of the vector differences between
the points. Incompatible with X and Y. See Details.

give.rmax Logical. If TRUE, also compute the value of rmax.Trans(W) and return it as an
attribute of the result.

g, gW Optional. Set covariance of W, if it has already been computed. Not required if
W is a rectangle.

edge.Trans 439

Details

The function edge.Trans computes Ohser and Stoyan’s translation edge correction weight, which
is used in estimating the K function and in many other contexts.

The function rmax.Trans computes the maximum value of distance r for which the translation
edge correction estimate of K(r) is valid.

For a pair of points x and y in a window W , the translation edge correction weight is

e(u, r) =
area(W)

area(W ∩ (W + y − x))

where W + y − x is the result of shifting the window W by the vector y − x. The denominator is
the area of the overlap between this shifted window and the original window.

The function edge.Trans computes this edge correction weight. If paired=TRUE, then X and Y
should contain the same number of points. The result is a vector containing the edge correction
weights e(X[i],Y[i]) for each i.

If paired=FALSE, then the result is a matrix whose i,j entry gives the edge correction weight
e(X[i],Y[j]).

Computation is exact if the window is a rectangle. Otherwise,

• if exact=TRUE, the edge correction weights are computed exactly using overlap.owin, which
can be quite slow.

• if exact=FALSE (the default), the weights are computed rapidly by evaluating the set covari-
ance function setcov using the Fast Fourier Transform.

If any value of the edge correction weight exceeds trim, it is set to trim.

The arguments dx and dy can be provided as an alternative to X and Y. If paired=TRUE then dx,dy
should be vectors of equal length such that the vector difference of the ith pair is c(dx[i],dy[i]).
If paired=FALSE then dx,dy should be matrices of the same dimensions, such that the vector dif-
ference between X[i] and Y[j] is c(dx[i,j],dy[i,j]). The argument W is needed.

The value of rmax.Trans is the shortest distance from the origin (0, 0) to the boundary of the
support of the set covariance function of W. It is computed by pixel approximation using setcov,
unless W is a rectangle, when rmax.Trans(W) is the length of the shortest side of the rectangle.

Value

Numeric vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

440 edges

See Also

rmax.Trans, edge.Ripley, setcov, Kest

Examples

v <- edge.Trans(cells)
rmax.Trans(Window(cells))

edges Extract Boundary Edges of a Window.

Description

Extracts the boundary edges of a window and returns them as a line segment pattern.

Usage

edges(x, ..., window = NULL, check = FALSE)

Arguments

x A window (object of class "owin"), or data acceptable to as.owin, specifying
the window whose boundary is to be extracted.

... Ignored.
window Window to contain the resulting line segments. Defaults to as.rectangle(x).
check Logical. Whether to check the validity of the resulting segment pattern.

Details

The boundary edges of the window x will be extracted as a line segment pattern.

Value

A line segment pattern (object of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

perimeter for calculating the total length of the boundary.

Examples

edges(square(1))
edges(letterR)

edges2triangles 441

edges2triangles List Triangles in a Graph

Description

Given a list of edges between vertices, compile a list of all triangles formed by these edges.

Usage

edges2triangles(iedge, jedge, nvert=max(iedge, jedge), ...,
check=TRUE, friendly=rep(TRUE, nvert))

Arguments

iedge,jedge Integer vectors, of equal length, specifying the edges.

nvert Number of vertices in the network.

... Ignored

check Logical. Whether to check validity of input data.

friendly Optional. For advanced use. See Details.

Details

This low level function finds all the triangles (cliques of size 3) in a finite graph with nvert vertices
and with edges specified by iedge,jedge.

The interpretation of iedge,jedge is that each successive pair of entries specifies an edge in the
graph. The kth edge joins vertex iedge[k] to vertex jedge[k]. Entries of iedge and jedge must
be integers from 1 to nvert.

To improve efficiency in some applications, the optional argument friendly can be used. It should
be a logical vector of length nvert specifying a labelling of the vertices, such that two vertices j,k
which are not friendly (friendly[j] = friendly[k] = FALSE) are never connected by an edge.

Value

A 3-column matrix of integers, in which each row represents a triangle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

edges2vees

442 edges2vees

Examples

i <- c(1, 2, 5, 5, 1, 4, 2)
j <- c(2, 3, 3, 1, 3, 2, 5)
edges2triangles(i, j)

edges2vees List Dihedral Triples in a Graph

Description

Given a list of edges between vertices, compile a list of all ‘vees’ or dihedral triples formed by these
edges.

Usage

edges2vees(iedge, jedge, nvert=max(iedge, jedge), ...,
check=TRUE)

Arguments

iedge,jedge Integer vectors, of equal length, specifying the edges.

nvert Number of vertices in the network.

... Ignored

check Logical. Whether to check validity of input data.

Details

Given a finite graph with nvert vertices and with edges specified by iedge,jedge, this low-level
function finds all ‘vees’ or ‘dihedral triples’ in the graph, that is, all triples of vertices (i,j,k)
where i and j are joined by an edge and i and k are joined by an edge.

The interpretation of iedge,jedge is that each successive pair of entries specifies an edge in the
graph. The kth edge joins vertex iedge[k] to vertex jedge[k]. Entries of iedge and jedge must
be integers from 1 to nvert.

Value

A 3-column matrix of integers, in which each row represents a triple of vertices, with the first vertex
joined to the other two vertices.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

edges2triangles

edit.hyperframe 443

Examples

i <- c(1, 2, 5, 5, 1, 4, 2)
j <- c(2, 3, 3, 1, 3, 2, 5)
edges2vees(i, j)

edit.hyperframe Invoke Text Editor on Hyperframe

Description

Invokes a text editor allowing the user to inspect and change entries in a hyperframe.

Usage

S3 method for class 'hyperframe'
edit(name, ...)

Arguments

name A hyperframe (object of class "hyperframe").
... Other arguments passed to edit.data.frame.

Details

The function edit is generic. This function is the methods for objects of class "hyperframe".

The hyperframe name is converted to a data frame or array, and the text editor is invoked. The user
can change entries in the columns of data, and create new columns of data.

Only the columns of atomic data (numbers, characters, factor values etc) can be edited.

Note that the original object name is not changed; the function returns the edited dataset.

Value

Another hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

edit.data.frame, edit.ppp

Examples

if(interactive()) Z <- edit(flu)

444 edit.ppp

edit.ppp Invoke Text Editor on Spatial Data

Description

Invokes a text editor allowing the user to inspect and change entries in a spatial dataset.

Usage

S3 method for class 'ppp'
edit(name, ...)

S3 method for class 'psp'
edit(name, ...)

S3 method for class 'im'
edit(name, ...)

Arguments

name A spatial dataset (object of class "ppp", "psp" or "im").

... Other arguments passed to edit.data.frame.

Details

The function edit is generic. These functions are methods for spatial objects of class "ppp", "psp"
and "im".

The spatial dataset name is converted to a data frame or array, and the text editor is invoked. The
user can change the values of spatial coordinates or marks of the points in a point pattern, or the
coordinates or marks of the segments in a segment pattern, or the pixel values in an image. The
names of the columns of marks can also be edited.

If name is a pixel image, it is converted to a matrix and displayed in the same spatial orientation as
if the image had been plotted.

Note that the original object name is not changed; the function returns the edited dataset.

Value

Object of the same kind as name containing the edited data.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

eem 445

See Also

edit.data.frame, edit.hyperframe

Examples

if(interactive()) Z <- edit(cells)

eem Exponential Energy Marks

Description

Given a point process model fitted to a point pattern, compute the Stoyan-Grabarnik diagnostic
“exponential energy marks” for the data points.

Usage

eem(fit, check=TRUE)

Arguments

fit The fitted point process model. An object of class "ppm".

check Logical value indicating whether to check the internal format of fit. If there
is any possibility that this object has been restored from a dump file, or has
otherwise lost track of the environment where it was originally computed, set
check=TRUE.

Details

Stoyan and Grabarnik (1991) proposed a diagnostic tool for point process models fitted to spatial
point pattern data. Each point xi of the data pattern X is given a ‘mark’ or ‘weight’

mi =
1

λ̂(xi, X)

where λ̂(xi, X) is the conditional intensity of the fitted model. If the fitted model is correct, then
the sum of these marks for all points in a region B has expected value equal to the area of B.

The argument fit must be a fitted point process model (object of class "ppm"). Such objects
are produced by the maximum pseudolikelihood fitting algorithm ppm). This fitted model object
contains complete information about the original data pattern and the model that was fitted to it.

The value returned by eem is the vector of weightsm[i] associated with the points x[i] of the original
data pattern. The original data pattern (in corresponding order) can be extracted from fit using
data.ppm.

The function diagnose.ppm produces a set of sensible diagnostic plots based on these weights.

446 effectfun

Value

A vector containing the values of the exponential energy mark for each point in the pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

diagnose.ppm, ppm.object, data.ppm, residuals.ppm, ppm

Examples

data(cells)
fit <- ppm(cells, ~x, Strauss(r=0.15))
ee <- eem(fit)
sum(ee)/area(Window(cells)) # should be about 1 if model is correct
Y <- setmarks(cells, ee)
plot(Y, main="Cells data\n Exponential energy marks")

effectfun Compute Fitted Effect of a Spatial Covariate in a Point Process Model

Description

Compute the trend or intensity of a fitted point process model as a function of one of its covariates.

Usage

effectfun(model, covname, ..., se.fit=FALSE, nvalues=256)

Arguments

model A fitted point process model (object of class "ppm", "kppm", "lppm", "dppm",
"rppm" or "profilepl").

covname The name of the covariate. A character string. (Needed only if the model has
more than one covariate.)

... The fixed values of other covariates (in the form name=value) if required.

se.fit Logical. If TRUE, asymptotic standard errors of the estimates will be computed,
together with a 95% confidence interval.

nvalues Integer. The number of values of the covariate (if it is numeric) for which the
effect function should be evaluated. We recommend at least 256.

effectfun 447

Details

The object model should be an object of class "ppm", "kppm", "lppm", "dppm", "rppm" or "profilepl"
representing a point process model fitted to point pattern data.

The model’s trend formula should involve a spatial covariate named covname. This could be "x"
or "y" representing one of the Cartesian coordinates. More commonly the covariate is another,
external variable that was supplied when fitting the model.

The command effectfun computes the fitted trend of the point process model as a function of the
covariate named covname. The return value can be plotted immediately, giving a plot of the fitted
trend against the value of the covariate.

If the model also involves covariates other than covname, then these covariates will be held fixed.
Values for these other covariates must be provided as arguments to effectfun in the form name=value.

If se.fit=TRUE, the algorithm also calculates the asymptotic standard error of the fitted trend, and
a (pointwise) asymptotic 95% confidence interval for the true trend.

This command is just a wrapper for the prediction method predict.ppm. For more complicated
computations about the fitted intensity, use predict.ppm.

Value

A data frame containing a column of values of the covariate and a column of values of the fitted
trend. If se.fit=TRUE, there are 3 additional columns containing the standard error and the upper
and lower limits of a confidence interval.

If the covariate named covname is numeric (rather than a factor or logical variable), the return value
is also of class "fv" so that it can be plotted immediately.

Trend and intensity

For a Poisson point process model, the trend is the same as the intensity of the point process. For
a more general Gibbs model, the trend is the first order potential in the model (the first order term
in the Gibbs representation). In Poisson or Gibbs models fitted by ppm, the trend is the only part of
the model that depends on the covariates.

Determinantal point process models with fixed intensity

The function dppm which fits a determinantal point process model allows the user to specify the
intensity lambda. In such cases the effect function is undefined, and effectfun stops with an error
message.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

ppm, predict.ppm, fv.object

448 ellipse

Examples

X <- copper$SouthPoints
D <- distfun(copper$SouthLines)
fit <- ppm(X ~ polynom(D, 5))
effectfun(fit)
plot(effectfun(fit, se.fit=TRUE))

fitx <- ppm(X ~ x + polynom(D, 5))
plot(effectfun(fitx, "D", x=20))

ellipse Elliptical Window.

Description

Create an elliptical window.

Usage

ellipse(a, b, centre=c(0,0), phi=0, ..., mask=FALSE, npoly = 128)

Arguments

a,b The half-lengths of the axes of the ellipse.

centre The centre of the ellipse.

phi The (anti-clockwise) angle through which the ellipse should be rotated (about
its centre) starting from an orientation in which the axis of half-length a is hori-
zontal.

mask Logical value controlling the type of approximation to a perfect ellipse. See
Details.

... Arguments passed to as.mask to determine the pixel resolution, if mask is TRUE.

npoly The number of edges in the polygonal approximation to the ellipse.

Details

This command creates a window object representing an ellipse with the given centre and axes.

By default, the ellipse is approximated by a polygon with npoly edges.

If mask=TRUE, then the ellipse is approximated by a binary pixel mask. The resolution of the mask
is controlled by the arguments ... which are passed to as.mask.

The arguments a and b must be single positive numbers. The argument centre specifies the ellipse
centre: it can be either a numeric vector of length 2 giving the coordinates, or a list(x,y) giving
the coordinates of exactly one point, or a point pattern (object of class "ppp") containing exactly
one point.

Emark 449

Value

An object of class owin (either of type “polygonal” or of type “mask”) specifying an elliptical
window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

disc, owin.object, owin, as.mask

Examples

W <- ellipse(a=5,b=2,centre=c(5,1),phi=pi/6)
plot(W,lwd=2,border="red")
WM <- ellipse(a=5,b=2,centre=c(5,1),phi=pi/6,mask=TRUE,dimyx=512)
plot(WM,add=TRUE,box=FALSE)

Emark Diagnostics for random marking

Description

Estimate the summary functions E(r) and V (r) for a marked point pattern, proposed by Schlather
et al (2004) as diagnostics for dependence between the points and the marks.

Usage

Emark(X, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., normalise=FALSE)

Vmark(X, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., normalise=FALSE)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp. The pattern should have numeric marks.

r Optional. Numeric vector. The values of the argument r at which the function
E(r) or V (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

450 Emark

... Arguments passed to the density estimation routine (density, loess or sm.density)
selected by method.

normalise IfTRUE, normalise the estimate ofE(r) or V (r) so that it would have value equal
to 1 if the marks are independent of the points.

Details

For a marked point process, Schlather et al (2004) defined the functions E(r) and V (r) to be the
conditional mean and conditional variance of the mark attached to a typical random point, given
that there exists another random point at a distance r away from it.

More formally,
E(r) = E0u[M(0)]

and
V (r) = E0u[(M(0)− E(u))2]

where E0u denotes the conditional expectation given that there are points of the process at the
locations 0 and u separated by a distance r, and where M(0) denotes the mark attached to the point
0.

These functions may serve as diagnostics for dependence between the points and the marks. If the
points and marks are independent, then E(r) and V (r) should be constant (not depending on r).
See Schlather et al (2004).

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern with numeric marks.

The argument r is the vector of values for the distance r at which kf (r) is estimated.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented only for rectangular and polygonal windows (not for binary masks).

translate Translation correction (Ohser, 1983). Implemented for all window geometries, but slow
for complex windows.

Note that the estimator assumes the process is stationary (spatially homogeneous).

The numerator and denominator of the mark correlation function (in the expression above) are
estimated using density estimation techniques. The user can choose between

"density" which uses the standard kernel density estimation routine density, and works only for
evenly-spaced r values;

"loess" which uses the function loess in the package modreg;

"sm" which uses the function sm.density in the package sm and is extremely slow;

"smrep" which uses the function sm.density in the package sm and is relatively fast, but may
require manual control of the smoothing parameter hmult.

emend 451

Value

If marks(X) is a numeric vector, the result is an object of class "fv" (see fv.object). If marks(X)
is a data frame, the result is a list of objects of class "fv", one for each column of marks.

An object of class "fv" is essentially a data frame containing numeric columns

r the values of the argument r at which the function E(r) or V (r) has been esti-
mated

theo the theoretical, constant value of E(r) or V (r) when the marks attached to dif-
ferent points are independent

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the function E(r) or V (r) obtained by the edge
corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Schlather, M. and Ribeiro, P. and Diggle, P. (2004) Detecting dependence between marks and loca-
tions of marked point processes. Journal of the Royal Statistical Society, series B 66 (2004) 79-83.

See Also

Mark correlation markcorr, mark variogram markvario for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued
marks.

Examples

plot(Emark(spruces))
E <- Emark(spruces, method="density", kernel="epanechnikov")
plot(Vmark(spruces))

plot(Emark(finpines))
V <- Vmark(finpines)

emend Force Model to be Valid

Description

Check whether a model is valid, and if not, find the nearest model which is valid.

Usage

emend(object, ...)

452 emend.ppm

Arguments

object A statistical model, belonging to some class.
... Arguments passed to methods.

Details

The function emend is generic, and has methods for several classes of statistical models in the
spatstat package (mostly point process models). Its purpose is to check whether a given model is
valid (for example, that none of the model parameters are NA) and, if not, to find the nearest model
which is valid.

See the methods for more information.

Value

Another model of the same kind.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

emend.ppm, emend.lppm, valid.

emend.ppm Force Point Process Model to be Valid

Description

Ensures that a fitted point process model satisfies the integrability conditions for existence of the
point process.

Usage

project.ppm(object, ..., fatal=FALSE, trace=FALSE)

S3 method for class 'ppm'
emend(object, ..., fatal=FALSE, trace=FALSE)

Arguments

object Fitted point process model (object of class "ppm").
... Ignored.
fatal Logical value indicating whether to generate an error if the model cannot be

projected to a valid model.
trace Logical value indicating whether to print a trace of the decision process.

emend.ppm 453

Details

The functions emend.ppm and project.ppm are identical: emend.ppm is a method for the generic
emend, while project.ppm is an older name for the same function.

The purpose of the function is to ensure that a fitted model is valid.

The model-fitting function ppm fits Gibbs point process models to point pattern data. By default, the
fitted model returned by ppm may not actually exist as a point process.

First, some of the fitted coefficients of the model may be NA or infinite values. This usually occurs
when the data are insufficient to estimate all the parameters. The model is said to be unidentifiable
or confounded.

Second, unlike a regression model, which is well-defined for any finite values of the fitted regression
coefficients, a Gibbs point process model is only well-defined if the fitted interaction parameters
satisfy some constraints. A famous example is the Strauss process (see Strauss) which exists only
when the interaction parameter γ is less than or equal to 1. For values γ > 1, the probability density
is not integrable and the process does not exist (and cannot be simulated).

By default, ppm does not enforce the constraint that a fitted Strauss process (for example) must
satisfy γ ≤ 1. This is because a fitted parameter value of γ > 1 could be useful information for data
analysis, as it indicates that the Strauss model is not appropriate, and suggests a clustered model
should be fitted.

The function emend.ppm or project.ppm modifies the model object so that the model is valid.
It identifies the terms in the model object that are associated with illegal parameter values (i.e.
parameter values which are either NA, infinite, or outside their permitted range). It considers all
possible sub-models of object obtained by deleting one or more of these terms. It identifies which
of these submodels are valid, and chooses the valid submodel with the largest pseudolikelihood.
The result of emend.ppm or project.ppm is the true maximum pseudolikelihood fit to the data.

For large datasets or complex models, the algorithm used in emend.ppm or project.ppm may be
time-consuming, because it takes time to compute all the sub-models. A faster, approximate algo-
rithm can be applied by setting spatstat.options(project.fast=TRUE). This produces a valid
submodel, which may not be the maximum pseudolikelihood submodel.

Use the function valid.ppm to check whether a fitted model object specifies a well-defined point
process.

Use the expression all(is.finite(coef(object))) to determine whether all parameters are
identifiable.

Value

Another point process model (object of class "ppm").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, valid.ppm, emend, spatstat.options

454 endpoints.psp

Examples

fit <- ppm(redwood ~1, Strauss(0.1))
coef(fit)
fit2 <- emend(fit)
coef(fit2)

endpoints.psp Endpoints of Line Segment Pattern

Description

Extracts the endpoints of each line segment in a line segment pattern.

Usage

endpoints.psp(x, which="both")

Arguments

x A line segment pattern (object of class "psp").

which String specifying which endpoint or endpoints should be returned. See Details.

Details

This function extracts one endpoint, or both endpoints, from each of the line segments in x, and
returns these points as a point pattern object.

The argument which determines which endpoint or endpoints of each line segment should be re-
turned:

which="both" (the default): both endpoints of each line segment are returned. The result is a point
pattern with twice as many points as there are line segments in x.

which="first" select the first endpoint of each line segment (returns the points with coordinates
x$ends$x0,x$ends$y0).

which="second" select the second endpoint of each line segment (returns the points with coordi-
nates x$ends$x1,x$ends$y1).

which="left" select the left-most endpoint (the endpoint with the smaller x coordinate) of each
line segment.

which="right" select the right-most endpoint (the endpoint with the greater x coordinate) of each
line segment.

which="lower" select the lower endpoint (the endpoint with the smaller y coordinate) of each line
segment.

which="upper" select the upper endpoint (the endpoint with the greater y coordinate) of each line
segment.

The result is a point pattern. It also has an attribute "id" which is an integer vector identifying the
segment which contributed each point.

envelope 455

Value

Point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

psp.object, ppp.object, marks.psp, summary.psp, midpoints.psp, lengths_psp, angles.psp,
extrapolate.psp.

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(a)
b <- endpoints.psp(a, "left")
plot(b, add=TRUE)

envelope Simulation Envelopes of Summary Function

Description

Computes simulation envelopes of a summary function.

Usage

envelope(Y, fun, ...)

S3 method for class 'ppp'
envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL, fix.n=FALSE, fix.marks=FALSE,
verbose=TRUE, clipdata=TRUE,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

S3 method for class 'ppm'
envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,

456 envelope

simulate=NULL, fix.n=FALSE, fix.marks=FALSE,
verbose=TRUE, clipdata=TRUE,
start=NULL, control=update(default.rmhcontrol(Y), nrep=nrep), nrep=1e5,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

S3 method for class 'kppm'
envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL,
verbose=TRUE, clipdata=TRUE,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y Object containing point pattern data. A point pattern (object of class "ppp") or
a fitted point process model (object of class "ppm" or "kppm").

fun Function that computes the desired summary statistic for a point pattern.

nsim Number of simulated point patterns to be generated when computing the en-
velopes.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

... Extra arguments passed to fun.

funargs A list, containing extra arguments to be passed to fun.

funYargs Optional. A list, containing extra arguments to be passed to fun when applied
to the original data Y only.

simulate Optional. Specifies how to generate the simulated point patterns. If simulate
is an expression in the R language, then this expression will be evaluated nsim
times, to obtain nsim point patterns which are taken as the simulated patterns
from which the envelopes are computed. If simulate is a function, then this
function will be repeatedly applied to the data pattern Y to obtain nsim simulated
patterns. If simulate is a list of point patterns, then the entries in this list will
be treated as the simulated patterns from which the envelopes are computed.
Alternatively simulate may be an object produced by the envelope command:
see Details.

envelope 457

fix.n Logical. If TRUE, simulated patterns will have the same number of points as the
original data pattern. This option is currently not available for envelope.kppm.

fix.marks Logical. If TRUE, simulated patterns will have the same number of points and the
same marks as the original data pattern. In a multitype point pattern this means
that the simulated patterns will have the same number of points of each type as
the original data. This option is currently not available for envelope.kppm.

verbose Logical flag indicating whether to print progress reports during the simulations.

clipdata Logical flag indicating whether the data point pattern should be clipped to the
same window as the simulated patterns, before the summary function for the data
is computed. This should usually be TRUE to ensure that the data and simulations
are properly comparable.

start,control Optional. These specify the arguments start and control of rmh, giving com-
plete control over the simulation algorithm. Applicable only when Y is a fitted
model of class "ppm".

nrep Number of iterations in the Metropolis-Hastings simulation algorithm. Applica-
ble only when Y is a fitted model of class "ppm".

transform Optional. A transformation to be applied to the function values, before the en-
velopes are computed. An expression object (see Details).

global Logical flag indicating whether envelopes should be pointwise (global=FALSE)
or simultaneous (global=TRUE).

ginterval Optional. A vector of length 2 specifying the interval of r values for the simul-
taneous critical envelopes. Only relevant if global=TRUE.

use.theory Logical value indicating whether to use the theoretical value, computed by fun,
as the reference value for simultaneous envelopes. Applicable only when global=TRUE.
Default is use.theory=TRUE if Y is a point pattern, or a point process model
equivalent to Complete Spatial Randomness, and use.theory=FALSE other-
wise.

alternative Character string determining whether the envelope corresponds to a two-sided
test (side="two.sided", the default) or a one-sided test with a lower critical
boundary (side="less") or a one-sided test with an upper critical boundary
(side="greater").

scale Optional. Scaling function for global envelopes. A function in the R language
which determines the relative scale of deviations, as a function of distance r,
when computing the global envelopes. Applicable only when global=TRUE.
Summary function values for distance r will be divided by scale(r) before
the maximum deviation is computed. The resulting global envelopes will have
width proportional to scale(r).

clamp Logical value indicating how to compute envelopes when alternative="less"
or alternative="greater". Deviations of the observed summary function
from the theoretical summary function are initially evaluated as signed real
numbers, with large positive values indicating consistency with the alternative
hypothesis. If clamp=FALSE (the default), these values are not changed. If
clamp=TRUE, any negative values are replaced by zero.

savefuns Logical flag indicating whether to save all the simulated function values.

458 envelope

savepatterns Logical flag indicating whether to save all the simulated point patterns.

nsim2 Number of extra simulated point patterns to be generated if it is necessary to
use simulation to estimate the theoretical mean of the summary function. Only
relevant when global=TRUE and the simulations are not based on CSR.

VARIANCE Logical. If TRUE, critical envelopes will be calculated as sample mean plus or
minus nSD times sample standard deviation.

nSD Number of estimated standard deviations used to determine the critical envelopes,
if VARIANCE=TRUE.

Yname Character string that should be used as the name of the data point pattern Y when
printing or plotting the results.

maxnerr Maximum number of rejected patterns. If fun yields a fatal error when applied
to a simulated point pattern (for example, because the pattern is empty and fun
requires at least one point), the pattern will be rejected and a new random point
pattern will be generated. If this happens more than maxnerr times, the algo-
rithm will give up.

rejectNA Logical value specifying whether to reject a simulated pattern if the resulting
values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then
simulated patterns are only rejected when fun gives a fatal error.

silent Logical value specifying whether to print a report each time a simulated pattern
is rejected.

do.pwrong Logical. If TRUE, the algorithm will also estimate the true significance level of
the “wrong” test (the test that declares the summary function for the data to be
significant if it lies outside the pointwise critical boundary at any point). This
estimate is printed when the result is printed.

envir.simul Environment in which to evaluate the expression simulate, if not the current
environment.

Details

The envelope command performs simulations and computes envelopes of a summary statistic
based on the simulations. The result is an object that can be plotted to display the envelopes.
The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern
data.

For the most basic use, if you have a point pattern X and you want to test Complete Spatial Random-
ness (CSR), type plot(envelope(X,Kest,nsim=39)) to see the K function for X plotted together
with the envelopes of the K function for 39 simulations of CSR.

The envelope function is generic, with methods for the classes "ppp", "ppm" and "kppm" de-
scribed here. There are also methods for the classes "pp3", "lpp" and "lppm" which are described
separately under envelope.pp3 and envelope.lpp. Envelopes can also be computed from other
envelopes, using envelope.envelope.

To create simulation envelopes, the command envelope(Y,...) first generates nsim random point
patterns in one of the following ways.

• If Y is a point pattern (an object of class "ppp") and simulate=NULL, then we generate nsim
simulations of Complete Spatial Randomness (i.e. nsim simulated point patterns each being

envelope 459

a realisation of the uniform Poisson point process) with the same intensity as the pattern
Y. (If Y is a multitype point pattern, then the simulated patterns are also given independent
random marks; the probability distribution of the random marks is determined by the relative
frequencies of marks in Y.)

• If Y is a fitted point process model (an object of class "ppm" or "kppm") and simulate=NULL,
then this routine generates nsim simulated realisations of that model.

• If simulate is supplied, then it determines how the simulated point patterns are generated. It
may be either

– an expression in the R language, typically containing a call to a random generator. This
expression will be evaluated nsim times to yield nsim point patterns. For example if
simulate=expression(runifpoint(100)) then each simulated pattern consists of ex-
actly 100 independent uniform random points.

– a function in the R language, typically containing a call to a random generator. This
function will be applied repeatedly to the original data pattern Y to yield nsim point pat-
terns. For example if simulate=rlabel then each simulated pattern was generated by
evaluating rlabel(Y) and consists of a randomly-relabelled version of Y.

– a list of point patterns. The entries in this list will be taken as the simulated patterns.
– an object of class "envelope". This should have been produced by calling envelope

with the argument savepatterns=TRUE. The simulated point patterns that were saved in
this object will be extracted and used as the simulated patterns for the new envelope com-
putation. This makes it possible to plot envelopes for two different summary functions
based on exactly the same set of simulated point patterns.

The summary statistic fun is applied to each of these simulated patterns. Typically fun is one of
the functions Kest, Gest, Fest, Jest, pcf, Kcross, Kdot, Gcross, Gdot, Jcross, Jdot, Kmulti,
Gmulti, Jmulti or Kinhom. It may also be a character string containing the name of one of these
functions.

The statistic fun can also be a user-supplied function; if so, then it must have arguments X and r
like those in the functions listed above, and it must return an object of class "fv".

Upper and lower critical envelopes are computed in one of the following ways:

pointwise: by default, envelopes are calculated pointwise (i.e. for each value of the distance ar-
gument r), by sorting the nsim simulated values, and taking the m-th lowest and m-th highest
values, where m = nrank. For example if nrank=1, the upper and lower envelopes are the
pointwise maximum and minimum of the simulated values.
The pointwise envelopes are not “confidence bands” for the true value of the function! Rather,
they specify the critical points for a Monte Carlo test (Ripley, 1981). The test is constructed
by choosing a fixed value of r, and rejecting the null hypothesis if the observed function value
lies outside the envelope at this value of r. This test has exact significance level alpha = 2 *
nrank/(1 + nsim).

simultaneous: if global=TRUE, then the envelopes are determined as follows. First we calculate
the theoretical mean value of the summary statistic (if we are testing CSR, the theoretical value
is supplied by fun; otherwise we perform a separate set of nsim2 simulations, compute the av-
erage of all these simulated values, and take this average as an estimate of the theoretical mean
value). Then, for each simulation, we compare the simulated curve to the theoretical curve,
and compute the maximum absolute difference between them (over the interval of r values
specified by ginterval). This gives a deviation value di for each of the nsim simulations.

460 envelope

Finally we take the m-th largest of the deviation values, where m=nrank, and call this dcrit.
Then the simultaneous envelopes are of the form lo = expected -dcrit and hi = expected
+ dcrit where expected is either the theoretical mean value theo (if we are testing CSR)
or the estimated theoretical value mmean (if we are testing another model). The simultaneous
critical envelopes have constant width 2 * dcrit.
The simultaneous critical envelopes allow us to perform a different Monte Carlo test (Ripley,
1981). The test rejects the null hypothesis if the graph of the observed function lies outside the
envelope at any value of r. This test has exact significance level alpha = nrank/(1 + nsim).
This test can also be performed using mad.test.

based on sample moments: if VARIANCE=TRUE, the algorithm calculates the (pointwise) sample
mean and sample variance of the simulated functions. Then the envelopes are computed as
mean plus or minus nSD standard deviations. These envelopes do not have an exact signif-
icance interpretation. They are a naive approximation to the critical points of the Neyman-
Pearson test assuming the summary statistic is approximately Normally distributed.

The return value is an object of class "fv" containing the summary function for the data point
pattern, the upper and lower simulation envelopes, and the theoretical expected value (exact or esti-
mated) of the summary function for the model being tested. It can be plotted using plot.envelope.

If VARIANCE=TRUE then the return value also includes the sample mean, sample variance and other
quantities.

Arguments can be passed to the function fun through This means that you simply specify
these arguments in the call to envelope, and they will be passed to fun. In particular, the argument
correction determines the edge correction to be used to calculate the summary statistic. See the
section on Edge Corrections, and the Examples.

Arguments can also be passed to the function fun through the list funargs. This mechanism is typ-
ically used if an argument of fun has the same name as an argument of envelope. The list funargs
should contain entries of the form name=value, where each name is the name of an argument of
fun.

There is also an option, rarely used, in which different function arguments are used when computing
the summary function for the data Y and for the simulated patterns. If funYargs is given, it will
be used when the summary function for the data Y is computed, while funargs will be used when
computing the summary function for the simulated patterns. This option is only needed in rare
cases: usually the basic principle requires that the data and simulated patterns must be treated
equally, so that funargs and funYargs should be identical.

If Y is a fitted cluster point process model (object of class "kppm"), and simulate=NULL, then the
model is simulated directly using simulate.kppm.

If Y is a fitted Gibbs point process model (object of class "ppm"), and simulate=NULL, then the
model is simulated by running the Metropolis-Hastings algorithm rmh. Complete control over this
algorithm is provided by the arguments start and control which are passed to rmh.

For simultaneous critical envelopes (global=TRUE) the following options are also useful:

ginterval determines the interval of r values over which the deviation between curves is cal-
culated. It should be a numeric vector of length 2. There is a sensible default (namely, the
recommended plotting interval for fun(X), or the range of r values if r is explicitly specified).

transform specifies a transformation of the summary function fun that will be carried out before
the deviations are computed. Such transforms are useful if global=TRUE or VARIANCE=TRUE.

envelope 461

The transform must be an expression object using the symbol . to represent the function
value (and possibly other symbols recognised by with.fv). For example, the conventional
way to normalise the K function (Ripley, 1981) is to transform it to the L function L(r) =√
K(r)/π and this is implemented by setting transform=expression(sqrt(./pi)).

It is also possible to extract the summary functions for each of the individual simulated point pat-
terns, by setting savefuns=TRUE. Then the return value also has an attribute "simfuns" containing
all the summary functions for the individual simulated patterns. It is an "fv" object containing
functions named sim1,sim2,... representing the nsim summary functions.

It is also possible to save the simulated point patterns themselves, by setting savepatterns=TRUE.
Then the return value also has an attribute "simpatterns" which is a list of length nsim containing
all the simulated point patterns.

See plot.envelope and plot.fv for information about how to plot the envelopes.

Different envelopes can be recomputed from the same data using envelope.envelope. Envelopes
can be combined using pool.envelope.

Value

An object of class "envelope" and "fv", see fv.object, which can be printed and plotted directly.

Essentially a data frame containing columns

r the vector of values of the argument r at which the summary function fun has
been estimated

obs values of the summary function for the data point pattern

lo lower envelope of simulations

hi upper envelope of simulations

and either

theo theoretical value of the summary function under CSR (Complete Spatial Ran-
domness, a uniform Poisson point process) if the simulations were generated
according to CSR

mmean estimated theoretical value of the summary function, computed by averaging
simulated values, if the simulations were not generated according to CSR.

Additionally, if savepatterns=TRUE, the return value has an attribute "simpatterns" which is a
list containing the nsim simulated patterns. If savefuns=TRUE, the return value has an attribute
"simfuns" which is an object of class "fv" containing the summary functions computed for each
of the nsim simulated patterns.

Errors and warnings

An error may be generated if one of the simulations produces a point pattern that is empty, or is
otherwise unacceptable to the function fun.

The upper envelope may be NA (plotted as plus or minus infinity) if some of the function values
computed for the simulated point patterns are NA. Whether this occurs will depend on the function
fun, but it usually happens when the simulated point pattern does not contain enough points to
compute a meaningful value.

462 envelope

Confidence intervals

Simulation envelopes do not compute confidence intervals; they generate significance bands. If you
really need a confidence interval for the true summary function of the point process, use lohboot.
See also varblock.

Edge corrections

It is common to apply a correction for edge effects when calculating a summary function such as
the K function. Typically the user has a choice between several possible edge corrections. In a
call to envelope, the user can specify the edge correction to be applied in fun, using the argument
correction. See the Examples below.

Summary functions in spatstat Summary functions that are available in spatstat, such as Kest,
Gest and pcf, have a standard argument called correction which specifies the name of one
or more edge corrections.
The list of available edge corrections is different for each summary function, and may also
depend on the kind of window in which the point pattern is recorded. In the case of Kest (the
default and most frequently used value of fun) the best edge correction is Ripley’s isotropic
correction if the window is rectangular or polygonal, and the translation correction if the
window is a binary mask. See the help files for the individual functions for more information.
All the summary functions in spatstat recognise the option correction="best" which gives
the “best” (most accurate) available edge correction for that function.
In a call to envelope, if fun is one of the summary functions provided in spatstat, then the
default is correction="best". This means that by default, the envelope will be computed
using the “best” available edge correction.
The user can override this default by specifying the argument correction. For example the
computation can be accelerated by choosing another edge correction which is less accurate
than the “best” one, but faster to compute.

User-written summary functions If fun is a function written by the user, then envelope has to
guess what to do.
If fun has an argument called correction, or has ... arguments, then envelope assumes
that the function can handle a correction argument. To compute the envelope, fun will be
called with a correction argument. The default is correction="best", unless overridden
in the call to envelope.
Otherwise, if fun does not have an argument called correction and does not have ... ar-
guments, then envelope assumes that the function cannot handle a correction argument. To
compute the envelope, fun is called without a correction argument.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

envelope 463

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Arnold, 2003.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

dclf.test, mad.test for envelope-based tests.

fv.object, plot.envelope, plot.fv, envelope.envelope, pool.envelope for handling en-
velopes. There are also methods for print and summary.

Kest, Gest, Fest, Jest, pcf, ppp, ppm, default.expand

Examples

X <- simdat

Envelope of K function under CSR
Not run:
plot(envelope(X))

End(Not run)

Translation edge correction (this is also FASTER):
Not run:
plot(envelope(X, correction="translate"))

End(Not run)

Global envelopes
Not run:
plot(envelope(X, Lest, global=TRUE))
plot(envelope(X, Kest, global=TRUE, scale=function(r) { r }))

End(Not run)

Envelope of K function for simulations from Gibbs model
Not run:
fit <- ppm(cells ~1, Strauss(0.05))
plot(envelope(fit))
plot(envelope(fit), global=TRUE)

End(Not run)

Envelope of K function for simulations from cluster model

464 envelope

fit <- kppm(redwood ~1, "Thomas")
Not run:
plot(envelope(fit, Gest))
plot(envelope(fit, Gest, global=TRUE))

End(Not run)

Envelope of G function under CSR
Not run:
plot(envelope(X, Gest))

End(Not run)

Envelope of L function under CSR
L(r) = sqrt(K(r)/pi)
Not run:
E <- envelope(X, Kest)
plot(E, sqrt(./pi) ~ r)

End(Not run)

Simultaneous critical envelope for L function
(alternatively, use Lest)
Not run:
plot(envelope(X, Kest, transform=expression(sqrt(./pi)), global=TRUE))

End(Not run)

One-sided envelope
Not run:
plot(envelope(X, Lest, alternative="less"))

End(Not run)

How to pass arguments needed to compute the summary functions:
We want envelopes for Jcross(X, "A", "B")
where "A" and "B" are types of points in the dataset 'demopat'

Not run:
plot(envelope(demopat, Jcross, i="A", j="B"))

End(Not run)

Use of `simulate' expression
Not run:
plot(envelope(cells, Gest, simulate=expression(runifpoint(42))))
plot(envelope(cells, Gest, simulate=expression(rMaternI(100,0.02))))

envelope 465

End(Not run)

Use of `simulate' function
Not run:
plot(envelope(amacrine, Kcross, simulate=rlabel))

End(Not run)

Envelope under random toroidal shifts
Not run:
plot(envelope(amacrine, Kcross, i="on", j="off",

simulate=expression(rshift(amacrine, radius=0.25))))

End(Not run)

Envelope under random shifts with erosion
Not run:
plot(envelope(amacrine, Kcross, i="on", j="off",

simulate=expression(rshift(amacrine, radius=0.1, edge="erode"))))

End(Not run)

Envelope of INHOMOGENEOUS K-function with fitted trend

The following is valid.
Setting lambda=fit means that the fitted model is re-fitted to
each simulated pattern to obtain the intensity estimates for Kinhom.
(lambda=NULL would also be valid)

fit <- kppm(redwood ~1, clusters="MatClust")
Not run:

plot(envelope(fit, Kinhom, lambda=fit, nsim=19))

End(Not run)

Note that the principle of symmetry, essential to the validity of
simulation envelopes, requires that both the observed and
simulated patterns be subjected to the same method of intensity
estimation. In the following example it would be incorrect to set the
argument 'lambda=red.dens' in the envelope command, because this
would mean that the inhomogeneous K functions of the simulated
patterns would be computed using the intensity function estimated
from the original redwood data, violating the symmetry. There is
still a concern about the fact that the simulations are generated
from a model that was fitted to the data; this is only a problem in
small datasets.

Not run:
red.dens <- density(redwood, sigma=bw.diggle)

466 envelope.envelope

plot(envelope(redwood, Kinhom, sigma=bw.diggle,
simulate=expression(rpoispp(red.dens))))

End(Not run)

Precomputed list of point patterns
Not run:
nX <- npoints(X)
PatList <- list()
for(i in 1:19) PatList[[i]] <- runifpoint(nX)
E <- envelope(X, Kest, nsim=19, simulate=PatList)

End(Not run)

re-using the same point patterns
Not run:
EK <- envelope(X, Kest, savepatterns=TRUE)
EG <- envelope(X, Gest, simulate=EK)

End(Not run)

envelope.envelope Recompute Envelopes

Description

Given a simulation envelope (object of class "envelope"), compute another envelope from the
same simulation data using different parameters.

Usage

S3 method for class 'envelope'
envelope(Y, fun = NULL, ...,

transform=NULL, global=FALSE, VARIANCE=FALSE)

Arguments

Y A simulation envelope (object of class "envelope").

fun Optional. Summary function to be applied to the simulated point patterns.

...,transform,global,VARIANCE

Parameters controlling the type of envelope that is re-computed. See envelope.

envelope.envelope 467

Details

This function can be used to re-compute a simulation envelope from previously simulated data,
using different parameter settings for the envelope: for example, a different significance level, or a
global envelope instead of a pointwise envelope.

The function envelope is generic. This is the method for the class "envelope".

The argument Y should be a simulation envelope (object of class "envelope") produced by any of
the methods for envelope. Additionally, Y must contain either

• the simulated point patterns that were used to create the original envelope (so Y should have
been created by calling envelope with savepatterns=TRUE);

• the summary functions of the simulated point patterns that were used to create the original
envelope (so Y should have been created by calling envelope with savefuns=TRUE).

If the argument fun is given, it should be a summary function that can be applied to the simulated
point patterns that were used to create Y. The envelope of the summary function fun for these point
patterns will be computed using the parameters specified in

If fun is not given, then:

• If Y contains the summary functions that were used to compute the original envelope, then the
new envelope will be computed from these original summary functions.

• Otherwise, if Y contains the simulated point patterns. then the K function Kest will be ap-
plied to each of these simulated point patterns, and the new envelope will be based on the K
functions.

The new envelope will be computed using the parameters specified in

See envelope for a full list of envelope parameters. Frequently-used parameters include nrank and
nsim (to change the number of simulations used and the significance level of the envelope), global
(to change from pointwise to global envelopes) and VARIANCE (to compute the envelopes from the
sample moments instead of the ranks).

Value

An envelope (object of class "envelope".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

envelope

468 envelope.lpp

Examples

E <- envelope(cells, Kest, nsim=19, savefuns=TRUE, savepatterns=TRUE)
E2 <- envelope(E, nrank=2)
Eg <- envelope(E, global=TRUE)
EG <- envelope(E, Gest)
EL <- envelope(E, transform=expression(sqrt(./pi)))

envelope.lpp Envelope for Point Patterns on Linear Network

Description

Enables envelopes to be computed for point patterns on a linear network.

Usage

S3 method for class 'lpp'
envelope(Y, fun=linearK, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL, fix.n=FALSE, fix.marks=FALSE, verbose=TRUE,
transform=NULL,global=FALSE,ginterval=NULL,use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

S3 method for class 'lppm'
envelope(Y, fun=linearK, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL, fix.n=FALSE, fix.marks=FALSE, verbose=TRUE,
transform=NULL,global=FALSE,ginterval=NULL,use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y A point pattern on a linear network (object of class "lpp") or a fitted point
process model on a linear network (object of class "lppm").

fun Function that is to be computed for each simulated pattern.

envelope.lpp 469

nsim Number of simulations to perform.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

... Extra arguments passed to fun.

funargs A list, containing extra arguments to be passed to fun.

funYargs Optional. A list, containing extra arguments to be passed to fun when applied
to the original data Y only.

simulate Optional. Specifies how to generate the simulated point patterns. If simulate
is an expression in the R language, then this expression will be evaluated nsim
times, to obtain nsim point patterns which are taken as the simulated patterns
from which the envelopes are computed. If simulate is a function, then this
function will be repeatedly applied to the data pattern Y to obtain nsim simulated
patterns. If simulate is a list of point patterns, then the entries in this list will
be treated as the simulated patterns from which the envelopes are computed.
Alternatively simulate may be an object produced by the envelope command:
see Details.

fix.n Logical. If TRUE, simulated patterns will have the same number of points as the
original data pattern.

fix.marks Logical. If TRUE, simulated patterns will have the same number of points and
the same marks as the original data pattern. In a multitype point pattern this
means that the simulated patterns will have the same number of points of each
type as the original data.

verbose Logical flag indicating whether to print progress reports during the simulations.

transform Optional. A transformation to be applied to the function values, before the en-
velopes are computed. An expression object (see Details).

global Logical flag indicating whether envelopes should be pointwise (global=FALSE)
or simultaneous (global=TRUE).

ginterval Optional. A vector of length 2 specifying the interval of r values for the simul-
taneous critical envelopes. Only relevant if global=TRUE.

use.theory Logical value indicating whether to use the theoretical value, computed by fun,
as the reference value for simultaneous envelopes. Applicable only when global=TRUE.

alternative Character string determining whether the envelope corresponds to a two-sided
test (side="two.sided", the default) or a one-sided test with a lower critical
boundary (side="less") or a one-sided test with an upper critical boundary
(side="greater").

scale Optional. Scaling function for global envelopes. A function in the R language
which determines the relative scale of deviations, as a function of distance r,
when computing the global envelopes. Applicable only when global=TRUE.
Summary function values for distance r will be divided by scale(r) before
the maximum deviation is computed. The resulting global envelopes will have
width proportional to scale(r).

clamp Logical value indicating how to compute envelopes when alternative="less"
or alternative="greater". Deviations of the observed summary function
from the theoretical summary function are initially evaluated as signed real

470 envelope.lpp

numbers, with large positive values indicating consistency with the alternative
hypothesis. If clamp=FALSE (the default), these values are not changed. If
clamp=TRUE, any negative values are replaced by zero.

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

nsim2 Number of extra simulated point patterns to be generated if it is necessary to
use simulation to estimate the theoretical mean of the summary function. Only
relevant when global=TRUE and the simulations are not based on CSR.

VARIANCE Logical. If TRUE, critical envelopes will be calculated as sample mean plus or
minus nSD times sample standard deviation.

nSD Number of estimated standard deviations used to determine the critical envelopes,
if VARIANCE=TRUE.

Yname Character string that should be used as the name of the data point pattern Y when
printing or plotting the results.

maxnerr Maximum number of rejected patterns. If fun yields a fatal error when applied
to a simulated point pattern (for example, because the pattern is empty and fun
requires at least one point), the pattern will be rejected and a new random point
pattern will be generated. If this happens more than maxnerr times, the algo-
rithm will give up.

rejectNA Logical value specifying whether to reject a simulated pattern if the resulting
values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then
simulated patterns are rejected only when fun gives a fatal error.

silent Logical value specifying whether to print a report each time a simulated pattern
is rejected.

do.pwrong Logical. If TRUE, the algorithm will also estimate the true significance level of
the “wrong” test (the test that declares the summary function for the data to be
significant if it lies outside the pointwise critical boundary at any point). This
estimate is printed when the result is printed.

envir.simul Environment in which to evaluate the expression simulate, if not the current
environment.

Details

This is a method for the generic function envelope applicable to point patterns on a linear network.

The argument Y can be either a point pattern on a linear network, or a fitted point process model on
a linear network. The function fun will be evaluated for the data and also for nsim simulated point
patterns on the same linear network. The upper and lower envelopes of these evaluated functions
will be computed as described in envelope.

The type of simulation is determined as follows.

• if Y is a point pattern (object of class "lpp") and simulate is missing or NULL, then random
point patterns will be generated according to a Poisson point process on the linear network on
which Y is defined, with intensity estimated from Y.

• if Y is a fitted point process model (object of class "lppm") and simulate is missing or NULL,
then random point patterns will be generated by simulating from the fitted model.

envelope.lpp 471

• If simulate is present, it specifies the type of simulation as explained below.

• If simulate is an expression (typically including a call to a random generator), then the ex-
pression will be repeatedly evaluated, and should yield random point patterns on the same
linear network as Y.

• If simulate is a function (typically including a call to a random generator), then the func-
tion will be repeatedly applied to the original point pattern Y, and should yield random point
patterns on the same linear network as Y.

• If simulate is a list of point patterns, then these will be taken as the simulated point patterns.
They should be on the same linear network as Y.

The function fun should accept as its first argument a point pattern on a linear network (object of
class "lpp") and should have another argument called r or a ... argument.

Value

Function value table (object of class "fv") with additional information, as described in envelope.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ang, Q.W. (2010) Statistical methodology for events on a network. Master’s thesis, School of
Mathematics and Statistics, University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Okabe, A. and Yamada, I. (2001) The K-function method on a network and its computational im-
plementation. Geographical Analysis 33, 271-290.

See Also

envelope, linearK

Examples

if(interactive()) {
ns <- 39
np <- 40

} else { ns <- np <- 3 }
X <- runiflpp(np, simplenet)

uniform Poisson: random numbers of points
envelope(X, nsim=ns)

uniform Poisson: conditional on observed number of points
envelope(X, fix.n=TRUE, nsim=ns)

472 envelope.pp3

nonuniform Poisson
fit <- lppm(X ~x)
envelope(fit, nsim=ns)

#multitype
marks(X) <- sample(letters[1:2], np, replace=TRUE)
envelope(X, nsim=ns)

envelope.pp3 Simulation Envelopes of Summary Function for 3D Point Pattern

Description

Computes simulation envelopes of a summary function for a three-dimensional point pattern.

Usage

S3 method for class 'pp3'
envelope(Y, fun=K3est, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs, simulate=NULL, verbose=TRUE,
transform=NULL,global=FALSE,ginterval=NULL,use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y A three-dimensional point pattern (object of class "pp3").

fun Function that computes the desired summary statistic for a 3D point pattern.

nsim Number of simulated point patterns to be generated when computing the en-
velopes.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

... Extra arguments passed to fun.

funargs A list, containing extra arguments to be passed to fun.

funYargs Optional. A list, containing extra arguments to be passed to fun when applied
to the original data Y only.

simulate Optional. Specifies how to generate the simulated point patterns. If simulate
is an expression in the R language, then this expression will be evaluated nsim
times, to obtain nsim point patterns which are taken as the simulated patterns
from which the envelopes are computed. If simulate is a function, then this
function will be repeatedly applied to the data pattern Y to obtain nsim simulated

envelope.pp3 473

patterns. If simulate is a list of point patterns, then the entries in this list will
be treated as the simulated patterns from which the envelopes are computed.
Alternatively simulate may be an object produced by the envelope command:
see Details.

verbose Logical flag indicating whether to print progress reports during the simulations.

transform Optional. A transformation to be applied to the function values, before the en-
velopes are computed. An expression object (see Details).

global Logical flag indicating whether envelopes should be pointwise (global=FALSE)
or simultaneous (global=TRUE).

ginterval Optional. A vector of length 2 specifying the interval of r values for the simul-
taneous critical envelopes. Only relevant if global=TRUE.

use.theory Logical value indicating whether to use the theoretical value, computed by fun,
as the reference value for simultaneous envelopes. Applicable only when global=TRUE.

alternative Character string determining whether the envelope corresponds to a two-sided
test (side="two.sided", the default) or a one-sided test with a lower critical
boundary (side="less") or a one-sided test with an upper critical boundary
(side="greater").

scale Optional. Scaling function for global envelopes. A function in the R language
which determines the relative scale of deviations, as a function of distance r,
when computing the global envelopes. Applicable only when global=TRUE.
Summary function values for distance r will be divided by scale(r) before
the maximum deviation is computed. The resulting global envelopes will have
width proportional to scale(r).

clamp Logical value indicating how to compute envelopes when alternative="less"
or alternative="greater". Deviations of the observed summary function
from the theoretical summary function are initially evaluated as signed real
numbers, with large positive values indicating consistency with the alternative
hypothesis. If clamp=FALSE (the default), these values are not changed. If
clamp=TRUE, any negative values are replaced by zero.

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

nsim2 Number of extra simulated point patterns to be generated if it is necessary to
use simulation to estimate the theoretical mean of the summary function. Only
relevant when global=TRUE and the simulations are not based on CSR.

VARIANCE Logical. If TRUE, critical envelopes will be calculated as sample mean plus or
minus nSD times sample standard deviation.

nSD Number of estimated standard deviations used to determine the critical envelopes,
if VARIANCE=TRUE.

Yname Character string that should be used as the name of the data point pattern Y when
printing or plotting the results.

maxnerr Maximum number of rejected patterns. If fun yields a fatal error when applied
to a simulated point pattern (for example, because the pattern is empty and fun
requires at least one point), the pattern will be rejected and a new random point
pattern will be generated. If this happens more than maxnerr times, the algo-
rithm will give up.

474 envelope.pp3

rejectNA Logical value specifying whether to reject a simulated pattern if the resulting
values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then
simulated patterns are only rejected when fun gives a fatal error.

silent Logical value specifying whether to print a report each time a simulated pattern
is rejected.

do.pwrong Logical. If TRUE, the algorithm will also estimate the true significance level of
the “wrong” test (the test that declares the summary function for the data to be
significant if it lies outside the pointwise critical boundary at any point). This
estimate is printed when the result is printed.

envir.simul Environment in which to evaluate the expression simulate, if not the current
environment.

Details

The envelope command performs simulations and computes envelopes of a summary statistic
based on the simulations. The result is an object that can be plotted to display the envelopes.
The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern
data.

The envelope function is generic, with methods for the classes "ppp", "ppm" and "kppm" described
in the help file for envelope. This function envelope.pp3 is the method for three-dimensional
point patterns (objects of class "pp3").

For the most basic use, if you have a 3D point pattern X and you want to test Complete Spatial
Randomness (CSR), type plot(envelope(X,K3est,nsim=39)) to see the three-dimensional K
function for X plotted together with the envelopes of the three-dimensional K function for 39 sim-
ulations of CSR.

To create simulation envelopes, the command envelope(Y,...) first generates nsim random point
patterns in one of the following ways.

• If simulate=NULL, then we generate nsim simulations of Complete Spatial Randomness (i.e.
nsim simulated point patterns each being a realisation of the uniform Poisson point process)
with the same intensity as the pattern Y.

• If simulate is supplied, then it determines how the simulated point patterns are generated.
See envelope for details.

The summary statistic fun is applied to each of these simulated patterns. Typically fun is one of the
functions K3est, G3est, F3est or pcf3est. It may also be a character string containing the name
of one of these functions.

For further information, see the documentation for envelope.

Value

A function value table (object of class "fv") which can be plotted directly. See envelope for further
details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

envelopeArray 475

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

See Also

pp3, rpoispp3, K3est, G3est, F3est, pcf3est.

Examples

X <- rpoispp3(20, box3())
Not run:
plot(envelope(X, nsim=39))

End(Not run)

envelopeArray Array of Simulation Envelopes of Summary Function

Description

Compute an array of simulation envelopes using a summary function that returns an array of curves.

Usage

envelopeArray(X, fun, ..., dataname = NULL, verb = FALSE, reuse = TRUE)

Arguments

X Object containing point pattern data. A point pattern (object of class "ppp",
"lpp", "pp3" or "ppx") or a fitted point process model (object of class "ppm",
"kppm" or "lppm").

fun Function that computes the desired summary statistic for a point pattern. The
result of fun should be a function array (object of class "fasp").

... Arguments passed to envelope to control the simulations, or passed to fun
when evaluating the function.

dataname Optional character string name for the data.

verb Logical value indicating whether to print progress reports.

reuse Logical value indicating whether the envelopes in each panel should be based
on the same set of simulated patterns (reuse=TRUE, the default) or on different,
independent sets of simulated patterns (reuse=FALSE).

476 eroded.areas

Details

This command is the counterpart of envelope when the function fun that is evaluated on each
simulated point pattern will return an object of class "fasp" representing an array of summary
functions.

Simulated point patterns are generated according to the rules described for envelope. In brief, if X
is a point pattern, the algorithm generates simulated point patterns of the same kind, according to
complete spatial randomness. If X is a fitted model, the algorithm generates simulated point patterns
according to this model.

For each simulated point pattern Y, the function fun is invoked. The result Z <-fun(Y,...) should
be an object of class "fasp" representing an array of summary functions. The dimensions of the
array Z should be the same for each simulated pattern Y.

This algorithm finds the simulation envelope of the summary functions in each cell of the array.

Value

An object of class "fasp" representing an array of envelopes.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

envelope, alltypes.

Examples

A <- envelopeArray(finpines, markcrosscorr, nsim=9)
plot(A)

eroded.areas Areas of Morphological Erosions

Description

Computes the areas of successive morphological erosions of a window.

Usage

eroded.areas(w, r, subset=NULL)

Arguments

w A window.

r Numeric vector of radii at which erosions will be performed.

subset Optional window inside which the areas should be computed.

erosion 477

Details

This function computes the areas of the erosions of the window w by each of the radii r[i].

The morphological erosion of a set W by a distance r > 0 is the subset consisting of all points
x ∈ W such that the distance from x to the boundary of W is greater than or equal to r. In other
words it is the result of trimming a margin of width r off the set W .

The argument r should be a vector of positive numbers. The argument w should be a window (an
object of class "owin", see owin.object for details) or can be given in any format acceptable to
as.owin().

Unless w is a rectangle, the computation is performed using a pixel raster approximation.

To compute the eroded window itself, use erosion.

Value

Numeric vector, of the same length as r, giving the areas of the successive erosions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, as.owin, erosion

Examples

w <- owin(c(0,1),c(0,1))
a <- eroded.areas(w, seq(0.01,0.49,by=0.01))

erosion Morphological Erosion by a Disc

Description

Perform morphological erosion of a window, a line segment pattern or a point pattern by a disc.

Usage

erosion(w, r, ...)
S3 method for class 'owin'

erosion(w, r, shrink.frame=TRUE, ...,
strict=FALSE, polygonal=NULL)

S3 method for class 'ppp'
erosion(w, r,...)
S3 method for class 'psp'

erosion(w, r,...)

478 erosion

Arguments

w A window (object of class "owin" or a line segment pattern (object of class
"psp") or a point pattern (object of class "ppp").

r positive number: the radius of erosion.

shrink.frame logical: if TRUE, erode the bounding rectangle as well.

... extra arguments to as.mask controlling the pixel resolution, if pixel approxima-
tion is used.

strict Logical flag determining the fate of boundary pixels, if pixel approximation is
used. See details.

polygonal Logical flag indicating whether to compute a polygonal approximation to the
erosion (polygonal=TRUE) or a pixel grid approximation (polygonal=FALSE).

Details

The morphological erosion of a set W by a distance r > 0 is the subset consisting of all points
x ∈ W such that the distance from x to the boundary of W is greater than or equal to r. In other
words it is the result of trimming a margin of width r off the set W .

If polygonal=TRUE then a polygonal approximation to the erosion is computed. If polygonal=FALSE
then a pixel approximation to the erosion is computed from the distance map of w. The arguments
"..." are passed to as.mask to control the pixel resolution. The erosion consists of all pixels
whose distance from the boundary of w is strictly greater than r (if strict=TRUE) or is greater than
or equal to r (if strict=FALSE).

When w is a window, the default (when polygonal=NULL) is to compute a polygonal approximation
if w is a rectangle or polygonal window, and to compute a pixel approximation if w is a window of
type "mask".

If shrink.frame is false, the resulting window is given the same outer, bounding rectangle as the
original window w. If shrink.frame is true, the original bounding rectangle is also eroded by the
same distance r.

To simply compute the area of the eroded window, use eroded.areas.

Value

If r > 0, an object of class "owin" representing the eroded region (or NULL if this region is empty).
If r=0, the result is identical to w.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

dilation for the opposite operation.

erosionAny for morphological erosion using any shape.

owin, as.owin, eroded.areas

erosionAny 479

Examples

plot(letterR, main="erosion(letterR, 0.2)")
plot(erosion(letterR, 0.2), add=TRUE, col="red")

erosionAny Morphological Erosion of Windows

Description

Compute the morphological erosion of one spatial window by another.

Usage

erosionAny(A, B)

A %(-)% B

Arguments

A,B Windows (objects of class "owin").

Details

The operator A %(-)% B and function erosionAny(A,B) are synonymous: they both compute the
morphological erosion of the window A by the window B.

The morphological erosion A 	 B of region A by region B is the spatial region consisting of all
vectors z such that, when B is shifted by the vector z, the result is a subset of A.

Equivalently
A	B = ((Ac ⊕ (−B))c

where ⊕ is the Minkowski sum, Ac denotes the set complement, and (−B) is the reflection of B
through the origin, consisting of all vectors −b where b is a point in B.

If B is a disc of radius r, then erosionAny(A,B) is equivalent to erosion(A,r). See erosion.

The algorithm currently computes the result as a polygonal window using the polyclip library. It
will be quite slow if applied to binary mask windows.

Value

Another window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

erosion, MinkowskiSum

480 eval.fasp

Examples

B <- square(c(-0.1, 0.1))
RminusB <- letterR %(-)% B
FR <- grow.rectangle(Frame(letterR), 0.3)
plot(FR, main="", type="n")
plot(letterR, add=TRUE, lwd=2, hatch=TRUE, box=FALSE)
plot(RminusB, add=TRUE, col="blue", box=FALSE)
plot(shift(B, vec=c(3.49, 2.98)),

add=TRUE, border="red", lwd=2)

eval.fasp Evaluate Expression Involving Function Arrays

Description

Evaluates any expression involving one or more function arrays (fasp objects) and returns another
function array.

Usage

eval.fasp(expr, envir, dotonly=TRUE)

Arguments

expr An expression involving the names of objects of class "fasp".

envir Optional. The environment in which to evaluate the expression, or a named list
containing "fasp" objects to be used in the expression.

dotonly Logical. Passed to eval.fv.

Details

This is a wrapper to make it easier to perform pointwise calculations with the arrays of summary
functions used in spatial statistics.

A function array (object of class "fasp") can be regarded as a matrix whose entries are functions.
Objects of this kind are returned by the command alltypes.

Suppose X is an object of class "fasp". Then eval.fasp(X+3) effectively adds 3 to the value of
every function in the array X, and returns the resulting object.

Suppose X and Y are two objects of class "fasp" which are compatible (for example the arrays must
have the same dimensions). Then eval.fasp(X + Y) will add the corresponding functions in each
cell of the arrays X and Y, and return the resulting array of functions.

Suppose X is an object of class "fasp" and f is an object of class "fv". Then eval.fasp(X + f)
will add the function f to the functions in each cell of the array X, and return the resulting array of
functions.

In general, expr can be any expression involving (a) the names of objects of class "fasp" or "fv",
(b) scalar constants, and (c) functions which are vectorised. See the Examples.

eval.fv 481

First eval.fasp determines which of the variable names in the expression expr refer to objects of
class "fasp". The expression is then evaluated for each cell of the array using eval.fv.

The expression expr must be vectorised. There must be at least one object of class "fasp" in the
expression. All such objects must be compatible.

Value

Another object of class "fasp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fasp.object, Kest

Examples

manipulating the K function
K <- alltypes(amacrine, "K")

expressions involving a fasp object
eval.fasp(K + 3)
L <- eval.fasp(sqrt(K/pi))

expression involving two fasp objects
D <- eval.fasp(K - L)

subtracting the unmarked K function from the cross-type K functions
K0 <- Kest(unmark(amacrine))
DK <- eval.fasp(K - K0)

Use of 'envir'
S <- eval.fasp(1-G, list(G=alltypes(amacrine, "G")))

eval.fv Evaluate Expression Involving Functions

Description

Evaluates any expression involving one or more function value (fv) objects, and returns another
object of the same kind.

Usage

eval.fv(expr, envir, dotonly=TRUE, equiv=NULL, relabel=TRUE)

482 eval.fv

Arguments

expr An expression.

envir Optional. The environment in which to evaluate the expression, or a named list
containing "fv" objects to be used in the expression.

dotonly Logical. See Details.

equiv Mapping between column names of different objects that are deemed to be
equivalent. See Details.

relabel Logical value indicating whether to compute appropriate labels for the resulting
function. This should normally be TRUE (the default). See Details.

Details

This is a wrapper to make it easier to perform pointwise calculations with the summary functions
used in spatial statistics.

An object of class "fv" is essentially a data frame containing several different statistical estimates
of the same function. Such objects are returned by Kest and its relatives.

For example, suppose X is an object of class "fv" containing several different estimates of the
Ripley’s K function K(r), evaluated at a sequence of values of r. Then eval.fv(X+3) effectively
adds 3 to each function estimate in X, and returns the resulting object.

Suppose X and Y are two objects of class "fv" which are compatible (in particular they have the
same vector of r values). Then eval.im(X + Y) will add the corresponding function values in X and
Y, and return the resulting function.

In general, expr can be any expression involving (a) the names of objects of class "fv", (b) scalar
constants, and (c) functions which are vectorised. See the Examples.

First eval.fv determines which of the variable names in the expression expr refer to objects of
class "fv". Each such name is replaced by a vector containing the function values. The expression
is then evaluated. The result should be a vector; it is taken as the new vector of function values.

The expression expr must be vectorised. There must be at least one object of class "fv" in the
expression. If the objects are not compatible, they will be made compatible by harmonise.fv.

If dotonly=TRUE (the default), the expression will be evaluated only for those columns of an "fv"
object that contain values of the function itself (rather than values of the derivative of the function,
the hazard rate, etc). If dotonly=FALSE, the expression will be evaluated for all columns.

For example the result of Fest includes several columns containing estimates of the empty space
function F (r), but also includes an estimate of the hazard h(r) of F (r). Transformations that are
valid for F may not be valid for h. Accordingly, h would normally be omitted from the calculation.

The columns of an object x that represent the function itself are identified by its “dot” names,
fvnames(x,"."). They are the columns normally plotted by plot.fv and identified by the symbol
"." in plot formulas in plot.fv.

The argument equiv can be used to specify that two different column names in different function
objects are mathematically equivalent or cognate. It should be a list of name=value pairs, or a
named vector of character strings, indicating the pairing of equivalent names. (Without this argu-
ment, these columns would be discarded.) See the Examples.

The argument relabel should normally be TRUE (the default). It determines whether to compute
appropriate mathematical labels and descriptions for the resulting function object (used when the

eval.im 483

object is printed or plotted). If relabel=FALSE then this does not occur, and the mathematical labels
and descriptions in the result are taken from the function object that appears first in the expression.
This reduces computation time slightly (for advanced use only).

Value

Another object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, Kest

Examples

manipulating the K function
X <- rpoispp(42)
Ks <- Kest(X)

eval.fv(Ks + 3)
Ls <- eval.fv(sqrt(Ks/pi))

manipulating two K functions
Y <- rpoispp(20)
Kr <- Kest(Y)

Kdif <- eval.fv(Ks - Kr)
Z <- eval.fv(sqrt(Ks/pi) - sqrt(Kr/pi))

Use of 'envir'
U <- eval.fv(sqrt(K), list(K=Kest(cells)))

Use of 'equiv'
Fc <- Fest(cells)
Gc <- Gest(cells)
Hanisch and Chiu-Stoyan estimators are cognate
Dc <- eval.fv(Fc - Gc, equiv=list(cs="han"))

eval.im Evaluate Expression Involving Pixel Images

Description

Evaluates any expression involving one or more pixel images, and returns a pixel image.

484 eval.im

Usage

eval.im(expr, envir, harmonize=TRUE, warn=TRUE)

Arguments

expr An expression.

envir Optional. The environment in which to evaluate the expression, or a named list
containing pixel images to be used in the expression.

harmonize Logical. Whether to resolve inconsistencies between the pixel grids.

warn Logical. Whether to issue a warning if the pixel grids were inconsistent.

Details

This function is a wrapper to make it easier to perform pixel-by-pixel calculations in an image.

Pixel images in spatstat are represented by objects of class "im" (see im.object). These are
essentially matrices of pixel values, with extra attributes recording the pixel dimensions, etc.

Suppose X is a pixel image. Then eval.im(X+3) will add 3 to the value of every pixel in X, and
return the resulting pixel image.

Suppose X and Y are two pixel images with compatible dimensions: they have the same number of
pixels, the same physical size of pixels, and the same bounding box. Then eval.im(X + Y) will add
the corresponding pixel values in X and Y, and return the resulting pixel image.

In general, expr can be any expression in the R language involving (a) the names of pixel images,
(b) scalar constants, and (c) functions which are vectorised. See the Examples.

First eval.im determines which of the variable names in the expression expr refer to pixel im-
ages. Each such name is replaced by a matrix containing the pixel values. The expression is then
evaluated. The result should be a matrix; it is taken as the matrix of pixel values.

The expression expr must be vectorised. There must be at least one pixel image in the expression.

All images must have compatible dimensions. If harmonize=FALSE, images that are incompati-
ble will cause an error. If harmonize=TRUE, images that have incompatible dimensions will be
resampled so that they are compatible; if warn=TRUE, a warning will be issued.

Value

An image object of class "im".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

im.apply for operations similar to apply, such as taking the sum of a list of images.

as.im, compatible.im, harmonise.im, im.object

eval.linim 485

Examples

test images
X <- as.im(function(x,y) { x^2 - y^2 }, unit.square())
Y <- as.im(function(x,y) { 3 * x + y }, unit.square())

eval.im(X + 3)
eval.im(X - Y)
eval.im(abs(X - Y))
Z <- eval.im(sin(X * pi) + Y)

Use of 'envir'
W <- eval.im(sin(U), list(U=density(cells)))

eval.linim Evaluate Expression Involving Pixel Images on Linear Network

Description

Evaluates any expression involving one or more pixel images on a linear network, and returns a
pixel image on the same linear network.

Usage

eval.linim(expr, envir, harmonize=TRUE, warn=TRUE)

Arguments

expr An expression in the R language, involving the names of objects of class "linim".

envir Optional. The environment in which to evaluate the expression.

harmonize Logical. Whether to resolve inconsistencies between the pixel grids.

warn Logical. Whether to issue a warning if the pixel grids were inconsistent.

Details

This function a wrapper to make it easier to perform pixel-by-pixel calculations. It is one of several
functions whose names begin with eval which work on objects of different types. This particular
function is designed to work with objects of class "linim" which represent pixel images on a linear
network.

Suppose X is a pixel image on a linear network (object of class "linim". Then eval.linim(X+3)
will add 3 to the value of every pixel in X, and return the resulting pixel image on the same linear
network.

Suppose X and Y are two pixel images on the same linear network, with compatible pixel dimensions.
Then eval.linim(X + Y) will add the corresponding pixel values in X and Y, and return the resulting
pixel image on the same linear network.

In general, expr can be any expression in the R language involving (a) the names of pixel images,
(b) scalar constants, and (c) functions which are vectorised. See the Examples.

486 ewcdf

First eval.linim determines which of the variable names in the expression expr refer to pixel
images. Each such name is replaced by a matrix containing the pixel values. The expression is then
evaluated. The result should be a matrix; it is taken as the matrix of pixel values.

The expression expr must be vectorised. There must be at least one linear pixel image in the
expression.

All images must have compatible dimensions. If harmonize=FALSE, images that are incompati-
ble will cause an error. If harmonize=TRUE, images that have incompatible dimensions will be
resampled so that they are compatible; if warn=TRUE, a warning will be issued.

Value

An image object of class "linim".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

eval.im, linim

Examples

M <- as.mask.psp(as.psp(simplenet))
Z <- as.im(function(x,y) {x-y}, W=M)
X <- linim(simplenet, Z)
X

Y <- linfun(function(x,y,seg,tp){y^2+x}, simplenet)
Y <- as.linim(Y)

eval.linim(X + 3)
eval.linim(X - Y)
eval.linim(abs(X - Y))
Z <- eval.linim(sin(X * pi) + Y)

ewcdf Weighted Empirical Cumulative Distribution Function

Description

Compute a weighted version of the empirical cumulative distribution function.

Usage

ewcdf(x, weights = NULL, normalise=TRUE, adjust=1)

ewcdf 487

Arguments

x Numeric vector of observations.

weights Optional. Numeric vector of non-negative weights for x. Defaults to equal
weight 1 for each entry of x.

normalise Logical value indicating whether the weights should be rescaled so that they
sum to 1.

adjust Numeric value. Adjustment factor. The weights will be multiplied by adjust.

Details

This is a modification of the standard function ecdf allowing the observations x to have weights.

The weighted e.c.d.f. (empirical cumulative distribution function) Fn is defined so that, for any real
number y, the value of Fn(y) is equal to the total weight of all entries of x that are less than or equal
to y. That is Fn(y) = sum(weights[x <= y]).

Thus Fn is a step function which jumps at the values of x. The height of the jump at a point y is the
total weight of all entries in x number of tied observations at that value. Missing values are ignored.

If weights is omitted, the default is equivalent to ecdf(x) except for the class membership.

The result of ewcdf is a function, of class "ewcdf", inheriting from the classes "ecdf" (if normalise=TRUE)
and "stepfun". The class ewcdf has methods for print and quantile. The inherited classes ecdf
and stepfun have methods for plot and summary.

Value

A function, of class "ewcdf", inheriting from "ecdf" (if normalise=TRUE) and "stepfun".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ecdf.

quantile.ewcdf

Examples

x <- rnorm(100)
w <- runif(100)
plot(e <- ewcdf(x,w))
e

488 exactMPLEstrauss

exactMPLEstrauss Exact Maximum Pseudolikelihood Estimate for Stationary Strauss
Process

Description

Computes, to very high accuracy, the Maximum Pseudolikelihood Estimates of the parameters of a
stationary Strauss point process.

Usage

exactMPLEstrauss(X, R, ngrid = 2048, plotit = FALSE, project=TRUE)

Arguments

X Data to which the Strauss process will be fitted. A point pattern dataset (object
of class "ppp").

R Interaction radius of the Strauss process. A non-negative number.

ngrid Grid size for calculation of integrals. An integer, giving the number of grid
points in the x and y directions.

plotit Logical. If TRUE, the log pseudolikelihood is plotted on the current device.

project Logical. If TRUE (the default), the parameter γ is constrained to lie in the interval
[0, 1]. If FALSE, this constraint is not applied.

Details

This function is intended mainly for technical investigation of algorithm performance. Its practical
use is quite limited.

It fits the stationary Strauss point process model to the point pattern dataset X by maximum pseu-
dolikelihood (with the border edge correction) using an algorithm with very high accuracy. This
algorithm is more accurate than the default behaviour of the model-fitting function ppm because the
discretisation is much finer.

Ripley (1988) and Baddeley and Turner (2000) derived the log pseudolikelihood for the stationary
Strauss process, and eliminated the parameter β, obtaining an exact formula for the partial log
pseudolikelihood as a function of the interaction parameter γ only. The algorithm evaluates this
expression to a high degree of accuracy, using numerical integration on a ngrid * ngrid lattice,
uses optim to maximise the log pseudolikelihood with respect to γ, and finally recovers β.

The result is a vector of length 2, containing the fitted coefficients log β and log γ. These values
correspond to the entries that would be obtained with coef(ppm(X,~1,Strauss(R))). The fitted
coefficients are typically accurate to within 10−6 as shown in Baddeley and Turner (2013).

Note however that (by default) exactMPLEstrauss constrains the parameter γ to lie in the inter-
val [0, 1] in which the point process is well defined (Kelly and Ripley, 1976) whereas ppm does
not constrain the value of γ (by default). This behaviour is controlled by the argument project
to ppm and exactMPLEstrauss. The default for ppm is project=FALSE, while the default for
exactMPLEstrauss is project=TRUE.

expand.owin 489

Value

Vector of length 2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Baddeley, A. and Turner, R. (2013) Bias correction for parameter estimates of spatial point process
models. Journal of Statistical Computation and Simulation 2012. doi: 10.1080/00949655.2012.755976

Kelly, F.P. and Ripley, B.D. (1976) On Strauss’s model for clustering. Biometrika 63, 357–360.

Ripley, B.D. (1988) Statistical inference for spatial processes. Cambridge University Press.

See Also

ppm

Examples

if(interactive()) {
rc <- 0.09
exactMPLEstrauss(cells, rc, plotit=TRUE)
coef(ppm(cells ~1, Strauss(rc)))
coef(ppm(cells ~1, Strauss(rc), nd=128))
rr <- 0.04
exactMPLEstrauss(redwood, rr)
exactMPLEstrauss(redwood, rr, project=FALSE)
coef(ppm(redwood ~1, Strauss(rr)))

} else {
rc <- 0.09
exactMPLEstrauss(cells, rc, ngrid=64, plotit=TRUE)
exactMPLEstrauss(cells, rc, ngrid=64, project=FALSE)

}

expand.owin Apply Expansion Rule

Description

Applies an expansion rule to a window.

Usage

expand.owin(W, ...)

490 Extract.anylist

Arguments

W A window.
... Arguments passed to rmhexpand to determine an expansion rule.

Details

The argument W should be a window (an object of class "owin").

This command applies the expansion rule specified by the arguments ... to the window W, yielding
another window.

The arguments ... are passed to rmhexpand to determine the expansion rule.

For other transformations of the scale, location and orientation of a window, see shift, affine and
rotate.

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rmhexpand about expansion rules.

shift, rotate, affine for other types of manipulation.

Examples

expand.owin(square(1), 9)
expand.owin(square(1), distance=0.5)
expand.owin(letterR, length=2)
expand.owin(letterR, distance=0.1)

Extract.anylist Extract or Replace Subset of a List of Things

Description

Extract or replace a subset of a list of things.

Usage

S3 method for class 'anylist'
x[i, ...]

S3 replacement method for class 'anylist'
x[i] <- value

Extract.fasp 491

Arguments

x An object of class "anylist" representing a list of things.

i Subset index. Any valid subset index in the usual R sense.

value Replacement value for the subset.

... Ignored.

Details

These are the methods for extracting and replacing subsets for the class "anylist".

The argument x should be an object of class "anylist" representing a list of things. See anylist.

The method replaces a designated subset of x, and returns an object of class "anylist".

Value

Another object of class "anylist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

anylist, plot.anylist, summary.anylist

Examples

x <- anylist(A=runif(10), B=runif(10), C=runif(10))
x[1] <- list(A=rnorm(10))

Extract.fasp Extract Subset of Function Array

Description

Extract a subset of a function array (an object of class "fasp").

Usage

S3 method for class 'fasp'
x[I, J, drop=TRUE,...]

492 Extract.fasp

Arguments

x A function array. An object of class "fasp".

I any valid expression for a subset of the row indices of the array.

J any valid expression for a subset of the column indices of the array.

drop Logical. When the selected subset consists of only one cell of the array, if
drop=FALSE the result is still returned as a 1×1 array of functions (class "fasp")
while if drop=TRUE it is returned as a function (class "fv").

... Ignored.

Details

A function array can be regarded as a matrix whose entries are functions. See fasp.object for an
explanation of function arrays.

This routine extracts a sub-array according to the usual conventions for matrix indexing.

Value

A function array (of class "fasp"). Exceptionally, if the array has only one cell, and if drop=TRUE,
then the result is a function value table (class "fv").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

fasp.object

Examples

Lansing woods data - multitype points with 6 types
woods <- lansing

compute 6 x 6 array of all cross-type K functions
a <- alltypes(woods, "K")

extract first three marks only
b <- a[1:3,1:3]
Not run: plot(b)
subset of array pertaining to hickories
h <- a[levels(marks(woods)) == "hickory",]
Not run: plot(h)

Extract.fv 493

Extract.fv Extract or Replace Subset of Function Values

Description

Extract or replace a subset of an object of class "fv".

Usage

S3 method for class 'fv'
x[i, j, ..., drop=FALSE]

S3 replacement method for class 'fv'
x[i, j] <- value

S3 replacement method for class 'fv'
x$name <- value

Arguments

x a function value object, of class "fv" (see fv.object). Essentially a data frame.

i any appropriate subset index. Selects a subset of the rows of the data frame, i.e.
a subset of the domain of the function(s) represented by x.

j any appropriate subset index for the columns of the data frame. Selects some of
the functions present in x.

name the name of a column of the data frame.

... Ignored.

drop Logical. If TRUE, the result is a data frame or vector containing the selected rows
and columns of data. If FALSE (the default), the result is another object of class
"fv".

value Replacement value for the column or columns selected by name or j.

Details

These functions extract a designated subset of an object of class "fv", or replace the designated
subset with other data, or delete the designated subset.

The subset is specified by the row index i and column index j, or by the column name name. Either
i or j may be missing, or both may be missing.

The function [.fv is a method for the generic operator [for the class "fv". It extracts the designated
subset of x, and returns it as another object of class "fv" (if drop=FALSE) or as a data frame or vector
(if drop=TRUE).

The function [<-.fv is a method for the generic operator [<- for the class "fv". If value is NULL,
the designated subset of x will be deleted from x. Otherwise, the designated subset of x will be
replaced by the data contained in value. The return value is the modified object x.

494 Extract.hyperframe

The function $<-.fv is a method for the generic operator $<- for the class "fv". If value is NULL,
the designated column of x will be deleted from x. Otherwise, the designated column of x will be
replaced by the data contained in value. The return value is the modified object x.

Value

The result of [.fv with drop=TRUE is a data frame or vector.

Otherwise, the result is another object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object

Examples

K <- Kest(cells)

discard the estimates of K(r) for r > 0.1
Ksub <- K[K$r <= 0.1,]

extract the border method estimates
bor <- K[, "border", drop=TRUE]
or equivalently
bor <- K$border

remove the border-method estimates
K$border <- NULL
K

Extract.hyperframe Extract or Replace Subset of Hyperframe

Description

Extract or replace a subset of a hyperframe.

Usage

S3 method for class 'hyperframe'
x[i, j, drop, strip=drop, ...]
S3 replacement method for class 'hyperframe'

x[i, j] <- value
S3 method for class 'hyperframe'

x$name
S3 replacement method for class 'hyperframe'

x$name <- value

Extract.hyperframe 495

Arguments

x A hyperframe (object of class "hyperframe").

i,j Row and column indices.

drop,strip Logical values indicating what to do when the hyperframe has only one row or
column. See Details.

... Ignored.

name Name of a column of the hyperframe.

value Replacement value for the subset. A hyperframe or (if the subset is a single
column) a list or an atomic vector.

Details

These functions extract a designated subset of a hyperframe, or replace the designated subset with
another hyperframe.

The function [.hyperframe is a method for the subset operator [for the class "hyperframe". It
extracts the subset of x specified by the row index i and column index j.

The argument drop determines whether the array structure will be discarded if possible. The ar-
gument strip determines whether the list structure in a row or column or cell will be discarded
if possible. If drop=FALSE (the default), the return value is always a hyperframe or data frame. If
drop=TRUE, and if the selected subset has only one row, or only one column, or both, then

• if strip=FALSE, the result is a list, with one entry for each array cell that was selected.

• if strip=TRUE,

– if the subset has one row containing several columns, the result is a list or (if possible) an
atomic vector;

– if the subset has one column containing several rows, the result is a list or (if possible) an
atomic vector;

– if the subset has exactly one row and exactly one column, the result is the object (or
atomic value) contained in this row and column.

The function [<-.hyperframe is a method for the subset replacement operator [<- for the class
"hyperframe". It replaces the designated subset with the hyperframe value. The subset of x to
be replaced is designated by the arguments i and j as above. The replacement value should be a
hyperframe with the appropriate dimensions, or (if the specified subset is a single column) a list of
the appropriate length.

The function $.hyperframe is a method for $ for hyperframes. It extracts the relevant column of the
hyperframe. The result is always a list (i.e. equivalent to using [.hyperframe with strip=FALSE).

The function $<-.hyperframe is a method for $<- for hyperframes. It replaces the relevant column
of the hyperframe. The replacement value should be a list of the appropriate length.

Value

A hyperframe (of class "hyperframe").

496 Extract.im

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

hyperframe

Examples

h <- hyperframe(X=list(square(1), square(2)), Y=list(sin, cos))
h
h[1,]
h[1, ,drop=TRUE]
h[, 1]
h[, 1, drop=TRUE]
h[1,1]
h[1,1,drop=TRUE]
h[1,1,drop=TRUE,strip=FALSE]
h[1,1] <- list(square(3))
extract column
h$X
replace existing column
h$Y <- list(cells, cells)
add new column
h$Z <- list(cells, cells)

Extract.im Extract Subset of Image

Description

Extract a subset or subregion of a pixel image.

Usage

S3 method for class 'im'
x[i, j, ..., drop=TRUE, tight=FALSE,

raster=NULL, rescue=is.owin(i)]

Arguments

x A two-dimensional pixel image. An object of class "im".

i Object defining the subregion or subset to be extracted. Either a spatial window
(an object of class "owin"), or a pixel image with logical values, or a linear
network (object of class "linnet") or a point pattern (an object of class "ppp"),
or any type of index that applies to a matrix, or something that can be converted
to a point pattern by as.ppp (using the window of x).

Extract.im 497

j An integer or logical vector serving as the column index if matrix indexing is
being used. Ignored if i is a spatial object.

... Ignored.

drop Logical value. Locations in w that lie outside the spatial domain of the image x
return a pixel value of NA if drop=FALSE, and are omitted if drop=TRUE.

tight Logical value. If tight=TRUE, and if the result of the subset operation is an
image, the image will be trimmed to the smallest possible rectangle.

raster Optional. An object of class "owin" or "im" determining a pixel grid.

rescue Logical value indicating whether rectangular blocks of data should always be
returned as pixel images.

Details

This function extracts a subset of the pixel values in a pixel image. (To reassign the pixel values,
see [<-.im).

The image x must be an object of class "im" representing a pixel image defined inside a rectangle
in two-dimensional space (see im.object).

The subset to be extracted is determined by the arguments i,j according to the following rules
(which are checked in this order):

1. i is a spatial object such as a window, a pixel image with logical values, a linear network, or
a point pattern; or

2. i,j are indices for the matrix as.matrix(x); or

3. i can be converted to a point pattern by as.ppp(i,W=Window(x)), and i is not a matrix.

If i is a spatial window (an object of class "owin"), the values of the image inside this window are
extracted (after first clipping the window to the spatial domain of the image if necessary).

If i is a linear network (object of class "linnet"), the values of the image on this network are
extracted.

If i is a pixel image with logical values, it is interpreted as a spatial window (with TRUE values
inside the window and FALSE outside).

If i is a point pattern (an object of class "ppp"), then the values of the pixel image at the points of
this pattern are extracted. This is a simple way to read the pixel values at a given spatial location.

At locations outside the spatial domain of the image, the pixel value is undefined, and is taken to be
NA. The logical argument drop determines whether such NA values will be returned or omitted. It
also influences the format of the return value.

If i is a point pattern (or something that can be converted to a point pattern), then X[i,drop=FALSE]
is a numeric vector containing the pixel values at each of the points of the pattern. Its length is equal
to the number of points in the pattern i. It may contain NAs corresponding to points which lie outside
the spatial domain of the image x. By contrast, X[i] or X[i,drop=TRUE] contains only those pixel
values which are not NA. It may be shorter.

If i is a spatial window then X[i,drop=FALSE] is another pixel image of the same dimensions as X
obtained by setting all pixels outside the window i to have value NA. When the result is displayed
by plot.im the effect is that the pixel image x is clipped to the window i.

498 Extract.im

If i is a linear network (object of class "linnet") then X[i,drop=FALSE] is another pixel image of
the same dimensions as X obtained by restricting the pixel image X to the linear network. The result
also belongs to the class "linim" (pixel image on a linear network).

If i is a spatial window then X[i,drop=TRUE] is either:

• a numeric vector containing the pixel values for all pixels that lie inside the window i. This
happens if i is not a rectangle (i.e. i$type != "rectangle") or if rescue=FALSE.

• a pixel image. This happens only if i is a rectangle (i$type = "rectangle") and rescue=TRUE
(the default).

If the optional argument raster is given, then it should be a binary image mask or a pixel image.
Then x will first be converted to an image defined on the pixel grid implied by raster, before the
subset operation is carried out. In particular, x[i,raster=i,drop=FALSE] will return an image
defined on the same pixel array as the object i.

If i does not satisfy any of the conditions above, then the algorithm attempts to interpret i and j as
indices for the matrix as.matrix(x). Either i or j may be missing or blank. The result is usually
a vector or matrix of pixel values. Exceptionally the result is a pixel image if i,j determines a
rectangular subset of the pixel grid, and if the user specifies rescue=TRUE.

Finally, if none of the above conditions is met, the object i may also be a data frame or list of
x,y coordinates which will be converted to a point pattern, taking the observation window to be
Window(x). Then the pixel values at these points will be extracted as a vector.

Value

Either a pixel image or a vector of pixel values. See Details.

Warnings

If you have a 2-column matrix containing the x, y coordinates of point locations, then to prevent
this being interpreted as an array index, you should convert it to a data.frame or to a point pattern.

If W is a window or a pixel image, then x[W,drop=FALSE] will return an image defined on the same
pixel array as the original image x. If you want to obtain an image whose pixel dimensions agree
with those of W, use the raster argument, x[W,raster=W,drop=FALSE].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

im.object, [<-.im, ppp.object, as.ppp, owin.object, plot.im

Examples

make up an image
X <- setcov(unit.square())
plot(X)

Extract.influence.ppm 499

a rectangular subset
W <- owin(c(0,0.5),c(0.2,0.8))
Y <- X[W]
plot(Y)

a polygonal subset
R <- affine(letterR, diag(c(1,1)/2), c(-2,-0.7))
plot(X[R, drop=FALSE])
plot(X[R, drop=FALSE, tight=TRUE])

a point pattern
P <- rpoispp(20)
Y <- X[P]

look up a specified location
X[list(x=0.1,y=0.2)]

10 x 10 pixel array
X <- as.im(function(x,y) { x + y }, owin(c(-1,1),c(-1,1)), dimyx=10)
100 x 100
W <- as.mask(disc(1, c(0,0)), dimyx=100)
10 x 10 raster
X[W,drop=FALSE]
100 x 100 raster
X[W, raster=W, drop=FALSE]

Extract.influence.ppm Extract Subset of Influence Object

Description

Extract a subset of an influence object, or extract the influence values at specified locations.

Usage

S3 method for class 'influence.ppm'
x[i, ...]

Arguments

x A influence object (of class "influence.ppm") computed by influence.ppm.

i Subset index (passed to [.ppp). Either a spatial window (object of class "owin")
or an integer index.

... Ignored.

500 Extract.layered

Details

An object of class "influence.ppm" contains the values of the likelihood influence for a point
process model, computed by influence.ppm. This is effectively a marked point pattern obtained
by marking each of the original data points with its likelihood influence.

This function extracts a designated subset of the influence values, either as another influence object,
or as a vector of numeric values.

The function [.influence.ppm is a method for [for the class "influence.ppm". The argument i
should be an index applicable to a point pattern. It may be either a spatial window (object of class
"owin") or a sequence index. The result will be another influence object (of class influence.ppm).

To extract the influence values as a numeric vector, use marks(as.ppp(x)).

Value

Another object of class "influence.ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

influence.ppm.

Examples

fit <- ppm(cells, ~x)
infl <- influence(fit)
b <- owin(c(0.1, 0.3), c(0.2, 0.4))
infl[b]
infl[1:5]
marks(as.ppp(infl))[1:3]

Extract.layered Extract or Replace Subset of a Layered Object

Description

Extract or replace some or all of the layers of a layered object, or extract a spatial subset of each
layer.

Extract.layered 501

Usage

S3 method for class 'layered'
x[i, j, drop=FALSE, ...]

S3 replacement method for class 'layered'
x[i] <- value

S3 replacement method for class 'layered'
x[[i]] <- value

Arguments

x A layered object (class "layered").

i Subset index for the list of layers. A logical vector, integer vector or character
vector specifying which layers are to be extracted or replaced.

j Subset index to be applied to the data in each layer. Typically a spatial window
(class "owin").

drop Logical. If i specifies only a single layer and drop=TRUE, then the contents of
this layer will be returned.

... Additional arguments, passed to other subset methods if the subset index is a
window.

value List of objects which shall replace the designated subset, or an object which
shall replace the designated element.

Details

A layered object represents data that should be plotted in successive layers, for example, a back-
ground and a foreground. See layered.

The function [.layered extracts a designated subset of a layered object. It is a method for [for
the class "layered".

The functions [<-.layered and [[<-.layered replace a designated subset or designated entry of
the object by new values. They are methods for [<- and [[<- for the "layered" class.

The index i specifies which layers will be retained. It should be a valid subset index for the list of
layers.

The index j will be applied to each layer. It is typically a spatial window (class "owin") so that
each of the layers will be restricted to the same spatial region. Alternatively j may be any subset
index which is permissible for the "[" method for each of the layers.

Value

Usually an object of class "layered".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

502 Extract.leverage.ppm

See Also

layered

Examples

D <- distmap(cells)
L <- layered(D, cells,

plotargs=list(list(ribbon=FALSE), list(pch=16)))

L[-2]
L[, square(0.5)]

L[[3]] <- japanesepines
L

Extract.leverage.ppm Extract Subset of Leverage Object

Description

Extract a subset of a leverage map, or extract the leverage values at specified locations.

Usage

S3 method for class 'leverage.ppm'
x[i, ..., update=TRUE]

Arguments

x A leverage object (of class "leverage.ppm") computed by leverage.ppm.

i Subset index (passed to [.im). Either a spatial window (object of class "owin")
or a spatial point pattern (object of class "ppp").

... Further arguments passed to [.im, especially the argument drop.

update Logical value indicating whether to update the internally-stored value of the
mean leverage, by averaging over the specified subset.

Details

An object of class "leverage.ppm" contains the values of the leverage function for a point process
model, computed by leverage.ppm.

This function extracts a designated subset of the leverage values, either as another leverage object,
or as a vector of numeric values.

The function [.leverage.ppm is a method for [for the class "leverage.ppm". The argument i
should be either

• a spatial window (object of class "owin") determining a region where the leverage map is
required. The result will typically be another leverage map (object of class leverage.ppm).

Extract.linim 503

• a spatial point pattern (object of class "ppp") specifying locations at which the leverage values
are required. The result will be a numeric vector.

The subset operator for images, [.im, is applied to the leverage map. If this yields a pixel image,
then the result of [.leverage.ppm is another leverage object. Otherwise, a vector containing the
numeric values of leverage is returned.

Value

Another object of class "leverage.ppm", or a vector of numeric values of leverage.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

leverage.ppm.

Examples

fit <- ppm(cells ~x)
lev <- leverage(fit)
b <- owin(c(0.1, 0.3), c(0.2, 0.4))
lev[b]
lev[cells]

Extract.linim Extract Subset of Pixel Image on Linear Network

Description

Extract a subset of a pixel image on a linear network.

Usage

S3 method for class 'linim'
x[i, ..., drop=TRUE]

Arguments

x A pixel image on a linear network (object of class "linim").
i Spatial window defining the subregion. Either a spatial window (an object of

class "owin"), or a logical-valued pixel image, or any type of index that applies
to a matrix, or a point pattern (an object of class "lpp" or "ppp"), or something
that can be converted to a point pattern by as.lpp (using the network on which
x is defined).

... Additional arguments passed to [.im.
drop Logical value indicating whether NA values should be omitted from the result.

504 Extract.linnet

Details

This function is a method for the subset operator "[" for pixel images on linear networks (objects
of class "linim").

The pixel image x will be restricted to the domain specified by i.

Pixels outside the domain of x are assigned the value NA; if drop=TRUE (the default) such NA values
are deleted from the result; if drop=FALSE, then NA values are retained.

If i is a window (or a logical-valued pixel image) then x[i] is another pixel image of class "linim",
representing the restriction of x to the spatial domain specified by i.

If i is a point pattern, then x[i] is the vector of pixel values of x at the locations specified by i.

Value

Another pixel image on a linear network (object of class "linim") or a vector of pixel values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Examples

M <- as.mask.psp(as.psp(simplenet))
Z <- as.im(function(x,y){x}, W=M)
Y <- linim(simplenet, Z)
X <- runiflpp(4, simplenet)
Y[X]
Y[square(c(0.3, 0.6))]

Extract.linnet Extract Subset of Linear Network

Description

Extract a subset of a linear network.

Usage

S3 method for class 'linnet'
x[i, ..., snip=TRUE]

Arguments

x A linear network (object of class "linnet").

i Spatial window defining the subregion. An object of class "owin".

snip Logical. If TRUE (the default), segments of x which cross the boundary of i will
be cut by the boundary. If FALSE, these segments will be deleted.

... Ignored.

Extract.listof 505

Details

This function computes the intersection between the linear network x and the domain specified by
i.

This function is a method for the subset operator "[" for linear networks (objects of class "linnet").
It is provided mainly for completeness.

The index i should be a window.

The argument snip specifies what to do with segments of x which cross the boundary of i. If
snip=FALSE, such segments are simply deleted. If snip=TRUE (the default), such segments are cut
into pieces by the boundary of i, and those pieces which lie inside the window i are included in the
resulting network.

Value

Another linear network (object of class "linnet").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>,
Ege Rubak <rubak@math.aau.dk> and Suman Rakshit.

Examples

p <- par(mfrow=c(1,2), mar=0.2+c(0,0,1,0))
B <- owin(c(0.1,0.7),c(0.19,0.6))

plot(simplenet, main="x[w, snip=TRUE]")
plot(simplenet[B], add=TRUE, col="green", lwd=3)
plot(B, add=TRUE, border="red", lty=3)

plot(simplenet, main="x[w, snip=FALSE]")
plot(simplenet[B, snip=FALSE], add=TRUE, col="green", lwd=3)
plot(B, add=TRUE, border="red", lty=3)

par(p)

Extract.listof Extract or Replace Subset of a List of Things

Description

Replace a subset of a list of things.

Usage

S3 replacement method for class 'listof'
x[i] <- value

506 Extract.lpp

Arguments

x An object of class "listof" representing a list of things which all belong to one
class.

i Subset index. Any valid subset index in the usual R sense.

value Replacement value for the subset.

Details

This is a subset replacement method for the class "listof".

The argument x should be an object of class "listof" representing a list of things that all belong
to one class.

The method replaces a designated subset of x, and returns an object of class "listof".

Value

Another object of class "listof".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

plot.listof, summary.listof

Examples

x <- list(A=runif(10), B=runif(10), C=runif(10))
class(x) <- c("listof", class(x))
x[1] <- list(A=rnorm(10))

Extract.lpp Extract Subset of Point Pattern on Linear Network

Description

Extract a subset of a point pattern on a linear network.

Usage

S3 method for class 'lpp'
x[i, j, drop=FALSE, ..., snip=TRUE]

Extract.lpp 507

Arguments

x A point pattern on a linear network (object of class "lpp").

i Subset index. A valid subset index in the usual R sense, indicating which points
should be retained.

j Spatial window (object of class "owin") delineating the region that should be
retained.

drop Logical value indicating whether to remove unused levels of the marks, if the
marks are a factor.

snip Logical. If TRUE (the default), segments of the network which cross the boundary
of the window j will be cut by the boundary. If FALSE, these segments will be
deleted.

... Ignored.

Details

This function extracts a designated subset of a point pattern on a linear network.

The function [.lpp is a method for [for the class "lpp". It extracts a designated subset of a point
pattern. The argument i should be a subset index in the usual R sense: either a numeric vector
of positive indices (identifying the points to be retained), a numeric vector of negative indices
(identifying the points to be deleted) or a logical vector of length equal to the number of points in
the point pattern x. In the latter case, the points (x$x[i],x$y[i]) for which subset[i]=TRUE will
be retained, and the others will be deleted.

The argument j, if present, should be a spatial window. The pattern inside the region will be
retained. Line segments that cross the boundary of the window are deleted in the current implemen-
tation.

The argument drop determines whether to remove unused levels of a factor, if the point pattern is
multitype (i.e. the marks are a factor) or if the marks are a data frame or hyperframe in which some
of the columns are factors.

The argument snip specifies what to do with segments of the network which cross the boundary of
the window j. If snip=FALSE, such segments are simply deleted. If snip=TRUE (the default), such
segments are cut into pieces by the boundary of j, and those pieces which lie inside the window ji
are included in the resulting network.

Use unmark to remove all the marks in a marked point pattern, and subset.lpp to remove only
some columns of marks.

Value

A point pattern on a linear network (of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

lpp, subset.lpp

508 Extract.msr

Examples

Chicago crimes data - remove cases of assault
chicago[marks(chicago) != "assault"]
equivalent to subset(chicago, select=-assault)

spatial window subset
B <- owin(c(350, 700), c(600, 1000))
plot(chicago)
plot(B, add=TRUE, lty=2, border="red", lwd=3)
op <- par(mfrow=c(1,2), mar=0.6+c(0,0,1,0))
plot(B, main="chicago[B, snip=FALSE]", lty=3, border="red")
plot(chicago[, B, snip=FALSE], add=TRUE)
plot(B, main="chicago[B, snip=TRUE]", lty=3, border="red")
plot(chicago[, B, snip=TRUE], add=TRUE)
par(op)

Extract.msr Extract Subset of Signed or Vector Measure

Description

Extract a subset of a signed measure or vector-valued measure.

Usage

S3 method for class 'msr'
x[i, j, ...]

Arguments

x A signed or vector measure. An object of class "msr" (see msr).

i Object defining the subregion or subset to be extracted. Either a spatial window
(an object of class "owin"), or a pixel image with logical values, or any type of
index that applies to a matrix.

j Subset index selecting the vector coordinates to be extracted, if x is a vector-
valued measure.

... Ignored.

Details

This operator extracts a subset of the data which determines the signed measure or vector-valued
measure x. The result is another measure.

Value

An object of class "msr".

Extract.owin 509

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

msr

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
rp <- residuals(fit, type="pearson")
rs <- residuals(fit, type="score")

rp[square(0.5)]
rs[, 2:3]

Extract.owin Extract Subset of Window

Description

Extract a subset of a window.

Usage

S3 method for class 'owin'
x[i, ...]

Arguments

x A spatial window (object of class "owin").

i Object defining the subregion. Either a spatial window, or a pixel image with
logical values.

... Ignored.

Details

This function computes the intersection between the window x and the domain specified by i, using
intersect.owin.

This function is a method for the subset operator "[" for spatial windows (objects of class "owin").
It is provided mainly for completeness.

The index i may be either a window, or a pixel image with logical values (the TRUE values of the
image specify the spatial domain).

510 Extract.ppp

Value

Another spatial window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

intersect.owin

Examples

W <- owin(c(2.5, 3.2), c(1.4, 2.9))
plot(letterR)
plot(letterR[W], add=TRUE, col="red")

Extract.ppp Extract or Replace Subset of Point Pattern

Description

Extract or replace a subset of a point pattern. Extraction of a subset has the effect of thinning the
points and/or trimming the window.

Usage

S3 method for class 'ppp'
x[i, j, drop=FALSE, ..., clip=FALSE]
S3 replacement method for class 'ppp'

x[i, j] <- value

Arguments

x A two-dimensional point pattern. An object of class "ppp".
i Subset index. Either a valid subset index in the usual R sense, indicating which

points should be retained, or a window (an object of class "owin") delineating a
subset of the original observation window, or a pixel image with logical values
defining a subset of the original observation window.

value Replacement value for the subset. A point pattern.
j Redundant. Included for backward compatibility.
drop Logical value indicating whether to remove unused levels of the marks, if the

marks are a factor.
clip Logical value indicating how to form the window of the resulting point pattern,

when i is a window. If clip=FALSE (the default), the result has window equal to
i. If clip=TRUE, the resulting window is the intersection between the window
of x and the window i.

... Ignored. This argument is required for compatibility with the generic function.

Extract.ppp 511

Details

These functions extract a designated subset of a point pattern, or replace the designated subset with
another point pattern.

The function [.ppp is a method for [for the class "ppp". It extracts a designated subset of a
point pattern, either by “thinning” (retaining/deleting some points of a point pattern) or “trimming”
(reducing the window of observation to a smaller subregion and retaining only those points which
lie in the subregion) or both.

The pattern will be “thinned” if i is a subset index in the usual R sense: either a numeric vector
of positive indices (identifying the points to be retained), a numeric vector of negative indices
(identifying the points to be deleted) or a logical vector of length equal to the number of points in
the point pattern x. In the latter case, the points (x$x[i],x$y[i]) for which subset[i]=TRUE will
be retained, and the others will be deleted.

The pattern will be “trimmed” if i is an object of class "owin" specifying a window of observation.
The points of x lying inside the new window i will be retained. Alternatively i may be a pixel
image (object of class "im") with logical values; the pixels with the value TRUE will be interpreted
as a window.

The argument drop determines whether to remove unused levels of a factor, if the point pattern is
multitype (i.e. the marks are a factor) or if the marks are a data frame in which some of the columns
are factors.

The function [<-.ppp is a method for [<- for the class "ppp". It replaces the designated subset
with the point pattern value. The subset of x to be replaced is designated by the argument i as
above.

The replacement point pattern value must lie inside the window of the original pattern x. The
ordering of points in x will be preserved if the replacement pattern value has the same number of
points as the subset to be replaced. Otherwise the ordering is unpredictable.

If the original pattern x has marks, then the replacement pattern value must also have marks, of the
same type.

Use the function unmark to remove marks from a marked point pattern.

Use the function split.ppp to select those points in a marked point pattern which have a specified
mark.

Value

A point pattern (of class "ppp").

Warnings

The function does not check whether i is a subset of Window(x). Nor does it check whether value
lies inside Window(x).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

512 Extract.ppp

See Also

subset.ppp.

ppp.object, owin.object, unmark, split.ppp, cut.ppp

Examples

Longleaf pines data
lon <- longleaf
Not run:
plot(lon)

End(Not run)

adult trees defined to have diameter at least 30 cm
longadult <- subset(lon, marks >= 30)
Not run:
plot(longadult)

End(Not run)
note that the marks are still retained.
Use unmark(longadult) to remove the marks

New Zealand trees data
Not run:
plot(nztrees) # plot shows a line of trees at the far right
abline(v=148, lty=2) # cut along this line

End(Not run)
nzw <- owin(c(0,148),c(0,95)) # the subwindow
trim dataset to this subwindow
nzsub <- nztrees[nzw]
Not run:
plot(nzsub)

End(Not run)

Redwood data
Not run:
plot(redwood)

End(Not run)
Random thinning: delete 60% of data
retain <- (runif(npoints(redwood)) < 0.4)
thinred <- redwood[retain]
Not run:
plot(thinred)

End(Not run)

Scramble 60% of data
X <- redwood

Extract.ppx 513

modif <- (runif(npoints(X)) < 0.6)
X[modif] <- runifpoint(ex=X[modif])

Lansing woods data - multitype points
lan <- lansing

Hickory trees
hicks <- split(lansing)$hickory

Trees in subwindow
win <- owin(c(0.3, 0.6),c(0.2, 0.5))
lsub <- lan[win]

Scramble the locations of trees in subwindow, retaining their marks
lan[win] <- runifpoint(ex=lsub) %mark% marks(lsub)

Extract oaks only
oaknames <- c("redoak", "whiteoak", "blackoak")
oak <- lan[marks(lan) %in% oaknames, drop=TRUE]
oak <- subset(lan, marks %in% oaknames, drop=TRUE)

To clip or not to clip
X <- runifpoint(25, letterR)
B <- owin(c(2.2, 3.9), c(2, 3.5))
opa <- par(mfrow=c(1,2))
plot(X, main="X[B]")
plot(X[B], border="red", cols="red", add=TRUE, show.all=TRUE, main="")
plot(X, main="X[B, clip=TRUE]")
plot(B, add=TRUE, lty=2)
plot(X[B, clip=TRUE], border="blue", cols="blue", add=TRUE,

show.all=TRUE, main="")
par(opa)

Extract.ppx Extract Subset of Multidimensional Point Pattern

Description

Extract a subset of a multidimensional point pattern.

Usage

S3 method for class 'ppx'
x[i, drop=FALSE, ...]

Arguments

x A multidimensional point pattern (object of class "ppx").

514 Extract.ppx

i Subset index. A valid subset index in the usual R sense, indicating which points
should be retained; or a spatial domain of class "boxx" or "box3".

drop Logical value indicating whether to remove unused levels of the marks, if the
marks are a factor.

... Ignored.

Details

This function extracts a designated subset of a multidimensional point pattern.

The function [.ppx is a method for [for the class "ppx". It extracts a designated subset of a point
pattern. The argument i may be either

• a subset index in the usual R sense: either a numeric vector of positive indices (identifying
the points to be retained), a numeric vector of negative indices (identifying the points to be
deleted) or a logical vector of length equal to the number of points in the point pattern x. In
the latter case, the points (x$x[i],x$y[i]) for which subset[i]=TRUE will be retained, and
the others will be deleted.

• a spatial domain of class "boxx" or "box3". Points falling inside this region will be retained.

The argument drop determines whether to remove unused levels of a factor, if the point pattern is
multitype (i.e. the marks are a factor) or if the marks are a data frame or hyperframe in which some
of the columns are factors.

Use the function unmark to remove marks from a marked point pattern.

Value

A multidimensional point pattern (of class "ppx").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

ppx

Examples

df <- data.frame(x=runif(4),y=runif(4),z=runif(4))
X <- ppx(data=df, coord.type=c("s","s","t"))
X[-2]

Extract.psp 515

Extract.psp Extract Subset of Line Segment Pattern

Description

Extract a subset of a line segment pattern.

Usage

S3 method for class 'psp'
x[i, j, drop, ..., fragments=TRUE]

Arguments

x A two-dimensional line segment pattern. An object of class "psp".

i Subset index. Either a valid subset index in the usual R sense, indicating which
segments should be retained, or a window (an object of class "owin") delineat-
ing a subset of the original observation window.

j Redundant - included for backward compatibility.

drop Ignored. Required for compatibility with generic function.

... Ignored.

fragments Logical value indicating whether to retain all pieces of line segments that inter-
sect the new window (fragments=TRUE, the default) or to retain only those line
segments that lie entirely inside the new window (fragments=FALSE).

Details

These functions extract a designated subset of a line segment pattern.

The function [.psp is a method for [for the class "psp". It extracts a designated subset of a
line segment pattern, either by “thinning” (retaining/deleting some line segments of a line segment
pattern) or “trimming” (reducing the window of observation to a smaller subregion and clipping the
line segments to this boundary) or both.

The pattern will be “thinned” if subset is specified. The line segments designated by subset will
be retained. Here subset can be a numeric vector of positive indices (identifying the line segments
to be retained), a numeric vector of negative indices (identifying the line segments to be deleted)
or a logical vector of length equal to the number of line segments in the line segment pattern x. In
the latter case, the line segments for which subset[i]=TRUE will be retained, and the others will be
deleted.

The pattern will be “trimmed” if window is specified. This should be an object of class owin speci-
fying a window of observation to which the line segment pattern x will be trimmed. Line segments
of x lying inside the new window will be retained unchanged. Line segments lying partially inside
the new window and partially outside it will, by default, be clipped so that they lie entirely inside
the window; but if fragments=FALSE, such segments will be removed.

Both “thinning” and “trimming” can be performed together.

516 Extract.quad

Value

A line segment pattern (of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp.object, owin.object

Examples

a <- psp(runif(20),runif(20),runif(20),runif(20), window=owin())
plot(a)

thinning
id <- sample(c(TRUE, FALSE), 20, replace=TRUE)
b <- a[id]
plot(b, add=TRUE, lwd=3)

trimming
plot(a)
w <- owin(c(0.1,0.7), c(0.2, 0.8))
b <- a[w]
plot(b, add=TRUE, col="red", lwd=2)
plot(w, add=TRUE)
u <- a[w, fragments=FALSE]
plot(u, add=TRUE, col="blue", lwd=3)

Extract.quad Subset of Quadrature Scheme

Description

Extract a subset of a quadrature scheme.

Usage

S3 method for class 'quad'
x[...]

Arguments

x A quadrature scheme (object of class "quad").

... Arguments passed to [.ppp to determine the subset.

Extract.solist 517

Details

This function extracts a designated subset of a quadrature scheme.

The function [.quad is a method for [for the class "quad". It extracts a designated subset of a
quadrature scheme.

The subset to be extracted is determined by the arguments ... which are interpreted by [.ppp. Thus
it is possible to take the subset consisting of all quadrature points that lie inside a given region, or a
subset of quadrature points identified by numeric indices.

Value

A quadrature scheme (object of class "quad").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, [.ppp.

Examples

Q <- quadscheme(nztrees)
W <- owin(c(0,148),c(0,95)) # a subwindow
Q[W]

Extract.solist Extract or Replace Subset of a List of Spatial Objects

Description

Extract or replace some entries in a list of spatial objects, or extract a designated sub-region in each
object.

Usage

S3 method for class 'solist'
x[i, ...]

S3 replacement method for class 'solist'
x[i] <- value

518 Extract.solist

Arguments

x An object of class "solist" representing a list of two-dimensional spatial ob-
jects.

i Subset index. Any valid subset index for vectors in the usual R sense, or a
window (object of class "owin").

value Replacement value for the subset.

... Ignored.

Details

These are methods for extracting and replacing subsets for the class "solist".

The argument x should be an object of class "solist" representing a list of two-dimensional spatial
objects. See solist.

For the subset method, the subset index i can be either a vector index (specifying some elements of
the list) or a spatial window (specifying a spatial sub-region).

For the replacement method, i must be a vector index: the designated elements will be replaced.

Value

Another object of the same class as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

solist, plot.solist, summary.solist

Examples

x <- solist(japanesepines, cells, redwood)
x[2:3]
x[square(0.5)]
x[1] <- list(finpines)

Extract.splitppp 519

Extract.splitppp Extract or Replace Sub-Patterns

Description

Extract or replace some of the sub-patterns in a split point pattern.

Usage

S3 method for class 'splitppp'
x[...]
S3 replacement method for class 'splitppp'

x[...] <- value

Arguments

x An object of class "splitppp", representing a point pattern separated into a list
of sub-patterns.

... Subset index. Any valid subset index in the usual R sense.

value Replacement value for the subset. A list of point patterns.

Details

These are subset methods for the class "splitppp".

The argument x should be an object of class "splitppp", representing a point pattern that has been
separated into a list of sub-patterns. It is created by split.ppp.

The methods extract or replace a designated subset of the list x, and return an object of class
"splitppp".

Value

Another object of class "splitppp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

split.ppp, plot.splitppp, summary.splitppp

520 Extract.tess

Examples

data(amacrine) # multitype point pattern
y <- split(amacrine)
y[1]
y["off"]
y[1] <- list(runifpoint(42, Window(amacrine)))

Extract.tess Extract or Replace Subset of Tessellation

Description

Extract, change or delete a subset of the tiles of a tessellation, to make a new tessellation.

Usage

S3 method for class 'tess'
x[i, ...]
S3 replacement method for class 'tess'

x[i, ...] <- value

Arguments

x A tessellation (object of class "tess").

i Subset index for the tiles of the tessellation. Alternatively a window (object of
class "owin").

... One argument that specifies the subset to be extracted or changed. Any valid
format for the subset index in a list.

value Replacement value for the selected tiles of the tessellation. A list of windows
(objects of class "owin") or NULL.

Details

A tessellation (object of class "tess", see tess) is effectively a list of tiles (spatial regions) that
cover a spatial region. The subset operator [.tess extracts some of these tiles and forms a new
tessellation, which of course covers a smaller region than the original.

For [.tess only, the subset index can also be a window (object of class "owin"). The tessellation
x is then intersected with the window.

The replacement operator changes the selected tiles. The replacement value may be either NULL
(which causes the selected tiles to be removed from x) or a list of the same length as the selected
subset. The entries of value may be windows (objects of class "owin") or NULL to indicate that the
corresponding tile should be deleted.

Generally it does not make sense to replace a tile in a tessellation with a completely different tile,
because the tiles are expected to fit together. However this facility is sometimes useful for making
small adjustments to polygonal tiles.

extrapolate.psp 521

Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

tess, tiles, intersect.tess.

Examples

A <- tess(xgrid=0:4, ygrid=0:3)
B <- A[c(1, 3, 7)]
E <- A[-1]
A[c(2, 5, 11)] <- NULL

extrapolate.psp Extrapolate Line Segments to Obtain Infinite Lines

Description

Given a spatial pattern of line segments, extrapolate the segments to infinite lines.

Usage

extrapolate.psp(x, ...)

Arguments

x Spatial pattern of line segments (object of class "psp").

... Ignored.

Details

Each line segment in the pattern x is extrapolated to an infinite line, drawn through its two endpoints.
The resulting pattern of infinite lines is returned as an object of class "infline".

If a segment’s endpoints are identical (so that it has zero length) the resulting infinite line is vertical
(i.e. parallel to the y coordinate axis).

Value

An object of class "infline" representing the pattern of infinite lines. See infline for details of
structure.

522 F3est

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp, infline

midpoints.psp, lengths_psp angles.psp, endpoints.psp.

Examples

X <- psp(runif(4), runif(4), runif(4), runif(4), window=owin())
Y <- extrapolate.psp(X)
plot(X, col=3, lwd=4)
plot(Y, lty=3)
Y

F3est Empty Space Function of a Three-Dimensional Point Pattern

Description

Estimates the empty space function F3(r) from a three-dimensional point pattern.

Usage

F3est(X, ..., rmax = NULL, nrval = 128, vside = NULL,
correction = c("rs", "km", "cs"),
sphere = c("fudge", "ideal", "digital"))

Arguments

X Three-dimensional point pattern (object of class "pp3").

... Ignored.

rmax Optional. Maximum value of argument r for which F3(r) will be estimated.

nrval Optional. Number of values of r for which F3(r) will be estimated. A large
value of nrval is required to avoid discretisation effects.

vside Optional. Side length of the voxels in the discrete approximation.

correction Optional. Character vector specifying the edge correction(s) to be applied. See
Details.

sphere Optional. Character string specifying how to calculate the theoretical value of
F3(r) for a Poisson process. See Details.

F3est 523

Details

For a stationary point process Φ in three-dimensional space, the empty space function is

F3(r) = P (d(0,Φ) ≤ r)

where d(0,Φ) denotes the distance from a fixed origin 0 to the nearest point of Φ.

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point
process Φ. The empty space function of Φ can then be estimated using techniques described in the
References.

The box containing the point pattern is discretised into cubic voxels of side length vside. The
distance function d(u,Φ) is computed for every voxel centre point u using a three-dimensional ver-
sion of the distance transform algorithm (Borgefors, 1986). The empirical cumulative distribution
function of these values, with appropriate edge corrections, is the estimate of F3(r).

The available edge corrections are:

"rs": the reduced sample (aka minus sampling, border correction) estimator (Baddeley et al, 1993)

"km": the three-dimensional version of the Kaplan-Meier estimator (Baddeley and Gill, 1997)

"cs": the three-dimensional generalisation of the Chiu-Stoyan or Hanisch estimator (Chiu and
Stoyan, 1998).

Alternatively correction="all" selects all options.

The result includes a column theo giving the theoretical value of F3(r) for a uniform Poisson
process (Complete Spatial Randomness). This value depends on the volume of the sphere of radius
r measured in the discretised distance metric. The argument sphere determines how this will be
calculated.

• If sphere="ideal" the calculation will use the volume of an ideal sphere of radius r namely
(4/3)πr3. This is not recommended because the theoretical values of F3(r) are inaccurate.

• If sphere="fudge" then the volume of the ideal sphere will be multiplied by 0.78, which
gives the approximate volume of the sphere in the discretised distance metric.

• If sphere="digital" then the volume of the sphere in the discretised distance metric is com-
puted exactly using another distance transform. This takes longer to compute, but is exact.

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Warnings

A small value of vside and a large value of nrval are required for reasonable accuracy.

The default value of vside ensures that the total number of voxels is 2^22 or about 4 million. To
change the default number of voxels, see spatstat.options("nvoxel").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rana Moyeed.

524 fardist

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. Analysis of a three-dimensional point
pattern with replication. Applied Statistics 42 (1993) 641–668.

Baddeley, A.J. and Gill, R.D. (1997) Kaplan-Meier estimators of interpoint distance distributions
for spatial point processes. Annals of Statistics 25, 263–292.

Borgefors, G. (1986) Distance transformations in digital images. Computer Vision, Graphics and
Image Processing 34, 344–371.

Chiu, S.N. and Stoyan, D. (1998) Estimators of distance distributions for spatial patterns. Statistica
Neerlandica 52, 239–246.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

G3est, K3est, pcf3est for other summary functions of a three-dimensional point pattern.

Fest to estimate the empty space function of point patterns in two dimensions.

Examples

X <- rpoispp3(42)
Z <- F3est(X)
if(interactive()) plot(Z)

fardist Farthest Distance to Boundary of Window

Description

Computes the farthest distance from each pixel, or each data point, to the boundary of the window.

Usage

fardist(X, ...)

S3 method for class 'owin'
fardist(X, ..., squared=FALSE)

S3 method for class 'ppp'
fardist(X, ..., squared=FALSE)

Arguments

X A spatial object such as a window or point pattern.

... Arguments passed to as.mask to determine the pixel resolution, if required.

squared Logical. If TRUE, the squared distances will be returned.

fasp.object 525

Details

The function fardist is generic, with methods for the classes owin and ppp.

For a window W, the command fardist(W) returns a pixel image in which the value at each pixel
is the largest distance from that pixel to the boundary of W.

For a point pattern X, with window W, the command fardist(X) returns a numeric vector with one
entry for each point of X, giving the largest distance from that data point to the boundary of W.

Value

For fardist.owin, a pixel image (object of class "im").

For fardist.ppp, a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

fardist(cells)

plot(FR <- fardist(letterR))

fasp.object Function Arrays for Spatial Patterns

Description

A class "fasp" to represent a “matrix” of functions, amenable to plotting as a matrix of plot panels.

Details

An object of this class is a convenient way of storing (and later plotting, editing, etc) a set of
functions fi,j(r) of a real argument r, defined for each possible pair (i, j) of indices 1 ≤ i, j ≤ n.
We may think of this as a matrix or array of functions fi,j .

Function arrays are particularly useful in the analysis of a multitype point pattern (a point pattern in
which the points are identified as belonging to separate types). We may want to compute a summary
function for the points of type i only, for each of the possible types i. This produces a 1×m array
of functions. Alternatively we may compute a summary function for each possible pair of types
(i, j). This produces an m×m array of functions.

For multitype point patterns the command alltypes will compute arrays of summary functions for
each possible type or for each possible pair of types. The function alltypes returns an object of
class "fasp".

An object of class "fasp" is a list containing at least the following components:

526 fasp.object

fns A list of data frames, each representing one of the functions.

which A matrix representing the spatial arrangement of the functions. If which[i,j] = k then
the function represented by fns[[k]] should be plotted in the panel at position (i, j). If
which[i,j] = NA then nothing is plotted in that position.

titles A list of character strings, providing suitable plotting titles for the functions.

default.formulae A list of default formulae for plotting each of the functions.

title A character string, giving a default title for the array when it is plotted.

Functions available

There are methods for plot, print and "[" for this class.

The plot method displays the entire array of functions. The method [.fasp selects a sub-array
using the natural indices i,j.

The command eval.fasp can be used to apply a transformation to each function in the array, and
to combine two arrays.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

alltypes, plot.fasp, [.fasp, eval.fasp

Examples

multitype point pattern
data(amacrine)
GG <- alltypes(amacrine, "G")
plot(GG)

select the row corresponding to cells of type "on"
Gon <- GG["on",]
plot(Gon)

extract the G function for i = "on", j = "off"
Gonoff <- GG["on", "off", drop=TRUE]

Fisher variance stabilising transformation
GGfish <- eval.fasp(asin(sqrt(GG)))
plot(GGfish)

Fest 527

Fest Estimate the Empty Space Function or its Hazard Rate

Description

Estimates the empty space function F (r) or its hazard rate h(r) from a point pattern in a window
of arbitrary shape.

Usage

Fest(X, ..., eps, r=NULL, breaks=NULL,
correction=c("rs", "km", "cs"),
domain=NULL)

Fhazard(X, ...)

Arguments

X The observed point pattern, from which an estimate of F (r) will be computed.
An object of class ppp, or data in any format acceptable to as.ppp().

... Extra arguments, passed from Fhazard to Fest. Extra arguments to Fest are
ignored.

eps Optional. A positive number. The resolution of the discrete approximation to
Euclidean distance (see below). There is a sensible default.

r Optional. Numeric vector. The values of the argument r at which F (r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.

correction Optional. The edge correction(s) to be used to estimate F (r). A vector of char-
acter strings selected from "none", "rs", "km", "cs" and "best". Alternatively
correction="all" selects all options.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

Details

Fest computes an estimate of the empty space function F (r), and Fhazard computes an estimate
of its hazard rate h(r).

The empty space function (also called the “spherical contact distribution” or the “point-to-nearest-
event” distribution) of a stationary point process X is the cumulative distribution function F of the
distance from a fixed point in space to the nearest point of X .

An estimate of F derived from a spatial point pattern dataset can be used in exploratory data analysis
and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1988). In exploratory
analyses, the estimate of F is a useful statistic summarising the sizes of gaps in the pattern. For

528 Fest

inferential purposes, the estimate of F is usually compared to the true value of F for a completely
random (Poisson) point process, which is

F (r) = 1− e−λπr
2

where λ is the intensity (expected number of points per unit area). Deviations between the empirical
and theoretical F curves may suggest spatial clustering or spatial regularity.

This algorithm estimates the empty space function F from the point pattern X. It assumes that X can
be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in
the plane, observed through a bounded window. The window (which is specified in X) may have
arbitrary shape.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be
supplied in any of the formats recognised by as.ppp.

The algorithm uses two discrete approximations which are controlled by the parameter eps and by
the spacing of values of r respectively. (See below for details.) First-time users are strongly advised
not to specify these arguments.

The estimation of F is hampered by edge effects arising from the unobservability of points of
the random pattern outside the window. An edge correction is needed to reduce bias (Baddeley,
1998; Ripley, 1988). The edge corrections implemented here are the border method or "reduced
sample" estimator, the spatial Kaplan-Meier estimator (Baddeley and Gill, 1997) and the Chiu-
Stoyan estimator (Chiu and Stoyan, 1998).

Our implementation makes essential use of the distance transform algorithm of image processing
(Borgefors, 1986). A fine grid of pixels is created in the observation window. The Euclidean
distance between two pixels is approximated by the length of the shortest path joining them in
the grid, where a path is a sequence of steps between adjacent pixels, and horizontal, vertical and
diagonal steps have length 1, 1 and

√
2 respectively in pixel units. If the pixel grid is sufficiently

fine then this is an accurate approximation.

The parameter eps is the pixel width of the rectangular raster used to compute the distance transform
(see below). It must not be too large: the absolute error in distance values due to discretisation is
bounded by eps.

If eps is not specified, the function checks whether the window Window(X) contains pixel raster
information. If so, then eps is set equal to the pixel width of the raster; otherwise, eps defaults to
1/100 of the width of the observation window.

The argument r is the vector of values for the distance r at which F (r) should be evaluated. It
is also used to determine the breakpoints (in the sense of hist) for the computation of histograms
of distances. The estimators are computed from histogram counts. This introduces a discretisation
error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the spacing of successive r values must be very fine (ideally not greater than eps/4).

The algorithm also returns an estimate of the hazard rate function, h(r) of F (r). The hazard rate is
defined by

h(r) = − d

dr
log(1− F (r))

The hazard rate of F has been proposed as a useful exploratory statistic (Baddeley and Gill, 1994).
The estimate of h(r) given here is a discrete approximation to the hazard rate of the Kaplan-Meier

Fest 529

estimator of F . Note that F is absolutely continuous (for any stationary point process X), so the
hazard function always exists (Baddeley and Gill, 1997).

If the argument domain is given, the estimate of F (r) will be based only on the empty space dis-
tances measured from locations inside domain (although their nearest data points may lie outside
domain). This is useful in bootstrap techniques. The argument domain should be a window (object
of class "owin") or something acceptable to as.owin. It must be a subset of the window of the
point pattern X.

The naive empirical distribution of distances from each location in the window to the nearest point
of the data pattern, is a biased estimate of F . However this is also returned by the algorithm (if
correction="none"), as it is sometimes useful in other contexts. Care should be taken not to use
the uncorrected empirical F as if it were an unbiased estimator of F .

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

The result of Fest is essentially a data frame containing up to seven columns:

r the values of the argument r at which the function F (r) has been estimated

rs the “reduced sample” or “border correction” estimator of F (r)

km the spatial Kaplan-Meier estimator of F (r)

hazard the hazard rate λ(r) of F (r) by the spatial Kaplan-Meier method

cs the Chiu-Stoyan estimator of F (r)

raw the uncorrected estimate of F (r), i.e. the empirical distribution of the distance
from a random point in the window to the nearest point of the data pattern X

theo the theoretical value of F (r) for a stationary Poisson process of the same esti-
mated intensity.

The result of Fhazard contains only three columns

r the values of the argument r at which the hazard rate h(r) has been estimated

hazard the spatial Kaplan-Meier estimate of the hazard rate h(r)

theo the theoretical value of h(r) for a stationary Poisson process of the same esti-
mated intensity.

Warnings

The reduced sample (border method) estimator of F is pointwise approximately unbiased, but need
not be a valid distribution function; it may not be a nondecreasing function of r. Its range is always
within [0, 1].

The spatial Kaplan-Meier estimator of F is always nondecreasing but its maximum value may be
less than 1.

The estimate of hazard rate h(r) returned by the algorithm is an approximately unbiased estimate
for the integral of h() over the corresponding histogram cell. It may exhibit oscillations due to
discretisation effects. We recommend modest smoothing, such as kernel smoothing with kernel
width equal to the width of a histogram cell, using Smooth.fv.

530 Fest

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37-78.

Baddeley, A.J. and Gill, R.D. The empty space hazard of a spatial pattern. Research Report 1994/3,
Department of Mathematics, University of Western Australia, May 1994.

Baddeley, A.J. and Gill, R.D. Kaplan-Meier estimators of interpoint distance distributions for spatial
point processes. Annals of Statistics 25 (1997) 263-292.

Borgefors, G. Distance transformations in digital images. Computer Vision, Graphics and Image
Processing 34 (1986) 344-371.

Chiu, S.N. and Stoyan, D. (1998) Estimators of distance distributions for spatial patterns. Statistica
Neerlandica 52, 239–246.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Gest, Jest, Kest, km.rs, reduced.sample, kaplan.meier

Examples

Fc <- Fest(cells, 0.01)

Tip: don't use F for the left hand side!
That's an abbreviation for FALSE

plot(Fc)

P-P style plot
plot(Fc, cbind(km, theo) ~ theo)

The empirical F is above the Poisson F
indicating an inhibited pattern

Not run:

Fiksel 531

plot(Fc, . ~ theo)
plot(Fc, asin(sqrt(.)) ~ asin(sqrt(theo)))

End(Not run)

Fiksel The Fiksel Interaction

Description

Creates an instance of Fiksel’s double exponential pairwise interaction point process model, which
can then be fitted to point pattern data.

Usage

Fiksel(r, hc=NA, kappa)

Arguments

r The interaction radius of the Fiksel model

hc The hard core distance

kappa The rate parameter

Details

Fiksel (1984) introduced a pairwise interaction point process with the following interaction function
c. For two points u and v separated by a distance d = ||u− v||, the interaction c(u, v) is equal to 0
if d < h, equal to 1 if d > r, and equal to

exp(a exp(−κd))

if h ≤ d ≤ r, where h, r, κ, a are parameters.

A graph of this interaction function is shown in the Examples. The interpretation of the parameters
is as follows.

• h is the hard core distance: distinct points are not permitted to come closer than a distance h
apart.

• r is the interaction range: points further than this distance do not interact.

• κ is the rate or slope parameter, controlling the decay of the interaction as distance increases.

• a is the interaction strength parameter, controlling the strength and type of interaction. If a
is zero, the process is Poisson. If a is positive, the process is clustered. If a is negative, the
process is inhibited (regular).

532 Fiksel

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the Fiksel pairwise interaction is yielded by the function Fiksel(). See
the examples below.

The parameters h, r and κ must be fixed and given in the call to Fiksel, while the canonical
parameter a is estimated by ppm().

To estimate h, r andκ it is possible to use profilepl. The maximum likelihood estimator ofh is
the minimum interpoint distance.

If the hard core distance argument hc is missing or NA, it will be estimated from the data when
ppm is called. The estimated value of hc is the minimum nearest neighbour distance multiplied by
n/(n+ 1), where n is the number of data points.

See also Stoyan, Kendall and Mecke (1987) page 161.

Value

An object of class "interact" describing the interpoint interaction structure of the Fiksel process
with interaction radius r, hard core distance hc and rate parameter kappa.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Fiksel, T. (1984) Estimation of parameterized pair potentials of marked and non-marked Gibbsian
point processes. Electronische Informationsverabeitung und Kybernetika 20, 270–278.

Stoyan, D, Kendall, W.S. and Mecke, J. (1987) Stochastic geometry and its applications. Wiley.

See Also

ppm, pairwise.family, ppm.object, StraussHard

Examples

Fiksel(r=1,hc=0.02, kappa=2)
prints a sensible description of itself

data(spruces)
X <- unmark(spruces)

fit <- ppm(X ~ 1, Fiksel(r=3.5, kappa=1))
plot(fitin(fit))

Finhom 533

Finhom Inhomogeneous Empty Space Function

Description

Estimates the inhomogeneous empty space function of a non-stationary point pattern.

Usage

Finhom(X, lambda = NULL, lmin = NULL, ...,
sigma = NULL, varcov = NULL,
r = NULL, breaks = NULL, ratio = FALSE,
update = TRUE, warn.bias=TRUE, savelambda=FALSE)

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
F function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object of
class "ppm") or a function(x,y) which can be evaluated to give the intensity
value at any location.

lmin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

... Extra arguments passed to as.mask to control the pixel resolution, or passed to
density.ppp to control the smoothing bandwidth.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

ratio Logical. If TRUE, the numerator and denominator of the estimate will also be
saved, for use in analysing replicated point patterns.

update Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without fitting it to X.

warn.bias Logical value specifying whether to issue a warning when the inhomogeneity
correction factor takes extreme values, which can often lead to biased results.
This usually occurs when insufficient smoothing is used to estimate the intensity.

savelambda Logical value specifying whether to save the values of lmin and lambda as at-
tributes of the result.

534 Finhom

Details

This command computes estimates of the inhomogeneous F -function (van Lieshout, 2010) of a
point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the empty space
function F for homogeneous point patterns computed by Fest.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous F function is computed using the border correction, equation (6) in Van
Lieshout (2010).

The argument lambda should supply the (estimated) values of the intensity function λ of the point
process. It may be either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a fitted point process model (object of class "ppm" or "kppm") whose fitted trend can be used as
the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the
trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate
lambda[i] for the point X[i] is computed by removing X[i] from the point pattern, applying kernel
smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at
the point X[i]. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov,
which are passed to density.ppp along with any extra arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Author(s)

Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

fitin.ppm 535

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. (2010) A J-function for inhomogeneous point processes. Statistica Neer-
landica 65, 183–201.

See Also

Ginhom, Jinhom, Fest

Examples

Not run:
plot(Finhom(swedishpines, sigma=bw.diggle, adjust=2))

End(Not run)
plot(Finhom(swedishpines, sigma=10))

fitin.ppm Extract the Interaction from a Fitted Point Process Model

Description

Given a point process model that has been fitted to point pattern data, this function extracts the
interpoint interaction part of the model as a separate object.

Usage

fitin(object)

S3 method for class 'ppm'
fitin(object)

S3 method for class 'profilepl'
fitin(object)

Arguments

object A fitted point process model (object of class "ppm" or "profilepl").

Details

An object of class "ppm" describes a fitted point process model. It contains information about the
original data to which the model was fitted, the spatial trend that was fitted, the interpoint interaction
that was fitted, and other data. See ppm.object) for details of this class.

The function fitin extracts from this model the information about the fitted interpoint interaction
only. The information is organised as an object of class "fii" (fitted interpoint interaction). This
object can be printed or plotted.

536 fitin.ppm

Users may find this a convenient way to plot the fitted interpoint interaction term, as shown in the
Examples.

For a pairwise interaction, the plot of the fitted interaction shows the pair interaction function (the
contribution to the probability density from a pair of points as a function of the distance between
them). For a higher-order interaction, the plot shows the strongest interaction (the value most dif-
ferent from 1) that could ever arise at the given distance.

The fitted interaction coefficients can also be extracted from this object using coef.

Value

An object of class "fii" representing the fitted interpoint interaction. This object can be printed
and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Methods for handling fitted interactions: methods.fii, reach.fii, as.interact.fii.

Background: ppm, ppm.object.

Examples

unmarked
model <- ppm(swedishpines ~1, PairPiece(seq(3,19,by=4)))
f <- fitin(model)
f
plot(f)

extract fitted interaction coefficients
coef(f)

multitype
fit the stationary multitype Strauss process to `amacrine'
r <- 0.02 * matrix(c(1,2,2,1), nrow=2,ncol=2)
model <- ppm(amacrine ~1, MultiStrauss(r))
f <- fitin(model)
f
plot(f)

fitted.lppm 537

fitted.lppm Fitted Intensity for Point Process on Linear Network

Description

Given a point process model fitted to a point pattern on a linear network, compute the fitted intensity
of the model at the points of the pattern, or at the points of the quadrature scheme used to fit the
model.

Usage

S3 method for class 'lppm'
fitted(object, ...,

dataonly = FALSE, new.coef = NULL,
leaveoneout = FALSE)

Arguments

object Fitted point process model on a linear network (object of class "lppm").

... Ignored.

dataonly Logical value indicating whether to computed fitted intensities at the points of
the original point pattern dataset (dataonly=TRUE) or at all the quadrature points
of the quadrature scheme used to fit the model (dataonly=FALSE, the default).

new.coef Numeric vector of parameter values to replace the fitted model parameters coef(object).

leaveoneout Logical. If TRUE the fitted value at each data point will be computed using a
leave-one-out method. See Details.

Details

This is a method for the generic function fitted for the class "lppm" of fitted point process models
on a linear network.

The locations u at which the fitted conditional intensity/trend is evaluated, are the points of the
quadrature scheme used to fit the model in ppm. They include the data points (the points of the
original point pattern dataset x) and other “dummy” points in the window of observation.

If leaveoneout=TRUE, fitted values will be computed for the data points only, using a ‘leave-one-
out’ rule: the fitted value at X[i] is effectively computed by deleting this point from the data and
re-fitting the model to the reduced pattern X[-i], then predicting the value at X[i]. (Instead of
literally performing this calculation, we apply a Taylor approximation using the influence function
computed in dfbetas.ppm.

Value

A vector containing the values of the fitted spatial trend.

Entries in this vector correspond to the quadrature points (data or dummy points) used to fit the
model. The quadrature points can be extracted from object by union.quad(quad.ppm(object)).

538 fitted.mppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

lppm, predict.lppm

Examples

fit <- lppm(spiders~x+y)
a <- fitted(fit)
b <- fitted(fit, dataonly=TRUE)

fitted.mppm Fitted Conditional Intensity for Multiple Point Process Model

Description

Given a point process model fitted to multiple point patterns, compute the fitted conditional intensity
of the model at the points of each data pattern, or at the points of the quadrature schemes used to fit
the model.

Usage

S3 method for class 'mppm'
fitted(object, ..., type = "lambda", dataonly = FALSE)

Arguments

object The fitted model. An object of class "mppm" obtained from mppm.

... Ignored.

type Type of fitted values: either "trend" for the spatial trend, or "lambda" or "cif"
for the conditional intensity.

dataonly If TRUE, fitted values are computed only for the points of the data point patterns.
If FALSE, fitted values are computed for the points of the quadrature schemes
used to fit the model.

fitted.mppm 539

Details

This function evaluates the conditional intensity λ̂(u, x) or spatial trend ˆb(u) of the fitted point
process model for certain locations u, for each of the original point patterns x to which the model
was fitted.

The locations u at which the fitted conditional intensity/trend is evaluated, are the points of the
quadrature schemes used to fit the model in mppm. They include the data points (the points of the
original point pattern datasets) and other “dummy” points in the window of observation.

Use predict.mppm to compute the fitted conditional intensity at other locations or with other values
of the explanatory variables.

Value

A list of vectors (one for each row of the original hyperframe, i.e. one vector for each of the original
point patterns) containing the values of the fitted conditional intensity or (if type="trend") the
fitted spatial trend.

Entries in these vector correspond to the quadrature points (data or dummy points) used to fit the
model. The quadrature points can be extracted from object by quad.mppm(object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm, predict.mppm

Examples

model <- mppm(Bugs ~ x, data=hyperframe(Bugs=waterstriders),
interaction=Strauss(7))

cifs <- fitted(model)

540 fitted.ppm

fitted.ppm Fitted Conditional Intensity for Point Process Model

Description

Given a point process model fitted to a point pattern, compute the fitted conditional intensity or
fitted trend of the model at the points of the pattern, or at the points of the quadrature scheme used
to fit the model.

Usage

S3 method for class 'ppm'
fitted(object, ..., type="lambda",

dataonly=FALSE, new.coef=NULL, leaveoneout=FALSE,
drop=FALSE, check=TRUE, repair=TRUE,
ignore.hardcore=FALSE, dropcoef=FALSE)

Arguments

object The fitted point process model (an object of class "ppm")

... Ignored.

type String (partially matched) indicating whether the fitted value is the conditional
intensity ("lambda" or "cif") or the first order trend ("trend") or the logarithm
of conditional intensity ("link").

dataonly Logical. If TRUE, then values will only be computed at the points of the data
point pattern. If FALSE, then values will be computed at all the points of the
quadrature scheme used to fit the model, including the points of the data point
pattern.

new.coef Numeric vector of parameter values to replace the fitted model parameters coef(object).

leaveoneout Logical. If TRUE the fitted value at each data point will be computed using a
leave-one-out method. See Details.

drop Logical value determining whether to delete quadrature points that were not
used to fit the model.

check Logical value indicating whether to check the internal format of object. If
there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

repair Logical value indicating whether to repair the internal format of object, if it is
found to be damaged.

ignore.hardcore

Advanced use only. Logical value specifying whether to compute only the finite
part of the interaction potential (effectively removing any hard core interaction
terms).

dropcoef Internal use only.

fitted.ppm 541

Details

The argument object must be a fitted point process model (object of class "ppm"). Such objects
are produced by the model-fitting algorithm ppm).

This function evaluates the conditional intensity λ̂(u, x) or spatial trend b̂(u) of the fitted point
process model for certain locations u, where x is the original point pattern dataset to which the
model was fitted.

The locations u at which the fitted conditional intensity/trend is evaluated, are the points of the
quadrature scheme used to fit the model in ppm. They include the data points (the points of the
original point pattern dataset x) and other “dummy” points in the window of observation.

If leaveoneout=TRUE, fitted values will be computed for the data points only, using a ‘leave-one-
out’ rule: the fitted value at X[i] is effectively computed by deleting this point from the data and
re-fitting the model to the reduced pattern X[-i], then predicting the value at X[i]. (Instead of
literally performing this calculation, we apply a Taylor approximation using the influence function
computed in dfbetas.ppm.

The argument drop is explained in quad.ppm.

Use predict.ppm to compute the fitted conditional intensity at other locations or with other values
of the explanatory variables.

Value

A vector containing the values of the fitted conditional intensity, fitted spatial trend, or logarithm of
the fitted conditional intensity.

Entries in this vector correspond to the quadrature points (data or dummy points) used to fit the
model. The quadrature points can be extracted from object by union.quad(quad.ppm(object)).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005). Residual analysis for spatial point
processes (with discussion). Journal of the Royal Statistical Society, Series B 67, 617–666.

See Also

ppm.object, ppm, predict.ppm

Examples

str <- ppm(cells ~x, Strauss(r=0.1))
lambda <- fitted(str)

extract quadrature points in corresponding order
quadpoints <- union.quad(quad.ppm(str))

plot conditional intensity values

542 fitted.slrm

as circles centred on the quadrature points
quadmarked <- setmarks(quadpoints, lambda)
plot(quadmarked)

if(!interactive()) str <- ppm(cells ~ x)

lambdaX <- fitted(str, leaveoneout=TRUE)

fitted.slrm Fitted Probabilities for Spatial Logistic Regression

Description

Given a fitted Spatial Logistic Regression model, this function computes the fitted probabilities for
each pixel.

Usage

S3 method for class 'slrm'
fitted(object, ...)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... Ignored.

Details

This is a method for the generic function fitted for spatial logistic regression models (objects of
class "slrm", usually obtained from the function slrm).

The algorithm computes the fitted probabilities of the presence of a random point in each pixel.

Value

A pixel image (object of class "im") containing the fitted probability for each pixel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm, fitted

fixef.mppm 543

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
plot(fitted(fit))

fixef.mppm Extract Fixed Effects from Point Process Model

Description

Given a point process model fitted to a list of point patterns, extract the fixed effects of the model.
A method for fixef.

Usage

S3 method for class 'mppm'
fixef(object, ...)

Arguments

object A fitted point process model (an object of class "mppm").

... Ignored.

Details

This is a method for the generic function fixef.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

This function extracts the coefficients of the fixed effects of the model.

Value

A numeric vector of coefficients.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and
Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

544 flipxy

See Also

coef.mppm

Examples

H <- hyperframe(Y = waterstriders)
Tweak data to exaggerate differences
H$Y[[1]] <- rthin(H$Y[[1]], 0.3)
m1 <- mppm(Y ~ id, data=H, Strauss(7))
fixef(m1)
m2 <- mppm(Y ~ 1, random=~1|id, data=H, Strauss(7))
fixef(m2)

flipxy Exchange X and Y Coordinates

Description

Exchanges the x and y coordinates in a spatial dataset.

Usage

flipxy(X)
S3 method for class 'owin'

flipxy(X)
S3 method for class 'ppp'

flipxy(X)
S3 method for class 'psp'

flipxy(X)
S3 method for class 'im'

flipxy(X)

Arguments

X Spatial dataset. An object of class "owin", "ppp", "psp" or "im".

Details

This function swaps the x and y coordinates of a spatial dataset. This could also be performed using
the command affine, but flipxy is faster.

The function flipxy is generic, with methods for the classes of objects listed above.

Value

Another object of the same type, representing the result of swapping the x and y coordinates.

FmultiInhom 545

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine, reflect, rotate, shift

Examples

data(cells)
X <- flipxy(cells)

FmultiInhom Inhomogeneous Marked F-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype F function, effec-
tively the cumulative distribution function of the distance from a fixed point to the nearest point in
subset J , adjusted for spatially varying intensity.

Usage

FmultiInhom(X, J,
lambda = NULL, lambdaJ = NULL, lambdamin = NULL,
...,
r = NULL)

Arguments

X A spatial point pattern (object of class "ppp".

J A subset index specifying the subset of points to which distances are measured.
Any kind of subset index acceptable to [.ppp.

lambda Intensity estimates for each point of X. A numeric vector of length equal to
npoints(X). Incompatible with lambdaJ.

lambdaJ Intensity estimates for each point of X[J]. A numeric vector of length equal to
npoints(X[J]). Incompatible with lambda.

lambdamin A lower bound for the intensity, or at least a lower bound for the values in
lambdaJ or lambda[J].

... Ignored.

r Vector of distance values at which the inhomogeneous G function should be
estimated. There is a sensible default.

546 foo

Details

See Cronie and Van Lieshout (2015).

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype F function.

Author(s)

Ottmar Cronie and Marie-Colette van Lieshout. Rewritten for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point
processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

See Also

Finhom

Examples

X <- amacrine
J <- (marks(X) == "off")
mod <- ppm(X ~ marks * x)
lam <- fitted(mod, dataonly=TRUE)
lmin <- min(predict(mod)[["off"]]) * 0.9
plot(FmultiInhom(X, J, lambda=lam, lambdamin=lmin))

foo Foo is Not a Real Name

Description

The name foo is not a real name: it is a place holder, used to represent the name of any desired
thing.

The functions defined here simply print an explanation of the placeholder name foo.

Usage

foo()

S3 method for class 'foo'
plot(x, ...)

Arguments

x Ignored.
... Ignored.

formula.fv 547

Details

The name foo is used by computer scientists as a place holder, to represent the name of any desired
object or function. It is not the name of an actual object or function; it serves only as an example,
to explain a concept.

However, many users misinterpret this convention, and actually type the command foo or foo().
Then they email the package author to inform them that foo is not defined.

To avoid this correspondence, we have now defined an object called foo.

The function foo() prints a message explaining that foo is not really the name of a variable.

The function can be executed simply by typing foo without parentheses.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

beginner

Examples

foo

formula.fv Extract or Change the Plot Formula for a Function Value Table

Description

Extract or change the default plotting formula for an object of class "fv" (function value table).

Usage

S3 method for class 'fv'
formula(x, ...)

formula(x, ...) <- value

S3 replacement method for class 'fv'
formula(x, ...) <- value

548 formula.fv

Arguments

x An object of class "fv", containing the values of several estimates of a function.

... Arguments passed to other methods.

value New value of the formula. Either a formula or a character string.

Details

A function value table (object of class "fv", see fv.object) is a convenient way of storing and
plotting several different estimates of the same function.

The default behaviour of plot(x) for a function value table x is determined by a formula associated
with x called its plot formula. See plot.fv for explanation about these formulae.

The function formula.fv is a method for the generic command formula. It extracts the plot for-
mula associated with the object.

The function formula<- is generic. It changes the formula associated with an object.

The function formula<-.fv is the method for formula<- for the class "fv". It changes the plot
formula associated with the object.

Value

The result of formula.fv is a character string containing the plot formula. The result of formula<-.fv
is a new object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv, plot.fv, formula.

Examples

K <- Kest(cells)
formula(K)
formula(K) <- (iso ~ r)

formula.ppm 549

formula.ppm Model Formulae for Gibbs Point Process Models

Description

Extract the trend formula, or the terms in the trend formula, in a fitted Gibbs point process model.

Usage

S3 method for class 'ppm'
formula(x, ...)
S3 method for class 'ppm'
terms(x, ...)

Arguments

x An object of class "ppm", representing a fitted point process model.

... Arguments passed to other methods.

Details

These functions are methods for the generic commands formula and terms for the class "ppm".

An object of class "ppm" represents a fitted Poisson or Gibbs point process model. It is obtained
from the model-fitting function ppm.

The method formula.ppm extracts the trend formula from the fitted model x (the formula originally
specified as the argument trend to ppm). The method terms.ppm extracts the individual terms in
the trend formula.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

ppm, as.owin, coef.ppm, extractAIC.ppm, fitted.ppm, logLik.ppm, model.frame.ppm, model.matrix.ppm,
plot.ppm, predict.ppm, residuals.ppm, simulate.ppm, summary.ppm, update.ppm, vcov.ppm.

Examples

data(cells)
fit <- ppm(cells, ~x)
formula(fit)
terms(fit)

550 fourierbasis

fourierbasis Fourier Basis Functions

Description

Evaluates the Fourier basis functions on a d-dimensional box with d-dimensional frequencies ki at
the d-dimensional coordinates xj .

Usage

fourierbasis(x, k, win = boxx(rep(list(0:1), ncol(k))))
fourierbasisraw(x, k, boxlengths)

Arguments

x Coordinates. A data.frame or matrix with n rows and d columns giving the
d-dimensional coordinates.

k Frequencies. A data.frame or matrix with m rows and d columns giving the
frequencies of the Fourier-functions.

win window (of class "owin", "box3" or "boxx") giving the d-dimensional box do-
main of the Fourier functions.

boxlengths numeric giving the side lengths of the box domain of the Fourier functions.

Details

The result is an m by n matrix where the (i, j)’th entry is the d-dimensional Fourier basis function
with frequency ki evaluated at the point xj , i.e.,

1√
|W |

exp(2πi
∑

l = 1dki,lxj,l/Ll)

where Ll, l = 1, ..., d are the box side lengths and |W | is the volume of the domain (window/box).
Note that the algorithm does not check whether the coordinates given in x are contained in the
given box. Actually the box is only used to determine the side lengths and volume of the domain
for normalization.

The stripped down faster version fourierbasisraw doesn’t do checking or conversion of argu-
ments and requires x and k to be matrices.

Value

An m by n matrix of complex values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Frame 551

Examples

27 rows of three dimensional Fourier frequencies:
k <- expand.grid(-1:1,-1:1, -1:1)
Two random points in the three dimensional unit box:
x <- rbind(runif(3),runif(3))
27 by 2 resulting matrix:
v <- fourierbasis(x, k)
head(v)

Frame Extract or Change the Containing Rectangle of a Spatial Object

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions
extract or change the containing rectangle inside which the object is defined.

Usage

Frame(X)

Default S3 method:
Frame(X)

Frame(X) <- value

S3 replacement method for class 'owin'
Frame(X) <- value

S3 replacement method for class 'ppp'
Frame(X) <- value

S3 replacement method for class 'im'
Frame(X) <- value

Default S3 replacement method:
Frame(X) <- value

Arguments

X A spatial object such as a point pattern, line segment pattern or pixel image.

value A rectangular window (object of class "owin" of type "rectangle") to be used
as the new containing rectangle for X.

552 fryplot

Details

The functions Frame and Frame<- are generic.

Frame(X) extracts the rectangle inside which X is defined.

Frame(X) <-R changes the rectangle inside which X is defined to the new rectangle R.

Value

The result of Frame is a rectangular window (object of class "owin" of type "rectangle").

The result of Frame<- is the updated object X, of the same class as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Window

Examples

Frame(cells)
X <- demopat
Frame(X)
Frame(X) <- owin(c(0, 11000), c(400, 8000))

fryplot Fry Plot of Point Pattern

Description

Displays the Fry plot (Patterson plot) of a spatial point pattern.

Usage

fryplot(X, ..., width=NULL, from=NULL, to=NULL, axes=FALSE)
frypoints(X, from=NULL, to=NULL, dmax=Inf)

Arguments

X A point pattern (object of class "ppp") or something acceptable to as.ppp.

... Optional arguments to control the appearance of the plot.

width Optional parameter indicating the width of a box for a zoomed-in view of the
Fry plot near the origin.

from,to Optional. Subset indices specifying which points of X will be considered when
forming the vectors (drawn from each point of from, to each point of to.)

fryplot 553

axes Logical value indicating whether to draw axes, crossing at the origin.

dmax Maximum distance between points. Pairs at greater distances do not contribute
to the result. The default means there is no maximum distance.

Details

The function fryplot generates a Fry plot (or Patterson plot); frypoints returns the points of the
Fry plot as a point pattern dataset.

Fry (1979) and Hanna and Fry (1979) introduced a manual graphical method for investigating fea-
tures of a spatial point pattern of mineral deposits. A transparent sheet, marked with an origin or
centre point, is placed over the point pattern. The transparent sheet is shifted so that the origin
lies over one of the data points, and the positions of all the other data points are copied onto the
transparent sheet. This procedure is repeated for each data point in turn. The resulting plot (the Fry
plot) is a pattern of n(n− 1) points, where n is the original number of data points. This procedure
was previously proposed by Patterson (1934, 1935) for studying inter-atomic distances in crystals,
and is also known as a Patterson plot.

The function fryplot generates the Fry/Patterson plot. Standard graphical parameters such as
main, pch, lwd, col, bg, cex can be used to control the appearance of the plot. To zoom in (to view
only a subset of the Fry plot at higher magnification), use the argument width to specify the width
of a rectangular field of view centred at the origin, or the standard graphical arguments xlim and
ylim to specify another rectangular field of view. (The actual field of view may be slightly larger,
depending on the graphics device.)

The function frypoints returns the points of the Fry plot as a point pattern object. There may be a
large number of points in this pattern, so this function should be used only if further analysis of the
Fry plot is required.

Fry plots are particularly useful for recognising anisotropy in regular point patterns. A void around
the origin in the Fry plot suggests regularity (inhibition between points) and the shape of the void
gives a clue to anisotropy in the pattern. Fry plots are also useful for detecting periodicity or
rounding of the spatial coordinates.

In mathematical terms, the Fry plot of a point pattern X is simply a plot of the vectors X[i] -X[j]
connecting all pairs of distinct points in X.

The Fry plot is related to the K function (see Kest) and the reduced second moment measure (see
Kmeasure). For example, the number of points in the Fry plot lying within a circle of given radius is
an unnormalised and uncorrected version of the K function. The Fry plot has a similar appearance
to the plot of the reduced second moment measure Kmeasure when the smoothing parameter sigma
is very small.

The Fry plot does not adjust for the effect of the size and shape of the sampling window. The density
of points in the Fry plot tapers off near the edges of the plot. This is an edge effect, a consequence
of the bounded sampling window. In geological applications this is usually not important, because
interest is focused on the behaviour near the origin where edge effects can be ignored. To correct
for the edge effect, use Kmeasure or Kest or its relatives.

Value

fryplot returns NULL. frypoints returns a point pattern (object of class "ppp").

554 funxy

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Fry, N. (1979) Random point distributions and strain measurement in rocks. Tectonophysics 60,
89–105.

Hanna, S.S. and Fry, N. (1979) A comparison of methods of strain determination in rocks from
southwest Dyfed (Pembrokeshire) and adjacent areas. Journal of Structural Geology 1, 155–162.

Patterson, A.L. (1934) A Fourier series method for the determination of the component of inter-
atomic distances in crystals. Physics Reviews 46, 372–376.

Patterson, A.L. (1935) A direct method for the determination of the components of inter-atomic
distances in crystals. Zeitschrift fuer Krystallographie 90, 517–554.

See Also

Kmeasure, Kest

Examples

unmarked data
fryplot(cells)
Y <- frypoints(cells)

numerical marks
fryplot(longleaf, width=4, axes=TRUE)

multitype points
fryplot(amacrine, width=0.2,

from=(marks(amacrine) == "on"),
chars=c(3,16), cols=2:3,
main="Fry plot centred at an On-cell")

points(0,0)

funxy Spatial Function Class

Description

A simple class of functions of spatial location

Usage

funxy(f, W)

funxy 555

Arguments

f A function in the R language with arguments x,y (at least)

W Window (object of class "owin") inside which the function is well-defined.

Details

This creates an object of class "funxy". This is a simple mechanism for handling a function of
spatial location f(x, y) to make it easier to display and manipulate.

f should be a function in the R language. The first two arguments of f must be named x and y
respectively.

W should be a window (object of class "owin") inside which the function f is well-defined.

The function f should be vectorised: that is, if x and y are numeric vectors of the same length n,
then v <-f(x,y) should be a vector of length n.

The resulting function g <-funxy(f,W) has the same formal arguments as f and can be called in
the same way, v <-g(x,y) where x and y are numeric vectors. However it can also be called as v
<-g(X), where X is a point pattern (object of class "ppp" or "lpp") or a quadrature scheme (class
"quad"); the function will be evaluated at the points of X.

Value

A function with the same arguments as f, which also belongs to the class "funxy". This class has
methods for print, plot, contour and persp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.funxy, summary.funxy

Examples

f <- function(x,y) { x^2 + y^2 - 1}
g <- funxy(f, square(2))
g
evaluate function at any x, y coordinates
g(0.2, 0.3)
evaluate function at the points of a point pattern
g(cells[1:4])

556 fv

fv Create a Function Value Table

Description

Advanced Use Only. This low-level function creates an object of class "fv" from raw numerical
data.

Usage

fv(x, argu = "r", ylab = NULL, valu, fmla = NULL, alim = NULL,
labl = names(x), desc = NULL, unitname = NULL, fname = NULL, yexp = ylab)

Arguments

x A data frame with at least 2 columns containing the values of the function argu-
ment and the corresponding values of (one or more versions of) the function.

argu String. The name of the column of x that contains the values of the function
argument.

ylab Either NULL, or an R language expression representing the mathematical name
of the function. See Details.

valu String. The name of the column of x that should be taken as containing the
function values, in cases where a single column is required.

fmla Either NULL, or a formula specifying the default plotting behaviour. See Details.

alim Optional. The default range of values of the function argument for which the
function will be plotted. Numeric vector of length 2.

labl Optional. Plot labels for the columns of x. A vector of strings, with one entry
for each column of x.

desc Optional. Descriptions of the columns of x. A vector of strings, with one entry
for each column of x.

unitname Optional. Name of the unit (usually a unit of length) in which the function argu-
ment is expressed. Either a single character string, or a vector of two character
strings giving the singular and plural forms, respectively.

fname Optional. The name of the function itself. A character string.

yexp Optional. Alternative form of ylab more suitable for annotating an axis of the
plot. See Details.

Details

This documentation is provided for experienced programmers who want to modify the internal
behaviour of spatstat. Other users please see fv.object.

The low-level function fv is used to create an object of class "fv" from raw numerical data.

fv 557

The data frame x contains the numerical data. It should have one column (typically but not nec-
essarily named "r") giving the values of the function argument for which the function has been
evaluated; and at least one other column, containing the corresponding values of the function.

Typically there is more than one column of function values. These columns typically give the values
of different versions or estimates of the same function, for example, different estimates of the K
function obtained using different edge corrections. However they may also contain the values of
related functions such as the derivative or hazard rate.

argu specifies the name of the column of x that contains the values of the function argument (typi-
cally argu="r" but this is not compulsory).

valu specifies the name of another column that contains the ‘recommended’ estimate of the func-
tion. It will be used to provide function values in those situations where a single column of data is
required. For example, envelope computes its simulation envelopes using the recommended value
of the summary function.

fmla specifies the default plotting behaviour. It should be a formula, or a string that can be converted
to a formula. Variables in the formula are names of columns of x. See plot.fv for the interpretation
of this formula.

alim specifies the recommended range of the function argument. This is used in situations where
statistical theory or statistical practice indicates that the computed estimates of the function are not
trustworthy outside a certain range of values of the function argument. By default, plot.fv will
restrict the plot to this range.

fname is a string giving the name of the function itself. For example, the K function would have
fname="K".

ylab is a mathematical expression for the function value, used when labelling an axis of the plot,
or when printing a description of the function. It should be an R language object. For example the
K function’s mathematical name K(r) is rendered by ylab=quote(K(r)).

If yexp is present, then ylab will be used only for printing, and yexp will be used for annotating axes
in a plot. (Otherwise yexp defaults to ylab). For example the cross-typeK functionK1,2(r) is ren-
dered by something like ylab=quote(Kcross[1,2](r)) and yexp=quote(Kcross[list(1,2)](r))
to get the most satisfactory behaviour.

(A useful tip: use substitute instead of quote to insert values of variables into an expression, e.g.
substitute(Kcross[i,j](r),list(i=42,j=97)) yields the same as quote(Kcross[42,97](r)).)

labl is a character vector specifying plot labels for each column of x. These labels will appear on
the plot axes (in non-default plots), legends and printed output. Entries in labl may contain the
string "%s" which will be replaced by fname. For example the border-corrected estimate of the K
function has label "%s[bord](r)" which becomes "K[bord](r)".

desc is a character vector containing intelligible explanations of each column of x. Entries in desc
may contain the string "%s" which will be replaced by ylab. For example the border correction
estimate of the K function has description "border correction estimate of %s".

Value

An object of class "fv", see fv.object.

558 fv.object

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

See plot.fv for plotting an "fv" object.

See as.function.fv to convert an "fv" object to an R function.

Use cbind.fv to combine several "fv" objects. Use bind.fv to glue additional columns onto an
existing "fv" object.

Use range.fv to compute the range of y values for a function, and with.fv for more complicated
calculations.

The functions fvnames, fvnames<- allow the user to use standard abbreviations to refer to columns
of an "fv" object.

Undocumented functions for modifying an "fv" object include tweak.fv.entry and rebadge.fv.

Examples

df <- data.frame(r=seq(0,5,by=0.1))
df <- transform(df, a=pi*r^2, b=3*r^2)
X <- fv(df, "r", quote(A(r)),

"a", cbind(a, b) ~ r,
alim=c(0,4),
labl=c("r", "%s[true](r)", "%s[approx](r)"),
desc=c("radius of circle",

"true area %s",
"rough area %s"),

fname="A")
X

fv.object Function Value Table

Description

A class "fv" to support the convenient plotting of several estimates of the same function.

Details

An object of this class is a convenient way of storing and plotting several different estimates of the
same function.

It is a data frame with extra attributes indicating the recommended way of plotting the function, and
other information.

There are methods for print and plot for this class.

Objects of class "fv" are returned by Fest, Gest,Jest, and Kest along with many other functions.

fvnames 559

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Objects of class "fv" are returned by Fest, Gest,Jest, and Kest along with many other functions.

See plot.fv for plotting an "fv" object.

See as.function.fv to convert an "fv" object to an R function.

Use cbind.fv to combine several "fv" objects. Use bind.fv to glue additional columns onto an
existing "fv" object.

Undocumented functions for modifying an "fv" object include fvnames, fvnames<-, tweak.fv.entry
and rebadge.fv.

Examples

data(cells)
K <- Kest(cells)

class(K)

K # prints a sensible summary

plot(K)

fvnames Abbreviations for Groups of Columns in Function Value Table

Description

Groups of columns in a function value table (object of class "fv") identified by standard abbrevia-
tions.

Usage

fvnames(X, a = ".")

fvnames(X, a = ".") <- value

Arguments

X Function value table (object of class "fv"). See fv.object.

a One of the standard abbreviations listed below.

value Character vector containing names of columns of X.

560 fvnames

Details

An object of class "fv" represents a table of values of a function, usually a summary function
for spatial data such as the K-function, for which several different statistical estimators may be
available. The different estimates are stored as columns of the table.

Auxiliary information carried in the object X specifies some columns or groups of columns of this
table that should be used for particular purposes. For convenience these groups can be referred to
by standard abbreviations which are recognised by various functions in the spatstat package, such
as plot.fv.

These abbreviations are:

".x" the function argument
".y" the recommended value of the function
"." all function values to be plotted by default

(in order of plotting)
".s" the upper and lower limits of shading

(for envelopes and confidence intervals)
".a" all function values (in column order)

The command fvnames(X,a) expands the abbreviation a and returns a character vector containing
the names of the columns.

The assignment fvnames(X,a) <-value changes the definition of the abbreviation a to the charac-
ter string value (which should be the name of another column of X). The column names of X are
not changed.

Note that fvnames(x,".") lists the columns of values that will be plotted by default, in the order
that they would be plotted, not in order of the column position. The order in which curves are
plotted affects the colours and line styles associated with the curves.

Value

For fvnames, a character vector.

For fvnames<-, the updated object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, plot.fv

Examples

K <- Kest(cells)
fvnames(K, ".y")
fvnames(K, ".y") <- "trans"

G3est 561

G3est Nearest Neighbour Distance Distribution Function of a Three-
Dimensional Point Pattern

Description

Estimates the nearest-neighbour distance distribution function G3(r) from a three-dimensional
point pattern.

Usage

G3est(X, ..., rmax = NULL, nrval = 128, correction = c("rs", "km", "Hanisch"))

Arguments

X Three-dimensional point pattern (object of class "pp3").

... Ignored.

rmax Optional. Maximum value of argument r for which G3(r) will be estimated.

nrval Optional. Number of values of r for which G3(r) will be estimated. A large
value of nrval is required to avoid discretisation effects.

correction Optional. Character vector specifying the edge correction(s) to be applied. See
Details.

Details

For a stationary point process Φ in three-dimensional space, the nearest-neighbour function is

G3(r) = P (d∗(x,Φ) ≤ r | x ∈ Φ)

the cumulative distribution function of the distance d∗(x,Φ) from a typical point x in Φ to its nearest
neighbour, i.e. to the nearest other point of Φ.

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point
process Φ. The nearest neighbour function of Φ can then be estimated using techniques described
in the References. For each data point, the distance to the nearest neighbour is computed. The
empirical cumulative distribution function of these values, with appropriate edge corrections, is the
estimate of G3(r).

The available edge corrections are:

"rs": the reduced sample (aka minus sampling, border correction) estimator (Baddeley et al, 1993)

"km": the three-dimensional version of the Kaplan-Meier estimator (Baddeley and Gill, 1997)

"Hanisch": the three-dimensional generalisation of the Hanisch estimator (Hanisch, 1984).

Alternatively correction="all" selects all options.

562 gauss.hermite

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Warnings

A large value of nrval is required in order to avoid discretisation effects (due to the use of his-
tograms in the calculation).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Baddeley, A.J. and Gill, R.D. (1997) Kaplan-Meier estimators of interpoint distance distributions
for spatial point processes. Annals of Statistics 25, 263–292.

Hanisch, K.-H. (1984) Some remarks on estimators of the distribution function of nearest neighbour
distance in stationary spatial point patterns. Mathematische Operationsforschung und Statistik,
series Statistics 15, 409–412.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

F3est, K3est, pcf3est for other summary functions of a three-dimensional point pattern.

Gest to estimate the empty space function of point patterns in two dimensions.

Examples

X <- rpoispp3(42)
Z <- G3est(X)
if(interactive()) plot(Z)

gauss.hermite Gauss-Hermite Quadrature Approximation to Expectation for Normal
Distribution

Description

Calculates an approximation to the expected value of any function of a normally-distributed random
variable, using Gauss-Hermite quadrature.

Usage

gauss.hermite(f, mu = 0, sd = 1, ..., order = 5)

Gcom 563

Arguments

f The function whose moment should be approximated.

mu Mean of the normal distribution.

sd Standard deviation of the normal distribution.

... Additional arguments passed to f.

order Number of quadrature points in the Gauss-Hermite quadrature approximation.
A small positive integer.

Details

This algorithm calculates the approximate expected value of f(Z) when Z is a normally-distributed
random variable with mean mu and standard deviation sd. The expected value is an integral with
respect to the Gaussian density; this integral is approximated using Gauss-Hermite quadrature.

The argument f should be a function in the R language whose first argument is the variable Z.
Additional arguments may be passed through The value returned by f may be a single numeric
value, a vector, or a matrix. The values returned by f for different values of Z must have compatible
dimensions.

The result is a weighted average of several values of f.

Value

Numeric value, vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

Examples

gauss.hermite(function(x) x^2, 3, 1)

Gcom Model Compensator of Nearest Neighbour Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the compen-
sator of the nearest neighbour distance distribution function G based on the fitted model (as well
as the usual nonparametric estimates of G based on the data alone). Comparison between the non-
parametric and model-compensated G functions serves as a diagnostic for the model.

564 Gcom

Usage

Gcom(object, r = NULL, breaks = NULL, ...,
correction = c("border", "Hanisch"),
conditional = !is.poisson(object),
restrict=FALSE,
model=NULL,
trend = ~1, interaction = Poisson(),
rbord = reach(interaction),
ppmcorrection="border",
truecoef = NULL, hi.res = NULL)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the function G(r) should
be computed. This argument is usually not specified. There is a sensible default.

breaks This argument is for internal use only.

correction Edge correction(s) to be employed in calculating the compensator. Options are
"border", "Hanisch" and "best". Alternatively correction="all" selects
all options.

conditional Optional. Logical value indicating whether to compute the estimates for the
conditional case. See Details.

restrict Logical value indicating whether to compute the restriction estimator (restrict=TRUE)
or the reweighting estimator (restrict=FALSE, the default). Applies only if
conditional=TRUE. See Details.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord,ppmcorrection.

trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

... Extra arguments passed to ppm.

ppmcorrection The correction argument to ppm.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

Gcom 565

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes different estimates of the nearest neighbour distance distribution
functionG of the dataset, which should be approximately equal if the model is a good fit to the data.

The first argument, object, is usually a fitted point process model (object of class "ppm"), obtained
from the model-fitting function ppm.

For convenience, object can also be a point pattern (object of class "ppp"). In that case, a point
process model will be fitted to it, by calling ppm using the arguments trend (for the first order
trend), interaction (for the interpoint interaction) and rbord (for the erosion distance in the bor-
der correction for the pseudolikelihood). See ppm for details of these arguments.

The algorithm first extracts the original point pattern dataset (to which the model was fitted) and
computes the standard nonparametric estimates of the G function. It then also computes the model-
compensated G function. The different functions are returned as columns in a data frame (of class
"fv"). The interpretation of the columns is as follows (ignoring edge corrections):

bord: the nonparametric border-correction estimate of G(r),

Ĝ(r) =

∑
i I{di ≤ r}I{bi > r}∑

i I{bi > r}

where di is the distance from the i-th data point to its nearest neighbour, and bi is the distance
from the i-th data point to the boundary of the window W .

bcom: the model compensator of the border-correction estimate

C Ĝ(r) =

∫
λ(u, x)I{b(u) > r}I{d(u, x) ≤ r}

1 +
∑
i I{bi > r}

where λ(u, x) denotes the conditional intensity of the model at the location u, and d(u, x)
denotes the distance from u to the nearest point in x, while b(u) denotes the distance from u
to the boundary of the windowW .

han: the nonparametric Hanisch estimate of G(r)

Ĝ(r) =
D(r)

D(∞)

where

D(r) =
∑
i

I{xi ∈W	di}I{di ≤ r}
area(W	di)

in which W	r denotes the erosion of the window W by a distance r.

hcom: the corresponding model-compensated function

CG(r) =

∫
W

λ(u, x)I(u ∈W	d(u))I(d(u) ≤ r)
D̂(∞)area(W	d(u)) + 1

where d(u) = d(u, x) is the (‘empty space’) distance from location u to the nearest point of
x.

566 Gcom

If the fitted model is a Poisson point process, then the formulae above are exactly what is computed.
If the fitted model is not Poisson, the formulae above are modified slightly to handle edge effects.

The modification is determined by the arguments conditional and restrict. The value of
conditional defaults to FALSE for Poisson models and TRUE for non-Poisson models. If conditional=FALSE
then the formulae above are not modified. If conditional=TRUE, then the algorithm calculates the
restriction estimator if restrict=TRUE, and calculates the reweighting estimator if restrict=FALSE.
See Appendix E of Baddeley, Rubak and Møller (2011). See also spatstat.options('eroded.intensity').
Thus, by default, the reweighting estimator is computed for non-Poisson models.

The border-corrected and Hanisch-corrected estimates of G(r) are approximately unbiased esti-
mates of the G-function, assuming the point process is stationary. The model-compensated func-
tions are unbiased estimates of the mean value of the corresponding nonparametric estimate, as-
suming the model is true. Thus, if the model is a good fit, the mean value of the difference between
the nonparametric and model-compensated estimates is approximately zero.

To compute the difference between the nonparametric and model-compensated functions, use Gres.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Related functions: Gest, Gres.

Alternative functions: Kcom, psstA, psstG, psst.

Model fitting: ppm.

Examples

data(cells)
fit0 <- ppm(cells, ~1) # uniform Poisson
G0 <- Gcom(fit0)
G0
plot(G0)

uniform Poisson is clearly not correct

Hanisch estimates only
plot(Gcom(fit0), cbind(han, hcom) ~ r)

fit1 <- ppm(cells, ~1, Strauss(0.08))

Gcross 567

plot(Gcom(fit1), cbind(han, hcom) ~ r)

Try adjusting interaction distance

fit2 <- update(fit1, Strauss(0.10))
plot(Gcom(fit2), cbind(han, hcom) ~ r)

G3 <- Gcom(cells, interaction=Strauss(0.12))
plot(G3, cbind(han, hcom) ~ r)

Gcross Multitype Nearest Neighbour Distance Function (i-to-j)

Description

For a multitype point pattern, estimate the distribution of the distance from a point of type i to the
nearest point of type j.

Usage

Gcross(X, i, j, r=NULL, breaks=NULL, ..., correction=c("rs", "km", "han"))

Arguments

X The observed point pattern, from which an estimate of the cross type distance
distribution function Gij(r) will be computed. It must be a multitype point
pattern (a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

r Optional. Numeric vector. The values of the argument r at which the distribution
function Gij(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.

... Ignored.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all"
selects all options.

568 Gcross

Details

This function Gcross and its companions Gdot and Gmulti are generalisations of the function Gest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The
arguments i and j will be interpreted as levels of the factor X$marks. (Warning: this means that an
integer value i=3 will be interpreted as the number 3, not the 3rd smallest level).

The “cross-type” (type i to type j) nearest neighbour distance distribution function of a multitype
point process is the cumulative distribution function Gij(r) of the distance from a typical random
point of the process with type i the nearest point of type j.

An estimate of Gij(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the process of type i points were independent of the process of type j points, then Gij(r)
would equal Fj(r), the empty space function of the type j points. For a multitype Poisson point
process where the type i points have intensity λi, we have

Gij(r) = 1− e−λjπr
2

Deviations between the empirical and theoretical Gij curves may suggest dependence between the
points of types i and j.

This algorithm estimates the distribution function Gij(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Gest.

The argument r is the vector of values for the distance r at which Gij(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, λ(r), of Gij(r). This estimate
should be used with caution as Gij(r) is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate of Gij . However this is also returned by the algorithm, as
it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical
Gij as if it were an unbiased estimator of Gij .

Value

An object of class "fv" (see fv.object).

Gcross 569

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function Gij(r) has been estimated

rs the “reduced sample” or “border correction” estimator of Gij(r)

han the Hanisch-style estimator of Gij(r)

km the spatial Kaplan-Meier estimator of Gij(r)

hazard the hazard rate λ(r) of Gij(r) by the spatial Kaplan-Meier method

raw the uncorrected estimate of Gij(r), i.e. the empirical distribution of the dis-
tances from each point of type i to the nearest point of type j

theo the theoretical value of Gij(r) for a marked Poisson process with the same esti-
mated intensity (see below).

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

The function Gij does not necessarily have a density.

The reduced sample estimator of Gij is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of Gij is always nondecreasing but its maximum value may be
less than 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

570 Gdot

See Also

Gdot, Gest, Gmulti

Examples

amacrine cells data
G01 <- Gcross(amacrine)

equivalent to:
Not run:
G01 <- Gcross(amacrine, "off", "on")

End(Not run)

plot(G01)

empty space function of `on' points
Not run:

F1 <- Fest(split(amacrine)$on, r = G01$r)
lines(F1$r, F1$km, lty=3)

End(Not run)

synthetic example
pp <- runifpoispp(30)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
G <- Gcross(pp, "0", "1") # note: "0" not 0

Gdot Multitype Nearest Neighbour Distance Function (i-to-any)

Description

For a multitype point pattern, estimate the distribution of the distance from a point of type i to the
nearest other point of any type.

Usage

Gdot(X, i, r=NULL, breaks=NULL, ..., correction=c("km", "rs", "han"))

Arguments

X The observed point pattern, from which an estimate of the distance distribution
functionGi•(r) will be computed. It must be a multitype point pattern (a marked
point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

Gdot 571

r Optional. Numeric vector. The values of the argument r at which the distribution
function Gi•(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.
... Ignored.
correction Optional. Character string specifying the edge correction(s) to be used. Options

are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all"
selects all options.

Details

This function Gdot and its companions Gcross and Gmulti are generalisations of the function Gest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The
argument will be interpreted as a level of the factor X$marks. (Warning: this means that an integer
value i=3 will be interpreted as the number 3, not the 3rd smallest level.)

The “dot-type” (type i to any type) nearest neighbour distance distribution function of a multitype
point process is the cumulative distribution function Gi•(r) of the distance from a typical random
point of the process with type i the nearest other point of the process, regardless of type.

An estimate ofGi•(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the type i points were independent of all other points, then Gi•(r) would equal Gii(r),
the nearest neighbour distance distribution function of the type i points alone. For a multitype
Poisson point process with total intensity λ, we have

Gi•(r) = 1− e−λπr
2

Deviations between the empirical and theoretical Gi• curves may suggest dependence of the type i
points on the other points.

This algorithm estimates the distribution function Gi•(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Gest.

The argument r is the vector of values for the distance r at which Gi•(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

572 Gdot

The algorithm also returns an estimate of the hazard rate function, λ(r), of Gi•(r). This estimate
should be used with caution as Gi•(r) is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate of Gi•. However this is also returned by the algorithm, as
it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical
Gi• as if it were an unbiased estimator of Gi•.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function Gi•(r) has been estimated

rs the “reduced sample” or “border correction” estimator of Gi•(r)

han the Hanisch-style estimator of Gi•(r)

km the spatial Kaplan-Meier estimator of Gi•(r)

hazard the hazard rate λ(r) of Gi•(r) by the spatial Kaplan-Meier method

raw the uncorrected estimate of Gi•(r), i.e. the empirical distribution of the dis-
tances from each point of type i to the nearest other point of any type.

theo the theoretical value of Gi•(r) for a marked Poisson process with the same esti-
mated intensity (see below).

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

The function Gi• does not necessarily have a density.

The reduced sample estimator of Gi• is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of Gi• is always nondecreasing but its maximum value may be
less than 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Gest 573

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Gcross, Gest, Gmulti

Examples

amacrine cells data
G0. <- Gdot(amacrine, "off")
plot(G0.)

synthetic example
pp <- runifpoispp(30)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
G <- Gdot(pp, "0")
G <- Gdot(pp, 0) # equivalent

Gest Nearest Neighbour Distance Function G

Description

Estimates the nearest neighbour distance distribution function G(r) from a point pattern in a win-
dow of arbitrary shape.

Usage

Gest(X, r=NULL, breaks=NULL, ...,
correction=c("rs", "km", "han"),
domain=NULL)

Arguments

X The observed point pattern, from which an estimate of G(r) will be computed.
An object of class ppp, or data in any format acceptable to as.ppp().

r Optional. Numeric vector. The values of the argument r at which G(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.

574 Gest

... Ignored.

correction Optional. The edge correction(s) to be used to estimate G(r). A vector of
character strings selected from "none", "rs", "km", "Hanisch" and "best".
Alternatively correction="all" selects all options.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

Details

The nearest neighbour distance distribution function (also called the “event-to-event” or “inter-
event” distribution) of a point process X is the cumulative distribution function G of the distance
from a typical random point of X to the nearest other point of X .

An estimate ofG derived from a spatial point pattern dataset can be used in exploratory data analysis
and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1988). In exploratory
analyses, the estimate ofG is a useful statistic summarising one aspect of the “clustering” of points.
For inferential purposes, the estimate of G is usually compared to the true value of G for a com-
pletely random (Poisson) point process, which is

G(r) = 1− e−λπr
2

where λ is the intensity (expected number of points per unit area). Deviations between the empirical
and theoretical G curves may suggest spatial clustering or spatial regularity.

This algorithm estimates the nearest neighbour distance distribution function G from the point pat-
tern X. It assumes that X can be treated as a realisation of a stationary (spatially homogeneous) ran-
dom spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be
supplied in any of the formats recognised by as.ppp().

The estimation of G is hampered by edge effects arising from the unobservability of points of the
random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998;
Ripley, 1988). The edge corrections implemented here are the border method or “reduced sample”
estimator, the spatial Kaplan-Meier estimator (Baddeley and Gill, 1997) and the Hanisch estimator
(Hanisch, 1984).

The argument r is the vector of values for the distance r at which G(r) should be evaluated. It
is also used to determine the breakpoints (in the sense of hist) for the computation of histograms
of distances. The estimators are computed from histogram counts. This introduces a discretisation
error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, λ(r), of G(r). The hazard rate
is defined as the derivative

λ(r) = − d

dr
log(1−G(r))

This estimate should be used with caution as G is not necessarily differentiable.

Gest 575

If the argument domain is given, the estimate of G(r) will be based only on the nearest neighbour
distances measured from points falling inside domain (although their nearest neighbours may lie
outside domain). This is useful in bootstrap techniques. The argument domain should be a window
(object of class "owin") or something acceptable to as.owin. It must be a subset of the window of
the point pattern X.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate ofG. However it is sometimes useful. It can be returned by
the algorithm, by selecting correction="none". Care should be taken not to use the uncorrected
empirical G as if it were an unbiased estimator of G.

To simply compute the nearest neighbour distance for each point in the pattern, use nndist. To
determine which point is the nearest neighbour of a given point, use nnwhich.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing some or all of the following columns:

r the values of the argument r at which the function G(r) has been estimated

rs the “reduced sample” or “border correction” estimator of G(r)

km the spatial Kaplan-Meier estimator of G(r)

hazard the hazard rate λ(r) of G(r) by the spatial Kaplan-Meier method

raw the uncorrected estimate of G(r), i.e. the empirical distribution of the distances
from each point in the pattern X to the nearest other point of the pattern

han the Hanisch correction estimator of G(r)

theo the theoretical value of G(r) for a stationary Poisson process of the same esti-
mated intensity.

Warnings

The function G does not necessarily have a density. Any valid c.d.f. may appear as the nearest
neighbour distance distribution function of a stationary point process.

The reduced sample estimator of G is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of G is always nondecreasing but its maximum value may be
less than 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

576 Geyer

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37-78.

Baddeley, A.J. and Gill, R.D. Kaplan-Meier estimators of interpoint distance distributions for spatial
point processes. Annals of Statistics 25 (1997) 263-292.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Hanisch, K.-H. (1984) Some remarks on estimators of the distribution function of nearest-neighbour
distance in stationary spatial point patterns. Mathematische Operationsforschung und Statistik,
series Statistics 15, 409–412.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

nndist, nnwhich, Fest, Jest, Kest, km.rs, reduced.sample, kaplan.meier

Examples

data(cells)
G <- Gest(cells)
plot(G)

P-P style plot
plot(G, cbind(km,theo) ~ theo)

the empirical G is below the Poisson G,
indicating an inhibited pattern

Not run:
plot(G, . ~ r)
plot(G, . ~ theo)
plot(G, asin(sqrt(.)) ~ asin(sqrt(theo)))

End(Not run)

Geyer Geyer’s Saturation Point Process Model

Description

Creates an instance of Geyer’s saturation point process model which can then be fitted to point
pattern data.

Geyer 577

Usage

Geyer(r,sat)

Arguments

r Interaction radius. A positive real number.
sat Saturation threshold. A non-negative real number.

Details

Geyer (1999) introduced the “saturation process”, a modification of the Strauss process (see Strauss)
in which the total contribution to the potential from each point (from its pairwise interaction with
all other points) is trimmed to a maximum value s. The interaction structure of this model is imple-
mented in the function Geyer().

The saturation point process with interaction radius r, saturation threshold s, and parameters β and
γ, is the point process in which each point xi in the pattern X contributes a factor

βγmin(s,t(xi,X))

to the probability density of the point pattern, where t(xi, X) denotes the number of ‘close neigh-
bours’ of xi in the patternX . A close neighbour of xi is a point xj with j 6= i such that the distance
between xi and xj is less than or equal to r.

If the saturation threshold s is set to infinity, this model reduces to the Strauss process (see Strauss)
with interaction parameter γ2. If s = 0, the model reduces to the Poisson point process. If s is a
finite positive number, then the interaction parameter γ may take any positive value (unlike the case
of the Strauss process), with values γ < 1 describing an ‘ordered’ or ‘inhibitive’ pattern, and values
γ > 1 describing a ‘clustered’ or ‘attractive’ pattern.

The nonstationary saturation process is similar except that the value β is replaced by a function
β(xi) of location.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the saturation process interaction is yielded by Geyer(r,sat) where
the arguments r and sat specify the Strauss interaction radius r and the saturation threshold s,
respectively. See the examples below.

Note the only arguments are the interaction radius r and the saturation threshold sat. When r and
sat are fixed, the model becomes an exponential family. The canonical parameters log(β) and
log(γ) are estimated by ppm(), not fixed in Geyer().

Value

An object of class "interact" describing the interpoint interaction structure of Geyer’s saturation
point process with interaction radius r and saturation threshold sat.

Zero saturation

The value sat=0 is permitted by Geyer, but this is not very useful. For technical reasons, when ppm
fits a Geyer model with sat=0, the default behaviour is to return an “invalid” fitted model in which
the estimate of γ is NA. In order to get a Poisson process model returned when sat=0, you would
need to set emend=TRUE in the call to ppm.

578 Gfox

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

ppm, pairwise.family, ppm.object, Strauss.

To make an interaction object like Geyer but having multiple interaction radii, see BadGey or
Hybrid.

Examples

ppm(cells, ~1, Geyer(r=0.07, sat=2))
fit the stationary saturation process to `cells'

Gfox Foxall’s Distance Functions

Description

Given a point pattern X and a spatial object Y, compute estimates of Foxall’s G and J functions.

Usage

Gfox(X, Y, r=NULL, breaks=NULL, correction=c("km", "rs", "han"), W, ...)
Jfox(X, Y, r=NULL, breaks=NULL, correction=c("km", "rs", "han"), W, ...,

warn.trim=TRUE)

Arguments

X A point pattern (object of class "ppp") from which distances will be measured.

Y An object of class "ppp", "psp" or "owin" to which distances will be measured.
Alternatively a pixel image (class "im") with logical values.

r Optional. Numeric vector. The values of the argument r at which Gfox(r) or
Jfox(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

correction Optional. The edge correction(s) to be used to estimateGfox(r) or Jfox(r). A
vector of character strings selected from "none", "rs", "km", "cs" and "best".
Alternatively correction="all" selects all options.

Gfox 579

W Optional. A window (object of class "owin") to be taken as the window of
observation. The distribution function will be estimated from data inside W. The
default is W=Frame(Y) when Y is a window, and W=Window(Y) otherwise.

... Extra arguments affecting the discretisation of distances. These arguments are
ignored by Gfox, but Jfox passes them to Hest to determine the discretisation
of the spatial domain.

warn.trim Logical value indicating whether a warning should be issued by Jfox when the
window of X had to be trimmed in order to be a subset of the frame of Y.

Details

Given a point pattern X and another spatial object Y, these functions compute two nonparametric
measures of association between X and Y, introduced by Foxall (Foxall and Baddeley, 2002).

Let the random variable R be the distance from a typical point of X to the object Y. Foxall’s G-
function is the cumulative distribution function of R:

G(r) = P (R ≤ r)

Let the random variable S be the distance from a fixed point in space to the object Y. The cumulative
distribution function of S is the (unconditional) spherical contact distribution function

H(r) = P (S ≤ r)

which is computed by Hest.

Foxall’s J-function is the ratio

J(r) =
1−G(r)

1−H(r)

For further interpretation, see Foxall and Baddeley (2002).

Accuracy of Jfox depends on the pixel resolution, which is controlled by the arguments eps, dimyx
and xy passed to as.mask. For example, use eps=0.1 to specify square pixels of side 0.1 units, and
dimyx=256 to specify a 256 by 256 grid of pixels.

Value

A function value table (object of class "fv") which can be printed, plotted, or converted to a data
frame of values.

Author(s)

Rob Foxall and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Foxall, R. and Baddeley, A. (2002) Nonparametric measures of association between a spatial point
process and a random set, with geological applications. Applied Statistics 51, 165–182.

See Also

Gest, Hest, Jest, Fest

580 Ginhom

Examples

data(copper)
X <- copper$SouthPoints
Y <- copper$SouthLines
G <- Gfox(X,Y)
J <- Jfox(X,Y, correction="km")

Not run:
J <- Jfox(X,Y, correction="km", eps=0.25)

End(Not run)

Ginhom Inhomogeneous Nearest Neighbour Function

Description

Estimates the inhomogeneous nearest neighbour function G of a non-stationary point pattern.

Usage

Ginhom(X, lambda = NULL, lmin = NULL, ...,
sigma = NULL, varcov = NULL,
r = NULL, breaks = NULL, ratio = FALSE,
update = TRUE, warn.bias=TRUE, savelambda=FALSE)

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
G function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object of
class "ppm") or a function(x,y) which can be evaluated to give the intensity
value at any location.

lmin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

... Extra arguments passed to as.mask to control the pixel resolution, or passed to
density.ppp to control the smoothing bandwidth.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

Ginhom 581

ratio Logical. If TRUE, the numerator and denominator of the estimate will also be
saved, for use in analysing replicated point patterns.

update Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without fitting it to X.

warn.bias Logical value specifying whether to issue a warning when the inhomogeneity
correction factor takes extreme values, which can often lead to biased results.
This usually occurs when insufficient smoothing is used to estimate the intensity.

savelambda Logical value specifying whether to save the values of lmin and lambda as at-
tributes of the result.

Details

This command computes estimates of the inhomogeneous G-function (van Lieshout, 2010) of
a point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the nearest-
neighbour distance distribution function G for homogeneous point patterns computed by Gest.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous G function is computed using the border correction, equation (7) in Van
Lieshout (2010).

The argument lambda should supply the (estimated) values of the intensity function λ of the point
process. It may be either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a fitted point process model (object of class "ppm" or "kppm") whose fitted trend can be used as
the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the
trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate
lambda[i] for the point X[i] is computed by removing X[i] from the point pattern, applying kernel

582 Gmulti

smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at
the point X[i]. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov,
which are passed to density.ppp along with any extra arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Author(s)

Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. (2010) A J-function for inhomogeneous point processes. Statistica Neer-
landica 65, 183–201.

See Also

Finhom, Jinhom, Gest

Examples

Not run:
plot(Ginhom(swedishpines, sigma=bw.diggle, adjust=2))

End(Not run)
plot(Ginhom(swedishpines, sigma=10))

Gmulti Marked Nearest Neighbour Distance Function

Description

For a marked point pattern, estimate the distribution of the distance from a typical point in subset I
to the nearest point of subset J .

Usage

Gmulti(X, I, J, r=NULL, breaks=NULL, ...,
disjoint=NULL, correction=c("rs", "km", "han"))

Gmulti 583

Arguments

X The observed point pattern, from which an estimate of the multitype distance
distribution function GIJ(r) will be computed. It must be a marked point pat-
tern. See under Details.

I Subset of points of X from which distances are measured.

J Subset of points in X to which distances are measured.

r Optional. Numeric vector. The values of the argument r at which the distribution
function GIJ(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.

... Ignored.

disjoint Optional flag indicating whether the subsets I and J are disjoint. If missing, this
value will be computed by inspecting the vectors I and J.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all"
selects all options.

Details

The function Gmulti generalises Gest (for unmarked point patterns) and Gdot and Gcross (for
multitype point patterns) to arbitrary marked point patterns.

Suppose XI , XJ are subsets, possibly overlapping, of a marked point process. This function com-
putes an estimate of the cumulative distribution functionGIJ(r) of the distance from a typical point
of XI to the nearest distinct point of XJ .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

This algorithm estimates the distribution function GIJ(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Gest.

The argument r is the vector of values for the distance r at which GIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

584 Gmulti

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, λ(r), of GIJ(r). This estimate
should be used with caution as GIJ(r) is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate of GIJ . However this is also returned by the algorithm, as
it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical
GIJ as if it were an unbiased estimator of GIJ .

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function GIJ(r) has been estimated

rs the “reduced sample” or “border correction” estimator of GIJ(r)

han the Hanisch-style estimator of GIJ(r)

km the spatial Kaplan-Meier estimator of GIJ(r)

hazard the hazard rate λ(r) of GIJ(r) by the spatial Kaplan-Meier method

raw the uncorrected estimate of GIJ(r), i.e. the empirical distribution of the dis-
tances from each point of type i to the nearest point of type j

theo the theoretical value of GIJ(r) for a marked Poisson process with the same
estimated intensity

Warnings

The function GIJ does not necessarily have a density.

The reduced sample estimator of GIJ is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of GIJ is always nondecreasing but its maximum value may be
less than 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

GmultiInhom 585

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Gcross, Gdot, Gest

Examples

trees <- longleaf
Longleaf Pine data: marks represent diameter

Gm <- Gmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(Gm)

GmultiInhom Inhomogeneous Marked G-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype G function, ef-
fectively the cumulative distribution function of the distance from a point in subset I to the nearest
point in subset J , adjusted for spatially varying intensity.

Usage

GmultiInhom(X, I, J,
lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
lambdamin = NULL, ...,
r = NULL,
ReferenceMeasureMarkSetI = NULL,
ratio = FALSE)

Arguments

X A spatial point pattern (object of class "ppp".

I A subset index specifying the subset of points from which distances are mea-
sured. Any kind of subset index acceptable to [.ppp.

J A subset index specifying the subset of points to which distances are measured.
Any kind of subset index acceptable to [.ppp.

586 GmultiInhom

lambda Intensity estimates for each point of X. A numeric vector of length equal to
npoints(X). Incompatible with lambdaI,lambdaJ.

lambdaI Intensity estimates for each point of X[I]. A numeric vector of length equal to
npoints(X[I]). Incompatible with lambda.

lambdaJ Intensity estimates for each point of X[J]. A numeric vector of length equal to
npoints(X[J]). Incompatible with lambda.

lambdamin A lower bound for the intensity, or at least a lower bound for the values in
lambdaJ or lambda[J].

... Ignored.

r Vector of distance values at which the inhomogeneous G function should be
estimated. There is a sensible default.

ReferenceMeasureMarkSetI

Optional. The total measure of the mark set. A positive number.

ratio Logical value indicating whether to save ratio information.

Details

See Cronie and Van Lieshout (2015).

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype G function.

Author(s)

Ottmar Cronie and Marie-Colette van Lieshout. Rewritten for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point
processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

See Also

Ginhom, Gmulti

Examples

X <- rescale(amacrine)
I <- (marks(X) == "on")
J <- (marks(X) == "off")
mod <- ppm(X ~ marks * x)
lam <- fitted(mod, dataonly=TRUE)
lmin <- min(predict(mod)[["off"]]) * 0.9
plot(GmultiInhom(X, I, J, lambda=lam, lambdamin=lmin))
equivalent
plot(GmultiInhom(X, I, J, lambdaI=lam[I], lambdaJ=lam[J], lambdamin=lmin),

main="")

Gres 587

Gres Residual G Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the residual G
function, which serves as a diagnostic for goodness-of-fit of the model.

Usage

Gres(object, ...)

Arguments

object Object to be analysed. Either a fitted point process model (object of class
"ppm"), a point pattern (object of class "ppp"), a quadrature scheme (object
of class "quad"), or the value returned by a previous call to Gcom.

... Arguments passed to Gcom.

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes a residual version of the G function of the dataset, which should
be approximately zero if the model is a good fit to the data.

In normal use, object is a fitted point process model or a point pattern. Then Gres first calls Gcom
to compute both the nonparametric estimate of the G function and its model compensator. Then
Gres computes the difference between them, which is the residual G-function.

Alternatively, object may be a function value table (object of class "fv") that was returned by a
previous call to Gcom. Then Gres computes the residual from this object.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

588 gridcentres

See Also

Related functions: Gcom, Gest.

Alternative functions: Kres, psstA, psstG, psst.

Model-fitting: ppm.

Examples

data(cells)
fit0 <- ppm(cells, ~1) # uniform Poisson
G0 <- Gres(fit0)
plot(G0)

Hanisch correction estimate
plot(G0, hres ~ r)

uniform Poisson is clearly not correct

fit1 <- ppm(cells, ~1, Strauss(0.08))
plot(Gres(fit1), hres ~ r)

fit looks approximately OK; try adjusting interaction distance

plot(Gres(cells, interaction=Strauss(0.12)))

How to make envelopes
Not run:
E <- envelope(fit1, Gres, model=fit1, nsim=39)
plot(E)

End(Not run)
For computational efficiency

Gc <- Gcom(fit1)
G1 <- Gres(Gc)

gridcentres Rectangular grid of points

Description

Generates a rectangular grid of points in a window

Usage

gridcentres(window, nx, ny)

Arguments

window A window. An object of class owin, or data in any format acceptable to as.owin().

nx Number of points in each row of the rectangular grid.

ny Number of points in each column of the rectangular grid.

gridcentres 589

Details

This function creates a rectangular grid of points in the window.

The bounding rectangle of the window is divided into a regular nx × ny grid of rectangular tiles.
The function returns the x, y coordinates of the centres of these tiles.

Note that some of these grid points may lie outside the window, if window is not of type "rectangle".
The function inside.owin can be used to select those grid points which do lie inside the window.
See the examples.

This function is useful in creating dummy points for quadrature schemes (see quadscheme) and for
other miscellaneous purposes.

Value

A list with two components x and y, which are numeric vectors giving the coordinates of the points
of the rectangular grid.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, quadscheme, inside.owin, stratrand

Examples

w <- unit.square()
xy <- gridcentres(w, 10,15)
Not run:
plot(w)
points(xy)

End(Not run)

bdry <- list(x=c(0.1,0.3,0.7,0.4,0.2),
y=c(0.1,0.1,0.5,0.7,0.3))

w <- owin(c(0,1), c(0,1), poly=bdry)
xy <- gridcentres(w, 30, 30)
ok <- inside.owin(xyx, xyy, w)
Not run:
plot(w)
points(xy$x[ok], xy$y[ok])

End(Not run)

590 gridweights

gridweights Compute Quadrature Weights Based on Grid Counts

Description

Computes quadrature weights for a given set of points, using the “counting weights” for a grid of
rectangular tiles.

Usage

gridweights(X, ntile, ..., window=NULL, verbose=FALSE, npix=NULL, areas=NULL)

Arguments

X Data defining a point pattern.

ntile Number of tiles in each row and column of the rectangular grid. An integer
vector of length 1 or 2.

... Ignored.

window Default window for the point pattern

verbose Logical flag. If TRUE, information will be printed about the computation of the
grid weights.

npix Dimensions of pixel grid to use when computing a digital approximation to the
tile areas.

areas Vector of areas of the tiles, if they are already known.

Details

This function computes a set of quadrature weights for a given pattern of points (typically compris-
ing both “data” and ‘dummy” points). See quad.object for an explanation of quadrature weights
and quadrature schemes.

The weights are computed by the “counting weights” rule based on a regular grid of rectangular
tiles. First X and (optionally) window are converted into a point pattern object. Then the bounding
rectangle of the window of the point pattern is divided into a regular ntile[1] * ntile[2] grid of
rectangular tiles. The weight attached to a point of X is the area of the tile in which it lies, divided
by the number of points of X lying in that tile.

For non-rectangular windows the tile areas are currently calculated by approximating the window
as a binary mask. The accuracy of this approximation is controlled by npix, which becomes the
argument dimyx of as.mask.

Value

Vector of nonnegative weights for each point in X.

grow.boxx 591

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, dirichletWeights

Examples

Q <- quadscheme(runifpoispp(10))
X <- as.ppp(Q) # data and dummy points together
w <- gridweights(X, 10)
w <- gridweights(X, c(10, 10))

grow.boxx Add margins to box in any dimension

Description

Adds a margin to a box of class boxx.

Usage

grow.boxx(W, left, right = left)
grow.box3(W, left, right = left)

Arguments

W A box (object of class "boxx" or "box3").

left Width of margin to be added to left endpoint of box side in every dimension. A
single nonnegative number, or a vector of same length as the dimension of the
box to add different left margin in each dimension.

right Width of margin to be added to right endpoint of box side in every dimension.
A single nonnegative number, or a vector of same length as the dimension of the
box to add different right margin in each dimension.

Value

Another object of the same class "boxx" or "box3" representing the window after margins are
added.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

592 grow.rectangle

See Also

grow.rectangle, boxx, box3

Examples

w <- boxx(c(0,10), c(0,10), c(0,10), c(0,10))
add a margin of size 1 on both sides in all four dimensions
b12 <- grow.boxx(w, 1)

add margin of size 2 at left, and margin of size 3 at right,
in each dimension.
v <- grow.boxx(w, 2, 3)

grow.rectangle Add margins to rectangle

Description

Adds a margin to a rectangle.

Usage

grow.rectangle(W, xmargin=0, ymargin=xmargin, fraction=NULL)

Arguments

W A window (object of class "owin"). Must be of type "rectangle".

xmargin Width of horizontal margin to be added. A single nonnegative number, or a
vector of length 2 indicating margins of unequal width at left and right.

ymargin Height of vertical margin to be added. A single nonnegative number, or a vector
of length 2 indicating margins of unequal width at bottom and top.

fraction Fraction of width and height to be added. A number greater than zero, or a
numeric vector of length 2 indicating different fractions of width and of height,
respectively. Incompatible with specifying xmargin and ymargin.

Details

This is a simple convenience function to add a margin of specified width and height on each side of
a rectangular window. Unequal margins can also be added.

Value

Another object of class "owin" representing the window after margins are added.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Hardcore 593

See Also

trim.rectangle, dilation, erosion, owin.object

Examples

w <- square(10)
add a margin of width 1 on all four sides
square12 <- grow.rectangle(w, 1)

add margin of width 3 on the right side
and margin of height 4 on top.
v <- grow.rectangle(w, c(0,3), c(0,4))

grow by 5 percent on all sides
grow.rectangle(w, fraction=0.05)

Hardcore The Hard Core Point Process Model

Description

Creates an instance of the hard core point process model which can then be fitted to point pattern
data.

Usage

Hardcore(hc=NA)

Arguments

hc The hard core distance

Details

A hard core process with hard core distance h and abundance parameter β is a pairwise interaction
point process in which distinct points are not allowed to come closer than a distance h apart.

The probability density is zero if any pair of points is closer than h units apart, and otherwise equals

f(x1, . . . , xn) = αβn(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
and α is the normalising constant.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hard core process pairwise interaction is yielded by the function
Hardcore(). See the examples below.

If the hard core distance argument hc is missing or NA, it will be estimated from the data when
ppm is called. The estimated value of hc is the minimum nearest neighbour distance multiplied by
n/(n+ 1), where n is the number of data points.

594 harmonic

Value

An object of class "interact" describing the interpoint interaction structure of the hard core pro-
cess with hard core distance hc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

See Also

Strauss, StraussHard, MultiHard, ppm, pairwise.family, ppm.object

Examples

Hardcore(0.02)
prints a sensible description of itself

Not run:
ppm(cells, ~1, Hardcore(0.05))
fit the stationary hard core process to `cells'

End(Not run)

estimate hard core radius from data
ppm(cells, ~1, Hardcore())
ppm(cells, ~1, Hardcore)

ppm(cells, ~ polynom(x,y,3), Hardcore(0.05))
fit a nonstationary hard core process
with log-cubic polynomial trend

harmonic Basis for Harmonic Functions

Description

Evaluates a basis for the harmonic polynomials in x and y of degree less than or equal to n.

Usage

harmonic(x, y, n)

harmonic 595

Arguments

x Vector of x coordinates
y Vector of y coordinates
n Maximum degree of polynomial

Details

This function computes a basis for the harmonic polynomials in two variables x and y up to a
given degree n and evaluates them at given x, y locations. It can be used in model formulas (for
example in the model-fitting functions lm,glm,gam and ppm) to specify a linear predictor which is
a harmonic function.

A function f(x, y) is harmonic if
∂2

∂x2
f +

∂2

∂y2
f = 0.

The harmonic polynomials of degree less than or equal to n have a basis consisting of 2n functions.

This function was implemented on a suggestion of P. McCullagh for fitting nonstationary spatial
trend to point process models.

Value

A data frame with 2 * n columns giving the values of the basis functions at the coordinates. Each
column is labelled by an algebraic expression for the corresponding basis function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppm, polynom

Examples

inhomogeneous point pattern
X <- unmark(longleaf)

fit Poisson point process with log-cubic intensity
fit.3 <- ppm(X ~ polynom(x,y,3), Poisson())

fit Poisson process with log-cubic-harmonic intensity
fit.h <- ppm(X ~ harmonic(x,y,3), Poisson())

Likelihood ratio test
lrts <- 2 * (logLik(fit.3) - logLik(fit.h))
df <- with(coords(X),

ncol(polynom(x,y,3)) - ncol(harmonic(x,y,3)))
pval <- 1 - pchisq(lrts, df=df)

596 harmonise

harmonise Make Objects Compatible

Description

Converts several objects of the same class to a common format so that they can be combined or
compared.

Usage

harmonise(...)
harmonize(...)

Arguments

... Any number of objects of the same class.

Details

This generic command takes any number of objects of the same class, and attempts to make them
compatible in the sense of compatible so that they can be combined or compared.

There are methods for the classes "fv" (harmonise.fv) and "im" (harmonise.im).

All arguments ... must be objects of the same class. The result will be a list, of length equal to the
number of arguments ..., containing new versions of each of these objects, converted to a common
format. If the arguments were named (name=value) then the return value also carries these names.

Value

A list, of length equal to the number of arguments ..., whose entries are objects of the same class.
If the arguments were named (name=value) then the return value also carries these names.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

See Also

compatible, harmonise.fv, harmonise.im

harmonise.fv 597

harmonise.fv Make Function Tables Compatible

Description

Convert several objects of class "fv" to the same values of the function argument.

Usage

S3 method for class 'fv'
harmonise(..., strict=FALSE)

S3 method for class 'fv'
harmonize(..., strict=FALSE)

Arguments

... Any number of function tables (objects of class "fv").

strict Logical. If TRUE, a column of data will be deleted if columns of the same name
do not appear in every object.

Details

A function value table (object of class "fv") is essentially a data frame giving the values of a
function f(x) (or several alternative estimates of this value) at equally-spaced values of the function
argument x.

The command harmonise is generic. This is the method for objects of class "fv".

This command makes any number of "fv" objects compatible, in the loose sense that they have the
same sequence of values of x. They can then be combined by cbind.fv, but not necessarily by
eval.fv.

All arguments ... must be function value tables (objects of class "fv"). The result will be a list, of
length equal to the number of arguments ..., containing new versions of each of these functions,
converted to a common sequence of x values. If the arguments were named (name=value) then the
return value also carries these names.

The range of x values in the resulting functions will be the intersection of the ranges of x values in
the original functions. The spacing of x values in the resulting functions will be the finest (narrow-
est) of the spacings of the x values in the original functions. Function values are interpolated using
approxfun.

If strict=TRUE, each column of data will be retained only if a column of the same name appears in
all of the arguments This ensures that the resulting objects are strictly compatible in the sense
of compatible.fv, and can be combined using eval.fv or collapse.fv.

If strict=FALSE (the default), this does not occur, and then the resulting objects are not guaranteed
to be compatible in the sense of compatible.fv.

598 harmonise.im

Value

A list, of length equal to the number of arguments ..., whose entries are objects of class "fv". If
the arguments were named (name=value) then the return value also carries these names.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

See Also

fv.object, cbind.fv, eval.fv, compatible.fv

Examples

H <- harmonise(K=Kest(cells), G=Gest(cells))
H
Not run:

generates a warning about duplicated columns
try(cbind(HK, HG))

End(Not run)

harmonise.im Make Pixel Images Compatible

Description

Convert several pixel images to a common pixel raster.

Usage

S3 method for class 'im'
harmonise(...)

S3 method for class 'im'
harmonize(...)

Arguments

... Any number of pixel images (objects of class "im") or data which can be con-
verted to pixel images by as.im.

harmonise.msr 599

Details

This function makes any number of pixel images compatible, by converting them all to a common
pixel grid.

The command harmonise is generic. This is the method for objects of class "im".

At least one of the arguments ... must be a pixel image. Some arguments may be windows (objects
of class "owin"), functions (function(x,y)) or numerical constants. These will be converted to
images using as.im.

The common pixel grid is determined by inspecting all the pixel images in the argument list, com-
puting the bounding box of all the images, then finding the image with the highest spatial resolution,
and extending its pixel grid to cover the bounding box.

The return value is a list with entries corresponding to the input arguments. If the arguments were
named (name=value) then the return value also carries these names.

If you just want to determine the appropriate pixel resolution, without converting the images, use
commonGrid.

Value

A list, of length equal to the number of arguments ..., whose entries are pixel images.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

commonGrid, compatible.im, as.im

Examples

A <- setcov(square(1))
B <- function(x,y) { x }
G <- density(runifpoint(42))
harmonise(X=A, Y=B, Z=G)

harmonise.msr Make Measures Compatible

Description

Convert several measures to a common quadrature scheme

Usage

S3 method for class 'msr'
harmonise(...)

600 harmonise.owin

Arguments

... Any number of measures (objects of class "msr").

Details

This function makes any number of measures compatible, by converting them all to a common
quadrature scheme.

The command harmonise is generic. This is the method for objects of class "msr".

Value

A list, of length equal to the number of arguments ..., whose entries are measures.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

harmonise, msr

Examples

fit1 <- ppm(cells ~ x)
fit2 <- ppm(rpoispp(ex=cells) ~ x)
m1 <- residuals(fit1)
m2 <- residuals(fit2)
harmonise(m1, m2)
s1 <- residuals(fit1, type="score")
s2 <- residuals(fit2, type="score")
harmonise(s1, s2)

harmonise.owin Make Windows Compatible

Description

Convert several windows to a common pixel raster.

Usage

S3 method for class 'owin'
harmonise(...)

S3 method for class 'owin'
harmonize(...)

harmonise.owin 601

Arguments

... Any number of windows (objects of class "owin") or data which can be con-
verted to windows by as.owin.

Details

This function makes any number of windows compatible, by converting them all to a common pixel
grid.

This only has an effect if one of the windows is a binary mask. If all the windows are rectangular
or polygonal, they are returned unchanged.

The command harmonise is generic. This is the method for objects of class "owin".

Each argument must be a window (object of class "owin"), or data that can be converted to a
window by as.owin.

The common pixel grid is determined by inspecting all the windows in the argument list, computing
the bounding box of all the windows, then finding the binary mask with the finest spatial resolution,
and extending its pixel grid to cover the bounding box.

The return value is a list with entries corresponding to the input arguments. If the arguments were
named (name=value) then the return value also carries these names.

If you just want to determine the appropriate pixel resolution, without converting the windows, use
commonGrid.

Value

A list of windows, of length equal to the number of arguments The list belongs to the class
"solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

commonGrid, harmonise.im, as.owin

Examples

harmonise(X=letterR,
Y=grow.rectangle(Frame(letterR), 0.2),
Z=as.mask(letterR, eps=0.1),
V=as.mask(letterR, eps=0.07))

602 has.close

has.close Check Whether Points Have Close Neighbours

Description

For each point in a point pattern, determine whether the point has a close neighbour in the same
pattern.

Usage

has.close(X, r, Y=NULL, ...)

Default S3 method:
has.close(X,r, Y=NULL, ..., periodic=FALSE)

S3 method for class 'ppp'
has.close(X,r, Y=NULL, ..., periodic=FALSE, sorted=FALSE)

S3 method for class 'pp3'
has.close(X,r, Y=NULL, ..., periodic=FALSE, sorted=FALSE)

Arguments

X,Y Point patterns of class "ppp" or "pp3" or "lpp".

r Threshold distance: a number greater than zero.

periodic Logical value indicating whether to measure distances in the periodic sense, so
that opposite sides of the (rectangular) window are treated as identical.

sorted Logical value, indicating whether the points of X (and Y, if given) are already
sorted into increasing order of the x coordinates.

... Other arguments are ignored.

Details

This is simply a faster version of (nndist(X) <= r) or (nncross(X,Y,what="dist") <= r).

has.close(X,r) determines, for each point in the pattern X, whether or not this point has a neigh-
bour in the same pattern X which lies at a distance less than or equal to r.

has.close(X,r,Y) determines, for each point in the pattern X, whether or not this point has a
neighbour in the other pattern Y which lies at a distance less than or equal to r.

The function has.close is generic, with methods for "ppp" and "pp3" and a default method.

Value

A logical vector, with one entry for each point of X.

headtail 603

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

nndist

Examples

has.close(redwood, 0.05)
with(split(amacrine), has.close(on, 0.05, off))
with(osteo, sum(has.close(pts, 20)))

headtail First or Last Part of a Spatial Pattern

Description

Returns the first few elements (head) or the last few elements (tail) of a spatial pattern.

Usage

S3 method for class 'ppp'
head(x, n = 6L, ...)

S3 method for class 'ppx'
head(x, n = 6L, ...)

S3 method for class 'psp'
head(x, n = 6L, ...)

S3 method for class 'tess'
head(x, n = 6L, ...)

S3 method for class 'ppp'
tail(x, n = 6L, ...)

S3 method for class 'ppx'
tail(x, n = 6L, ...)

S3 method for class 'psp'
tail(x, n = 6L, ...)

S3 method for class 'tess'
tail(x, n = 6L, ...)

604 heatkernelapprox

Arguments

x A spatial pattern of geometrical figures, such as a spatial pattern of points (an
object of class "ppp", "pp3", "ppx" or "lpp") or a spatial pattern of line seg-
ments (an object of class "psp") or a tessellation (object of class "tess").

n Integer. The number of elements of the pattern that should be extracted.

... Ignored.

Details

These are methods for the generic functions head and tail. They extract the first or last n elements
from x and return them as an object of the same kind as x.

To inspect the spatial coordinates themselves, use View(x) or head(as.data.frame(x)).

Value

An object of the same class as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

View, edit.

Conversion to data frame: as.data.frame.ppp, as.data.frame.ppx, as.data.frame.psp

Examples

head(cells)
tail(as.psp(spiders), 10)
head(dirichlet(cells), 4)

heatkernelapprox Approximation to Heat Kernel on Linear Network at Source Point

Description

Computes an approximation to the value of the heat kernel on a network evaluated at its source
location.

Usage

heatkernelapprox(X, sigma, nmax = 20, floored=TRUE)

Hest 605

Arguments

X Point pattern on a linear network (object of class "lpp").
sigma Numeric. Bandwidth for kernel.
nmax Number of terms to be used in the sum.
floored Logical. If TRUE, all values are constrained to be greater than or equal to 1/L

where L is the total length of the network. This the exact value of the heat kernel
when the bandwidth is infinite.

Details

For each point X[i] in the pattern X, this algorithm computes an approximation to the value of the
heat kernel with source point X[i] evaluated at the same location.

The heat kernel κ(u, v) for a source location u evaluated at location v can be expressed as an infinite
sum of contributions from all possible paths from u to v. This algorithm applies to the special case
u = v where the source point and the query point are the same.

The algorithm computes an approximation to κ(u, u) by taking only the contributions from paths
which (a) remain in the line segment containing the point u and (b) visit a vertex at most nmax times.

Value

Numeric vector with one entry for each point in X.

Author(s)

Greg McSwiggan and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

hotrod

Examples

X <- runiflpp(3,simplenet)
heatkernelapprox(X, 0.5)

Hest Spherical Contact Distribution Function

Description

Estimates the spherical contact distribution function of a random set.

Usage

Hest(X, r=NULL, breaks=NULL, ...,
W,
correction=c("km", "rs", "han"),
conditional=TRUE)

606 Hest

Arguments

X The observed random set. An object of class "ppp", "psp" or "owin". Alterna-
tively a pixel image (class "im") with logical values.

r Optional. Vector of values for the argument r at which H(r) should be evalu-
ated. Users are advised not to specify this argument; there is a sensible default.

breaks This argument is for internal use only.

... Arguments passed to as.mask to control the discretisation.

W Optional. A window (object of class "owin") to be taken as the window of
observation. The contact distribution function will be estimated from values of
the contact distance inside W. The default is W=Frame(X) when X is a window,
and W=Window(X) otherwise.

correction Optional. The edge correction(s) to be used to estimate H(r). A vector of
character strings selected from "none", "rs", "km", "han" and "best". Alter-
natively correction="all" selects all options.

conditional Logical value indicating whether to compute the conditional or unconditional
distribution. See Details.

Details

The spherical contact distribution function of a stationary random set X is the cumulative distribu-
tion function H of the distance from a fixed point in space to the nearest point of X , given that the
point lies outside X . That is, H(r) equals the probability that X lies closer than r units away from
the fixed point x, given that X does not cover x.

Let D = d(x,X) be the shortest distance from an arbitrary point x to the set X. Then the spherical
contact distribution function is

H(r) = P (D ≤ r | D > 0)

For a point process, the spherical contact distribution function is the same as the empty space
function F discussed in Fest.

The argument X may be a point pattern (object of class "ppp"), a line segment pattern (object of
class "psp") or a window (object of class "owin"). It is assumed to be a realisation of a stationary
random set.

The algorithm first calls distmap to compute the distance transform of X, then computes the Kaplan-
Meier and reduced-sample estimates of the cumulative distribution following Hansen et al (1999). If
conditional=TRUE (the default) the algorithm returns an estimate of the spherical contact function
H(r) as defined above. If conditional=FALSE, it instead returns an estimate of the cumulative
distribution function H∗(r) = P (D ≤ r) which includes a jump at r = 0 if X has nonzero area.

Accuracy depends on the pixel resolution, which is controlled by the arguments eps, dimyx and
xy passed to as.mask. For example, use eps=0.1 to specify square pixels of side 0.1 units, and
dimyx=256 to specify a 256 by 256 grid of pixels.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing up to six columns:

Hest 607

r the values of the argument r at which the function H(r) has been estimated

rs the “reduced sample” or “border correction” estimator of H(r)

km the spatial Kaplan-Meier estimator of H(r)

hazard the hazard rate λ(r) of H(r) by the spatial Kaplan-Meier method

han the spatial Hanisch-Chiu-Stoyan estimator of H(r)

raw the uncorrected estimate of H(r), i.e. the empirical distribution of the distance
from a fixed point in the window to the nearest point of X

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> with contributions from Kassel Hingee.

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37-78.

Baddeley, A.J. and Gill, R.D. The empty space hazard of a spatial pattern. Research Report 1994/3,
Department of Mathematics, University of Western Australia, May 1994.

Hansen, M.B., Baddeley, A.J. and Gill, R.D. First contact distributions for spatial patterns: regular-
ity and estimation. Advances in Applied Probability 31 (1999) 15-33.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Fest

Examples

X <- runifpoint(42)
H <- Hest(X)
Y <- rpoisline(10)
H <- Hest(Y)
H <- Hest(Y, dimyx=256)
X <- heather$coarse
plot(Hest(X))
H <- Hest(X, conditional=FALSE)

P <- owin(poly=list(x=c(5.3, 8.5, 8.3, 3.7, 1.3, 3.7),
y=c(9.7, 10.0, 13.6, 14.4, 10.7, 7.2)))

plot(X)
plot(P, add=TRUE, col="red")
H <- Hest(X, W=P)
Z <- as.im(FALSE, Frame(X))
Z[X] <- TRUE

608 hextess

Z <- Z[P, drop=FALSE]
plot(Z)
H <- Hest(Z)

hextess Hexagonal Grid or Tessellation

Description

Construct a hexagonal grid of points, or a hexagonal tessellation.

Usage

hexgrid(W, s, offset = c(0, 0), origin=NULL, trim = TRUE)

hextess(W, s, offset = c(0, 0), origin=NULL, trim = TRUE)

Arguments

W Window in which to construct the hexagonal grid or tessellation. An object of
class "owin".

s Side length of hexagons. A positive number.

offset Numeric vector of length 2 specifying a shift of the hexagonal grid. See Details.

origin Numeric vector of length 2 specifying the initial origin of the hexagonal grid,
before the offset is applied. See Details.

trim Logical value indicating whether to restrict the result to the window W. See De-
tails.

Details

hexgrid constructs a hexagonal grid of points on the window W. If trim=TRUE (the default), the
grid is intersected with W so that all points lie inside W. If trim=FALSE, then we retain all grid points
which are the centres of hexagons that intersect W.

hextess constructs a tessellation of hexagons on the window W. If trim=TRUE (the default), the
tessellation is restricted to the interior of W, so that there will be some fragmentary hexagons near
the boundary of W. If trim=FALSE, the tessellation consists of all hexagons which intersect W.

The points of hexgrid(...) are the centres of the tiles of hextess(...) in the same order.

In the initial position of the grid or tessellation, one of the grid points (tile centres) is placed at
the origin, which defaults to the midpoint of the bounding rectangle of W. The grid can be shifted
relative to this origin by specifing the offset.

Value

The value of hexgrid is a point pattern (object of class "ppp").

The value of hextess is a tessellation (object of class "tess").

HierHard 609

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

tess

hexagon

Examples

if(interactive()) {
W <- Window(chorley)
s <- 0.7

} else {
W <- letterR
s <- 0.3

}
plot(hextess(W, s))
plot(hexgrid(W, s), add=TRUE)

HierHard The Hierarchical Hard Core Point Process Model

Description

Creates an instance of the hierarchical hard core point process model which can then be fitted to
point pattern data.

Usage

HierHard(hradii=NULL, types=NULL, archy=NULL)

Arguments

hradii Optional matrix of hard core distances

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

archy Optional: the hierarchical order. See Details.

Details

This is a hierarchical point process model for a multitype point pattern (Högmander and Särkkä,
1999; Grabarnik and Särkkä, 2009). It is appropriate for analysing multitype point pattern data in
which the types are ordered so that the points of type j depend on the points of type 1, 2, . . . , j− 1.

The hierarchical version of the (stationary) hard core process withm types, with hard core distances
hij and parameters βj , is a point process in which each point of type j contributes a factor βj to

610 HierHard

the probability density of the point pattern. If any pair of points of types i and j lies closer than hij
units apart, the configuration of points is impossible (probability density zero).

The nonstationary hierarchical hard core process is similar except that the contribution of each
individual point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hierarchical hard core process pairwise interaction is yielded by the
function HierHard(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the HierHard interaction is applied, when the user calls ppm.
However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix radii.

The argument archy can be used to specify a hierarchical ordering of the types. It can be either
a vector of integers or a character vector matching the possible types. The default is the sequence
1, 2, . . . ,m meaning that type j depends on types 1, 2, . . . , j − 1.

The matrix iradii must be square, with entries which are either positive numbers, or zero or
NA. A value of zero or NA indicates that no hard core interaction term should be included for this
combination of types.

Note that only the hard core distances are specified in HierHard. The canonical parameters log(βj)
are estimated by ppm(), not fixed in HierHard().

Value

An object of class "interact" describing the interpoint interaction structure of the hierarchical
hard core process with hard core distances hradii[i, j].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

References

Grabarnik, P. and Särkkä, A. (2009) Modelling the spatial structure of forest stands by multivariate
point processes with hierarchical interactions. Ecological Modelling 220, 1232–1240.

Högmander, H. and Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions.
Biometrics 55, 1051–1058.

See Also

MultiHard for the corresponding symmetrical interaction.

HierStrauss, HierStraussHard.

hierpair.family 611

Examples

h <- matrix(c(4, NA, 10, 15), 2, 2)
HierHard(h)
prints a sensible description of itself
ppm(ants ~1, HierHard(h))
fit the stationary hierarchical hard core process to ants data

hierpair.family Hierarchical Pairwise Interaction Process Family

Description

An object describing the family of all hierarchical pairwise interaction Gibbs point processes.

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the hierarchical pairwise
interaction family of point process models.

Anyway, hierpair.family is an object of class "isf" containing a function hierpair.family$eval
for evaluating the sufficient statistics of any hierarchical pairwise interaction point process model
taking an exponential family form.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

See Also

Other families: pairwise.family, pairsat.family, ord.family, inforder.family.

Hierarchical Strauss interaction: HierStrauss.

612 HierStrauss

HierStrauss The Hierarchical Strauss Point Process Model

Description

Creates an instance of the hierarchical Strauss point process model which can then be fitted to point
pattern data.

Usage

HierStrauss(radii, types=NULL, archy=NULL)

Arguments

radii Matrix of interaction radii

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

archy Optional: the hierarchical order. See Details.

Details

This is a hierarchical point process model for a multitype point pattern (Högmander and Särkkä,
1999; Grabarnik and Särkkä, 2009). It is appropriate for analysing multitype point pattern data in
which the types are ordered so that the points of type j depend on the points of type 1, 2, . . . , j− 1.

The hierarchical version of the (stationary) Strauss process with m types, with interaction radii rij
and parameters βj and γij is a point process in which each point of type j contributes a factor βj to
the probability density of the point pattern, and a pair of points of types i and j closer than rij units
apart contributes a factor γij to the density provided i ≤ j.
The nonstationary hierarchical Strauss process is similar except that the contribution of each indi-
vidual point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hierarchical Strauss process pairwise interaction is yielded by the
function HierStrauss(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the HierStrauss interaction is applied, when the user calls ppm.
However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix radii.

The argument archy can be used to specify a hierarchical ordering of the types. It can be either
a vector of integers or a character vector matching the possible types. The default is the sequence
1, 2, . . . ,m meaning that type j depends on types 1, 2, . . . , j − 1.

The matrix radii must be symmetric, with entries which are either positive numbers or NA. A value
of NA indicates that no interaction term should be included for this combination of types.

Note that only the interaction radii are specified in HierStrauss. The canonical parameters log(βj)
and log(γij) are estimated by ppm(), not fixed in HierStrauss().

HierStraussHard 613

Value

An object of class "interact" describing the interpoint interaction structure of the hierarchical
Strauss process with interaction radii radii[i, j].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

References

Grabarnik, P. and Särkkä, A. (2009) Modelling the spatial structure of forest stands by multivariate
point processes with hierarchical interactions. Ecological Modelling 220, 1232–1240.

Högmander, H. and Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions.
Biometrics 55, 1051–1058.

See Also

MultiStrauss for the corresponding symmetrical interaction.

HierHard, HierStraussHard.

Examples

r <- matrix(10 * c(3,4,4,3), nrow=2,ncol=2)
HierStrauss(r)
prints a sensible description of itself
ppm(ants ~1, HierStrauss(r, , c("Messor", "Cataglyphis")))
fit the stationary hierarchical Strauss process to ants data

HierStraussHard The Hierarchical Strauss Hard Core Point Process Model

Description

Creates an instance of the hierarchical Strauss-hard core point process model which can then be
fitted to point pattern data.

Usage

HierStraussHard(iradii, hradii=NULL, types=NULL, archy=NULL)

614 HierStraussHard

Arguments

iradii Matrix of interaction radii

hradii Optional matrix of hard core distances

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

archy Optional: the hierarchical order. See Details.

Details

This is a hierarchical point process model for a multitype point pattern (Högmander and Särkkä,
1999; Grabarnik and Särkkä, 2009). It is appropriate for analysing multitype point pattern data in
which the types are ordered so that the points of type j depend on the points of type 1, 2, . . . , j− 1.

The hierarchical version of the (stationary) Strauss hard core process with m types, with interaction
radii rij , hard core distances hij and parameters βj and γij is a point process in which each point
of type j contributes a factor βj to the probability density of the point pattern, and a pair of points
of types i and j closer than rij units apart contributes a factor γij to the density provided i ≤ j.
If any pair of points of types i and j lies closer than hij units apart, the configuration of points is
impossible (probability density zero).

The nonstationary hierarchical Strauss hard core process is similar except that the contribution of
each individual point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hierarchical Strauss hard core process pairwise interaction is yielded
by the function HierStraussHard(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the HierStraussHard interaction is applied, when the user calls
ppm. However, the user should be confident that the ordering of types in the dataset corresponds to
the ordering of rows and columns in the matrix radii.

The argument archy can be used to specify a hierarchical ordering of the types. It can be either
a vector of integers or a character vector matching the possible types. The default is the sequence
1, 2, . . . ,m meaning that type j depends on types 1, 2, . . . , j − 1.

The matrices iradii and hradii must be square, with entries which are either positive numbers
or zero or NA. A value of zero or NA indicates that no interaction term should be included for this
combination of types.

Note that only the interaction radii and hard core distances are specified in HierStraussHard. The
canonical parameters log(βj) and log(γij) are estimated by ppm(), not fixed in HierStraussHard().

Value

An object of class "interact" describing the interpoint interaction structure of the hierarchical
Strauss-hard core process with interaction radii iradii[i, j] and hard core distances hradii[i, j].

hist.funxy 615

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

References

Grabarnik, P. and Särkkä, A. (2009) Modelling the spatial structure of forest stands by multivariate
point processes with hierarchical interactions. Ecological Modelling 220, 1232–1240.

Högmander, H. and Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions.
Biometrics 55, 1051–1058.

See Also

MultiStraussHard for the corresponding symmetrical interaction.

HierHard, HierStrauss.

Examples

r <- matrix(c(30, NA, 40, 30), nrow=2,ncol=2)
h <- matrix(c(4, NA, 10, 15), 2, 2)
HierStraussHard(r, h)
prints a sensible description of itself
ppm(ants ~1, HierStraussHard(r, h))
fit the stationary hierarchical Strauss-hard core process to ants data

hist.funxy Histogram of Values of a Spatial Function

Description

Computes and displays a histogram of the values of a spatial function of class "funxy".

Usage

S3 method for class 'funxy'
hist(x, ..., xname)

Arguments

x A pixel image (object of class "funxy").

... Arguments passed to as.im or hist.im.

xname Optional. Character string to be used as the name of the dataset x.

616 hist.im

Details

This function computes and (by default) displays a histogram of the values of the function x.

An object of class "funxy" describes a function of spatial location. It is a function(x,y,..) in
the R language, with additional attributes.

The function hist.funxy is a method for the generic function hist for the class "funxy".

The function is first converted to a pixel image using as.im, then hist.im is called to produce the
histogram.

Any arguments in ... are passed to as.im to determine the pixel resolution, or to hist.im to
determine the histogram breaks and to control or suppress plotting. Useful arguments include W for
the spatial domain, eps,dimyx for pixel resolution, main for the main title.

Value

An object of class "histogram" as returned by hist.default. This object can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

spatialcdf for the cumulative distribution function of an image or function.

hist, hist.default.

For other statistical graphics such as Q-Q plots, use as.im(X)[] to extract the pixel values of image
X, and apply the usual statistical graphics commands.

Examples

f <- funxy(function(x,y) {x^2}, unit.square())
hist(f)

hist.im Histogram of Pixel Values in an Image

Description

Computes and displays a histogram of the pixel values in a pixel image. The hist method for class
"im".

Usage

S3 method for class 'im'
hist(x, ..., probability=FALSE, xname)

hist.im 617

Arguments

x A pixel image (object of class "im").

... Arguments passed to hist.default or barplot.

probability Logical. If TRUE, the histogram will be normalised to give probabilities or prob-
ability densities.

xname Optional. Character string to be used as the name of the dataset x.

Details

This function computes and (by default) displays a histogram of the pixel values in the image x.

An object of class "im" describes a pixel image. See im.object) for details of this class.

The function hist.im is a method for the generic function hist for the class "im".

Any arguments in ... are passed to hist.default (for numeric valued images) or barplot (for
factor or logical images). For example, such arguments control the axes, and may be used to sup-
press the plotting.

Value

For numeric-valued images, an object of class "histogram" as returned by hist.default. This
object can be plotted.

For factor-valued or logical images, an object of class "barplotdata", which can be plotted. This
is a list with components called counts (contingency table of counts of the numbers of pixels taking
each possible value), probs (corresponding relative frequencies) and mids (graphical x-coordinates
of the midpoints of the bars in the barplot).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

spatialcdf for the cumulative distribution function of an image.

hist, hist.default, barplot.

For other statistical graphics such as Q-Q plots, use X[] to extract the pixel values of image X, and
apply the usual statistical graphics commands.

For information about pixel images see im.object, summary.im.

Examples

X <- as.im(function(x,y) {x^2}, unit.square())
hist(X)
hist(cut(X,3))

618 hopskel

hopskel Hopkins-Skellam Test

Description

Perform the Hopkins-Skellam test of Complete Spatial Randomness, or simply calculate the test
statistic.

Usage

hopskel(X)

hopskel.test(X, ...,
alternative=c("two.sided", "less", "greater",

"clustered", "regular"),
method=c("asymptotic", "MonteCarlo"),
nsim=999)

Arguments

X Point pattern (object of class "ppp").

alternative String indicating the type of alternative for the hypothesis test. Partially matched.

method Method of performing the test. Partially matched.

nsim Number of Monte Carlo simulations to perform, if a Monte Carlo p-value is
required.

... Ignored.

Details

Hopkins and Skellam (1954) proposed a test of Complete Spatial Randomness based on comparing
nearest-neighbour distances with point-event distances.

If the point pattern X contains n points, we first compute the nearest-neighbour distances P1, . . . , Pn
so that Pi is the distance from the ith data point to the nearest other data point. Then we generate
another completely random pattern U with the same number n of points, and compute for each point
of U the distance to the nearest point of X, giving distances I1, . . . , In. The test statistic is

A =

∑
i P

2
i∑

i I
2
i

The null distribution of A is roughly an F distribution with shape parameters (2n, 2n). (This is
equivalent to using the test statistic H = A/(1 + A) and referring H to the Beta distribution with
parameters (n, n)).

The function hopskel calculates the Hopkins-Skellam test statisticA, and returns its numeric value.
This can be used as a simple summary of spatial pattern: the value H = 1 is consistent with
Complete Spatial Randomness, while values H < 1 are consistent with spatial clustering, and
values H > 1 are consistent with spatial regularity.

hotrod 619

The function hopskel.test performs the test. If method="asymptotic" (the default), the test
statistic H is referred to the F distribution. If method="MonteCarlo", a Monte Carlo test is per-
formed using nsim simulated point patterns.

Value

The value of hopskel is a single number.

The value of hopskel.test is an object of class "htest" representing the outcome of the test. It
can be printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Hopkins, B. and Skellam, J.G. (1954) A new method of determining the type of distribution of plant
individuals. Annals of Botany 18, 213–227.

See Also

clarkevans, clarkevans.test, nndist, nncross

Examples

hopskel(redwood)
hopskel.test(redwood, alternative="clustered")

hotrod Heat Kernel for a One-Dimensional Rod

Description

Calculate values of the heat kernel on a one-dimensional rod. The ends of the rod may be assumed
to be insulated, or absorbing.

Usage

hotrod(len, xsource, xquery, sigma, ends=c("insulated", "absorbing"), nmax=20)

620 Hybrid

Arguments

len Length of the rod. A single number or numeric vector.

xsource Positions of the source points, from the left end of the rod (in the same distance
units as len). A single number or numeric vector.

xquery Positions of the query points, from the left end of the rod (in the same distance
units as len). A single number or numeric vector.

sigma Bandwidth for kernel. A single number or a numeric vector.

ends Character string (partially matched) specifying whether the ends of the rod are
assumed to be insulated or absorbing.

nmax Number of terms in the infinite sum to use. A single integer or an integer vector.

Details

Computes the heat kernel as an infinite sum.

Value

Number or numeric vector.

Author(s)

Greg McSwiggan and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Examples

curve(hotrod(1, 0.1, x, 0.7))

check it's a probability density
f <- function(x) hotrod(1, 0.1, x, 0.7)
integrate(f, 0, 1)

absorbing ends
curve(hotrod(1, 0.1, x, 0.7, ends="a"))

Hybrid Hybrid Interaction Point Process Model

Description

Creates an instance of a hybrid point process model which can then be fitted to point pattern data.

Usage

Hybrid(...)

Hybrid 621

Arguments

... Two or more interactions (objects of class "interact") or objects which can be
converted to interactions. See Details.

Details

A hybrid (Baddeley, Turner, Mateu and Bevan, 2013) is a point process model created by combining
two or more point process models, or an interpoint interaction created by combining two or more
interpoint interactions.

The hybrid of two point processes, with probability densities f(x) and g(x) respectively, is the
point process with probability density

h(x) = c f(x) g(x)

where c is a normalising constant.

Equivalently, the hybrid of two point processes with conditional intensities λ(u, x) and κ(u, x) is
the point process with conditional intensity

φ(u, x) = λ(u, x)κ(u, x).

The hybrid of m > 3 point processes is defined in a similar way.

The function ppm, which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of a hybrid interaction is yielded by the function Hybrid().

The arguments ... will be interpreted as interpoint interactions (objects of class "interact") and
the result will be the hybrid of these interactions. Each argument must either be an interpoint
interaction (object of class "interact"), or a point process model (object of class "ppm") from
which the interpoint interaction will be extracted.

The arguments ... may also be given in the form name=value. This is purely cosmetic: it can be
used to attach simple mnemonic names to the component interactions, and makes the printed output
from print.ppm neater.

Value

An object of class "interact" describing an interpoint interaction structure.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models
and their implementation. Journal of Statistical Software 55:11, 1–43. http://www.jstatsoft.
org/v55/i11/

See Also

ppm

http://www.jstatsoft.org/v55/i11/
http://www.jstatsoft.org/v55/i11/

622 hybrid.family

Examples

Hybrid(Strauss(0.1), Geyer(0.2, 3))

Hybrid(Ha=Hardcore(0.05), St=Strauss(0.1), Ge=Geyer(0.2, 3))

fit <- ppm(redwood, ~1, Hybrid(A=Strauss(0.02), B=Geyer(0.1, 2)))
fit

ctr <- rmhcontrol(nrep=5e4, expand=1)
plot(simulate(fit, control=ctr))

hybrid components can be models (including hybrid models)
Hybrid(fit, S=Softcore(0.5))

plot.fii only works if every component is a pairwise interaction
data(swedishpines)
fit2 <- ppm(swedishpines, ~1, Hybrid(DG=DiggleGratton(2,10), S=Strauss(5)))
plot(fitin(fit2))
plot(fitin(fit2), separate=TRUE, mar.panel=rep(4,4))

hybrid.family Hybrid Interaction Family

Description

An object describing the family of all hybrid interactions.

Details

Advanced Use Only!
This structure would not normally be touched by the user. It describes the family of all hybrid point
process models.

If you need to create a specific hybrid interaction model for use in modelling, use the function
Hybrid.

Anyway, hybrid.family is an object of class "isf" containing a function hybrid.family$eval
for evaluating the sufficient statistics of any hybrid interaction point process model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Use Hybrid to make hybrid interactions.

Other families: pairwise.family, pairsat.family, ord.family, inforder.family.

hyperframe 623

hyperframe Hyper Data Frame

Description

Create a hyperframe: a two-dimensional array in which each column consists of values of the same
atomic type (like the columns of a data frame) or objects of the same class.

Usage

hyperframe(...,
row.names=NULL, check.rows=FALSE, check.names=TRUE,
stringsAsFactors=default.stringsAsFactors())

Arguments

... Arguments of the form value or tag=value. Each value is either an atomic
vector, or a list of objects of the same class, or a single atomic value, or a single
object. Each value will become a column of the array. The tag determines the
name of the column. See Details.

row.names,check.rows,check.names,stringsAsFactors

Arguments passed to data.frame controlling the names of the rows, whether to
check that rows are consistent, whether to check validity of the column names,
and whether to convert character columns to factors.

Details

A hyperframe is like a data frame, except that its entries can be objects of any kind.

A hyperframe is a two-dimensional array in which each column consists of values of one atomic
type (as in a data frame) or consists of objects of one class.

The arguments ... are any number of arguments of the form value or tag=value. Each value
will become a column of the array. The tag determines the name of the column.

Each value can be either

• an atomic vector or factor (i.e. numeric vector, integer vector, character vector, logical vector,
complex vector or factor)

• a list of objects which are all of the same class

• one atomic value, which will be replicated to make an atomic vector or factor

• one object, which will be replicated to make a list of objects.

All columns (vectors, factors and lists) must be of the same length, if their length is greater than 1.

Value

An object of class "hyperframe".

624 identify.ppp

Methods for Hyperframes

There are methods for print, plot, summary, with, split, [, [<,$, $<-, names, as.data.frame
as.list, cbind and rbind for the class of hyperframes. There is also is.hyperframe and as.hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

as.hyperframe, as.hyperframe.ppx, plot.hyperframe, [.hyperframe, with.hyperframe, split.hyperframe,
as.data.frame.hyperframe, cbind.hyperframe, rbind.hyperframe

Examples

equivalent to a data frame
hyperframe(X=1:10, Y=3)

list of functions
hyperframe(f=list(sin, cos, tan))

table of functions and matching expressions
hyperframe(f=list(sin, cos, tan),

e=list(expression(sin(x)), expression(cos(x)), expression(tan(x))))

hyperframe(X=1:10, Y=letters[1:10], Z=factor(letters[1:10]),
stringsAsFactors=FALSE)

lambda <- runif(4, min=50, max=100)
X <- lapply(as.list(lambda), function(x) { rpoispp(x) })
h <- hyperframe(lambda=lambda, X=X)
h

h$lambda2 <- lambda^2
h[, "lambda3"] <- lambda^3
h[, "Y"] <- X

identify.ppp Identify Points in a Point Pattern

Description

If a point pattern is plotted in the graphics window, this function will find the point of the pattern
which is nearest to the mouse position, and print its mark value (or its serial number if there is no
mark).

identify.psp 625

Usage

S3 method for class 'ppp'
identify(x, ...)

S3 method for class 'lpp'
identify(x, ...)

Arguments

x A point pattern (object of class "ppp" or "lpp").

... Arguments passed to identify.default.

Details

This is a method for the generic function identify for point pattern objects.

The point pattern x should first be plotted using plot.ppp or plot.lpp as appropriate. Then
identify(x) reads the position of the graphics pointer each time the left mouse button is pressed. It
then finds the point of the pattern x closest to the mouse position. If this closest point is sufficiently
close to the mouse pointer, its index (and its mark if any) will be returned as part of the value of the
call.

Each time a point of the pattern is identified, text will be displayed next to the point, showing its
serial number (if x is unmarked) or its mark value (if x is marked).

Value

If x is unmarked, the result is a vector containing the serial numbers of the points in the pattern x
that were identified. If x is marked, the result is a 2-column matrix, the first column containing the
serial numbers and the second containing the marks for these points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

identify, clickppp

identify.psp Identify Segments in a Line Segment Pattern

Description

If a line segment pattern is plotted in the graphics window, this function will find the segment which
is nearest to the mouse position, and print its serial number.

626 identify.psp

Usage

S3 method for class 'psp'
identify(x, ..., labels=seq_len(nsegments(x)), n=nsegments(x), plot=TRUE)

Arguments

x A line segment pattern (object of class "psp").

labels Labels associated with the segments, to be plotted when the segments are iden-
tified. A character vector or numeric vector of length equal to the number of
segments in x.

n Maximum number of segments to be identified.

plot Logical. Whether to plot the labels when a segment is identified.

... Arguments passed to text.default controlling the plotting of the labels.

Details

This is a method for the generic function identify for line segment pattern objects.

The line segment pattern x should first be plotted using plot.psp. Then identify(x) reads the
position of the graphics pointer each time the left mouse button is pressed. It then finds the segment
in the pattern x that is closest to the mouse position. This segment’s index will be returned as part
of the value of the call.

Each time a segment is identified, text will be displayed next to the point, showing its serial number
(or the relevant entry of labels).

Value

Vector containing the serial numbers of the segments in the pattern x that were identified.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

identify, identify.ppp.

idw 627

idw Inverse-distance weighted smoothing of observations at irregular
points

Description

Performs spatial smoothing of numeric values observed at a set of irregular locations using inverse-
distance weighting.

Usage

idw(X, power=2, at=c("pixels", "points"), ..., se=FALSE)

Arguments

X A marked point pattern (object of class "ppp").

power Numeric. Power of distance used in the weighting.

at Character string specifying whether to compute the intensity values at a grid of
pixel locations (at="pixels") or only at the points of X (at="points"). String
is partially matched.

... Arguments passed to as.mask to control the pixel resolution of the result.

se Logical value specifying whether to calculate a standard error.

Details

This function performs spatial smoothing of numeric values observed at a set of irregular locations.

Smoothing is performed by inverse distance weighting. If the observed values are v1, . . . , vn at
locations x1, . . . , xn respectively, then the smoothed value at a location u is

g(u) =

∑
i wivi∑
i wi

where the weights are the inverse p-th powers of distance,

wi =
1

d(u, xi)p

where d(u, xi) = ||u− xi|| is the Euclidean distance from u to xi.

The argument X must be a marked point pattern (object of class "ppp", see ppp.object). The points
of the pattern are taken to be the observation locations xi, and the marks of the pattern are taken to
be the numeric values vi observed at these locations.

The marks are allowed to be a data frame. Then the smoothing procedure is applied to each column
of marks.

If at="pixels" (the default), the smoothed mark value is calculated at a grid of pixels, and the
result is a pixel image. The arguments ... control the pixel resolution. See as.mask.

628 idw

If at="points", the smoothed mark values are calculated at the data points only, using a leave-one-
out rule (the mark value at a data point is excluded when calculating the smoothed value for that
point).

An estimate of standard error is also calculated, if se=TRUE. The calculation assumes that the data
point locations are fixed, that is, the standard error only takes into account the variability in the
mark values, and not the variability due to randomness of the data point locations.

An alternative to inverse-distance weighting is kernel smoothing, which is performed by Smooth.ppp.

Value

If X has a single column of marks:

• If at="pixels" (the default), the result is a pixel image (object of class "im"). Pixel values
are values of the interpolated function.

• If at="points", the result is a numeric vector of length equal to the number of points in X.
Entries are values of the interpolated function at the points of X.

If X has a data frame of marks:

• If at="pixels" (the default), the result is a named list of pixel images (object of class "im").
There is one image for each column of marks. This list also belongs to the class "solist",
for which there is a plot method.

• If at="points", the result is a data frame with one row for each point of X, and one column
for each column of marks. Entries are values of the interpolated function at the points of X.

If se=TRUE, then the result is a list with two entries named estimate and SE, which each have the
format described above.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>. Variance calculation by Andrew P Wheeler with modifi-
cations by Adrian Baddeley.

References

Shepard, D. (1968) A two-dimensional interpolation function for irregularly-spaced data. Proceed-
ings of the 1968 ACM National Conference, 1968, pages 517–524. DOI: 10.1145/800186.810616

See Also

density.ppp, ppp.object, im.object.

See Smooth.ppp for kernel smoothing and nnmark for nearest-neighbour interpolation.

To perform other kinds of interpolation, see also the akima package.

Iest 629

Examples

data frame of marks: trees marked by diameter and height
plot(idw(finpines))
idw(finpines, at="points")[1:5,]
plot(idw(finpines, se=TRUE)$SE)
idw(finpines, at="points", se=TRUE)$SE[1:5,]

Iest Estimate the I-function

Description

Estimates the summary function I(r) for a multitype point pattern.

Usage

Iest(X, ..., eps=NULL, r=NULL, breaks=NULL, correction=NULL)

Arguments

X The observed point pattern, from which an estimate of I(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

eps the resolution of the discrete approximation to Euclidean distance (see below).
There is a sensible default.

r Optional. Numeric vector of values for the argument r at which I(r) should be
evaluated. There is a sensible default. First-time users are strongly advised not
to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.

correction Optional. Vector of character strings specifying the edge correction(s) to be used
by Jest.

Details

The I function summarises the dependence between types in a multitype point process (Van Lieshout
and Baddeley, 1999) It is based on the concept of the J function for an unmarked point process (Van
Lieshout and Baddeley, 1996). See Jest for information about the J function.

The I function is defined as

I(r) =

m∑
i=1

piJii(r)− J••(r)

where J•• is the J function for the entire point process ignoring the marks, while Jii is the J
function for the process consisting of points of type i only, and pi is the proportion of points which
are of type i.

The I function is designed to measure dependence between points of different types, even if the
points are not Poisson. LetX be a stationary multitype point process, and writeXi for the process of

630 Iest

points of type i. If the processes Xi are independent of each other, then the I-function is identically
equal to 0. Deviations I(r) < 1 or I(r) > 1 typically indicate negative and positive association,
respectively, between types. See Van Lieshout and Baddeley (1999) for further information.

An estimate of I derived from a multitype spatial point pattern dataset can be used in exploratory
data analysis and formal inference about the pattern. The estimate of I(r) is compared against the
constant function 0. Deviations I(r) < 1 or I(r) > 1 may suggest negative and positive association,
respectively.

This algorithm estimates the I-function from the multitype point pattern X. It assumes that X can be
treated as a realisation of a stationary (spatially homogeneous) random spatial marked point process
in the plane, observed through a bounded window.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can
be supplied in any of the formats recognised by as.ppp(). It must be a multitype point pattern (it
must have a marks vector which is a factor).

The function Jest is called to compute estimates of the J functions in the formula above. In fact
three different estimates are computed using different edge corrections. See Jest for information.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing

r the vector of values of the argument r at which the function I has been estimated
rs the “reduced sample” or “border correction” estimator of I(r) computed from

the border-corrected estimates of J functions
km the spatial Kaplan-Meier estimator of I(r) computed from the Kaplan-Meier

estimates of J functions
han the Hanisch-style estimator of I(r) computed from the Hanisch-style estimates

of J functions
un the uncorrected estimate of I(r) computed from the uncorrected estimates of J
theo the theoretical value of I(r) for a stationary Poisson process: identically equal

to 0

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

im 631

See Also

Jest

Examples

data(amacrine)
Ic <- Iest(amacrine)
plot(Ic, main="Amacrine Cells data")
values are below I= 0, suggesting negative association
between 'on' and 'off' cells.

im Create a Pixel Image Object

Description

Creates an object of class "im" representing a two-dimensional pixel image.

Usage

im(mat, xcol=seq_len(ncol(mat)), yrow=seq_len(nrow(mat)),
xrange=NULL, yrange=NULL,
unitname=NULL)

Arguments

mat matrix or vector containing the pixel values of the image.

xcol vector of x coordinates for the pixel grid

yrow vector of y coordinates for the pixel grid

xrange,yrange Optional. Vectors of length 2 giving the x and y limits of the enclosing rectangle.
(Ignored if xcol, yrow are present.)

unitname Optional. Name of unit of length. Either a single character string, or a vector of
two character strings giving the singular and plural forms, respectively.

Details

This function creates an object of class "im" representing a ‘pixel image’ or two-dimensional array
of values.

The pixel grid is rectangular and occupies a rectangular window in the spatial coordinate system.
The pixel values are scalars: they can be real numbers, integers, complex numbers, single characters
or strings, logical values, or categorical values. A pixel’s value can also be NA, meaning that no
value is defined at that location, and effectively that pixel is ‘outside’ the window. Although the
pixel values must be scalar, photographic colour images (i.e., with red, green, and blue brightness
channels) can be represented as character-valued images in spatstat, using R’s standard encoding
of colours as character strings.

632 im

The matrix mat contains the ‘greyscale’ values for a rectangular grid of pixels. Note carefully that
the entry mat[i,j] gives the pixel value at the location (xcol[j],yrow[i]). That is, the row
index of the matrix mat corresponds to increasing y coordinate, while the column index of mat
corresponds to increasing x coordinate. Thus yrow has one entry for each row of mat and xcol has
one entry for each column of mat. Under the usual convention in R, a correct display of the image
would be obtained by transposing the matrix, e.g. image.default(xcol,yrow,t(mat)), if you
wanted to do it by hand.

The entries of mat may be numeric (real or integer), complex, logical, character, or factor values.
If mat is not a matrix, it will be converted into a matrix with nrow(mat) = length(yrow) and
ncol(mat) = length(xcol).

To make a factor-valued image, note that R has a quirky way of handling matrices with factor-valued
entries. The command matrix cannot be used directly, because it destroys factor information. To
make a factor-valued image, do one of the following:

• Create a factor containing the pixel values, say mat <-factor(.....), and then assign ma-
trix dimensions to it by dim(mat) <-c(nr,nc) where nr,nc are the numbers of rows and
columns. The resulting object mat is both a factor and a vector.

• Supply mat as a one-dimensional factor and specify the arguments xcol and yrow to determine
the dimensions of the image.

• Use the functions cut.im or eval.im to make factor-valued images from other images).

For a description of the methods available for pixel image objects, see im.object.

To convert other kinds of data to a pixel image (for example, functions or windows), use as.im.

Warnings

The internal representation of images is likely to change in future releases of spatstat. The safe
way to extract pixel values from an image object is to use as.matrix.im or [.im.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

im.object for details of the class.

as.im for converting other kinds of data to an image.

as.matrix.im, [.im, eval.im for manipulating images.

Examples

vec <- rnorm(1200)
mat <- matrix(vec, nrow=30, ncol=40)
whitenoise <- im(mat)
whitenoise <- im(mat, xrange=c(0,1), yrange=c(0,1))
whitenoise <- im(mat, xcol=seq(0,1,length=40), yrow=seq(0,1,length=30))
whitenoise <- im(vec, xcol=seq(0,1,length=40), yrow=seq(0,1,length=30))

im.apply 633

plot(whitenoise)

Factor-valued images:
f <- factor(letters[1:12])
dim(f) <- c(3,4)
Z <- im(f)

Factor image from other image:
cutwhite <- cut(whitenoise, 3)
plot(cutwhite)

Factor image from raw data
cutmat <- cut(mat, 3)
dim(cutmat) <- c(30,40)
cutwhite <- im(cutmat)
plot(cutwhite)

im.apply Apply Function Pixelwise to List of Images

Description

Returns a pixel image obtained by applying a function to the values of corresponding pixels in
several pixel images.

Usage

im.apply(X, FUN, ..., fun.handles.na=FALSE, check=TRUE)

Arguments

X A list of pixel images (objects of class "im").

FUN A function that can be applied to vectors, or a character string giving the name
of such a function.

... Additional arguments to FUN.

fun.handles.na Logical value specifying what to do when the data include NA values. See De-
tails.

check Logical value specifying whether to check that the images in X are compatible
(for example that they have the same grid of pixel locations) and to convert them
to compatible images if necessary.

Details

The argument X should be a list of pixel images (objects of class "im"). If the images do not have
identical pixel grids, they will be converted to a common grid using harmonise.im.

At each pixel location, the values of the images in X at that pixel will be extracted as a vector. The
function FUN will be applied to this vector. The result (which should be a single value) becomes the
pixel value of the resulting image.

634 im.object

The argument fun.handles.na specifies what to do when some of the pixel values are NA.

• If fun.handles.na=FALSE (the default), the function FUN is never applied to data that include
NA values; the result is defined to be NA whenever the data contain NA.

• If fun.handles.na=TRUE, the function FUN will be applied to all pixel data, including those
which contain NA values.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

eval.im for algebraic operations with images.

Examples

DA <- density(split(amacrine))
DA
im.apply(DA, max)
im.apply(DA, sum)

Example with incompatible patterns of NA values
Z <- density(split(ants))
B <- owin(c(438, 666), c(80, 310))
Z[[1]][B] <- NA
opa <- par(mfrow=c(2,2))
plot(Z[[1]])
plot(Z[[2]])
#' Default action: NA -> NA
plot(im.apply(Z, mean))
#' Use NA handling in mean.default
plot(im.apply(Z, mean, na.rm=TRUE, fun.handles.na=TRUE))
par(opa)

im.object Class of Images

Description

A class "im" to represent a two-dimensional pixel image.

im.object 635

Details

An object of this class represents a two-dimensional pixel image. It specifies

• the dimensions of the rectangular array of pixels

• x and y coordinates for the pixels

• a numeric value (“grey value”) at each pixel

If X is an object of type im, it contains the following elements:

v matrix of values
dim dimensions of matrix v
xrange range of x coordinates of image window
yrange range of y coordinates of image window
xstep width of one pixel
ystep height of one pixel
xcol vector of x coordinates of centres of pixels
yrow vector of y coordinates of centres of pixels

Users are strongly advised not to manipulate these entries directly.

Objects of class "im" may be created by the functions im and as.im. Image objects are also returned
by various functions including distmap, Kmeasure, setcov, eval.im and cut.im.

Image objects may be displayed using the methods plot.im, image.im, persp.im and contour.im.
There are also methods print.im for printing information about an image, summary.im for sum-
marising an image, mean.im for calculating the average pixel value, hist.im for plotting a his-
togram of pixel values, quantile.im for calculating quantiles of pixel values, and cut.im for
dividing the range of pixel values into categories.

Pixel values in an image may be extracted using the subset operator [.im. To extract all pixel values
from an image object, use as.matrix.im. The levels of a factor-valued image can be extracted and
changed with levels and levels<-.

Calculations involving one or more images (for example, squaring all the pixel values in an image,
converting numbers to factor levels, or subtracting one image from another) can often be done easily
using eval.im. To find all pixels satisfying a certain constraint, use solutionset.

Note carefully that the entry v[i,j] gives the pixel value at the location (xcol[j],yrow[i]. That
is, the row index of the matrix v corresponds to increasing y coordinate, while the column index
of mat corresponds to increasing x coordinate. Thus yrow has one entry for each row of v and
xcol has one entry for each column of v. Under the usual convention in R, a correct display of
the image would be obtained by transposing the matrix, e.g. image.default(xcol,yrow,t(v)),
if you wanted to do it by hand.

Warnings

The internal representation of images is likely to change in future releases of spatstat. Do not
address the entries in an image directly. To extract all pixel values from an image object, use
as.matrix.im.

636 imcov

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

im, as.im, plot.im, persp.im, eval.im, [.im

imcov Spatial Covariance of a Pixel Image

Description

Computes the unnormalised spatial covariance function of a pixel image.

Usage

imcov(X, Y=X)

Arguments

X A pixel image (object of class "im".

Y Optional. Another pixel image.

Details

The (uncentred, unnormalised) spatial covariance function of a pixel image X in the plane is the
function C(v) defined for each vector v as

C(v) =

∫
X(u)X(u− v) du

where the integral is over all spatial locations u, and where X(u) denotes the pixel value at location
u.

This command computes a discretised approximation to the spatial covariance function, using the
Fast Fourier Transform. The return value is another pixel image (object of class "im") whose
greyscale values are values of the spatial covariance function.

If the argument Y is present, then imcov(X,Y) computes the set cross-covariance function C(u)
defined as

C(v) =

∫
X(u)Y (u− v) du.

Note that imcov(X,Y) is equivalent to convolve.im(X,Y,reflectY=TRUE).

Value

A pixel image (an object of class "im") representing the spatial covariance function of X, or the
cross-covariance of X and Y.

improve.kppm 637

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

setcov, convolve.im, owin, as.owin, erosion

Examples

X <- as.im(square(1))
v <- imcov(X)
plot(v)

improve.kppm Improve Intensity Estimate of Fitted Cluster Point Process Model

Description

Update the fitted intensity of a fitted cluster point process model.

Usage

improve.kppm(object, type=c("quasi", "wclik1", "clik1"), rmax = NULL,
eps.rmax = 0.01, dimyx = 50, maxIter = 100, tolerance = 1e-06,
fast = TRUE, vcov = FALSE, fast.vcov = FALSE, verbose = FALSE,

save.internals = FALSE)

Arguments

object Fitted cluster point process model (object of class "kppm").

type A character string indicating the method of estimation. Current options are
"clik1", "wclik1" and "quasi" for, respectively, first order composite (Pois-
son) likelihood, weighted first order composite likelihood and quasi-likelihood.

rmax Optional. The dependence range. Not usually specified by the user.

eps.rmax Numeric. A small positive number which is used to determine rmax from the
tail behaviour of the pair correlation function. Namely rmax is the smallest value
of r at which (g(r) − 1)/(g(0) − 1) falls below eps.rmax. Ignored if rmax is
provided.

dimyx Pixel array dimensions. See Details.

maxIter Integer. Maximum number of iterations of iterative weighted least squares (Fisher
scoring).

tolerance Numeric. Tolerance value specifying when to stop iterative weighted least squares
(Fisher scoring).

638 improve.kppm

fast Logical value indicating whether tapering should be used to make the computa-
tions faster (requires the package Matrix).

vcov Logical value indicating whether to calculate the asymptotic variance covari-
ance/matrix.

fast.vcov Logical value indicating whether tapering should be used for the variance/covariance
matrix to make the computations faster (requires the package Matrix). Caution:
This is expected to underestimate the true asymptotic variances/covariances.

verbose A logical indicating whether the details of computations should be printed.

save.internals A logical indicating whether internal quantities should be saved in the returned
object (mostly for development purposes).

Details

This function reestimates the intensity parameters in a fitted "kppm" object. If type="clik1"
estimates are based on the first order composite (Poisson) likelihood, which ignores dependence
between the points. Note that type="clik1" is mainly included for testing purposes and is not rec-
ommended for the typical user; instead the more efficient kppm with improve.type="none" should
be used.

When type="quasi" or type="wclik1" the dependence structure between the points is incorpo-
rated in the estimation procedure by using the estimated pair correlation function in the estimating
equation.

In all cases the estimating equation is based on dividing the observation window into small subre-
gions and count the number of points in each subregion. To do this the observation window is first
converted into a digital mask by as.mask where the resolution is controlled by the argument dimyx.
The computational time grows with the cube of the number of subregions, so fine grids may take
very long to compute (or even run out of memory).

Value

A fitted cluster point process model of class "kppm".

Author(s)

Abdollah Jalilian <jalilian@razi.ac.ir>

and Rasmus Waagepetersen <rw@math.aau.dk> adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Ege Rubak <rubak@math.aau.dk>

References

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes, Biometrics, 63, 252-258.

Guan, Y. and Shen, Y. (2010) A weighted estimating equation approach to inference for inhomoge-
neous spatial point processes, Biometrika, 97, 867-880.

Guan, Y., Jalilian, A. and Waagepetersen, R. (2015) Quasi-likelihood for spatial point processes.
Journal of the Royal Statistical Society, Series B 77, 677–697.

incircle 639

See Also

ppm, kppm, improve.kppm

Examples

fit a Thomas process using minimum contrast estimation method
to model interaction between points of the pattern
fit0 <- kppm(bei ~ elev + grad, data = bei.extra)

fit the log-linear intensity model with quasi-likelihood method
fit1 <- improve.kppm(fit0, type="quasi")

compare
coef(fit0)
coef(fit1)

incircle Find Largest Circle Inside Window

Description

Find the largest circle contained in a given window.

Usage

incircle(W)

inradius(W)

Arguments

W A window (object of class "owin").

Details

Given a window W of any type and shape, the function incircle determines the largest circle that
is contained inside W, while inradius computes its radius only.

For non-rectangular windows, the incircle is computed approximately by finding the maximum of
the distance map (see distmap) of the complement of the window.

Value

The result of incircle is a list with entries x,y,r giving the location (x,y) and radius r of the
incircle.

The result of inradius is the numerical value of radius.

640 increment.fv

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

centroid.owin

Examples

W <- square(1)
Wc <- incircle(W)
plot(W)
plot(disc(Wc$r, c(Wc$x, Wc$y)), add=TRUE)

plot(letterR)
Rc <- incircle(letterR)
plot(disc(Rc$r, c(Rc$x, Rc$y)), add=TRUE)

W <- as.mask(letterR)
plot(W)
Rc <- incircle(W)
plot(disc(Rc$r, c(Rc$x, Rc$y)), add=TRUE)

increment.fv Increments of a Function

Description

Compute the change in the value of a function f when the function argument increases by delta.

Usage

increment.fv(f, delta)

Arguments

f Object of class "fv" representing a function.

delta Numeric. The increase in the value of the function argument.

Details

This command computes the new function

g(x) = f(x+ h)− f(x− h)

where h = delta/2. The value of g(x) is the change in the value of f over an interval of length
delta centred at x.

infline 641

Value

Another object of class "fv" compatible with X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

fv.object, deriv.fv

Examples

plot(increment.fv(Kest(cells), 0.05))

infline Infinite Straight Lines

Description

Define the coordinates of one or more straight lines in the plane

Usage

infline(a = NULL, b = NULL, h = NULL, v = NULL, p = NULL, theta = NULL)

S3 method for class 'infline'
print(x, ...)

S3 method for class 'infline'
plot(x, ...)

Arguments

a,b Numeric vectors of equal length giving the intercepts a and slopes b of the lines.
Incompatible with h,v,p,theta

h Numeric vector giving the positions of horizontal lines when they cross the y
axis. Incompatible with a,b,v,p,theta

v Numeric vector giving the positions of vertical lines when they cross the x axis.
Incompatible with a,b,h,p,theta

p,theta Numeric vectors of equal length giving the polar coordinates of the line. Incom-
patible with a,b,h,v

x An object of class "infline"

... Extra arguments passed to print for printing or abline for plotting

642 infline

Details

The class infline is a convenient way to handle infinite straight lines in the plane.

The position of a line can be specified in several ways:

• its intercept a and slope b in the equation y = a+ bx can be used unless the line is vertical.

• for vertical lines we can use the position v where the line crosses the y axis

• for horizontal lines we can use the position h where the line crosses the x axis

• the polar coordinates p and θ can be used for any line. The line equation is

x cos θ + y sin θ = p

The command infline will accept line coordinates in any of these formats. The arguments a,b,h,v
have the same interpretation as they do in the line-plotting function abline.

The command infline converts between different coordinate systems (e.g. from a,b to p,theta)
and returns an object of class "infline" that contains a representation of the lines in each appro-
priate coordinate system. This object can be printed and plotted.

Value

The value of infline is an object of class "infline" which is basically a data frame with columns
a,b,h,v,p,theta. Each row of the data frame represents one line. Entries may be NA if a coordi-
nate is not applicable to a particular line.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

rotate.infline, clip.infline, chop.tess, whichhalfplane

Examples

infline(a=10:13,b=1)
infline(p=1:3, theta=pi/4)
plot(c(-1,1),c(-1,1),type="n",xlab="",ylab="", asp=1)
plot(infline(p=0.4, theta=seq(0,pi,length=20)))

influence.ppm 643

influence.ppm Influence Measure for Spatial Point Process Model

Description

Computes the influence measure for a fitted spatial point process model.

Usage

S3 method for class 'ppm'
influence(model, ...,

drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)

Arguments

model Fitted point process model (object of class "ppm").

... Ignored.

drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-
tions from quadrature points that were not used to fit the model.

iScore,iHessian

Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

Details

Given a fitted spatial point process model model, this function computes the influence measure
described in Baddeley, Chang and Song (2013) and Baddeley, Rubak and Turner (2019).

The function influence is generic, and influence.ppm is the method for objects of class "ppm"
representing point process models.

The influence of a point process model is a value attached to each data point (i.e. each point of the
point pattern to which the model was fitted). The influence value s(xi) at a data point xi represents
the change in the maximised log (pseudo)likelihood that occurs when the point xi is deleted. A
relatively large value of s(xi) indicates a data point with a large influence on the fitted model.

If the point process model trend has irregular parameters that were fitted (using ippm) then the
influence calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

The result of influence.ppm is an object of class "influence.ppm". It can be printed and plotted.
It can be converted to a marked point pattern by as.ppp (see as.ppp.influence.ppm). There are
also methods for [, as.owin, domain, shift, integral and Smooth.

644 inforder.family

Value

An object of class "influence.ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial
point process models. Scandinavian Journal of Statistics 40, 86–104.

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

leverage.ppm, dfbetas.ppm, ppmInfluence, plot.influence.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
plot(influence(fit))

inforder.family Infinite Order Interaction Family

Description

An object describing the family of all Gibbs point processes with infinite interaction order.

Details

Advanced Use Only!
This structure would not normally be touched by the user. It describes the interaction structure of
Gibbs point processes which have infinite order of interaction, such as the area-interaction process
AreaInter.

Anyway, inforder.family is an object of class "isf" containing a function inforder.family$eval
for evaluating the sufficient statistics of a Gibbs point process model taking an exponential family
form.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

insertVertices 645

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

AreaInter to create the area interaction process structure.

Other families: pairwise.family, pairsat.family, ord.family.

insertVertices Insert New Vertices in a Linear Network

Description

Adds new vertices to a linear network at specified locations along the network.

Usage

insertVertices(L, ...)

Arguments

L Linear network (object of class "linnet") or point pattern on a linear network
(object of class "lpp").

... Additional arguments passed to as.lpp specifying the positions of the new ver-
tices along the network.

Details

This function adds new vertices at locations along an existing linear network.

The argument L can be either a linear network (class "linnet") or some other object that includes
a linear network.

The new vertex locations can be specified either as a point pattern (class "lpp" or "ppp") or using
coordinate vectors x,y or seg,tp or x,y,seg,tp as explained in the help for as.lpp.

This function breaks the existing line segments of L into pieces at the locations specified by the
coordinates seg,tp and creates new vertices at these locations.

The result is the modified object, with an attribute "id" such that the ith added vertex has become
the id[i]th vertex of the new network.

Value

An object of the same class as L representing the result of adding the new vertices. The result also
has an attribute "id" as described in Details.

646 inside.boxx

Author(s)

Adrian Baddeley

See Also

addVertices to create new vertices at locations which are not yet on the network.

as.lpp, linnet, methods.linnet, joinVertices, thinNetwork.

Examples

opa <- par(mfrow=c(1,3), mar=rep(0,4))
simplenet

plot(simplenet, main="")
plot(vertices(simplenet), add=TRUE)

add two new vertices at specified local coordinates
L <- insertVertices(simplenet, seg=c(3,7), tp=c(0.2, 0.5))
L
plot(L, main="")
plot(vertices(L), add=TRUE)
id <- attr(L, "id")
id
plot(vertices(L)[id], add=TRUE, pch=16)

add new vertices at three randomly-generated points
X <- runiflpp(3, simplenet)
LL <- insertVertices(simplenet, X)
plot(LL, main="")
plot(vertices(LL), add=TRUE)
ii <- attr(LL, "id")
plot(vertices(LL)[ii], add=TRUE, pch=16)
par(opa)

inside.boxx Test Whether Points Are Inside A Multidimensional Box

Description

Test whether points lie inside or outside a given multidimensional box.

Usage

inside.boxx(..., w)

inside.boxx 647

Arguments

... Coordinates of points to be tested. One vector for each dimension (all of same
length). (Alternatively, a single point pattern object of class "ppx" or its coordi-
nates as a "hyperframe")

w A window. This should be an object of class boxx, or can be given in any format
acceptable to as.boxx().

Details

This function tests whether each of the points (x[i],y[i]) lies inside or outside the window w and
returns TRUE if it is inside.

The boundary of the window is treated as being inside.

Normally each argument provided (except w) must be numeric vectors of equal length (length zero
is allowed) containing the coordinates of points. Alternatively a single point pattern (object of class
"ppx") can be given; then the coordinates of the point pattern are extracted.

Value

Logical vector whose ith entry is TRUE if the corresponding point is inside w.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

boxx, as.boxx

Examples

Random points in box with side [0,2]
w <- boxx(c(0,2), c(0,2), c(0,2))

Random points in box with side [-1,3]
x <- runif(30, min=-1, max=3)
y <- runif(30, min=-1, max=3)
z <- runif(30, min=-1, max=3)

Points falling in smaller box
ok <- inside.boxx(x, y, z, w=w)

Same using a point pattern as argument:
X <- ppx(data = cbind(x, y, z), domain = boxx(c(0,3), c(0,3), c(0,3)))
ok2 <- inside.boxx(X, w=w)

648 inside.owin

inside.owin Test Whether Points Are Inside A Window

Description

Test whether points lie inside or outside a given window.

Usage

inside.owin(x, y, w)

Arguments

x Vector of x coordinates of points to be tested. (Alternatively, a point pattern
object providing both x and y coordinates.)

y Vector of y coordinates of points to be tested.

w A window. This should be an object of class owin, or can be given in any format
acceptable to as.owin().

Details

This function tests whether each of the points (x[i],y[i]) lies inside or outside the window w and
returns TRUE if it is inside.

The boundary of the window is treated as being inside.

If w is of type "rectangle" or "polygonal", the algorithm uses analytic geometry (the discrete
Stokes theorem). Computation time is linear in the number of points and (for polygonal windows)
in the number of vertices of the boundary polygon. Boundary cases are correct to single precision
accuracy.

If w is of type "mask" then the pixel closest to (x[i],y[i]) is tested. The results may be incorrect
for points lying within one pixel diameter of the window boundary.

Normally x and y must be numeric vectors of equal length (length zero is allowed) containing the
coordinates of points. Alternatively x can be a point pattern (object of class "ppp") while y is
missing; then the coordinates of the point pattern are extracted.

Value

Logical vector whose ith entry is TRUE if the corresponding point (x[i],y[i]) is inside w.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin.object, as.owin

integral.im 649

Examples

hexagonal window
k <- 6
theta <- 2 * pi * (0:(k-1))/k
co <- cos(theta)
si <- sin(theta)
mas <- owin(c(-1,1), c(-1,1), poly=list(x=co, y=si))
Not run:
plot(mas)

End(Not run)

random points in rectangle
x <- runif(30,min=-1, max=1)
y <- runif(30,min=-1, max=1)

ok <- inside.owin(x, y, mas)

Not run:
points(x[ok], y[ok])
points(x[!ok], y[!ok], pch="x")

End(Not run)

integral.im Integral of a Pixel Image

Description

Computes the integral of a pixel image.

Usage

integral(f, domain=NULL, ...)

S3 method for class 'im'
integral(f, domain=NULL, ...)

Arguments

f A pixel image (object of class "im") with pixel values that can be treated as
numeric or complex values.

domain Optional. Window specifying the domain of integration. Alternatively a tessel-
lation.

... Ignored.

650 integral.im

Details

The function integral is generic, with methods for "im", "msr", "linim" and "linfun".

The method integral.im treats the pixel image f as a function of the spatial coordinates, and
computes its integral. The integral is calculated by summing the pixel values and multiplying by
the area of one pixel.

The pixel values of f may be numeric, integer, logical or complex. They cannot be factor or char-
acter values.

The logical values TRUE and FALSE are converted to 1 and 0 respectively, so that the integral of a
logical image is the total area of the TRUE pixels, in the same units as unitname(x).

If domain is a window (class "owin") then the integration will be restricted to this window. If
domain is a tessellation (class "tess") then the integral of f in each tile of domain will be computed.

Value

A single numeric or complex value (or a vector of such values if domain is a tessellation).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

eval.im, [.im

Examples

approximate integral of f(x,y) dx dy
f <- function(x,y){3*x^2 + 2*y}
Z <- as.im(f, square(1))
integral.im(Z)
correct answer is 2

D <- density(cells)
integral.im(D)
should be approximately equal to number of points = 42

integrate over the subset [0.1,0.9] x [0.2,0.8]
W <- owin(c(0.1,0.9), c(0.2,0.8))
integral.im(D, W)

integral.linim 651

integral.linim Integral on a Linear Network

Description

Computes the integral (total value) of a function or pixel image over a linear network.

Usage

S3 method for class 'linim'
integral(f, domain=NULL, ...)

S3 method for class 'linfun'
integral(f, domain=NULL, ..., delta)

Arguments

f A pixel image on a linear network (class "linim") or a function on a linear
network (class "linfun").

domain Optional window specifying the domain of integration. Alternatively a tessella-
tion.

... Ignored.

delta Optional. The step length (in coordinate units) for computing the approximate
integral. A single positive number.

Details

The integral (total value of the function over the network) is calculated.

If domain is a window (class "owin") then the integration will be restricted to this window. If
domain is a tessellation (class "tess") then the integral of f in each tile of domain will be computed.

Value

A single numeric or complex value (or a vector of such values if domain is a tessellation).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linim, integral.im

652 integral.msr

Examples

make some data
xcoord <- linfun(function(x,y,seg,tp) { x }, simplenet)
integral(xcoord)
X <- as.linim(xcoord)
integral(X)

integrals inside each tile of a tessellation
A <- quadrats(Frame(simplenet), 3)
integral(X, A)

integral.msr Integral of a Measure

Description

Computes the integral (total value) of a measure over its domain.

Usage

S3 method for class 'msr'
integral(f, domain=NULL, ...)

Arguments

f A signed measure or vector-valued measure (object of class "msr").

domain Optional window specifying the domain of integration. Alternatively a tessella-
tion.

... Ignored.

Details

The integral (total value of the measure over its domain) is calculated.

If domain is a window (class "owin") then the integration will be restricted to this window. If
domain is a tessellation (class "tess") then the integral of f in each tile of domain will be computed.

For a multitype measure m, use split.msr to separate the contributions for each type of point, as
shown in the Examples.

Value

A numeric value, vector, or matrix.

integral(f) returns a numeric value (for a signed measure) or a vector of values (for a vector-
valued measure).

If domain is a tessellation then integral(f,domain) returns a numeric vector with one entry for
each tile (if f is a signed measure) or a numeric matrix with one row for each tile (if f is a vector-
valued measure).

intensity 653

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

msr, integral

Examples

fit <- ppm(cells ~ x)
rr <- residuals(fit)
integral(rr)

vector-valued measure
rs <- residuals(fit, type="score")
integral(rs)

multitype
fitA <- ppm(amacrine ~ x)
rrA <- residuals(fitA)
sapply(split(rrA), integral)

multitype and vector-valued
rsA <- residuals(fitA, type="score")
sapply(split(rsA), integral)

integral over a subregion
integral(rr, domain=square(0.5))
integrals over the tiles of a tessellation
integral(rr, domain=quadrats(cells, 2))

intensity Intensity of a Dataset or a Model

Description

Generic function for computing the intensity of a spatial dataset or spatial point process model.

Usage

intensity(X, ...)

Arguments

X A spatial dataset or a spatial point process model.

... Further arguments depending on the class of X.

654 intensity.dppm

Details

This is a generic function for computing the intensity of a spatial dataset or spatial point process
model. There are methods for point patterns (objects of class "ppp") and fitted point process models
(objects of class "ppm").

The empirical intensity of a dataset is the average density (the average amount of ‘stuff’ per unit area
or volume). The empirical intensity of a point pattern is computed by the method intensity.ppp.

The theoretical intensity of a stochastic model is the expected density (expected amount of ‘stuff’
per unit area or volume). The theoretical intensity of a fitted point process model is computed by
the method intensity.ppm.

Value

Usually a numeric value or vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

intensity.ppp, intensity.ppm.

intensity.dppm Intensity of Determinantal Point Process Model

Description

Extracts the intensity of a determinantal point process model.

Usage

S3 method for class 'detpointprocfamily'
intensity(X, ...)

S3 method for class 'dppm'
intensity(X, ...)

Arguments

X A determinantal point process model (object of class "detpointprocfamily"
or "dppm").

... Ignored.

intensity.lpp 655

Value

A numeric value (if the model is stationary), a pixel image (if the model is non-stationary) or NA if
the intensity is unknown for the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

intensity.lpp Empirical Intensity of Point Pattern on Linear Network

Description

Computes the average number of points per unit length in a point pattern on a linear network.

Usage

S3 method for class 'lpp'
intensity(X, ...)

Arguments

X A point pattern on a linear network (object of class "lpp").

... Ignored.

Details

This is a method for the generic function intensity It computes the empirical intensity of a point
pattern on a linear network (object of class "lpp"), i.e. the average density of points per unit length.

If the point pattern is multitype, the intensities of the different types are computed separately.

Value

A numeric value (giving the intensity) or numeric vector (giving the intensity for each possible
type).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

intensity, intensity.ppp

656 intensity.ppm

Examples

intensity(chicago)

intensity.ppm Intensity of Fitted Point Process Model

Description

Computes the intensity of a fitted point process model.

Usage

S3 method for class 'ppm'
intensity(X, ...)

Arguments

X A fitted point process model (object of class "ppm").

... Arguments passed to predict.ppm in some cases. See Details.

Details

This is a method for the generic function intensity for fitted point process models (class "ppm").

The intensity of a point process model is the expected number of random points per unit area.

If X is a Poisson point process model, the intensity of the process is computed exactly. The result is
a numerical value if X is a stationary Poisson point process, and a pixel image if X is non-stationary.
(In the latter case, the resolution of the pixel image is controlled by the arguments ... which are
passed to predict.ppm.)

If X is another Gibbs point process model, the intensity is computed approximately using the
Poisson-saddlepoint approximation (Baddeley and Nair, 2012a, 2012b, 2016; Anderssen et al,
2014). The approximation is currently available for pairwise-interaction models (Baddeley and
Nair, 2012a, 2012b) and for the area-interaction model and Geyer saturation model (Baddeley and
Nair, 2016).

For a non-stationary Gibbs model, the pseudostationary solution (Baddeley and Nair, 2012b; An-
derssen et al, 2014) is used. The result is a pixel image, whose resolution is controlled by the
arguments ... which are passed to predict.ppm.

Value

A numeric value (if the model is stationary) or a pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Gopalan Nair.

intensity.ppp 657

References

Anderssen, R.S., Baddeley, A., DeHoog, F.R. and Nair, G.M. (2014) Solution of an integral equation
arising in spatial point process theory. Journal of Integral Equations and Applications 26 (4) 437–
453.

Baddeley, A. and Nair, G. (2012a) Fast approximation of the intensity of Gibbs point processes.
Electronic Journal of Statistics 6 1155–1169.

Baddeley, A. and Nair, G. (2012b) Approximating the moments of a spatial point process. Stat 1,
1, 18–30. doi: 10.1002/sta4.5

Baddeley, A. and Nair, G. (2016) Poisson-saddlepoint approximation for spatial point processes
with infinite order interaction. Submitted for publication.

See Also

intensity, intensity.ppp

Examples

fitP <- ppm(swedishpines ~ 1)
intensity(fitP)
fitS <- ppm(swedishpines ~ 1, Strauss(9))
intensity(fitS)
fitSx <- ppm(swedishpines ~ x, Strauss(9))
lamSx <- intensity(fitSx)
fitG <- ppm(swedishpines ~ 1, Geyer(9, 1))
lamG <- intensity(fitG)
fitA <- ppm(swedishpines ~ 1, AreaInter(7))
lamA <- intensity(fitA)

intensity.ppp Empirical Intensity of Point Pattern

Description

Computes the average number of points per unit area in a point pattern dataset.

Usage

S3 method for class 'ppp'
intensity(X, ..., weights=NULL)

S3 method for class 'splitppp'
intensity(X, ..., weights=NULL)

658 intensity.ppp

Arguments

X A point pattern (object of class "ppp").

weights Optional. Numeric vector of weights attached to the points of X. Alternatively,
an expression which can be evaluated to give a vector of weights.

... Ignored.

Details

This is a method for the generic function intensity. It computes the empirical intensity of a point
pattern (object of class "ppp"), i.e. the average density of points per unit area.

If the point pattern is multitype, the intensities of the different types are computed separately.

Note that the intensity will be computed as the number of points per square unit, based on the unit
of length for X, given by unitname(X). If the unit of length is a strange multiple of a standard unit,
like 5.7 metres, then it can be converted to the standard unit using rescale. See the Examples.

If weights are given, then the intensity is computed as the total weight per square unit. The argu-
ment weights should be a numeric vector of weights for each point of X (weights may be negative
or zero).

Alternatively weights can be an expression which will be evaluated for the dataset to yield a
vector of weights. The expression may involve the Cartesian coordinates x, y of the points, and the
marks of the points, if any. Variable names permitted in the expression include x and y, the name
marks if X has a single column of marks, the names of any columns of marks if X has a data frame
of marks, and the names of constants or functions that exist in the global environment. See the
Examples.

Value

A numeric value (giving the intensity) or numeric vector (giving the intensity for each possible
type).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

intensity, intensity.ppm

Examples

japanesepines
intensity(japanesepines)
unitname(japanesepines)
intensity(rescale(japanesepines))

intensity(amacrine)
intensity(split(amacrine))

intensity.ppx 659

numeric vector of weights
volumes <- with(marks(finpines), (pi/4) * height * diameter^2)
intensity(finpines, weights=volumes)

expression for weights
intensity(finpines, weights=expression((pi/4) * height * diameter^2))

intensity.ppx Intensity of a Multidimensional Space-Time Point Pattern

Description

Calculates the intensity of points in a multi-dimensional point pattern of class "ppx" or "pp3".

Usage

S3 method for class 'ppx'
intensity(X, ...)

Arguments

X Point pattern of class "ppx" or "pp3".

... Ignored.

Details

This is a method for the generic function intensity. It computes the empirical intensity of a multi-
dimensional point pattern (object of class "ppx" including "pp3"), i.e. the average density of points
per unit volume.

If the point pattern is multitype, the intensities of the different types are computed separately.

Value

A single number or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

X <- osteo$pts[[1]]
intensity(X)
marks(X) <- factor(sample(letters[1:3], npoints(X), replace=TRUE))
intensity(X)

660 intensity.psp

intensity.psp Empirical Intensity of Line Segment Pattern

Description

Computes the average total length of segments per unit area in a spatial pattern of line segments.

Usage

S3 method for class 'psp'
intensity(X, ..., weights=NULL)

Arguments

X A line segment pattern (object of class "psp").
weights Optional. Numeric vector of weights attached to the segments of X. Alterna-

tively, an expression which can be evaluated to give a vector of weights.
... Ignored.

Details

This is a method for the generic function intensity. It computes the empirical intensity of a line
segment pattern (object of class "psp"), i.e. the average total segment length per unit area.

If the segment pattern is multitype, the intensities of the different types are computed separately.

Note that the intensity will be computed as the length per area in units per square unit, based on
the unit of length for X, given by unitname(X). If the unit of length is a strange multiple of a
standard unit, like 5.7 metres, then it can be converted to the standard unit using rescale. See the
Examples.

If weights are given, then the intensity is computed as the total weight times length per square unit.
The argument weights should be a numeric vector of weights for each point of X (weights may be
negative or zero).

Alternatively weights can be an expression which will be evaluated for the dataset to yield a
vector of weights. The expression may involve the Cartesian coordinates x, y of the points, and the
marks of the points, if any. Variable names permitted in the expression include x0, x1, y0, y1 for the
coordinates of the segment endpoint, the name marks if X has a single column of marks, the names
of any columns of marks if X has a data frame of marks, and the names of constants or functions
that exist in the global environment. See the Examples.

Value

A numeric value (giving the intensity) or numeric vector (giving the intensity for each possible
type).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

intensity.quadratcount 661

See Also

intensity

Examples

S <- as.psp(simplenet)
intensity(S)
intensity(S, weights=runif(nsegments(S)))
intensity(S, weights=expression((x0+x1)/2))

intensity.quadratcount

Intensity Estimates Using Quadrat Counts

Description

Uses quadrat count data to estimate the intensity of a point pattern in each tile of a tessellation,
assuming the intensity is constant in each tile.

Usage

S3 method for class 'quadratcount'
intensity(X, ..., image=FALSE)

Arguments

X An object of class "quadratcount".

image Logical value specifying whether to return a table of estimated intensities (the
default) or a pixel image of the estimated intensity (image=TRUE).

... Arguments passed to as.mask to determine the resolution of the pixel image, if
image=TRUE.

Details

This is a method for the generic function intensity. It computes an estimate of the intensity of a
point pattern from its quadrat counts.

The argument X should be an object of class "quadratcount". It would have been obtained by
applying the function quadratcount to a point pattern (object of class "ppp"). It contains the
counts of the numbers of points of the point pattern falling in each tile of a tessellation.

Using this information, intensity.quadratcount divides the quadrat counts by the tile areas,
yielding the average density of points per unit area in each tile of the tessellation.

If image=FALSE (the default), these intensity values are returned in a contingency table. Cells of the
contingency table correspond to tiles of the tessellation.

If image=TRUE, the estimated intensity function is returned as a pixel image. For each pixel, the
pixel value is the estimated intensity in the tile which contains that pixel.

662 interp.colourmap

Value

If image=FALSE (the default), a contingency table. If image=TRUE, a pixel image (object of class
"im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

intensity, quadratcount

Examples

qa <- quadratcount(swedishpines, 4,3)
qa
intensity(qa)
plot(intensity(qa, image=TRUE))

interp.colourmap Interpolate smoothly between specified colours

Description

Given a colourmap object which maps numbers to colours, this function interpolates smoothly
between the colours, yielding a new colour map.

Usage

interp.colourmap(m, n = 512)

Arguments

m A colour map (object of class "colourmap").

n Number of colour steps to be created in the new colour map.

Details

Given a colourmap object m, which maps numerical values to colours, this function interpolates the
mapping, yielding a new colour map.

This makes it easy to build a colour map that has smooth gradation between different colours or
shades. First specify a small vector of numbers x which should be mapped to specific colours y.
Use m <-colourmap(y,inputs=x) to create a colourmap that represents this simple mapping. Then
apply interp.colourmap(m) to obtain a smooth transition between these points.

interp.im 663

Value

Another colour map (object of class "colourmap").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

colourmap, tweak.colourmap, colourtools.

Examples

co <- colourmap(inputs=c(0, 0.5, 1), c("black", "red", "white"))
plot(interp.colourmap(co))

interp.im Interpolate a Pixel Image

Description

Interpolates the values of a pixel image at any desired location in the frame.

Usage

interp.im(Z, x, y=NULL, bilinear=FALSE)

Arguments

Z Pixel image (object of class "im") with numeric or integer values.

x,y Vectors of Cartesian coordinates. Alternatively x can be a point pattern and y
can be missing.

bilinear Logical value specifying the choice of interpolation rule. If bilinear=TRUE
then a bilinear interpolation rule is used. If bilinear=FALSE (the default) then
a slightly biased rule is used; this rule is consistent with earlier versions of spat-
stat.

Details

A value at each location (x[i],y[i]) will be interpolated using the pixel values of Z at the four
surrounding pixel centres, by simple bilinear interpolation.

At the boundary (where (x[i],y[i]) is not surrounded by four pixel centres) the value at the
nearest pixel is taken.

The arguments x,y can be anything acceptable to xy.coords.

664 intersect.lintess

Value

Vector of interpolated values, with NA for points that lie outside the domain of the image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>,
with a contribution from an anonymous user.

Examples

opa <- par(mfrow=c(1,2))
coarse image
V <- as.im(function(x,y) { x^2 + y }, owin(), dimyx=10)
plot(V, main="coarse image", col=terrain.colors(256))

lookup value at location (0.5,0.5)
V[list(x=0.5,y=0.5)]
interpolated value at location (0.5,0.5)
interp.im(V, 0.5, 0.5)
interp.im(V, 0.5, 0.5, bilinear=TRUE)
true value is 0.75

how to obtain an interpolated image at a desired resolution
U <- as.im(interp.im, W=owin(), Z=V, dimyx=256)
plot(U, main="interpolated image", col=terrain.colors(256))
par(opa)

intersect.lintess Intersection of Tessellations on a Linear Network

Description

Yields the intersection (common refinement) of two tessellations on a linear network.

Usage

intersect.lintess(X, Y)

Arguments

X,Y Tessellations (objects of class "lintess") on the same linear network.

Details

X and Y should be tessellations defined on the same linear network.

Each tile in the resulting tessellation is the intersection of a tile of X with a tile of Y.

intersect.owin 665

Value

Another tessellation (object of class "lintess") on the same linear network as X and Y.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

lintess, divide.linnet, chop.linnet

Examples

X <- divide.linnet(runiflpp(4, simplenet))
Y <- divide.linnet(runiflpp(3, simplenet))
opa <- par(mfrow=c(1,3))
plot(X)
plot(Y)
plot(intersect.lintess(X,Y))
par(opa)

intersect.owin Intersection, Union or Set Subtraction of Windows

Description

Yields the intersection, union or set subtraction of windows.

Usage

intersect.owin(..., fatal=FALSE, p)
union.owin(..., p)
setminus.owin(A, B, ..., p)

Arguments

A,B Windows (objects of class "owin").

... Windows, or arguments passed to as.mask to control the discretisation.

fatal Logical. Determines what happens if the intersection is empty.

p Optional list of parameters passed to polyclip to control the accuracy of poly-
gon geometry.

666 intersect.owin

Details

The function intersect.owin computes the intersection between the windows given in ..., while
union.owin computes their union. The function setminus.owin computes the intersection of A
with the complement of B.

For intersect.owin and union.owin, the arguments ... must be either

• window objects of class "owin",

• data that can be coerced to this class by as.owin),

• lists of windows, of class "solist",

• named arguments of as.mask to control the discretisation if required.

For setminus.owin, the arguments ... must be named arguments of as.mask.

If the intersection is empty, then if fatal=FALSE the result is an empty window or NULL, while if
fatal=TRUE an error occurs.

Value

A window (object of class "owin") or possibly NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

is.subset.owin, overlap.owin, is.empty, boundingbox, owin.object

Examples

rectangles
u <- unit.square()
v <- owin(c(0.5,3.5), c(0.4,2.5))

polygon
data(letterR)

mask
m <- as.mask(letterR)

two rectangles
intersect.owin(u, v)
union.owin(u,v)
setminus.owin(u,v)

polygon and rectangle
intersect.owin(letterR, v)
union.owin(letterR,v)
setminus.owin(letterR,v)

mask and rectangle
intersect.owin(m, v)

intersect.tess 667

union.owin(m,v)
setminus.owin(m,v)

mask and polygon
p <- rotate(v, 0.2)
intersect.owin(m, p)
union.owin(m,p)
setminus.owin(m,p)

two polygons
A <- letterR
B <- rotate(letterR, 0.2)
plot(boundingbox(A,B), main="intersection")
w <- intersect.owin(A, B)
plot(w, add=TRUE, col="lightblue")
plot(A, add=TRUE)
plot(B, add=TRUE)

plot(boundingbox(A,B), main="union")
w <- union.owin(A,B)
plot(w, add=TRUE, col="lightblue")
plot(A, add=TRUE)
plot(B, add=TRUE)

plot(boundingbox(A,B), main="set minus")
w <- setminus.owin(A,B)
plot(w, add=TRUE, col="lightblue")
plot(A, add=TRUE)
plot(B, add=TRUE)

intersection and union of three windows
C <- shift(B, c(0.2, 0.3))
plot(union.owin(A,B,C))
plot(intersect.owin(A,B,C))

intersect.tess Intersection of Two Tessellations

Description

Yields the intersection of two tessellations, or the intersection of a tessellation with a window.

Usage

intersect.tess(X, Y, ..., keepmarks=FALSE, sep="x")

Arguments

X,Y Two tessellations (objects of class "tess"), or windows (objects of class "tess"),
or other data that can be converted to tessellations by as.tess.

668 intersect.tess

... Optional arguments passed to as.mask to control the discretisation, if required.

keepmarks Logical value. If TRUE, the marks attached to the tiles of X and Y will be retained
as marks of the intersection tiles.

sep Character string used to separate the names of tiles from X and from Y, when
forming the name of the tiles of the intersection.

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. See tess.

If X and Y are not tessellations, they are first converted into tessellations by as.tess.

The function intersect.tess then computes the intersection between the two tessellations. This
is another tessellation, each of whose tiles is the intersection of a tile from X and a tile from Y.

One possible use of this function is to slice a window W into subwindows determined by a tessella-
tion. See the Examples.

Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

tess, as.tess, intersect.owin

Examples

opa <- par(mfrow=c(1,3))
polygon

data(letterR)
plot(letterR)

tessellation of rectangles
X <- tess(xgrid=seq(2, 4, length=10), ygrid=seq(0, 3.5, length=8))
plot(X)
plot(intersect.tess(X, letterR))

A <- runifpoint(10)
B <- runifpoint(10)
plot(DA <- dirichlet(A))
plot(DB <- dirichlet(B))
plot(intersect.tess(DA, DB))
par(opa)

marks(DA) <- 1:10
marks(DB) <- 1:10

invoke.symbolmap 669

plot(Z <- intersect.tess(DA,DB, keepmarks=TRUE))
mZ <- marks(Z)
tZ <- tiles(Z)
for(i in which(mZ[,1] == 3)) plot(tZ[[i]], add=TRUE, col="pink")

invoke.symbolmap Plot Data Using Graphics Symbol Map

Description

Apply a graphics symbol map to a vector of data values and plot the resulting symbols.

Usage

invoke.symbolmap(map, values, x=NULL, y = NULL, ..., add = FALSE,
do.plot = TRUE, started = add && do.plot)

Arguments

map Graphics symbol map (object of class "symbolmap").

values Vector of data that can be mapped by the symbol map.

x,y Coordinate vectors for the spatial locations of the symbols to be plotted.

... Additional graphics parameters.

add Logical value indicating whether to add the symbols to an existing plot (add=TRUE)
or to initialise a new plot (add=FALSE, the default).

do.plot Logical value indicating whether to actually perform the plotting.

started Logical value indicating whether the plot has already been initialised.

Details

A symbol map is an association between data values and graphical symbols.

This command applies the symbol map map to the data values and plots the resulting symbols at
the locations given by xy.coords(x,y).

Value

(Invisibly) the maximum diameter of the symbols, in user coordinate units.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

670 ippm

See Also

plot.symbolmap to plot the graphics map itself.

symbolmap to create a graphics map.

Examples

g <- symbolmap(range=c(-1,1),
shape=function(x) ifelse(x > 0, "circles", "squares"),
size=function(x) sqrt(ifelse(x > 0, x/pi, -x))/15,
bg=function(x) ifelse(x > 0, "green", "red"))

plot(square(1), main="")
a <- invoke.symbolmap(g, runif(10, -1, 1), runifpoint(10), add=TRUE)
a

ippm Fit Point Process Model Involving Irregular Trend Parameters

Description

Experimental extension to ppm which finds optimal values of the irregular trend parameters in a
point process model.

Usage

ippm(Q, ...,
iScore=NULL,
start=list(),
covfunargs=start,
nlm.args=list(stepmax=1/2),
silent=FALSE,
warn.unused=TRUE)

Arguments

Q,... Arguments passed to ppm to fit the point process model.
iScore Optional. A named list of R functions that compute the partial derivatives of the

logarithm of the trend, with respect to each irregular parameter. See Details.
start Named list containing initial values of the irregular parameters over which to

optimise.
covfunargs Argument passed to ppm. A named list containing values for all irregular param-

eters required by the covariates in the model. Must include all the parameters
named in start.

nlm.args Optional list of arguments passed to nlm to control the optimization algorithm.
silent Logical. Whether to print warnings if the optimization algorithm fails to con-

verge.
warn.unused Logical. Whether to print a warning if some of the parameters in start are not

used in the model.

ippm 671

Details

This function is an experimental extension to the point process model fitting command ppm. The
extension allows the trend of the model to include irregular parameters, which will be maximised
by a Newton-type iterative method, using nlm.

For the sake of explanation, consider a Poisson point process with intensity function λ(u) at location
u. Assume that

λ(u) = exp(α+ βZ(u)) f(u, γ)

where α, β, γ are parameters to be estimated, Z(u) is a spatial covariate function, and f is some
known function. Then the parameters α, β are called regular because they appear in a loglinear
form; the parameter γ is called irregular.

To fit this model using ippm, we specify the intensity using the trend formula in the same way as
usual for ppm. The trend formula is a representation of the log intensity. In the above example the
log intensity is

log λ(u) = α+ βZ(u) + log f(u, γ)

So the model above would be encoded with the trend formula ~Z + offset(log(f)). Note that the
irregular part of the model is an offset term, which means that it is included in the log trend as it is,
without being multiplied by another regular parameter.

The optimisation runs faster if we specify the derivative of log f(u, γ) with respect to γ. We call this
the irregular score. To specify this, the user must write an R function that computes the irregular
score for any value of γ at any location (x,y).

Thus, to code such a problem,

1. The argument trend should define the log intensity, with the irregular part as an offset;

2. The argument start should be a list containing initial values of each of the irregular parame-
ters;

3. The argument iScore, if provided, must be a list (with one entry for each entry of start)
of functions with arguments x,y,..., that evaluate the partial derivatives of log f(u, γ) with
respect to each irregular parameter.

The coded example below illustrates the model with two irregular parameters γ, δ and irregular term

f((x, y), (γ, δ)) = 1 + exp(γ − δx3)

Arguments ... passed to ppm may also include interaction. In this case the model is not a
Poisson point process but a more general Gibbs point process; the trend formula trend determines
the first-order trend of the model (the first order component of the conditional intensity), not the
intensity.

Value

A fitted point process model (object of class "ppm") which also belongs to the special class "ippm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

672 is.connected

See Also

ppm, profilepl

Examples

nd <- 32

gamma0 <- 3
delta0 <- 5
POW <- 3
Terms in intensity
Z <- function(x,y) { -2*y }
f <- function(x,y,gamma,delta) { 1 + exp(gamma - delta * x^POW) }
True intensity
lamb <- function(x,y,gamma,delta) { 200 * exp(Z(x,y)) * f(x,y,gamma,delta) }
Simulate realisation
lmax <- max(lamb(0,0,gamma0,delta0), lamb(1,1,gamma0,delta0))
set.seed(42)
X <- rpoispp(lamb, lmax=lmax, win=owin(), gamma=gamma0, delta=delta0)
Partial derivatives of log f
DlogfDgamma <- function(x,y, gamma, delta) {

topbit <- exp(gamma - delta * x^POW)
topbit/(1 + topbit)

}
DlogfDdelta <- function(x,y, gamma, delta) {

topbit <- exp(gamma - delta * x^POW)
- (x^POW) * topbit/(1 + topbit)

}
irregular score
Dlogf <- list(gamma=DlogfDgamma, delta=DlogfDdelta)
fit model
ippm(X ~Z + offset(log(f)),

covariates=list(Z=Z, f=f),
iScore=Dlogf,
start=list(gamma=1, delta=1),
nlm.args=list(stepmax=1),
nd=nd)

is.connected Determine Whether an Object is Connected

Description

Determine whether an object is topologically connected.

is.connected 673

Usage

is.connected(X, ...)

Default S3 method:
is.connected(X, ...)

S3 method for class 'linnet'
is.connected(X, ...)

Arguments

X A spatial object such as a pixel image (object of class "im"), a window (object
of class "owin") or a linear network (object of class "linnet").

... Arguments passed to connected to determine the connected components.

Details

The command is.connected(X) returns TRUE if the object X consists of a single, topologically-
connected piece, and returns FALSE if X consists of several pieces which are not joined together.

The function is.connected is generic. The default method is.connected.default works for
many classes of objects, including windows (class "owin") and images (class "im"). There is a
method for linear networks, is.connected.linnet, described here, and a method for point patterns
described in is.connected.ppp.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

connected, is.connected.ppp.

Examples

d <- distmap(cells, dimyx=256)
X <- levelset(d, 0.07)
plot(X)
is.connected(X)

674 is.connected.ppp

is.connected.ppp Determine Whether a Point Pattern is Connected

Description

Determine whether a point pattern is topologically connected when all pairs of points closer than a
threshold distance are joined.

Usage

S3 method for class 'ppp'
is.connected(X, R, ...)

Arguments

X A point pattern (object of class "ppp").

R Threshold distance. Pairs of points closer than R units apart will be joined to-
gether.

... Ignored.

Details

The function is.connected is generic. This is the method for point patterns (objects of class
"ppp").

The point pattern X is first converted into an abstract graph by joining every pair of points that lie
closer than R units apart. Then the algorithm determines whether this graph is connected.

That is, the result of is.connected(X) is TRUE if any point in X can be reached from any other
point, by a series of steps between points of X, each step being shorter than R units in length.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

is.connected, connected.ppp.

Examples

is.connected(redwoodfull, 0.1)
is.connected(redwoodfull, 0.2)

is.convex 675

is.convex Test Whether a Window is Convex

Description

Determines whether a window is convex.

Usage

is.convex(x)

Arguments

x Window (object of class "owin").

Details

If x is a rectangle, the result is TRUE.

If x is polygonal, the result is TRUE if x consists of a single polygon and this polygon is equal to
the minimal convex hull of its vertices computed by chull.

If x is a mask, the algorithm first extracts all boundary pixels of x using vertices. Then it computes
the (polygonal) convex hull K of the boundary pixels. The result is TRUE if every boundary pixel
lies within one pixel diameter of an edge of K.

Value

Logical value, equal to TRUE if x is convex.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, convexhull.xy, vertices

676 is.empty

is.dppm Recognise Fitted Determinantal Point Process Models

Description

Check that an object inherits the class dppm

Usage

is.dppm(x)

Arguments

x Any object.

Value

A single logical value.

Author(s)

Ege Rubak <rubak@math.aau.dk> <rubak@math.aau.dk>, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
<Adrian.Baddeley@uwa.edu.au> and Rolf Turner <r.turner@auckland.ac.nz> <r.turner@auckland.ac.nz>

is.empty Test Whether An Object Is Empty

Description

Checks whether the argument is an empty window, an empty point pattern, etc.

Usage

is.empty(x)
S3 method for class 'owin'
is.empty(x)
S3 method for class 'ppp'
is.empty(x)
S3 method for class 'psp'
is.empty(x)
Default S3 method:
is.empty(x)

Arguments

x A window (object of class "owin"), a point pattern (object of class "ppp"), or a
line segment pattern (object of class "psp").

is.hybrid 677

Details

This function tests whether the object x represents an empty spatial object, such as an empty win-
dow, a point pattern with zero points, or a line segment pattern with zero line segments.
An empty window can be obtained as the output of intersect.owin, erosion, opening, complement.owin
and some other operations.
An empty point pattern or line segment pattern can be obtained as the result of simulation.

Value

Logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

is.hybrid Test Whether Object is a Hybrid

Description

Tests where a point process model or point process interaction is a hybrid of several interactions.

Usage

is.hybrid(x)

S3 method for class 'ppm'
is.hybrid(x)

S3 method for class 'interact'
is.hybrid(x)

Arguments

x A point process model (object of class "ppm") or a point process interaction
structure (object of class "interact").

Details

A hybrid (Baddeley, Turner, Mateu and Bevan, 2012) is a point process model created by combining
two or more point process models, or an interpoint interaction created by combining two or more
interpoint interactions.
The function is.hybrid is generic, with methods for point process models (objects of class "ppm")
and point process interactions (objects of class "interact"). These functions return TRUE if the
object x is a hybrid, and FALSE if it is not a hybrid.
Hybrids of two or more interpoint interactions are created by the function Hybrid. Such a hybrid
interaction can then be fitted to point pattern data using ppm.

678 is.im

Value

TRUE if the object is a hybrid, and FALSE otherwise.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models
and their implementation. Journal of Statistical Software 55:11, 1–43. http://www.jstatsoft.
org/v55/i11/

See Also

Hybrid

Examples

S <- Strauss(0.1)
is.hybrid(S)
H <- Hybrid(Strauss(0.1), Geyer(0.2, 3))
is.hybrid(H)

data(redwood)
fit <- ppm(redwood, ~1, H)
is.hybrid(fit)

is.im Test Whether An Object Is A Pixel Image

Description

Tests whether its argument is a pixel image (object of class "im").

Usage

is.im(x)

Arguments

x Any object.

Details

This function tests whether the argument x is a pixel image object of class "im". For details of this
class, see im.object.

The object is determined to be an image if it inherits from class "im".

http://www.jstatsoft.org/v55/i11/
http://www.jstatsoft.org/v55/i11/

is.linim 679

Value

TRUE if x is a pixel image, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

is.linim Test Whether an Object is a Pixel Image on a Linear Network

Description

Tests whether its argument is a pixel image on a linear network (object of class "linim").

Usage

is.linim(x)

Arguments

x Any object.

Details

This function tests whether the argument x is a pixel image on a linear network (object of class
"linim").

The object is determined to be an image if it inherits from class "linim".

Value

TRUE if x is a pixel image on a linear network, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

680 is.marked

is.lpp Test Whether An Object Is A Point Pattern on a Linear Network

Description

Checks whether its argument is a point pattern on a linear network (object of class "lpp").

Usage

is.lpp(x)

Arguments

x Any object.

Details

This function tests whether the object x is a point pattern object of class "lpp".

Value

TRUE if x is a point pattern of class "lpp", otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

is.marked Test Whether Marks Are Present

Description

Generic function to test whether a given object (usually a point pattern or something related to a
point pattern) has “marks” attached to the points.

Usage

is.marked(X, ...)

Arguments

X Object to be inspected

... Other arguments.

is.marked.ppm 681

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

Other objects related to point patterns, such as point process models, may involve marked points.

This function tests whether the object X contains or involves marked points. It is generic; methods
are provided for point patterns (objects of class "ppp") and point process models (objects of class
"ppm").

Value

Logical value, equal to TRUE if X is marked.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

is.marked.ppp, is.marked.ppm

is.marked.ppm Test Whether A Point Process Model is Marked

Description

Tests whether a fitted point process model involves “marks” attached to the points.

Usage

S3 method for class 'ppm'
is.marked(X, ...)

S3 method for class 'lppm'
is.marked(X, ...)

Arguments

X Fitted point process model (object of class "ppm") usually obtained from ppm.
Alternatively, a model of class "lppm".

... Ignored.

682 is.marked.ppm

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

The argument X is a fitted point process model (an object of class "ppm") typically obtained by
fitting a model to point pattern data using ppm.

This function returns TRUE if the original data (to which the model X was fitted) were a marked
point pattern.

Note that this is not the same as testing whether the model involves terms that depend on the marks
(i.e. whether the fitted model ignores the marks in the data). Currently we have not implemented a
test for this.

If this function returns TRUE, the implications are (for example) that any simulation of this model
will require simulation of random marks as well as random point locations.

Value

Logical value, equal to TRUE if X is a model that was fitted to a marked point pattern dataset.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

is.marked, is.marked.ppp

Examples

X <- lansing
Multitype point pattern --- trees marked by species

fit1 <- ppm(X, ~ marks, Poisson())
is.marked(fit1)
TRUE

fit2 <- ppm(X, ~ 1, Poisson())
is.marked(fit2)
TRUE

Unmarked point pattern
fit3 <- ppm(cells, ~ 1, Poisson())
is.marked(fit3)
FALSE

is.marked.ppp 683

is.marked.ppp Test Whether A Point Pattern is Marked

Description

Tests whether a point pattern has “marks” attached to the points.

Usage

S3 method for class 'ppp'
is.marked(X, na.action="warn", ...)

Arguments

X Point pattern (object of class "ppp")

na.action String indicating what to do if NA values are encountered amongst the marks.
Options are "warn", "fatal" and "ignore".

... Ignored.

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

This function tests whether the point pattern X contains or involves marked points. It is a method
for the generic function is.marked.

The argument na.action determines what action will be taken if the point pattern has a vector of
marks but some or all of the marks are NA. Options are "fatal" to cause a fatal error; "warn" to
issue a warning and then return TRUE; and "ignore" to take no action except returning TRUE.

Value

Logical value, equal to TRUE if X is a marked point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

is.marked, is.marked.ppm

684 is.multitype

Examples

data(cells)
is.marked(cells) #FALSE
data(longleaf)
is.marked(longleaf) #TRUE

is.multitype Test whether Object is Multitype

Description

Generic function to test whether a given object (usually a point pattern or something related to a
point pattern) has “marks” attached to the points which classify the points into several types.

Usage

is.multitype(X, ...)

Arguments

X Object to be inspected

... Other arguments.

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell. Other objects related to point patterns, such as point process
models, may involve marked points.

This function tests whether the object X contains or involves marked points, and that the marks are
a factor.

For example, the amacrine dataset is multitype (there are two types of cells, on and off), but the
longleaf dataset is not multitype (the marks are real numbers).

This function is generic; methods are provided for point patterns (objects of class "ppp") and point
process models (objects of class "ppm").

Value

Logical value, equal to TRUE if X is multitype.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

is.multitype.ppm 685

See Also

is.multitype.ppp, is.multitype.ppm

is.multitype.ppm Test Whether A Point Process Model is Multitype

Description

Tests whether a fitted point process model involves “marks” attached to the points that classify the
points into several types.

Usage

S3 method for class 'ppm'
is.multitype(X, ...)

S3 method for class 'lppm'
is.multitype(X, ...)

Arguments

X Fitted point process model (object of class "ppm") usually obtained from ppm.
Alternatively a model of class "lppm".

... Ignored.

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

The argument X is a fitted point process model (an object of class "ppm") typically obtained by
fitting a model to point pattern data using ppm.

This function returns TRUE if the original data (to which the model X was fitted) were a multitype
point pattern.

Note that this is not the same as testing whether the model involves terms that depend on the marks
(i.e. whether the fitted model ignores the marks in the data). Currently we have not implemented a
test for this.

If this function returns TRUE, the implications are (for example) that any simulation of this model
will require simulation of random marks as well as random point locations.

Value

Logical value, equal to TRUE if X is a model that was fitted to a multitype point pattern dataset.

686 is.multitype.ppp

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

is.multitype, is.multitype.ppp

Examples

X <- lansing
Multitype point pattern --- trees marked by species

fit1 <- ppm(X, ~ marks, Poisson())
is.multitype(fit1)
TRUE

fit2 <- ppm(X, ~ 1, Poisson())
is.multitype(fit2)
TRUE

Unmarked point pattern
fit3 <- ppm(cells, ~ 1, Poisson())
is.multitype(fit3)
FALSE

is.multitype.ppp Test Whether A Point Pattern is Multitype

Description

Tests whether a point pattern has “marks” attached to the points which classify the points into
several types.

Usage

S3 method for class 'ppp'
is.multitype(X, na.action="warn", ...)

S3 method for class 'lpp'
is.multitype(X, na.action="warn", ...)

is.multitype.ppp 687

Arguments

X Point pattern (object of class "ppp" or "lpp")

na.action String indicating what to do if NA values are encountered amongst the marks.
Options are "warn", "fatal" and "ignore".

... Ignored.

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

This function tests whether the point pattern X contains or involves marked points, and that the
marks are a factor. It is a method for the generic function is.multitype.

For example, the amacrine dataset is multitype (there are two types of cells, on and off), but the
longleaf dataset is not multitype (the marks are real numbers).

The argument na.action determines what action will be taken if the point pattern has a vector of
marks but some or all of the marks are NA. Options are "fatal" to cause a fatal error; "warn" to
issue a warning and then return TRUE; and "ignore" to take no action except returning TRUE.

Value

Logical value, equal to TRUE if X is a multitype point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

is.multitype, is.multitype.ppm

Examples

is.multitype(cells) #FALSE - no marks
is.multitype(longleaf) #FALSE - real valued marks
is.multitype(amacrine) #TRUE

688 is.ppm

is.owin Test Whether An Object Is A Window

Description

Checks whether its argument is a window (object of class "owin").

Usage

is.owin(x)

Arguments

x Any object.

Details

This function tests whether the object x is a window object of class "owin". See owin.object for
details of this class.

The result is determined to be TRUE if x inherits from "owin", i.e. if x has "owin" amongst its
classes.

Value

TRUE if x is a point pattern, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

is.ppm Test Whether An Object Is A Fitted Point Process Model

Description

Checks whether its argument is a fitted point process model (object of class "ppm", "kppm", "lppm"
or "slrm").

Usage

is.ppm(x)
is.kppm(x)
is.lppm(x)
is.slrm(x)

is.ppp 689

Arguments

x Any object.

Details

These functions test whether the object x is a fitted point process model object of the specified class.

The result of is.ppm(x) is TRUE if x has "ppm" amongst its classes, and otherwise FALSE. Similarly
for the other functions.

Value

A single logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

is.ppp Test Whether An Object Is A Point Pattern

Description

Checks whether its argument is a point pattern (object of class "ppp").

Usage

is.ppp(x)

Arguments

x Any object.

Details

This function tests whether the object x is a point pattern object of class "ppp". See ppm.object
for details of this class.

The result is determined to be TRUE if x inherits from "ppp", i.e. if x has "ppp" amongst its classes.

Value

TRUE if x is a point pattern, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

690 is.rectangle

is.rectangle Determine Type of Window

Description

Determine whether a window is a rectangle, a polygonal region, or a binary mask.

Usage

is.rectangle(w)
is.polygonal(w)
is.mask(w)

Arguments

w Window to be inspected. An object of class "owin".

Details

These simple functions determine whether a window w (object of class "owin") is a rectangle
(is.rectangle(w) = TRUE), a domain with polygonal boundary (is.polygonal(w) = TRUE), or a
binary pixel mask (is.mask(w) = TRUE).

Value

Logical value, equal to TRUE if w is a window of the specified type.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin

is.stationary 691

is.stationary Recognise Stationary and Poisson Point Process Models

Description

Given a point process model that has been fitted to data, determine whether the model is a stationary
point process, and whether it is a Poisson point process.

Usage

is.stationary(x)
S3 method for class 'ppm'
is.stationary(x)
S3 method for class 'kppm'
is.stationary(x)
S3 method for class 'lppm'
is.stationary(x)
S3 method for class 'slrm'
is.stationary(x)
S3 method for class 'rmhmodel'
is.stationary(x)
S3 method for class 'dppm'
is.stationary(x)
S3 method for class 'detpointprocfamily'
is.stationary(x)

is.poisson(x)
S3 method for class 'ppm'
is.poisson(x)
S3 method for class 'kppm'
is.poisson(x)
S3 method for class 'lppm'
is.poisson(x)
S3 method for class 'slrm'
is.poisson(x)
S3 method for class 'rmhmodel'
is.poisson(x)
S3 method for class 'interact'
is.poisson(x)

Arguments

x A fitted spatial point process model (object of class "ppm", "kppm", "lppm",
"dppm" or "slrm") or similar object.

692 is.stationary

Details

The argument x represents a fitted spatial point process model or a similar object.

is.stationary(x) returns TRUE if x represents a stationary point process, and FALSE if not.

is.poisson(x) returns TRUE if x represents a Poisson point process, and FALSE if not.

The functions is.stationary and is.poisson are generic, with methods for the classes "ppm"
(Gibbs point process models), "kppm" (cluster or Cox point process models), "slrm" (spatial lo-
gistic regression models) and "rmhmodel" (model specifications for the Metropolis-Hastings algo-
rithm). Additionally is.stationary has a method for classes "detpointprocfamily" and "dppm"
(both determinantal point processes) and is.poisson has a method for class "interact" (interac-
tion structures for Gibbs models).

is.poisson.kppm will return FALSE, unless the model x is degenerate: either x has zero intensity
so that its realisations are empty with probability 1, or it is a log-Gaussian Cox process where the
log intensity has zero variance.

is.poisson.slrm will always return TRUE, by convention.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

is.marked to determine whether a model is a marked point process.

summary.ppm for detailed information.

Model-fitting functions ppm, dppm, kppm, lppm, slrm.

Examples

data(cells)
data(redwood)

fit <- ppm(cells ~ x)
is.stationary(fit)
is.poisson(fit)

fut <- kppm(redwood ~ 1, "MatClust")
is.stationary(fut)
is.poisson(fut)

fot <- slrm(cells ~ x)
is.stationary(fot)
is.poisson(fot)

is.subset.owin 693

is.subset.owin Determine Whether One Window is Contained In Another

Description

Tests whether window A is a subset of window B.

Usage

is.subset.owin(A, B)

Arguments

A A window object (see Details).

B A window object (see Details).

Details

This function tests whether the window A is a subset of the window B.

The arguments A and B must be window objects (either objects of class "owin", or data that can be
coerced to this class by as.owin).

Various algorithms are used, depending on the geometrical type of the two windows.

Note that if B is not rectangular, the algorithm proceeds by discretising A, converting it to a pixel
mask using as.mask. In this case the resulting answer is only “approximately correct”. The accu-
racy of the approximation can be controlled: see as.mask.

Value

Logical scalar; TRUE if A is a sub-window of B, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

w1 <- as.owin(c(0,1,0,1))
w2 <- as.owin(c(-1,2,-1,2))
is.subset.owin(w1,w2) # Returns TRUE.
is.subset.owin(w2,w1) # Returns FALSE.

694 Jcross

Jcross Multitype J Function (i-to-j)

Description

For a multitype point pattern, estimate the multitype J function summarising the interpoint depen-
dence between points of type i and of type j.

Usage

Jcross(X, i, j, eps=NULL, r=NULL, breaks=NULL, ..., correction=NULL)

Arguments

X The observed point pattern, from which an estimate of the multitype J function
Jij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

eps A positive number. The resolution of the discrete approximation to Euclidean
distance (see below). There is a sensible default.

r Optional. Numeric vector. The values of the argument r at which the function
Jij(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

... Ignored.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all"
selects all options.

Details

This function Jcross and its companions Jdot and Jmulti are generalisations of the function Jest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable
to as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The

Jcross 695

argument i will be interpreted as a level of the factor X$marks. (Warning: this means that an integer
value i=3 will be interpreted as the number 3, not the 3rd smallest level).

The “type i to type j” multitype J function of a stationary multitype point processX was introduced
by Van lieshout and Baddeley (1999). It is defined by

Jij(r) =
1−Gij(r)
1− Fj(r)

where Gij(r) is the distribution function of the distance from a type i point to the nearest point
of type j, and Fj(r) is the distribution function of the distance from a fixed point in space to the
nearest point of type j in the pattern.

An estimate of Jij(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the subprocess of type i points is independent of the subprocess of points of type j,
then Jij(r) ≡ 1. Hence deviations of the empirical estimate of Jij from the value 1 may suggest
dependence between types.

This algorithm estimates Jij(r) from the point pattern X. It assumes that X can be treated as a reali-
sation of a stationary (spatially homogeneous) random spatial point process in the plane, observed
through a bounded window. The window (which is specified in X as Window(X)) may have arbitrary
shape. Biases due to edge effects are treated in the same manner as in Jest, using the Kaplan-Meier
and border corrections. The main work is done by Gmulti and Fest.

The argument r is the vector of values for the distance r at which Jij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

J the recommended estimator of Jij(r), currently the Kaplan-Meier estimator.

r the values of the argument r at which the function Jij(r) has been estimated

km the Kaplan-Meier estimator of Jij(r)

rs the “reduced sample” or “border correction” estimator of Jij(r)

han the Hanisch-style estimator of Jij(r)

un the “uncorrected” estimator of Jij(r) formed by taking the ratio of uncorrected
empirical estimators of 1−Gij(r) and 1− Fj(r), see Gdot and Fest.

theo the theoretical value of Jij(r) for a marked Poisson process, namely 1.

The result also has two attributes "G" and "F" which are respectively the outputs of Gcross and
Fest for the point pattern.

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

696 Jdot

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Jdot, Jest, Jmulti

Examples

Lansing woods data: 6 types of trees
woods <- lansing

Jhm <- Jcross(woods, "hickory", "maple")
diagnostic plot for independence between hickories and maples
plot(Jhm)

synthetic example with two types "a" and "b"
pp <- runifpoint(30) %mark% factor(sample(c("a","b"), 30, replace=TRUE))
J <- Jcross(pp)

Jdot Multitype J Function (i-to-any)

Description

For a multitype point pattern, estimate the multitype J function summarising the interpoint depen-
dence between the type i points and the points of any type.

Usage

Jdot(X, i, eps=NULL, r=NULL, breaks=NULL, ..., correction=NULL)

Arguments

X The observed point pattern, from which an estimate of the multitype J function
Ji•(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

Jdot 697

eps A positive number. The resolution of the discrete approximation to Euclidean
distance (see below). There is a sensible default.

r numeric vector. The values of the argument r at which the function Ji•(r)
should be evaluated. There is a sensible default. First-time users are strongly
advised not to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.

... Ignored.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all"
selects all options.

Details

This function Jdot and its companions Jcross and Jmulti are generalisations of the function Jest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable
to as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The
argument i will be interpreted as a level of the factor X$marks. (Warning: this means that an integer
value i=3 will be interpreted as the number 3, not the 3rd smallest level.)

The “type i to any type” multitype J function of a stationary multitype point process X was intro-
duced by Van lieshout and Baddeley (1999). It is defined by

Ji•(r) =
1−Gi•(r)
1− F•(r)

where Gi•(r) is the distribution function of the distance from a type i point to the nearest other
point of the pattern, and F•(r) is the distribution function of the distance from a fixed point in space
to the nearest point of the pattern.

An estimate of Ji•(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the pattern is a marked Poisson point process, then Ji•(r) ≡ 1. If the subprocess of type
i points is independent of the subprocess of points of all types not equal to i, then Ji•(r) equals
Jii(r), the ordinary J function (see Jest and Van Lieshout and Baddeley (1996)) of the points of
type i. Hence deviations from zero of the empirical estimate of Ji• − Jii may suggest dependence
between types.

This algorithm estimates Ji•(r) from the point pattern X. It assumes that X can be treated as a reali-
sation of a stationary (spatially homogeneous) random spatial point process in the plane, observed
through a bounded window. The window (which is specified in X as Window(X)) may have arbitrary
shape. Biases due to edge effects are treated in the same manner as in Jest, using the Kaplan-Meier
and border corrections. The main work is done by Gmulti and Fest.

The argument r is the vector of values for the distance r at which Ji•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

698 Jdot

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

J the recommended estimator of Ji•(r), currently the Kaplan-Meier estimator.

r the values of the argument r at which the function Ji•(r) has been estimated

km the Kaplan-Meier estimator of Ji•(r)

rs the “reduced sample” or “border correction” estimator of Ji•(r)

han the Hanisch-style estimator of Ji•(r)

un the “uncorrected” estimator of Ji•(r) formed by taking the ratio of uncorrected
empirical estimators of 1−Gi•(r) and 1− F•(r), see Gdot and Fest.

theo the theoretical value of Ji•(r) for a marked Poisson process, namely 1.

The result also has two attributes "G" and "F" which are respectively the outputs of Gdot and Fest
for the point pattern.

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Jcross, Jest, Jmulti

Examples

Lansing woods data: 6 types of trees
woods <- lansing

Jh. <- Jdot(woods, "hickory")
plot(Jh.)
diagnostic plot for independence between hickories and other trees
Jhh <- Jest(split(woods)$hickory)
plot(Jhh, add=TRUE, legendpos="bottom")

Jest 699

Not run:
synthetic example with two marks "a" and "b"
pp <- runifpoint(30) %mark% factor(sample(c("a","b"), 30, replace=TRUE))
J <- Jdot(pp, "a")

End(Not run)

Jest Estimate the J-function

Description

Estimates the summary function J(r) for a point pattern in a window of arbitrary shape.

Usage

Jest(X, ..., eps=NULL, r=NULL, breaks=NULL, correction=NULL)

Arguments

X The observed point pattern, from which an estimate of J(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

eps the resolution of the discrete approximation to Euclidean distance (see below).
There is a sensible default.

r vector of values for the argument r at which J(r) should be evaluated. There
is a sensible default. First-time users are strongly advised not to specify this
argument. See below for important conditions on r.

breaks This argument is for internal use only.

correction Optional. Character string specifying the choice of edge correction(s) in Fest
and Gest. See Details.

Details

The J function (Van Lieshout and Baddeley, 1996) of a stationary point process is defined as

J(r) =
1−G(r)

1− F (r)

where G(r) is the nearest neighbour distance distribution function of the point process (see Gest)
and F (r) is its empty space function (see Fest).

For a completely random (uniform Poisson) point process, the J-function is identically equal to
1. Deviations J(r) < 1 or J(r) > 1 typically indicate spatial clustering or spatial regularity,
respectively. The J-function is one of the few characteristics that can be computed explicitly for
a wide range of point processes. See Van Lieshout and Baddeley (1996), Baddeley et al (2000),
Thonnes and Van Lieshout (1999) for further information.

700 Jest

An estimate of J derived from a spatial point pattern dataset can be used in exploratory data analysis
and formal inference about the pattern. The estimate of J(r) is compared against the constant
function 1. Deviations J(r) < 1 or J(r) > 1 may suggest spatial clustering or spatial regularity,
respectively.

This algorithm estimates the J-function from the point pattern X. It assumes that X can be treated
as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane,
observed through a bounded window. The window (which is specified in X as Window(X)) may have
arbitrary shape.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be
supplied in any of the formats recognised by as.ppp().

The functions Fest and Gest are called to compute estimates of F (r) and G(r) respectively. These
estimates are then combined by simply taking the ratio J(r) = (1−G(r))/(1− F (r)).

In fact several different estimates are computed using different edge corrections (Baddeley, 1998).

The Kaplan-Meier estimate (returned as km) is the ratio J = (1-G)/(1-F) of the Kaplan-Meier
estimates of 1 − F and 1 − G computed by Fest and Gest respectively. This is computed if
correction=NULL or if correction includes "km".

The Hanisch-style estimate (returned as han) is the ratio J = (1-G)/(1-F) where F is the Chiu-
Stoyan estimate of F and G is the Hanisch estimate of G. This is computed if correction=NULL or
if correction includes "cs" or "han".

The reduced-sample or border corrected estimate (returned as rs) is the same ratio J = (1-G)/(1-F)
of the border corrected estimates. This is computed if correction=NULL or if correction includes
"rs" or "border".

These edge-corrected estimators are slightly biased for J , since they are ratios of approximately
unbiased estimators. The logarithm of the Kaplan-Meier estimate is exactly unbiased for log J .

The uncorrected estimate (returned as un and computed only if correction includes "none") is the
ratio J = (1-G)/(1-F) of the uncorrected (“raw”) estimates of the survival functions of F and G,
which are the empirical distribution functions of the empty space distances Fest(X,...)$raw and
of the nearest neighbour distances Gest(X,...)$raw. The uncorrected estimates of F and G are
severely biased. However the uncorrected estimate of J is approximately unbiased (if the process is
close to Poisson); it is insensitive to edge effects, and should be used when edge effects are severe
(see Baddeley et al, 2000).

The algorithm for Fest uses two discrete approximations which are controlled by the parameter eps
and by the spacing of values of r respectively. See Fest for details. First-time users are strongly
advised not to specify these arguments.

Note that the value returned by Jest includes the output of Fest and Gest as attributes (see the last
example below). If the user is intending to compute the F,G and J functions for the point pattern, it
is only necessary to call Jest.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing

r the vector of values of the argument r at which the function J has been estimated

Jest 701

rs the “reduced sample” or “border correction” estimator of J(r) computed from
the border-corrected estimates of F and G

km the spatial Kaplan-Meier estimator of J(r) computed from the Kaplan-Meier
estimates of F and G

han the Hanisch-style estimator of J(r) computed from the Hanisch estimate of G
and the Chiu-Stoyan estimate of F

un the uncorrected estimate of J(r) computed from the uncorrected estimates of F
and G

theo the theoretical value of J(r) for a stationary Poisson process: identically equal
to 1

The data frame also has attributes

F the output of Fest for this point pattern, containing three estimates of the empty
space function F (r) and an estimate of its hazard function

G the output of Gest for this point pattern, containing three estimates of the near-
est neighbour distance distribution function G(r) and an estimate of its hazard
function

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37–78.

Baddeley, A.J. and Gill, R.D. The empty space hazard of a spatial pattern. Research Report 1994/3,
Department of Mathematics, University of Western Australia, May 1994.

Baddeley, A.J. and Gill, R.D. Kaplan-Meier estimators of interpoint distance distributions for spatial
point processes. Annals of Statistics 25 (1997) 263–292.

Baddeley, A., Kerscher, M., Schladitz, K. and Scott, B.T. Estimating the J function without edge
correction. Statistica Neerlandica 54 (2000) 315–328.

Borgefors, G. Distance transformations in digital images. Computer Vision, Graphics and Image
Processing 34 (1986) 344–371.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

702 Jinhom

Thonnes, E. and Van Lieshout, M.N.M, A comparative study on the power of Van Lieshout and
Baddeley’s J-function. Biometrical Journal 41 (1999) 721–734.

Van Lieshout, M.N.M. and Baddeley, A.J. A nonparametric measure of spatial interaction in point
patterns. Statistica Neerlandica 50 (1996) 344–361.

See Also

Jinhom, Fest, Gest, Kest, km.rs, reduced.sample, kaplan.meier

Examples

data(cells)
J <- Jest(cells, 0.01)
plot(J, main="cells data")
values are far above J = 1, indicating regular pattern

data(redwood)
J <- Jest(redwood, 0.01, legendpos="center")
plot(J, main="redwood data")
values are below J = 1, indicating clustered pattern

Jinhom Inhomogeneous J-function

Description

Estimates the inhomogeneous J function of a non-stationary point pattern.

Usage

Jinhom(X, lambda = NULL, lmin = NULL, ...,
sigma = NULL, varcov = NULL,
r = NULL, breaks = NULL,
update = TRUE, warn.bias=TRUE, savelambda=FALSE)

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
J function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give
the intensity value at any location.

lmin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

Jinhom 703

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

... Extra arguments passed to as.mask to control the pixel resolution, or passed to
density.ppp to control the smoothing bandwidth.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

update Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without fitting it to X.

warn.bias Logical value specifying whether to issue a warning when the inhomogeneity
correction factor takes extreme values, which can often lead to biased results.
This usually occurs when insufficient smoothing is used to estimate the intensity.

savelambda Logical value specifying whether to save the values of lmin and lambda as at-
tributes of the result.

Details

This command computes estimates of the inhomogeneous J-function (Van Lieshout, 2010) of a
point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the J function for
homogeneous point patterns computed by Jest.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous J function is computed as Jinhom(r) = (1−Ginhom(r))/(1−Finhom(r))
where Ginhom,F inhom are the inhomogeneous G and F functions computed using the border
correction (equations (7) and (6) respectively in Van Lieshout, 2010).

The argument lambda should supply the (estimated) values of the intensity function λ of the point
process. It may be either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a fitted point process model (object of class "ppm" or "kppm") whose fitted trend can be used as
the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the
trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then

704 Jmulti

looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate
lambda[i] for the point X[i] is computed by removing X[i] from the point pattern, applying kernel
smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at
the point X[i]. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov,
which are passed to density.ppp along with any extra arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Author(s)

Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

References

van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

van Lieshout, M.N.M. (2010) A J-function for inhomogeneous point processes. Statistica Neer-
landica 65, 183–201.

See Also

Ginhom, Finhom, Jest

Examples

Not run:
plot(Jinhom(swedishpines, sigma=bw.diggle, adjust=2))

End(Not run)
plot(Jinhom(swedishpines, sigma=10))

Jmulti Marked J Function

Description

For a marked point pattern, estimate the multitype J function summarising dependence between the
points in subset I and those in subset J .

Jmulti 705

Usage

Jmulti(X, I, J, eps=NULL, r=NULL, breaks=NULL, ..., disjoint=NULL,
correction=NULL)

Arguments

X The observed point pattern, from which an estimate of the multitype distance
distribution function JIJ(r) will be computed. It must be a marked point pattern.
See under Details.

I Subset of points of X from which distances are measured. See Details.

J Subset of points in X to which distances are measured. See Details.

eps A positive number. The pixel resolution of the discrete approximation to Eu-
clidean distance (see Jest). There is a sensible default.

r numeric vector. The values of the argument r at which the distribution function
JIJ(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

... Ignored.

disjoint Optional flag indicating whether the subsets I and J are disjoint. If missing, this
value will be computed by inspecting the vectors I and J.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all"
selects all options.

Details

The function Jmulti generalises Jest (for unmarked point patterns) and Jdot and Jcross (for
multitype point patterns) to arbitrary marked point patterns.

Suppose XI , XJ are subsets, possibly overlapping, of a marked point process. Define

JIJ(r) =
1−GIJ(r)

1− FJ(r)

where FJ(r) is the cumulative distribution function of the distance from a fixed location to the
nearest point of XJ , and GIJ(r) is the distribution function of the distance from a typical point of
XI to the nearest distinct point of XJ .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

706 Jmulti

It is assumed that X can be treated as a realisation of a stationary (spatially homogeneous) random
spatial point process in the plane, observed through a bounded window. The window (which is
specified in X as Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the
same manner as in Jest.

The argument r is the vector of values for the distance r at which JIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function JIJ(r) has been estimated

rs the “reduced sample” or “border correction” estimator of JIJ(r)

km the spatial Kaplan-Meier estimator of JIJ(r)

han the Hanisch-style estimator of JIJ(r)

un the uncorrected estimate of JIJ(r), formed by taking the ratio of uncorrected
empirical estimators of 1−GIJ(r) and 1− FJ(r), see Gdot and Fest.

theo the theoretical value of JIJ(r) for a marked Poisson process with the same esti-
mated intensity, namely 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Jcross, Jdot, Jest

Examples

trees <- longleaf
Longleaf Pine data: marks represent diameter

Jm <- Jmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(Jm)

joinVertices 707

joinVertices Join Vertices in a Network

Description

Join the specified vertices in a linear network, creating a new network.

Usage

joinVertices(L, from, to, marks=NULL)

Arguments

L A linear network (object of class "linnet") or point pattern on a linear network
(object of class "lpp").

from,to Integers, or integer vectors of equal length, specifying the vertices which should
be joined. Alternatively from can be a 2-column matrix of integers and to is
missing or NULL.

marks Optional vector or data frame of values associated with the new edges.

Details

Vertices of the network are numbered by their order of appearance in the point pattern vertices(L).

If from and to are single integers, then the pair of vertices numbered from and to will be joined to
make a new segment of the network. If from and to are vectors of integers, then vertex from[i]
will be joined to vertex to[i] for each i = 1,2,...

If L is a network (class "linnet"), the result is another network, created by adding new segments.
If L is a point pattern on a network (class "lpp"), the result is another point pattern object, created
by adding new segments to the underlying network, and retaining the points.

In the resulting object, the new line segments are appended to the existing list of line segments.

Value

A linear network (object of class "linnet") or point pattern on a linear network (object of class
"lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linnet, methods.linnet, thinNetwork

708 K3est

Examples

snet <- joinVertices(simplenet, 4, 8)
plot(solist(simplenet, snet), main="")
X <- runiflpp(3, simplenet)
Y <- joinVertices(X, 4, 8)

K3est K-function of a Three-Dimensional Point Pattern

Description

Estimates the K-function from a three-dimensional point pattern.

Usage

K3est(X, ...,
rmax = NULL, nrval = 128,
correction = c("translation", "isotropic"),
ratio=FALSE)

Arguments

X Three-dimensional point pattern (object of class "pp3").
... Ignored.
rmax Optional. Maximum value of argument r for which K3(r) will be estimated.
nrval Optional. Number of values of r for which K3(r) will be estimated. A large

value of nrval is required to avoid discretisation effects.
correction Optional. Character vector specifying the edge correction(s) to be applied. See

Details.
ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-

mate will also be saved, for use in analysing replicated point patterns.

Details

For a stationary point process Φ in three-dimensional space, the three-dimensional K function is

K3(r) =
1

λ
E(N(Φ, x, r) | x ∈ Φ)

where λ is the intensity of the process (the expected number of points per unit volume) andN(Φ, x, r)
is the number of points of Φ, other than x itself, which fall within a distance r of x. This is the
three-dimensional generalisation of Ripley’s K function for two-dimensional point processes (Rip-
ley, 1977).

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point
process Φ. The distance between each pair of distinct points is computed. The empirical cumulative
distribution function of these values, with appropriate edge corrections, is renormalised to give the
estimate of K3(r).

The available edge corrections are:

kaplan.meier 709

"translation": the Ohser translation correction estimator (Ohser, 1983; Baddeley et al, 1993)

"isotropic": the three-dimensional counterpart of Ripley’s isotropic edge correction (Ripley,
1977; Baddeley et al, 1993).

Alternatively correction="all" selects all options.

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

pcf3est, F3est, G3est for other summary functions of a three-dimensional point pattern.

Kest to estimate the K-function of point patterns in two dimensions or other spaces.

Examples

X <- rpoispp3(42)
Z <- K3est(X)
if(interactive()) plot(Z)

kaplan.meier Kaplan-Meier Estimator using Histogram Data

Description

Compute the Kaplan-Meier estimator of a survival time distribution function, from histogram data

Usage

kaplan.meier(obs, nco, breaks, upperobs=0)

710 kaplan.meier

Arguments

obs vector of n integers giving the histogram of all observations (censored or uncen-
sored survival times)

nco vector of n integers giving the histogram of uncensored observations (those sur-
vival times that are less than or equal to the censoring time)

breaks Vector of n+ 1 breakpoints which were used to form both histograms.

upperobs Number of observations beyond the rightmost breakpoint, if any.

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications
where you want to form the Kaplan-Meier estimator from a huge dataset.

Suppose Ti are the survival times of individuals i = 1, . . . ,M with unknown distribution function
F (t) which we wish to estimate. Suppose these times are right-censored by random censoring
times Ci. Thus the observations consist of right-censored survival times T̃i = min(Ti, Ci) and
non-censoring indicators Di = 1{Ti ≤ Ci} for each i.

If the number of observations M is large, it is efficient to use histograms. Form the histogram
obs of all observed times T̃i. That is, obs[k] counts the number of values T̃i in the interval
(breaks[k],breaks[k+1]] for k > 1 and [breaks[1],breaks[2]] for k = 1. Also form the
histogram nco of all uncensored times, i.e. those T̃i such that Di = 1. These two histograms are
the arguments passed to kaplan.meier.

The vectors km and lambda returned by kaplan.meier are (histogram approximations to) the
Kaplan-Meier estimator of F (t) and its hazard rate λ(t). Specifically, km[k] is an estimate of
F(breaks[k+1]), and lambda[k] is an estimate of the average of λ(t) over the interval (breaks[k],breaks[k+1]).

The histogram breaks must include 0. If the histogram breaks do not span the range of the obser-
vations, it is important to count how many survival times T̃i exceed the rightmost breakpoint, and
give this as the value upperobs.

Value

A list with two elements:

km Kaplan-Meier estimate of the survival time c.d.f. F (t)

lambda corresponding Nelson-Aalen estimate of the hazard rate λ(t)

These are numeric vectors of length n.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

reduced.sample, km.rs

Kcom 711

Kcom Model Compensator of K Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the compensator
of theK function based on the fitted model (as well as the usual nonparametric estimates ofK based
on the data alone). Comparison between the nonparametric and model-compensated K functions
serves as a diagnostic for the model.

Usage

Kcom(object, r = NULL, breaks = NULL, ...,
correction = c("border", "isotropic", "translate"),
conditional = !is.poisson(object),
restrict = FALSE,
model = NULL,
trend = ~1, interaction = Poisson(), rbord = reach(interaction),
compute.var = TRUE,
truecoef = NULL, hi.res = NULL)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the function K(r) should
be computed. This argument is usually not specified. There is a sensible default.

breaks This argument is for advanced use only.

... Ignored.

correction Optional vector of character strings specifying the edge correction(s) to be used.
See Kest for options.

conditional Optional. Logical value indicating whether to compute the estimates for the
conditional case. See Details.

restrict Logical value indicating whether to compute the restriction estimator (restrict=TRUE)
or the reweighting estimator (restrict=FALSE, the default). Applies only if
conditional=TRUE. See Details.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord.

trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

712 Kcom

compute.var Logical value indicating whether to compute the Poincare variance bound for
the residual K function (calculation is only implemented for the isotropic cor-
rection).

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes an estimate of the K function of the dataset, together with a
model compensator of the K function, which should be approximately equal if the model is a good
fit to the data.

The first argument, object, is usually a fitted point process model (object of class "ppm"), obtained
from the model-fitting function ppm.

For convenience, object can also be a point pattern (object of class "ppp"). In that case, a point
process model will be fitted to it, by calling ppm using the arguments trend (for the first order
trend), interaction (for the interpoint interaction) and rbord (for the erosion distance in the bor-
der correction for the pseudolikelihood). See ppm for details of these arguments.

The algorithm first extracts the original point pattern dataset (to which the model was fitted) and
computes the standard nonparametric estimates of the K function. It then also computes the model
compensator of the K function. The different function estimates are returned as columns in a data
frame (of class "fv").

The argument correction determines the edge correction(s) to be applied. See Kest for explana-
tion of the principle of edge corrections. The following table gives the options for the correction
argument, and the corresponding column names in the result:

correction description of correction nonparametric compensator
"isotropic" Ripley isotropic correction iso icom
"translate" Ohser-Stoyan translation correction trans tcom
"border" border correction border bcom

The nonparametric estimates can all be expressed in the form

K̂(r) =
∑
i

∑
j<i

e(xi, xj , r, x)I{d(xi, xj) ≤ r}

where xi is the i-th data point, d(xi, xj) is the distance between xi and xj , and e(xi, xj , r, x) is
a term that serves to correct edge effects and to re-normalise the sum. The corresponding model
compensator is

C K̃(r) =

∫
W

λ(u, x)
∑
j

e(u, xj , r, x ∪ u)I{d(u, xj) ≤ r}

Kcom 713

where the integral is over all locations u in the observation window, λ(u, x) denotes the conditional
intensity of the model at the location u, and x ∪ u denotes the data point pattern x augmented by
adding the extra point u.

If the fitted model is a Poisson point process, then the formulae above are exactly what is computed.
If the fitted model is not Poisson, the formulae above are modified slightly to handle edge effects.

The modification is determined by the arguments conditional and restrict. The value of
conditional defaults to FALSE for Poisson models and TRUE for non-Poisson models. If conditional=FALSE
then the formulae above are not modified. If conditional=TRUE, then the algorithm calculates the
restriction estimator if restrict=TRUE, and calculates the reweighting estimator if restrict=FALSE.
See Appendix D of Baddeley, Rubak and Møller (2011). Thus, by default, the reweighting estimator
is computed for non-Poisson models.

The nonparametric estimates of K(r) are approximately unbiased estimates of the K-function,
assuming the point process is stationary. The model compensators are unbiased estimates of the
mean values of the corresponding nonparametric estimates, assuming the model is true. Thus, if
the model is a good fit, the mean value of the difference between the nonparametric estimates and
model compensators is approximately zero.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Related functions: Kres, Kest.

Alternative functions: Gcom, psstG, psstA, psst.

Point process models: ppm.

Examples

fit0 <- ppm(cells, ~1) # uniform Poisson

if(interactive()) {
plot(Kcom(fit0))

compare the isotropic-correction estimates
plot(Kcom(fit0), cbind(iso, icom) ~ r)

uniform Poisson is clearly not correct
}

714 Kcross

fit1 <- ppm(cells, ~1, Strauss(0.08))

K1 <- Kcom(fit1)
K1
if(interactive()) {

plot(K1)
plot(K1, cbind(iso, icom) ~ r)
plot(K1, cbind(trans, tcom) ~ r)

how to plot the difference between nonparametric estimates and compensators
plot(K1, iso - icom ~ r)

fit looks approximately OK; try adjusting interaction distance
}
fit2 <- ppm(cells, ~1, Strauss(0.12))

K2 <- Kcom(fit2)
if(interactive()) {

plot(K2)
plot(K2, cbind(iso, icom) ~ r)
plot(K2, iso - icom ~ r)

}

Kcross Multitype K Function (Cross-type)

Description

For a multitype point pattern, estimate the multitype K function which counts the expected number
of points of type j within a given distance of a point of type i.

Usage

Kcross(X, i, j, r=NULL, breaks=NULL, correction,
..., ratio=FALSE, from, to)

Arguments

X The observed point pattern, from which an estimate of the cross typeK function
Kij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

Kcross 715

r numeric vector. The values of the argument r at which the distribution function
Kij(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

from,to An alternative way to specify i and j respectively.

Details

This function Kcross and its companions Kdot and Kmulti are generalisations of the function Kest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The arguments i and j will be interpreted as levels of the factor X$marks. If i and j are missing,
they default to the first and second level of the marks factor, respectively.

The “cross-type” (type i to type j) K function of a stationary multitype point process X is defined
so that λjKij(r) equals the expected number of additional random points of type j within a distance
r of a typical point of type i in the process X . Here λj is the intensity of the type j points, i.e. the
expected number of points of type j per unit area. The function Kij is determined by the second
order moment properties of X .

An estimate ofKij(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the process of type i points were independent of the process of type j points, thenKij(r)
would equal πr2. Deviations between the empirical Kij curve and the theoretical curve πr2 may
suggest dependence between the points of types i and j.

This algorithm estimates the distribution function Kij(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Kest, using the border correction.

The argument r is the vector of values for the distance r at which Kij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

The pair correlation function can also be applied to the result of Kcross; see pcf.

716 Kcross

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Kij(r) has been estimated

theo the theoretical value of Kij(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Kij(r)
obtained by the edge corrections named.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Kdot, Kest, Kmulti, pcf

Examples

amacrine cells data
K01 <- Kcross(amacrine, "off", "on")
plot(K01)

Kcross.inhom 717

Not run:
K10 <- Kcross(amacrine, "on", "off")

synthetic example: point pattern with marks 0 and 1
pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
K <- Kcross(pp, "0", "1")
K <- Kcross(pp, 0, 1) # equivalent

End(Not run)

Kcross.inhom Inhomogeneous Cross K Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the cross K function, which
counts the expected number of points of type j within a given distance of a point of type i, adjusted
for spatially varying intensity.

Usage

Kcross.inhom(X, i, j, lambdaI=NULL, lambdaJ=NULL, ..., r=NULL, breaks=NULL,
correction = c("border", "isotropic", "Ripley", "translate"),
sigma=NULL, varcov=NULL,
lambdaIJ=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type K function Kij(r) will be computed. It must be a multitype point pattern
(a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type
i. Either a pixel image (object of class "im"), a numeric vector containing the
intensity values at each of the type i points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

718 Kcross.inhom

lambdaJ Optional. Values of the the estimated intensity of the sub-process of points of
type j. Either a pixel image (object of class "im"), a numeric vector containing
the intensity values at each of the type j points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

r Optional. Numeric vector giving the values of the argument r at which the cross
K function Kij(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for advanced use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley" ,"translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.

sigma Standard deviation of isotropic Gaussian smoothing kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdaJ if they are omitted.

varcov Variance-covariance matrix of anisotropic Gaussian kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdaJ if they are omitted. Incom-
patible with sigma.

lambdaIJ Optional. A matrix containing estimates of the product of the intensities lambdaI
and lambdaJ for each pair of points of types i and j respectively.

lambdaX Optional. Values of the intensity for all points of X. Either a pixel image (object
of class "im"), a numeric vector containing the intensity values at each of the
points in X, a fitted point process model (object of class "ppm" or "kppm" or
"dppm"), or a function(x,y) which can be evaluated to give the intensity value
at any location. If present, this argument overrides both lambdaI and lambdaJ.

update Logical value indicating what to do when lambdaI, lambdaJ or lambdaX is a
fitted point process model (class "ppm", "kppm" or "dppm"). If update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Details

This is a generalisation of the function Kcross to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Kinhom.

The inhomogeneous cross-type K function is described by Møller and Waagepetersen (2003, pages
48-49 and 51-53).

Briefly, given a multitype point process, suppose the sub-process of points of type j has intensity
function λj(u) at spatial locations u. Suppose we place a mass of 1/λj(ζ) at each point ζ of type
j. Then the expected total mass per unit area is 1. The inhomogeneous “cross-type” K function
Kinhom
ij (r) equals the expected total mass within a radius r of a point of the process of type i.

Kcross.inhom 719

If the process of type i points were independent of the process of type j points, then Kinhom
ij (r)

would equal πr2. Deviations between the empiricalKij curve and the theoretical curve πr2 suggest
dependence between the points of types i and j.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The arguments i and j will be interpreted as levels of the factor X$marks. (Warning: this means
that an integer value i=3 will be interpreted as the number 3, not the 3rd smallest level). If i and j
are missing, they default to the first and second level of the marks factor, respectively.

The argument lambdaI supplies the values of the intensity of the sub-process of points of type i. It
may be either

a pixel image (object of class "im") which gives the values of the type i intensity at all locations
in the window containing X;

a numeric vector containing the values of the type i intensity evaluated only at the data points of
type i. The length of this vector must equal the number of type i points in X.

a function which can be evaluated to give values of the intensity at any locations.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate of lambdaI for a given point is
computed by removing the point from the point pattern, applying kernel smoothing to the remaining
points using density.ppp, and evaluating the smoothed intensity at the point in question. The
smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to
density.ppp along with any extra arguments.

Similarly lambdaJ should contain estimated values of the intensity of the sub-process of points of
type j. It may be either a pixel image, a function, a numeric vector, or omitted.

Alternatively if the argument lambdaX is given, then it specifies the intensity values for all points of
X, and the arguments lambdaI, lambdaJ will be ignored.

The optional argument lambdaIJ is for advanced use only. It is a matrix containing estimated values
of the products of these two intensities for each pair of data points of types i and j respectively.

The argument r is the vector of values for the distance r at which Kij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

The argument correction chooses the edge correction as explained e.g. in Kest.

The pair correlation function can also be applied to the result of Kcross.inhom; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Kij(r) has been estimated

720 Kcross.inhom

theo the theoretical value of Kij(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Kij(r)
obtained by the edge corrections named.

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

See Also

Kcross, Kinhom, Kdot.inhom, Kmulti.inhom, pcf

Examples

Lansing Woods data
woods <- lansing

ma <- split(woods)$maple
wh <- split(woods)$whiteoak

method (1): estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdaW <- density.ppp(wh, sigma=0.15, at="points")
K <- Kcross.inhom(woods, "whiteoak", "maple", lambdaW, lambdaM)

method (2): leave-one-out
K <- Kcross.inhom(woods, "whiteoak", "maple", sigma=0.15)

method (3): fit parametric intensity model
fit <- ppm(woods ~marks * polynom(x,y,2))
alternative (a): use fitted model as 'lambda' argument
K <- Kcross.inhom(woods, "whiteoak", "maple",

lambdaI=fit, lambdaJ=fit, update=FALSE)
K <- Kcross.inhom(woods, "whiteoak", "maple",

lambdaX=fit, update=FALSE)

Kdot 721

alternative (b): evaluate fitted intensities at data points
(these are the intensities of the sub-processes of each type)
inten <- fitted(fit, dataonly=TRUE)
split according to types of points
lambda <- split(inten, marks(woods))
K <- Kcross.inhom(woods, "whiteoak", "maple",

lambda$whiteoak, lambda$maple)

synthetic example: type A points have intensity 50,
type B points have intensity 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
K <- Kcross.inhom(X, "A", "B",

lambdaI=as.im(50, Window(X)), lambdaJ=lamB)

Kdot Multitype K Function (i-to-any)

Description

For a multitype point pattern, estimate the multitype K function which counts the expected number
of other points of the process within a given distance of a point of type i.

Usage

Kdot(X, i, r=NULL, breaks=NULL, correction, ..., ratio=FALSE, from)

Arguments

X The observed point pattern, from which an estimate of the multitype K function
Ki•(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

r numeric vector. The values of the argument r at which the distribution function
Ki•(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.
correction A character vector containing any selection of the options "border", "bord.modif",

"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.
ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-

mate will also be saved, for use in analysing replicated point patterns.
from An alternative way to specify i.

722 Kdot

Details

This function Kdot and its companions Kcross and Kmulti are generalisations of the function Kest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The argument i will be interpreted as a level of the factor X$marks. If i is missing, it defaults to the
first level of the marks factor, i = levels(X$marks)[1].

The “type i to any type” multitype K function of a stationary multitype point process X is defined
so that λKi•(r) equals the expected number of additional random points within a distance r of a
typical point of type i in the process X . Here λ is the intensity of the process, i.e. the expected
number of points of X per unit area. The function Ki• is determined by the second order moment
properties of X .

An estimate ofKi•(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the subprocess of type i points were independent of the subprocess of points of all types
not equal to i, then Ki•(r) would equal πr2. Deviations between the empirical Ki• curve and the
theoretical curve πr2 may suggest dependence between types.

This algorithm estimates the distribution function Ki•(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Kest, using the chosen edge correction(s).

The argument r is the vector of values for the distance r at which Ki•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

The pair correlation function can also be applied to the result of Kdot; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Ki•(r) has been estimated

theo the theoretical value of Ki•(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Ki•(r)
obtained by the edge corrections named.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

Kdot 723

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

The reduced sample estimator of Ki• is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Kdot, Kest, Kmulti, pcf

Examples

Lansing woods data: 6 types of trees
woods <- lansing

Kh. <- Kdot(woods, "hickory")
diagnostic plot for independence between hickories and other trees
plot(Kh.)

Not run:
synthetic example with two marks "a" and "b"
pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(c("a","b"), npoints(pp), replace=TRUE))
K <- Kdot(pp, "a")

End(Not run)

724 Kdot.inhom

Kdot.inhom Inhomogeneous Multitype K Dot Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the dot K function, which
counts the expected number of points of any type within a given distance of a point of type i,
adjusted for spatially varying intensity.

Usage

Kdot.inhom(X, i, lambdaI=NULL, lambdadot=NULL, ..., r=NULL, breaks=NULL,
correction = c("border", "isotropic", "Ripley", "translate"),
sigma=NULL, varcov=NULL, lambdaIdot=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type K function Ki•(r) will be computed. It must be a multitype point pattern
(a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type
i. Either a pixel image (object of class "im"), a numeric vector containing the
intensity values at each of the type i points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

lambdadot Optional. Values of the estimated intensity of the entire point process, Either
a pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X, a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location.

... Ignored.

r Optional. Numeric vector giving the values of the argument r at which the cross
K function Kij(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

Kdot.inhom 725

sigma Standard deviation of isotropic Gaussian smoothing kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdadot if they are omitted.

varcov Variance-covariance matrix of anisotropic Gaussian kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdadot if they are omitted. In-
compatible with sigma.

lambdaIdot Optional. A matrix containing estimates of the product of the intensities lambdaI
and lambdadot for each pair of points, the first point of type i and the second
of any type.

lambdaX Optional. Values of the intensity for all points of X. Either a pixel image (ob-
ject of class "im"), a numeric vector containing the intensity values at each of
the points in X, a fitted point process model (object of class "ppm" or "kppm"
or "dppm"), or a function(x,y) which can be evaluated to give the intensity
value at any location. If present, this argument overrides both lambdaI and
lambdadot.

update Logical value indicating what to do when lambdaI, lambdadot or lambdaX is
a fitted point process model (class "ppm", "kppm" or "dppm"). If update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Details

This is a generalisation of the function Kdot to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Kinhom.

Briefly, given a multitype point process, consider the points without their types, and suppose this
unmarked point process has intensity function λ(u) at spatial locations u. Suppose we place a mass
of 1/λ(ζ) at each point ζ of the process. Then the expected total mass per unit area is 1. The
inhomogeneous “dot-type” K function Kinhom

i• (r) equals the expected total mass within a radius
r of a point of the process of type i, discounting this point itself.

If the process of type i points were independent of the points of other types, then Kinhom
i• (r)

would equal πr2. Deviations between the empiricalKi• curve and the theoretical curve πr2 suggest
dependence between the points of types i and j for j 6= i.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The argument i will be interpreted as a level of the factor X$marks. (Warning: this means that an
integer value i=3 will be interpreted as the number 3, not the 3rd smallest level). If i is missing, it
defaults to the first level of the marks factor, i = levels(X$marks)[1].

The argument lambdaI supplies the values of the intensity of the sub-process of points of type i. It
may be either

a pixel image (object of class "im") which gives the values of the type i intensity at all locations
in the window containing X;

a numeric vector containing the values of the type i intensity evaluated only at the data points of
type i. The length of this vector must equal the number of type i points in X.

726 Kdot.inhom

a function of the form function(x,y) which can be evaluated to give values of the intensity at
any locations.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate of lambdaI for a given point is
computed by removing the point from the point pattern, applying kernel smoothing to the remaining
points using density.ppp, and evaluating the smoothed intensity at the point in question. The
smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to
density.ppp along with any extra arguments.

Similarly the argument lambdadot should contain estimated values of the intensity of the entire
point process. It may be either a pixel image, a numeric vector of length equal to the number of
points in X, a function, or omitted.

Alternatively if the argument lambdaX is given, then it specifies the intensity values for all points
of X, and the arguments lambdaI, lambdadot will be ignored. (The two arguments lambdaI,
lambdadot allow the user to specify two different methods for calculating the intensities of the
two kinds of points, while lambdaX ensures that the same method is used for both kinds of points.)

For advanced use only, the optional argument lambdaIdot is a matrix containing estimated values
of the products of these two intensities for each pair of points, the first point of type i and the second
of any type.

The argument r is the vector of values for the distance r at which Ki•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

The argument correction chooses the edge correction as explained e.g. in Kest.

The pair correlation function can also be applied to the result of Kcross.inhom; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Ki•(r) has been estimated

theo the theoretical value of Ki•(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Ki•(r)
obtained by the edge corrections named.

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

kernel.factor 727

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

See Also

Kdot, Kinhom, Kcross.inhom, Kmulti.inhom, pcf

Examples

Lansing Woods data
woods <- lansing
woods <- woods[seq(1,npoints(woods), by=10)]
ma <- split(woods)$maple
lg <- unmark(woods)

Estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdadot <- density.ppp(lg, sigma=0.15, at="points")
K <- Kdot.inhom(woods, "maple", lambdaI=lambdaM,

lambdadot=lambdadot)

Equivalent
K <- Kdot.inhom(woods, "maple", sigma=0.15)

Fit model
fit <- ppm(woods ~ marks * polynom(x,y,2))
K <- Kdot.inhom(woods, "maple", lambdaX=fit, update=FALSE)

synthetic example: type A points have intensity 50,
type B points have intensity 50 + 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
lamdot <- as.im(function(x,y) { 100 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
K <- Kdot.inhom(X, "B", lambdaI=lamB, lambdadot=lamdot)

kernel.factor Scale factor for density kernel

Description

Returns a scale factor for the kernels used in density estimation for numerical data.

728 kernel.moment

Usage

kernel.factor(kernel = "gaussian")

Arguments

kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",
"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

Details

Kernel estimation of a probability density in one dimension is performed by density.default
using a kernel function selected from the list above.

This function computes a scale constant for the kernel. For the Gaussian kernel, this constant is
equal to 1. Otherwise, the constant c is such that the kernel with standard deviation 1 is supported
on the interval [−c, c].
For more information about these kernels, see density.default.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton

See Also

density.default, dkernel, kernel.moment, kernel.squint

Examples

kernel.factor("rect")
bandwidth for Epanechnikov kernel with half-width h=1
h <- 1
bw <- h/kernel.factor("epa")

kernel.moment Moment of Smoothing Kernel

Description

Computes the complete or incomplete mth moment of a smoothing kernel.

Usage

kernel.moment(m, r, kernel = "gaussian")

kernel.moment 729

Arguments

m Exponent (order of moment). An integer.

r Upper limit of integration for the incomplete moment. A numeric value or nu-
meric vector. Set r=Inf to obtain the complete moment.

kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",
"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

Details

Kernel estimation of a probability density in one dimension is performed by density.default
using a kernel function selected from the list above. For more information about these kernels, see
density.default.

The function kernel.moment computes the partial integral∫ r

−∞
tmk(t)dt

where k(t) is the selected kernel, r is the upper limit of integration, and m is the exponent or order.
Here k(t) is the standard form of the kernel, which has support [−1, 1] and standard deviation
sigma = 1/c where c = kernel.factor(kernel).

Value

A single number, or a numeric vector of the same length as r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton.

See Also

density.default, dkernel, kernel.factor,

Examples

kernel.moment(1, 0.1, "epa")
curve(kernel.moment(2, x, "epa"), from=-1, to=1)

730 kernel.squint

kernel.squint Integral of Squared Kernel

Description

Computes the integral of the squared kernel, for the kernels used in density estimation for numerical
data.

Usage

kernel.squint(kernel = "gaussian", bw=1)

Arguments

kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",
"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

bw Bandwidth (standard deviation) of the kernel.

Details

Kernel estimation of a probability density in one dimension is performed by density.default
using a kernel function selected from the list above.

This function computes the integral of the squared kernel,

R =

∫ ∞
−∞

k(x)2 dx

where k(x) is the kernel with bandwidth bw.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Martin Hazelton

See Also

density.default, dkernel, kernel.moment, kernel.factor

Kest 731

Examples

kernel.squint("gaussian", 3)

integral of squared Epanechnikov kernel with half-width h=1
h <- 1
bw <- h/kernel.factor("epa")
kernel.squint("epa", bw)

Kest K-function

Description

Estimates Ripley’s reduced second moment function K(r) from a point pattern in a window of
arbitrary shape.

Usage

Kest(X, ..., r=NULL, rmax=NULL, breaks=NULL,
correction=c("border", "isotropic", "Ripley", "translate"),
nlarge=3000, domain=NULL, var.approx=FALSE, ratio=FALSE)

Arguments

X The observed point pattern, from which an estimate of K(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

r Optional. Vector of values for the argument r at which K(r) should be evalu-
ated. Users are advised not to specify this argument; there is a sensible default.
If necessary, specify rmax.

rmax Optional. Maximum desired value of the argument r.

breaks This argument is for internal use only.

correction Optional. A character vector containing any selection of the options "none",
"border", "bord.modif", "isotropic", "Ripley", "translate", "translation",
"rigid", "none", "good" or "best". It specifies the edge correction(s) to be
applied. Alternatively correction="all" selects all options.

nlarge Optional. Efficiency threshold. If the number of points exceeds nlarge, then
only the border correction will be computed (by default), using a fast algorithm.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

var.approx Logical. If TRUE, the approximate variance of K̂(r) under CSR will also be
computed.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

732 Kest

Details

The K function (variously called “Ripley’s K-function” and the “reduced second moment func-
tion”) of a stationary point process X is defined so that λK(r) equals the expected number of
additional random points within a distance r of a typical random point of X . Here λ is the intensity
of the process, i.e. the expected number of points of X per unit area. The K function is determined
by the second order moment properties of X .

An estimate of K derived from a spatial point pattern dataset can be used in exploratory data anal-
ysis and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1977, 1988). In
exploratory analyses, the estimate of K is a useful statistic summarising aspects of inter-point “de-
pendence” and “clustering”. For inferential purposes, the estimate of K is usually compared to the
true value ofK for a completely random (Poisson) point process, which isK(r) = πr2. Deviations
between the empirical and theoretical K curves may suggest spatial clustering or spatial regularity.

This routine Kest estimates the K function of a stationary point process, given observation of the
process inside a known, bounded window. The argument X is interpreted as a point pattern object (of
class "ppp", see ppp.object) and can be supplied in any of the formats recognised by as.ppp().

The estimation of K is hampered by edge effects arising from the unobservability of points of the
random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998;
Ripley, 1988). The corrections implemented here are

border the border method or “reduced sample” estimator (see Ripley, 1988). This is the least
efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary
shape.

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented for rectangular and polygonal windows (not for binary masks).

translate/translation Translation correction (Ohser, 1983). Implemented for all window geome-
tries, but slow for complex windows.

rigid Rigid motion correction (Ohser and Stoyan, 1981). Implemented for all window geometries,
but slow for complex windows.

none Uncorrected estimate. An estimate of the K function without edge correction. (i.e. setting
eij = 1 in the equation below. This estimate is biased and should not be used for data analysis,
unless you have an extremely large point pattern (more than 100,000 points).

best Selects the best edge correction that is available for the geometry of the window. Currently
this is Ripley’s isotropic correction for a rectangular or polygonal window, and the translation
correction for masks.

good Selects the best edge correction that can be computed in a reasonable time. This is the same
as "best" for datasets with fewer than 3000 points; otherwise the selected edge correction is
"border", unless there are more than 100,000 points, when it is "none".

The estimates of K(r) are of the form

K̂(r) =
a

n(n− 1)

∑
i

∑
j

I(dij ≤ r)eij

where a is the area of the window, n is the number of data points, and the sum is taken over all
ordered pairs of points i and j in X. Here dij is the distance between the two points, and I(dij ≤ r)
is the indicator that equals 1 if the distance is less than or equal to r. The term eij is the edge
correction weight (which depends on the choice of edge correction listed above).

Kest 733

Note that this estimator assumes the process is stationary (spatially homogeneous). For inhomoge-
neous point patterns, see Kinhom.

If the point pattern X contains more than about 3000 points, the isotropic and translation edge correc-
tions can be computationally prohibitive. The computations for the border method are much faster,
and are statistically efficient when there are large numbers of points. Accordingly, if the number of
points in X exceeds the threshold nlarge, then only the border correction will be computed. Set-
ting nlarge=Inf or correction="best" will prevent this from happening. Setting nlarge=0 is
equivalent to selecting only the border correction with correction="border".

If X contains more than about 100,000 points, even the border correction is time-consuming. You
may want to consider setting correction="none" in this case. There is an even faster algorithm
for the uncorrected estimate.

Approximations to the variance of K̂(r) are available, for the case of the isotropic edge correction
estimator, assuming complete spatial randomness (Ripley, 1988; Lotwick and Silverman, 1982;
Diggle, 2003, pp 51-53). If var.approx=TRUE, then the result of Kest also has a column named
rip giving values of Ripley’s (1988) approximation to var(K̂(r)), and (if the window is a rectangle)
a column named ls giving values of Lotwick and Silverman’s (1982) approximation.

If the argument domain is given, the calculations will be restricted to a subset of the data. In
the formula for K(r) above, the first point i will be restricted to lie inside domain. The result is an
approximately unbiased estimate ofK(r) based on pairs of points in which the first point lies inside
domain and the second point is unrestricted. This is useful in bootstrap techniques. The argument
domain should be a window (object of class "owin") or something acceptable to as.owin. It must
be a subset of the window of the point pattern X.

The estimator Kest ignores marks. Its counterparts for multitype point patterns are Kcross, Kdot,
and for general marked point patterns see Kmulti.

Some writers, particularly Stoyan (1994, 1995) advocate the use of the “pair correlation function”

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r). See pcf on how to estimate this function.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function K(r) obtained by the
edge corrections named.

If var.approx=TRUE then the return value also has columns rip and ls containing approximations
to the variance of K̂(r) under CSR.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

734 Kest

Envelopes, significance bands and confidence intervals

To compute simulation envelopes for the K-function under CSR, use envelope.

To compute a confidence interval for the true K-function, use varblock or lohboot.

Warnings

The estimator of K(r) is approximately unbiased for each fixed r, for point processes which do
not have very strong interaction. (For point processes with a strong clustering interaction, the
estimator is negatively biased; for point processes with a strong inhibitive interaction, the estimator
is positively biased.)

Bias increases with r and depends on the window geometry. For a rectangular window it is prudent
to restrict the r values to a maximum of 1/4 of the smaller side length of the rectangle (Ripley,
1977, 1988; Diggle, 1983). Bias may become appreciable for point patterns consisting of fewer
than 15 points.

While K(r) is always a non-decreasing function, the estimator of K is not guaranteed to be non-
decreasing. This is rarely a problem in practice, except for the border correction estimators when
the number of points is small.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37–78.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ohser, J. and Stoyan, D. (1981) On the second-order and orientation analysis of planar stationary
point processes. Biometrical Journal 23, 523–533.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

Kest.fft 735

See Also

localK to extract individual summands in the K function.

pcf for the pair correlation.

Fest, Gest, Jest for alternative summary functions.

Kcross, Kdot, Kinhom, Kmulti for counterparts of the K function for multitype point patterns.

reduced.sample for the calculation of reduced sample estimators.

Examples

X <- runifpoint(50)
K <- Kest(X)
K <- Kest(cells, correction="isotropic")
plot(K)
plot(K, main="K function for cells")
plot the L function
plot(K, sqrt(iso/pi) ~ r)
plot(K, sqrt(./pi) ~ r, ylab="L(r)", main="L function for cells")

Kest.fft K-function using FFT

Description

Estimates the reduced second moment function K(r) from a point pattern in a window of arbitrary
shape, using the Fast Fourier Transform.

Usage

Kest.fft(X, sigma, r=NULL, ..., breaks=NULL)

Arguments

X The observed point pattern, from which an estimate of K(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

sigma Standard deviation of the isotropic Gaussian smoothing kernel.

r Optional. Vector of values for the argument r at which K(r) should be evalu-
ated. There is a sensible default.

... Arguments passed to as.mask determining the spatial resolution for the FFT
calculation.

breaks This argument is for internal use only.

736 Kest.fft

Details

This is an alternative to the function Kest for estimating the K function. It may be useful for very
large patterns of points.

Whereas Kest computes the distance between each pair of points analytically, this function discre-
tises the point pattern onto a rectangular pixel raster and applies Fast Fourier Transform techniques
to estimate K(t). The hard work is done by the function Kmeasure.

The result is an approximation whose accuracy depends on the resolution of the pixel raster. The res-
olution is controlled by the arguments ..., or by setting the parameter npixel in spatstat.options.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

border the estimates of K(r) for these values of r
theo the theoretical value K(r) = πr2 for a stationary Poisson process

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Kest, Kmeasure, spatstat.options

Examples

pp <- runifpoint(10000)

Kpp <- Kest.fft(pp, 0.01)
plot(Kpp)

Kinhom 737

Kinhom Inhomogeneous K-function

Description

Estimates the inhomogeneous K function of a non-stationary point pattern.

Usage

Kinhom(X, lambda=NULL, ..., r = NULL, breaks = NULL,
correction=c("border", "bord.modif", "isotropic", "translate"),
renormalise=TRUE,
normpower=1,
update=TRUE,
leaveoneout=TRUE,
nlarge = 1000,
lambda2=NULL, reciplambda=NULL, reciplambda2=NULL,
diagonal=TRUE,
sigma=NULL, varcov=NULL,
ratio=FALSE)

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
K function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give
the intensity value at any location.

... Extra arguments. Ignored if lambda is present. Passed to density.ppp if
lambda is omitted.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

renormalise Logical. Whether to renormalise the estimate. See Details.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

738 Kinhom

update Logical value indicating what to do when lambda is a fitted model (class "ppm",
"kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted
to the data X (using update.ppm or update.kppm) before the fitted intensity is
computed. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

nlarge Optional. Efficiency threshold. If the number of points exceeds nlarge, then
only the border correction will be computed, using a fast algorithm.

lambda2 Advanced use only. Matrix containing estimates of the products λ(xi)λ(xj) of
the intensities at each pair of data points xi and xj .

reciplambda Alternative to lambda. Values of the estimated reciprocal 1/λ of the intensity
function. Either a vector giving the reciprocal intensity values at the points of
the pattern X, a pixel image (object of class "im") giving the reciprocal intensity
values at all locations, or a function(x,y) which can be evaluated to give the
reciprocal intensity value at any location.

reciplambda2 Advanced use only. Alternative to lambda2. A matrix giving values of the
estimated reciprocal products 1/λ(xi)λ(xj) of the intensities at each pair of
data points xi and xj .

diagonal Do not use this argument.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

Details

This computes a generalisation of the K function for inhomogeneous point patterns, proposed by
Baddeley, Møller and Waagepetersen (2000).

The “ordinary” K function (variously known as the reduced second order moment function and
Ripley’s K function), is described under Kest. It is defined only for stationary point processes.

The inhomogeneous K function Kinhom(r) is a direct generalisation to nonstationary point pro-
cesses. Suppose x is a point process with non-constant intensity λ(u) at each location u. Define
Kinhom(r) to be the expected value, given that u is a point of x, of the sum of all terms 1/λ(xj) over
all points xj in the process separated from u by a distance less than r. This reduces to the ordinary
K function if λ() is constant. If x is an inhomogeneous Poisson process with intensity function
λ(u), then Kinhom(r) = πr2.

Given a point pattern dataset, the inhomogeneous K function can be estimated essentially by sum-
ming the values 1/(λ(xi)λ(xj)) for all pairs of points xi, xj separated by a distance less than r.

This allows us to inspect a point pattern for evidence of interpoint interactions after allowing for
spatial inhomogeneity of the pattern. Values Kinhom(r) > πr2 are suggestive of clustering.

The argument lambda should supply the (estimated) values of the intensity function λ. It may be
either

a numeric vector containing the values of the intensity function at the points of the pattern X.

Kinhom 739

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate lambda[i] for the point X[i] is com-
puted by removing X[i] from the point pattern, applying kernel smoothing to the remaining points
using density.ppp, and evaluating the smoothed intensity at the point X[i]. The smoothing kernel
bandwidth is controlled by the arguments sigma and varcov, which are passed to density.ppp
along with any extra arguments.

Edge corrections are used to correct bias in the estimation of Kinhom. Each edge-corrected estimate
of Kinhom(r) is of the form

K̂inhom(r) = (1/A)
∑
i

∑
j

1{dij ≤ r}e(xi, xj , r)
λ(xi)λ(xj)

where A is a constant denominator, dij is the distance between points xi and xj , and e(xi, xj , r) is
an edge correction factor. For the ‘border’ correction,

e(xi, xj , r) =
1(bi > r)∑

j 1(bj > r)/λ(xj)

where bi is the distance from xi to the boundary of the window. For the ‘modified border’ correction,

e(xi, xj , r) =
1(bi > r)

area(W 	 r)

where W 	 r is the eroded window obtained by trimming a margin of width r from the border of
the original window. For the ‘translation’ correction,

e(xi, xj , r) =
1

area(W ∩ (W + (xj − xi)))

740 Kinhom

and for the ‘isotropic’ correction,

e(xi, xj , r) =
1

area(W)g(xi, xj)

where g(xi, xj) is the fraction of the circumference of the circle with centre xi and radius ||xi−xj ||
which lies inside the window.

If renormalise=TRUE (the default), then the estimates described above are multiplied by cnormpower

where c = area(W)/
∑

(1/λ(xi)). This rescaling reduces the variability and bias of the estimate
in small samples and in cases of very strong inhomogeneity. The default value of normpower is 1
(for consistency with previous versions of spatstat) but the most sensible value is 2, which would
correspond to rescaling the lambda values so that

∑
(1/λ(xi)) = area(W).

If the point pattern X contains more than about 1000 points, the isotropic and translation edge correc-
tions can be computationally prohibitive. The computations for the border method are much faster,
and are statistically efficient when there are large numbers of points. Accordingly, if the number of
points in X exceeds the threshold nlarge, then only the border correction will be computed. Set-
ting nlarge=Inf or correction="best" will prevent this from happening. Setting nlarge=0 is
equivalent to selecting only the border correction with correction="border".

The pair correlation function can also be applied to the result of Kinhom; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing at least the following columns,

r the vector of values of the argument r at which Kinhom(r) has been estimated

theo vector of values of πr2, the theoretical value ofKinhom(r) for an inhomogeneous
Poisson process

and containing additional columns according to the choice specified in the correction argu-
ment. The additional columns are named border, trans and iso and give the estimated values
of Kinhom(r) using the border correction, translation correction, and Ripley isotropic correction,
respectively.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of Kinhom(r).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

See Also

Kest, pcf

km.rs 741

Examples

inhomogeneous pattern of maples
X <- unmark(split(lansing)$maple)

(1) intensity function estimated by model-fitting
Fit spatial trend: polynomial in x and y coordinates
fit <- ppm(X, ~ polynom(x,y,2), Poisson())
(a) predict intensity values at points themselves,
obtaining a vector of lambda values
lambda <- predict(fit, locations=X, type="trend")
inhomogeneous K function
Ki <- Kinhom(X, lambda)
plot(Ki)
(b) predict intensity at all locations,
obtaining a pixel image
lambda <- predict(fit, type="trend")
Ki <- Kinhom(X, lambda)
plot(Ki)

(2) intensity function estimated by heavy smoothing
Ki <- Kinhom(X, sigma=0.1)
plot(Ki)

(3) simulated data: known intensity function
lamfun <- function(x,y) { 50 + 100 * x }
inhomogeneous Poisson process
Y <- rpoispp(lamfun, 150, owin())
inhomogeneous K function
Ki <- Kinhom(Y, lamfun)
plot(Ki)

How to make simulation envelopes:
Example shows method (2)
Not run:
smo <- density.ppp(X, sigma=0.1)
Ken <- envelope(X, Kinhom, nsim=99,

simulate=expression(rpoispp(smo)),
sigma=0.1, correction="trans")

plot(Ken)

End(Not run)

km.rs Kaplan-Meier and Reduced Sample Estimator using Histograms

Description

Compute the Kaplan-Meier and Reduced Sample estimators of a survival time distribution function,
using histogram techniques

742 km.rs

Usage

km.rs(o, cc, d, breaks)

Arguments

o vector of observed survival times

cc vector of censoring times

d vector of non-censoring indicators

breaks Vector of breakpoints to be used to form histograms.

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications
where you want to form the Kaplan-Meier estimator from a huge dataset.

Suppose Ti are the survival times of individuals i = 1, . . . ,M with unknown distribution function
F (t) which we wish to estimate. Suppose these times are right-censored by random censoring
times Ci. Thus the observations consist of right-censored survival times T̃i = min(Ti, Ci) and
non-censoring indicators Di = 1{Ti ≤ Ci} for each i.

The arguments to this function are vectors o, cc, d of observed values of T̃i, Ci and Di respectively.
The function computes histograms and forms the reduced-sample and Kaplan-Meier estimates of
F (t) by invoking the functions kaplan.meier and reduced.sample. This is efficient if the lengths
of o, cc, d (i.e. the number of observations) is large.

The vectors km and hazard returned by kaplan.meier are (histogram approximations to) the
Kaplan-Meier estimator of F (t) and its hazard rate λ(t). Specifically, km[k] is an estimate of
F(breaks[k+1]), and lambda[k] is an estimate of the average of λ(t) over the interval (breaks[k],breaks[k+1]).
This approximation is exact only if the survival times are discrete and the histogram breaks are fine
enough to ensure that each interval (breaks[k],breaks[k+1]) contains only one possible value
of the survival time.

The vector rs is the reduced-sample estimator, rs[k] being the reduced sample estimate of F(breaks[k+1]).
This value is exact, i.e. the use of histograms does not introduce any approximation error in the
reduced-sample estimator.

Value

A list with five elements

rs Reduced-sample estimate of the survival time c.d.f. F (t)

km Kaplan-Meier estimate of the survival time c.d.f. F (t)

hazard corresponding Nelson-Aalen estimate of the hazard rate λ(t)

r values of t for which F (t) is estimated

breaks the breakpoints vector

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Kmark 743

See Also

reduced.sample, kaplan.meier

Kmark Mark-Weighted K Function

Description

Estimates the mark-weighted K function of a marked point pattern.

Usage

Kmark(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ...,
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)

markcorrint(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ...,
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

f Optional. Test function f used in the definition of the mark correlation function.
An R function with at least two arguments. There is a sensible default.

r Optional. Numeric vector. The values of the argument r at which the mark
correlation function kf (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied. Alternatively
correction="all" selects all options.

... Ignored.

f1 An alternative to f. If this argument is given, then f is assumed to take the form
f(u, v) = f1(u)f1(v).

normalise If normalise=FALSE, compute only the numerator of the expression for the
mark correlation.

returnL Compute the analogue of the K-function if returnL=FALSE or the analogue of
the L-function if returnL=TRUE.

fargs Optional. A list of extra arguments to be passed to the function f or f1.

744 Kmark

Details

The functions Kmark and markcorrint are identical. (Eventually markcorrint will be deprecated.)

The mark-weighted K function Kf (r) of a marked point process (Penttinen et al, 1992) is a gener-
alisation of Ripley’s K function, in which the contribution from each pair of points is weighted by
a function of their marks. If the marks of the two points are m1,m2 then the weight is proportional
to f(m1,m2) where f is a specified test function.

The mark-weighted K function is defined so that

λKf (r) =
Cf (r)

E[f(M1,M2)]

where

Cf (r) = E

[∑
x∈X

f(m(u),m(x))10 < ||u− x|| ≤ r
∣∣ u ∈ X]

for any spatial location u taken to be a typical point of the point process X . Here ||u − x|| is
the euclidean distance between u and x, so that the sum is taken over all random points x that
lie within a distance r of the point u. The function Cf (r) is the unnormalised mark-weighted K
function. To obtain Kf (r) we standardise Cf (r) by dividing by E[f(M1,M2)], the expected value
of f(M1,M2) when M1 and M2 are independent random marks with the same distribution as the
marks in the point process.

Under the hypothesis of random labelling, the mark-weighted K function is equal to Ripley’s K
function, Kf (r) = K(r).

The mark-weighted K function is sometimes called the mark correlation integral because it is
related to the mark correlation function kf (r) and the pair correlation function g(r) by

Kf (r) = 2π

∫ r

0

skf (s) g(s) ds

See markcorr for a definition of the mark correlation function.

Given a marked point pattern X, this command computes edge-corrected estimates of the mark-
weighted K function. If returnL=FALSE then the estimated function Kf (r) is returned; otherwise
the function

Lf (r) =
√
Kf (r)/π

is returned.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the mark correlation integral Kf (r) has
been estimated

theo the theoretical value of Kf (r) when the marks attached to different points are
independent, namely πr2

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the mark-weighted K function Kf (r) obtained by
the edge corrections named (if returnL=FALSE).

Kmeasure 745

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Penttinen, A., Stoyan, D. and Henttonen, H. M. (1992) Marked point processes in forest statistics.
Forest Science 38 (1992) 806-824.

Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical analysis and modelling of
spatial point patterns. Chichester: John Wiley.

See Also

markcorr to estimate the mark correlation function.

Examples

CONTINUOUS-VALUED MARKS:
(1) Spruces
marks represent tree diameter
mark correlation function
ms <- Kmark(spruces)
plot(ms)

(2) simulated data with independent marks
X <- rpoispp(100)
X <- X %mark% runif(npoints(X))
Xc <- Kmark(X)
plot(Xc)

MULTITYPE DATA:
Hughes' amacrine data
Cells marked as 'on'/'off'
M <- Kmark(amacrine, function(m1,m2) {m1==m2},

correction="translate")
plot(M)

Kmeasure Reduced Second Moment Measure

Description

Estimates the reduced second moment measure κ from a point pattern in a window of arbitrary
shape.

Usage

Kmeasure(X, sigma, edge=TRUE, ..., varcov=NULL)

746 Kmeasure

Arguments

X The observed point pattern, from which an estimate of κ will be computed. An
object of class "ppp", or data in any format acceptable to as.ppp().

sigma Standard deviation σ of the Gaussian smoothing kernel. Incompatible with
varcov.

edge Logical value indicating whether an edge correction should be applied.

... Arguments passed to as.mask controlling the pixel resolution.

varcov Variance-covariance matrix of the Gaussian smoothing kernel. Incompatible
with sigma.

Details

Given a point pattern dataset, this command computes an estimate of the reduced second moment
measure κ of the point process. The result is a pixel image whose pixel values are estimates of the
density of the reduced second moment measure.

The reduced second moment measure κ can be regarded as a generalisation of the more familiar
K-function. An estimate of κ derived from a spatial point pattern dataset can be useful in ex-
ploratory data analysis. Its advantage over the K-function is that it is also sensitive to anisotropy
and directional effects.

In a nutshell, the command Kmeasure computes a smoothed version of the Fry plot. As explained
under fryplot, the Fry plot is a scatterplot of the vectors joining all pairs of points in the pattern.
The reduced second moment measure is (essentially) defined as the average of the Fry plot over
different realisations of the point process. The command Kmeasure effectively smooths the Fry plot
of a dataset to obtain an estimate of the reduced second moment measure.

In formal terms, the reduced second moment measure κ of a stationary point processX is a measure
defined on the two-dimensional plane such that, for a ‘typical’ point x of the process, the expected
number of other points y of the process such that the vector y− x lies in a region A, equals λκ(A).
Here λ is the intensity of the process, i.e. the expected number of points of X per unit area.

The K-function is a special case. The function value K(t) is the value of the reduced second
moment measure for the disc of radius t centred at the origin; that is, K(t) = κ(b(0, t)).

The command Kmeasure computes an estimate of κ from a point pattern dataset X, which is assumed
to be a realisation of a stationary point process, observed inside a known, bounded window. Marks
are ignored.

The algorithm approximates the point pattern and its window by binary pixel images, introduces a
Gaussian smoothing kernel and uses the Fast Fourier Transform fft to form a density estimate of
κ. The calculation corresponds to the edge correction known as the “translation correction”.

The Gaussian smoothing kernel may be specified by either of the arguments sigma or varcov. If
sigma is a single number, this specifies an isotropic Gaussian kernel with standard deviation sigma
on each coordinate axis. If sigma is a vector of two numbers, this specifies a Gaussian kernel with
standard deviation sigma[1] on the x axis, standard deviation sigma[2] on the y axis, and zero
correlation between the x and y axes. If varcov is given, this specifies the variance-covariance
matrix of the Gaussian kernel. There do not seem to be any well-established rules for selecting the
smoothing kernel in this context.

The density estimate of κ is returned in the form of a real-valued pixel image. Pixel values are
estimates of the normalised second moment density at the centre of the pixel. (The uniform Poisson

Kmeasure 747

process would have values identically equal to 1.) The image x and y coordinates are on the same
scale as vector displacements in the original point pattern window. The point x=0,y=0 corresponds
to the ‘typical point’. A peak in the image near (0,0) suggests clustering; a dip in the image near
(0,0) suggests inhibition; peaks or dips at other positions suggest possible periodicity.

If desired, the value of κ(A) for a region A can be estimated by computing the integral of the
pixel image over the domain A, i.e.\ summing the pixel values and multiplying by pixel area, using
integral.im. One possible application is to compute anisotropic counterparts of the K-function
(in which the disc of radius t is replaced by another shape). See Examples.

Value

A real-valued pixel image (an object of class "im", see im.object) whose pixel values are estimates
of the density of the reduced second moment measure at each location.

Warning

Some writers use the term reduced second moment measure when they mean the K-function. This
has caused confusion.

As originally defined, the reduced second moment measure is a measure, obtained by modifying the
second moment measure, while the K-function is a function obtained by evaluating this measure
for discs of increasing radius. In spatstat, the K-function is computed by Kest and the reduced
second moment measure is computed by Kmeasure.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Kest, fryplot, spatstat.options, integral.im, im.object

Examples

plot(Kmeasure(cells, 0.05))
shows pronounced dip around origin consistent with strong inhibition
plot(Kmeasure(redwood, 0.03), col=grey(seq(1,0,length=32)))
shows peaks at several places, reflecting clustering and ?periodicity
M <- Kmeasure(cells, 0.05)
evaluate measure on a sector
W <- Window(M)
ang <- as.im(atan2, W)
rad <- as.im(function(x,y){sqrt(x^2+y^2)}, W)
sector <- solutionset(ang > 0 & ang < 1 & rad < 0.6)

748 Kmodel

integral.im(M[sector, drop=FALSE])

Kmodel K Function or Pair Correlation Function of a Point Process Model

Description

Returns the theoretical K function or the pair correlation function of a point process model.

Usage

Kmodel(model, ...)

pcfmodel(model, ...)

Arguments

model A fitted point process model of some kind.

... Ignored.

Details

For certain types of point process models, it is possible to write down a mathematical expression
for the K function or the pair correlation function of the model.

The functions Kmodel and pcfmodel give the theoretical K-function and the theoretical pair corre-
lation function for a point process model that has been fitted to data.

The functions Kmodel and pcfmodel are generic, with methods for the classes "kppm" (cluster
processes and Cox processes) and "ppm" (Gibbs processes).

The return value is a function in the R language, which takes one argument r. Evaluation of this
function, on a numeric vector r, yields values of the desired K function or pair correlation function
at these distance values.

Value

A function in the R language, which takes one argument r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Kest or pcf to estimate the K function or pair correlation function nonparametrically from data.

Kmodel.kppm for the method for cluster processes and Cox processes.

Kmodel.ppm for the method for Gibbs processes.

Kmodel.dppm 749

Kmodel.dppm K-function or Pair Correlation Function of a Determinantal Point Pro-
cess Model

Description

Returns the theoretical K-function or theoretical pair correlation function of a determinantal point
process model as a function of one argument r.

Usage

S3 method for class 'dppm'
Kmodel(model, ...)

S3 method for class 'dppm'
pcfmodel(model, ...)

S3 method for class 'detpointprocfamily'
Kmodel(model, ...)

S3 method for class 'detpointprocfamily'
pcfmodel(model, ...)

Arguments

model Model of class "detpointprocfamily" or "dppm".

... Ignored (not quite true – there is some undocumented internal use)

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

model <- dppMatern(lambda=100, alpha=.01, nu=1, d=2)
KMatern <- Kmodel(model)
pcfMatern <- pcfmodel(model)
plot(KMatern, xlim = c(0,0.05))
plot(pcfMatern, xlim = c(0,0.05))

750 Kmodel.kppm

Kmodel.kppm K Function or Pair Correlation Function of Cluster Model or Cox
model

Description

Returns the theoretical K function or the pair correlation function of a cluster point process model
or Cox point process model.

Usage

S3 method for class 'kppm'
Kmodel(model, ...)

S3 method for class 'kppm'
pcfmodel(model, ...)

Arguments

model A fitted cluster point process model (object of class "kppm") typically obtained
from the model-fitting algorithm kppm.

... Ignored.

Details

For certain types of point process models, it is possible to write down a mathematical expression
for the K function or the pair correlation function of the model. In particular this is possible for a
fitted cluster point process model (object of class "kppm" obtained from kppm).

The functions Kmodel and pcfmodel are generic. The functions documented here are the methods
for the class "kppm".

The return value is a function in the R language, which takes one argument r. Evaluation of this
function, on a numeric vector r, yields values of the desired K function or pair correlation function
at these distance values.

Value

A function in the R language, which takes one argument r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Kmodel.ppm 751

See Also

Kest or pcf to estimate the K function or pair correlation function nonparametrically from data.

kppm to fit cluster models.

Kmodel for the generic functions.

Kmodel.ppm for the method for Gibbs processes.

Examples

data(redwood)
fit <- kppm(redwood, ~x, "MatClust")
K <- Kmodel(fit)
K(c(0.1, 0.2))
curve(K(x), from=0, to=0.25)

Kmodel.ppm K Function or Pair Correlation Function of Gibbs Point Process model

Description

Returns the theoretical K function or the pair correlation function of a fitted Gibbs point process
model.

Usage

S3 method for class 'ppm'
Kmodel(model, ...)

S3 method for class 'ppm'
pcfmodel(model, ...)

Arguments

model A fitted Poisson or Gibbs point process model (object of class "ppm") typically
obtained from the model-fitting algorithm ppm.

... Ignored.

Details

This function computes an approximation to the K function or the pair correlation function of a
Gibbs point process.

The functions Kmodel and pcfmodel are generic. The functions documented here are the methods
for the class "ppm".

The approximation is only available for stationary pairwise-interaction models. It uses the second
order Poisson-saddlepoint approximation (Baddeley and Nair, 2012b) which is a combination of
the Poisson-Boltzmann-Emden and Percus-Yevick approximations.

752 Kmulti

The return value is a function in the R language, which takes one argument r. Evaluation of this
function, on a numeric vector r, yields values of the desired K function or pair correlation function
at these distance values.

Value

A function in the R language, which takes one argument r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Gopalan Nair.

References

Baddeley, A. and Nair, G. (2012a) Fast approximation of the intensity of Gibbs point processes.
Electronic Journal of Statistics 6 1155–1169.

Baddeley, A. and Nair, G. (2012b) Approximating the moments of a spatial point process. Stat 1,
1, 18–30. doi: 10.1002/sta4.5

See Also

Kest or pcf to estimate the K function or pair correlation function nonparametrically from data.

ppm to fit Gibbs models.

Kmodel for the generic functions.

Kmodel.kppm for the method for cluster/Cox processes.

Examples

fit <- ppm(swedishpines, ~1, Strauss(8))
p <- pcfmodel(fit)
K <- Kmodel(fit)
p(6)
K(8)
curve(K(x), from=0, to=15)

Kmulti Marked K-Function

Description

For a marked point pattern, estimate the multitype K function which counts the expected number
of points of subset J within a given distance from a typical point in subset I.

Usage

Kmulti(X, I, J, r=NULL, breaks=NULL, correction, ..., ratio=FALSE)

Kmulti 753

Arguments

X The observed point pattern, from which an estimate of the multitype K function
KIJ(r) will be computed. It must be a marked point pattern. See under Details.

I Subset index specifying the points of X from which distances are measured. See
Details.

J Subset index specifying the points in X to which distances are measured. See
Details.

r numeric vector. The values of the argument r at which the multitypeK function
KIJ(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.
correction A character vector containing any selection of the options "border", "bord.modif",

"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.
ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-

mate will also be saved, for use in analysing replicated point patterns.

Details

The function Kmulti generalises Kest (for unmarked point patterns) and Kdot and Kcross (for
multitype point patterns) to arbitrary marked point patterns.

Suppose XI , XJ are subsets, possibly overlapping, of a marked point process. The multitype K
function is defined so that λJKIJ(r) equals the expected number of additional random points of
XJ within a distance r of a typical point of XI . Here λJ is the intensity of XJ i.e. the expected
number of points of XJ per unit area. The function KIJ is determined by the second order moment
properties of X .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

The argument r is the vector of values for the distance r at which KIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

754 Kmulti

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

border the border method or “reduced sample” estimator (see Ripley, 1988). This is the least
efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary
shape.

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is currently
implemented only for rectangular and polygonal windows.

translate Translation correction (Ohser, 1983). Implemented for all window geometries.

The pair correlation function pcf can also be applied to the result of Kmulti.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function KIJ(r) has been estimated

theo the theoretical value of KIJ(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function KIJ(r)
obtained by the edge corrections named.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

Warnings

The function KIJ is not necessarily differentiable.

The border correction (reduced sample) estimator of KIJ used here is pointwise approximately
unbiased, but need not be a nondecreasing function of r, while the trueKIJ must be nondecreasing.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Kmulti.inhom 755

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Kcross, Kdot, Kest, pcf

Examples

Longleaf Pine data: marks represent diameter
trees <- longleaf

K <- Kmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(K)
functions determining subsets
f1 <- function(X) { marks(X) <= 15 }
f2 <- function(X) { marks(X) >= 15 }
K <- Kmulti(trees, f1, f2)

Kmulti.inhom Inhomogeneous Marked K-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype K function which
counts the expected number of points of subset J within a given distance from a typical point in
subset I, adjusted for spatially varying intensity.

Usage

Kmulti.inhom(X, I, J, lambdaI=NULL, lambdaJ=NULL,
...,
r=NULL, breaks=NULL,
correction=c("border", "isotropic", "Ripley", "translate"),
lambdaIJ=NULL,
sigma=NULL, varcov=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous mul-
titype K function KIJ(r) will be computed. It must be a marked point pattern.
See under Details.

756 Kmulti.inhom

I Subset index specifying the points of X from which distances are measured. See
Details.

J Subset index specifying the points in X to which distances are measured. See
Details.

lambdaI Optional. Values of the estimated intensity of the sub-process X[I]. Either a
pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X[I], a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location,

lambdaJ Optional. Values of the estimated intensity of the sub-process X[J]. Either a
pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X[J], a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location.

... Ignored.

r Optional. Numeric vector. The values of the argument r at which the multitype
K function KIJ(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "none" or "best". It specifies the
edge correction(s) to be applied. Alternatively correction="all" selects all
options.

lambdaIJ Optional. A matrix containing estimates of the product of the intensities lambdaI
and lambdaJ for each pair of points, the first point belonging to subset I and the
second point to subset J.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

lambdaX Optional. Values of the intensity for all points of X. Either a pixel image (object
of class "im"), a numeric vector containing the intensity values at each of the
points in X, a fitted point process model (object of class "ppm" or "kppm" or
"dppm"), or a function(x,y) which can be evaluated to give the intensity value
at any location. If present, this argument overrides both lambdaI and lambdaJ.

update Logical value indicating what to do when lambdaI, lambdaJ or lambdaX is a
fitted point process model (class "ppm", "kppm" or "dppm"). If update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Details

The function Kmulti.inhom is the counterpart, for spatially-inhomogeneous marked point patterns,
of the multitype K function Kmulti.

Kmulti.inhom 757

Suppose X is a marked point process, with marks of any kind. Suppose XI , XJ are two sub-
processes, possibly overlapping. Typically XI would consist of those points of X whose marks
lie in a specified range of mark values, and similarly for XJ . Suppose that λI(u), λJ(u) are the
spatially-varying intensity functions of XI and XJ respectively. Consider all the pairs of points
(u, v) in the point process X such that the first point u belongs to XI , the second point v belongs
to XJ , and the distance between u and v is less than a specified distance r. Give this pair (u, v) the
numerical weight 1/(λI(u)λJ(u)). Calculate the sum of these weights over all pairs of points as
described. This sum (after appropriate edge-correction and normalisation) is the estimated inhomo-
geneous multitype K function.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

The argument lambdaI supplies the values of the intensity of the sub-process identified by index I.
It may be either

a pixel image (object of class "im") which gives the values of the intensity of X[I] at all locations
in the window containing X;

a numeric vector containing the values of the intensity of X[I] evaluated only at the data points
of X[I]. The length of this vector must equal the number of points in X[I].

a function of the form function(x,y) which can be evaluated to give values of the intensity at
any locations.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate of lambdaI for a given point is
computed by removing the point from the point pattern, applying kernel smoothing to the remaining
points using density.ppp, and evaluating the smoothed intensity at the point in question. The
smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to
density.ppp along with any extra arguments.

Similarly lambdaJ supplies the values of the intensity of the sub-process identified by index J.

Alternatively if the argument lambdaX is given, then it specifies the intensity values for all points of
X, and the arguments lambdaI, lambdaJ will be ignored.

The argument r is the vector of values for the distance r at which KIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.

758 Kmulti.inhom

Biases due to edge effects are treated in the same manner as in Kinhom. The edge corrections
implemented here are

border the border method or “reduced sample” estimator (see Ripley, 1988). This is the least
efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary
shape.

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is currently
implemented only for rectangular windows.

translate Translation correction (Ohser, 1983). Implemented for all window geometries.

The pair correlation function pcf can also be applied to the result of Kmulti.inhom.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function KIJ(r) has been estimated

theo the theoretical value of KIJ(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function KIJ(r)
obtained by the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

See Also

Kmulti, Kdot.inhom, Kcross.inhom, pcf

Examples

Finnish Pines data: marked by diameter and height
plot(finpines, which.marks="height")
II <- (marks(finpines)$height <= 2)
JJ <- (marks(finpines)$height > 3)
K <- Kmulti.inhom(finpines, II, JJ)
plot(K)
functions determining subsets
f1 <- function(X) { marks(X)$height <= 2 }
f2 <- function(X) { marks(X)$height > 3 }
K <- Kmulti.inhom(finpines, f1, f2)

kppm 759

kppm Fit Cluster or Cox Point Process Model

Description

Fit a homogeneous or inhomogeneous cluster process or Cox point process model to a point pattern.

Usage

kppm(X, ...)

S3 method for class 'formula'
kppm(X,

clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),
...,
data=NULL)

S3 method for class 'ppp'
kppm(X,

trend = ~1,
clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),
data = NULL,
...,
covariates=data,
subset,
method = c("mincon", "clik2", "palm"),
improve.type = c("none", "clik1", "wclik1", "quasi"),
improve.args = list(),
weightfun=NULL,
control=list(),
algorithm="Nelder-Mead",
statistic="K",
statargs=list(),
rmax = NULL,
covfunargs=NULL,
use.gam=FALSE,
nd=NULL, eps=NULL)

S3 method for class 'quad'
kppm(X,

trend = ~1,
clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),
data = NULL,
...,
covariates=data,
subset,
method = c("mincon", "clik2", "palm"),

760 kppm

improve.type = c("none", "clik1", "wclik1", "quasi"),
improve.args = list(),
weightfun=NULL,
control=list(),
algorithm="Nelder-Mead",
statistic="K",
statargs=list(),
rmax = NULL,
covfunargs=NULL,
use.gam=FALSE,
nd=NULL, eps=NULL)

Arguments

X A point pattern dataset (object of class "ppp" or "quad") to which the model
should be fitted, or a formula in the R language defining the model. See Details.

trend An R formula, with no left hand side, specifying the form of the log intensity.

clusters Character string determining the cluster model. Partially matched. Options are
"Thomas", "MatClust", "Cauchy", "VarGamma" and "LGCP".

data,covariates

The values of spatial covariates (other than the Cartesian coordinates) required
by the model. A named list of pixel images, functions, windows, tessellations
or numeric constants.

... Additional arguments. See Details.

subset Optional. A subset of the spatial domain, to which the model-fitting should be
restricted. A window (object of class "owin") or a logical-valued pixel image
(object of class "im"), or an expression (possibly involving the names of entries
in data) which can be evaluated to yield a window or pixel image.

method The fitting method. Either "mincon" for minimum contrast, "clik2" for second
order composite likelihood, or "palm" for Palm likelihood. Partially matched.

improve.type Method for updating the initial estimate of the trend. Initially the trend is es-
timated as if the process is an inhomogeneous Poisson process. The default,
improve.type = "none", is to use this initial estimate. Otherwise, the trend
estimate is updated by improve.kppm, using information about the pair correla-
tion function. Options are "clik1" (first order composite likelihood, essentially
equivalent to "none"), "wclik1" (weighted first order composite likelihood)
and "quasi" (quasi likelihood).

improve.args Additional arguments passed to improve.kppm when improve.type != "none".
See Details.

weightfun Optional weighting function w in the composite likelihood or Palm likelihood.
A function in the R language. See Details.

control List of control parameters passed to the optimization function optim.

algorithm Character string determining the mathematical optimisation algorithm to be used
by optim. This argument is passed to optim as the argument method.

statistic Name of the summary statistic to be used for minimum contrast estimation:
either "K" or "pcf".

kppm 761

statargs Optional list of arguments to be used when calculating the statistic. See
Details.

rmax Maximum value of interpoint distance to use in the composite likelihood.
covfunargs,use.gam,nd,eps

Arguments passed to ppm when fitting the intensity.

Details

This function fits a clustered point process model to the point pattern dataset X.

The model may be either a Neyman-Scott cluster process or another Cox process. The type of model
is determined by the argument clusters. Currently the options are clusters="Thomas" for the
Thomas process, clusters="MatClust" for the Matérn cluster process, clusters="Cauchy" for
the Neyman-Scott cluster process with Cauchy kernel, clusters="VarGamma" for the Neyman-
Scott cluster process with Variance Gamma kernel (requires an additional argument nu to be passed
through the dots; see rVarGamma for details), and clusters="LGCP" for the log-Gaussian Cox
process (may require additional arguments passed through ...; see rLGCP for details on argument
names). The first four models are Neyman-Scott cluster processes.

The algorithm first estimates the intensity function of the point process using ppm. The argument
X may be a point pattern (object of class "ppp") or a quadrature scheme (object of class "quad").
The intensity is specified by the trend argument. If the trend formula is ~1 (the default) then the
model is homogeneous. The algorithm begins by estimating the intensity as the number of points
divided by the area of the window. Otherwise, the model is inhomogeneous. The algorithm begins
by fitting a Poisson process with log intensity of the form specified by the formula trend. (See ppm
for further explanation).

The argument X may also be a formula in the R language. The right hand side of the formula gives
the trend as described above. The left hand side of the formula gives the point pattern dataset to
which the model should be fitted.

If improve.type="none" this is the final estimate of the intensity. Otherwise, the intensity estimate
is updated, as explained in improve.kppm. Additional arguments to improve.kppm are passed as a
named list in improve.args.

The clustering parameters of the model are then fitted either by minimum contrast estimation, or by
maximising a composite likelihood.

Minimum contrast: If method = "mincon" (the default) clustering parameters of the model will
be fitted by minimum contrast estimation, that is, by matching the theoretical K-function of
the model to the empirical K-function of the data, as explained in mincontrast.
For a homogeneous model (trend = ~1) the empirical K-function of the data is computed
using Kest, and the parameters of the cluster model are estimated by the method of minimum
contrast.
For an inhomogeneous model, the inhomogeneous K function is estimated by Kinhom using
the fitted intensity. Then the parameters of the cluster model are estimated by the method of
minimum contrast using the inhomogeneous K function. This two-step estimation procedure
is due to Waagepetersen (2007).
If statistic="pcf" then instead of using the K-function, the algorithm will use the pair
correlation function pcf for homogeneous models and the inhomogeneous pair correlation
function pcfinhom for inhomogeneous models. In this case, the smoothing parameters of the
pair correlation can be controlled using the argument statargs, as shown in the Examples.

762 kppm

Additional arguments ... will be passed to clusterfit to control the minimum contrast
fitting algorithm.

Composite likelihood: If method = "clik2" the clustering parameters of the model will be fit-
ted by maximising the second-order composite likelihood (Guan, 2006). The log composite
likelihood is

∑
i,j

w(dij) log ρ(dij ; θ)−

∑
i,j

w(dij)

 log

∫
D

∫
D

w(‖u− v‖)ρ(‖u− v‖; θ) du dv

where the sums are taken over all pairs of data points xi, xj separated by a distance dij =
‖xi − xj‖ less than rmax, and the double integral is taken over all pairs of locations u, v in
the spatial window of the data. Here ρ(d; θ) is the pair correlation function of the model with
cluster parameters θ.
The function w in the composite likelihood is a weighting function and may be chosen arbi-
trarily. It is specified by the argument weightfun. If this is missing or NULL then the default
is a threshold weight function, w(d) = 1(d ≤ R), where R is rmax/2.

Palm likelihood: If method = "palm" the clustering parameters of the model will be fitted by max-
imising the Palm loglikelihood (Tanaka et al, 2008)∑

i,j

w(xi, xj) log λP (xj | xi; θ)−
∫
D

w(xi, u)λP (u | xi; θ)du

with the same notation as above. Here λP (u|v; θ is the Palm intensity of the model at location
u given there is a point at v.

In all three methods, the optimisation is performed by the generic optimisation algorithm optim.
The behaviour of this algorithm can be modified using the arguments control and algorithm.
Useful control arguments include trace, maxit and abstol (documented in the help for optim).

Fitting the LGCP model requires the RandomFields package, except in the default case where the
exponential covariance is assumed.

Value

An object of class "kppm" representing the fitted model. There are methods for printing, plotting,
predicting, simulating and updating objects of this class.

Log-Gaussian Cox Models

To fit a log-Gaussian Cox model with non-exponential covariance, specify clusters="LGCP" and
use additional arguments to specify the covariance structure. These additional arguments can be
given individually in the call to kppm, or they can be collected together in a list called covmodel.

For example a Matérn model with parameter ν = 0.5 could be specified either by kppm(X,clusters="LGCP",model="matern",nu=0.5)
or by kppm(X,clusters="LGCP",covmodel=list(model="matern",nu=0.5)).

The argument model specifies the type of covariance model: the default is model="exp" for an ex-
ponential covariance. Alternatives include "matern", "cauchy" and "spheric". Model names cor-
respond to functions beginning with RM in the RandomFields package: for example model="matern"
corresponds to the function RMmatern in the RandomFields package.

kppm 763

Additional arguments are passed to the relevant function in the RandomFields package: for exam-
ple if model="matern" then the additional argument nu is required, and is passed to the function
RMmatern in the RandomFields package.

Note that it is not possible to use anisotropic covariance models because the kppm technique assumes
the pair correlation function is isotropic.

Error and warning messages

See ppm.ppp for a list of common error messages and warnings originating from the first stage of
model-fitting.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>, with contributions from Abdollah Jalilian and Rasmus
Waagepetersen.

References

Guan, Y. (2006) A composite likelihood approach in fitting spatial point process models. Journal
of the American Statistical Association 101, 1502–1512.

Jalilian, A., Guan, Y. and Waagepetersen, R. (2012) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119–137.

Tanaka, U. and Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for
Neyman-Scott point processes. Biometrical Journal 50, 43–57.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

Methods for kppm objects: plot.kppm, fitted.kppm, predict.kppm, simulate.kppm, update.kppm,
vcov.kppm, methods.kppm, as.ppm.kppm, as.fv.kppm, Kmodel.kppm, pcfmodel.kppm.

Minimum contrast fitting algorithm: higher level interface clusterfit; low-level algorithm mincontrast.

Alternative fitting algorithms: thomas.estK, matclust.estK, lgcp.estK, cauchy.estK, vargamma.estK,
thomas.estpcf, matclust.estpcf, lgcp.estpcf, cauchy.estpcf, vargamma.estpcf,

Summary statistics: Kest, Kinhom, pcf, pcfinhom.

See also ppm

Examples

method for point patterns
kppm(redwood, ~1, "Thomas")
method for formulas
kppm(redwood ~ 1, "Thomas")

different models for clustering
kppm(redwood ~ x, "MatClust")
kppm(redwood ~ x, "MatClust", statistic="pcf", statargs=list(stoyan=0.2))

764 Kres

kppm(redwood ~ x, cluster="Cauchy", statistic="K")
kppm(redwood, cluster="VarGamma", nu = 0.5, statistic="pcf")

log-Gaussian Cox process (LGCP) models
kppm(redwood ~ 1, "LGCP", statistic="pcf")
if(require("RandomFields")) {

Random Fields package is needed for non-default choice of covariance model
kppm(redwood ~ x, "LGCP", statistic="pcf",

model="matern", nu=0.3,
control=list(maxit=10))

}

Different fitting techniques
kppm(redwood ~ 1, "Thomas", method="c")
kppm(redwood ~ 1, "Thomas", method="p")
composite likelihood method
kppm(redwood ~ x, "VarGamma", method="clik2", nu.ker=-3/8)
quasi-likelihood method
kppm(redwood ~ x, "Thomas", improve.type = "quasi")

Kres Residual K Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the residual K
function, which serves as a diagnostic for goodness-of-fit of the model.

Usage

Kres(object, ...)

Arguments

object Object to be analysed. Either a fitted point process model (object of class
"ppm"), a point pattern (object of class "ppp"), a quadrature scheme (object
of class "quad"), or the value returned by a previous call to Kcom.

... Arguments passed to Kcom.

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes a residual version of the K function of the dataset, which should
be approximately zero if the model is a good fit to the data.

In normal use, object is a fitted point process model or a point pattern. Then Kres first calls Kcom
to compute both the nonparametric estimate of the K function and its model compensator. Then
Kres computes the difference between them, which is the residual K-function.

Alternatively, object may be a function value table (object of class "fv") that was returned by a
previous call to Kcom. Then Kres computes the residual from this object.

Kres 765

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Related functions: Kcom, Kest.

Alternative functions: Gres, psstG, psstA, psst.

Point process models: ppm.

Examples

data(cells)
fit0 <- ppm(cells, ~1) # uniform Poisson

K0 <- Kres(fit0)
K0
plot(K0)

isotropic-correction estimate
plot(K0, ires ~ r)

uniform Poisson is clearly not correct

fit1 <- ppm(cells, ~1, Strauss(0.08))

K1 <- Kres(fit1)

if(interactive()) {
plot(K1, ires ~ r)

fit looks approximately OK; try adjusting interaction distance
plot(Kres(cells, interaction=Strauss(0.12)))

}

How to make envelopes
Not run:
E <- envelope(fit1, Kres, model=fit1, nsim=19)
plot(E)

End(Not run)

For computational efficiency
Kc <- Kcom(fit1)

766 Kscaled

K1 <- Kres(Kc)

Kscaled Locally Scaled K-function

Description

Estimates the locally-rescaled K-function of a point process.

Usage

Kscaled(X, lambda=NULL, ..., r = NULL, breaks = NULL,
rmax = 2.5,
correction=c("border", "isotropic", "translate"),
renormalise=FALSE, normpower=1,
sigma=NULL, varcov=NULL)

Lscaled(...)

Arguments

X The observed data point pattern, from which an estimate of the locally scaled K
function will be computed. An object of class "ppp" or in a format recognised
by as.ppp().

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class
"im") giving the intensity values at all locations, a function(x,y) which can
be evaluated to give the intensity value at any location, or a fitted point process
model (object of class "ppm").

... Arguments passed from Lscaled to Kscaled and from Kscaled to density.ppp
if lambda is omitted.

r vector of values for the argument r at which the locally scaledK function should
be evaluated. (These are rescaled distances.) Not normally given by the user;
there is a sensible default.

breaks This argument is for internal use only.

rmax maximum value of the argument r that should be used. (This is the rescaled
distance).

correction A character vector containing any selection of the options "border", "isotropic",
"Ripley", "translate", "translation", "none" or "best". It specifies the
edge correction(s) to be applied. Alternatively correction="all" selects all
options.

renormalise Logical. Whether to renormalise the estimate. See Details.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

Kscaled 767

Details

Kscaled computes an estimate of the K function for a locally scaled point process. Lscaled
computes the corresponding L function L(r) =

√
K(r)/π.

Locally scaled point processes are a class of models for inhomogeneous point patterns, introduced
by Hahn et al (2003). They include inhomogeneous Poisson processes, and many other models.

The template K function of a locally-scaled process is a counterpart of the “ordinary” Ripley K
function, in which the distances between points of the process are measured on a spatially-varying
scale (such that the locally rescaled process has unit intensity).

The template K function is an indicator of interaction between the points. For an inhomogeneous
Poisson process, the theoretical templateK function is approximately equal toK(r) = πr2. Values
Kscaled(r) > πr2 are suggestive of clustering.

Kscaled computes an estimate of the template K function and Lscaled computes the correspond-
ing L function L(r) =

√
K(r)/π.

The locally scaled interpoint distances are computed using an approximation proposed by Hahn
(2007). The Euclidean distance between two points is multiplied by the average of the square roots
of the intensity values at the two points.

The argument lambda should supply the (estimated) values of the intensity function λ. It may be
either

a numeric vector containing the values of the intensity function at the points of the pattern X.
a pixel image (object of class "im") assumed to contain the values of the intensity function at all

locations in the window.
a function which can be evaluated to give values of the intensity at any locations.
omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate lambda[i] for the point X[i] is com-
puted by removing X[i] from the point pattern, applying kernel smoothing to the remaining points
using density.ppp, and evaluating the smoothed intensity at the point X[i]. The smoothing kernel
bandwidth is controlled by the arguments sigma and varcov, which are passed to density.ppp
along with any extra arguments.

If renormalise=TRUE, the estimated intensity lambda is multiplied by c(normpower/2) before
performing other calculations, where c = area(W)/sum[i](1/lambda(x[i])). This renormalisa-
tion has about the same effect as in Kinhom, reducing the variability and bias of the estimate in small
samples and in cases of very strong inhomogeneity.

768 Kscaled

Edge corrections are used to correct bias in the estimation of Kscaled. First the interpoint distances
are rescaled, and then edge corrections are applied as in Kest. See Kest for details of the edge
corrections and the options for the argument correction.

The pair correlation function can also be applied to the result of Kscaled; see pcf and pcf.fv.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing at least the following columns,

r the vector of values of the argument r at which the pair correlation function g(r)
has been estimated

theo vector of values of πr2, the theoretical value of Kscaled(r) for an inhomoge-
neous Poisson process

and containing additional columns according to the choice specified in the correction argu-
ment. The additional columns are named border, trans and iso and give the estimated values
of Kscaled(r) using the border correction, translation correction, and Ripley isotropic correction,
respectively.

Author(s)

Ute Hahn, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

Hahn, U. (2007) Global and Local Scaling in the Statistics of Spatial Point Processes. Habilitation-
sschrift, Universitaet Augsburg.

Hahn, U., Jensen, E.B.V., van Lieshout, M.N.M. and Nielsen, L.S. (2003) Inhomogeneous spatial
point processes by location-dependent scaling. Advances in Applied Probability 35, 319–336.

Prokes̆ová, M., Hahn, U. and Vedel Jensen, E.B. (2006) Statistics for locally scaled point patterns.
In A. Baddeley, P. Gregori, J. Mateu, R. Stoica and D. Stoyan (eds.) Case Studies in Spatial Point
Pattern Modelling. Lecture Notes in Statistics 185. New York: Springer Verlag. Pages 99–123.

See Also

Kest, pcf

Examples

data(bronzefilter)
X <- unmark(bronzefilter)
K <- Kscaled(X)
fit <- ppm(X, ~x)
lam <- predict(fit)
K <- Kscaled(X, lam)

Ksector 769

Ksector Sector K-function

Description

A directional counterpart of Ripley’s K function, in which pairs of points are counted only when
the vector joining the pair happens to lie in a particular range of angles.

Usage

Ksector(X, begin = 0, end = 360, ...,
units = c("degrees", "radians"),
r = NULL, breaks = NULL,
correction = c("border", "isotropic", "Ripley", "translate"),
domain=NULL, ratio = FALSE, verbose=TRUE)

Arguments

X The observed point pattern, from which an estimate of K(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

begin,end Numeric values giving the range of angles inside which points will be counted.
Angles are measured in degrees (if units="degrees", the default) or radians (if
units="radians") anti-clockwise from the positive x-axis.

... Ignored.

units Units in which the angles begin and end are expressed.

r Optional. Vector of values for the argument r at which K(r) should be evalu-
ated. Users are advised not to specify this argument; there is a sensible default.

breaks This argument is for internal use only.

correction Optional. A character vector containing any selection of the options "none",
"border", "bord.modif", "isotropic", "Ripley", "translate", "translation",
"none", "good" or "best". It specifies the edge correction(s) to be applied. Al-
ternatively correction="all" selects all options.

domain Optional window. The first point xi of each pair of points will be constrained to
lie in domain.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

verbose Logical value indicating whether to print progress reports and warnings.

Details

This is a directional counterpart of Ripley’s K function (see Kest) in which, instead of counting all
pairs of points within a specified distance r, we count only the pairs (xi, xj) for which the vector
xj − xi falls in a particular range of angles.

This can be used to evaluate evidence for anisotropy in the point pattern X.

770 LambertW

Value

An object of class "fv" containing the estimated function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

Kest

Examples

K <- Ksector(swedishpines, 0, 90)
plot(K)

LambertW Lambert’s W Function

Description

Computes Lambert’s W-function.

Usage

LambertW(x)

Arguments

x Vector of nonnegative numbers.

Details

Lambert’s W-function is the inverse function of f(y) = yey . That is, W is the function such that

W (x)eW (x) = x

This command LambertW computes W (x) for each entry in the argument x. If the library gsl has
been installed, then the function lambert_W0 in that library is invoked. Otherwise, values of the
W-function are computed by root-finding, using the function uniroot.

Computation using gsl is about 100 times faster.

If any entries of x are infinite or NA, the corresponding results are NA.

laslett 771

Value

Numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Corless, R, Gonnet, G, Hare, D, Jeffrey, D and Knuth, D (1996), On the Lambert W function.
Computational Mathematics, 5, 325–359.

Roy, R and Olver, F (2010), Lambert W function. In Olver, F, Lozier, D and Boisvert, R (eds.),
NIST Handbook of Mathematical Functions, Cambridge University Press.

Examples

LambertW(exp(1))

laslett Laslett’s Transform

Description

Apply Laslett’s Transform to a spatial region, returning the original and transformed regions, and
the original and transformed positions of the lower tangent points. This is a diagnostic for the
Boolean model.

Usage

laslett(X, ..., verbose = FALSE, plotit = TRUE, discretise = FALSE,
type=c("lower", "upper", "left", "right"))

Arguments

X Spatial region to be transformed. A window (object of class "owin") or a
logical-valued pixel image (object of class "im").

... Graphics arguments to control the plot (passed to plot.laslett when plotit=TRUE)
or arguments determining the pixel resolution (passed to as.mask).

verbose Logical value indicating whether to print progress reports.

plotit Logical value indicating whether to plot the result.

discretise Logical value indicating whether polygonal windows should first be converted
to pixel masks before the Laslett transform is computed. This should be set to
TRUE for very complicated polygons.

type Type of tangent points to be detected. This also determines the direction of
contraction in the set transformation. Default is type="lower".

772 laslett

Details

This function finds the lower tangent points of the spatial region X, then applies Laslett’s Transform
to the space, and records the transformed positions of the lower tangent points.

Laslett’s transform is a diagnostic for the Boolean Model. A test of the Boolean model can be
performed by applying a test of CSR to the transformed tangent points. See the Examples.

The rationale is that, if the region X was generated by a Boolean model with convex grains, then the
lower tangent points of X, when subjected to Laslett’s transform, become a Poisson point process
(Cressie, 1993, section 9.3.5; Molchanov, 1997; Barbour and Schmidt, 2001).

Intuitively, Laslett’s transform is a way to account for the fact that tangent points of X cannot occur
inside X. It treats the interior of X as empty space, and collapses this empty space so that only the
exterior of X remains. In this collapsed space, the tangent points are completely random.

Formally, Laslett’s transform is a random (i.e. data-dependent) spatial transformation which maps
each spatial location (x, y) to a new location (x′, y) at the same height y. The transformation is
defined so that x′ is the total uncovered length of the line segment from (0, y) to (x, y), that is, the
total length of the parts of this segment that fall outside the region X.

In more colourful terms, suppose we use an abacus to display a pixellated version of X. Each wire
of the abacus represents one horizontal line in the pixel image. Each pixel lying outside the region
X is represented by a bead of the abacus; pixels inside X are represented by the absence of a bead.
Next we find any beads which are lower tangent points of X, and paint them green. Then Laslett’s
Transform is applied by pushing all beads to the left, as far as possible. The final locations of all
the beads provide a new spatial region, inside which is the point pattern of tangent points (marked
by the green-painted beads).

If plotit=TRUE (the default), a before-and-after plot is generated, showing the region X and the tan-
gent points before and after the transformation. This plot can also be generated by calling plot(a)
where a is the object returned by the function laslett.

If the argument type is given, then this determines the type of tangents that will be detected, and also
the direction of contraction in Laslett’s transform. The computation is performed by first rotating X,
applying Laslett’s transform for lower tangent points, then rotating back.

There are separate algorithms for polygonal windows and pixellated windows (binary masks).
The polygonal algorithm may be slow for very complicated polygons. If this happens, setting
discretise=TRUE will convert the polygonal window to a binary mask and invoke the pixel raster
algorithm.

Value

A list, which also belongs to the class "laslett" so that it can immediately be printed and plotted.

The list elements are:

oldX: the original dataset X;

TanOld: a point pattern, whose window is Frame(X), containing the lower tangent points of X;

TanNew: a point pattern, whose window is the Laslett transform of Frame(X), and which contains
the Laslett-transformed positions of the tangent points;

Rect: a rectangular window, which is the largest rectangle lying inside the transformed set;

df: a data frame giving the locations of the tangent points before and after transformation.

type: character string specifying the type of tangents.

latest.news 773

Author(s)

Kassel Hingee and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Barbour, A.D. and Schmidt, V. (2001) On Laslett’s Transform for the Boolean Model. Advances in
Applied Probability 33(1), 1–5.

Cressie, N.A.C. (1993) Statistics for spatial data, second edition. John Wiley and Sons.

Molchanov, I. (1997) Statistics of the Boolean Model for Practitioners and Mathematicians. Wiley.

See Also

plot.laslett

Examples

a <- laslett(heather$coarse)
with(a, clarkevans.test(TanNew[Rect], correction="D", nsim=39))
X <- discs(runifpoint(15) %mark% 0.2, npoly=16)
b <- laslett(X, type="left")
b

latest.news Print News About Latest Version of Package

Description

Prints the news documentation for the current version of spatstat or another specified package.

Usage

latest.news(package = "spatstat", doBrowse=FALSE, major=TRUE)

Arguments

package Name of package for which the latest news should be printed.

doBrowse Logical value indicating whether to display the results in a browser window
instead of printing them.

major Logical value. If TRUE (the default), print all information for the current major
version "x.y". If FALSE, print only the information for the current minor version
"x.y-z".

774 layered

Details

This function prints the news documentation about changes in the current installed version of the
spatstat package.

The function can be called simply by typing its name without parentheses (see the Examples).

If major=FALSE, only information for the current minor version "x.y-z" will be printed. If major=TRUE
(the default), all information for the current major version "x.y" will be printed, encompassing ver-
sions "x.y-0", "x.y-1", up to "x.y-z".

If package is given, then the function reads the news for the specified package from its NEWS file (if
it has one) and prints only the entries that refer to the current version of the package.

To see the news for all previous versions as well as the current version, use the R utility news. See
the Examples.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

news, bugfixes

Examples

if(interactive()) {

current news
latest.news

all news
news(package="spatstat")

}

layered Create List of Plotting Layers

Description

Given several objects which are capable of being plotted, create a list containing these objects as if
they were successive layers of a plot. The list can then be plotted in different ways.

Usage

layered(..., plotargs = NULL, LayerList=NULL)

layered 775

Arguments

... Objects which can be plotted by plot.

plotargs Default values of the plotting arguments for each of the objects. A list of lists of
arguments of the form name=value.

LayerList A list of objects. Incompatible with

Details

Layering is a simple mechanism for controlling a high-level plot that is composed of several suc-
cessive plots, for example, a background and a foreground plot. The layering mechanism makes it
easier to issue the plot command, to switch on or off the plotting of each individual layer, to control
the plotting arguments that are passed to each layer, and to zoom in.

Each individual layer in the plot should be saved as an object that can be plotted using plot. It will
typically belong to some class, which has a method for the generic function plot.

The command layered simply saves the objects ... as a list of class "layered". This list can
then be plotted by the method plot.layered. Thus, you only need to type a single plot com-
mand to produce the multi-layered plot. Individual layers of the plot can be switched on or off, or
manipulated, using arguments to plot.layered.

The argument plotargs contains default values of the plotting arguments for each layer. It should
be a list, with one entry for each object in Each entry of plotargs should be a list of arguments
in the form name=value, which are recognised by the plot method for the relevant layer.

The plotargs can also include an argument named .plot specifying (the name of) a function to
perform the plotting instead of the generic plot.

The length of plotargs should either be equal to the number of layers, or equal to 1. In the latter
case it will be replicated to the appropriate length.

Value

A list, belonging to the class "layered". There are methods for plot, "[", "shift", "affine",
"rotate" and "rescale".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.layered, methods.layered, as.layered, [.layered, layerplotargs.

Examples

D <- distmap(cells)
L <- layered(D, cells)
L
L <- layered(D, cells,
plotargs=list(list(ribbon=FALSE), list(pch=16)))

776 layerplotargs

plot(L)

layerplotargs(L)[[1]] <- list(.plot="contour")
plot(L)

layerplotargs Extract or Replace the Plot Arguments of a Layered Object

Description

Extracts or replaces the plot arguments of a layered object.

Usage

layerplotargs(L)

layerplotargs(L) <- value

Arguments

L An object of class "layered" created by the function layered.

value Replacement value. A list, with the same length as L, whose elements are lists
of plot arguments.

Details

These commands extract or replace the plotargs in a layered object. See layered.

The replacement value should normally have the same length as the current value. However, it can
also be a list with one element which is a list of parameters. This will be replicated to the required
length.

For the assignment function layerplotargs<-, the argument L can be any spatial object; it will be
converted to a layered object with a single layer.

Value

layerplotargs returns a list of lists of plot arguments.

"layerplotargs<-" returns the updated object of class "layered".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

layered, methods.layered, [.layered.

layout.boxes 777

Examples

W <- square(2)
L <- layered(W=W, X=cells)
The following are equivalent
layerplotargs(L) <- list(list(), list(pch=16))
layerplotargs(L)[[2]] <- list(pch=16)
layerplotargs(L)$X <- list(pch=16)

The following are equivalent
layerplotargs(L) <- list(list(cex=2), list(cex=2))
layerplotargs(L) <- list(list(cex=2))

layout.boxes Generate a Row or Column Arrangement of Rectangles.

Description

A simple utility to generate a row or column of boxes (rectangles) for use in point-and-click panels.

Usage

layout.boxes(B, n, horizontal = FALSE, aspect = 0.5, usefrac = 0.9)

Arguments

B Bounding rectangle for the boxes. An object of class "owin".

n Integer. The number of boxes.

horizontal Logical. If TRUE, arrange the boxes in a horizontal row. If FALSE (the default),
arrange them in a vertical column.

aspect Aspect ratio (height/width) of each box.

usefrac Number between 0 and 1. The fraction of height or width of B that should be
occupied by boxes.

Details

This simple utility generates a list of boxes (rectangles) inside the bounding box B arranged in a
regular row or column. It is useful for generating the positions of the panel buttons in the function
simplepanel.

Value

A list of rectangles.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

778 Lcross

See Also

simplepanel

Examples

B <- owin(c(0,10),c(0,1))
boxes <- layout.boxes(B, 5, horizontal=TRUE)
plot(B, main="", col="blue")
niets <- lapply(boxes, plot, add=TRUE, col="grey")

Lcross Multitype L-function (cross-type)

Description

Calculates an estimate of the cross-type L-function for a multitype point pattern.

Usage

Lcross(X, i, j, ..., from, to, correction)

Arguments

X The observed point pattern, from which an estimate of the cross-type L function
Lij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

correction,... Arguments passed to Kcross.

from,to An alternative way to specify i and j respectively.

Details

The cross-type L-function is a transformation of the cross-type K-function,

Lij(r) =

√
Kij(r)

π

where Kij(r) is the cross-type K-function from type i to type j. See Kcross for information about
the cross-type K-function.

The command Lcross first calls Kcross to compute the estimate of the cross-type K-function, and
then applies the square root transformation.

Lcross.inhom 779

For a marked point pattern in which the points of type i are independent of the points of type j, the
theoretical value of the L-function is Lij(r) = r. The square root also has the effect of stabilising
the variance of the estimator, so that Lij is more appropriate for use in simulation envelopes and
hypothesis tests.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function Lij has been esti-
mated

theo the theoretical value Lij(r) = r for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function Lij obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Kcross, Ldot, Lest

Examples

data(amacrine)
L <- Lcross(amacrine, "off", "on")
plot(L)

Lcross.inhom Inhomogeneous Cross Type L Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the cross-type L function.

Usage

Lcross.inhom(X, i, j, ..., correction)

780 Lcross.inhom

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type L function Lij(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

correction,... Other arguments passed to Kcross.inhom.

Details

This is a generalisation of the function Lcross to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Linhom.

All the arguments are passed to Kcross.inhom, which estimates the inhomogeneous multitype K
function Kij(r) for the point pattern. The resulting values are then transformed by taking L(r) =√
K(r)/π.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Lij(r) has been estimated

theo the theoretical value of Lij(r) for a marked Poisson process, identically equal
to r

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Lij(r)
obtained by the edge corrections named.

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

Ldot 781

See Also

Lcross, Linhom, Kcross.inhom

Examples

Lansing Woods data
woods <- lansing

ma <- split(woods)$maple
wh <- split(woods)$whiteoak

method (1): estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdaW <- density.ppp(wh, sigma=0.15, at="points")
L <- Lcross.inhom(woods, "whiteoak", "maple", lambdaW, lambdaM)

method (2): fit parametric intensity model
fit <- ppm(woods ~marks * polynom(x,y,2))
evaluate fitted intensities at data points
(these are the intensities of the sub-processes of each type)
inten <- fitted(fit, dataonly=TRUE)
split according to types of points
lambda <- split(inten, marks(woods))
L <- Lcross.inhom(woods, "whiteoak", "maple",

lambda$whiteoak, lambda$maple)

synthetic example: type A points have intensity 50,
type B points have intensity 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
L <- Lcross.inhom(X, "A", "B",

lambdaI=as.im(50, Window(X)), lambdaJ=lamB)

Ldot Multitype L-function (i-to-any)

Description

Calculates an estimate of the multitype L-function (from type i to any type) for a multitype point
pattern.

Usage

Ldot(X, i, ..., from, correction)

782 Ldot

Arguments

X The observed point pattern, from which an estimate of the dot-type L function
Lij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

correction,... Arguments passed to Kdot.

from An alternative way to specify i.

Details

This command computes

Li•(r) =

√
Ki•(r)

π

where Ki•(r) is the multitype K-function from points of type i to points of any type. See Kdot for
information about Ki•(r).

The command Ldot first calls Kdot to compute the estimate of the i-to-any K-function, and then
applies the square root transformation.

For a marked Poisson point process, the theoretical value of the L-function is Li•(r) = r. The
square root also has the effect of stabilising the variance of the estimator, so that Li• is more
appropriate for use in simulation envelopes and hypothesis tests.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function Li• has been esti-
mated

theo the theoretical value Li•(r) = r for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function Li• obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Kdot, Lcross, Lest

Ldot.inhom 783

Examples

data(amacrine)
L <- Ldot(amacrine, "off")
plot(L)

Ldot.inhom Inhomogeneous Multitype L Dot Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the dot L function.

Usage

Ldot.inhom(X, i, ..., correction)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type L function Li•(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

correction,... Other arguments passed to Kdot.inhom.

Details

This a generalisation of the function Ldot to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Linhom.

All the arguments are passed to Kdot.inhom, which estimates the inhomogeneous multitype K
function Ki•(r) for the point pattern. The resulting values are then transformed by taking L(r) =√
K(r)/π.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Li•(r) has been estimated

theo the theoretical value of Li•(r) for a marked Poisson process, identical to r.

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Li•(r)
obtained by the edge corrections named.

784 lengths_psp

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

See Also

Ldot, Linhom, Kdot.inhom, Lcross.inhom.

Examples

Lansing Woods data
lan <- lansing
lan <- lan[seq(1,npoints(lan), by=10)]
ma <- split(lan)$maple
lg <- unmark(lan)

Estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdadot <- density.ppp(lg, sigma=0.15, at="points")
L <- Ldot.inhom(lan, "maple", lambdaI=lambdaM,

lambdadot=lambdadot)

synthetic example: type A points have intensity 50,
type B points have intensity 50 + 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
lamdot <- as.im(function(x,y) { 100 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
L <- Ldot.inhom(X, "B", lambdaI=lamB, lambdadot=lamdot)

lengths_psp Lengths of Line Segments

Description

Computes the length of each line segment in a line segment pattern.

lengths_psp 785

Usage

lengths.psp(x, squared=FALSE)
lengths_psp(x, squared=FALSE)

Arguments

x A line segment pattern (object of class "psp").

squared Logical value indicating whether to return the squared lengths (squared=TRUE)
or the lengths themselves (squared=FALSE, the default).

Details

The length of each line segment is computed and the lengths are returned as a numeric vector.

Using squared lengths may be more efficient for some purposes, for example, to find the length of
the shortest segment, sqrt(min(lengths.psp(x,squared=TRUE))) is faster than min(lengths.psp(x)).

The functions lengths.psp and lengths_psp are identical. We recommend using the newer name
lengths_psp.

Value

Numeric vector.

Change of name

The name of this function has changed from lengths.psp to lengths_psp, because the old name
lengths.psp could be misinterpreted as a method for lengths.

The older function name lengths.psp is retained temporarily, for consistency with older code and
documentation.

In future versions of spatstat, the function name lengths.psp will be removed. The newer function
name lengths_psp should be used.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

marks.psp, summary.psp, midpoints.psp, angles.psp, endpoints.psp, extrapolate.psp.

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
b <- lengths_psp(a)

786 LennardJones

LennardJones The Lennard-Jones Potential

Description

Creates the Lennard-Jones pairwise interaction structure which can then be fitted to point pattern
data.

Usage

LennardJones(sigma0=NA)

Arguments

sigma0 Optional. Initial estimate of the parameter σ. A positive number.

Details

In a pairwise interaction point process with the Lennard-Jones pair potential (Lennard-Jones, 1924)
each pair of points in the point pattern, a distance d apart, contributes a factor

v(d) = exp

{
−4ε

[(σ
d

)12
−
(σ
d

)6]}
to the probability density, where σ and ε are positive parameters to be estimated.

See Examples for a plot of this expression.

This potential causes very strong inhibition between points at short range, and attraction between
points at medium range. The parameter σ is called the characteristic diameter and controls the scale
of interaction. The parameter ε is called the well depth and determines the strength of attraction. The
potential switches from inhibition to attraction at d = σ. The maximum value of the pair potential
is exp(ε) occuring at distance d = 21/6σ. Interaction is usually considered to be negligible for
distances d > 2.5σmax{1, ε1/6}.

This potential is used to model interactions between uncharged molecules in statistical physics.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The appro-
priate description of the Lennard-Jones pairwise interaction is yielded by the function LennardJones().
See the examples below.

Value

An object of class "interact" describing the Lennard-Jones interpoint interaction structure.

LennardJones 787

Rescaling

To avoid numerical instability, the interpoint distances d are rescaled when fitting the model.

Distances are rescaled by dividing by sigma0. In the formula for v(d) above, the interpoint distance
d will be replaced by d/sigma0.

The rescaling happens automatically by default. If the argument sigma0 is missing or NA (the
default), then sigma0 is taken to be the minimum nearest-neighbour distance in the data point
pattern (in the call to ppm).

If the argument sigma0 is given, it should be a positive number, and it should be a rough estimate
of the parameter σ.

The “canonical regular parameters” estimated by ppm are θ1 = 4ε(σ/σ0)12 and θ2 = 4ε(σ/σ0)6.

Warnings and Errors

Fitting the Lennard-Jones model is extremely unstable, because of the strong dependence between
the functions d−12 and d−6. The fitting algorithm often fails to converge. Try increasing the number
of iterations of the GLM fitting algorithm, by setting gcontrol=list(maxit=1e3) in the call to
ppm.

Errors are likely to occur if this model is fitted to a point pattern dataset which does not exhibit both
short-range inhibition and medium-range attraction between points. The values of the parameters σ
and ε may be NA (because the fitted canonical parameters have opposite sign, which usually occurs
when the pattern is completely random).

An absence of warnings does not mean that the fitted model is sensible. A negative value of ε may
be obtained (usually when the pattern is strongly clustered); this does not correspond to a valid
point process model, but the software does not issue a warning.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Lennard-Jones, J.E. (1924) On the determination of molecular fields. Proc Royal Soc London A
106, 463–477.

See Also

ppm, pairwise.family, ppm.object

Examples

badfit <- ppm(cells ~1, LennardJones(), rbord=0.1)
badfit

fit <- ppm(unmark(longleaf) ~1, LennardJones(), rbord=1)
fit
plot(fitin(fit))

788 Lest

Note the Longleaf Pines coordinates are rounded to the nearest decimetre
(multiple of 0.1 metres) so the apparent inhibition may be an artefact

Lest L-function

Description

Calculates an estimate of the L-function (Besag’s transformation of Ripley’s K-function) for a
spatial point pattern.

Usage

Lest(X, ..., correction)

Arguments

X The observed point pattern, from which an estimate of L(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

correction,... Other arguments passed to Kest to control the estimation procedure.

Details

This command computes an estimate of the L-function for the spatial point pattern X. The L-
function is a transformation of Ripley’s K-function,

L(r) =

√
K(r)

π

where K(r) is the K-function.
See Kest for information about Ripley’s K-function. The transformation to L was proposed by
Besag (1977).
The command Lest first calls Kest to compute the estimate of the K-function, and then applies the
square root transformation.
For a completely random (uniform Poisson) point pattern, the theoretical value of the L-function is
L(r) = r. The square root also has the effect of stabilising the variance of the estimator, so that
L(r) is more appropriate for use in simulation envelopes and hypothesis tests.
See Kest for the list of arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.
Essentially a data frame containing columns

r the vector of values of the argument r at which the functionL has been estimated
theo the theoretical value L(r) = r for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function L(r) obtained by the
edge corrections named.

levelset 789

Variance approximations

If the argument var.approx=TRUE is given, the return value includes columns rip and ls contain-
ing approximations to the variance of L̂(r) under CSR. These are obtained by the delta method
from the variance approximations described in Kest.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Besag, J. (1977) Discussion of Dr Ripley’s paper. Journal of the Royal Statistical Society, Series B,
39, 193–195.

See Also

Kest, pcf

Examples

data(cells)
L <- Lest(cells)
plot(L, main="L function for cells")

levelset Level Set of a Pixel Image

Description

Given a pixel image, find all pixels which have values less than a specified threshold value (or
greater than a threshold, etc), and assemble these pixels into a window.

Usage

levelset(X, thresh, compare="<=")

Arguments

X A pixel image (object of class "im").

thresh Threshold value. A single number or value compatible with the pixel values in
X.

compare Character string specifying one of the comparison operators "<",">","==","<=",">=","!=".

790 leverage.ppm

Details

If X is a pixel image with numeric values, then levelset(X,thresh) finds the region of space
where the pixel values are less than or equal to the threshold value thresh. This region is returned
as a spatial window.

The argument compare specifies how the pixel values should be compared with the threshold value.
Instead of requiring pixel values to be less than or equal to thresh, you can specify that they must
be less than (<), greater than (>), equal to (==), greater than or equal to (>=), or not equal to (!=) the
threshold value thresh.

If X has non-numeric pixel values (for example, logical or factor values) it is advisable to use only
the comparisons == and !=, unless you really know what you are doing.

For more complicated logical comparisons, see solutionset.

Value

A spatial window (object of class "owin", see owin.object) containing the pixels satisfying the
constraint.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

im.object, as.owin, solutionset.

Examples

test image
X <- as.im(function(x,y) { x^2 - y^2 }, unit.square())

W <- levelset(X, 0.2)
W <- levelset(X, -0.3, ">")

compute area of level set
area(levelset(X, 0.1))

leverage.ppm Leverage Measure for Spatial Point Process Model

Description

Computes the leverage measure for a fitted spatial point process model.

leverage.ppm 791

Usage

leverage(model, ...)

S3 method for class 'ppm'
leverage(model, ...,

drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)

Arguments

model Fitted point process model (object of class "ppm").

... Ignored, except for the arguments dimyx and eps which are passed to as.mask
to control the spatial resolution of the result.

drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-
tions from quadrature points that were not used to fit the model.

iScore,iHessian

Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

Details

The function leverage is generic, and leverage.ppm is the method for objects of class "ppm".

Given a fitted spatial point process model model, the function leverage.ppm computes the leverage
of the model, described in Baddeley, Chang and Song (2013) and Baddeley, Rubak and Turner
(2019).

The leverage of a spatial point process model is a function of spatial location, and is typically
displayed as a colour pixel image. The leverage value h(u) at a spatial location u represents the
change in the fitted trend of the fitted point process model that would have occurred if a data point
were to have occurred at the location u. A relatively large value of h() indicates a part of the space
where the data have a potentially strong effect on the fitted model (specifically, a strong effect on
the intensity or conditional intensity of the fitted model) due to the values of the covariates.

If the point process model trend has irregular parameters that were fitted (using ippm) then the
leverage calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

The result of leverage.ppm is an object of class "leverage.ppm". It can be printed or plotted. It
can be converted to a pixel image by as.im (see as.im.leverage.ppm). There are also methods
for contour, persp, [, as.function, as.owin, domain, Smooth, integral, and mean.

Value

An object of class "leverage.ppm".

792 lgcp.estK

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial point
process models. Scandinavian Journal of Statistics 40, 86–104.

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

influence.ppm, dfbetas.ppm, ppmInfluence, plot.leverage.ppm as.function.leverage.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
plot(le <- leverage(fit))
mean(le)

lgcp.estK Fit a Log-Gaussian Cox Point Process by Minimum Contrast

Description

Fits a log-Gaussian Cox point process model to a point pattern dataset by the Method of Minimum
Contrast.

Usage

lgcp.estK(X, startpar=c(var=1,scale=1),
covmodel=list(model="exponential"),
lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the log-Gaussian Cox process
model.

covmodel Specification of the covariance model for the log-Gaussian field. See Details.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

lgcp.estK 793

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits a log-Gaussian Cox point process (LGCP) model to a point pattern dataset by
the Method of Minimum Contrast, using the K function of the point pattern.

The shape of the covariance of the LGCP must be specified: the default is the exponential covariance
function, but other covariance models can be selected.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits a log-Gaussian Cox point process (LGCP) model to X, by finding the parameters
of the LGCP model which give the closest match between the theoretical K function of the LGCP
model and the observed K function. For a more detailed explanation of the Method of Minimum
Contrast, see mincontrast.

The model fitted is a stationary, isotropic log-Gaussian Cox process (Møller and Waagepetersen,
2003, pp. 72-76). To define this process we start with a stationary Gaussian random field Z in the
two-dimensional plane, with constant mean µ and covariance function C(r). Given Z, we generate
a Poisson point process Y with intensity function λ(u) = exp(Z(u)) at location u. Then Y is a
log-Gaussian Cox process.

The K-function of the LGCP is

K(r) =

∫ r

0

2πs exp(C(s)) ds.

The intensity of the LGCP is

λ = exp(µ+
C(0)

2
).

The covariance function C(r) is parametrised in the form

C(r) = σ2c(r/α)

where σ2 and α are parameters controlling the strength and the scale of autocorrelation, respectively,
and c(r) is a known covariance function determining the shape of the covariance. The strength
and scale parameters σ2 and α will be estimated by the algorithm as the values var and scale
respectively. The template covariance function c(r) must be specified as explained below.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters σ2 and α. Then the remaining parameter µ is inferred from the estimated intensity λ.

The template covariance function c(r) is specified using the argument covmodel. This should be
of the form list(model="modelname",...) where modelname is a string identifying the template

794 lgcp.estK

model as explained below, and ... are optional arguments of the form tag=value giving the values
of parameters controlling the shape of the template model. The default is the exponential covariance
c(r) = e−r so that the scaled covariance is

C(r) = σ2e−r/α.

To determine the template model, the string "modelname" will be prefixed by "RM" and the code
will search for a function of this name in the RandomFields package. For a list of available models
see RMmodel in the RandomFields package. For example the Matérn covariance with exponent
ν = 0.3 is specified by covmodel=list(model="matern",nu=0.3) corresponding to the function
RMmatern in the RandomFields package.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Note

This function is considerably slower than lgcp.estpcf because of the computation time required
for the integral in the K-function.

Computation can be accelerated, at the cost of less accurate results, by setting spatstat.options(fastK.lgcp=TRUE).

Author(s)

Rasmus Waagepetersen <rw@math.auc.dk>. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Further modifications by Rasmus Waagepetersen and Shen Guochun, and by Ege Rubak <rubak@math.aau.dk>.

References

Møller, J, Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox Processes. Scandina-
vian Journal of Statistics 25, 451–482.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

lgcp.estpcf 795

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

lgcp.estpcf for alternative method of fitting LGCP.

matclust.estK, thomas.estK for other models.

mincontrast for the generic minimum contrast fitting algorithm, including important parameters
that affect the accuracy of the fit.

RMmodel in the RandomFields package, for covariance function models.

Kest for the K function.

Examples

if(interactive()) {
u <- lgcp.estK(redwood)

} else {
slightly faster - better starting point
u <- lgcp.estK(redwood, c(var=1, scale=0.1))

}
u
plot(u)

if(FALSE) {
takes several minutes!
lgcp.estK(redwood, covmodel=list(model="matern", nu=0.3))

}

lgcp.estpcf Fit a Log-Gaussian Cox Point Process by Minimum Contrast

Description

Fits a log-Gaussian Cox point process model to a point pattern dataset by the Method of Minimum
Contrast using the pair correlation function.

Usage

lgcp.estpcf(X,
startpar=c(var=1,scale=1),
covmodel=list(model="exponential"),
lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ..., pcfargs=list())

796 lgcp.estpcf

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the log-Gaussian Cox process
model.

covmodel Specification of the covariance model for the log-Gaussian field. See Details.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits a log-Gaussian Cox point process (LGCP) model to a point pattern dataset by
the Method of Minimum Contrast, using the estimated pair correlation function of the point pattern.

The shape of the covariance of the LGCP must be specified: the default is the exponential covariance
function, but other covariance models can be selected.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits a log-Gaussian Cox point process (LGCP) model to X, by finding the parameters
of the LGCP model which give the closest match between the theoretical pair correlation function
of the LGCP model and the observed pair correlation function. For a more detailed explanation of
the Method of Minimum Contrast, see mincontrast.

The model fitted is a stationary, isotropic log-Gaussian Cox process (Møller and Waagepetersen,
2003, pp. 72-76). To define this process we start with a stationary Gaussian random field Z in the
two-dimensional plane, with constant mean µ and covariance function C(r). Given Z, we generate
a Poisson point process Y with intensity function λ(u) = exp(Z(u)) at location u. Then Y is a
log-Gaussian Cox process.

The theoretical pair correlation function of the LGCP is

g(r) = exp(C(s))

The intensity of the LGCP is

λ = exp(µ+
C(0)

2
).

lgcp.estpcf 797

The covariance function C(r) takes the form

C(r) = σ2c(r/α)

where σ2 and α are parameters controlling the strength and the scale of autocorrelation, respectively,
and c(r) is a known covariance function determining the shape of the covariance. The strength and
scale parameters σ2 and α will be estimated by the algorithm. The template covariance function
c(r) must be specified as explained below.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters σ2 and α. Then the remaining parameter µ is inferred from the estimated intensity λ.

The template covariance function c(r) is specified using the argument covmodel. This should be
of the form list(model="modelname",...) where modelname is a string identifying the template
model as explained below, and ... are optional arguments of the form tag=value giving the values
of parameters controlling the shape of the template model. The default is the exponential covariance
c(r) = e−r so that the scaled covariance is

C(r) = σ2e−r/α.

To determine the template model, the string "modelname" will be prefixed by "RM" and the code
will search for a function of this name in the RandomFields package. For a list of available models
see RMmodel in the RandomFields package. For example the Matérn covariance with exponent
ν = 0.3 is specified by covmodel=list(model="matern",nu=0.3) corresponding to the function
RMmatern in the RandomFields package.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> with modifications by Shen Guochun and
Rasmus Waagepetersen <rw@math.auc.dk> and Ege Rubak <rubak@math.aau.dk>.

798 lineardirichlet

References

Møller, J., Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox Processes. Scandina-
vian Journal of Statistics 25, 451–482.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

lgcp.estK for alternative method of fitting LGCP.

matclust.estpcf, thomas.estpcf for other models.

mincontrast for the generic minimum contrast fitting algorithm, including important parameters
that affect the accuracy of the fit.

RMmodel in the RandomFields package, for covariance function models.

pcf for the pair correlation function.

Examples

data(redwood)
u <- lgcp.estpcf(redwood, c(var=1, scale=0.1))
u
plot(u)
if(require(RandomFields)) {

lgcp.estpcf(redwood, covmodel=list(model="matern", nu=0.3))
}

lineardirichlet Dirichlet Tessellation on a Linear Network

Description

Given a point pattern on a linear network, compute the Dirichlet (or Voronoi or Thiessen) tessella-
tion induced by the points.

Usage

lineardirichlet(X)

Arguments

X Point pattern on a linear network (object of class "lpp").

lineardisc 799

Details

The Dirichlet tessellation induced by a point pattern X on a linear network L is a partition of L into
subsets. The subset L[i] associated with the data point X[i] is the part of L lying closer to X[i]
than to any other data point X[j], where distance is measured by the shortest path.

Value

A tessellation on a linear network (object of class "lintess").

Missing tiles

If the linear network is not connected, and if one of the connected components contains no data
points, then the Dirichlet tessellation is mathematically undefined inside this component. The re-
sulting tessellation object includes a tile with label NA, which contains this component of the net-
work. A plot of the tessellation will not show this tile.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

lintess

Examples

X <- runiflpp(5, simplenet)
plot(lineardirichlet(X), lwd=3)
points(X)

lineardisc Compute Disc of Given Radius in Linear Network

Description

Computes the ‘disc’ of given radius and centre in a linear network.

Usage

lineardisc(L, x = locator(1), r, plotit = TRUE,
cols=c("blue", "red","green"), add=TRUE)

countends(L, x = locator(1), r, toler=NULL, internal=list())

800 lineardisc

Arguments

L Linear network (object of class "linnet").

x Location of centre of disc. Either a point pattern (object of class "ppp") con-
taining exactly 1 point, or a numeric vector of length 2.

r Radius of disc.

plotit Logical. Whether to plot the disc.

add Logical. If add=TRUE (the default), the disc will be plotted on the current plot
frame. If add=FALSE, a new plot frame will be started, the entire network will
be displayed, and then the disc will be plotted over this.

cols Colours for plotting the disc. A numeric or character vector of length 3 specify-
ing the colours of the disc centre, disc lines and disc endpoints respectively.

toler Optional. Distance threshold for countends. See Details. There is a sensible
default.

internal Argument for internal use by the package.

Details

The ‘disc’ B(u, r) of centre x and radius r in a linear network L is the set of all points u in L such
that the shortest path distance from x to u is less than or equal to r. This is a union of line segments
contained in L.

The relative boundary of the disc B(u, r) is the set of points v such that the shortest path distance
from x to u is equal to r.

The function lineardisc computes the disc of radius r and its relative boundary, optionally plots
them, and returns them. The faster function countends simply counts the number of points in the
relative boundary.

Note that countends requires the linear network L to be given in the non-sparse matrix format
(see the argument sparse in linnet or as.linnet) while lineardisc accepts both sparse and
non-sparse formats.

The optional threshold toler is used to suppress numerical errors in countends. If the distance
from u to a network vertex v is between r-toler and r+toler, the vertex will be treated as lying
on the relative boundary.

Value

The value of lineardisc is a list with two entries:

lines Line segment pattern (object of class "psp") representing the interior disc

endpoints Point pattern (object of class "ppp") representing the relative boundary of the
disc.

The value of countends is an integer giving the number of points in the relative boundary.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

linearK 801

References

Ang, Q.W. (2010) Statistical methodology for events on a network. Master’s thesis, School of
Mathematics and Statistics, University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

See Also

linnet

Examples

letter 'A'
v <- ppp(x=(-2):2, y=3*c(0,1,2,1,0), c(-3,3), c(-1,7))
edg <- cbind(1:4, 2:5)
edg <- rbind(edg, c(2,4))
letterA <- linnet(v, edges=edg)
plot(letterA)

lineardisc(letterA, c(0,3), 1.6)
count the endpoints
countends(letterA, c(0,3), 1.6)
cross-check (slower)
en <- lineardisc(letterA, c(0,3), 1.6, plotit=FALSE)$endpoints
npoints(en)

linearK Linear K Function

Description

Computes an estimate of the linear K function for a point pattern on a linear network.

Usage

linearK(X, r=NULL, ..., correction="Ang", ratio=FALSE)

Arguments

X Point pattern on linear network (object of class "lpp").

r Optional. Numeric vector of values of the function argument r. There is a
sensible default.

... Ignored.

correction Geometry correction. Either "none" or "Ang". See Details.

ratio Logical. If TRUE, the numerator and denominator of the estimate will also be
saved, for use in analysing replicated point patterns.

802 linearKcross

Details

This command computes the linear K function from point pattern data on a linear network.

If correction="none", the calculations do not include any correction for the geometry of the linear
network. The result is the network K function as defined by Okabe and Yamada (2001).

If correction="Ang", the pair counts are weighted using Ang’s correction (Ang, 2010; Ang et al,
2012).

Value

Function value table (object of class "fv").

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Ang, Q.W. (2010) Statistical methodology for spatial point patterns on a linear network. MSc thesis,
University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Okabe, A. and Yamada, I. (2001) The K-function method on a network and its computational im-
plementation. Geographical Analysis 33, 271-290.

See Also

compileK, lpp

Examples

data(simplenet)
X <- rpoislpp(5, simplenet)
linearK(X)
linearK(X, correction="none")

linearKcross Multitype K Function (Cross-type) for Linear Point Pattern

Description

For a multitype point pattern on a linear network, estimate the multitype K function which counts
the expected number of points of type j within a given distance of a point of type i.

Usage

linearKcross(X, i, j, r=NULL, ..., correction="Ang")

linearKcross 803

Arguments

X The observed point pattern, from which an estimate of the cross typeK function
Kij(r) will be computed. An object of class "lpp" which must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured. Defaults to the second level of marks(X).

r numeric vector. The values of the argument r at which the K-function Kij(r)
should be evaluated. There is a sensible default. First-time users are strongly
advised not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

... Ignored.

Details

This is a counterpart of the function Kcross for a point pattern on a linear network (object of class
"lpp").

The arguments i and j will be interpreted as levels of the factor marks(X). If i and j are missing,
they default to the first and second level of the marks factor, respectively.

The argument r is the vector of values for the distance r at which Kij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Warnings

The arguments i and j are interpreted as levels of the factor marks(X). Beware of the usual trap
with factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (to appear) Multitype point process analysis of
spines on the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical
Society, Series C), 63, 673–694.

See Also

linearKdot, linearK.

804 linearKcross.inhom

Examples

data(chicago)
K <- linearKcross(chicago, "assault", "robbery")

linearKcross.inhom Inhomogeneous multitype K Function (Cross-type) for Linear Point
Pattern

Description

For a multitype point pattern on a linear network, estimate the inhomogeneous multitypeK function
which counts the expected number of points of type j within a given distance of a point of type i.

Usage

linearKcross.inhom(X, i, j, lambdaI, lambdaJ,
r=NULL, ..., correction="Ang", normalise=TRUE)

Arguments

X The observed point pattern, from which an estimate of the cross typeK function
Kij(r) will be computed. An object of class "lpp" which must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured. Defaults to the second level of marks(X).

lambdaI Intensity values for the points of type i. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm").

lambdaJ Intensity values for the points of type j. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm").

r numeric vector. The values of the argument r at which the K-function Kij(r)
should be evaluated. There is a sensible default. First-time users are strongly
advised not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

... Arguments passed to lambdaI and lambdaJ if they are functions.

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the points of type i), which re-
duces the sampling variability. If FALSE, the denominator is the length of the
network.

linearKcross.inhom 805

Details

This is a counterpart of the function Kcross.inhom for a point pattern on a linear network (object
of class "lpp").

The arguments i and j will be interpreted as levels of the factor marks(X). If i and j are missing,
they default to the first and second level of the marks factor, respectively.

The argument r is the vector of values for the distance r at which Kij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

If lambdaI or lambdaJ is a fitted point process model, the default behaviour is to update the model
by re-fitting it to the data, before computing the fitted intensity. This can be disabled by setting
update=FALSE.

Value

An object of class "fv" (see fv.object).

Warnings

The arguments i and j are interpreted as levels of the factor marks(X). Beware of the usual trap
with factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (to appear) Multitype point process analysis of
spines on the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical
Society, Series C), 63, 673–694.

See Also

linearKdot, linearK.

Examples

lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam[["assault"]]){ rep(const, length(x)) }
lamJ <- function(x,y,const=lam[["robbery"]]){ rep(const, length(x)) }

K <- linearKcross.inhom(chicago, "assault", "robbery", lamI, lamJ)

Not run:
fit <- lppm(chicago, ~marks + x)
linearKcross.inhom(chicago, "assault", "robbery", fit, fit)

End(Not run)

806 linearKdot

linearKdot Multitype K Function (Dot-type) for Linear Point Pattern

Description

For a multitype point pattern on a linear network, estimate the multitype K function which counts
the expected number of points (of any type) within a given distance of a point of type i.

Usage

linearKdot(X, i, r=NULL, ..., correction="Ang")

Arguments

X The observed point pattern, from which an estimate of the dot type K function
Ki•(r) will be computed. An object of class "lpp" which must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

r numeric vector. The values of the argument r at which the K-function Ki•(r)
should be evaluated. There is a sensible default. First-time users are strongly
advised not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.
... Ignored.

Details

This is a counterpart of the function Kdot for a point pattern on a linear network (object of class
"lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which Ki•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

linearKdot.inhom 807

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (to appear) Multitype point process analysis of
spines on the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical
Society, Series C), 63, 673–694.

See Also

Kdot, linearKcross, linearK.

Examples

data(chicago)
K <- linearKdot(chicago, "assault")

linearKdot.inhom Inhomogeneous multitype K Function (Dot-type) for Linear Point Pat-
tern

Description

For a multitype point pattern on a linear network, estimate the inhomogeneous multitypeK function
which counts the expected number of points (of any type) within a given distance of a point of type
i.

Usage

linearKdot.inhom(X, i, lambdaI, lambdadot, r=NULL, ...,
correction="Ang", normalise=TRUE)

Arguments

X The observed point pattern, from which an estimate of the dot type K function
Ki•(r) will be computed. An object of class "lpp" which must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

lambdaI Intensity values for the points of type i. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm").

lambdadot Intensity values for all points of X. Either a numeric vector, a function, a pixel
image (object of class "im" or "linim") or a fitted point process model (object
of class "ppm" or "lppm").

r numeric vector. The values of the argument r at which the K-function Ki•(r)
should be evaluated. There is a sensible default. First-time users are strongly
advised not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

808 linearKdot.inhom

... Arguments passed to lambdaI and lambdadot if they are functions.

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the points of type i), which re-
duces the sampling variability. If FALSE, the denominator is the length of the
network.

Details

This is a counterpart of the function Kdot.inhom for a point pattern on a linear network (object of
class "lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which Ki•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

If lambdaI or lambdadot is a fitted point process model, the default behaviour is to update the
model by re-fitting it to the data, before computing the fitted intensity. This can be disabled by
setting update=FALSE.

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (to appear) Multitype point process analysis of
spines on the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical
Society, Series C), 63, 673–694.

See Also

linearKdot, linearK.

Examples

lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam[["assault"]]){ rep(const, length(x)) }
lam. <- function(x,y,const=sum(lam)){ rep(const, length(x)) }

K <- linearKdot.inhom(chicago, "assault", lamI, lam.)

linearKinhom 809

Not run:
fit <- lppm(chicago, ~marks + x)
linearKdot.inhom(chicago, "assault", fit, fit)

End(Not run)

linearKinhom Inhomogeneous Linear K Function

Description

Computes an estimate of the inhomogeneous linear K function for a point pattern on a linear net-
work.

Usage

linearKinhom(X, lambda=NULL, r=NULL, ..., correction="Ang",
normalise=TRUE, normpower=1,

update=TRUE, leaveoneout=TRUE, ratio=FALSE)

Arguments

X Point pattern on linear network (object of class "lpp").

lambda Intensity values for the point pattern. Either a numeric vector, a function, a
pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm").

r Optional. Numeric vector of values of the function argument r. There is a
sensible default.

... Ignored.

correction Geometry correction. Either "none" or "Ang". See Details.

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the data points, raised to normpower),
which reduces the sampling variability. If FALSE, the denominator is the length
of the network.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

update Logical value indicating what to do when lambda is a fitted model (class "lppm"
or "ppm"). If update=TRUE (the default), the model will first be refitted to the
data X (using update.lppm or update.ppm) before the fitted intensity is com-
puted. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

leaveoneout Logical value (passed to fitted.lppm or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity, when lambda is a fitted
model. Supported only when update=TRUE.

ratio Logical. If TRUE, the numerator and denominator of the estimate will also be
saved, for use in analysing replicated point patterns.

810 linearKinhom

Details

This command computes the inhomogeneous version of the linear K function from point pattern
data on a linear network.

If lambda = NULL the result is equivalent to the homogeneous K function linearK. If lambda is
given, then it is expected to provide estimated values of the intensity of the point process at each
point of X. The argument lambda may be a numeric vector (of length equal to the number of points
in X), or a function(x,y) that will be evaluated at the points of X to yield numeric values, or a
pixel image (object of class "im") or a fitted point process model (object of class "ppm" or "lppm").

If lambda is a fitted point process model, the default behaviour is to update the model by re-fitting
it to the data, before computing the fitted intensity. This can be disabled by setting update=FALSE.

If correction="none", the calculations do not include any correction for the geometry of the linear
network. If correction="Ang", the pair counts are weighted using Ang’s correction (Ang, 2010).

Each estimate is initially computed as

K̂inhom(r) =
1

length(L)

∑
i

∑
j

1{dij ≤ r}e(xi, xj)
λ(xi)λ(xj)

where L is the linear network, dij is the distance between points xi and xj , and e(xi, xj) is a
weight. If correction="none" then this weight is equal to 1, while if correction="Ang" the
weight is e(xi, xj , r) = 1/m(xi, dij) where m(u, t) is the number of locations on the network that
lie exactly t units distant from location u by the shortest path.

If normalise=TRUE (the default), then the estimates described above are multiplied by cnormpower

where c = length(L)/
∑

(1/λ(xi)). This rescaling reduces the variability and bias of the estimate
in small samples and in cases of very strong inhomogeneity. The default value of normpower is 1
(for consistency with previous versions of spatstat) but the most sensible value is 2, which would
correspond to rescaling the lambda values so that

∑
(1/λ(xi)) = area(W).

Value

Function value table (object of class "fv").

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ang, Q.W. (2010) Statistical methodology for spatial point patterns on a linear network. MSc thesis,
University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

See Also

lpp

linearmarkconnect 811

Examples

data(simplenet)
X <- rpoislpp(5, simplenet)
fit <- lppm(X ~x)
K <- linearKinhom(X, lambda=fit)
plot(K)

linearmarkconnect Mark Connection Function for Multitype Point Pattern on Linear Net-
work

Description

For a multitype point pattern on a linear network, estimate the mark connection function from points
of type i to points of type j.

Usage

linearmarkconnect(X, i, j, r=NULL, ...)

Arguments

X The observed point pattern, from which an estimate of the mark connection
function pij(r) will be computed. An object of class "lpp" which must be a
multitype point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured. Defaults to the second level of marks(X).

r numeric vector. The values of the argument r at which the function pij(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

... Arguments passed to linearpcfcross and linearpcf.

Details

This is a counterpart of the function markconnect for a point pattern on a linear network (object of
class "lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which pij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

812 linearmarkequal

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

linearpcfcross, linearpcf, linearmarkequal, markconnect.

Examples

pab <- linearmarkconnect(chicago, "assault", "burglary")
Not run:
plot(alltypes(chicago, linearmarkconnect))

End(Not run)

linearmarkequal Mark Connection Function for Multitype Point Pattern on Linear Net-
work

Description

For a multitype point pattern on a linear network, estimate the mark connection function from points
of type i to points of type j.

Usage

linearmarkequal(X, r=NULL, ...)

Arguments

X The observed point pattern, from which an estimate of the mark connection
function pij(r) will be computed. An object of class "lpp" which must be a
multitype point pattern (a marked point pattern whose marks are a factor).

r numeric vector. The values of the argument r at which the function pij(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

... Arguments passed to linearpcfcross and linearpcf.

linearpcf 813

Details

This is the mark equality function for a point pattern on a linear network (object of class "lpp").

The argument r is the vector of values for the distance r at which pij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

linearpcfcross, linearpcf, linearmarkconnect, markconnect.

Examples

if(interactive()) {
X <- chicago

} else {
m <- sample(factor(c("A","B")), 20, replace=TRUE)
X <- runiflpp(20, simplenet) %mark% m

}
p <- linearmarkequal(X)

linearpcf Linear Pair Correlation Function

Description

Computes an estimate of the linear pair correlation function for a point pattern on a linear network.

Usage

linearpcf(X, r=NULL, ..., correction="Ang", ratio=FALSE)

814 linearpcf

Arguments

X Point pattern on linear network (object of class "lpp").

r Optional. Numeric vector of values of the function argument r. There is a
sensible default.

... Arguments passed to density.default to control the smoothing.

correction Geometry correction. Either "none" or "Ang". See Details.

ratio Logical. If TRUE, the numerator and denominator of each estimate will also be
saved, for use in analysing replicated point patterns.

Details

This command computes the linear pair correlation function from point pattern data on a linear
network.

The pair correlation function is estimated from the shortest-path distances between each pair of
data points, using the fixed-bandwidth kernel smoother density.default, with a bias correction
at each end of the interval of r values. To switch off the bias correction, set endcorrect=FALSE.

The bandwidth for smoothing the pairwise distances is determined by arguments ... passed to
density.default, mainly the arguments bw and adjust. The default is to choose the bandwidth
by Silverman’s rule of thumb bw="nrd0" explained in density.default.

If correction="none", the calculations do not include any correction for the geometry of the linear
network. The result is an estimate of the first derivative of the networkK function defined by Okabe
and Yamada (2001).

If correction="Ang", the pair counts are weighted using Ang’s correction (Ang, 2010). The result
is an estimate of the pair correlation function in the linear network.

Value

Function value table (object of class "fv").

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of g(r).

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Ang, Q.W. (2010) Statistical methodology for spatial point patterns on a linear network. MSc thesis,
University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Okabe, A. and Yamada, I. (2001) The K-function method on a network and its computational im-
plementation. Geographical Analysis 33, 271-290.

linearpcfcross 815

See Also

linearK, linearpcfinhom, lpp

Examples

data(simplenet)
X <- rpoislpp(5, simplenet)
linearpcf(X)
linearpcf(X, correction="none")

linearpcfcross Multitype Pair Correlation Function (Cross-type) for Linear Point Pat-
tern

Description

For a multitype point pattern on a linear network, estimate the multitype pair correlation function
from points of type i to points of type j.

Usage

linearpcfcross(X, i, j, r=NULL, ..., correction="Ang")

Arguments

X The observed point pattern, from which an estimate of the i-to-any pair correla-
tion function gij(r) will be computed. An object of class "lpp" which must be
a multitype point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured. Defaults to the second level of marks(X).

r numeric vector. The values of the argument r at which the function gij(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.
... Arguments passed to density.default to control the kernel smoothing.

Details

This is a counterpart of the function pcfcross for a point pattern on a linear network (object of
class "lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which gij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

816 linearpcfcross.inhom

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (to appear) Multitype point process analysis of
spines on the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical
Society, Series C), 63, 673–694.

See Also

linearpcfdot, linearpcf, pcfcross.

Examples

data(chicago)
g <- linearpcfcross(chicago, "assault")

linearpcfcross.inhom Inhomogeneous Multitype Pair Correlation Function (Cross-type) for
Linear Point Pattern

Description

For a multitype point pattern on a linear network, estimate the inhomogeneous multitype pair cor-
relation function from points of type i to points of type j.

Usage

linearpcfcross.inhom(X, i, j, lambdaI, lambdaJ, r=NULL, ...,
correction="Ang", normalise=TRUE)

linearpcfcross.inhom 817

Arguments

X The observed point pattern, from which an estimate of the i-to-any pair correla-
tion function gij(r) will be computed. An object of class "lpp" which must be
a multitype point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured. Defaults to the second level of marks(X).

lambdaI Intensity values for the points of type i. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm").

lambdaJ Intensity values for the points of type j. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm").

r numeric vector. The values of the argument r at which the function gij(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

... Arguments passed to density.default to control the kernel smoothing.

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the points of type i), which re-
duces the sampling variability. If FALSE, the denominator is the length of the
network.

Details

This is a counterpart of the function pcfcross.inhom for a point pattern on a linear network (object
of class "lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which gij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

If lambdaI or lambdaJ is a fitted point process model, the default behaviour is to update the model
by re-fitting it to the data, before computing the fitted intensity. This can be disabled by setting
update=FALSE.

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

818 linearpcfdot

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (to appear) Multitype point process analysis of
spines on the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical
Society, Series C), 63, 673–694.

See Also

linearpcfdot, linearpcf, pcfcross.inhom.

Examples

lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam[["assault"]]){ rep(const, length(x)) }
lamJ <- function(x,y,const=lam[["robbery"]]){ rep(const, length(x)) }

g <- linearpcfcross.inhom(chicago, "assault", "robbery", lamI, lamJ)

Not run:
fit <- lppm(chicago, ~marks + x)
linearpcfcross.inhom(chicago, "assault", "robbery", fit, fit)

End(Not run)

linearpcfdot Multitype Pair Correlation Function (Dot-type) for Linear Point Pat-
tern

Description

For a multitype point pattern on a linear network, estimate the multitype pair correlation function
from points of type i to points of any type.

Usage

linearpcfdot(X, i, r=NULL, ..., correction="Ang")

Arguments

X The observed point pattern, from which an estimate of the i-to-any pair correla-
tion function gi•(r) will be computed. An object of class "lpp" which must be
a multitype point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

linearpcfdot 819

r numeric vector. The values of the argument r at which the function gi•(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

... Arguments passed to density.default to control the kernel smoothing.

Details

This is a counterpart of the function pcfdot for a point pattern on a linear network (object of class
"lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which gi•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (to appear) Multitype point process analysis of
spines on the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical
Society, Series C), 63, 673–694.

See Also

linearpcfcross, linearpcf. pcfcross.

Examples

data(chicago)
g <- linearpcfdot(chicago, "assault")

820 linearpcfdot.inhom

linearpcfdot.inhom Inhomogeneous Multitype Pair Correlation Function (Dot-type) for
Linear Point Pattern

Description

For a multitype point pattern on a linear network, estimate the inhomogeneous multitype pair cor-
relation function from points of type i to points of any type.

Usage

linearpcfdot.inhom(X, i, lambdaI, lambdadot, r=NULL, ...,
correction="Ang", normalise=TRUE)

Arguments

X The observed point pattern, from which an estimate of the i-to-any pair correla-
tion function gi•(r) will be computed. An object of class "lpp" which must be
a multitype point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

lambdaI Intensity values for the points of type i. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm").

lambdadot Intensity values for all points of X. Either a numeric vector, a function, a pixel
image (object of class "im" or "linim") or a fitted point process model (object
of class "ppm" or "lppm").

r numeric vector. The values of the argument r at which the function gi•(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

... Arguments passed to density.default to control the kernel smoothing.

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the points of type i), which re-
duces the sampling variability. If FALSE, the denominator is the length of the
network.

Details

This is a counterpart of the function pcfdot.inhom for a point pattern on a linear network (object
of class "lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

linearpcfdot.inhom 821

The argument r is the vector of values for the distance r at which gi•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

If lambdaI or lambdadot is a fitted point process model, the default behaviour is to update the
model by re-fitting it to the data, before computing the fitted intensity. This can be disabled by
setting update=FALSE.

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (to appear) Multitype point process analysis of
spines on the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical
Society, Series C), 63, 673–694.

See Also

linearpcfcross.inhom, linearpcfcross, pcfcross.inhom.

Examples

lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam[["assault"]]){ rep(const, length(x)) }
lam. <- function(x,y,const=sum(lam)){ rep(const, length(x)) }

g <- linearpcfdot.inhom(chicago, "assault", lamI, lam.)

Not run:
fit <- lppm(chicago, ~marks + x)
linearpcfdot.inhom(chicago, "assault", fit, fit)

End(Not run)

822 linearpcfinhom

linearpcfinhom Inhomogeneous Linear Pair Correlation Function

Description

Computes an estimate of the inhomogeneous linear pair correlation function for a point pattern on
a linear network.

Usage

linearpcfinhom(X, lambda=NULL, r=NULL, ..., correction="Ang",
normalise=TRUE, normpower=1,

update = TRUE, leaveoneout = TRUE,
ratio = FALSE)

Arguments

X Point pattern on linear network (object of class "lpp").

lambda Intensity values for the point pattern. Either a numeric vector, a function, a
pixel image (object of class "im") or a fitted point process model (object of
class "ppm" or "lppm").

r Optional. Numeric vector of values of the function argument r. There is a
sensible default.

... Arguments passed to density.default to control the smoothing.

correction Geometry correction. Either "none" or "Ang". See Details.

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the data points, raised to normpower),
which reduces the sampling variability. If FALSE, the denominator is the length
of the network.

normpower Integer (usually either 1 or 2). Normalisation power. See explanation in linearKinhom.

update Logical value indicating what to do when lambda is a fitted model (class "lppm"
or "ppm"). If update=TRUE (the default), the model will first be refitted to the
data X (using update.lppm or update.ppm) before the fitted intensity is com-
puted. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

leaveoneout Logical value (passed to fitted.lppm or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity, when lambda is a fitted
model. Supported only when update=TRUE.

ratio Logical. If TRUE, the numerator and denominator of each estimate will also be
saved, for use in analysing replicated point patterns.

linearpcfinhom 823

Details

This command computes the inhomogeneous version of the linear pair correlation function from
point pattern data on a linear network.

If lambda = NULL the result is equivalent to the homogeneous pair correlation function linearpcf.
If lambda is given, then it is expected to provide estimated values of the intensity of the point
process at each point of X. The argument lambda may be a numeric vector (of length equal to the
number of points in X), or a function(x,y) that will be evaluated at the points of X to yield numeric
values, or a pixel image (object of class "im") or a fitted point process model (object of class "ppm"
or "lppm").

If lambda is a fitted point process model, the default behaviour is to update the model by re-fitting
it to the data, before computing the fitted intensity. This can be disabled by setting update=FALSE.

If correction="none", the calculations do not include any correction for the geometry of the linear
network. If correction="Ang", the pair counts are weighted using Ang’s correction (Ang, 2010).

The bandwidth for smoothing the pairwise distances is determined by arguments ... passed to
density.default, mainly the arguments bw and adjust. The default is to choose the bandwidth
by Silverman’s rule of thumb bw="nrd0" explained in density.default.

Value

Function value table (object of class "fv").

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of g(r).

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Ang, Q.W. (2010) Statistical methodology for spatial point patterns on a linear network. MSc thesis,
University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Okabe, A. and Yamada, I. (2001) The K-function method on a network and its computational im-
plementation. Geographical Analysis 33, 271-290.

See Also

linearpcf, linearKinhom, lpp

Examples

data(simplenet)
X <- rpoislpp(5, simplenet)
fit <- lppm(X ~x)
K <- linearpcfinhom(X, lambda=fit)
plot(K)

824 lineartileindex

lineartileindex Determine Which Tile Contains Each Given Point on a Linear Network

Description

Given a tessellation on a linear network, and a list of points on the network, determine which tile of
the tessellation contains each of the given points.

Usage

lineartileindex(seg, tp, Z, method = c("encode", "C", "interpreted"))

Arguments

seg,tp Vectors of local coordinates of the query points. See Details.

Z A tessellation on a linear network (object of class "lintess").

method Internal use only.

Details

This low-level function is the analogue of tileindex for linear networks. For a tessellation Z on a
linear network, and a list of query points on the same network, the function determines which tile
of the tessellation contains each query point.

Argument Z should be a tessellation on a linear network (object of class "lintess").

The vectors seg and tp specify the locations of the query points, on the same network, using local
coordinates: seg contains integer values specifying which segment of the network contains each
query point; tp contains numeric values between 0 and 1 specifying the fractional position along
that segment.

The result is a factor, of the same length as seg and tp, indicating which tile contains each point.
The levels of the factor are the names of the tiles of Z.

Value

A factor, of the same length as seg and tp, whose levels are the names of the tiles of Z.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

lintess.

as.linfun.lintess to create a function whose value is the tile index.

cut.lpp for a neater way to classify the points of a point pattern on a linear network according to a
tessellation on the network.

linequad 825

Examples

Z <- lineardirichlet(runiflpp(15, simplenet))
X <- runiflpp(10, simplenet)
coX <- coords(X)
ii <- lineartileindex(coXseg, coXtp, Z)

linequad Quadrature Scheme on a Linear Network

Description

Generates a quadrature scheme (an object of class "quad") on a linear network.

Usage

linequad(X, Y, ..., eps = NULL, nd = 1000, random = FALSE)

Arguments

X Data points. An object of class "lpp" or "ppp".

Y Line segments on which the points of X lie. An object of class "psp". Required
only when X is a "ppp" object.

... Ignored.

eps Optional. Spacing between successive dummy points along each segment. (This
is the maximum spacing; some spacings will be shorter.)

nd Optional. Total number of dummy points to be generated. (Actual number may
be larger.)

random Logical value indicating whether the sequence of dummy points should start at
a randomly-chosen position along each segment.

Details

This command generates a quadrature scheme (object of class "quad") from a pattern of points on
a linear network.

Normally the user does not need to call linequad explicitly. It is invoked by spatstat functions
when needed. A quadrature scheme is required by lppm in order to fit point process models to
point pattern data on a linear network. A quadrature scheme is also used by rhohat.lpp and other
functions.

In order to create the quadrature scheme, dummy points are placed along each line segment of the
network. The dummy points are evenly-spaced with spacing eps. The default is eps = totlen/nd
where totlen is the total length of all line segments in the network.

Every line segment of the network will contain at least one dummy point. Consequently the actual
number of dummy points generated will typically be greater than nd, especially when nd is small.
If eps is specified, the number of dummy points will be greater than totlen/eps, especially when
eps is large.

826 linfun

Value

A quadrature scheme (object of class "quad").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Greg McSwiggan and Suman Rakshit.

See Also

lppm

linfun Function on a Linear Network

Description

Create a function on a linear network.

Usage

linfun(f, L)

Arguments

f A function in the R language.
L A linear network (object of class "linnet") on which f is defined.

Details

This creates an object of class "linfun". This is a simple mechanism for handling a function
defined on a linear network, to make it easier to display and manipulate.

f should be a function in the R language, with formal arguments x,y,seg,tp (and optional addi-
tional arguments) where x,y are Cartesian coordinates of locations on the linear network, seg,tp
are the local coordinates.

The function f should be vectorised: that is, if x,y,seg,tp are numeric vectors of the same length
n, then v <-f(x,y,seg,tp) should be a vector of length n.

L should be a linear network (object of class "linnet") on which the function f is well-defined.

The result is a function g in the R language which belongs to the special class "linfun". There are
several methods for this class including print, plot and as.linim.

This function can be called as g(X) where X is an "lpp" object, or called as g(x,y) or g(x,y,seg,tp)
where x,y,seg,tp are coordinates. If the original function f had additional arguments, then these
may be included in the call to g, and will be passed to f.

Value

A function in the R\ language. It also belongs to the class "linfun" which has methods for plot,
print etc.

Linhom 827

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

methods.linfun for methods applicable to "linfun" objects.

distfun.lpp, nnfun.lpp.

Examples

f <- function(x,y,seg,tp) { x+y }
g <- linfun(f, simplenet)
plot(g)
X <- runiflpp(3, simplenet)
g(X)
Z <- as.linim(g)

f <- function(x,y,seg,tp, mul=1) { mul*(x+y) }
g <- linfun(f, simplenet)
plot(g)
plot(g, mul=10)
g(X, mul=10)
Z <- as.linim(g, mul=10)

Linhom Inhomogeneous L-function

Description

Calculates an estimate of the inhomogeneous version of the L-function (Besag’s transformation of
Ripley’s K-function) for a spatial point pattern.

Usage

Linhom(X, ..., correction)

Arguments

X The observed point pattern, from which an estimate of L(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

correction,... Other arguments passed to Kinhom to control the estimation procedure.

828 Linhom

Details

This command computes an estimate of the inhomogeneous version of the L-function for a spatial
point pattern.
The original L-function is a transformation (proposed by Besag) of Ripley’s K-function,

L(r) =

√
K(r)

π

where K(r) is the Ripley K-function of a spatially homogeneous point pattern, estimated by Kest.
The inhomogeneous L-function is the corresponding transformation of the inhomogeneous K-
function, estimated by Kinhom. It is appropriate when the point pattern clearly does not have a
homogeneous intensity of points. It was proposed by Baddeley, Møller and Waagepetersen (2000).
The command Linhom first calls Kinhom to compute the estimate of the inhomogeneous K-function,
and then applies the square root transformation.
For a Poisson point pattern (homogeneous or inhomogeneous), the theoretical value of the inhomo-
geneous L-function is L(r) = r. The square root also has the effect of stabilising the variance of
the estimator, so that L is more appropriate for use in simulation envelopes and hypothesis tests.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.
Essentially a data frame containing columns

r the vector of values of the argument r at which the functionL has been estimated
theo the theoretical value L(r) = r for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function L(r) obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

See Also

Kest, Lest, Kinhom, pcf

Examples

data(japanesepines)
X <- japanesepines
L <- Linhom(X, sigma=0.1)
plot(L, main="Inhomogeneous L function for Japanese Pines")

linim 829

linim Create Pixel Image on Linear Network

Description

Creates an object of class "linim" that represents a pixel image on a linear network.

Usage

linim(L, Z, ..., restrict=TRUE, df=NULL)

Arguments

L Linear network (object of class "linnet").

Z Pixel image (object of class "im").

... Ignored.

restrict Advanced use only. Logical value indicating whether to ensure that all pixels in
Z which do not lie on the network L have pixel value NA. This condition must
be satisfied, but if you set restrict=FALSE it will not be checked, and the code
will run faster.

df Advanced use only. Data frame giving full details of the mapping between the
pixels of Z and the lines of L. See Details.

Details

This command creates an object of class "linim" that represents a pixel image defined on a linear
network. Typically such objects are used to represent the result of smoothing or model-fitting on
the network. Most users will not need to call linim directly.

The argument L is a linear network (object of class "linnet"). It gives the exact spatial locations
of the line segments of the network, and their connectivity.

The argument Z is a pixel image object of class "im" that gives a pixellated approximation of the
function values.

For increased efficiency, advanced users may specify the optional argument df. This is a data frame
giving the precomputed mapping between the pixels of Z and the line segments of L. It should
have columns named xc,yc containing the coordinates of the pixel centres, x,y containing the
projections of these pixel centres onto the linear network, mapXY identifying the line segment on
which each projected point lies, and tp giving the parametric position of (x,y) along the segment.

Value

Object of class "linim" that also inherits the class "im". There is a special method for plotting this
class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

830 linnet

References

Ang, Q.W. (2010) Statistical methodology for events on a network. Master’s thesis, School of
Mathematics and Statistics, University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

McSwiggan, G., Nair, M.G. and Baddeley, A. (2012) Fitting Poisson point process models to events
on a linear network. Manuscript in preparation.

See Also

plot.linim, linnet, eval.linim, Math.linim, im.

Examples

Z <- as.im(function(x,y) {x-y}, Frame(simplenet))
X <- linim(simplenet, Z)
X

linnet Create a Linear Network

Description

Creates an object of class "linnet" representing a network of line segments.

Usage

linnet(vertices, m, edges, sparse=FALSE, warn=TRUE)

Arguments

vertices Point pattern (object of class "ppp") specifying the vertices of the network.

m Adjacency matrix. A matrix or sparse matrix of logical values equal to TRUE
when the corresponding vertices are joined by a line. (Specify either m or edges.)

edges Edge list. A two-column matrix of integers, specifying all pairs of vertices that
should be joined by an edge. (Specify either m or edges.)

sparse Optional. Logical value indicating whether to use a sparse matrix representation
of the network. See Details.

warn Logical value indicating whether to issue a warning if the resulting network is
not connected.

linnet 831

Details

An object of class "linnet" represents a network of straight line segments in two dimensions. The
function linnet creates such an object from the minimal information: the spatial location of each
vertex (endpoint, crossing point or meeting point of lines) and information about which vertices are
joined by an edge.

If sparse=FALSE (the default), the algorithm will compute and store various properties of the net-
work, including the adjacency matrix m and a matrix giving the shortest-path distances between each
pair of vertices in the network. This is more efficient for small datasets. However it can require large
amounts of memory and can take a long time to execute.

If sparse=TRUE, then the shortest-path distances will not be computed, and the network adjacency
matrix m will be stored as a sparse matrix. This saves a lot of time and memory when creating the
linear network.

If the argument edges is given, then it will also determine the ordering of the line segments when
they are stored or extracted. For example, edges[i,] corresponds to as.psp(L)[i].

Value

Object of class "linnet" representing the linear network.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

simplenet for an example of a linear network.

methods.linnet for methods applicable to linnet objects.

Special tools: thinNetwork, insertVertices, joinVertices, connected.linnet, lixellate.

delaunayNetwork for the Delaunay triangulation as a network.

ppp, psp.

Examples

letter 'A' specified by adjacency matrix
v <- ppp(x=(-2):2, y=3*c(0,1,2,1,0), c(-3,3), c(-1,7))
m <- matrix(FALSE, 5,5)
for(i in 1:4) m[i,i+1] <- TRUE
m[2,4] <- TRUE
m <- m | t(m)
letterA <- linnet(v, m)
plot(letterA)

letter 'A' specified by edge list
edg <- cbind(1:4, 2:5)
edg <- rbind(edg, c(2,4))
letterA <- linnet(v, edges=edg)

832 lintess

lintess Tessellation on a Linear Network

Description

Create a tessellation on a linear network.

Usage

lintess(L, df, marks=NULL)

Arguments

L Linear network (object of class "linnet").

df Data frame of local coordinates for the pieces that make up the tiles of the tes-
sellation. See Details.

marks Vector or data frame of marks associated with the tiles of the tessellation.

Details

A tessellation on a linear network L is a partition of the network into non-overlapping pieces (tiles).
Each tile consists of one or more line segments which are subsets of the line segments making up
the network. A tile can consist of several disjoint pieces.

The data frame df should have columns named seg, t0, t1 and tile. Any additional columns will
be ignored.

Each row of the data frame specifies one sub-segment of the network and allocates it to a particular
tile.

The seg column specifies which line segment of the network contains the sub-segment. Values of
seg are integer indices for the segments in as.psp(L).

The t0 and t1 columns specify the start and end points of the sub-segment. They should be numeric
values between 0 and 1 inclusive, where the values 0 and 1 representing the network vertices that
are joined by this network segment.

The tile column specifies which tile of the tessellation includes this sub-segment. It will be coerced
to a factor and its levels will be the names of the tiles.

If df is missing or NULL, the result is a tessellation with only one tile, consisting of the entire network
L.

Additional data called marks may be associated with each tile of the tessellation. The argument
marks should be a vector with one entry for each tile (that is, one entry for each level of df$tile)
or a data frame with one row for each tile. In general df and marks will have different numbers of
rows.

Value

An object of class "lintess". There are methods for print, plot and summary for this object.

lixellate 833

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

See Also

linnet for linear networks.

plot.lintess for plotting.

divide.linnet to make a tessellation demarcated by given points.

lineardirichlet to create the Dirichlet-Voronoi tessellation from a point pattern on a linear net-
work.

as.linfun.lintess, as.linnet.lintess and as.linim to convert to other classes.

tile.lengths to compute the length of each tile in the tessellation.

The undocumented methods Window.lintess and as.owin.lintess extract the spatial window.

Examples

tessellation consisting of one tile for each existing segment
ns <- nsegments(simplenet)
df <- data.frame(seg=1:ns, t0=0, t1=1, tile=letters[1:ns])
u <- lintess(simplenet, df)
u
plot(u)
S <- as.psp(simplenet)
marks(u) <- data.frame(len=lengths_psp(S), ang=angles.psp(S))
u
plot(u)

lixellate Subdivide Segments of a Network

Description

Each line segment of a linear network will be divided into several shorter segments (line elements
or lixels).

Usage

lixellate(X, ..., nsplit, eps, sparse = TRUE)

Arguments

X A linear network (object of class "linnet") or a point pattern on a linear net-
work (object of class "lpp").

... Ignored.

834 lixellate

nsplit Number of pieces into which each line segment of X should be divided. Either
a single integer, or an integer vector with one entry for each line segment in X.
Incompatible with eps.

eps Maximum length of the resulting pieces of line segment. A single numeric value.
Incompatible with nsplit.

sparse Optional. Logical value specifying whether the resulting linear network should
be represented using a sparse matrix. If sparse=NULL, then the representation
will be the same as in X.

Details

Each line segment in X will be subdivided into equal pieces. The result is an object of the same kind
as X, representing the same data as X except that the segments have been subdivided.

Splitting is controlled by the arguments nsplit and eps, exactly one of which should be given.

If nsplit is given, it specifies the number of pieces into which each line segment of X should be
divided. It should be either a single integer, or an integer vector of length equal to the number of
line segments in X.

If eps is given, it specifies the maximum length of any resulting piece of line segment.

It is strongly advisable to use sparse=TRUE (the default) to limit the computation time.

If X is a point pattern (class "lpp") then the spatial coordinates and marks of each data point are
unchanged, but the local coordinates will change, because they are adjusted to map them to the new
subdivided network.

Value

Object of the same kind as X.

Author(s)

Greg McSwiggan, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linnet, lpp.

Examples

A <- lixellate(simplenet, nsplit=4)
plot(A, main="lixellate(simplenet, nsplit=4)")
points(vertices(A), pch=16)

spiders
lixellate(spiders, nsplit=3)

localK 835

localK Neighbourhood density function

Description

Computes the neighbourhood density function, a local version of the K-function or L-function,
defined by Getis and Franklin (1987).

Usage

localK(X, ..., rmax = NULL, correction = "Ripley", verbose = TRUE, rvalue=NULL)
localL(X, ..., rmax = NULL, correction = "Ripley", verbose = TRUE, rvalue=NULL)

Arguments

X A point pattern (object of class "ppp").
... Ignored.
rmax Optional. Maximum desired value of the argument r.
correction String specifying the edge correction to be applied. Options are "none", "translate",

"translation", "Ripley", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.
rvalue Optional. A single value of the distance argument r at which the function L or

K should be computed.

Details

The command localL computes the neighbourhood density function, a local version of the L-
function (Besag’s transformation of Ripley’s K-function) that was proposed by Getis and Franklin
(1987). The command localK computes the corresponding local analogue of the K-function.

Given a spatial point pattern X, the neighbourhood density function Li(r) associated with the ith
point in X is computed by

Li(r) =

√
a

(n− 1)π

∑
j

eij

where the sum is over all points j 6= i that lie within a distance r of the ith point, a is the area of the
observation window, n is the number of points in X, and eij is an edge correction term (as described
in Kest). The value of Li(r) can also be interpreted as one of the summands that contributes to the
global estimate of the L function.

By default, the function Li(r) or Ki(r) is computed for a range of r values for each point i. The re-
sults are stored as a function value table (object of class "fv") with a column of the table containing
the function estimates for each point of the pattern X.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X.

Inhomogeneous counterparts of localK and localL are computed by localKinhom and localLinhom.

836 localK

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point. The last two columns contain the r and theo
values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Getis, A. and Franklin, J. (1987) Second-order neighbourhood analysis of mapped point patterns.
Ecology 68, 473–477.

See Also

Kest, Lest, localKinhom, localLinhom.

Examples

data(ponderosa)
X <- ponderosa

compute all the local L functions
L <- localL(X)

plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 12 metres
L12 <- localL(X, rvalue=12)

Spatially interpolate the values of L12
Compare Figure 5(b) of Getis and Franklin (1987)
X12 <- X %mark% L12
Z <- Smooth(X12, sigma=5, dimyx=128)

localKcross 837

plot(Z, col=topo.colors(128), main="smoothed neighbourhood density")
contour(Z, add=TRUE)
points(X, pch=16, cex=0.5)

localKcross Local Multitype K Function (Cross-Type)

Description

for a multitype point pattern, computes the cross-type version of the local K function.

Usage

localKcross(X, from, to, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL)

localLcross(X, from, to, ..., rmax = NULL, correction = "Ripley")

Arguments

X A multitype point pattern (object of class "ppp" with marks which are a factor).

... Further arguments passed from localLcross to localKcross.

rmax Optional. Maximum desired value of the argument r.

from Type of points from which distances should be measured. A single value; one
of the possible levels of marks(X), or an integer indicating which level.

to Type of points to which distances should be measured. A single value; one of
the possible levels of marks(X), or an integer indicating which level.

correction String specifying the edge correction to be applied. Options are "none", "translate",
"translation", "Ripley", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.

rvalue Optional. A single value of the distance argument r at which the function L or
K should be computed.

Details

Given a multitype spatial point pattern X, the local cross-type K function localKcross is the local
version of the multitype K function Kcross. Recall that Kcross(X,from,to) is a sum of contribu-
tions from all pairs of points in X where the first point belongs to from and the second point belongs
to type to. The local cross-type K function is defined for each point X[i] that belongs to type
from, and it consists of all the contributions to the cross-type K function that originate from point
X[i]:

Ki,from,to(r) =

√
a

(n− 1)π

∑
j

eij

where the sum is over all points j 6= i belonging to type to, that lie within a distance r of the ith
point, a is the area of the observation window, n is the number of points in X, and eij is an edge

838 localKcross

correction term (as described in Kest). The value of Ki,from,to(r) can also be interpreted as one of
the summands that contributes to the global estimate of the Kcross function.

By default, the functionKi,from,to(r) is computed for a range of r values for each point i belonging
to type from. The results are stored as a function value table (object of class "fv") with a column
of the table containing the function estimates for each point of the pattern X belonging to type from.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X belonging to type from.

The local cross-type L function localLcross is computed by applying the transformation L(r) =√
K(r)/(2π).

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern that belong to type from.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point of type from. The last two columns contain
the r and theo values.

Author(s)

Ege Rubak <rubak@math.aau.dk> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

Kcross, Lcross, localK, localL.

Inhomogeneous counterparts of localK and localL are computed by localKcross.inhom and
localLinhom.

Examples

X <- amacrine

compute all the local Lcross functions
L <- localLcross(X)

plot all the local Lcross functions against r
plot(L, main="local Lcross functions for amacrine", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

localKcross.inhom 839

compute the values of L(r) for r = 0.1 metres
L12 <- localLcross(X, rvalue=0.1)

localKcross.inhom Inhomogeneous Multitype K Function

Description

Computes spatially-weighted versions of the the local multitype K-function or L-function.

Usage

localKcross.inhom(X, from, to,
lambdaFrom=NULL, lambdaTo=NULL,
..., rmax = NULL,
correction = "Ripley", sigma=NULL, varcov=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

localLcross.inhom(X, from, to,
lambdaFrom=NULL, lambdaTo=NULL, ..., rmax = NULL)

Arguments

X A point pattern (object of class "ppp").

from Type of points from which distances should be measured. A single value; one
of the possible levels of marks(X), or an integer indicating which level.

to Type of points to which distances should be measured. A single value; one of
the possible levels of marks(X), or an integer indicating which level.

lambdaFrom,lambdaTo

Optional. Values of the estimated intensity function for the points of type from
and to, respectively. Each argument should be either a vector giving the inten-
sity values at the required points, a pixel image (object of class "im") giving
the intensity values at all locations, a fitted point process model (object of class
"ppm") or a function(x,y) which can be evaluated to give the intensity value
at any location.

... Extra arguments. Ignored if lambda is present. Passed to density.ppp if
lambda is omitted.

rmax Optional. Maximum desired value of the argument r.

correction String specifying the edge correction to be applied. Options are "none", "translate",
"Ripley", "translation", "isotropic" or "best". Only one correction may
be specified.

sigma, varcov Optional arguments passed to density.ppp to control the kernel smoothing pro-
cedure for estimating lambdaFrom and lambdaTo, if they are missing.

840 localKcross.inhom

lambdaX Optional. Values of the estimated intensity function for all points of X. Either a
vector giving the intensity values at each point of X, a pixel image (object of class
"im") giving the intensity values at all locations, a list of pixel images giving the
intensity values at all locations for each type of point, or a fitted point process
model (object of class "ppm") or a function(x,y) or function(x,y,m) which
can be evaluated to give the intensity value at any location.

update Logical value indicating what to do when lambdaFrom, lambdaTo or lambdaX is
a fitted model (class "ppm", "kppm" or "dppm"). If update=TRUE (the default),
the model will first be refitted to the data X (using update.ppm or update.kppm)
before the fitted intensity is computed. If update=FALSE, the fitted intensity of
the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Details

The functions localKcross.inhom and localLcross.inhom are inhomogeneous or weighted ver-
sions of the local multitype K and L functions implemented in localKcross and localLcross.

Given a multitype spatial point pattern X, and two designated types from and to, the local multitype
K function is defined for each point X[i] that belongs to type from, and is computed by

Ki(r) =

√
1

π

∑
j

eij
λj

where the sum is over all points j 6= i of type to that lie within a distance r of the ith point, λj
is the estimated intensity of the point pattern at the point j, and eij is an edge correction term (as
described in Kest).

The function Ki(r) is computed for a range of r values for each point i. The results are stored
as a function value table (object of class "fv") with a column of the table containing the function
estimates for each point of the pattern X of type from.

The correspondingL functionLi(r) is computed by applying the transformationL(r) =
√
K(r)/(2π).

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv. Essentially
a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern of type from. The last two columns contain the r and theo values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

localKdot 841

See Also

Kinhom, Linhom, localK, localL.

Examples

X <- amacrine

compute all the local L functions
L <- localLcross.inhom(X)

plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

localKdot Local Multitype K Function (Dot-Type)

Description

for a multitype point pattern, computes the dot-type version of the local K function.

Usage

localKdot(X, from, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL)

localLdot(X, from, ..., rmax = NULL, correction = "Ripley")

Arguments

X A multitype point pattern (object of class "ppp" with marks which are a factor).

... Further arguments passed from localLdot to localKdot.

rmax Optional. Maximum desired value of the argument r.

from Type of points from which distances should be measured. A single value; one
of the possible levels of marks(X), or an integer indicating which level.

correction String specifying the edge correction to be applied. Options are "none", "translate",
"translation", "Ripley", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.

rvalue Optional. A single value of the distance argument r at which the function L or
K should be computed.

842 localKdot

Details

Given a multitype spatial point pattern X, the local dot-type K function localKdot is the local
version of the multitype K function Kdot. Recall that Kdot(X,from) is a sum of contributions
from all pairs of points in X where the first point belongs to from. The local dot-type K function is
defined for each point X[i] that belongs to type from, and it consists of all the contributions to the
dot-type K function that originate from point X[i]:

Ki,from,to(r) =

√
a

(n− 1)π

∑
j

eij

where the sum is over all points j 6= i that lie within a distance r of the ith point, a is the area of the
observation window, n is the number of points in X, and eij is an edge correction term (as described
in Kest). The value of Ki,from(r) can also be interpreted as one of the summands that contributes
to the global estimate of the Kdot function.

By default, the function Ki,from(r) is computed for a range of r values for each point i belonging
to type from. The results are stored as a function value table (object of class "fv") with a column
of the table containing the function estimates for each point of the pattern X belonging to type from.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X belonging to type from.

The local dot-type L function localLdot is computed by applying the transformation L(r) =√
K(r)/(2π).

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern that belong to type from.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point of type from. The last two columns contain
the r and theo values.

Author(s)

Ege Rubak <rubak@math.aau.dk> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

Kdot, Ldot, localK, localL.

localKinhom 843

Examples

X <- amacrine

compute all the local Ldot functions
L <- localLdot(X)

plot all the local Ldot functions against r
plot(L, main="local Ldot functions for amacrine", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 0.1 metres
L12 <- localLdot(X, rvalue=0.1)

localKinhom Inhomogeneous Neighbourhood Density Function

Description

Computes spatially-weighted versions of the the local K-function or L-function.

Usage

localKinhom(X, lambda, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL,
sigma = NULL, varcov = NULL, update=TRUE, leaveoneout=TRUE)

localLinhom(X, lambda, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL,
sigma = NULL, varcov = NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X A point pattern (object of class "ppp").

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object of
class "ppm" or "kppm" or "dppm") or a function(x,y) which can be evaluated
to give the intensity value at any location.

... Extra arguments. Ignored if lambda is present. Passed to density.ppp if
lambda is omitted.

rmax Optional. Maximum desired value of the argument r.

correction String specifying the edge correction to be applied. Options are "none", "translate",
"Ripley", "translation", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.

844 localKinhom

rvalue Optional. A single value of the distance argument r at which the function L or
K should be computed.

sigma, varcov Optional arguments passed to density.ppp to control the kernel smoothing pro-
cedure for estimating lambda, if lambda is missing.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

update Logical value indicating what to do when lambda is a fitted model (class "ppm",
"kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted
to the data X (using update.ppm or update.kppm) before the fitted intensity is
computed. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

Details

The functions localKinhom and localLinhom are inhomogeneous or weighted versions of the
neighbourhood density function implemented in localK and localL.

Given a spatial point pattern X, the inhomogeneous neighbourhood density function Li(r) associ-
ated with the ith point in X is computed by

Li(r) =

√
1

π

∑
j

eij
λj

where the sum is over all points j 6= i that lie within a distance r of the ith point, λj is the estimated
intensity of the point pattern at the point j, and eij is an edge correction term (as described in Kest).
The value of Li(r) can also be interpreted as one of the summands that contributes to the global
estimate of the inhomogeneous L function (see Linhom).

By default, the function Li(r) or Ki(r) is computed for a range of r values for each point i. The re-
sults are stored as a function value table (object of class "fv") with a column of the table containing
the function estimates for each point of the pattern X.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X.

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point. The last two columns contain the r and theo
values.

localpcf 845

Author(s)

Mike Kuhn, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Kinhom, Linhom, localK, localL.

Examples

data(ponderosa)
X <- ponderosa

compute all the local L functions
L <- localLinhom(X)

plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 12 metres
L12 <- localL(X, rvalue=12)

localpcf Local pair correlation function

Description

Computes individual contributions to the pair correlation function from each data point.

Usage

localpcf(X, ..., delta=NULL, rmax=NULL, nr=512, stoyan=0.15)
localpcfinhom(X, ..., delta=NULL, rmax=NULL, nr=512, stoyan=0.15,

lambda=NULL, sigma=NULL, varcov=NULL,
update=TRUE, leaveoneout=TRUE)

Arguments

X A point pattern (object of class "ppp").

delta Smoothing bandwidth for pair correlation. The halfwidth of the Epanechnikov
kernel.

rmax Optional. Maximum value of distance r for which pair correlation values g(r)
should be computed.

846 localpcf

nr Optional. Number of values of distance r for which pair correlation g(r) should
be computed.

stoyan Optional. The value of the constant c in Stoyan’s rule of thumb for selecting the
smoothing bandwidth delta.

lambda Optional. Values of the estimated intensity function, for the inhomogeneous
pair correlation. Either a vector giving the intensity values at the points of the
pattern X, a pixel image (object of class "im") giving the intensity values at all
locations, a fitted point process model (object of class "ppm", "kppm" or "dppm")
or a function(x,y) which can be evaluated to give the intensity value at any
location.

sigma,varcov,...

These arguments are ignored by localpcf but are passed by localpcfinhom
(when lambda=NULL) to the function density.ppp to control the kernel smooth-
ing estimation of lambda.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

update Logical value indicating what to do when lambda is a fitted model (class "ppm",
"kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted
to the data X (using update.ppm or update.kppm) before the fitted intensity is
computed. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

Details

localpcf computes the contribution, from each individual data point in a point pattern X, to the
empirical pair correlation function of X. These contributions are sometimes known as LISA (local
indicator of spatial association) functions based on pair correlation.

localpcfinhom computes the corresponding contribution to the inhomogeneous empirical pair cor-
relation function of X.

Given a spatial point pattern X, the local pcf gi(r) associated with the ith point in X is computed by

gi(r) =
a

2πn

∑
j

k(di,j − r)

where the sum is over all points j 6= i, a is the area of the observation window, n is the number of
points in X, and dij is the distance between points i and j. Here k is the Epanechnikov kernel,

k(t) =
3

4δ
max(0, 1− t2

δ2
).

Edge correction is performed using the border method (for the sake of computational efficiency):
the estimate gi(r) is set to NA if r > bi, where bi is the distance from point i to the boundary of the
observation window.

The smoothing bandwidth δ may be specified. If not, it is chosen by Stoyan’s rule of thumb δ = c/λ̂

where λ̂ = n/a is the estimated intensity and c is a constant, usually taken to be 0.15. The value of
c is controlled by the argument stoyan.

For localpcfinhom, the optional argument lambda specifies the values of the estimated intensity
function. If lambda is given, it should be either a numeric vector giving the intensity values at the

localpcf 847

points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations,
a fitted point process model (object of class "ppm", "kppm" or "dppm") or a function(x,y) which
can be evaluated to give the intensity value at any location. If lambda is not given, then it will be
estimated using a leave-one-out kernel density smoother as described in pcfinhom.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv. Essentially
a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the local pair correlation function for each point in
the pattern. Column i corresponds to the ith point. The last two columns contain the r and theo
values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

localK, localKinhom, pcf, pcfinhom

Examples

data(ponderosa)
X <- ponderosa

g <- localpcf(X, stoyan=0.5)
colo <- c(rep("grey", npoints(X)), "blue")
a <- plot(g, main=c("local pair correlation functions", "Ponderosa pines"),

legend=FALSE, col=colo, lty=1)

plot only the local pair correlation function for point number 7
plot(g, est007 ~ r)

gi <- localpcfinhom(X, stoyan=0.5)
a <- plot(gi, main=c("inhomogeneous local pair correlation functions",

"Ponderosa pines"),
legend=FALSE, col=colo, lty=1)

848 logLik.dppm

logLik.dppm Log Likelihood and AIC for Fitted Determinantal Point Process Model

Description

Extracts the log Palm likelihood, deviance, and AIC of a fitted determinantal point process model.

Usage

S3 method for class 'dppm'
logLik(object, ...)
S3 method for class 'dppm'
AIC(object, ..., k=2)
S3 method for class 'dppm'
extractAIC(fit, scale=0, k=2, ...)
S3 method for class 'dppm'
nobs(object, ...)

Arguments

object,fit Fitted point process model. An object of class "dppm".
... Ignored.
scale Ignored.
k Numeric value specifying the weight of the equivalent degrees of freedom in the

AIC. See Details.

Details

These functions are methods for the generic commands logLik, extractAIC and nobs for the class
"dppm".

An object of class "dppm" represents a fitted Cox or cluster point process model. It is obtained from
the model-fitting function dppm.

These methods apply only when the model was fitted by maximising the Palm likelihood (Tanaka
et al, 2008) by calling dppm with the argument method="palm".

The method logLik.dppm computes the maximised value of the log Palm likelihood for the fitted
model object.

The methods AIC.dppm and extractAIC.dppm compute the Akaike Information Criterion AIC for
the fitted model based on the Palm likelihood (Tanaka et al, 2008)

AIC = −2 log(PL) + k × edf

where PL is the maximised Palm likelihood of the fitted model, and edf is the effective degrees of
freedom of the model.

The method nobs.dppm returns the number of points in the original data point pattern to which the
model was fitted.

The R function step uses these methods, but it does not work for determinantal models yet due to
a missing implementation of update.dppm.

logLik.kppm 849

Value

logLik returns a numerical value, belonging to the class "logLik", with an attribute "df" giving
the degrees of freedom.

AIC returns a numerical value.

extractAIC returns a numeric vector of length 2 containing the degrees of freedom and the AIC
value.

nobs returns an integer value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Tanaka, U. and Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for
Neyman-Scott point processes. Biometrical Journal 50, 43–57.

See Also

dppm, logLik.ppm

Examples

fit <- dppm(swedishpines ~ x, dppGauss(), method="palm")
nobs(fit)
logLik(fit)
extractAIC(fit)
AIC(fit)

logLik.kppm Log Likelihood and AIC for Fitted Cox or Cluster Point Process Model

Description

Extracts the log composite likelihood, deviance, and AIC of a fitted Cox or cluster point process
model.

850 logLik.kppm

Usage

S3 method for class 'kppm'
logLik(object, ...)
S3 method for class 'kppm'
AIC(object, ..., k=2)
S3 method for class 'kppm'
extractAIC(fit, scale=0, k=2, ...)
S3 method for class 'kppm'
nobs(object, ...)

Arguments

object,fit Fitted point process model. An object of class "kppm".

... Ignored.

scale Ignored.

k Numeric value specifying the weight of the equivalent degrees of freedom in the
AIC. See Details.

Details

These functions are methods for the generic commands logLik, extractAIC and nobs for the class
"kppm".

An object of class "kppm" represents a fitted Cox or cluster point process model. It is obtained from
the model-fitting function kppm.

These methods apply only when the model was fitted by maximising a composite likelihood: either
the Palm likelihood (Tanaka et al, 2008) or the second order composite likelihood (Guan, 2006), by
calling kppm with the argument method="palm" or method="clik2" respectively.

The method logLik.kppm computes the maximised value of the log composite likelihood for the
fitted model object.

The methods AIC.kppm and extractAIC.kppm compute the Akaike Information Criterion AIC for
the fitted model based on the composite likelihood

AIC = −2 log(CL) + k × edf

whereCL is the maximised composite likelihood of the fitted model, and edf is the effective degrees
of freedom of the model.

The method nobs.kppm returns the number of points in the original data point pattern to which the
model was fitted.

The R function step uses these methods.

Value

logLik returns a numerical value, belonging to the class "logLik", with an attribute "df" giving
the degrees of freedom.

AIC returns a numerical value.

logLik.mppm 851

extractAIC returns a numeric vector of length 2 containing the degrees of freedom and the AIC
value.

nobs returns an integer value.

Model comparison

The values of log-likelihood and AIC returned by these functions are based on the composite like-
lihood of the cluster process or Cox process model. They are available only when the model was
fitted using method="palm" or method="clik2".

For model comparison and model selection, it is valid to compare the logLik values, or to compare
the AIC values, but only when all the models are of class "kppm" and were fitted using the same
method.

For method="palm" some theoretical justification was provided by Tanaka et al (2008).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Guan, Y. (2006) A composite likelihood approach in fitting spatial point process models. Journal
of the American Statistical Association 101, 1502–1512.

Tanaka, U. and Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for
Neyman-Scott point processes. Biometrical Journal 50, 43–57.

See Also

kppm, logLik.ppm

Examples

fit <- kppm(redwood ~ x, "Thomas", method="palm")
nobs(fit)
logLik(fit)
extractAIC(fit)
AIC(fit)
step(fit)

logLik.mppm Log Likelihood and AIC for Multiple Point Process Model

Description

For a point process model that has been fitted to multiple point patterns, these functions extract the
log likelihood and AIC, or analogous quantities based on the pseudolikelihood.

852 logLik.mppm

Usage

S3 method for class 'mppm'
logLik(object, ..., warn=TRUE)

S3 method for class 'mppm'
AIC(object, ..., k=2, takeuchi=TRUE)

S3 method for class 'mppm'
extractAIC(fit, scale = 0, k = 2, ..., takeuchi = TRUE)

S3 method for class 'mppm'
nobs(object, ...)

S3 method for class 'mppm'
getCall(x, ...)

S3 method for class 'mppm'
terms(x, ...)

Arguments

object,fit,x Fitted point process model (fitted to multiple point patterns). An object of class
"mppm".

... Ignored.

warn If TRUE, a warning is given when the pseudolikelihood is returned instead of the
likelihood.

scale Ignored.

k Numeric value specifying the weight of the equivalent degrees of freedom in the
AIC. See Details.

takeuchi Logical value specifying whether to use the Takeuchi penalty (takeuchi=TRUE)
or the number of fitted parameters (takeuchi=FALSE) in calculating AIC.

Details

These functions are methods for the generic commands logLik, AIC, extractAIC, terms and
getCall for the class "mppm".

An object of class "mppm" represents a fitted Poisson or Gibbs point process model fitted to several
point patterns. It is obtained from the model-fitting function mppm.

The method logLik.mppm extracts the maximised value of the log likelihood for the fitted model (as
approximated by quadrature using the Berman-Turner approximation). If object is not a Poisson
process, the maximised log pseudolikelihood is returned, with a warning.

The Akaike Information Criterion AIC for a fitted model is defined as

AIC = −2 log(L) + k × penalty

whereL is the maximised likelihood of the fitted model, and penalty is a penalty for model complex-
ity, usually equal to the effective degrees of freedom of the model. The method extractAIC.mppm

logLik.mppm 853

returns the analogous quantity AIC∗ in which L is replaced by L∗, the quadrature approximation
to the likelihood (if fit is a Poisson model) or the pseudolikelihood (if fit is a Gibbs model).

The penalty term is calculated as follows. If takeuchi=FALSE then penalty is the number of fitted
parameters. If takeuchi=TRUE then penalty = trace(JH−1) where J and H are the estimated
variance and hessian, respectively, of the composite score. These two choices are equivalent for a
Poisson process.

The method nobs.mppm returns the total number of points in the original data point patterns to
which the model was fitted.

The method getCall.mppm extracts the original call to mppm which caused the model to be fitted.

The method terms.mppm extracts the covariate terms in the model formula as a terms object. Note
that these terms do not include the interaction component of the model.

The R function step uses these methods.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm

Examples

fit <- mppm(Bugs ~ x, hyperframe(Bugs=waterstriders))
logLik(fit)
AIC(fit)
nobs(fit)
getCall(fit)

854 logLik.ppm

logLik.ppm Log Likelihood and AIC for Point Process Model

Description

Extracts the log likelihood, deviance, and AIC of a fitted Poisson point process model, or analo-
gous quantities based on the pseudolikelihood or logistic likelihood for a fitted Gibbs point process
model.

Usage

S3 method for class 'ppm'
logLik(object, ..., new.coef=NULL, warn=TRUE, absolute=FALSE)

S3 method for class 'ppm'
deviance(object, ...)

S3 method for class 'ppm'
AIC(object, ..., k=2, takeuchi=TRUE)

S3 method for class 'ppm'
extractAIC(fit, scale=0, k=2, ..., takeuchi=TRUE)

S3 method for class 'ppm'
nobs(object, ...)

Arguments

object,fit Fitted point process model. An object of class "ppm".

... Ignored.

warn If TRUE, a warning is given when the pseudolikelihood or logistic likelihood is
returned instead of the likelihood.

absolute Logical value indicating whether to include constant terms in the loglikelihood.

scale Ignored.

k Numeric value specifying the weight of the equivalent degrees of freedom in the
AIC. See Details.

new.coef New values for the canonical parameters of the model. A numeric vector of the
same length as coef(object).

takeuchi Logical value specifying whether to use the Takeuchi penalty (takeuchi=TRUE)
or the number of fitted parameters (takeuchi=FALSE) in calculating AIC.

logLik.ppm 855

Details

These functions are methods for the generic commands logLik, deviance, extractAIC and nobs
for the class "ppm".

An object of class "ppm" represents a fitted Poisson or Gibbs point process model. It is obtained
from the model-fitting function ppm.

The method logLik.ppm computes the maximised value of the log likelihood for the fitted model
object (as approximated by quadrature using the Berman-Turner approximation) is extracted. If
object is not a Poisson process, the maximised log pseudolikelihood is returned, with a warning
(if warn=TRUE).

The Akaike Information Criterion AIC for a fitted model is defined as

AIC = −2 log(L) + k × penalty

whereL is the maximised likelihood of the fitted model, and penalty is a penalty for model complex-
ity, usually equal to the effective degrees of freedom of the model. The method extractAIC.ppm
returns the analogous quantity AIC∗ in which L is replaced by L∗, the quadrature approximation
to the likelihood (if fit is a Poisson model) or the pseudolikelihood or logistic likelihood (if fit is
a Gibbs model).

The penalty term is calculated as follows. If takeuchi=FALSE then penalty is the number of fitted
parameters. If takeuchi=TRUE then penalty = trace(JH−1) where J and H are the estimated
variance and hessian, respectively, of the composite score. These two choices are equivalent for a
Poisson process.

The method nobs.ppm returns the number of points in the original data point pattern to which the
model was fitted.

The R function step uses these methods.

Value

logLik returns a numerical value, belonging to the class "logLik", with an attribute "df" giving
the degrees of freedom.

AIC returns a numerical value.

extractAIC returns a numeric vector of length 2 containing the degrees of freedom and the AIC
value.

nobs returns an integer value.

Model comparison

The values of logLik and AIC returned by these functions are based on the pseudolikelihood of the
Gibbs point process model. If the model is a Poisson process, then the pseudolikelihood is the same
as the likelihood, but for other Gibbs models, the pseudolikelihood is different from the likelihood
(and the likelihood of a Gibbs model is hard to compute).

For model comparison and model selection, it is valid to compare the logLik values, or to compare
the AIC values, but only when all the models are of class "ppm".

856 logLik.slrm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Varin, C. and Vidoni, P. (2005) A note on composite likelihood inference and model selection.
Biometrika 92, 519–528.

See Also

ppm, as.owin, anova.ppm, coef.ppm, fitted.ppm, formula.ppm, model.frame.ppm, model.matrix.ppm,
plot.ppm, predict.ppm, residuals.ppm, simulate.ppm, summary.ppm, terms.ppm, update.ppm,
vcov.ppm.

Examples

data(cells)
fit <- ppm(cells, ~x)
nobs(fit)
logLik(fit)
deviance(fit)
extractAIC(fit)
AIC(fit)
step(fit)

logLik.slrm Loglikelihood of Spatial Logistic Regression

Description

Computes the (maximised) loglikelihood of a fitted Spatial Logistic Regression model.

Usage

S3 method for class 'slrm'
logLik(object, ..., adjust = TRUE)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... Ignored.

adjust Logical value indicating whether to adjust the loglikelihood of the model to
make it comparable with a point process likelihood. See Details.

lohboot 857

Details

This is a method for logLik for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm). It computes the log-likelihood of a fitted spatial logistic
regression model.

If adjust=FALSE, the loglikelihood is computed using the standard formula for the loglikelihood of
a logistic regression model for a finite set of (pixel) observations.

If adjust=TRUE then the loglikelihood is adjusted so that it is approximately comparable with the
likelihood of a point process in continuous space, by subtracting the value n log(a) where n is the
number of points in the original point pattern dataset, and a is the area of one pixel.

Value

A numerical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
logLik(fit)
logLik(fit, adjust=FALSE)

lohboot Bootstrap Confidence Bands for Summary Function

Description

Computes a bootstrap confidence band for a summary function of a point process.

Usage

lohboot(X,
fun=c("pcf", "Kest", "Lest", "pcfinhom", "Kinhom", "Linhom",

"Kcross", "Lcross", "Kdot", "Ldot",
"Kcross.inhom", "Lcross.inhom"),

...,
block=FALSE, global=FALSE, basicboot=FALSE, Vcorrection=FALSE,
confidence=0.95, nx = 4, ny = nx, nsim=200, type=7)

858 lohboot

Arguments

X A point pattern (object of class "ppp").
fun Name of the summary function for which confidence intervals are desired: one

of the strings "pcf", "Kest", "Lest", "pcfinhom", "Kinhom" "Linhom", "Kcross",
"Lcross", "Kdot", "Ldot", "Kcross.inhom" or "Lcross.inhom". Alterna-
tively, the function itself; it must be one of the functions listed here.

... Arguments passed to the corresponding local version of the summary function
(see Details).

block Logical value indicating whether to use Loh’s block bootstrap as originally pro-
posed. Default is FALSE for consistency with older code. See Details.

global Logical. If FALSE (the default), pointwise confidence intervals are constructed.
If TRUE, a global (simultaneous) confidence band is constructed.

basicboot Logical value indicating whether to use the so-called basic bootstrap confidence
interval. See Details.

Vcorrection Logical value indicating whether to use a variance correction when fun="Kest"
or fun="Kinhom". See Details.

confidence Confidence level, as a fraction between 0 and 1.
nx,ny Integers. If block=TRUE, divide the window into nx*ny rectangles.
nsim Number of bootstrap simulations.
type Integer. Type of quantiles. Argument passed to quantile.default controlling

the way the quantiles are calculated.

Details

This algorithm computes confidence bands for the true value of the summary function fun using the
bootstrap method of Loh (2008) and a modification described in Baddeley, Rubak, Turner (2015).

If fun="pcf", for example, the algorithm computes a pointwise (100 * confidence)% confidence
interval for the true value of the pair correlation function for the point process, normally estimated
by pcf. It starts by computing the array of local pair correlation functions, localpcf, of the data
pattern X. This array consists of the contributions to the estimate of the pair correlation function
from each data point.

If block=FALSE, these contributions are resampled nsim times with replacement as described in
Baddeley, Rubak, Turner (2015); from each resampled dataset the total contribution is computed,
yielding nsim random pair correlation functions.

If block=TRUE, the calculation is performed as originally proposed by Loh (2008, 2010). The
(bounding box of the) window is divided into nx∗ny rectangles (blocks). The average contribution
of a block is obtained by averaging the contribution of each point included in the block. Then, the
average contributions on each block are resampled nsim times with replacement as described in Loh
(2008) and Loh (2010); from each resampled dataset the total contribution is computed, yielding
nsim random pair correlation functions. Notice that for non-rectangular windows any blocks not
fully contained in the window are discarded before doing the resampling, so the effective number
of blocks may be substantially smaller than nx ∗ ny in this case.

The pointwise alpha/2 and 1 -alpha/2 quantiles of these functions are computed, where alpha
= 1 -confidence. The average of the local functions is also computed as an estimate of the pair
correlation function.

lohboot 859

There are several ways to define a bootstrap confidence interval. If basicbootstrap=TRUE, the
so-called basic confidence bootstrap interval is used as described in Loh (2008).

It has been noticed in Loh (2010) that when the intensity of the point process is unknown, the
bootstrap error estimate is larger than it should be. When the K function is used, an adjustment
procedure has been proposed in Loh (2010) that is used if Vcorrection=TRUE. In this case, the
basic confidence bootstrap interval is implicitly used.

To control the estimation algorithm, use the arguments ..., which are passed to the local version
of the summary function, as shown below:

fun local version
pcf localpcf
Kest localK
Lest localL
pcfinhom localpcfinhom
Kinhom localKinhom
Linhom localLinhom
Kcross localKcross
Lcross localLcross
Kdot localKdot
Ldot localLdot
Kcross.inhom localKcross.inhom
Lcross.inhom localLcross.inhom

For fun="Lest", the calculations are first performed as if fun="Kest", and then the square-root
transformation is applied to obtain theL-function. Similarly for fun="Linhom","Lcross","Ldot","Lcross.inhom".

Note that the confidence bands computed by lohboot(fun="pcf") may not contain the estimate
of the pair correlation function computed by pcf, because of differences between the algorithm pa-
rameters (such as the choice of edge correction) in localpcf and pcf. If you are using lohboot, the
appropriate point estimate of the pair correlation itself is the pointwise mean of the local estimates,
which is provided in the result of lohboot and is shown in the default plot.

If the confidence bands seem unbelievably narrow, this may occur because the point pattern has a
hard core (the true pair correlation function is zero for certain values of distance) or because of an
optical illusion when the function is steeply sloping (remember the width of the confidence bands
should be measured vertically).

An alternative to lohboot is varblock.

Value

A function value table (object of class "fv") containing columns giving the estimate of the summary
function, the upper and lower limits of the bootstrap confidence interval, and the theoretical value
of the summary function for a Poisson process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Christophe Biscio.

860 lpp

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Loh, J.M. (2008) A valid and fast spatial bootstrap for correlation functions. The Astrophysical
Journal, 681, 726–734.

Loh, J.M. (2010) Bootstrapping an inhomogeneous point process. Journal of Statistical Planning
and Inference, 140, 734–749.

See Also

Summary functions Kest, pcf, Kinhom, pcfinhom, localK, localpcf, localKinhom, localpcfinhom,
localKcross, localKdot, localLcross, localLdot. localKcross.inhom, localLcross.inhom.

See varblock for an alternative bootstrap technique.

Examples

p <- lohboot(simdat, stoyan=0.5)
g <- lohboot(simdat, stoyan=0.5, block=TRUE)
g
plot(g)

lpp Create Point Pattern on Linear Network

Description

Creates an object of class "lpp" that represents a point pattern on a linear network.

Usage

lpp(X, L, ...)

Arguments

X Locations of the points. A matrix or data frame of coordinates, or a point pattern
object (of class "ppp") or other data acceptable to as.ppp.

L Linear network (object of class "linnet").

... Ignored.

Details

This command creates an object of class "lpp" that represents a point pattern on a linear network.

Normally X is a point pattern. The points of X should lie on the lines of L.

Alternatively X may be a matrix or data frame containing at least two columns.

lpp 861

• Usually the first two columns of X will be interpreted as spatial coordinates, and any remaining
columns as marks.

• An exception occurs if X is a data frame with columns named x, y, seg and tp. Then x and
y will be interpreted as spatial coordinates, and seg and tp as local coordinates, with seg
indicating which line segment of L the point lies on, and tp indicating how far along the
segment the point lies (normalised to 1). Any remaining columns will be interpreted as marks.

• Another exception occurs if X is a data frame with columns named seg and tp. Then seg and
tp will be interpreted as local coordinates, as above, and the spatial coordinates x,y will be
computed from them. Any remaining columns will be interpreted as marks.

If X is missing or NULL, the result is an empty point pattern (i.e. containing no points).

Value

An object of class "lpp". Also inherits the class "ppx".

Note on changed format

The internal format of "lpp" objects was changed in spatstat version 1.28-0. Objects in the old
format are still handled correctly, but computations are faster in the new format. To convert an
object X from the old format to the new format, use X <-lpp(as.ppp(X),as.linnet(X)).

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

Installed datasets which are "lpp" objects: chicago, dendrite, spiders.

See as.lpp for converting data to an lpp object.

See methods.lpp and methods.ppx for other methods applicable to lpp objects.

Calculations on an lpp object: intensity.lpp, distfun.lpp, nndist.lpp, nnwhich.lpp, nncross.lpp,
nnfun.lpp.

Summary functions: linearK, linearKinhom, linearpcf, linearKdot, linearKcross, linearmarkconnect,
etc.

Random point patterns on a linear network can be generated by rpoislpp or runiflpp.

See linnet for linear networks.

Examples

letter 'A'
v <- ppp(x=(-2):2, y=3*c(0,1,2,1,0), c(-3,3), c(-1,7))
edg <- cbind(1:4, 2:5)
edg <- rbind(edg, c(2,4))
letterA <- linnet(v, edges=edg)

points on letter A
xx <- list(x=c(-1.5,0,0.5,1.5), y=c(1.5,3,4.5,1.5))

862 lppm

X <- lpp(xx, letterA)

plot(X)
X
summary(X)

empty pattern
lpp(L=letterA)

lppm Fit Point Process Model to Point Pattern on Linear Network

Description

Fit a point process model to a point pattern dataset on a linear network

Usage

lppm(X, ...)

S3 method for class 'formula'
lppm(X, interaction=NULL, ..., data=NULL)

S3 method for class 'lpp'
lppm(X, ..., eps=NULL, nd=1000, random=FALSE)

Arguments

X Either an object of class "lpp" specifying a point pattern on a linear network, or
a formula specifying the point process model.

... Arguments passed to ppm.

interaction An object of class "interact" describing the point process interaction struc-
ture, or NULL indicating that a Poisson process (stationary or nonstationary)
should be fitted.

data Optional. The values of spatial covariates (other than the Cartesian coordinates)
required by the model. A list whose entries are images, functions, windows,
tessellations or single numbers.

eps Optional. Spacing between dummy points along each segment of the network.

nd Optional. Total number of dummy points placed on the network. Ignored if eps
is given.

random Logical value indicating whether the grid of dummy points should be placed at
a randomised starting position.

lppm 863

Details

This function fits a point process model to data that specify a point pattern on a linear network. It is
a counterpart of the model-fitting function ppm designed to work with objects of class "lpp" instead
of "ppp".

The function lppm is generic, with methods for the classes formula and lppp.

In lppm.lpp the first argument X should be an object of class "lpp" (created by the command lpp)
specifying a point pattern on a linear network.

In lppm.formula, the first argument is a formula in the R language describing the spatial trend
model to be fitted. It has the general form pattern ~ trend where the left hand side pattern is
usually the name of a point pattern on a linear network (object of class "lpp") to which the model
should be fitted, or an expression which evaluates to such a point pattern; and the right hand side
trend is an expression specifying the spatial trend of the model.

Other arguments ... are passed from lppm.formula to lppm.lpp and from lppm.lpp to ppm.

Value

An object of class "lppm" representing the fitted model. There are methods for print, predict,
coef and similar functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

References

Ang, Q.W. (2010) Statistical methodology for events on a network. Master’s thesis, School of
Mathematics and Statistics, University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

McSwiggan, G., Nair, M.G. and Baddeley, A. (2012) Fitting Poisson point process models to events
on a linear network. Manuscript in preparation.

See Also

methods.lppm, predict.lppm, ppm, lpp.

Examples

X <- runiflpp(15, simplenet)
lppm(X ~1)
lppm(X ~x)
marks(X) <- factor(rep(letters[1:3], 5))
lppm(X ~ marks)
lppm(X ~ marks * x)

864 lurking

lurking Lurking Variable Plot

Description

Plot spatial point process residuals against a covariate

Usage

lurking(object, ...)

S3 method for class 'ppm'
lurking(object, covariate,

type="eem",
cumulative=TRUE,
...,
plot.it = TRUE,
plot.sd = is.poisson(object),
clipwindow=default.clipwindow(object),
rv = NULL,
envelope=FALSE, nsim=39, nrank=1,
typename,
covname,
oldstyle=FALSE,
check=TRUE,
verbose=TRUE,
nx=128,
splineargs=list(spar=0.5),
internal=NULL)

S3 method for class 'ppp'
lurking(object, covariate,

type="eem",
cumulative=TRUE,
...,
plot.it = TRUE,
plot.sd = is.poisson(object),
clipwindow=default.clipwindow(object),
rv = NULL,
envelope=FALSE, nsim=39, nrank=1,
typename,
covname,
oldstyle=FALSE,
check=TRUE,
verbose=TRUE,
nx=128,
splineargs=list(spar=0.5),

lurking 865

internal=NULL)

Arguments

object The fitted point process model (an object of class "ppm") for which diagnostics
should be produced. This object is usually obtained from ppm. Alternatively,
object may be a point pattern (object of class "ppp").

covariate The covariate against which residuals should be plotted. Either a numeric vector,
a pixel image, or an expression. See Details below.

type String indicating the type of residuals or weights to be computed. Choices in-
clude "eem", "raw", "inverse" and "pearson". See diagnose.ppm for all
possible choices.

cumulative Logical flag indicating whether to plot a cumulative sum of marks (cumulative=TRUE)
or the derivative of this sum, a marginal density of the smoothed residual field
(cumulative=FALSE).

... Arguments passed to plot.default and lines to control the plot behaviour.

plot.it Logical value indicating whether plots should be shown. If plot.it=FALSE,
only the computed coordinates for the plots are returned. See Value.

plot.sd Logical value indicating whether error bounds should be added to plot. The
default is TRUE for Poisson models and FALSE for non-Poisson models. See
Details.

clipwindow If not NULL this argument indicates that residuals shall only be computed in-
side a subregion of the window containing the original point pattern data. Then
clipwindow should be a window object of class "owin".

rv Usually absent. If this argument is present, the point process residuals will not
be calculated from the fitted model object, but will instead be taken directly
from rv.

envelope Logical value indicating whether to compute simulation envelopes for the plot.
Alternatively envelope may be a list of point patterns to use for computing the
simulation envelopes, or an object of class "envelope" containing simulated
point patterns.

nsim Number of simulated point patterns to be generated to produce the simulation
envelope, if envelope=TRUE.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

typename Usually absent. If this argument is present, it should be a string, and will be used
(in the axis labels of plots) to describe the type of residuals.

covname A string name for the covariate, to be used in axis labels of plots.

oldstyle Logical flag indicating whether error bounds should be plotted using the ap-
proximation given in the original paper (oldstyle=TRUE), or using the correct
asymptotic formula (oldstyle=FALSE).

check Logical flag indicating whether the integrity of the data structure in object
should be checked.

866 lurking

verbose Logical value indicating whether to print progress reports during Monte Carlo
simulation.

nx Integer. Number of covariate values to be used in the plot.

splineargs A list of arguments passed to smooth.spline for the estimation of the deriva-
tives in the case cumulative=FALSE.

internal Internal use only.

Details

This function generates a ‘lurking variable’ plot for a fitted point process model. Residuals from the
model represented by object are plotted against the covariate specified by covariate. This plot
can be used to reveal departures from the fitted model, in particular, to reveal that the point pattern
depends on the covariate.

The function lurking is generic, with methods for ppm and ppp documented here, and possibly
other methods.

The argument object would usually be a fitted point process model (object of class "ppm") pro-
duced by the model-fitting algorithm ppm). If object is a point pattern (object of class "ppp") then
the model is taken to be the uniform Poisson process (Complete Spatial Randomness) fitted to this
point pattern.

First the residuals from the fitted model (Baddeley et al, 2004) are computed at each quadrature
point, or alternatively the ‘exponential energy marks’ (Stoyan and Grabarnik, 1991) are computed
at each data point. The argument type selects the type of residual or weight. See diagnose.ppm
for options and explanation.

A lurking variable plot for point processes (Baddeley et al, 2004) displays either the cumulative sum
of residuals/weights (if cumulative = TRUE) or a kernel-weighted average of the residuals/weights
(if cumulative = FALSE) plotted against the covariate. The empirical plot (solid lines) is shown
together with its expected value assuming the model is true (dashed lines) and optionally also the
pointwise two-standard-deviation limits (grey shading).

To be more precise, let Z(u) denote the value of the covariate at a spatial location u.

• If cumulative=TRUE then we plot H(z) against z, where H(z) is the sum of the residuals
over all quadrature points where the covariate takes a value less than or equal to z, or the sum
of the exponential energy weights over all data points where the covariate takes a value less
than or equal to z.

• If cumulative=FALSE then we plot h(z) against z, where h(z) is the derivative of H(z),
computed approximately by spline smoothing.

For the point process residualsE(H(z)) = 0, while for the exponential energy weightsE(H(z)) =
area of the subset of the window satisfying Z(u) <= z.

If the empirical and theoretical curves deviate substantially from one another, the interpretation is
that the fitted model does not correctly account for dependence on the covariate. The correct form
(of the spatial trend part of the model) may be suggested by the shape of the plot.

If plot.sd = TRUE, then superimposed on the lurking variable plot are the pointwise two-standard-
deviation error limits for H(x) calculated for the inhomogeneous Poisson process. The default is
plot.sd = TRUE for Poisson models and plot.sd = FALSE for non-Poisson models.

lurking 867

By default, the two-standard-deviation limits are calculated from the exact formula for the asymp-
totic variance of the residuals under the asymptotic normal approximation, equation (37) of Bad-
deley et al (2006). However, for compatibility with the original paper of Baddeley et al (2005), if
oldstyle=TRUE, the two-standard-deviation limits are calculated using the innovation variance, an
over-estimate of the true variance of the residuals.

The argument covariate is either a numeric vector, a pixel image, or an R language expression. If
it is a numeric vector, it is assumed to contain the values of the covariate for each of the quadrature
points in the fitted model. The quadrature points can be extracted by quad.ppm(object).

If covariate is a pixel image, it is assumed to contain the values of the covariate at each location
in the window. The values of this image at the quadrature points will be extracted.

Alternatively, if covariate is an expression, it will be evaluated in the same environment as
the model formula used in fitting the model object. It must yield a vector of the same length as
the number of quadrature points. The expression may contain the terms x and y representing the
cartesian coordinates, and may also contain other variables that were available when the model was
fitted. Certain variable names are reserved words; see ppm.

Note that lurking variable plots for the x and y coordinates are also generated by diagnose.ppm,
amongst other types of diagnostic plots. This function is more general in that it enables the user to
plot the residuals against any chosen covariate that may have been present.

For advanced use, even the values of the residuals/weights can be altered. If the argument rv
is present, the residuals will not be calculated from the fitted model object but will instead be
taken directly from the object rv. If type = "eem" then rv should be similar to the return value of
eem, namely, a numeric vector with length equal to the number of data points in the original point
pattern. Otherwise, rv should be similar to the return value of residuals.ppm, that is, rv should
be an object of class "msr" (see msr) representing a signed measure.

Value

The (invisible) return value is an object belonging to the class "lurk", for which there are methods
for plot and print.

This object is a list containing two dataframes empirical and theoretical. The first dataframe
empirical contains columns covariate and value giving the coordinates of the lurking variable
plot. The second dataframe theoretical contains columns covariate, mean and sd giving the
coordinates of the plot of the theoretical mean and standard deviation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2006) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

868 lurking.mppm

See Also

residuals.ppm, diagnose.ppm, residuals.ppm, qqplot.ppm, eem, ppm

Examples

(a <- lurking(nztrees, expression(x), type="raw"))
fit <- ppm(nztrees ~x, Poisson(), nd=128)
(b <- lurking(fit, expression(x), type="raw"))
lurking(fit, expression(x), type="raw", cumulative=FALSE)

lurking.mppm Lurking Variable Plot for Multiple Point Patterns

Description

Generate a lurking variable plot of spatial point process residuals against a covariate, for a model
fitted to several point patterns.

Usage

S3 method for class 'mppm'
lurking(object, covariate, type="eem",

...,
separate = FALSE,
plot.it = TRUE,
covname, oldstyle = FALSE, nx = 512, main="")

Arguments

object The fitted model. An object of class "mppm" representing a point process model
fitted to several point patterns.

covariate The covariate to be used on the horizontal axis. Either an expression which
can be evaluated in the original data, or a list of pixel images, one image for
each point pattern in the original data.

type String indicating the type of residuals or weights to be computed. Choices in-
clude "eem", "raw", "inverse" and "pearson". See diagnose.ppm for all
possible choices.

... Additional arguments passed to lurking.ppm, including arguments controlling
the plot.

separate Logical value indicating whether to compute a separate lurking variable plot
for each of the original point patterns. If FALSE (the default), a single lurking-
variable plot is produced by combining residuals from all patterns.

plot.it Logical value indicating whether plots should be shown. If plot.it=FALSE,
only the computed coordinates for the plots are returned. See Value.

covname A string name for the covariate, to be used in axis labels of plots.

lut 869

oldstyle Logical flag indicating whether error bounds should be plotted using the ap-
proximation given in the original paper (oldstyle=TRUE), or using the correct
asymptotic formula (oldstyle=FALSE).

nx Integer. Number of covariate values to be used in the plot.

main Character string giving a main title for the plot.

Details

This function generates a ‘lurking variable’ plot for a point process model fitted to several point
patterns. Residuals from the model represented by object are plotted against the covariate specified
by covariate. This plot can be used to reveal departures from the fitted model.

The function lurking is generic. This is the method for the class mppm. The argument object must
be a fitted point process model object of class "mppm") produced by the model-fitting algorithm
mppm.

Value

If separate=FALSE (the default), the return value is an object belonging to the class "lurk", for
which there are methods for plot and print. See lurking for details of the format.

If separate=TRUE, the result is a list of such objects, and also belongs to the class anylist so that
it can be printed and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, with thanks to Nicholas Read.

See Also

lurking.ppm

Examples

fit <- mppm(Points ~ Image + Group, demohyper)
lurking(fit, expression(Image), type="P")
lurking(fit, expression(Image), type="P", separate=TRUE)

lut Lookup Tables

Description

Create a lookup table.

Usage

lut(outputs, ..., range=NULL, breaks=NULL, inputs=NULL, gamma=1)

870 lut

Arguments

outputs Vector of output values

... Ignored.

range Interval of numbers to be mapped. A numeric vector of length 2, specifying the
ends of the range of values to be mapped. Incompatible with breaks or inputs.

inputs Input values to which the output values are associated. A factor or vector of the
same length as outputs. Incompatible with breaks or range.

breaks Breakpoints for the lookup table. A numeric vector of length equal to length(outputs)+1.
Incompatible with range or inputs.

gamma Exponent for gamma correction, when range is given. A single positive number.
See Details.

Details

A lookup table is a function, mapping input values to output values.

The command lut creates an object representing a lookup table, which can then be used to control
various behaviour in the spatstat package. It can also be used to compute the output value assigned
to any input value.

The argument outputs specifies the output values to which input data values will be mapped. It
should be a vector of any atomic type (e.g. numeric, logical, character, complex) or factor values.

Exactly one of the arguments range, inputs or breaks must be specified by name.

• If inputs is given, then it should be a vector or factor, of the same length as outputs. The
entries of inputs can be any atomic type (e.g. numeric, logical, character, complex) or factor
values. The resulting lookup table associates the value inputs[i] with the value outputs[i].
The argument outputs should have the same length as inputs.

• If range is given, then it determines the interval of the real number line that will be mapped.
It should be a numeric vector of length 2. The interval will be divided evenly into bands, each
of which is mapped to an entry of outputs. (If gamma is given, then the bands are equally
spaced on a scale where the original values are raised to the power gamma.)

• If breaks is given, then it determines intervals of the real number line which are mapped to
each output value. It should be a numeric vector, of length at least 2, with entries that are in
increasing order. Infinite values are allowed. Any number in the range between breaks[i]
and breaks[i+1] will be mapped to the value outputs[i]. The argument outputs should
have length equal to length(breaks) -1.

It is also permissible for outputs to be a single value, representing a trivial lookup table in which
all data values are mapped to the same output value.

The result is an object of class "lut". There is a print method for this class. Some plot commands
in the spatstat package accept an object of this class as a specification of a lookup table.

The result is also a function f which can be used to compute the output value assigned to any input
data value. That is, f(x) returns the output value assigned to x. This also works for vectors of input
data values.

markconnect 871

Value

A function, which is also an object of class "lut".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

colourmap.

Examples

lookup table for real numbers, using breakpoints
cr <- lut(factor(c("low", "medium", "high")), breaks=c(0,5,10,15))
cr
cr(3.2)
cr(c(3,5,7))
lookup table for discrete set of values
ct <- lut(c(0,1), inputs=c(FALSE, TRUE))
ct(TRUE)

markconnect Mark Connection Function

Description

Estimate the marked connection function of a multitype point pattern.

Usage

markconnect(X, i, j, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., normalise=FALSE)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured.

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured.

r numeric vector. The values of the argument r at which the mark connection
function pij(r) should be evaluated. There is a sensible default.

872 markconnect

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Arguments passed to markcorr, or passed to the density estimation routine
(density, loess or sm.density) selected by method.

normalise If TRUE, normalise the pair connection function by dividing it by pipj , the esti-
mated probability that randomly-selected points will have marks i and j.

Details

The mark connection function pij(r) of a multitype point processX is a measure of the dependence
between the types of two points of the process a distance r apart.

Informally pij(r) is defined as the conditional probability, given that there is a point of the process
at a location u and another point of the process at a location v separated by a distance ||u− v|| = r,
that the first point is of type i and the second point is of type j. See Stoyan and Stoyan (1994).

If the marks attached to the points of X are independent and identically distributed, then pij(r) ≡
pipj where pi denotes the probability that a point is of type i. Values larger than this, pij(r) >
pipj , indicate positive association between the two types, while smaller values indicate negative
association.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a multitype point pattern (a marked point pattern with factor-valued marks).

The argument r is the vector of values for the distance r at which pij(r) is estimated. There is a
sensible default.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented only for rectangular and polygonal windows (not for binary masks) and is slow for
complicated polygons.

translate Translation correction (Ohser, 1983). Implemented for all window geometries.

none No edge correction.

The option correction="none" should only be used if the number of data points is extremely large
(otherwise an edge correction is needed to correct bias).

Note that the estimator assumes the process is stationary (spatially homogeneous).

The mark connection function is estimated using density estimation techniques. The user can
choose between

"density" which uses the standard kernel density estimation routine density, and works only for
evenly-spaced r values;

"loess" which uses the function loess in the package modreg;

markconnect 873

"sm" which uses the function sm.density in the package sm and is extremely slow;

"smrep" which uses the function sm.density in the package sm and is relatively fast, but may
require manual control of the smoothing parameter hmult.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the mark connection function pij(r) has
been estimated

theo the theoretical value of pij(r) when the marks attached to different points are
independent

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the function pij(r) obtained by the edge correc-
tions named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Multitype pair correlation pcfcross and multitype K-functions Kcross, Kdot.

Use alltypes to compute the mark connection functions between all pairs of types.

Mark correlation markcorr and mark variogram markvario for numeric-valued marks.

Examples

Hughes' amacrine data
Cells marked as 'on'/'off'
data(amacrine)
M <- markconnect(amacrine, "on", "off")
plot(M)

Compute for all pairs of types at once
plot(alltypes(amacrine, markconnect))

874 markcorr

markcorr Mark Correlation Function

Description

Estimate the marked correlation function of a marked point pattern.

Usage

markcorr(X, f = function(m1, m2) { m1 * m2}, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., weights=NULL,
f1=NULL, normalise=TRUE, fargs=NULL, internal=NULL)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

f Optional. Test function f used in the definition of the mark correlation function.
An R function with at least two arguments. There is a sensible default.

r Optional. Numeric vector. The values of the argument r at which the mark
correlation function kf (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley",
"translate", "translation", "none" or "best". It specifies the edge correc-
tion(s) to be applied. Alternatively correction="all" selects all options.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Arguments passed to the density estimation routine (density, loess or sm.density)
selected by method.

weights Optional. Numeric weights for each data point in X. A numeric vector, a pixel
image, or a function(x,y). Alternatively, an expression to be evaluated to
yield the weights; the expression may involve the variables x,y,marks repre-
senting the coordinates and marks ofX.

f1 An alternative to f. If this argument is given, then f is assumed to take the form
f(u, v) = f1(u)f1(v).

normalise If normalise=FALSE, compute only the numerator of the expression for the
mark correlation.

fargs Optional. A list of extra arguments to be passed to the function f or f1.

internal Do not use this argument.

markcorr 875

Details

By default, this command calculates an estimate of Stoyan’s mark correlation kmm(r) for the point
pattern.

Alternatively if the argument f or f1 is given, then it calculates Stoyan’s generalised mark correla-
tion kf (r) with test function f .

Theoretical definitions are as follows (see Stoyan and Stoyan (1994, p. 262)):

• For a point process X with numeric marks, Stoyan’s mark correlation function kmm(r), is

kmm(r) =
E0u[M(0)M(u)]

E[M,M ′]

where E0u denotes the conditional expectation given that there are points of the process at the
locations 0 and u separated by a distance r, and whereM(0),M(u) denote the marks attached
to these two points. On the denominator, M,M ′ are random marks drawn independently from
the marginal distribution of marks, and E is the usual expectation.

• For a multitype point process X , the mark correlation is

kmm(r) =
P0u[M(0)M(u)]

P [M = M ′]

where P and P0u denote the probability and conditional probability.

• The generalised mark correlation function kf (r) of a marked point process X , with test func-
tion f , is

kf (r) =
E0u[f(M(0),M(u))]

E[f(M,M ′)]

The test function f is any function f(m1,m2) with two arguments which are possible marks of
the pattern, and which returns a nonnegative real value. Common choices of f are: for continuous
nonnegative real-valued marks,

f(m1,m2) = m1m2

for discrete marks (multitype point patterns),

f(m1,m2) = 1(m1 = m2)

and for marks taking values in [0, 2π),

f(m1,m2) = sin(m1 −m2)

.

Note that kf (r) is not a “correlation” in the usual statistical sense. It can take any nonnegative
real value. The value 1 suggests “lack of correlation”: if the marks attached to the points of X
are independent and identically distributed, then kf (r) ≡ 1. The interpretation of values larger or
smaller than 1 depends on the choice of function f .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern.

The argument f determines the function to be applied to pairs of marks. It has a sensible default,
which depends on the kind of marks in X. If the marks are numeric values, then f <-function(m1,m2)

876 markcorr

{ m1 * m2} computes the product of two marks. If the marks are a factor (i.e. if X is a multitype
point pattern) then f <-function(m1,m2) { m1 == m2} yields the value 1 when the two marks are
equal, and 0 when they are unequal. These are the conventional definitions for numerical marks and
multitype points respectively.

The argument f may be specified by the user. It must be an R function, accepting two arguments
m1 and m2 which are vectors of equal length containing mark values (of the same type as the marks
of X). (It may also take additional arguments, passed through fargs). It must return a vector of
numeric values of the same length as m1 and m2. The values must be non-negative, and NA values
are not permitted.

Alternatively the user may specify the argument f1 instead of f. This indicates that the test function
f should take the form f(u, v) = f1(u)f1(v) where f1(u) is given by the argument f1. The
argument f1 should be an R function with at least one argument. (It may also take additional
arguments, passed through fargs).

The argument r is the vector of values for the distance r at which kf (r) is estimated.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented only for rectangular and polygonal windows (not for binary masks).

translate Translation correction (Ohser, 1983). Implemented for all window geometries, but slow
for complex windows.

Note that the estimator assumes the process is stationary (spatially homogeneous).

The numerator and denominator of the mark correlation function (in the expression above) are
estimated using density estimation techniques. The user can choose between

"density" which uses the standard kernel density estimation routine density, and works only for
evenly-spaced r values;

"loess" which uses the function loess in the package modreg;

"sm" which uses the function sm.density in the package sm and is extremely slow;

"smrep" which uses the function sm.density in the package sm and is relatively fast, but may
require manual control of the smoothing parameter hmult.

If normalise=FALSE then the algorithm will compute only the numerator

cf (r) = E0uf(M(0),M(u))

of the expression for the mark correlation function.

Value

A function value table (object of class "fv") or a list of function value tables, one for each column
of marks.

An object of class "fv" (see fv.object) is essentially a data frame containing numeric columns

markcorr 877

r the values of the argument r at which the mark correlation function kf (r) has
been estimated

theo the theoretical value of kf (r) when the marks attached to different points are
independent, namely 1

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the mark correlation function kf (r) obtained by
the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Mark variogram markvario for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued
marks.

Mark cross-correlation function markcrosscorr for point patterns with several columns of marks.

Kmark to estimate a cumulative function related to the mark correlation function.

Examples

CONTINUOUS-VALUED MARKS:
(1) Spruces
marks represent tree diameter
mark correlation function
ms <- markcorr(spruces)
plot(ms)

(2) simulated data with independent marks
X <- rpoispp(100)
X <- X %mark% runif(npoints(X))
Not run:
Xc <- markcorr(X)
plot(Xc)

End(Not run)

MULTITYPE DATA:
Hughes' amacrine data
Cells marked as 'on'/'off'
(3) Kernel density estimate with Epanecnikov kernel
(as proposed by Stoyan & Stoyan)

878 markcrosscorr

M <- markcorr(amacrine, function(m1,m2) {m1==m2},
correction="translate", method="density",
kernel="epanechnikov")

plot(M)
Note: kernel="epanechnikov" comes from help(density)

(4) Same again with explicit control over bandwidth
Not run:
M <- markcorr(amacrine,

correction="translate", method="density",
kernel="epanechnikov", bw=0.02)

see help(density) for correct interpretation of 'bw'

End(Not run)

weighted mark correlation
Y <- subset(betacells, select=type)
a <- marks(betacells)$area
v <- markcorr(Y, weights=a)

markcrosscorr Mark Cross-Correlation Function

Description

Given a spatial point pattern with several columns of marks, this function computes the mark cor-
relation function between each pair of columns of marks.

Usage

markcrosscorr(X, r = NULL,
correction = c("isotropic", "Ripley", "translate"),
method = "density", ..., normalise = TRUE, Xname = NULL)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

r Optional. Numeric vector. The values of the argument r at which the mark
correlation function kf (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley",
"translate", "translation", "none" or "best". It specifies the edge correc-
tion(s) to be applied. Alternatively correction="all" selects all options.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

markcrosscorr 879

... Arguments passed to the density estimation routine (density, loess or sm.density)
selected by method.

normalise If normalise=FALSE, compute only the numerator of the expression for the
mark correlation.

Xname Optional character string name for the dataset X.

Details

First, all columns of marks are converted to numerical values. A factor with m possible levels is
converted to m columns of dummy (indicator) values.

Next, each pair of columns is considered, and the mark cross-correlation is defined as

kmm(r) =
E0u[Mi(0)Mj(u)]

E[Mi,Mj]

where E0u denotes the conditional expectation given that there are points of the process at the
locations 0 and u separated by a distance r. On the numerator, Mi(0) and Mj(u) are the marks
attached to locations 0 and u respectively in the ith and jth columns of marks respectively. On the
denominator, Mi and Mj are independent random values drawn from the ith and jth columns of
marks, respectively, and E is the usual expectation.

Note that kmm(r) is not a “correlation” in the usual statistical sense. It can take any nonnegative
real value. The value 1 suggests “lack of correlation”: if the marks attached to the points of X are
independent and identically distributed, then kmm(r) ≡ 1.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern.

The cross-correlations are estimated in the same manner as for markcorr.

Value

A function array (object of class "fasp") containing the mark cross-correlation functions for each
possible pair of columns of marks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

markcorr

Examples

The dataset 'betacells' has two columns of marks:
'type' (factor)
'area' (numeric)
if(interactive()) plot(betacells)
plot(markcrosscorr(betacells))

880 markmarkscatter

markmarkscatter Mark-Mark Scatter Plot

Description

Generates the mark-mark scatter plot of a point pattern.

Usage

markmarkscatter(X, rmax, ..., col = NULL, symap = NULL, transform=I, jit=FALSE)

Arguments

X A point pattern (object of class "ppp", "pp3", "lpp" or "ppx") with numeric
marks.

rmax Maximum distance between pairs of points which contribute to the plot.

... Additional arguments passed to plot.ppp to control the scatterplot.

transform Optional. A function which should be applied to the mark values.

jit Logical value indicating whether mark values should be randomly perturbed
using jitter.

col Optional. A vector of colour values, or a colourmap to be used to portray the
pairwise distance values. Ignored if symap is given.

symap Optional. A symbolmap to be used to portray the pairwise distance values. Over-
rides col.

Details

The mark-mark scatter plot (Ballani et al, 2019) is a scatterplot of the mark values of all pairs of
distinct points in X which are closer than the distance rmax. The dots in the scatterplot are coloured
according to the pairwise distance between the two spatial points. The plot is augmented by three
curves explained by Ballani et al (2019).

If the marks only take a few different values, then it is usually appropriate to apply random pertur-
bation (jitter) to the mark values, by setting jit=TRUE.

Value

Null.

Author(s)

Adrian Baddeley (coded from the description in Ballani et al.)

References

Ballani, F., Pommerening, A. and Stoyan, D. (2019) Mark-mark scatterplots improve pattern anal-
ysis in spatial plant ecology. Ecological Informatics 49, 13–21.

marks 881

Examples

markmarkscatter(longleaf, 10)

markmarkscatter(spruces, 10, jit=TRUE)

marks Marks of a Point Pattern

Description

Extract or change the marks attached to a point pattern dataset.

Usage

marks(x, ...)

S3 method for class 'ppp'
marks(x, ..., dfok=TRUE, drop=TRUE)

S3 method for class 'ppx'
marks(x, ..., drop=TRUE)

marks(x, ...) <- value

S3 replacement method for class 'ppp'
marks(x, ..., dfok=TRUE, drop=TRUE) <- value

S3 replacement method for class 'ppx'
marks(x, ...) <- value

setmarks(x, value)

x %mark% value

Arguments

x Point pattern dataset (object of class "ppp" or "ppx").

... Ignored.

dfok Logical. If FALSE, data frames of marks are not permitted and will generate an
error.

drop Logical. If TRUE, a data frame consisting of a single column of marks will be
converted to a vector or factor.

value Replacement value. A vector, data frame or hyperframe of mark values, or NULL.

882 marks

Details

These functions extract or change the marks attached to the points of the point pattern x.

The expression marks(x) extracts the marks of x. The assignment marks(x) <-value assigns
new marks to the dataset x, and updates the dataset x in the current environment. The expression
setmarks(x,value) or equivalently x %mark% value returns a point pattern obtained by replacing
the marks of x by value, but does not change the dataset x itself.

For point patterns in two-dimensional space (objects of class "ppp") the marks can be a vector, a
factor, or a data frame.

For general point patterns (objects of class "ppx") the marks can be a vector, a factor, a data frame
or a hyperframe.

For the assignment marks(x) <-value, the value should be a vector or factor of length equal to
the number of points in x, or a data frame or hyperframe with as many rows as there are points in x.
If value is a single value, or a data frame or hyperframe with one row, then it will be replicated so
that the same marks will be attached to each point.

To remove marks, use marks(x) <-NULL or unmark(x).

Use ppp or ppx to create point patterns in more general situations.

Value

For marks(x), the result is a vector, factor, data frame or hyperframe, containing the mark values
attached to the points of x.

For marks(x) <-value, the result is the updated point pattern x (with the side-effect that the dataset
x is updated in the current environment).

For setmarks(x,value) and x %mark% value, the return value is the point pattern obtained by
replacing the marks of x by value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

ppp.object, ppx, unmark, hyperframe

Examples

X <- amacrine
extract marks
m <- marks(X)
recode the mark values "off", "on" as 0, 1
marks(X) <- as.integer(m == "on")

marks.psp 883

marks.psp Marks of a Line Segment Pattern

Description

Extract or change the marks attached to a line segment pattern.

Usage

S3 method for class 'psp'
marks(x, ..., dfok=TRUE)
S3 replacement method for class 'psp'
marks(x, ...) <- value

Arguments

x Line segment pattern dataset (object of class "psp").

... Ignored.

dfok Logical. If FALSE, data frames of marks are not permitted and will generate an
error.

value Vector or data frame of mark values, or NULL.

Details

These functions extract or change the marks attached to each of the line segments in the pattern x.
They are methods for the generic functions marks and marks<- for the class "psp" of line segment
patterns.

The expression marks(x) extracts the marks of x. The assignment marks(x) <-value assigns new
marks to the dataset x, and updates the dataset x in the current environment.

The marks can be a vector, a factor, or a data frame.

For the assignment marks(x) <-value, the value should be a vector or factor of length equal to the
number of segments in x, or a data frame with as many rows as there are segments in x. If value is
a single value, or a data frame with one row, then it will be replicated so that the same marks will
be attached to each segment.

To remove marks, use marks(x) <-NULL or unmark(x).

Value

For marks(x), the result is a vector, factor or data frame, containing the mark values attached to the
line segments of x. If there are no marks, the result is NULL.

For marks(x) <-value, the result is the updated line segment pattern x (with the side-effect that
the dataset x is updated in the current environment).

884 marks.tess

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp.object, marks, marks<-

Examples

m <- data.frame(A=1:10, B=letters[1:10])
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin(), marks=m)

marks(X)
marks(X)[,2]
marks(X) <- 42
marks(X) <- NULL

marks.tess Marks of a Tessellation

Description

Extract or change the marks attached to the tiles of a tessellation.

Usage

S3 method for class 'tess'
marks(x, ...)

S3 replacement method for class 'tess'
marks(x, ...) <- value

S3 method for class 'tess'
unmark(X)

S3 method for class 'lintess'
marks(x, ...)

S3 replacement method for class 'lintess'
marks(x, ...) <- value

S3 method for class 'lintess'
unmark(X)

marks.tess 885

Arguments

x,X Tessellation (object of class "tess") or tessellation on a linear network (object
of class "lintess").

... Ignored.

value Vector or data frame of mark values, or NULL.

Details

These functions extract or change the marks attached to each of the tiles in the tessellation x. They
are methods for the generic functions marks and marks<- for the class "tess" of tessellations and
the class "lintess" of tessellations on a network.

The expression marks(x) extracts the marks of x. The assignment marks(x) <-value assigns new
marks to the dataset x, and updates the dataset x in the current environment.

The marks can be a vector, a factor, or a data frame.

For the assignment marks(x) <-value, the value should be a vector or factor of length equal to
the number of tiles in x, or a data frame with as many rows as there are tiles in x. If value is a
single value, or a data frame with one row, then it will be replicated so that the same marks will be
attached to each tile.

To remove marks, use marks(x) <-NULL or unmark(x).

Value

For marks(x), the result is a vector, factor or data frame, containing the mark values attached to the
tiles of x. If there are no marks, the result is NULL.

For unmark(x), the result is the tessellation without marks.

For marks(x) <-value, the result is the updated tessellation x (with the side-effect that the dataset
x is updated in the current environment).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

marks, marks<-

Examples

D <- dirichlet(cells)
marks(D) <- tile.areas(D)

B <- lineardirichlet(runiflpp(5, simplenet))
marks(B) <- letters[1:5]

886 markstat

markstat Summarise Marks in Every Neighbourhood in a Point Pattern

Description

Visit each point in a point pattern, find the neighbouring points, and summarise their marks

Usage

markstat(X, fun, N=NULL, R=NULL, ...)

Arguments

X A marked point pattern. An object of class "ppp".

fun Function to be applied to the vector of marks.

N Integer. If this argument is present, the neighbourhood of a point of X is defined
to consist of the N points of X which are closest to it.

R Nonnegative numeric value. If this argument is present, the neighbourhood of a
point of X is defined to consist of all points of X which lie within a distance R of
it.

... extra arguments passed to the function fun. They must be given in the form
name=value.

Details

This algorithm visits each point in the point pattern X, determines which points of X are “neighbours”
of the current point, extracts the marks of these neighbouring points, applies the function fun to the
marks, and collects the value or values returned by fun.

The definition of “neighbours” depends on the arguments N and R, exactly one of which must be
given.

If N is given, then the neighbours of the current point are the N points of X which are closest to the
current point (including the current point itself). If R is given, then the neighbourhood of the current
point consists of all points of X which lie closer than a distance R from the current point.

Each point of X is visited; the neighbourhood of the current point is determined; the marks of these
points are extracted as a vector v; then the function fun is called as:

fun(v,...)

where ... are the arguments passed from the call to markstat.

The results of each call to fun are collected and returned according to the usual rules for apply and
its relatives. See the section on Value.

This function is just a convenient wrapper for a common use of the function applynbd. For
more complex tasks, use applynbd. To simply tabulate the marks in every R-neighbourhood, use
marktable.

marktable 887

Value

Similar to the result of apply. if each call to fun returns a single numeric value, the result is a
vector of dimension npoints(X), the number of points in X. If each call to fun returns a vector of
the same length m, then the result is a matrix of dimensions c(m,n); note the transposition of the
indices, as usual for the family of apply functions. If the calls to fun return vectors of different
lengths, the result is a list of length npoints(X).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

applynbd, marktable, ppp.object, apply

Examples

trees <- longleaf

average diameter of 5 closest neighbours of each tree
md <- markstat(trees, mean, N=5)

range of diameters of trees within 10 metre radius
rd <- markstat(trees, range, R=10)

marktable Tabulate Marks in Neighbourhood of Every Point in a Point Pattern

Description

Visit each point in a point pattern, find the neighbouring points, and compile a frequency table of
the marks of these neighbour points.

Usage

marktable(X, R, N, exclude=TRUE, collapse=FALSE)

Arguments

X A marked point pattern. An object of class "ppp".
R Neighbourhood radius. Incompatible with N.
N Number of neighbours of each point. Incompatible with R.
exclude Logical. If exclude=TRUE, the neighbours of a point do not include the point

itself. If exclude=FALSE, a point belongs to its own neighbourhood.
collapse Logical. If collapse=FALSE (the default) the results for each point are returned

as separate rows of a table. If collapse=TRUE, the results are aggregated ac-
cording to the type of point.

888 markvario

Details

This algorithm visits each point in the point pattern X, inspects all the neighbouring points within
a radius R of the current point (or the N nearest neighbours of the current point), and compiles a
frequency table of the marks attached to the neighbours.

The dataset X must be a multitype point pattern, that is, marks(X) must be a factor.

If collapse=FALSE (the default), the result is a two-dimensional contingency table with one row
for each point in the pattern, and one column for each possible mark value. The [i,j] entry in the
table gives the number of neighbours of point i that have mark j.

If collapse=TRUE, this contingency table is aggregated according to the type of point, so that the
result is a contingency table with one row and one column for each possible mark value. The [i,j]
entry in the table gives the number of neighbours of a point with mark i that have mark j.

To perform more complicated calculations on the neighbours of every point, use markstat or
applynbd.

Value

A contingency table (object of class "table"). If collapse=FALSE, the table has one row for each
point in X, and one column for each possible mark value. If collapse=TRUE, the table has one row
and one column for each possible mark value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

markstat, applynbd, Kcross, ppp.object, table

Examples

head(marktable(amacrine, 0.1))
head(marktable(amacrine, 0.1, exclude=FALSE))
marktable(amacrine, N=1, collapse=TRUE)

markvario Mark Variogram

Description

Estimate the mark variogram of a marked point pattern.

Usage

markvario(X, correction = c("isotropic", "Ripley", "translate"),
r = NULL, method = "density", ..., normalise=FALSE)

markvario 889

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp. It must have marks which are numeric.

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied.

r numeric vector. The values of the argument r at which the mark variogram γ(r)
should be evaluated. There is a sensible default.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Other arguments passed to markcorr, or passed to the density estimation routine
(density, loess or sm.density) selected by method.

normalise If TRUE, normalise the variogram by dividing it by the estimated mark variance.

Details

The mark variogram γ(r) of a marked point process X is a measure of the dependence between the
marks of two points of the process a distance r apart. It is informally defined as

γ(r) = E[
1

2
(M1 −M2)2]

where E[] denotes expectation and M1,M2 are the marks attached to two points of the process a
distance r apart.

The mark variogram of a marked point process is analogous, but not equivalent, to the variogram
of a random field in geostatistics. See Waelder and Stoyan (1996).

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the mark variogram γ(r) has been esti-
mated

theo the theoretical value of γ(r) when the marks attached to different points are
independent; equal to the sample variance of the marks

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the function γ(r) obtained by the edge corrections
named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

890 matchingdist

References

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.

Mase, S. (1996) The threshold method for estimating annual rainfall. Annals of the Institute of
Statistical Mathematics 48 (1996) 201-213.

Waelder, O. and Stoyan, D. (1996) On variograms in point process statistics. Biometrical Journal
38 (1996) 895-905.

See Also

Mark correlation function markcorr for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued
marks.

Examples

Longleaf Pine data
marks represent tree diameter
data(longleaf)
Subset of this large pattern
swcorner <- owin(c(0,100),c(0,100))
sub <- longleaf[, swcorner]
mark correlation function
mv <- markvario(sub)
plot(mv)

matchingdist Distance for a Point Pattern Matching

Description

Computes the distance associated with a matching between two point patterns.

Usage

matchingdist(matching, type = NULL, cutoff = NULL, q = NULL)

Arguments

matching A point pattern matching (an object of class "pppmatching").

type A character string giving the type of distance to be computed. One of "spa",
"ace" or "mat". See details below.

cutoff The value > 0 at which interpoint distances are cut off.

q The order of the average that is applied to the interpoint distances. May be Inf,
in which case the maximum of the interpoint distances is taken.

matchingdist 891

Details

Computes the distance specified by type, cutoff, and order for a point matching. If any of
these arguments are not provided, the function uses the corresponding elements of matching (if
available).

For the type "spa" (subpattern assignment) it is assumed that the points of the point pattern with
the smaller cardinality m are matched to a m-point subpattern of the point pattern with the larger
cardinality n in a 1-1 way. The distance is then given as the q-th order average of them distances be-
tween matched points (minimum of Euclidean distance and cutoff) and n−m "penalty distances"
of value cutoff.

For the type "ace" (assignment only if cardinalities equal) the matching is assumed to be 1-1 if the
cardinalities of the point patterns are the same, in which case the q-th order average of the matching
distances (minimum of Euclidean distance and cutoff) is taken. If the cardinalities are different,
the matching may be arbitrary and the distance returned is always equal to cutoff.

For the type mat (mass transfer) it is assumed that each point of the point pattern with the smaller
cardinality m has mass 1, each point of the point pattern with the larger cardinality n has mass
m/n, and fractions of these masses are matched in such a way that each point contributes exactly
its mass. The distance is then given as the q-th order weighted average of all distances (minimum of
Euclidean distance and cutoff) of (partially) matched points with weights equal to the fractional
masses divided by m.

If the cardinalities of the two point patterns are equal, matchingdist(m,type,cutoff,q) yields
the same result no matter if type is "spa", "ace" or "mat".

Value

Numeric value of the distance associated with the matching.

Author(s)

Dominic Schuhmacher <dominic.schuhmacher@stat.unibe.ch> http://www.dominic.schuhmacher.
name

See Also

pppdist pppmatching.object

Examples

an optimal matching
X <- runifpoint(20)
Y <- runifpoint(20)
m.opt <- pppdist(X, Y)
summary(m.opt)
matchingdist(m.opt)

is the same as the distance given by summary(m.opt)

sequential nearest neighbour matching
(go through all points of point pattern X in sequence
and match each point with the closest point of Y that is

http://www.dominic.schuhmacher.name
http://www.dominic.schuhmacher.name

892 matclust.estK

still unmatched)
am <- matrix(0, 20, 20)
h <- matrix(c(1:20, rep(0,20)), 20, 2)
h[1,2] = nncross(X[1],Y)[1,2]
for (i in 2:20) {

nn <- nncross(X[i],Y[-h[1:(i-1),2]])[1,2]
h[i,2] <- ((1:20)[-h[1:(i-1),2]])[nn]

}
am[h] <- 1
m.nn <- pppmatching(X, Y, am)
matchingdist(m.nn, type="spa", cutoff=1, q=1)

is >= the distance obtained for m.opt
in most cases strictly >

opa <- par(mfrow=c(1,2))
plot(m.opt, main="optimal")
plot(m.nn, main="nearest neighbour")
text(X, 1:20, pos=1, offset=0.3, cex=0.8)
par(opa)

matclust.estK Fit the Matern Cluster Point Process by Minimum Contrast

Description

Fits the Matérn Cluster point process to a point pattern dataset by the Method of Minimum Contrast.

Usage

matclust.estK(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X Data to which the Matérn Cluster model will be fitted. Either a point pattern or
a summary statistic. See Details.

startpar Vector of starting values for the parameters of the Matérn Cluster process.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

matclust.estK 893

Details

This algorithm fits the Matérn Cluster point process model to a point pattern dataset by the Method
of Minimum Contrast, using the K function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Matérn Cluster point process to X, by finding the parameters of the Matérn
Cluster model which give the closest match between the theoretical K function of the Matérn Clus-
ter process and the observed K function. For a more detailed explanation of the Method of Mini-
mum Contrast, see mincontrast.

The Matérn Cluster point process is described in Møller and Waagepetersen (2003, p. 62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and uniformly distributed
inside a circle of radius R centred on the parent point, where R is equal to the parameter scale.
The named vector of stating values can use either R or scale as the name of the second component,
but the latter is recommended for consistency with other cluster models.

The theoretical K-function of the Matérn Cluster process is

K(r) = πr2 +
1

κ
h(

r

2R
)

where the radius R is the parameter scale and

h(z) = 2 +
1

π
[(8z2 − 4)arccos(z)− 2arcsin(z) + 4z

√
(1− z2)3 − 6z

√
1− z2]

for z <= 1, and h(z) = 1 for z > 1. The theoretical intensity of the Matérn Cluster process is
λ = κµ.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and R. Then the remaining parameter µ is inferred from the estimated intensity λ.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Matérn Cluster process can be simulated, using rMatClust.

Homogeneous or inhomogeneous Matérn Cluster models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

894 matclust.estpcf

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Rasmus Waagepetersen <rw@math.auc.dk> Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, lgcp.estK, thomas.estK, mincontrast, Kest, rMatClust to simulate the fitted model.

Examples

data(redwood)
u <- matclust.estK(redwood, c(kappa=10, scale=0.1))
u
plot(u)

matclust.estpcf Fit the Matérn Cluster Point Process by Minimum Contrast Using Pair
Correlation

Description

Fits the Matérn Cluster point process to a point pattern dataset by the Method of Minimum Contrast
using the pair correlation function.

Usage

matclust.estpcf(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...,
pcfargs=list())

matclust.estpcf 895

Arguments

X Data to which the Matérn Cluster model will be fitted. Either a point pattern or
a summary statistic. See Details.

startpar Vector of starting values for the parameters of the Matérn Cluster process.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits the Matérn Cluster point process model to a point pattern dataset by the Method
of Minimum Contrast, using the pair correlation function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Matérn Cluster point process to X, by finding the parameters of the Matérn
Cluster model which give the closest match between the theoretical pair correlation function of the
Matérn Cluster process and the observed pair correlation function. For a more detailed explanation
of the Method of Minimum Contrast, see mincontrast.

The Matérn Cluster point process is described in Møller and Waagepetersen (2003, p. 62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and uniformly distributed
inside a circle of radius R centred on the parent point, where R is equal to the parameter scale.
The named vector of stating values can use either R or scale as the name of the second component,
but the latter is recommended for consistency with other cluster models.

The theoretical pair correlation function of the Matérn Cluster process is

g(r) = 1 +
1

4πRκr
h(

r

2R
)

where the radius R is the parameter scale and

h(z) =
16

π
[zarccos(z)− z2

√
1− z2]

896 matclust.estpcf

for z <= 1, and h(z) = 0 for z > 1. The theoretical intensity of the Matérn Cluster process is
λ = κµ.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and R. Then the remaining parameter µ is inferred from the estimated intensity λ.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Matérn Cluster process can be simulated, using rMatClust.

Homogeneous or inhomogeneous Matérn Cluster models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.
fit Function value table (object of class "fv") containing the observed values of the

summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, matclust.estK, thomas.estpcf, thomas.estK, lgcp.estK, mincontrast, pcf, rMatClust
to simulate the fitted model.

Examples

data(redwood)
u <- matclust.estpcf(redwood, c(kappa=10, R=0.1))
u
plot(u, legendpos="topright")

Math.im 897

Math.im S3 Group Generic methods for images

Description

These are group generic methods for images of class "im", which allows for usual mathematical
functions and operators to be applied directly to images. See Details for a list of implemented
functions.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm=FALSE, drop=TRUE)

Arguments

x, z, e1, e2 objects of class "im".

... further arguments passed to methods.

na.rm,drop Logical values specifying whether missing values should be removed. This will
happen if either na.rm=TRUE or drop=TRUE. See Details.

Details

Below is a list of mathematical functions and operators which are defined for images. Not all
functions will make sense for all types of images. For example, none of the functions in the "Math"
group make sense for character-valued images. Note that the "Ops" group methods are implemented
using eval.im, which tries to harmonise images via harmonise.im if they aren’t compatible to
begin with.

1. Group "Math":

• abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

• exp, log, expm1, log1p,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

898 Math.im

• lgamma, gamma, digamma, trigamma

• cumsum, cumprod, cummax, cummin

2. Group "Ops":

• "+", "-", "*", "/", "^", "%%", "%/%"

• "&", "|", "!"

• "==", "!=", "<", "<=", ">=", ">"

3. Group "Summary":

• all, any

• sum, prod

• min, max

• range

4. Group "Complex":

• Arg, Conj, Im, Mod, Re

For the Summary group, the generic has an argument na.rm=FALSE, but for pixel images it makes
sense to set na.rm=TRUE so that pixels outside the domain of the image are ignored. To enable this,
we added the argument drop. Pixel values that are NA are removed if drop=TRUE or if na.rm=TRUE.

For the Ops group, one of the arguments is permitted to be a single atomic value instead of an image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Kassel Hingee.

See Also

eval.im for evaluating expressions involving images.

Examples

Convert gradient values to angle of inclination:
V <- atan(bei.extra$grad) * 180/pi
Make logical image which is TRUE when heat equals 'Moderate':
A <- (gorillas.extra$heat == "Moderate")
Summary:
any(A)
Complex:
Z <- exp(1 + V * 1i)
Z
Re(Z)

Math.imlist 899

Math.imlist S3 Group Generic methods for List of Images

Description

These are group generic methods for the class "imlist" of lists of images. These methods allows
the usual mathematical functions and operators to be applied directly to lists of images. See Details
for a list of implemented functions.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm = TRUE)

Arguments

x,z,e1,e2 Lists of pixel images (objects of class "imlist").
... further arguments passed to methods.
na.rm logical: should missing values be removed?

Details

An object of class "imlist" represents a list of pixel images. It is a list, whose entries are pixel
images (objects of class "im").

The following mathematical functions and operators are defined for lists of images.

Not all functions will make sense for all types of images. For example, none of the functions in
the "Math" group make sense for character-valued images. Note that the "Ops" group methods
are implemented using eval.im, which tries to harmonise images via harmonise.im if they aren’t
compatible to begin with.

1. Group "Math":
• abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

• exp, log, expm1, log1p,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

900 Math.imlist

• lgamma, gamma, digamma, trigamma

• cumsum, cumprod, cummax, cummin

2. Group "Ops":

• "+", "-", "*", "/", "^", "%%", "%/%"

• "&", "|", "!"

• "==", "!=", "<", "<=", ">=", ">"

3. Group "Summary":

• all, any

• sum, prod

• min, max

• range

4. Group "Complex":

• Arg, Conj, Im, Mod, Re

For the binary operations in "Ops", either

• e1 and e2 are lists of pixel images, and contain the same number of images.

• one of e1,e2 is a list of pixel images, and the other is a single atomic value.

Value

The result of "Math", "Ops" and "Complex" group operations is another list of images. The result
of "Summary" group operations is a numeric vector of length 1 or 2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Math.im or eval.im for evaluating expressions involving images. solapply for a wrapper for
lapply.

Examples

a <- Smooth(finpines, 2)
log(a)/2 - sqrt(a)
range(a)

Math.linim 901

Math.linim S3 Group Generic Methods for Images on a Linear Network

Description

These are group generic methods for images of class "linim", which allows for usual mathematical
functions and operators to be applied directly to pixel images on a linear network. See Details for a
list of implemented functions.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm = FALSE)

Arguments

x, z, e1, e2 objects of class "linim".

... further arguments passed to methods.

na.rm logical: should missing values be removed?

Details

An object of class "linim" represents a pixel image on a linear network. See linim.

Below is a list of mathematical functions and operators which are defined for these images. Not
all functions will make sense for all types of images. For example, none of the functions in the
"Math" group make sense for character-valued images. Note that the "Ops" group methods are
implemented using eval.linim.

1. Group "Math":

• abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

• exp, log, expm1, log1p,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

• lgamma, gamma, digamma, trigamma

902 matrixpower

• cumsum, cumprod, cummax, cummin

2. Group "Ops":

• "+", "-", "*", "/", "^", "%%", "%/%"
• "&", "|", "!"
• "==", "!=", "<", "<=", ">=", ">"

3. Group "Summary":

• all, any
• sum, prod
• min, max
• range

4. Group "Complex":

• Arg, Conj, Im, Mod, Re

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

eval.linim for evaluating expressions involving images.

Examples

fx <- function(x,y,seg,tp) { (x - y)^2 }
fL <- linfun(fx, simplenet)
Z <- as.linim(fL)
A <- Z+2
A <- -Z
A <- sqrt(Z)
A <- !(Z > 0.1)

matrixpower Power of a Matrix

Description

Evaluate a specified power of a matrix.

Usage

matrixpower(x, power, complexOK = TRUE)
matrixsqrt(x, complexOK = TRUE)
matrixinvsqrt(x, complexOK = TRUE)

maxnndist 903

Arguments

x A square matrix containing numeric or complex values.

power A numeric value giving the power (exponent) to which x should be raised.

complexOK Logical value indicating whether the result is allowed to be complex.

Details

These functions raise the matrix x to the desired power: matrixsqrt takes the square root, matrixinvsqrt
takes the inverse square root, and matrixpower takes the specified power of x.

Up to numerical error, matrixpower(x,2) should be equivalent to x %*% x, and matrixpower(x,-1)
should be equivalent to solve(x), the inverse of x.

The square root y <-matrixsqrt(x) should satisfy y %*% y = x. The inverse square root z <-matrixinvsqrt(x)
should satisfy z %*% z = solve(x).

Computations are performed using the eigen decomposition (eigen).

Value

A matrix of the same size as x containing numeric or complex values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

eigen, svd

Examples

x <- matrix(c(10,2,2,1), 2, 2)
y <- matrixsqrt(x)
y
y %*% y
z <- matrixinvsqrt(x)
z %*% y
matrixpower(x, 0.1)

maxnndist Compute Minimum or Maximum Nearest-Neighbour Distance

Description

A faster way to compute the minimum or maximum nearest-neighbour distance in a point pattern.

904 maxnndist

Usage

minnndist(X, positive=FALSE, by=NULL)
maxnndist(X, positive=FALSE, by=NULL)

Arguments

X A point pattern (object of class "ppp").

positive Logical. If FALSE (the default), compute the usual nearest-neighbour distance.
If TRUE, ignore coincident points, so that the nearest neighbour distance for each
point is greater than zero.

by Optional. A factor, which separates X into groups. The algorithm will compute
the distance to the nearest point in each group.

Details

These functions find the minimum and maximum values of nearest-neighbour distances in the point
pattern X. minnndist(X) and maxnndist(X) are equivalent to, but faster than, min(nndist(X))
and max(nndist(X)) respectively.

The value is NA if npoints(X) < 2.

Value

A single numeric value (possibly NA).

If by is given, the result is a numeric matrix giving the minimum or maximum nearest neighbour
distance between each subset of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

nndist

Examples

min(nndist(swedishpines))
minnndist(swedishpines)

max(nndist(swedishpines))
maxnndist(swedishpines)

minnndist(lansing, positive=TRUE)

if(interactive()) {
X <- rpoispp(1e6)
system.time(min(nndist(X)))
system.time(minnndist(X))

mean.im 905

}

minnndist(amacrine, by=marks(amacrine))
maxnndist(amacrine, by=marks(amacrine))

mean.im Mean and Median of Pixel Values in an Image

Description

Calculates the mean or median of the pixel values in a pixel image.

Usage

S3 method for class 'im'
mean(x, trim=0, na.rm=TRUE, ...)

S3 method for class 'im'
median(x, na.rm=TRUE) [R < 3.4.0]
median(x, na.rm=TRUE, ...) [R >= 3.4.0]

Arguments

x A pixel image (object of class "im").

na.rm Logical value indicating whether NA values should be stripped before the com-
putation proceeds.

trim The fraction (0 to 0.5) of pixel values to be trimmed from each end of their
range, before the mean is computed.

... Ignored.

Details

These functions calculate the mean and median of the pixel values in the image x.

An object of class "im" describes a pixel image. See im.object) for details of this class.

The function mean.im is a method for the generic function mean for the class "im". Similarly
median.im is a method for the generic median.

If the image x is logical-valued, the mean value of x is the fraction of pixels that have the value
TRUE. The median is not defined.

If the image x is factor-valued, then the mean of x is the mean of the integer codes of the pixel
values. The median is are not defined.

Other mathematical operations on images are supported by Math.im, Summary.im and Complex.im.

Other information about an image can be obtained using summary.im or quantile.im.

Value

A single number.

906 mean.linim

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Kassel Hingee.

See Also

Math.im for other operations.

Generics and default methods: mean, median.

quantile.im, anyNA.im, im.object, summary.im.

Examples

X <- as.im(function(x,y) {x^2}, unit.square())
mean(X)
median(X)
mean(X, trim=0.05)

mean.linim Mean, Median, Quantiles of Pixel Values on a Linear Network

Description

Calculates the mean, median, or quantiles of the pixel values in a pixel image on a linear network.

Usage

S3 method for class 'linim'
mean(x, ...)

S3 method for class 'linim'
median(x, ...)

S3 method for class 'linim'
quantile(x, probs=seq(0,1,0.25), ...)

Arguments

x A pixel image on a linear network (object of class "linim").
probs Vector of probabilities for which quantiles should be calculated.
... Arguments passed to other methods.

Details

These functions calculate the mean, median and quantiles of the pixel values in the image x on a
linear network.

An object of class "linim" describes a pixel image on a linear network. See linim.

The functions described here are methods for the generic mean, median and quantile for the class
"linim".

measureContinuous 907

Value

For mean and median, a single number. For quantile, a numeric vector of the same length as
probs.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

mean, median, quantile,

mean.im.

Examples

M <- as.mask.psp(as.psp(simplenet))
Z <- as.im(function(x,y) {x-y}, W=M)
X <- linim(simplenet, Z)
X
mean(X)
median(X)
quantile(X)

measureContinuous Discrete and Continuous Components of a Measure

Description

Given a measure A (object of class "msr") these functions find the discrete and continuous parts of
A.

Usage

measureDiscrete(x)
measureContinuous(x)

Arguments

x A measure (object of class "msr").

Details

The functions measureDiscrete and measureContinuous return the discrete and continuous com-
ponents, respectively, of a measure.

If x is a measure, then measureDiscrete(x) is a measure consisting only of the discrete (atomic)
component of x, and measureContinuous(x) is a measure consisting only of the continuous (dif-
fuse) component of x.

908 measureVariation

Value

Another measure (object of class "msr") on the same spatial domain.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Halmos, P.R. (1950) Measure Theory. Van Nostrand.

See Also

msr, with.msr, split.msr, measurePositive

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")

rp
measureDiscrete(rp)
measureContinuous(rp)

measureVariation Positive and Negative Parts, and Variation, of a Measure

Description

Given a measure A (object of class "msr") these functions find the positive part, negative part and
variation of A.

Usage

measurePositive(x)
measureNegative(x)
measureVariation(x)
totalVariation(x)

Arguments

x A measure (object of class "msr").

measureVariation 909

Details

The functions measurePositive and measureNegative return the positive and negative parts of
the measure, and measureVariation returns the variation (sum of positive and negative parts). The
function totalVariation returns the total variation norm.

If µ is a signed measure, it can be represented as

µ = µ+ − µ−

where µ+ and µ− are nonnegative measures called the positive and negative parts of µ. In a nutshell,
the positive part of µ consists of all positive contributions or increments, and the negative part
consists of all negative contributions multiplied by -1.

The variation |µ| is defined by
µ = µ+ + µ−

and is also a nonnegative measure.

The total variation norm is the integral of the variation.

Value

The result of measurePositive, measureNegative and measureVariation is another measure
(object of class "msr") on the same spatial domain. The result of totalVariation is a non-negative
number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Halmos, P.R. (1950) Measure Theory. Van Nostrand.

See Also

msr, with.msr, split.msr, measureDiscrete

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")

measurePositive(rp)
measureNegative(rp)
measureVariation(rp)

total variation norm
totalVariation(rp)

910 mergeLevels

mergeLevels Merge Levels of a Factor

Description

Specified levels of the factor will be merged into a single level.

Usage

mergeLevels(.f, ...)

Arguments

.f A factor (or a factor-valued pixel image or a point pattern with factor-valued
marks).

... List of name=value pairs, where name is the new merged level, and value is the
vector of old levels that will be merged.

Details

This utility function takes a factor .f and merges specified levels of the factor.

The grouping is specified by the arguments ... which must each be given in the form new=old,
where new is the name for the new merged level, and old is a character vector containing the old
levels that are to be merged.

The result is a new factor (or factor-valued object), in which the levels listed in old have been
replaced by a single level new.

An argument of the form name=character(0) or name=NULL is interpreted to mean that all other
levels of the old factor should be mapped to name.

Value

Another factor of the same length as .f (or object of the same kind as .f).

Tips for manipulating factor levels

To remove unused levels from a factor f, just type f <-factor(f).

To change the ordering of levels in a factor, use factor(f,levels=l) or relevel(f,ref).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

methods.box3 911

See Also

factor, relevel

Examples

likert <- c("Strongly Agree", "Agree", "Neutral",
"Disagree", "Strongly Disagree")

answers <- factor(sample(likert, 15, replace=TRUE), levels=likert)
answers
mergeLevels(answers, Positive=c("Strongly Agree", "Agree"),

Negative=c("Strongly Disagree", "Disagree"))

methods.box3 Methods for Three-Dimensional Box

Description

Methods for class "box3".

Usage

S3 method for class 'box3'
print(x, ...)
S3 method for class 'box3'

unitname(x)
S3 replacement method for class 'box3'

unitname(x) <- value

Arguments

x Object of class "box3" representing a three-dimensional box.

... Other arguments passed to print.default.

value Name of the unit of length. See unitname.

Details

These are methods for the generic functions print and unitname for the class "box3" of three-
dimensional boxes.

The print method prints a description of the box, while the unitname method extracts the name of
the unit of length in which the box coordinates are expressed.

Value

For print.box3 the value is NULL. For unitname.box3 an object of class "units".

912 methods.boxx

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

box3, print, unitname

Examples

X <- box3(c(0,10),c(0,10),c(0,5), unitname=c("metre", "metres"))
X
unitname(X)
Northern European usage
unitname(X) <- "meter"

methods.boxx Methods for Multi-Dimensional Box

Description

Methods for class "boxx".

Usage

S3 method for class 'boxx'
print(x, ...)
S3 method for class 'boxx'

unitname(x)
S3 replacement method for class 'boxx'

unitname(x) <- value

Arguments

x Object of class "boxx" representing a multi-dimensional box.

... Other arguments passed to print.default.

value Name of the unit of length. See unitname.

Details

These are methods for the generic functions print and unitname for the class "boxx" of multi-
dimensional boxes.

The print method prints a description of the box, while the unitname method extracts the name of
the unit of length in which the box coordinates are expressed.

methods.distfun 913

Value

For print.boxx the value is NULL. For unitname.boxx an object of class "units".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

boxx, print, unitname

Examples

X <- boxx(c(0,10),c(0,10),c(0,5),c(0,1), unitname=c("metre", "metres"))
X
unitname(X)
Northern European usage
unitname(X) <- "meter"

methods.distfun Geometrical Operations for Distance Functions

Description

Methods for objects of the class "distfun".

Usage

S3 method for class 'distfun'
shift(X, ...)

S3 method for class 'distfun'
rotate(X, ...)

S3 method for class 'distfun'
scalardilate(X, ...)

S3 method for class 'distfun'
affine(X, ...)

S3 method for class 'distfun'
flipxy(X)

S3 method for class 'distfun'
reflect(X)

S3 method for class 'distfun'
rescale(X, s, unitname)

914 methods.distfun

Arguments

X Object of class "distfun" representing the distance function of a spatial object.

... Arguments passed to the next method for the geometrical operation. See Details.

s, unitname Arguments passed to the next method for rescale.

Details

These are methods for the generic functions shift, rotate, scalardilate, affine, flipxy and
reflect which perform geometrical operations on spatial objects, and for the generic rescale
which changes the unit of length.

The argument X should be an object of class "distfun" representing the distance function of a
spatial object Y. Objects of class "distfun" are created by distfun.

The methods apply the specified geometrical transformation to the original object Y, producing a
new object Z of the same type as Y. They then create a new distfun object representing the distance
function of Z.

Value

Another object of class "distfun".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

distfun, methods.funxy.

Examples

(f <- distfun(letterR))
plot(f)
flipxy(f)
shift(f, origin="midpoint")
plot(rotate(f, angle=pi/2))

(g <- distfun(lansing))
rescale(g)

methods.dppm 915

methods.dppm Methods for Determinantal Point Process Models

Description

These are methods for the class "dppm".

Usage

S3 method for class 'dppm'
coef(object, ...)
S3 method for class 'dppm'
formula(x, ...)
S3 method for class 'dppm'
print(x, ...)
S3 method for class 'dppm'
terms(x, ...)
S3 method for class 'dppm'
labels(object, ...)

Arguments

x,object An object of class "dppm", representing a fitted determinantal point process
model.

... Arguments passed to other methods.

Details

These functions are methods for the generic commands coef, formula, print, terms and labels
for the class "dppm".

An object of class "dppm" represents a fitted determinantal point process model. It is obtained from
dppm.

The method coef.dppm returns the vector of regression coefficients of the fitted model. It does not
return the interaction parameters.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

dppm, plot.dppm, predict.dppm, simulate.dppm, as.ppm.dppm.

916 methods.fii

Examples

fit <- dppm(swedishpines ~ x + y, dppGauss())
coef(fit)
formula(fit)
tf <- terms(fit)
labels(fit)

methods.fii Methods for Fitted Interactions

Description

These are methods specifically for the class "fii" of fitted interpoint interactions.

Usage

S3 method for class 'fii'
print(x, ...)

S3 method for class 'fii'
coef(object, ...)

S3 method for class 'fii'
plot(x, ...)

S3 method for class 'fii'
summary(object,...)

S3 method for class 'summary.fii'
print(x, ...)

S3 method for class 'summary.fii'
coef(object, ...)

Arguments

x,object An object of class "fii" representing a fitted interpoint interaction.

... Arguments passed to other methods.

Details

These are methods for the class "fii". An object of class "fii" represents a fitted interpoint
interaction. It is usually obtained by using the command fitin to extract the fitted interaction part
of a fitted point process model. See fitin for further explanation of this class.

The commands listed here are methods for the generic functions print, summary, plot and coef
for objects of the class "fii".

methods.funxy 917

Following the usual convention, summary.fii returns an object of class summary.fii, for which
there is a print method. The effect is that, when the user types summary(x), the summary is printed,
but when the user types y <-summary(x), the summary information is saved.

The method coef.fii extracts the canonical coefficients of the fitted interaction, and returns them
as a numeric vector. The method coef.summary.fii transforms these values into quantities that
are more easily interpretable, in a format that depends on the particular model.

There are also methods for the generic commands reach and as.interact, described elsewhere.

Value

The print and plot methods return NULL.

The summary method returns an object of class summary.fii.

coef.fii returns a numeric vector. coef.summary.fii returns data whose structure depends on
the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

fitin, reach.fii, as.interact.fii

Examples

mod <- ppm(cells, ~1, Strauss(0.1))
f <- fitin(mod)
f
summary(f)
plot(f)
coef(f)
coef(summary(f))

methods.funxy Methods for Spatial Functions

Description

Methods for objects of the class "funxy".

Usage

S3 method for class 'funxy'
contour(x, ...)
S3 method for class 'funxy'
persp(x, ...)
S3 method for class 'funxy'
plot(x, ...)

918 methods.kppm

Arguments

x Object of class "funxy" representing a function of x, y coordinates.

... Named arguments controlling the plot. See Details.

Details

These are methods for the generic functions plot, contour and persp for the class "funxy" of
spatial functions.

Objects of class "funxy" are created, for example, by the commands distfun and funxy.

The plot, contour and persp methods first convert x to a pixel image object using as.im, then
display it using plot.im, contour.im or persp.im.

Additional arguments ... are either passed to as.im.function to control the spatial resolution of
the pixel image, or passed to contour.im, persp.im or plot.im to control the appearance of the
plot.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

funxy, distfun, as.im, plot.im, persp.im, contour.im, spatstat.options

Examples

f <- distfun(letterR)
contour(f)
B <- owin(c(1,5), c(-1, 4))
contour(f, W=B)
persp(f, W=B, theta=40, phi=40, border=NA, shade=0.7)

methods.kppm Methods for Cluster Point Process Models

Description

These are methods for the class "kppm".

methods.kppm 919

Usage

S3 method for class 'kppm'
coef(object, ...)
S3 method for class 'kppm'
formula(x, ...)
S3 method for class 'kppm'
print(x, ...)
S3 method for class 'kppm'
terms(x, ...)
S3 method for class 'kppm'
labels(object, ...)

Arguments

x,object An object of class "kppm", representing a fitted cluster point process model.

... Arguments passed to other methods.

Details

These functions are methods for the generic commands coef, formula, print, terms and labels
for the class "kppm".

An object of class "kppm" represents a fitted cluster point process model. It is obtained from kppm.

The method coef.kppm returns the vector of regression coefficients of the fitted model. It does not
return the clustering parameters.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

kppm, plot.kppm, predict.kppm, simulate.kppm, update.kppm, vcov.kppm, as.ppm.kppm.

Examples

data(redwood)
fit <- kppm(redwood ~ x, "MatClust")
coef(fit)
formula(fit)
tf <- terms(fit)
labels(fit)

920 methods.layered

methods.layered Methods for Layered Objects

Description

Methods for geometrical transformations of layered objects (class "layered").

Usage

S3 method for class 'layered'
shift(X, vec=c(0,0), ...)

S3 method for class 'layered'
rotate(X, ..., centre=NULL)

S3 method for class 'layered'
affine(X, ...)

S3 method for class 'layered'
reflect(X)

S3 method for class 'layered'
flipxy(X)

S3 method for class 'layered'
rescale(X, s, unitname)

S3 method for class 'layered'
scalardilate(X, ...)

Arguments

X Object of class "layered".

... Arguments passed to the relevant methods when applying the operation to each
layer of X.

s Rescaling factor passed to the relevant method for rescale. May be missing.

vec Shift vector (numeric vector of length 2).

centre Centre of rotation. Either a vector of length 2, or a character string (partially
matched to "centroid", "midpoint" or "bottomleft"). The default is the
coordinate origin c(0,0).

unitname Optional. New name for the unit of length. A value acceptable to the function
unitname<-

methods.linfun 921

Details

These are methods for the generic functions shift, rotate, reflect, affine, rescale, scalardilate
and flipxy for the class of layered objects.

A layered object represents data that should be plotted in successive layers, for example, a back-
ground and a foreground. See layered.

Value

Another object of class "layered".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

layered

Examples

L <- layered(letterR, runifpoint(20, letterR))
plot(L)
plot(rotate(L, pi/4))

methods.linfun Methods for Functions on Linear Network

Description

Methods for the class "linfun" of functions on a linear network.

Usage

S3 method for class 'linfun'
print(x, ...)

S3 method for class 'linfun'
summary(object, ...)

S3 method for class 'linfun'
plot(x, ..., L=NULL, main)

S3 method for class 'linfun'
as.data.frame(x, ...)

S3 method for class 'linfun'

922 methods.linfun

as.owin(W, ...)

S3 method for class 'linfun'
as.function(x, ...)

Arguments

x,object,W A function on a linear network (object of class "linfun").

L A linear network

... Extra arguments passed to as.linim, plot.linim, plot.im or print.default,
or arguments passed to x if it is a function.

main Main title for plot.

Details

These are methods for the generic functions plot, print, summary as.data.frame and as.function,
and for the spatstat generic function as.owin.

An object of class "linfun" represents a mathematical function that could be evaluated at any
location on a linear network. It is essentially an R function with some extra attributes.

The method as.owin.linfun extracts the two-dimensional spatial window containing the linear
network.

The method plot.linfun first converts the function to a pixel image using as.linim.linfun, then
plots the image using plot.linim.

Note that a linfun function may have additional arguments, other than those which specify the
location on the network (see linfun). These additional arguments may be passed to plot.linfun.

Value

For print.linfun and summary.linfun the result is NULL.

For plot.linfun the result is the same as for plot.linim.

For the conversion methods, the result is an object of the required type: as.owin.linfun returns
an object of class "owin", and so on.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

Examples

X <- runiflpp(3, simplenet)
f <- nnfun(X)
f
plot(f)
as.function(f)
as.owin(f)
head(as.data.frame(f))

methods.linim 923

methods.linim Methods for Images on a Linear Network

Description

Methods for the class "linim" of functions on a linear network.

Usage

S3 method for class 'linim'
print(x, ...)

S3 method for class 'linim'
summary(object, ...)

S3 method for class 'linim'
as.im(X, ...)

S3 method for class 'linim'
as.data.frame(x, ...)

S3 method for class 'linim'
shift(X, ...)

S3 method for class 'linim'
scalardilate(X, f, ..., origin=NULL)

S3 method for class 'linim'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

Arguments

X,x,object A pixel image on a linear network (object of class "linim").

... Extra arguments passed to other methods.

f Numeric. Scalar dilation factor.

mat Numeric matrix representing the linear transformation.

vec Numeric vector of length 2 specifying the shift vector.

origin Character string determining a location that will be shifted to the origin. Options
are "centroid", "midpoint" and "bottomleft". Partially matched.

Details

These are methods for the generic functions print, summary and as.data.frame, and the spatstat
generic functions as.im, shift, scalardilate and affine.

An object of class "linfun" represents a pixel image defined on a linear network.

924 methods.linnet

The method as.im.linim extracts the pixel values and returns a pixel image of class "im".

The method as.data.frame.linim returns a data frame giving spatial locations (in cartesian and
network coordinates) and corresponding function values.

The methods shift.linim, scalardilate.linim and affine.linim apply geometric transfor-
mations to the pixels and the underlying linear network, without changing the pixel values.

Value

For print.linim the result is NULL.

The function summary.linim returns an object of class "summary.linim". In normal usage this
summary is automatically printed by print.summary.linim.

For as.im.linim the result is an object of class "im".

For the geometric transformations shift.linim, scalardilate.linim and affine.linim, the
result is another object of class "linim".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

Examples

M <- as.mask.psp(as.psp(simplenet))
Z <- as.im(function(x,y) {x-y}, W=M)
X <- linim(simplenet, Z)
............ print basic details
X
............ print gory details
summary(X)
...
shift(X, c(1,1))
scalardilate(X, 2)
head(as.data.frame(X))

methods.linnet Methods for Linear Networks

Description

These are methods for the class "linnet" of linear networks.

methods.linnet 925

Usage

as.linnet(X, ...)

S3 method for class 'linnet'
as.linnet(X, ..., sparse, maxsize=30000)

S3 method for class 'linnet'
as.owin(W, ...)

S3 method for class 'linnet'
as.psp(x, ..., fatal=TRUE)

S3 method for class 'linnet'
nsegments(x)

S3 method for class 'linnet'
nvertices(x, ...)

S3 method for class 'linnet'
pixellate(x, ...)

S3 method for class 'linnet'
print(x, ...)

S3 method for class 'linnet'
summary(object, ...)

S3 method for class 'linnet'
unitname(x)

S3 replacement method for class 'linnet'
unitname(x) <- value

vertexdegree(x)

S3 method for class 'linnet'
vertices(w)

S3 method for class 'linnet'
volume(x)

S3 method for class 'linnet'
Window(X, ...)

Arguments

x,X,object,w,W An object of class "linnet" representing a linear network.

... Arguments passed to other methods.

926 methods.linnet

value A valid name for the unit of length for x. See unitname.

fatal Logical value indicating whether data in the wrong format should lead to an
error (fatal=TRUE) or a warning (fatal=FALSE).

sparse Logical value indicating whether to use a sparse matrix representation, as ex-
plained in linnet. Default is to keep the same representation as in X.

maxsize Maximum permitted number of network vertices (to prevent a system crash due
to lack of memory) when creating a network with sparse=FALSE.

Details

The function as.linnet is generic. It converts data from some other format into an object of
class "linnet". The method as.linnet.lpp extracts the linear network information from an lpp
object. The method as.linnet.linnet converts a linear network into another linear network with
the required format.

The other functions are methods for the generic commands as.owin, as.psp, nsegments, nvertices,
pixellate, print, summary, unitname, unitname<-, vertices, volume and Window for the class
"linnet".

The methods as.owin.linnet and Window.linnet extract the window containing the linear net-
work, and return it as an object of class "owin".

The method as.psp.linnet extracts the lines of the linear network as a line segment pattern (object
of class "psp") while nsegments.linnet simply counts the number of line segments.

The method vertices.linnet extracts the vertices (nodes) of the linear network and nvertices.linnet
simply counts the vertices. The function vertexdegree calculates the topological degree of each
vertex (the number of lines emanating from that vertex) and returns these values as an integer vector.

The method pixellate.linnet applies as.psp.linnet to convert the network to a collection of
line segments, then invokes pixellate.psp.

Value

For as.linnet the value is an object of class "linnet". For other functions, see the help file for
the corresponding generic function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

linnet.

Generic functions: as.owin, as.psp, nsegments, nvertices, pixellate, print, summary, unitname,
unitname<-, vertices, volume and Window.

Special tools: thinNetwork, insertVertices, joinVertices, connected.linnet.

lixellate for dividing segments into shorter segments.

methods.lpp 927

Examples

simplenet
summary(simplenet)
nsegments(simplenet)
nvertices(simplenet)
pixellate(simplenet)
volume(simplenet)
unitname(simplenet) <- c("cubit", "cubits")
Window(simplenet)

methods.lpp Methods for Point Patterns on a Linear Network

Description

These are methods specifically for the class "lpp" of point patterns on linear networks.

Usage

S3 method for class 'lpp'
as.ppp(X, ..., fatal=TRUE)

S3 method for class 'lpp'
as.psp(x, ..., fatal=TRUE)

S3 replacement method for class 'lpp'
marks(x, ...) <- value

S3 method for class 'lpp'
nsegments(x)

S3 method for class 'lpp'
print(x, ...)

S3 method for class 'summary.lpp'
print(x, ...)

S3 method for class 'lpp'
summary(object, ...)

S3 method for class 'lpp'
unitname(x)

S3 replacement method for class 'lpp'
unitname(x) <- value

S3 method for class 'lpp'
unmark(X)

928 methods.lpp

Arguments

x,X,object An object of class "lpp" representing a point pattern on a linear network.

... Arguments passed to other methods.

value Replacement value for the marks or unitname of x. See Details.

fatal Logical value indicating whether data in the wrong format should lead to an
error (fatal=TRUE) or a warning (fatal=FALSE).

Details

These are methods for the generic functions as.ppp, as.psp, marks<-, nsegments, print, summary,
unitname, unitname<- and unmark for objects of the class "lpp".

For "marks<-.lpp" the replacement value should be either NULL, or a vector of length equal to the
number of points in x, or a data frame with one row for each point in x.

For "unitname<-.lpp" the replacement value should be a valid name for the unit of length, as
described in unitname.

Value

See the documentation on the corresponding generic function.

Other methods

An object of class "lpp" also inherits the class "ppx" for which many other methods are available.
See methods.ppx.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

lpp, intensity.lpp, methods.ppx

Examples

X <- runiflpp(10, simplenet)
unitname(X) <- c("furlong", "furlongs")
X
summary(X)
summary(chicago)
nsegments(X)
Y <- as.ppp(X)

methods.lppm 929

methods.lppm Methods for Fitted Point Process Models on a Linear Network

Description

These are methods for the class "lppm" of fitted point process models on a linear network.

Usage

S3 method for class 'lppm'
coef(object, ...)

S3 method for class 'lppm'
emend(object, ...)

S3 method for class 'lppm'
extractAIC(fit, ...)

S3 method for class 'lppm'
formula(x, ...)

S3 method for class 'lppm'
logLik(object, ...)

S3 method for class 'lppm'
deviance(object, ...)

S3 method for class 'lppm'
nobs(object, ...)

S3 method for class 'lppm'
print(x, ...)

S3 method for class 'lppm'
summary(object, ...)

S3 method for class 'lppm'
terms(x, ...)

S3 method for class 'lppm'
update(object, ...)

S3 method for class 'lppm'
valid(object, ...)

S3 method for class 'lppm'
vcov(object, ...)

930 methods.lppm

S3 method for class 'lppm'
as.linnet(X, ...)

Arguments

object,fit,x,X An object of class "lppm" representing a fitted point process model on a linear
network.

... Arguments passed to other methods, usually the method for the class "ppm".

Details

These are methods for the generic commands coef, emend, extractAIC, formula, logLik, deviance,
nobs, print, summary, terms, update, valid and vcov for the class "lppm".

Value

See the default methods.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

lppm, plot.lppm.

Examples

X <- runiflpp(15, simplenet)
fit <- lppm(X ~ x)
print(fit)
coef(fit)
formula(fit)
terms(fit)
logLik(fit)
deviance(fit)
nobs(fit)
extractAIC(fit)
update(fit, ~1)
valid(fit)
vcov(fit)

methods.objsurf 931

methods.objsurf Methods for Objective Function Surfaces

Description

Methods for printing and plotting an objective function surface.

Usage

S3 method for class 'objsurf'
print(x, ...)
S3 method for class 'objsurf'
plot(x, ...)
S3 method for class 'objsurf'
image(x, ...)
S3 method for class 'objsurf'
contour(x, ...)
S3 method for class 'objsurf'
persp(x, ...)

Arguments

x Object of class "objsurf" representing an objective function surface.

... Additional arguments passed to plot methods.

Details

These are methods for the generic functions print, plot, image, contour and persp for the class
"objsurf".

Value

For print.objsurf, plot.objsurf and image.objsurf the value is NULL.

For contour.objsurf and persp.objsurf the value is described in the help for contour.default
and persp.default respectively.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Ege Rubak <rubak@math.aau.dk>.

See Also

objsurf

932 methods.pp3

Examples

fit <- kppm(redwood ~ 1, "Thomas")
os <- objsurf(fit)
os
plot(os)
contour(os, add=TRUE)
persp(os)

methods.pp3 Methods for three-dimensional point patterns

Description

Methods for class "pp3".

Usage

S3 method for class 'pp3'
print(x, ...)
S3 method for class 'summary.pp3'

print(x, ...)
S3 method for class 'pp3'

summary(object, ...)
S3 method for class 'pp3'

unitname(x)
S3 replacement method for class 'pp3'

unitname(x) <- value

Arguments

x,object Object of class "pp3".

... Ignored.

value Name of the unit of length. See unitname.

Details

These are methods for the generic functions print, summary, unitname and unitname<- for the
class "pp3" of three-dimensional point patterns.

The print and summary methods print a description of the point pattern.

The unitname method extracts the name of the unit of length in which the point coordinates are
expressed. The unitname<- method assigns the name of the unit of length.

Value

For print.pp3 the value is NULL. For unitname.pp3 an object of class "units".

methods.ppx 933

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pp3, print, unitname unitname<-

Examples

X <- pp3(runif(42),runif(42),runif(42), box3(c(0,1), unitname="mm"))
X
unitname(X)
unitname(X) <- c("foot", "feet")
summary(X)

methods.ppx Methods for Multidimensional Space-Time Point Patterns

Description

Methods for printing and plotting a general multidimensional space-time point pattern.

Usage

S3 method for class 'ppx'
print(x, ...)
S3 method for class 'ppx'
plot(x, ...)
S3 method for class 'ppx'
unitname(x)
S3 replacement method for class 'ppx'
unitname(x) <- value

Arguments

x Multidimensional point pattern (object of class "ppx").

... Additional arguments passed to plot methods.

value Name of the unit of length. See unitname.

Details

These are methods for the generic functions print, plot, unitname and unitname<- for the class
"ppx" of multidimensional point patterns.

The print method prints a description of the point pattern and its spatial domain.

The unitname method extracts the name of the unit of length in which the point coordinates are
expressed. The unitname<- method assigns the name of the unit of length.

934 methods.rho2hat

Value

For print.ppx the value is NULL. For unitname.ppx an object of class "units".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppx, unitname

methods.rho2hat Methods for Intensity Functions of Two Spatial Covariates

Description

These are methods for the class "rho2hat".

Usage

S3 method for class 'rho2hat'
plot(x, ..., do.points=FALSE)

S3 method for class 'rho2hat'
print(x, ...)

S3 method for class 'rho2hat'
predict(object, ..., relative=FALSE)

Arguments

x,object An object of class "rho2hat".

... Arguments passed to other methods.

do.points Logical value indicating whether to plot the observed values of the covariates at
the data points.

relative Logical value indicating whether to compute the estimated point process inten-
sity (relative=FALSE) or the relative risk (relative=TRUE) in the case of a
relative risk estimate.

methods.rhohat 935

Details

These functions are methods for the generic commands print, predict and plot for the class
"rho2hat".

An object of class "rho2hat" is an estimate of the intensity of a point process, as a function of two
given spatial covariates. See rho2hat.

The method plot.rho2hat displays the estimated function ρ using plot.fv, and optionally adds a
rug plot of the observed values of the covariate. In this plot the two axes represent possible values
of the two covariates.

The method predict.rho2hat computes a pixel image of the intensity ρ(Z1(u), Z2(u)) at each
spatial location u, where Z1(u) and Z2(u) are the two spatial covariates.

Value

For predict.rho2hat the value is a pixel image (object of class "im"). For other functions, the
value is NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rho2hat

Examples

r2 <- with(bei.extra, rho2hat(bei, elev, grad))
r2
plot(r2)
plot(predict(r2))

methods.rhohat Methods for Intensity Functions of Spatial Covariate

Description

These are methods for the class "rhohat".

Usage

S3 method for class 'rhohat'
print(x, ...)

S3 method for class 'rhohat'
plot(x, ..., do.rug=TRUE)

S3 method for class 'rhohat'

936 methods.rhohat

predict(object, ..., relative=FALSE,
what=c("rho", "lo", "hi", "se"))

S3 method for class 'rhohat'
simulate(object, nsim=1, ..., drop=TRUE)

Arguments

x,object An object of class "rhohat" representing a smoothed estimate of the intensity
function of a point process.

... Arguments passed to other methods.

do.rug Logical value indicating whether to plot the observed values of the covariate as
a rug plot along the horizontal axis.

relative Logical value indicating whether to compute the estimated point process inten-
sity (relative=FALSE) or the relative risk (relative=TRUE) in the case of a
relative risk estimate.

nsim Number of simulations to be generated.

drop Logical value indicating what to do when nsim=1. If drop=TRUE (the default),
a point pattern is returned. If drop=FALSE, a list of length 1 containing a point
pattern is returned.

what Optional character string (partially matched) specifying which value should be
calculated: either the function estimate (what="rho", the default), the lower or
upper end of the confidence interval (what="lo" or what="hi") or the standard
error (what="se").

Details

These functions are methods for the generic commands print, plot, predict and simulate for
the class "rhohat".

An object of class "rhohat" is an estimate of the intensity of a point process, as a function of a
given spatial covariate. See rhohat.

The method plot.rhohat displays the estimated function ρ using plot.fv, and optionally adds a
rug plot of the observed values of the covariate.

The method predict.rhohat computes a pixel image of the intensity ρ(Z(u)) at each spatial
location u, where Z is the spatial covariate.

The method simulate.rhohat invokes predict.rhohat to determine the predicted intensity, and
then simulates a Poisson point process with this intensity.

Value

For predict.rhohat the value is a pixel image (object of class "im" or "linim"). For simulate.rhohat
the value is a point pattern (object of class "ppp" or "lpp"). For other functions, the value is NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

methods.slrm 937

See Also

rhohat

Examples

X <- rpoispp(function(x,y){exp(3+3*x)})
rho <- rhohat(X, function(x,y){x})
rho
plot(rho)
Y <- predict(rho)
plot(Y)
plot(simulate(rho), add=TRUE)
#
fit <- ppm(X, ~x)
rho <- rhohat(fit, "y")
opa <- par(mfrow=c(1,2))
plot(predict(rho))
plot(predict(rho, relative=TRUE))
par(opa)
plot(predict(rho, what="se"))

methods.slrm Methods for Spatial Logistic Regression Models

Description

These are methods for the class "slrm".

Usage

S3 method for class 'slrm'
formula(x, ...)
S3 method for class 'slrm'
print(x, ...)
S3 method for class 'slrm'
terms(x, ...)
S3 method for class 'slrm'
labels(object, ...)
S3 method for class 'slrm'
update(object, ..., evaluate = TRUE, env = parent.frame())

Arguments

x,object An object of class "slrm", representing a fitted spatial logistic regression model.

... Arguments passed to other methods.

evaluate Logical value. If TRUE, evaluate the updated call to slrm, so that the model is
refitted; if FALSE, simply return the updated call.

env Optional environment in which the model should be updated.

938 methods.ssf

Details

These functions are methods for the generic commands formula, update, print, terms and labels
for the class "slrm".

An object of class "slrm" represents a fitted spatial logistic regression model. It is obtained from
slrm.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

slrm, plot.slrm, predict.slrm, simulate.slrm, vcov.slrm, coef.slrm.

Examples

data(redwood)
fit <- slrm(redwood ~ x)
coef(fit)
formula(fit)
tf <- terms(fit)
labels(fit)

methods.ssf Methods for Spatially Sampled Functions

Description

Methods for various generic commands, for the class "ssf" of spatially sampled functions.

Usage

S3 method for class 'ssf'
marks(x, ...)

S3 replacement method for class 'ssf'
marks(x, ...) <- value

S3 method for class 'ssf'
unmark(X)

S3 method for class 'ssf'
as.im(X, ...)

methods.ssf 939

S3 method for class 'ssf'
as.function(x, ...)

S3 method for class 'ssf'
as.ppp(X, ...)

S3 method for class 'ssf'
print(x, ..., brief=FALSE)

S3 method for class 'ssf'
summary(object, ...)

S3 method for class 'ssf'
range(x, ...)

S3 method for class 'ssf'
min(x, ...)

S3 method for class 'ssf'
max(x, ...)

S3 method for class 'ssf'
integral(f, domain=NULL, ..., weights=attr(f, "weights"))

Arguments

x,X,f,object A spatially sampled function (object of class "ssf").

... Arguments passed to the default method.

brief Logical value controlling the amount of detail printed.

value Matrix of replacement values for the function.

domain Optional. Domain of integration. An object of class"owin" or "tess".

weights Optional. Numeric vector of quadrature weights associated with the sample
points.

Details

An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a
finite set of points.

The commands documented here are methods for this class, for the generic commands marks,
marks<-, unmark, as.im, as.function, as.ppp, print, summary, range, min, max and integral.

Value

marks returns a matrix.

marks(x) <-value returns an object of class "ssf".

as.owin returns a window (object of class "owin").

940 methods.unitname

as.ppp and unmark return a point pattern (object of class "ppp").

as.function returns a function(x,y) of class "funxy".

print returns NULL.

summary returns an object of class "summary.ssf" which has a print method.

range returns a numeric vector of length 2. min and max return a single numeric value.

integral returns a numeric or complex value, vector, or matrix. integral(f) returns a numeric or
complex value (if f had numeric or complex values) or a numeric vector (if f had vector values). If
domain is a tessellation then integral(f,domain) returns a numeric or complex vector with one
entry for each tile (if f had numeric or complex values) or a numeric matrix with one row for each
tile (if f had vector values).

Author(s)

Adrian Baddeley

See Also

ssf

Examples

g <- distfun(cells[1:4])
X <- rsyst(Window(cells), 10)
f <- ssf(X, g(X))
f
summary(f)
marks(f)
as.ppp(f)
as.im(f)
integral(f)
integral(f, quadrats(Window(f), 3))

methods.unitname Methods for Units

Description

Methods for class "unitname".

Usage

S3 method for class 'unitname'
print(x, ...)
S3 method for class 'unitname'

summary(object, ...)
S3 method for class 'unitname'

rescale(X, s, unitname)

methods.unitname 941

S3 method for class 'unitname'
compatible(A,B, ..., coerce=TRUE)
S3 method for class 'unitname'

harmonise(..., coerce=TRUE, single=FALSE)
S3 method for class 'unitname'

harmonize(..., coerce=TRUE, single=FALSE)

Arguments

x,X,A,B,object Objects of class "unitname" representing units of length.

... Other arguments. For print.unitname these arguments are passed to print.default.
For summary.unitname they are ignored. For compatible.unitname and harmonise.unitname
these arguments are other objects of class "unitname".

s Conversion factor: the new units are s times the old units.

unitname Optional new name for the unit. If present, this overrides the rescaling operation
and simply substitutes the new name for the old one.

coerce Logical. If TRUE, a null unit of length is compatible with any non-null unit.

single Logical value indicating whether to return a single unitname, or a list of unit-
names.

Details

These are methods for the generic functions print, summary, rescale and compatible for the
class "unitname".

An object of class "unitname" represents a unit of length.

The print method prints a description of the unit of length, and the summary method gives a more
detailed description.

The rescale method changes the unit of length by rescaling it.

The compatible method tests whether two or more units of length are compatible.

The harmonise method returns the common unit of length if there is one. For consistency with other
methods for harmonise, the result is a list of unitname objects, with one entry for each argument
in All of these entries are identical. This can be overridden by setting single=TRUE when the
result will be a single unitname object.

Value

For print.unitname the value is NULL. For summary.unitname the value is an object of class
summary.unitname (with its own print method). For rescale.unitname the value is another object
of class "unitname". For compatible.unitname the result is logical. For harmonise.unitname
the result is a list of identical unitnames if single=FALSE (the default), or a single unitname if
single=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

942 methods.zclustermodel

See Also

box3, print, unitname

methods.zclustermodel Methods for Cluster Models

Description

Methods for the experimental class of cluster models.

Usage

S3 method for class 'zclustermodel'
pcfmodel(model, ...)

S3 method for class 'zclustermodel'
predict(object, ...,

locations, type = "intensity", ngrid = NULL)

S3 method for class 'zclustermodel'
print(x, ...)

Arguments

model,object,x Object of class "zclustermodel".

... Arguments passed to other methods.

locations Locations where prediction should be performed. A window or a point pattern.

type Currently must equal "intensity".

ngrid Pixel grid dimensions for prediction, if locations is a rectangle or polygon.

Details

Experimental.

Value

Same as for other methods.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

zclustermodel

midpoints.psp 943

Examples

m <- zclustermodel("Thomas", kappa=10, mu=5, scale=0.1)
m2 <- zclustermodel("VarGamma", kappa=10, mu=10, scale=0.1, nu=0.7)
m
m2
g <- pcfmodel(m)
g(0.2)
g2 <- pcfmodel(m2)
g2(1)
Z <- predict(m, locations=square(2))
Z2 <- predict(m2, locations=square(1))
varcount(m, square(1))
varcount(m2, square(1))

midpoints.psp Midpoints of Line Segment Pattern

Description

Computes the midpoints of each line segment in a line segment pattern.

Usage

midpoints.psp(x)

Arguments

x A line segment pattern (object of class "psp").

Details

The midpoint of each line segment is computed.

Value

Point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

marks.psp, summary.psp, lengths_psp angles.psp, endpoints.psp, extrapolate.psp.

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
b <- midpoints.psp(a)

944 mincontrast

mincontrast Method of Minimum Contrast

Description

A general low-level algorithm for fitting theoretical point process models to point pattern data by
the Method of Minimum Contrast.

Usage

mincontrast(observed, theoretical, startpar, ...,
ctrl=list(q = 1/4, p = 2, rmin=NULL, rmax=NULL),
fvlab=list(label=NULL, desc="minimum contrast fit"),
explain=list(dataname=NULL, modelname=NULL, fname=NULL),

adjustment=NULL)

Arguments

observed Summary statistic, computed for the data. An object of class "fv".

theoretical An R language function that calculates the theoretical expected value of the
summary statistic, given the model parameters. See Details.

startpar Vector of initial values of the parameters of the point process model (passed to
theoretical).

... Additional arguments passed to the function theoretical and to the optimisa-
tion algorithm optim.

ctrl Optional. List of arguments controlling the optimisation. See Details.

fvlab Optional. List containing some labels for the return value. See Details.

explain Optional. List containing strings that give a human-readable description of the
model, the data and the summary statistic.

adjustment Internal use only.

Details

This function is a general algorithm for fitting point process models by the Method of Minimum
Contrast. If you want to fit the Thomas process, see thomas.estK. If you want to fit a log-Gaussian
Cox process, see lgcp.estK. If you want to fit the Matérn cluster process, see matclust.estK.

The Method of Minimum Contrast (Diggle and Gratton, 1984) is a general technique for fitting
a point process model to point pattern data. First a summary function (typically the K function)
is computed from the data point pattern. Second, the theoretical expected value of this summary
statistic under the point process model is derived (if possible, as an algebraic expression involving
the parameters of the model) or estimated from simulations of the model. Then the model is fitted by
finding the optimal parameter values for the model to give the closest match between the theoretical
and empirical curves.

mincontrast 945

The argument observed should be an object of class "fv" (see fv.object) containing the values
of a summary statistic computed from the data point pattern. Usually this is the function K(r)
computed by Kest or one of its relatives.

The argument theoretical should be a user-supplied function that computes the theoretical ex-
pected value of the summary statistic. It must have an argument named par that will be the vector
of parameter values for the model (the length and format of this vector are determined by the start-
ing values in startpar). The function theoretical should also expect a second argument (the
first argument other than par) containing values of the distance r for which the theoretical value of
the summary statistic K(r) should be computed. The value returned by theoretical should be a
vector of the same length as the given vector of r values.

The argument ctrl determines the contrast criterion (the objective function that will be minimised).
The algorithm minimises the criterion

D(θ) =

∫ rmax

rmin

|F̂ (r)q − Fθ(r)q|p dr

where θ is the vector of parameters of the model, F̂ (r) is the observed value of the summary statistic
computed from the data, Fθ(r) is the theoretical expected value of the summary statistic, and p, q
are two exponents. The default is q = 1/4, p=2 so that the contrast criterion is the integrated squared
difference between the fourth roots of the two functions (Waagepetersen, 2007).

The other arguments just make things print nicely. The argument fvlab contains labels for the com-
ponent fit of the return value. The argument explain contains human-readable strings describing
the data, the model and the summary statistic.

The "..." argument of mincontrast can be used to pass extra arguments to the function theoretical
and/or to the optimisation function optim. In this case, the function theoretical should also have
a "..." argument and should ignore it (so that it ignores arguments intended for optim).

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

opt The return value from the optimizer optim.

crtl The control parameters of the algorithm.

info List of explanatory strings.

Author(s)

Rasmus Waagepetersen <rw@math.auc.dk>, adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

946 MinkowskiSum

References

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007). An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, lgcp.estK, matclust.estK, thomas.estK,

MinkowskiSum Minkowski Sum of Windows

Description

Compute the Minkowski sum of two spatial windows.

Usage

MinkowskiSum(A, B)

A %(+)% B

dilationAny(A, B)

Arguments

A,B Windows (objects of class "owin"), point patterns (objects of class "ppp") or
line segment patterns (objects of class "psp") in any combination.

Details

The operator A %(+)% B and function MinkowskiSum(A,B) are synonymous: they both compute
the Minkowski sum of the windows A and B. The function dilationAny computes the Minkowski
dilation A %(+)% reflect(B).

The Minkowski sum of two spatial regionsA andB is another region, formed by taking all possible
pairs of points, one in A and one in B, and adding them as vectors. The Minkowski Sum A⊕B is
the set of all points a+ b where a is in A and b is in B. A few common facts about the Minkowski
sum are:

• The sum is symmetric: A⊕B = B ⊕A.

• If B is a single point, then A⊕B is a shifted copy of A.

• If A is a square of side length a, and B is a square of side length b, with sides that are parallel
to the coordinate axes, then A⊕B is a square of side length a+ b.

MinkowskiSum 947

• If A and B are discs of radius r and s respectively, then A⊕B is a disc of redius r + s.

• If B is a disc of radius r centred at the origin, then A⊕ B is equivalent to the morphological
dilation of A by distance r. See dilation.

The Minkowski dilation is the closely-related region A⊕ (−B) where (−B) is the reflection of B
through the origin. The Minkowski dilation is the set of all vectors z such that, if B is shifted by z,
the resulting set B + z has nonempty intersection with A.

The algorithm currently computes the result as a polygonal window using the polyclip library. It
will be quite slow if applied to binary mask windows.

The arguments A and B can also be point patterns or line segment patterns. These are interpreted
as spatial regions, the Minkowski sum is computed, and the result is returned as an object of the
most appropriate type. The Minkowski sum of two point patterns is another point pattern. The
Minkowski sum of a point pattern and a line segment pattern is another line segment pattern.

Value

A window (object of class "owin") except that if A is a point pattern, then the result is an object of
the same type as B (and vice versa).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

dilation, erosionAny

Examples

B <- square(0.2)
RplusB <- letterR %(+)% B

opa <- par(mfrow=c(1,2))
FR <- grow.rectangle(Frame(letterR), 0.3)
plot(FR, main="")
plot(letterR, add=TRUE, lwd=2, hatch=TRUE, hatchargs=list(texture=5))
plot(shift(B, vec=c(3.675, 3)),

add=TRUE, border="red", lwd=2)
plot(FR, main="")
plot(letterR, add=TRUE, lwd=2, hatch=TRUE, hatchargs=list(texture=5))
plot(RplusB, add=TRUE, border="blue", lwd=2,

hatch=TRUE, hatchargs=list(col="blue"))
par(opa)

plot(cells %(+)% square(0.1))

948 miplot

miplot Morisita Index Plot

Description

Displays the Morisita Index Plot of a spatial point pattern.

Usage

miplot(X, ...)

Arguments

X A point pattern (object of class "ppp") or something acceptable to as.ppp.

... Optional arguments to control the appearance of the plot.

Details

Morisita (1959) defined an index of spatial aggregation for a spatial point pattern based on quadrat
counts. The spatial domain of the point pattern is first divided into Q subsets (quadrats) of equal
size and shape. The numbers of points falling in each quadrat are counted. Then the Morisita Index
is computed as

MI = Q

∑Q
i=1 ni(ni − 1)

N(N − 1)

where ni is the number of points falling in the i-th quadrat, and N is the total number of points. If
the pattern is completely random, MI should be approximately equal to 1. Values of MI greater than
1 suggest clustering.

The Morisita Index plot is a plot of the Morisita Index MI against the linear dimension of the
quadrats. The point pattern dataset is divided into 2 × 2 quadrats, then 3 × 3 quadrats, etc, and
the Morisita Index is computed each time. This plot is an attempt to discern different scales of
dependence in the point pattern data.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

M. Morisita (1959) Measuring of the dispersion of individuals and analysis of the distributional
patterns. Memoir of the Faculty of Science, Kyushu University, Series E: Biology. 2: 215–235.

model.depends 949

See Also

quadratcount

Examples

data(longleaf)
miplot(longleaf)
opa <- par(mfrow=c(2,3))
data(cells)
data(japanesepines)
data(redwood)
plot(cells)
plot(japanesepines)
plot(redwood)
miplot(cells)
miplot(japanesepines)
miplot(redwood)
par(opa)

model.depends Identify Covariates Involved in each Model Term

Description

Given a fitted model (of any kind), identify which of the covariates is involved in each term of the
model.

Usage

model.depends(object)
model.is.additive(object)
model.covariates(object, fitted=TRUE, offset=TRUE)
has.offset.term(object)
has.offset(object)

Arguments

object A fitted model of any kind.

fitted,offset Logical values determining which type of covariates to include.

Details

The object can be a fitted model of any kind, including models of the classes lm, glm and ppm.

To be precise, object must belong to a class for which there are methods for formula, terms and
model.matrix.

The command model.depends determines the relationship between the original covariates (the data
supplied when object was fitted) and the canonical covariates (the columns of the design matrix).

950 model.depends

It returns a logical matrix, with one row for each canonical covariate, and one column for each of
the original covariates, with the i,j entry equal to TRUE if the ith canonical covariate depends on
the jth original covariate.

If the model formula of object includes offset terms (see offset), then the return value of model.depends
also has an attribute "offset". This is a logical value or matrix with one row for each offset term
and one column for each of the original covariates, with the i,j entry equal to TRUE if the ith offset
term depends on the jth original covariate.

The command model.covariates returns a character vector containing the names of all (original)
covariates that were actually used to fit the model. By default, this includes all covariates that appear
in the model formula, including offset terms as well as canonical covariate terms. To omit the offset
terms, set offset=FALSE. To omit the canonical covariate terms, set fitted=FALSE.

The command model.is.additive determines whether the model is additive, in the sense that
there is no canonical covariate that depends on two or more original covariates. It returns a logical
value.

The command has.offset.term is a faster way to determine whether the model formula includes
an offset term.

The functions model.depends and has.offset.term only detect offset terms which are present
in the model formula. They do not detect numerical offsets in the model object, that were inserted
using the offset argument in lm, glm etc. To detect the presence of offsets of both kinds, use
has.offset.

Value

A logical value or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, model.matrix

Examples

x <- 1:10
y <- 3*x + 2
z <- rep(c(-1,1), 5)
fit <- lm(y ~ poly(x,2) + sin(z))
model.depends(fit)
model.covariates(fit)
model.is.additive(fit)

fitoff1 <- lm(y ~ x + offset(z))
fitoff2 <- lm(y ~ x, offset=z)
has.offset.term(fitoff1)
has.offset(fitoff1)
has.offset.term(fitoff2)

model.frame.ppm 951

has.offset(fitoff2)

model.frame.ppm Extract the Variables in a Point Process Model

Description

Given a fitted point process model, this function returns a data frame containing all the variables
needed to fit the model using the Berman-Turner device.

Usage

S3 method for class 'ppm'
model.frame(formula, ...)

S3 method for class 'kppm'
model.frame(formula, ...)

S3 method for class 'dppm'
model.frame(formula, ...)

S3 method for class 'lppm'
model.frame(formula, ...)

Arguments

formula A fitted point process model. An object of class "ppm" or "kppm" or "dppm" or
"lppm".

... Additional arguments passed to model.frame.glm.

Details

The function model.frame is generic. These functions are method for model.frame for fitted point
process models (objects of class "ppm" or "kppm" or "dppm" or "lppm").

The first argument should be a fitted point process model; it has to be named formula for consis-
tency with the generic function.

The result is a data frame containing all the variables used in fitting the model. The data frame has
one row for each quadrature point used in fitting the model. The quadrature scheme can be extracted
using quad.ppm.

Value

A data.frame containing all the variables used in the fitted model, plus additional variables speci-
fied in It has an additional attribute "terms" containing information about the model formula.
For details see model.frame.glm.

952 model.images

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

ppm, kppm, dppm, lppm, model.frame, model.matrix.ppm

Examples

fit <- ppm(cells ~ x)
mf <- model.frame(fit)
kfit <- kppm(redwood ~ x, "Thomas")
kmf <- model.frame(kfit)

model.images Compute Images of Constructed Covariates

Description

For a point process model fitted to spatial point pattern data, this function computes pixel images of
the covariates in the design matrix.

Usage

model.images(object, ...)

S3 method for class 'ppm'
model.images(object, W = as.owin(object), ...)

S3 method for class 'kppm'
model.images(object, W = as.owin(object), ...)

S3 method for class 'dppm'
model.images(object, W = as.owin(object), ...)

S3 method for class 'lppm'
model.images(object, L = as.linnet(object), ...)

S3 method for class 'slrm'
model.images(object, ...)

model.images 953

Arguments

object The fitted point process model. An object of class "ppm" or "kppm" or "lppm"
or "slrm" or "dppm".

W A window (object of class "owin") in which the images should be computed.
Defaults to the window in which the model was fitted.

L A linear network (object of class "linnet") in which the images should be
computed. Defaults to the network in which the model was fitted.

... Other arguments (such as na.action) passed to model.matrix.lm.

Details

This command is similar to model.matrix.ppm except that it computes pixel images of the covari-
ates, instead of computing the covariate values at certain points only.

The object must be a fitted spatial point process model object of class "ppm" (produced by the
model-fitting function ppm) or class "kppm" (produced by the fitting function kppm) or class "dppm"
(produced by the fitting function dppm) or class "lppm" (produced by lppm) or class "slrm" (pro-
duced by slrm).

The spatial covariates required by the model-fitting procedure are computed at every pixel location
in the window W. For lppm objects, the covariates are computed at every location on the network L.
For slrm objects, the covariates are computed on the pixels that were used to fit the model.

Note that the spatial covariates computed here are not the original covariates that were supplied
when fitting the model. Rather, they are the covariates that actually appear in the loglinear rep-
resentation of the (conditional) intensity and in the columns of the design matrix. For example,
they might include dummy or indicator variables for different levels of a factor, depending on the
contrasts that are in force.

The pixel resolution is determined by W if W is a mask (that is W$type = "mask"). Otherwise, the
pixel resolution is determined by spatstat.options.

The format of the result depends on whether the original point pattern data were marked or un-
marked.

• If the original dataset was unmarked, the result is a named list of pixel images (objects of
class "im") containing the values of the spatial covariates. The names of the list elements
are the names of the covariates determined by model.matrix.lm. The result is also of class
"solist" so that it can be plotted immediately.

• If the original dataset was a multitype point pattern, the result is a hyperframe with one
column for each possible type of points. Each column is a named list of pixel images (objects
of class "im") containing the values of the spatial covariates. The row names of the hyperframe
are the names of the covariates determined by model.matrix.lm.

Value

A list (of class "solist") or array (of class "hyperframe") containing pixel images (objects of
class "im"). For model.images.lppm, the images are also of class "linim".

954 model.matrix.mppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

model.matrix.ppm, model.matrix, ppm, ppm.object, lppm, dppm, kppm, slrm, im, im.object,
plot.solist, spatstat.options

Examples

fit <- ppm(cells ~ x)
model.images(fit)
B <- owin(c(0.2, 0.4), c(0.3, 0.8))
model.images(fit, B)
fit2 <- ppm(cells ~ cut(x,3))
model.images(fit2)
fit3 <- slrm(japanesepines ~ x)
model.images(fit3)
fit4 <- ppm(amacrine ~ marks + x)
model.images(fit4)

model.matrix.mppm Extract Design Matrix of Point Process Model for Several Point Pat-
terns

Description

Given a point process model fitted to a list of point patterns, this function extracts the design matrix.

Usage

S3 method for class 'mppm'
model.matrix(object, ..., keepNA=TRUE, separate=FALSE)

Arguments

object A point process model fitted to several point patterns. An object of class "mppm".

... Other arguments (such as na.action) passed to model.matrix.lm.

keepNA Logical. Determines whether rows containing NA values will be deleted or re-
tained.

separate Logical value indicating whether to split the model matrix into sub-matrices
corresponding to each of the original point patterns.

model.matrix.ppm 955

Details

This command is a method for the generic function model.matrix. It extracts the design matrix of
a point process model fitted to several point patterns.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

The result is a matrix with one column for every constructed covariate in the model, and one row
for every quadrature point.

If separate=TRUE this matrix will be split into sub-matrices corresponding to the original point
patterns, and the result will be a list containing these matrices.

Value

A matrix (or list of matrices). Columns of the matrix are canonical covariates in the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

model.matrix, mppm.

Examples

fit <- mppm(Points ~ Image + x, demohyper)
head(model.matrix(fit))
matrix with three columns: '(Intercept)', 'x' and 'Image'

model.matrix.ppm Extract Design Matrix from Point Process Model

Description

Given a point process model that has been fitted to spatial point pattern data, this function extracts
the design matrix of the model.

Usage

S3 method for class 'ppm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE)

S3 method for class 'kppm'

956 model.matrix.ppm

model.matrix(object,
data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE)

S3 method for class 'dppm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE)

S3 method for class 'lppm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
keepNA=TRUE)

S3 method for class 'ippm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE,

irregular=FALSE)

Arguments

object The fitted point process model. An object of class "ppm" or "kppm" or "dppm"
or "ippm" or "lppm".

data A model frame, containing the data required for the Berman-Turner device.

Q A point pattern (class "ppp") or quadrature scheme (class "quad") specifying
new locations where the covariates should be computed.

keepNA Logical. Determines whether rows containing NA values will be deleted or
retained.

... Other arguments (such as na.action) passed to model.matrix.lm.

irregular Logical value indicating whether to include the irregular score components.

Details

These commands are methods for the generic function model.matrix. They extract the design
matrix of a spatial point process model (class "ppm" or "kppm" or "dppm" or "lppm").

More precisely, this command extracts the design matrix of the generalised linear model associated
with a spatial point process model.

The object must be a fitted point process model (object of class "ppm" or "kppm" or "dppm" or
"lppm") fitted to spatial point pattern data. Such objects are produced by the model-fitting functions
ppm, kppm, dppm and lppm.

The methods model.matrix.ppm, model.matrix.kppm, model.matrix.dppm and model.matrix.lppm
extract the model matrix for the GLM.

model.matrix.slrm 957

The result is a matrix, with one row for every quadrature point in the fitting procedure, and one
column for every constructed covariate in the design matrix.

If there are NA values in the covariates, the argument keepNA determines whether to retain or delete
the corresponding rows of the model matrix. The default keepNA=TRUE is to retain them. Note that
this differs from the default behaviour of many other methods for model.matrix, which typically
delete rows containing NA.

The quadrature points themselves can be extracted using quad.ppm.

Value

A matrix. Columns of the matrix are canonical covariates in the model. Rows of the matrix corre-
spond to quadrature points in the fitting procedure (provided keepNA=TRUE).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

model.matrix, model.images, ppm, kppm, dppm, lppm, ippm, ppm.object, quad.ppm, residuals.ppm

Examples

fit <- ppm(cells ~ x)
head(model.matrix(fit))
model.matrix(fit, Q=runifpoint(5))
kfit <- kppm(redwood ~ x, "Thomas")
m <- model.matrix(kfit)

model.matrix.slrm Extract Design Matrix from Spatial Logistic Regression Model

Description

This function extracts the design matrix of a spatial logistic regression model.

Usage

S3 method for class 'slrm'
model.matrix(object, ..., keepNA=TRUE)

Arguments

object A fitted spatial logistic regression model. An object of class "slrm".

... Other arguments (such as na.action) passed to model.matrix.lm.

keepNA Logical. Determines whether rows containing NA values will be deleted or re-
tained.

958 mppm

Details

This command is a method for the generic function model.matrix. It extracts the design matrix of
a spatial logistic regression.

The object must be a fitted spatial logistic regression (object of class "slrm"). Such objects are
produced by the model-fitting function slrm.

Usually the result is a matrix with one column for every constructed covariate in the model, and one
row for every pixel in the grid used to fit the model.

If object was fitted using split pixels (by calling slrm using the argument splitby) then the matrix
has one row for every pixel or half-pixel.

Value

A matrix. Columns of the matrix are canonical covariates in the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

model.matrix, model.images, slrm.

Examples

fit <- slrm(japanesepines ~x)
head(model.matrix(fit))
matrix with two columns: '(Intercept)' and 'x'

mppm Fit Point Process Model to Several Point Patterns

Description

Fits a Gibbs point process model to several point patterns simultaneously.

Usage

mppm(formula, data, interaction=Poisson(), ...,
iformula=NULL,
random=NULL,
weights=NULL,
use.gam = FALSE,
reltol.pql=1e-3,
gcontrol=list())

mppm 959

Arguments

formula A formula describing the systematic part of the model. Variables in the formula
are names of columns in data.

data A hyperframe (object of class "hyperframe", see hyperframe) containing the
point pattern responses and the explanatory variables.

interaction Interpoint interaction(s) appearing in the model. Either an object of class "interact"
describing the point process interaction structure, or a hyperframe (with the
same number of rows as data) whose entries are objects of class "interact".

... Arguments passed to ppm controlling the fitting procedure.

iformula Optional. A formula (with no left hand side) describing the interaction to be
applied to each case. Each variable name in the formula should either be the
name of a column in the hyperframe interaction, or the name of a column in
the hyperframe data that is a vector or factor.

random Optional. A formula (with no left hand side) describing a random effect. Vari-
able names in the formula may be any of the column names of data and interaction.
The formula must be recognisable to lme.

weights Optional. Numeric vector of case weights for each row of data.

use.gam Logical flag indicating whether to fit the model using gam or glm.

reltol.pql Relative tolerance for successive steps in the penalised quasi-likelihood algo-
rithm, used when the model includes random effects. The algorithm terminates
when the root mean square of the relative change in coefficients is less than
reltol.pql.

gcontrol List of arguments to control the fitting algorithm. Arguments are passed to
glm.control or gam.control or lmeControl depending on the kind of model
being fitted. If the model has random effects, the arguments are passed to
lmeControl. Otherwise, if use.gam=TRUE the arguments are passed to gam.control,
and if use.gam=FALSE (the default) they are passed to glm.control.

Details

This function fits a common point process model to a dataset containing several different point
patterns.

It extends the capabilities of the function ppm to deal with data such as

• replicated observations of spatial point patterns

• two groups of spatial point patterns

• a designed experiment in which the response from each unit is a point pattern.

The syntax of this function is similar to that of standard R model-fitting functions like lm and glm.
The first argument formula is an R formula describing the systematic part of the model. The second
argument data contains the responses and the explanatory variables. Other arguments determine
the stochastic structure of the model.

Schematically, the data are regarded as the results of a designed experiment involving n experi-
mental units. Each unit has a ‘response’, and optionally some ‘explanatory variables’ (covariates)
describing the experimental conditions for that unit. In this context, the response from each unit is

960 mppm

a point pattern. The value of a particular covariate for each unit can be either a single value (nu-
merical, logical or factor), or a spatial covariate. A ‘spatial’ covariate is a quantity that depends on
spatial location, for example, the soil acidity or altitude at each location. For the purposes of mppm,
a spatial covariate must be stored as a pixel image (object of class "im") which gives the values of
the covariate at a fine grid of locations.

The argument data is a hyperframe (a generalisation of a data frame, see hyperframe). This is like
a data frame except that the entries can be objects of any class. The hyperframe has one row for
each experimental unit, and one column for each variable (response or explanatory variable).

The formula should be an R formula. The left hand side of formula determines the ‘response’
variable. This should be a single name, which should correspond to a column in data.

The right hand side of formula determines the spatial trend of the model. It specifies the linear
predictor, and effectively represents the logarithm of the spatial trend. Variables in the formula
must be the names of columns of data, or one of the reserved names

x,y Cartesian coordinates of location

marks Mark attached to point

id which is a factor representing the serial number (1 to n) of the point pattern, i.e. the row number
in the data hyperframe.

The column of responses in data must consist of point patterns (objects of class "ppp"). The
individual point pattern responses can be defined in different spatial windows. If some of the point
patterns are marked, then they must all be marked, and must have the same type of marks.

The scope of models that can be fitted to each pattern is the same as the scope of ppm, that is,
Gibbs point processes with interaction terms that belong to a specified list, including for example
the Poisson process, Strauss process, Geyer’s saturation model, and piecewise constant pairwise
interaction models. Additionally, it is possible to include random effects as explained in the section
on Random Effects below.

The stochastic part of the model is determined by the arguments interaction and (optionally)
iformula.

• In the simplest case, interaction is an object of class "interact", determining the inter-
point interaction structure of the point process model, for all experimental units.

• Alternatively, interaction may be a hyperframe, whose entries are objects of class "interact".
It should have the same number of rows as data.

– If interaction consists of only one column, then the entry in row i is taken to be the
interpoint interaction for the ith experimental unit (corresponding to the ith row of data).

– If interaction has more than one column, then the argument iformula is also required.
Each row of interaction determines several interpoint interaction structures that might
be applied to the corresponding row of data. The choice of interaction is determined
by iformula; this should be an R formula, without a left hand side. For example if
interaction has two columns called A and B then iformula = ~B indicates that the in-
terpoint interactions are taken from the second column.

Variables in iformula typically refer to column names of interaction. They can also be names of
columns in data, but only for columns of numeric, logical or factor values. For example iformula
= ~B * group (where group is a column of data that contains a factor) causes the model with inter-
point interaction B to be fitted with different interaction parameters for each level of group.

mppm 961

Value

An object of class "mppm" representing the fitted model.

There are methods for print, summary, coef, AIC, anova, fitted, fixef, logLik, plot, predict,
ranef, residuals, summary, terms and vcov for this class.

The default methods for update and formula also work on this class.

Random Effects

It is also possible to include random effects in the trend term. The argument random is a formula,
with no left-hand side, that specifies the structure of the random effects. The formula should be
recognisable to lme (see the description of the argument random for lme).

The names in the formula random may be any of the covariates supplied by data. Additionally the
formula may involve the name id, which is a factor representing the serial number (1 to n) of the
point pattern in the list X.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and
Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Baddeley, A., Bischof, L., Sintorn, I.-M., Haggarty, S., Bell, M. and Turner, R. Analysis of a
designed experiment where the response is a spatial point pattern. In preparation.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

Bell, M. and Grunwald, G. (2004) Mixed models for the analysis of replicated spatial point patterns.
Biostatistics 5, 633–648.

See Also

ppm, print.mppm, summary.mppm, coef.mppm,

Examples

Waterstriders data
H <- hyperframe(Y = waterstriders)
mppm(Y ~ 1, data=H)
mppm(Y ~ 1, data=H, Strauss(7))
mppm(Y ~ id, data=H)
mppm(Y ~ x, data=H)

Synthetic data from known model
n <- 10
H <- hyperframe(V=1:n,

962 msr

U=runif(n, min=-1, max=1),
M=factor(letters[1 + (1:n) %% 3]))

H$Z <- setcov(square(1))
H$U <- with(H, as.im(U, as.rectangle(Z)))
H$Y <- with(H, rpoispp(eval.im(exp(2+3*Z))))

fit <- mppm(Y ~Z + U + V, data=H)

msr Signed or Vector-Valued Measure

Description

Defines an object representing a signed measure or vector-valued measure on a spatial domain.

Usage

msr(qscheme, discrete, density, check=TRUE)

Arguments

qscheme A quadrature scheme (object of class "quad" usually extracted from a fitted
point process model).

discrete Vector or matrix containing the values (masses) of the discrete component of the
measure, for each of the data points in qscheme.

density Vector or matrix containing values of the density of the diffuse component of
the measure, for each of the quadrature points in qscheme.

check Logical. Whether to check validity of the arguments.

Details

This function creates an object that represents a signed or vector valued measure on the two-
dimensional plane. It is not normally called directly by the user.

A signed measure is a classical mathematical object (Diestel and Uhl, 1977) which can be visualised
as a collection of electric charges, positive and/or negative, spread over the plane. Electric charges
may be concentrated at specific points (atoms), or spread diffusely over a region.

An object of class "msr" represents a signed (i.e. real-valued) or vector-valued measure in the
spatstat package.

Spatial residuals for point process models (Baddeley et al, 2005, 2008) take the form of a real-valued
or vector-valued measure. The function residuals.ppm returns an object of class "msr" represent-
ing the residual measure. Various other diagnostic tools such as dfbetas.ppm and dffit.ppm also
return an object of class "msr".

The function msr would not normally be called directly by the user. It is the low-level creator
function that makes an object of class "msr" from raw data.

The first argument qscheme is a quadrature scheme (object of class "quad"). It is typically cre-
ated by quadscheme or extracted from a fitted point process model using quad.ppm. A quadrature

msr 963

scheme contains both data points and dummy points. The data points of qscheme are used as the
locations of the atoms of the measure. All quadrature points (i.e. both data points and dummy
points) of qscheme are used as sampling points for the density of the continuous component of the
measure.

The argument discrete gives the values of the atomic component of the measure for each data
point in qscheme. It should be either a numeric vector with one entry for each data point, or a
numeric matrix with one row for each data point.

The argument density gives the values of the density of the diffuse component of the measure, at
each quadrature point in qscheme. It should be either a numeric vector with one entry for each
quadrature point, or a numeric matrix with one row for each quadrature point.

If both discrete and density are vectors (or one-column matrices) then the result is a signed (real-
valued) measure. Otherwise, the result is a vector-valued measure, with the dimension of the vector
space being determined by the number of columns in the matrices discrete and/or density. (If
one of these is a k-column matrix and the other is a 1-column matrix, then the latter is replicated to
k columns).

The class "msr" has methods for print, plot and [. There is also a function Smooth.msr for
smoothing a measure.

Value

An object of class "msr".

Guide to using measures

Objects of class "msr", representing measures, are returned by the functions residuals.ppm,
dfbetas.ppm, dffit.ppm and possibly by other functions.

There are methods for printing and plotting a measure, along with many other operations, which
can be listed by typing methods(class="msr").

The print and summary methods report basic information about a measure, such as the total value
of the measure, and the spatial domain on which it is defined.

The plot method displays the measure. It is documented separately in plot.msr.

A measure can be smoothed using Smooth.msr, yielding a pixel image which is sometimes easier
to interpret than the plot of the measure itself.

The subset operator [can be used to restrict the measure to a subregion of space, or to extract one
of the scalar components of a vector-valued measure. It is documented separately in [.msr.

The total value of a measure, or the value on a subregion, can be obtained using integral.msr. The
value of a measure m on a subregion B can be obtained by integral(m,domain=B) or integral(m[B]).
The values of a measure m on each tile of a tessellation A can be obtained by integral(m,domain=A).

Some mathematical operations on measures are supported, such as multiplying a measure by a
single number, or adding two measures.

Measures can be separated into components in different ways using as.layered.msr, unstack.msr
and split.msr.

Internal components of the data structure of an "msr" object can be extracted using with.msr.

964 MultiHard

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

Diestel, J. and Uhl, J.J. Jr (1977) Vector measures. Providence, RI, USA: American Mathematical
Society.

Halmos, P.R. (1950) Measure Theory. Van Nostrand.

See Also

plot.msr, Smooth.msr, [.msr, with.msr, split.msr, Ops.msr, measureVariation, measureContinuous.

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)

rp <- residuals(fit, type="pearson")
rp

rs <- residuals(fit, type="score")
rs
colnames(rs)

An equivalent way to construct the Pearson residual measure by hand
Q <- quad.ppm(fit)
lambda <- fitted(fit)
slam <- sqrt(lambda)
Z <- is.data(Q)
m <- msr(Q, discrete=1/slam[Z], density = -slam)
m

MultiHard The Multitype Hard Core Point Process Model

Description

Creates an instance of the multitype hard core point process model which can then be fitted to point
pattern data.

Usage

MultiHard(hradii, types=NULL)

MultiHard 965

Arguments

hradii Matrix of hard core radii

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

Details

This is a multitype version of the hard core process. A pair of points of types i and j must not lie
closer than hij units apart.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the MultiStrauss interaction is applied, when the user calls ppm.
However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix hradii.

The matrix hradii must be symmetric, with entries which are either positive numbers or NA. A
value of NA indicates that no distance constraint should be applied for this combination of types.

Note that only the hardcore radii are specified in MultiHard. The canonical parameters log(βj) are
estimated by ppm(), not fixed in MultiHard().

Value

An object of class "interact" describing the interpoint interaction structure of the multitype hard
core process with hard core radii hradii[i, j].

Warnings

In order that ppm can fit the multitype hard core model correctly to a point pattern X, this pattern
must be marked, with markformat equal to vector and the mark vector marks(X) must be a factor.
If the argument types is specified it is interpreted as a set of factor levels and this set must equal
levels(marks(X)).

Changed Syntax

Before spatstat version 1.37-0, the syntax of this function was different: MultiHard(types=NULL,hradii).
The new code attempts to handle the old syntax as well.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppm, pairwise.family, ppm.object, MultiStrauss, MultiStraussHard, Strauss.

See ragsMultiHard and rmh for simulation.

966 multiplicity.ppp

Examples

h <- matrix(c(1,2,2,1), nrow=2,ncol=2)

prints a sensible description of itself
MultiHard(h)

Fit the stationary multitype hardcore process to `amacrine'
with hard core operating only between cells of the same type.
h <- 0.02 * matrix(c(1, NA, NA, 1), nrow=2,ncol=2)
ppm(amacrine ~1, MultiHard(h))

multiplicity.ppp Count Multiplicity of Duplicate Points

Description

Counts the number of duplicates for each point in a spatial point pattern.

Usage

multiplicity(x)

S3 method for class 'ppp'
multiplicity(x)

S3 method for class 'ppx'
multiplicity(x)

S3 method for class 'data.frame'
multiplicity(x)

Default S3 method:
multiplicity(x)

Arguments

x A spatial point pattern (object of class "ppp" or "ppx") or a vector, matrix or
data frame.

Details

Two points in a point pattern are deemed to be identical if their x, y coordinates are the same, and
their marks are also the same (if they carry marks). The Examples section illustrates how it is
possible for a point pattern to contain a pair of identical points.

For each point in x, the function multiplicity counts how many points are identical to it, and
returns the vector of counts.

MultiStrauss 967

The argument x can also be a vector, a matrix or a data frame. When x is a vector, m <-multiplicity(x)
is a vector of the same length as x, and m[i] is the number of elements of x that are identical to
x[i]. When x is a matrix or data frame, m <-multiplicity(x) is a vector of length equal to the
number of rows of x, and m[i] is the number of rows of x that are identical to the ith row.

Value

A vector of integers (multiplicities) of length equal to the number of points in x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Sebastian Meyer.

See Also

ppp.object, duplicated.ppp, unique.ppp

Examples

X <- ppp(c(1,1,0.5,1), c(2,2,1,2), window=square(3), check=FALSE)
m <- multiplicity(X)

unique points in X, marked by their multiplicity
first <- !duplicated(X)
Y <- X[first] %mark% m[first]

MultiStrauss The Multitype Strauss Point Process Model

Description

Creates an instance of the multitype Strauss point process model which can then be fitted to point
pattern data.

Usage

MultiStrauss(radii, types=NULL)

Arguments

radii Matrix of interaction radii

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

968 MultiStrauss

Details

The (stationary) multitype Strauss process with m types, with interaction radii rij and parameters
βj and γij is the pairwise interaction point process in which each point of type j contributes a factor
βj to the probability density of the point pattern, and a pair of points of types i and j closer than rij
units apart contributes a factor γij to the density.

The nonstationary multitype Strauss process is similar except that the contribution of each individual
point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The ap-
propriate description of the multitype Strauss process pairwise interaction is yielded by the function
MultiStrauss(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the MultiStrauss interaction is applied, when the user calls ppm.
However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix radii.

The matrix radii must be symmetric, with entries which are either positive numbers or NA. A value
of NA indicates that no interaction term should be included for this combination of types.

Note that only the interaction radii are specified in MultiStrauss. The canonical parameters
log(βj) and log(γij) are estimated by ppm(), not fixed in MultiStrauss().

Value

An object of class "interact" describing the interpoint interaction structure of the multitype
Strauss process with interaction radii radii[i, j].

Warnings

In order that ppm can fit the multitype Strauss model correctly to a point pattern X, this pattern must
be marked, with markformat equal to vector and the mark vector marks(X) must be a factor. If
the argument types is specified it is interpreted as a set of factor levels and this set must equal
levels(marks(X)).

Changed Syntax

Before spatstat version 1.37-0, the syntax of this function was different: MultiStrauss(types=NULL,radii).
The new code attempts to handle the old syntax as well.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

ppm, pairwise.family, ppm.object, Strauss, MultiHard

MultiStraussHard 969

Examples

r <- matrix(c(1,2,2,1), nrow=2,ncol=2)
MultiStrauss(r)
prints a sensible description of itself
r <- 0.03 * matrix(c(1,2,2,1), nrow=2,ncol=2)
X <- amacrine

ppm(X ~1, MultiStrauss(r))
fit the stationary multitype Strauss process to `amacrine'

Not run:
ppm(X ~polynom(x,y,3), MultiStrauss(r, c("off","on")))
fit a nonstationary multitype Strauss process with log-cubic trend

End(Not run)

MultiStraussHard The Multitype/Hard Core Strauss Point Process Model

Description

Creates an instance of the multitype/hard core Strauss point process model which can then be fitted
to point pattern data.

Usage

MultiStraussHard(iradii, hradii, types=NULL)

Arguments

iradii Matrix of interaction radii

hradii Matrix of hard core radii

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

Details

This is a hybrid of the multitype Strauss process (see MultiStrauss) and the hard core process
(case γ = 0 of the Strauss process). A pair of points of types i and j must not lie closer than hij
units apart; if the pair lies more than hij and less than rij units apart, it contributes a factor γij to
the probability density.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the MultiStraussHard interaction is applied, when the user calls
ppm. However, the user should be confident that the ordering of types in the dataset corresponds to
the ordering of rows and columns in the matrices iradii and hradii.

970 MultiStraussHard

The matrices iradii and hradii must be symmetric, with entries which are either positive numbers
or NA. A value of NA indicates that no interaction term should be included for this combination of
types.

Note that only the interaction radii and hardcore radii are specified in MultiStraussHard. The
canonical parameters log(βj) and log(γij) are estimated by ppm(), not fixed in MultiStraussHard().

Value

An object of class "interact" describing the interpoint interaction structure of the multitype/hard
core Strauss process with interaction radii iradii[i, j] and hard core radii hradii[i, j].

Warnings

In order that ppm can fit the multitype/hard core Strauss model correctly to a point pattern X, this
pattern must be marked, with markformat equal to vector and the mark vector marks(X) must be
a factor. If the argument types is specified it is interpreted as a set of factor levels and this set must
equal levels(marks(X)).

Changed Syntax

Before spatstat version 1.37-0, the syntax of this function was different: MultiStraussHard(types=NULL,iradii,hradii).
The new code attempts to handle the old syntax as well.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

ppm, pairwise.family, ppm.object, MultiStrauss, MultiHard, Strauss

Examples

r <- matrix(3, nrow=2,ncol=2)
h <- matrix(c(1,2,2,1), nrow=2,ncol=2)
MultiStraussHard(r,h)
prints a sensible description of itself
r <- 0.04 * matrix(c(1,2,2,1), nrow=2,ncol=2)
h <- 0.02 * matrix(c(1,NA,NA,1), nrow=2,ncol=2)
X <- amacrine

fit <- ppm(X ~1, MultiStraussHard(r,h))
fit stationary multitype hardcore Strauss process to `amacrine'

nearest.raster.point 971

nearest.raster.point Find Pixel Nearest to a Given Point

Description

Given cartesian coordinates, find the nearest pixel.

Usage

nearest.raster.point(x,y,w, indices=TRUE)

Arguments

x Numeric vector of x coordinates of any points

y Numeric vector of y coordinates of any points

w An image (object of class "im") or a binary mask window (an object of class
"owin" of type "mask").

indices Logical flag indicating whether to return the row and column indices, or the
actual x, y coordinates.

Details

The argument w should be either a pixel image (object of class "im") or a window (an object of
class "owin", see owin.object for details) of type "mask".

The arguments x and y should be numeric vectors of equal length. They are interpreted as the
coordinates of points in space. For each point (x[i],y[i]), the function finds the nearest pixel in
the grid of pixels for w.

If indices=TRUE, this function returns a list containing two vectors rr and cc giving row and
column positions (in the image matrix). For the location (x[i],y[i]) the nearest pixel is at row
rr[i] and column cc[i] of the image.

If indices=FALSE, the function returns a list containing two vectors x and y giving the actual
coordinates of the pixels.

Value

If indices=TRUE, a list containing two vectors rr and cc giving row and column positions (in the
image matrix). If indices=FALSE, a list containing vectors x and y giving actual coordinates of the
pixels.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

972 nearestsegment

See Also

owin.object, as.mask

Examples

w <- owin(c(0,1), c(0,1), mask=matrix(TRUE, 100,100)) # 100 x 100 grid
nearest.raster.point(0.5, 0.3, w)
nearest.raster.point(0.5, 0.3, w, indices=FALSE)

nearestsegment Find Line Segment Nearest to Each Point

Description

Given a point pattern and a line segment pattern, this function finds the nearest line segment for
each point.

Usage

nearestsegment(X, Y)

Arguments

X A point pattern (object of class "ppp").

Y A line segment pattern (object of class "psp").

Details

The distance between a point x and a straight line segment y is defined to be the shortest Euclidean
distance between x and any location on y. This algorithm first calculates the distance from each
point of X to each segment of Y. Then it determines, for each point x in X, which segment of Y is
closest. The index of this segment is returned.

Value

Integer vector v (of length equal to the number of points in X) identifying the nearest segment to
each point. If v[i] = j, then Y[j] is the line segment lying closest to X[i].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

project2segment to project each point of X to a point lying on one of the line segments.

Use distmap.psp to identify the nearest line segment for each pixel in a grid.

nearestValue 973

Examples

X <- runifpoint(3)
Y <- as.psp(matrix(runif(20), 5, 4), window=owin())
v <- nearestsegment(X,Y)
plot(Y)
plot(X, add=TRUE)
plot(X[1], add=TRUE, col="red")
plot(Y[v[1]], add=TRUE, lwd=2, col="red")

nearestValue Image of Nearest Defined Pixel Value

Description

Given a pixel image defined on a subset of a rectangle, this function assigns a value to every pixel
in the rectangle, by looking up the value of the nearest pixel that has a value.

Usage

nearestValue(X)

Arguments

X A pixel image (object of class "im").

Details

A pixel image in spatstat is always stored on a rectangular grid of pixels, but its value may be NA
on some pixels, indicating that the image is not defined at those pixels.

This function assigns a value to every pixel in the rectangular grid. For each pixel a in the grid, if
the value of X is not defined at a, the function finds the nearest other pixel b at which the value of X
is defined, and takes the pixel value at b as the new pixel value at a.

Value

Another image of the same kind as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

blur, Smooth.ppp

974 nestsplit

Examples

X <- as.im(function(x,y) { x + y }, letterR)
Y <- nearestValue(X)
plot(solist("X"=X,"nearestValue(X)"=Y), main="", panel.end=letterR)

nestsplit Nested Split

Description

Applies two splitting operations to a point pattern, producing a list of lists of patterns.

Usage

nestsplit(X, ...)

Arguments

X Point pattern to be split. Object of class "ppp".

... Data determining the splitting factors or splitting regions. See Details.

Details

This function splits the point pattern X into several sub-patterns using split.ppp, then splits each of
the sub-patterns into sub-sub-patterns using split.ppp again. The result is a hyperframe containing
the sub-sub-patterns and two factors indicating the grouping.

The arguments ... determine the two splitting factors or splitting regions. Each argument may be:

• a factor (of length equal to the number of points in X)

• the name of a column of marks of X (provided this column contains factor values)

• a tessellation (class "tess")

• a pixel image (class "im") with factor values

• a window (class "owin")

• identified by name (in the form name=value) as one of the formal arguments of quadrats or
tess

The arguments will be processed to yield a list of two splitting factors/tessellations. The splits will
be applied to X consecutively to produce the sub-sub-patterns.

Value

A hyperframe with three columns. The first column contains the sub-sub-patterns. The second and
third columns are factors which identify the grouping according to the two splitting factors.

nnclean 975

Author(s)

Original idea by Ute Hahn. Code by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf
Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

split.ppp, quantess

Examples

factor and tessellation
Nft <- nestsplit(amacrine, marks(amacrine), quadrats(amacrine, 3, 1))
Ntf <- nestsplit(amacrine, quadrats(amacrine, 3, 1), marks(amacrine))
Ntf

two factors
big <- with(marks(betacells), area > 300)
Nff <- nestsplit(betacells, "type", factor(big))

two tessellations
Tx <- quantess(redwood, "x", 4)
Td <- dirichlet(runifpoint(5, Window(redwood)))
Ntt <- nestsplit(redwood, Td, Tx)
Ntt2 <- nestsplit(redwood, Td, ny=3)

nnclean Nearest Neighbour Clutter Removal

Description

Detect features in a 2D or 3D spatial point pattern using nearest neighbour clutter removal.

Usage

nnclean(X, k, ...)

S3 method for class 'ppp'
nnclean(X, k, ...,

edge.correct = FALSE, wrap = 0.1,
convergence = 0.001, plothist = FALSE,
verbose = TRUE, maxit = 50)

S3 method for class 'pp3'
nnclean(X, k, ...,

convergence = 0.001, plothist = FALSE,
verbose = TRUE, maxit = 50)

976 nnclean

Arguments

X A two-dimensional spatial point pattern (object of class "ppp") or a three-dimensional
point pattern (object of class "pp3").

k Degree of neighbour: k=1 means nearest neighbour, k=2 means second nearest,
etc.

... Arguments passed to hist.default to control the appearance of the histogram,
if plothist=TRUE.

edge.correct Logical flag specifying whether periodic edge correction should be performed
(only implemented in 2 dimensions).

wrap Numeric value specifying the relative size of the margin in which data will be
replicated for the periodic edge correction (if edge.correct=TRUE). A fraction
of window width and window height.

convergence Relative tolerance threshold for testing convergence of EM algorithm.

maxit Maximum number of iterations for EM algorithm.

plothist Logical flag specifying whether to plot a diagnostic histogram of the nearest
neighbour distances and the fitted distribution.

verbose Logical flag specifying whether to print progress reports.

Details

Byers and Raftery (1998) developed a technique for recognising features in a spatial point pattern
in the presence of random clutter.

For each point in the pattern, the distance to the kth nearest neighbour is computed. Then the E-M
algorithm is used to fit a mixture distribution to the kth nearest neighbour distances. The mixture
components represent the feature and the clutter. The mixture model can be used to classify each
point as belong to one or other component.

The function nnclean is generic, with methods for two-dimensional point patterns (class "ppp")
and three-dimensional point patterns (class "pp3") currently implemented.

The result is a point pattern (2D or 3D) with two additional columns of marks:

class A factor, with levels "noise" and "feature", indicating the maximum likelihood classifica-
tion of each point.

prob Numeric vector giving the estimated probabilities that each point belongs to a feature.

The object also has extra information stored in attributes: "theta" contains the fitted parameters of
the mixture model, "info" contains information about the fitting procedure, and "hist" contains
the histogram structure returned from hist.default if plothist = TRUE.

Value

An object of the same kind as X, obtained by attaching marks to the points of X.

The object also has attributes, as described under Details.

Author(s)

Original by Simon Byers and Adrian Raftery. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

nncorr 977

References

Byers, S. and Raftery, A.E. (1998) Nearest-neighbour clutter removal for estimating features in
spatial point processes. Journal of the American Statistical Association 93, 577–584.

See Also

nndist, split.ppp, cut.ppp

Examples

shapley galaxy cluster
X <- nnclean(shapley, k=17, plothist=TRUE)
plot(X, which.marks=1, chars=c(".", "+"), cols=1:2,

main="Shapley data, cluster and noise")
plot(X, which.marks=2, cols=function(x)hsv(0.2+0.8*(1-x),1,1),

main="Shapley data, probability of cluster")
Y <- split(X, un=TRUE)
plot(Y, chars="+", cex=0.5)
marks(X) <- marks(X)$prob
plot(cut(X, breaks=3), chars=c(".", "+", "+"), cols=1:3)

nncorr Nearest-Neighbour Correlation Indices of Marked Point Pattern

Description

Computes nearest-neighbour correlation indices of a marked point pattern, including the nearest-
neighbour mark product index (default case of nncorr), the nearest-neighbour mark index (nnmean),
and the nearest-neighbour variogram index (nnvario).

Usage

nncorr(X,
f = function(m1, m2) { m1 * m2 },
k = 1,
...,
use = "all.obs", method = c("pearson", "kendall", "spearman"),
denominator=NULL, na.action="warn")

nnmean(X, k=1, na.action="warn")

nnvario(X, k=1, na.action="warn")

978 nncorr

Arguments

X The observed point pattern. An object of class "ppp".

f Function f used in the definition of the nearest neighbour correlation. There is
a sensible default that depends on the type of marks of X.

k Integer. The k-th nearest neighbour of each point will be used.

... Extra arguments passed to f.

use,method Arguments passed to the standard correlation function cor.

denominator Internal use only.

na.action Character string (passed to is.marked.ppp) specifying what to do if the marks
contain NA values.

Details

The nearest neighbour correlation index n̄f of a marked point process X is a number measuring the
dependence between the mark of a typical point and the mark of its nearest neighbour.

The command nncorr computes the nearest neighbour correlation index based on any test function
f provided by the user. The default behaviour of nncorr is to compute the nearest neighbour mark
product index. The commands nnmean and nnvario are convenient abbreviations for other special
choices of f.

In the default case, nncorr(X) computes three different versions of the nearest-neighbour correla-
tion index: the unnormalised, normalised, and classical correlations.

unnormalised: The unnormalised nearest neighbour correlation (Stoyan and Stoyan, 1994, sec-
tion 14.7) is defined as

n̄f = E[f(M,M∗)]

where E[] denotes mean value, M is the mark attached to a typical point of the point process,
and M∗ is the mark attached to its nearest neighbour (i.e. the nearest other point of the point
process).
Here f is any function f(m1,m2) with two arguments which are possible marks of the pattern,
and which returns a nonnegative real value. Common choices of f are: for continuous real-
valued marks,

f(m1,m2) = m1m2

for discrete marks (multitype point patterns),

f(m1,m2) = 1(m1 = m2)

and for marks taking values in [0, 2π),

f(m1,m2) = sin(m1 −m2)

For example, in the second case, the unnormalised nearest neighbour correlation n̄f equals
the proportion of points in the pattern which have the same mark as their nearest neighbour.
Note that n̄f is not a “correlation” in the usual statistical sense. It can take values greater than
1.

nncorr 979

normalised: We can define a normalised nearest neighbour correlation by

m̄f =
E[f(M,M∗)]

E[f(M,M ′)]

where again M is the mark attached to a typical point, M∗ is the mark attached to its nearest
neighbour, and M ′ is an independent copy of M with the same distribution. This normalisa-
tion is also not a “correlation” in the usual statistical sense, but is normalised so that the value
1 suggests “lack of correlation”: if the marks attached to the points of X are independent and
identically distributed, then m̄f = 1. The interpretation of values larger or smaller than 1
depends on the choice of function f .

classical: Finally if the marks of X are real numbers, we can also compute the classical correlation,
that is, the correlation coefficient of the two random variables M and M∗. The classical
correlation has a value between−1 and 1. Values close to−1 or 1 indicate strong dependence
between the marks.

In the default case where f is not given, nncorr(X) computes

• If the marks of X are real numbers, the unnormalised and normalised versions of the nearest-
neighbour product index E[MM∗], and the classical correlation between M and M∗.

• If the marks of X are factor valued, the unnormalised and normalised versions of the nearest-
neighbour equality index P [M = M∗].

The wrapper functions nnmean and nnvario compute the correlation indices for two special choices
of the function f(m1,m2). They are defined only when the marks are numeric.

• nnmean computes the correlation indices for f(m1,m2) = m1. The unnormalised index is
simply the mean value of the mark of the neighbour of a typical point, E[M∗], while the
normalised index is E[M∗]/E[M], the ratio of the mean mark of the neighbour of a typical
point to the mean mark of a typical point.

• nnvario computes the correlation indices for f(m1,m2) = (1/2)(m1 −m2)2.

The argument X must be a point pattern (object of class "ppp") and must be a marked point pattern.
(The marks may be a data frame, containing several columns of mark variables; each column is
treated separately.)

If the argument f is given, it must be a function, accepting two arguments m1 and m2 which are
vectors of equal length containing mark values (of the same type as the marks of X). It must return
a vector of numeric values of the same length as m1 and m2. The values must be non-negative.

The arguments use and method control the calculation of the classical correlation using cor, as
explained in the help file for cor.

Other arguments may be passed to f through the ... argument.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape. Biases due to edge effects are treated
using the ‘border method’ edge correction.

Value

Labelled vector of length 2 or 3 containing the unnormalised and normalised nearest neighbour
correlations, and the classical correlation if appropriate. Alternatively a matrix with 2 or 3 rows,
containing this information for each mark variable.

980 nncross

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

Examples

nnmean(finpines)
nnvario(finpines)
nncorr(finpines)
heights of neighbouring trees are slightly negatively correlated

nncorr(amacrine)
neighbouring cells are usually of different type

nncross Nearest Neighbours Between Two Patterns

Description

Given two point patterns X and Y, finds the nearest neighbour in Y of each point of X. Alternatively
Y may be a line segment pattern.

Usage

nncross(X, Y, ...)

S3 method for class 'ppp'
nncross(X, Y,

iX=NULL, iY=NULL,
what = c("dist", "which"),
...,
k = 1,
sortby=c("range", "var", "x", "y"),
is.sorted.X = FALSE,
is.sorted.Y = FALSE)

Default S3 method:
nncross(X, Y, ...)

nncross 981

Arguments

X Point pattern (object of class "ppp").

Y Either a point pattern (object of class "ppp") or a line segment pattern (object of
class "psp").

iX, iY Optional identifiers, applicable only in the case where Y is a point pattern, used
to determine whether a point in X is identical to a point in Y. See Details.

what Character string specifying what information should be returned. Either the
nearest neighbour distance ("dist"), the identifier of the nearest neighbour
("which"), or both.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

sortby Determines which coordinate to use to sort the point patterns. See Details.

is.sorted.X, is.sorted.Y

Logical values attesting whether the point patterns X and Y have been sorted. See
Details.

... Ignored.

Details

Given two point patterns X and Y this function finds, for each point of X, the nearest point of Y. The
distance between these points is also computed. If the argument k is specified, then the k-th nearest
neighbours will be found.

Alternatively if X is a point pattern and Y is a line segment pattern, the function finds the nearest line
segment to each point of X, and computes the distance.

The return value is a data frame, with rows corresponding to the points of X. The first column gives
the nearest neighbour distances (i.e. the ith entry is the distance from the ith point of X to the
nearest element of Y). The second column gives the indices of the nearest neighbours (i.e.\ the ith
entry is the index of the nearest element in Y.) If what="dist" then only the vector of distances is
returned. If what="which" then only the vector of indices is returned.

The argument k may be an integer or an integer vector. If it is a single integer, then the k-th nearest
neighbours are computed. If it is a vector, then the k[i]-th nearest neighbours are computed for
each entry k[i]. For example, setting k=1:3 will compute the nearest, second-nearest and third-
nearest neighbours. The result is a data frame.

Note that this function is not symmetric in X and Y. To find the nearest neighbour in X of each point
in Y, where Y is a point pattern, use nncross(Y,X).

The arguments iX and iY are used when the two point patterns X and Y have some points in common.
In this situation nncross(X,Y) would return some zero distances. To avoid this, attach a unique
integer identifier to each point, such that two points are identical if their identifying numbers are
equal. Let iX be the vector of identifier values for the points in X, and iY the vector of identifiers
for points in Y. Then the code will only compare two points if they have different values of the
identifier. See the Examples.

982 nncross

Value

A data frame, or a vector if the data frame would contain only one column.

By default (if what=c("dist","which") and k=1) a data frame with two columns:

dist Nearest neighbour distance

which Nearest neighbour index in Y

If what="dist" and k=1, a vector of nearest neighbour distances.

If what="which" and k=1, a vector of nearest neighbour indices.

If k is specified, the result is a data frame with columns containing the k-th nearest neighbour
distances and/or nearest neighbour indices.

Sorting data and pre-sorted data

Read this section if you care about the speed of computation.

For efficiency, the algorithm sorts the point patterns X and Y into increasing order of the x coordinate
or increasing order of the the y coordinate. Sorting is only an intermediate step; it does not affect
the output, which is always given in the same order as the original data.

By default (if sortby="range"), the sorting will occur on the coordinate that has the larger range of
values (according to the frame of the enclosing window of Y). If sortby = "var"), sorting will occur
on the coordinate that has the greater variance (in the pattern Y). Setting sortby="x" or sortby =
"y" will specify that sorting should occur on the x or y coordinate, respectively.

If the point pattern X is already sorted, then the corresponding argument is.sorted.X should be set
to TRUE, and sortby should be set equal to "x" or "y" to indicate which coordinate is sorted.

Similarly if Y is already sorted, then is.sorted.Y should be set to TRUE, and sortby should be set
equal to "x" or "y" to indicate which coordinate is sorted.

If both X and Y are sorted on the same coordinate axis then both is.sorted.X and is.sorted.Y
should be set to TRUE, and sortby should be set equal to "x" or "y" to indicate which coordinate is
sorted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz> , and Jens Oehlschlaegel

See Also

nndist for nearest neighbour distances in a single point pattern.

Examples

two different point patterns
X <- runifpoint(15)
Y <- runifpoint(20)
N <- nncross(X,Y)$which
note that length(N) = 15
plot(superimpose(X=X,Y=Y), main="nncross", cols=c("red","blue"))

nncross.lpp 983

arrows(Xx, Xy, Y[N]$x, Y[N]$y, length=0.15)

third-nearest neighbour
NXY <- nncross(X, Y, k=3)
NXY[1:3,]
second and third nearest neighbours
NXY <- nncross(X, Y, k=2:3)
NXY[1:3,]

two patterns with some points in common
Z <- runifpoint(50)
X <- Z[1:30]
Y <- Z[20:50]
iX <- 1:30
iY <- 20:50
N <- nncross(X,Y, iX, iY)$which
N <- nncross(X,Y, iX, iY, what="which") #faster
plot(superimpose(X=X, Y=Y), main="nncross", cols=c("red","blue"))
arrows(Xx, Xy, Y[N]$x, Y[N]$y, length=0.15)

point pattern and line segment pattern
X <- runifpoint(15)
Y <- rpoisline(10)
N <- nncross(X,Y)

nncross.lpp Nearest Neighbours on a Linear Network

Description

Given two point patterns X and Y on a linear network, finds the nearest neighbour in Y of each point
of X using the shortest path in the network.

Usage

S3 method for class 'lpp'
nncross(X, Y,

iX=NULL, iY=NULL,
what = c("dist", "which"),
...,
k = 1,
method="C")

Arguments

X,Y Point patterns on a linear network (objects of class "lpp"). They must lie on the
same linear network.

iX, iY Optional identifiers, used to determine whether a point in X is identical to a point
in Y. See Details.

984 nncross.lpp

what Character string specifying what information should be returned. Either the
nearest neighbour distance ("dist"), the identifier of the nearest neighbour
("which"), or both.

... Ignored.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour, for each value of k.

method Internal use only.

Details

Given two point patterns X and Y on the same linear network, this function finds, for each point of X,
the nearest point of Y, measuring distance by the shortest path in the network. The distance between
these points is also computed.

The return value is a data frame, with rows corresponding to the points of X. The first column gives
the nearest neighbour distances (i.e. the ith entry is the distance from the ith point of X to the
nearest element of Y). The second column gives the indices of the nearest neighbours (i.e.\ the ith
entry is the index of the nearest element in Y.) If what="dist" then only the vector of distances is
returned. If what="which" then only the vector of indices is returned.

Note that this function is not symmetric in X and Y. To find the nearest neighbour in X of each point
in Y, use nncross(Y,X).

The arguments iX and iY are used when the two point patterns X and Y have some points in common.
In this situation nncross(X,Y) would return some zero distances. To avoid this, attach a unique
integer identifier to each point, such that two points are identical if their identifying numbers are
equal. Let iX be the vector of identifier values for the points in X, and iY the vector of identifiers
for points in Y. Then the code will only compare two points if they have different values of the
identifier. See the Examples.

The kth nearest neighbour may be undefined, for example if there are fewer than k+1 points in the
dataset, or if the linear network is not connected. In this case, the kth nearest neighbour distance is
infinite.

Value

By default (if what=c("dist","which") and k=1) a data frame with two columns:

dist Nearest neighbour distance

which Nearest neighbour index in Y

If what="dist", a vector of nearest neighbour distances.

If what="which", a vector of nearest neighbour indices.

If k is a vector of integers, the result is a matrix with one row for each point in X, giving the distances
and/or indices of the kth nearest neighbours in Y.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

nncross.pp3 985

See Also

nndist.lpp for nearest neighbour distances in a single point pattern.

nnwhich.lpp to identify which points are nearest neighbours in a single point pattern.

Examples

two different point patterns
X <- runiflpp(3, simplenet)
Y <- runiflpp(5, simplenet)
nn <- nncross(X,Y)
nn
plot(simplenet, main="nncross")
plot(X, add=TRUE, cols="red")
plot(Y, add=TRUE, cols="blue", pch=16)
XX <- as.ppp(X)
YY <- as.ppp(Y)
i <- nn$which
arrows(XXx, XXy, YY[i]$x, YY[i]$y, length=0.15)

nearest and second-nearest neighbours
nncross(X, Y, k=1:2)

two patterns with some points in common
X <- Y[1:2]
iX <- 1:2
iY <- 1:5
nncross(X,Y, iX, iY)

nncross.pp3 Nearest Neighbours Between Two Patterns in 3D

Description

Given two point patterns X and Y in three dimensions, finds the nearest neighbour in Y of each point
of X.

Usage

S3 method for class 'pp3'
nncross(X, Y,

iX=NULL, iY=NULL,
what = c("dist", "which"),
...,
k = 1,
sortby=c("range", "var", "x", "y", "z"),
is.sorted.X = FALSE,
is.sorted.Y = FALSE)

986 nncross.pp3

Arguments

X,Y Point patterns in three dimensions (objects of class "pp3").

iX, iY Optional identifiers, used to determine whether a point in X is identical to a point
in Y. See Details.

what Character string specifying what information should be returned. Either the
nearest neighbour distance ("dist"), the identifier of the nearest neighbour
("which"), or both.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

sortby Determines which coordinate to use to sort the point patterns. See Details.
is.sorted.X, is.sorted.Y

Logical values attesting whether the point patterns X and Y have been sorted. See
Details.

... Ignored.

Details

Given two point patterns X and Y in three dimensions, this function finds, for each point of X,
the nearest point of Y. The distance between these points is also computed. If the argument k is
specified, then the k-th nearest neighbours will be found.

The return value is a data frame, with rows corresponding to the points of X. The first column gives
the nearest neighbour distances (i.e. the ith entry is the distance from the ith point of X to the
nearest element of Y). The second column gives the indices of the nearest neighbours (i.e.\ the ith
entry is the index of the nearest element in Y.) If what="dist" then only the vector of distances is
returned. If what="which" then only the vector of indices is returned.

The argument k may be an integer or an integer vector. If it is a single integer, then the k-th nearest
neighbours are computed. If it is a vector, then the k[i]-th nearest neighbours are computed for
each entry k[i]. For example, setting k=1:3 will compute the nearest, second-nearest and third-
nearest neighbours. The result is a data frame.

Note that this function is not symmetric in X and Y. To find the nearest neighbour in X of each point
in Y, use nncross(Y,X).

The arguments iX and iY are used when the two point patterns X and Y have some points in common.
In this situation nncross(X,Y) would return some zero distances. To avoid this, attach a unique
integer identifier to each point, such that two points are identical if their identifying numbers are
equal. Let iX be the vector of identifier values for the points in X, and iY the vector of identifiers
for points in Y. Then the code will only compare two points if they have different values of the
identifier. See the Examples.

Value

A data frame, or a vector if the data frame would contain only one column.

By default (if what=c("dist","which") and k=1) a data frame with two columns:

dist Nearest neighbour distance

which Nearest neighbour index in Y

nncross.pp3 987

If what="dist" and k=1, a vector of nearest neighbour distances.

If what="which" and k=1, a vector of nearest neighbour indices.

If k is specified, the result is a data frame with columns containing the k-th nearest neighbour
distances and/or nearest neighbour indices.

Sorting data and pre-sorted data

Read this section if you care about the speed of computation.

For efficiency, the algorithm sorts both the point patterns X and Y into increasing order of the x
coordinate, or both into increasing order of the y coordinate, or both into increasing order of the z
coordinate. Sorting is only an intermediate step; it does not affect the output, which is always given
in the same order as the original data.

By default (if sortby="range"), the sorting will occur on the coordinate that has the largest range
of values (according to the frame of the enclosing window of Y). If sortby = "var"), sorting will
occur on the coordinate that has the greater variance (in the pattern Y). Setting sortby="x" or
sortby = "y" or sortby = "z" will specify that sorting should occur on the x, y or z coordinate,
respectively.

If the point pattern X is already sorted, then the corresponding argument is.sorted.X should be set
to TRUE, and sortby should be set equal to "x", "y" or "z" to indicate which coordinate is sorted.

Similarly if Y is already sorted, then is.sorted.Y should be set to TRUE, and sortby should be set
equal to "x", "y" or "z" to indicate which coordinate is sorted.

If both X and Y are sorted on the same coordinate axis then both is.sorted.X and is.sorted.Y
should be set to TRUE, and sortby should be set equal to "x", "y" or "z" to indicate which coordi-
nate is sorted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz> , and Jens Oehlschlaegel

See Also

nndist for nearest neighbour distances in a single point pattern.

Examples

two different point patterns
X <- pp3(runif(10), runif(10), runif(10), box3(c(0,1)))
Y <- pp3(runif(20), runif(20), runif(20), box3(c(0,1)))
N <- nncross(X,Y)$which
N <- nncross(X,Y, what="which") #faster
note that length(N) = 10

k-nearest neighbours
N3 <- nncross(X, Y, k=1:3)

two patterns with some points in common
Z <- pp3(runif(20), runif(20), runif(20), box3(c(0,1)))

988 nncross.ppx

X <- Z[1:15]
Y <- Z[10:20]
iX <- 1:15
iY <- 10:20
N <- nncross(X,Y, iX, iY, what="which")

nncross.ppx Nearest Neighbours Between Two Patterns in Any Dimensions

Description

Given two point patterns X and Y in many dimensional space, finds the nearest neighbour in Y of
each point of X.

Usage

S3 method for class 'ppx'
nncross(X, Y,

iX=NULL, iY=NULL,
what = c("dist", "which"),
...,
k = 1)

Arguments

X,Y Point patterns in any number of spatial dimensions (objects of class "ppx").

iX, iY Optional identifiers, used to determine whether a point in X is identical to a point
in Y. See Details.

what Character string specifying what information should be returned. Either the
nearest neighbour distance ("dist"), the identifier of the nearest neighbour
("which"), or both.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

... Ignored.

Details

Given two point patterns X and Y in m-dimensional space, this function finds, for each point of X,
the nearest point of Y. The distance between these points is also computed. If the argument k is
specified, then the k-th nearest neighbours will be found.

The return value is a data frame, with rows corresponding to the points of X. The first column gives
the nearest neighbour distances (i.e. the ith entry is the distance from the ith point of X to the
nearest element of Y). The second column gives the indices of the nearest neighbours (i.e.\ the ith
entry is the index of the nearest element in Y.) If what="dist" then only the vector of distances is
returned. If what="which" then only the vector of indices is returned.

nncross.ppx 989

The argument k may be an integer or an integer vector. If it is a single integer, then the k-th nearest
neighbours are computed. If it is a vector, then the k[i]-th nearest neighbours are computed for
each entry k[i]. For example, setting k=1:3 will compute the nearest, second-nearest and third-
nearest neighbours. The result is a data frame.

Note that this function is not symmetric in X and Y. To find the nearest neighbour in X of each point
in Y, use nncross(Y,X).

The arguments iX and iY are used when the two point patterns X and Y have some points in common.
In this situation nncross(X,Y) would return some zero distances. To avoid this, attach a unique
integer identifier to each point, such that two points are identical if their identifying numbers are
equal. Let iX be the vector of identifier values for the points in X, and iY the vector of identifiers
for points in Y. Then the code will only compare two points if they have different values of the
identifier. See the Examples.

Value

A data frame, or a vector if the data frame would contain only one column.

By default (if what=c("dist","which") and k=1) a data frame with two columns:

dist Nearest neighbour distance

which Nearest neighbour index in Y

If what="dist" and k=1, a vector of nearest neighbour distances.

If what="which" and k=1, a vector of nearest neighbour indices.

If k is specified, the result is a data frame with columns containing the k-th nearest neighbour
distances and/or nearest neighbour indices.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

nndist for nearest neighbour distances in a single point pattern.

Examples

B <- boxx(c(0,1), c(0,1), c(0,1), c(0,1))
two different point patterns
X <- runifpointx(5, B)
Y <- runifpointx(10, B)
nncross(X,Y)
N23 <- nncross(X,Y, k=2:3)

two patterns with some points in common
Z <- runifpointx(20, B)
X <- Z[1:15]
Y <- Z[10:20]
iX <- 1:15

990 nndensity.ppp

iY <- 10:20
N <- nncross(X,Y, iX, iY, what="which")
N4 <- nncross(X,Y, iX, iY, k=4)

nndensity.ppp Estimate Intensity of Point Pattern Using Nearest Neighbour Dis-
tances

Description

Estimates the intensity of a point pattern using the distance from each spatial location to the kth
nearest data point.

Usage

nndensity(x, ...)

S3 method for class 'ppp'
nndensity(x, k, ..., verbose = TRUE)

Arguments

x A point pattern (object of class "ppp") or some other spatial object.

k Integer. The distance to the kth nearest data point will be computed. There is a
sensible default.

... Arguments passed to nnmap and as.mask controlling the pixel resolution.

verbose Logical. If TRUE, print the value of k when it is automatically selected. If FALSE,
remain silent.

Details

This function computes a quick estimate of the intensity of the point process that generated the
point pattern x.

For each spatial location s, let d(s) be the distance from s to the k-th nearest point in the dataset x.
If the data came from a homogeneous Poisson process with intensity λ, then πd(s)2 would follow a
negative exponential distribution with mean 1/λ, and the maximum likelihood estimate of λ would
be 1/(πd(s)2). This is the estimate computed by nndensity, apart from an edge effect correction.

This estimator of intensity is relatively fast to compute, and is spatially adaptive (so that it can handle
wide variation in the intensity function). However, it implicitly assumes the points are independent,
so it does not perform well if the pattern is strongly clustered or strongly inhibited.

The value of k should be greater than 1 in order to avoid infinite peaks in the intensity estimate
around each data point. The default value of k is the square root of the number of points in x, which
seems to work well in many cases.

The window of x is digitised using as.mask and the values d(s) are computed using nnmap. To
control the pixel resolution, see as.mask.

nndist 991

Value

A pixel image (object of class "im") giving the estimated intensity of the point process at each
spatial location. Pixel values are intensities (number of points per unit area).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

NEED REFERENCES. TRY CRESSIE

See Also

density.ppp, intensity for alternative estimates of point process intensity.

Examples

plot(nndensity(swedishpines))

nndist Nearest neighbour distances

Description

Computes the distance from each point to its nearest neighbour in a point pattern. Alternatively
computes the distance to the second nearest neighbour, or third nearest, etc.

Usage

nndist(X, ...)
S3 method for class 'ppp'

nndist(X, ..., k=1, by=NULL, method="C")
Default S3 method:

nndist(X, Y=NULL, ..., k=1, by=NULL, method="C")

Arguments

X,Y Arguments specifying the locations of a set of points. For nndist.ppp, the argu-
ment X should be a point pattern (object of class "ppp"). For nndist.default,
typically X and Y would be numeric vectors of equal length. Alternatively Y may
be omitted and X may be a list with two components x and y, or a matrix with
two columns. Alternatively X can be a three-dimensional point pattern (class
"pp3"), a higher-dimensional point pattern (class "ppx"), a point pattern on a
linear network (class "lpp"), or a spatial pattern of line segments (class "psp").

... Ignored by nndist.ppp and nndist.default.

992 nndist

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

by Optional. A factor, which separates X into groups. The algorithm will compute
the distance to the nearest point in each group.

method String specifying which method of calculation to use. Values are "C" and "interpreted".

Details

This function computes the Euclidean distance from each point in a point pattern to its nearest
neighbour (the nearest other point of the pattern). If k is specified, it computes the distance to the
kth nearest neighbour.

The function nndist is generic, with a method for point patterns (objects of class "ppp"), and a
default method for coordinate vectors.

There are also methods for line segment patterns, nndist.psp, three-dimensional point patterns,
nndist.pp3, higher-dimensional point patterns, nndist.ppx and point patterns on a linear network,
nndist.lpp; these are described in their own help files. Type methods(nndist) to see all available
methods.

The method for planar point patterns nndist.ppp expects a single point pattern argument X and
returns the vector of its nearest neighbour distances.

The default method expects that X and Y will determine the coordinates of a set of points. Typically
X and Y would be numeric vectors of equal length. Alternatively Y may be omitted and X may be a
list with two components named x and y, or a matrix or data frame with two columns.

The argument k may be a single integer, or an integer vector. If it is a vector, then the kth nearest
neighbour distances are computed for each value of k specified in the vector.

If the argument by is given, it should be a factor, of length equal to the number of points in X.
This factor effectively partitions X into subsets, each subset associated with one of the levels of X.
The algorithm will then compute, for each point of X, the distance to the nearest neighbour in each
subset.

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted" then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is faster by two to three orders
of magnitude and uses much less memory.

If there is only one point (if x has length 1), then a nearest neighbour distance of Inf is returned. If
there are no points (if x has length zero) a numeric vector of length zero is returned.

To identify which point is the nearest neighbour of a given point, use nnwhich.

To use the nearest neighbour distances for statistical inference, it is often advisable to use the edge-
corrected empirical distribution, computed by Gest.

To find the nearest neighbour distances from one point pattern to another point pattern, use nncross.

Value

Numeric vector or matrix containing the nearest neighbour distances for each point.

If k = 1 (the default), the return value is a numeric vector v such that v[i] is the nearest neighbour
distance for the ith data point.

nndist 993

If k is a single integer, then the return value is a numeric vector v such that v[i] is the kth nearest
neighbour distance for the ith data point.

If k is a vector, then the return value is a matrix m such that m[i,j] is the k[j]th nearest neighbour
distance for the ith data point.

If the argument by is given, then the result is a data frame containing the distances described above,
from each point of X, to the nearest point in each subset of X defined by the factor by.

Nearest neighbours of each type

If X is a multitype point pattern and by=marks(X), then the algorithm will compute, for each point
of X, the distance to the nearest neighbour of each type. See the Examples.

To find the minimum distance from any point of type i to the nearest point of type j, for all combi-
nations of i and j, use minnndist, or the R function aggregate as suggested in the Examples.

Warnings

An infinite or NA value is returned if the distance is not defined (e.g. if there is only one point in the
point pattern).

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

nndist.psp, nndist.pp3, nndist.ppx, nndist.lpp, pairdist, Gest, nnwhich, nncross, minnndist,
maxnndist.

Examples

data(cells)
nearest neighbours
d <- nndist(cells)

second nearest neighbours
d2 <- nndist(cells, k=2)

first, second and third nearest
d1to3 <- nndist(cells, k=1:3)

x <- runif(100)
y <- runif(100)
d <- nndist(x, y)

Stienen diagram
plot(cells %mark% nndist(cells), markscale=1)

distance to nearest neighbour of each type
nnda <- nndist(ants, by=marks(ants))
head(nnda)

994 nndist.lpp

For nest number 1, the nearest Cataglyphis nest is 87.32125 units away

minimum distance between each pair of types
minnndist(ants, by=marks(ants))

Use of 'aggregate':
minimum distance between each pair of types
aggregate(nnda, by=list(from=marks(ants)), min)
mean nearest neighbour distances
aggregate(nnda, by=list(from=marks(ants)), mean)
The mean distance from a Messor nest to
the nearest Cataglyphis nest is 59.02549 units

nndist.lpp Nearest neighbour distances on a linear network

Description

Given a pattern of points on a linear network, compute the nearest-neighbour distances, measured
by the shortest path in the network.

Usage

S3 method for class 'lpp'
nndist(X, ..., k=1, by=NULL, method="C")

Arguments

X Point pattern on linear network (object of class "lpp").

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

by Optional. A factor, which separates X into groups. The algorithm will compute
the distance to the nearest point in each group.

method Optional string determining the method of calculation. Either "interpreted"
or "C".

... Ignored.

Details

Given a pattern of points on a linear network, this function computes the nearest neighbour distance
for each point (i.e. the distance from each point to the nearest other point), measuring distance by
the shortest path in the network.

If method="C" the distances are computed using code in the C language. If method="interpreted"
then the computation is performed using interpreted R code. The R code is much slower, but is pro-
vided for checking purposes.

The kth nearest neighbour distance is infinite if the kth nearest neighbour does not exist. This can
occur if there are fewer than k+1 points in the dataset, or if the linear network is not connected.

nndist.pp3 995

If the argument by is given, it should be a factor, of length equal to the number of points in X.
This factor effectively partitions X into subsets, each subset associated with one of the levels of X.
The algorithm will then compute, for each point of X, the distance to the nearest neighbour in each
subset.

Value

A numeric vector, of length equal to the number of points in X, or a matrix, with one row for each
point in X and one column for each entry of k. Entries are nonnegative numbers or infinity (Inf).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

lpp

Examples

X <- runiflpp(12, simplenet)
nndist(X)
nndist(X, k=2)

marks(X) <- factor(rep(letters[1:3], 4))
nndist(X, by=marks(X))

nndist.pp3 Nearest neighbour distances in three dimensions

Description

Computes the distance from each point to its nearest neighbour in a three-dimensional point pattern.
Alternatively computes the distance to the second nearest neighbour, or third nearest, etc.

Usage

S3 method for class 'pp3'
nndist(X, ..., k=1, by=NULL)

Arguments

X Three-dimensional point pattern (object of class "pp3").

... Ignored.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

by Optional. A factor, which separates X into groups. The algorithm will compute
the distance to the nearest point in each group.

996 nndist.pp3

Details

This function computes the Euclidean distance from each point in a three-dimensional point pattern
to its nearest neighbour (the nearest other point of the pattern). If k is specified, it computes the
distance to the kth nearest neighbour.

The function nndist is generic; this function nndist.pp3 is the method for the class "pp3".

The argument k may be a single integer, or an integer vector. If it is a vector, then the kth nearest
neighbour distances are computed for each value of k specified in the vector.

If there is only one point (if x has length 1), then a nearest neighbour distance of Inf is returned. If
there are no points (if x has length zero) a numeric vector of length zero is returned.

If the argument by is given, it should be a factor, of length equal to the number of points in X.
This factor effectively partitions X into subsets, each subset associated with one of the levels of X.
The algorithm will then compute, for each point of X, the distance to the nearest neighbour in each
subset.

To identify which point is the nearest neighbour of a given point, use nnwhich.

To use the nearest neighbour distances for statistical inference, it is often advisable to use the edge-
corrected empirical distribution, computed by G3est.

To find the nearest neighbour distances from one point pattern to another point pattern, use nncross.

Value

Numeric vector or matrix containing the nearest neighbour distances for each point.

If k = 1 (the default), the return value is a numeric vector v such that v[i] is the nearest neighbour
distance for the ith data point.

If k is a single integer, then the return value is a numeric vector v such that v[i] is the kth nearest
neighbour distance for the ith data point.

If k is a vector, then the return value is a matrix m such that m[i,j] is the k[j]th nearest neighbour
distance for the ith data point.

Warnings

An infinite or NA value is returned if the distance is not defined (e.g. if there is only one point in the
point pattern).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

based on code for two dimensions by Pavel Grabarnik

See Also

nndist, pairdist, G3est, nnwhich

nndist.ppx 997

Examples

X <- runifpoint3(40)

nearest neighbours
d <- nndist(X)

second nearest neighbours
d2 <- nndist(X, k=2)

first, second and third nearest
d1to3 <- nndist(X, k=1:3)

distance to nearest point in each group
marks(X) <- factor(rep(letters[1:4], 10))
dby <- nndist(X, by=marks(X))

nndist.ppx Nearest Neighbour Distances in Any Dimensions

Description

Computes the distance from each point to its nearest neighbour in a multi-dimensional point pattern.
Alternatively computes the distance to the second nearest neighbour, or third nearest, etc.

Usage

S3 method for class 'ppx'
nndist(X, ..., k=1, by=NULL)

Arguments

X Multi-dimensional point pattern (object of class "ppx").

... Arguments passed to coords.ppx to determine which coordinates should be
used.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

by Optional. A factor, which separates X into groups. The algorithm will compute
the distance to the nearest point in each group.

Details

This function computes the Euclidean distance from each point in a multi-dimensional point pattern
to its nearest neighbour (the nearest other point of the pattern). If k is specified, it computes the
distance to the kth nearest neighbour.

The function nndist is generic; this function nndist.ppx is the method for the class "ppx".

The argument k may be a single integer, or an integer vector. If it is a vector, then the kth nearest
neighbour distances are computed for each value of k specified in the vector.

998 nndist.ppx

If there is only one point (if x has length 1), then a nearest neighbour distance of Inf is returned. If
there are no points (if x has length zero) a numeric vector of length zero is returned.

If the argument by is given, it should be a factor, of length equal to the number of points in X.
This factor effectively partitions X into subsets, each subset associated with one of the levels of X.
The algorithm will then compute, for each point of X, the distance to the nearest neighbour in each
subset.

To identify which point is the nearest neighbour of a given point, use nnwhich.

To find the nearest neighbour distances from one point pattern to another point pattern, use nncross.

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance
between points in a space-time point pattern, set temporal=FALSE.

Value

Numeric vector or matrix containing the nearest neighbour distances for each point.

If k = 1 (the default), the return value is a numeric vector v such that v[i] is the nearest neighbour
distance for the ith data point.

If k is a single integer, then the return value is a numeric vector v such that v[i] is the kth nearest
neighbour distance for the ith data point.

If k is a vector, then the return value is a matrix m such that m[i,j] is the k[j]th nearest neighbour
distance for the ith data point.

Warnings

An infinite or NA value is returned if the distance is not defined (e.g. if there is only one point in the
point pattern).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

nndist, pairdist, nnwhich

Examples

df <- data.frame(x=runif(5),y=runif(5),z=runif(5),w=runif(5))
X <- ppx(data=df)

nearest neighbours
d <- nndist(X)

second nearest neighbours
d2 <- nndist(X, k=2)

first, second and third nearest
d1to3 <- nndist(X, k=1:3)

nndist.psp 999

nearest neighbour distances to each group
marks(X) <- factor(c("a","a", "b", "b", "b"))
nndist(X, by=marks(X))
nndist(X, by=marks(X), k=1:2)

nndist.psp Nearest neighbour distances between line segments

Description

Computes the distance from each line segment to its nearest neighbour in a line segment pattern.
Alternatively finds the distance to the second nearest, third nearest etc.

Usage

S3 method for class 'psp'
nndist(X, ..., k=1, method="C")

Arguments

X A line segment pattern (object of class "psp").

... Ignored.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

method String specifying which method of calculation to use. Values are "C" and "interpreted".
Usually not specified.

Details

This is a method for the generic function nndist for the class "psp".

If k=1, this function computes the distance from each line segment to the nearest other line segment
in X. In general it computes the distance from each line segment to the kth nearest other line segment.
The argument k can also be a vector, and this computation will be performed for each value of k.

Distances are calculated using the Hausdorff metric. The Hausdorff distance between two line
segments is the maximum distance from any point on one of the segments to the nearest point on
the other segment.

If there are fewer than max(k)+1 line segments in the pattern, some of the nearest neighbour dis-
tances will be infinite (Inf).

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted" then the distances are computed using interpreted R code
only. If method="C" (the default) then compiled C code is used. The C code is somewhat faster.

1000 nnfromvertex

Value

Numeric vector or matrix containing the nearest neighbour distances for each line segment.

If k = 1 (the default), the return value is a numeric vector v such that v[i] is the nearest neighbour
distance for the ith segment.

If k is a single integer, then the return value is a numeric vector v such that v[i] is the kth nearest
neighbour distance for the ith segment.

If k is a vector, then the return value is a matrix m such that m[i,j] is the k[j]th nearest neighbour
distance for the ith segment.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

nndist, nndist.ppp

Examples

L <- psp(runif(10), runif(10), runif(10), runif(10), owin())
D <- nndist(L)
D <- nndist(L, k=1:3)

nnfromvertex Nearest Data Point From Each Vertex in a Network

Description

Given a point pattern on a linear network, for each vertex of the network find the nearest data point.

Usage

nnfromvertex(X, what = c("dist", "which"), k = 1)

Arguments

X Point pattern on a linear network (object of class "lpp").

what Character string specifying whether to return the nearest-neighbour distances,
nearest-neighbour identifiers, or both.

k Integer, or integer vector, specifying that the kth nearest neighbour should be
returned.

nnfun 1001

Details

For each vertex (node) of the linear network, this algorithm finds the nearest data point to the vertex,
and returns either the distance from the vertex to its nearest neighbour in X, or the serial number of
the nearest neighbour in X, or both.

If k is an integer, then the k-th nearest neighbour is found instead.

If k is an integer vector, this is repeated for each integer in k.

Value

A numeric vector, matrix, or data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

nndist.lpp

Examples

X <- runiflpp(5, simplenet)
nnfromvertex(X)
nnfromvertex(X, k=1:3)

nnfun Nearest Neighbour Index Map as a Function

Description

Compute the nearest neighbour index map of an object, and return it as a function.

Usage

nnfun(X, ...)

S3 method for class 'ppp'
nnfun(X, ..., k=1, value=c("index", "mark"))

S3 method for class 'psp'
nnfun(X, ..., value=c("index", "mark"))

1002 nnfun

Arguments

X Any suitable dataset representing a two-dimensional collection of objects, such
as a point pattern (object of class "ppp") or a line segment pattern (object of
class "psp").

k A single integer. The kth nearest neighbour will be found.

... Extra arguments are ignored.

value String (partially matched) specifying whether to return the index of the neigh-
bour (value="index", the default) or the mark value of the neighbour (value="mark").

Details

For a collection X of two dimensional objects (such as a point pattern or a line segment pattern),
the “nearest neighbour index function” of X is the mathematical function f such that, for any two-
dimensional spatial location (x, y), the function value f(x,y) is the index i identifying the closest
member of X . That is, if i = f(x, y) then X[i] is the closest member of the collection X to the
location (x, y).

The command f <-nnfun(X) returns a function in the R language, with arguments x,y, that repre-
sents the nearest neighbour index function of X. Evaluating the function f in the form v <-f(x,y),
where x and y are any numeric vectors of equal length containing coordinates of spatial locations,
yields the indices of the nearest neighbours to these locations.

If the argument k is specified then the k-th nearest neighbour will be found.

The result of f <-nnfun(X) also belongs to the class "funxy" and to the special class "nnfun". It
can be printed and plotted immediately as shown in the Examples.

A nnfun object can be converted to a pixel image using as.im.

Value

A function with arguments x,y. The function also belongs to the class "nnfun" which has a
method for print. It also belongs to the class "funxy" which has methods for plot, contour and
persp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

distfun, plot.funxy

Examples

f <- nnfun(cells)
f
plot(f)
f(0.2, 0.3)

nnfun.lpp 1003

g <- nnfun(cells, k=2)
g(0.2, 0.3)

plot(nnfun(amacrine, value="m"))

L <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
h <- nnfun(L)
h(0.2, 0.3)

nnfun.lpp Nearest Neighbour Map on Linear Network

Description

Compute the nearest neighbour function of a point pattern on a linear network.

Usage

S3 method for class 'lpp'
nnfun(X, ..., k=1, value=c("index", "mark"))

Arguments

X A point pattern on a linear network (object of class "lpp").
k Integer. The algorithm finds the kth nearest neighbour in X from any spatial

location.
value String (partially matched) specifying whether to return the index of the neigh-

bour (value="index", the default) or the mark value of the neighbour (value="mark").
... Other arguments are ignored.

Details

The (geodesic) nearest neighbour function of a point pattern X on a linear network L tells us which
point of X is closest to any given location.

If X is a point pattern on a linear network L, the nearest neighbour function of X is the mathematical
function f defined for any location s on the network by f(s) = i, where X[i] is the closest point of
X to the location s measured by the shortest path. In other words the value of f(s) is the identifier
or serial number of the closest point of X.

The command nnfun.lpp is a method for the generic command nnfun for the class "lpp" of point
patterns on a linear network.

If X is a point pattern on a linear network, f <-nnfun(X) returns a function in the R language, with
arguments x,y,..., that represents the nearest neighbour function of X. Evaluating the function f in
the form v <-f(x,y), where x and y are any numeric vectors of equal length containing coordinates
of spatial locations, yields a vector of identifiers or serial numbers of the data points closest to these
spatial locations. More efficiently f can take the arguments x,y,seg,tp where seg and tp are the
local coordinates on the network.

The result of f <-nnfun(X) also belongs to the class "linfun". It can be printed and plotted
immediately as shown in the Examples. It can be converted to a pixel image using as.linim.

1004 nnmap

Value

A function in the R language, with arguments x,y and optional arguments seg,tp. It also belongs
to the class "linfun" which has methods for plot, print etc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

linfun, methods.linfun.

To compute the distance to the nearest neighbour, see distfun.lpp.

Examples

X <- runiflpp(3, simplenet)
f <- nnfun(X)
f
plot(f)
plot(nnfun(chicago, value="m"))

nnmap K-th Nearest Point Map

Description

Given a point pattern, this function constructs pixel images giving the distance from each pixel to
its k-th nearest neighbour in the point pattern, and the index of the k-th nearest neighbour.

Usage

nnmap(X, k = 1, what = c("dist", "which"),
..., W = as.owin(X),
is.sorted.X = FALSE, sortby = c("range", "var", "x", "y"))

Arguments

X Point pattern (object of class "ppp").
k Integer, or integer vector. The algorithm will find the kth nearest neighbour.
what Character string specifying what information should be returned. Either the

nearest neighbour distance ("dist"), the index of the nearest neighbour ("which"),
or both.

... Arguments passed to as.mask to determine the pixel resolution of the result.
W Window (object of class "owin") specifying the spatial domain in which the

distances will be computed. Defaults to the window of X.
is.sorted.X Logical value attesting whether the point pattern X has been sorted. See Details.
sortby Determines which coordinate to use to sort the point pattern. See Details.

nnmap 1005

Details

Given a point pattern X, this function constructs two pixel images:

• a distance map giving, for each pixel, the distance to the nearest point of X;

• a nearest neighbour map giving, for each pixel, the identifier of the nearest point of X.

If the argument k is specified, then the k-th nearest neighbours will be found.

If what="dist" then only the distance map is returned. If what="which" then only the nearest
neighbour map is returned.

The argument k may be an integer or an integer vector. If it is a single integer, then the k-th nearest
neighbours are computed. If it is a vector, then the k[i]-th nearest neighbours are computed for
each entry k[i]. For example, setting k=1:3 will compute the nearest, second-nearest and third-
nearest neighbours.

Value

A pixel image, or a list of pixel images.

By default (if what=c("dist","which")), the result is a list with two components dist and which
containing the distance map and the nearest neighbour map.

If what="dist" then the result is a real-valued pixel image containing the distance map.

If what="which" then the result is an integer-valued pixel image containing the nearest neighbour
map.

If k is a vector of several integers, then the result is similar except that each pixel image is replaced
by a list of pixel images, one for each entry of k.

Sorting data and pre-sorted data

Read this section if you care about the speed of computation.

For efficiency, the algorithm sorts the point pattern X into increasing order of the x coordinate or
increasing order of the the y coordinate. Sorting is only an intermediate step; it does not affect the
output, which is always given in the same order as the original data.

By default (if sortby="range"), the sorting will occur on the coordinate that has the larger range of
values (according to the frame of the enclosing window of X). If sortby = "var"), sorting will occur
on the coordinate that has the greater variance (in the pattern X). Setting sortby="x" or sortby =
"y" will specify that sorting should occur on the x or y coordinate, respectively.

If the point pattern X is already sorted, then the argument is.sorted.X should be set to TRUE, and
sortby should be set equal to "x" or "y" to indicate which coordinate is sorted.

Warning About Ties

Ties are possible: there may be two data points which lie exactly the same distance away from a par-
ticular pixel. This affects the results from nnmap(what="which"). The handling of ties is not well-
defined: it is not consistent between different computers and different installations of R. If there are
ties, then different calls to nnmap(what="which") may give inconsistent results. For example, you
may get a different answer from nnmap(what="which",k=1) and nnmap(what="which",k=1:2)[[1]].

1006 nnmark

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz> , and Jens Oehlschlaegel

See Also

distmap

Examples

plot(nnmap(cells, 2, what="which"))

nnmark Mark of Nearest Neighbour

Description

Given a marked point pattern dataset X this function computes, for each desired location y, the mark
attached to the nearest neighbour of y in X. The desired locations y can be either a pixel grid or the
point pattern X itself.

Usage

nnmark(X, ..., k = 1, at=c("pixels", "points"))

Arguments

X A marked point pattern (object of class "ppp").

... Arguments passed to as.mask to determine the pixel resolution.

k Single integer. The kth nearest data point will be used.

at String specifying whether to compute the values at a grid of pixel locations
(at="pixels") or only at the points of X (at="points").

Details

Given a marked point pattern dataset X this function computes, for each desired location y, the mark
attached to the point of X that is nearest to y. The desired locations y can be either a pixel grid or
the point pattern X itself.

The argument X must be a marked point pattern (object of class "ppp", see ppp.object). The marks
are allowed to be a vector or a data frame.

• If at="points", then for each point in X, the algorithm finds the nearest other point in X, and
extracts the mark attached to it. The result is a vector or data frame containing the marks of
the neighbours of each point.

nnmark 1007

• If at="pixels" (the default), then for each pixel in a rectangular grid, the algorithm finds the
nearest point in X, and extracts the mark attached to it. The result is an image or a list of images
containing the marks of the neighbours of each pixel. The pixel resolution is controlled by the
arguments ... passed to as.mask.

If the argument k is given, then the k-th nearest neighbour will be used.

Value

If X has a single column of marks:

• If at="pixels" (the default), the result is a pixel image (object of class "im"). The value at
each pixel is the mark attached to the nearest point of X.

• If at="points", the result is a vector or factor of length equal to the number of points in X.
Entries are the mark values of the nearest neighbours of each point of X.

If X has a data frame of marks:

• If at="pixels" (the default), the result is a named list of pixel images (object of class "im").
There is one image for each column of marks. This list also belongs to the class "solist",
for which there is a plot method.

• If at="points", the result is a data frame with one row for each point of X, Entries are the
mark values of the nearest neighbours of each point of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

Smooth.ppp, marktable, nnwhich

Examples

plot(nnmark(ants))
v <- nnmark(ants, at="points")
v[1:10]
plot(nnmark(finpines))
vf <- nnmark(finpines, at="points")
vf[1:5,]

1008 nnorient

nnorient Nearest Neighbour Orientation Distribution

Description

Computes the distribution of the orientation of the vectors from each point to its nearest neighbour.

Usage

nnorient(X, ..., cumulative = FALSE, correction, k = 1,
unit = c("degree", "radian"),
domain = NULL, ratio = FALSE)

Arguments

X Point pattern (object of class "ppp").

... Arguments passed to circdensity to control the kernel smoothing, if cumulative=FALSE.

cumulative Logical value specifying whether to estimate the probability density (cumulative=FALSE,
the default) or the cumulative distribution function (cumulative=TRUE).

correction Character vector specifying edge correction or corrections. Options are "none",
"bord.modif", "good" and "best". Alternatively correction="all" selects
all options.

k Integer. The kth nearest neighbour will be used.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

unit Unit in which the angles should be expressed. Either "degree" or "radian".

domain Optional window. The first point xi of each pair of points will be constrained to
lie in domain.

Details

This algorithm considers each point in the pattern X and finds its nearest neighbour (or kth nearest
neighour). The direction of the arrow joining the data point to its neighbour is measured, as an
angle in degrees or radians, anticlockwise from the x axis.

If cumulative=FALSE (the default), a kernel estimate of the probability density of the angles is
calculated using circdensity. This is the function ϑ(φ) defined in Illian et al (2008), equation
(4.5.3), page 253.

If cumulative=TRUE, then the cumulative distribution function of these angles is calculated.

In either case the result can be plotted as a rose diagram by rose, or as a function plot by plot.fv.

The algorithm gives each observed direction a weight, determined by an edge correction, to adjust
for the fact that some interpoint distances are more likely to be observed than others. The choice of
edge correction or corrections is determined by the argument correction.

It is also possible to calculate an estimate of the probability density from the cumulative distribution
function, by numerical differentiation. Use deriv.fv with the argument Dperiodic=TRUE.

nnwhich 1009

Value

A function value table (object of class "fv") containing the estimates of the probability density
or the cumulative distribution function of angles, in degrees (if unit="degree") or radians (if
unit="radian").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical Analysis and Modelling of
Spatial Point Patterns. Wiley.

See Also

pairorient

Examples

rose(nnorient(redwood, adjust=0.6), col="grey")
plot(CDF <- nnorient(redwood, cumulative=TRUE))

nnwhich Nearest neighbour

Description

Finds the nearest neighbour of each point in a point pattern.

Usage

nnwhich(X, ...)
S3 method for class 'ppp'

nnwhich(X, ..., k=1, by=NULL, method="C")
Default S3 method:

nnwhich(X, Y=NULL, ..., k=1, by=NULL, method="C")

1010 nnwhich

Arguments

X,Y Arguments specifying the locations of a set of points. For nnwhich.ppp, the ar-
gument X should be a point pattern (object of class "ppp"). For nnwhich.default,
typically X and Y would be numeric vectors of equal length. Alternatively Y may
be omitted and X may be a list with two components x and y, or a matrix with
two columns.

... Ignored by nnwhich.ppp and nnwhich.default.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

by Optional. A factor, which separates X into groups. The algorithm will find the
nearest neighbour in each group.

method String specifying which method of calculation to use. Values are "C" and "interpreted".

Details

For each point in the given point pattern, this function finds its nearest neighbour (the nearest other
point of the pattern). By default it returns a vector giving, for each point, the index of the point’s
nearest neighbour. If k is specified, the algorithm finds each point’s kth nearest neighbour.

The function nnwhich is generic, with method for point patterns (objects of class "ppp") and a
default method which are described here, as well as a method for three-dimensional point patterns
(objects of class "pp3", described in nnwhich.pp3.

The method nnwhich.ppp expects a single point pattern argument X. The default method expects
that X and Y will determine the coordinates of a set of points. Typically X and Y would be numeric
vectors of equal length. Alternatively Y may be omitted and X may be a list with two components
named x and y, or a matrix or data frame with two columns.

The argument k may be a single integer, or an integer vector. If it is a vector, then the kth nearest
neighbour distances are computed for each value of k specified in the vector.

If the argument by is given, it should be a factor, of length equal to the number of points in X. This
factor effectively partitions X into subsets, each subset associated with one of the levels of X. The
algorithm will then find, for each point of X, the nearest neighbour in each subset.

If there are no points (if x has length zero) a numeric vector of length zero is returned. If there
is only one point (if x has length 1), then the nearest neighbour is undefined, and a value of NA
is returned. In general if the number of points is less than or equal to k, then a vector of NA’s is
returned.

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted" then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is faster by two to three orders
of magnitude and uses much less memory.

To evaluate the distance between a point and its nearest neighbour, use nndist.

To find the nearest neighbours from one point pattern to another point pattern, use nncross.

Value

Numeric vector or matrix giving, for each point, the index of its nearest neighbour (or kth nearest
neighbour).

nnwhich 1011

If k = 1 (the default), the return value is a numeric vector v giving the indices of the nearest neigh-
bours (the nearest neighbout of the ith point is the jth point where j = v[i]).

If k is a single integer, then the return value is a numeric vector giving the indices of the kth nearest
neighbours.

If k is a vector, then the return value is a matrix m such that m[i,j] is the index of the k[j]th nearest
neighbour for the ith data point.

If the argument by is given, then the result is a data frame containing the indices described above,
from each point of X, to the nearest point in each subset of X defined by the factor by.

Nearest neighbours of each type

If X is a multitype point pattern and by=marks(X), then the algorithm will find, for each point of X,
the nearest neighbour of each type. See the Examples.

Warnings

A value of NA is returned if there is only one point in the point pattern.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

nndist, nncross

Examples

data(cells)
plot(cells)
m <- nnwhich(cells)
m2 <- nnwhich(cells, k=2)

plot nearest neighbour links
b <- cells[m]
arrows(cells$x, cells$y, bx, by, angle=15, length=0.15, col="red")

find points which are the neighbour of their neighbour
self <- (m[m] == seq(m))
plot them
A <- cells[self]
B <- cells[m[self]]
plot(cells)
segments(Ax, Ay, Bx, By)

nearest neighbours of each type
head(nnwhich(ants, by=marks(ants)))

1012 nnwhich.lpp

nnwhich.lpp Identify Nearest Neighbours on a Linear Network

Description

Given a pattern of points on a linear network, identify the nearest neighbour for each point, mea-
sured by the shortest path in the network.

Usage

S3 method for class 'lpp'
nnwhich(X, ..., k=1, method="C")

Arguments

X Point pattern on linear network (object of class "lpp").

method Optional string determining the method of calculation. Either "interpreted"
or "C".

k Integer, or integer vector. The algorithm will find the kth nearest neighbour.

... Ignored.

Details

Given a pattern of points on a linear network, this function finds the nearest neighbour of each point
(i.e. for each point it identifies the nearest other point) measuring distance by the shortest path in
the network.

If method="C" the task is performed using code in the C language. If method="interpreted" then
the computation is performed using interpreted R code. The R code is much slower, but is provided
for checking purposes.

The result is NA if the kth nearest neighbour does not exist. This can occur if there are fewer than
k+1 points in the dataset, or if the linear network is not connected.

Value

An integer vector, of length equal to the number of points in X, identifying the nearest neighbour of
each point. If nnwhich(X)[2] = 4 then the nearest neighbour of point 2 is point 4.

Alternatively a matrix with one row for each point in X and one column for each entry of k.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

lpp

nnwhich.pp3 1013

Examples

X <- runiflpp(10, simplenet)
nnwhich(X)
nnwhich(X, k=2)

nnwhich.pp3 Nearest neighbours in three dimensions

Description

Finds the nearest neighbour of each point in a three-dimensional point pattern.

Usage

S3 method for class 'pp3'
nnwhich(X, ..., k=1)

Arguments

X Three-dimensional point pattern (object of class "pp3").
... Ignored.
k Integer, or integer vector. The algorithm will compute the distance to the kth

nearest neighbour.

Details

For each point in the given three-dimensional point pattern, this function finds its nearest neighbour
(the nearest other point of the pattern). By default it returns a vector giving, for each point, the
index of the point’s nearest neighbour. If k is specified, the algorithm finds each point’s kth nearest
neighbour.
The function nnwhich is generic. This is the method for the class "pp3".
If there are no points in the pattern, a numeric vector of length zero is returned. If there is only
one point, then the nearest neighbour is undefined, and a value of NA is returned. In general if the
number of points is less than or equal to k, then a vector of NA’s is returned.
To evaluate the distance between a point and its nearest neighbour, use nndist.
To find the nearest neighbours from one point pattern to another point pattern, use nncross.

Value

Numeric vector or matrix giving, for each point, the index of its nearest neighbour (or kth nearest
neighbour).
If k = 1 (the default), the return value is a numeric vector v giving the indices of the nearest neigh-
bours (the nearest neighbout of the ith point is the jth point where j = v[i]).
If k is a single integer, then the return value is a numeric vector giving the indices of the kth nearest
neighbours.
If k is a vector, then the return value is a matrix m such that m[i,j] is the index of the k[j]th nearest
neighbour for the ith data point.

1014 nnwhich.ppx

Warnings

A value of NA is returned if there is only one point in the point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

based on two-dimensional code by Pavel Grabarnik

See Also

nnwhich, nndist, nncross

Examples

X <- runifpoint3(30)
m <- nnwhich(X)
m2 <- nnwhich(X, k=2)

nnwhich.ppx Nearest Neighbours in Any Dimensions

Description

Finds the nearest neighbour of each point in a multi-dimensional point pattern.

Usage

S3 method for class 'ppx'
nnwhich(X, ..., k=1)

Arguments

X Multi-dimensional point pattern (object of class "ppx").

... Arguments passed to coords.ppx to determine which coordinates should be
used.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

Details

For each point in the given multi-dimensional point pattern, this function finds its nearest neighbour
(the nearest other point of the pattern). By default it returns a vector giving, for each point, the
index of the point’s nearest neighbour. If k is specified, the algorithm finds each point’s kth nearest
neighbour.

The function nnwhich is generic. This is the method for the class "ppx".

nobjects 1015

If there are no points in the pattern, a numeric vector of length zero is returned. If there is only
one point, then the nearest neighbour is undefined, and a value of NA is returned. In general if the
number of points is less than or equal to k, then a vector of NA’s is returned.

To evaluate the distance between a point and its nearest neighbour, use nndist.

To find the nearest neighbours from one point pattern to another point pattern, use nncross.

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance
between points in a space-time point pattern, set temporal=FALSE.

Value

Numeric vector or matrix giving, for each point, the index of its nearest neighbour (or kth nearest
neighbour).

If k = 1 (the default), the return value is a numeric vector v giving the indices of the nearest neigh-
bours (the nearest neighbout of the ith point is the jth point where j = v[i]).

If k is a single integer, then the return value is a numeric vector giving the indices of the kth nearest
neighbours.

If k is a vector, then the return value is a matrix m such that m[i,j] is the index of the k[j]th nearest
neighbour for the ith data point.

Warnings

A value of NA is returned if there is only one point in the point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

nnwhich, nndist, nncross

Examples

df <- data.frame(x=runif(5),y=runif(5),z=runif(5),w=runif(5))
X <- ppx(data=df)
m <- nnwhich(X)
m2 <- nnwhich(X, k=2)

nobjects Count Number of Geometrical Objects in a Spatial Dataset

Description

A generic function to count the number of geometrical objects in a spatial dataset.

1016 nobjects

Usage

nobjects(x)

S3 method for class 'ppp'
nobjects(x)

S3 method for class 'ppx'
nobjects(x)

S3 method for class 'psp'
nobjects(x)

S3 method for class 'tess'
nobjects(x)

S3 method for class 'lintess'
nobjects(x)

Arguments

x A dataset.

Details

The generic function nobjects counts the number of geometrical objects in the spatial dataset x.

The methods for point patterns (classes "ppp" and "ppx", embracing "pp3" and "lpp") count the
number of points in the pattern.

The method for line segment patterns (class "psp") counts the number of line segments in the
pattern.

The method for tessellations (class "tess" or "lintess") counts the number of tiles of the tessel-
lation.

Value

A single integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

npoints

npfun 1017

Examples

nobjects(redwood)
nobjects(edges(letterR))
nobjects(dirichlet(cells))
nobjects(lineardirichlet(runiflpp(5, simplenet)))

npfun Dummy Function Returns Number of Points

Description

Returns a summary function which is constant with value equal to the number of points in the point
pattern.

Usage

npfun(X, ..., r)

Arguments

X Point pattern.

... Ignored.

r Vector of values of the distance argument r.

Details

This function is normally not called by the user. Instead it is passed as an argument to the function
psst.

Value

Object of class "fv" representing a constant function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

See Also

psst

Examples

fit0 <- ppm(cells, ~1, nd=10)
v <- psst(fit0, npfun)

1018 npoints

npoints Number of Points in a Point Pattern

Description

Returns the number of points in a point pattern of any kind.

Usage

npoints(x)
S3 method for class 'ppp'

npoints(x)
S3 method for class 'pp3'

npoints(x)
S3 method for class 'ppx'

npoints(x)

Arguments

x A point pattern (object of class "ppp", "pp3", "ppx" or some other suitable
class).

Details

This function returns the number of points in a point pattern. The function npoints is generic with
methods for the classes "ppp", "pp3", "ppx" and possibly other classes.

Value

Integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, print.pp3, print.ppx.

Examples

data(cells)
npoints(cells)

nsegments 1019

nsegments Number of Line Segments in a Line Segment Pattern

Description

Returns the number of line segments in a line segment pattern.

Usage

nsegments(x)

S3 method for class 'psp'
nsegments(x)

Arguments

x A line segment pattern, i.e. an object of class psp, or an object containing a
linear network.

Details

This function is generic, with methods for classes psp, linnet and lpp.

Value

Integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

npoints(), psp.object()

Examples

nsegments(copper$Lines)
nsegments(copper$SouthLines)

1020 nvertices

nvertices Count Number of Vertices

Description

Count the number of vertices in an object for which vertices are well-defined.

Usage

nvertices(x, ...)

S3 method for class 'owin'
nvertices(x, ...)

Default S3 method:
nvertices(x, ...)

Arguments

x A window (object of class "owin"), or some other object which has vertices.

... Currently ignored.

Details

This function counts the number of vertices of x as they would be returned by vertices(x). It is
more efficient than executing npoints(vertices(x)).

Value

A single integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Suman Rakshit.

See Also

vertices

Examples

nvertices(square(2))
nvertices(letterR)

objsurf 1021

objsurf Objective Function Surface

Description

For a model that was fitted by optimisation, compute the values of the objective function in a
neighbourhood of the optimal value.

Usage

objsurf(x, ...)

S3 method for class 'dppm'
objsurf(x, ..., ngrid = 32, ratio = 1.5, verbose = TRUE)

S3 method for class 'kppm'
objsurf(x, ..., ngrid = 32, ratio = 1.5, verbose = TRUE)

S3 method for class 'minconfit'
objsurf(x, ..., ngrid = 32, ratio = 1.5, verbose = TRUE)

Arguments

x Some kind of model that was fitted by finding the optimal value of an objective
function. An object of class "dppm", "kppm" or "minconfit".

... Extra arguments are usually ignored.

ngrid Number of grid points to evaluate along each axis. Either a single integer, or a
pair of integers. For example ngrid=32 would mean a 32 * 32 grid.

ratio Number greater than 1 determining the range of parameter values to be consid-
ered. If the optimal parameter value is opt then the objective function will be
evaluated for values between opt/ratio and opt * ratio.

verbose Logical value indicating whether to print progress reports.

Details

The object x should be some kind of model that was fitted by maximising or minimising the value
of an objective function. The objective function will be evaluated on a grid of values of the model
parameters.

Currently the following types of objects are accepted:

• an object of class "dppm" representing a determinantal point process. See dppm.

• an object of class "kppm" representing a cluster point process or Cox point process. See kppm.

• an object of class "minconfit" representing a minimum-contrast fit between a summary func-
tion and its theoretical counterpart. See mincontrast.

The result is an object of class "objsurf" which can be printed and plotted: see methods.objsurf.

1022 opening

Value

An object of class "objsurf" which can be printed and plotted. Essentially a list containing entries
x, y, z giving the parameter values and objective function values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

See Also

methods.objsurf, kppm, mincontrast

Examples

fit <- kppm(redwood ~ 1, "Thomas")
os <- objsurf(fit)

if(interactive()) {
plot(os)
contour(os, add=TRUE)
persp(os)

}

opening Morphological Opening

Description

Perform morphological opening of a window, a line segment pattern or a point pattern.

Usage

opening(w, r, ...)

S3 method for class 'owin'
opening(w, r, ..., polygonal=NULL)

S3 method for class 'ppp'
opening(w, r, ...)

S3 method for class 'psp'
opening(w, r, ...)

opening 1023

Arguments

w A window (object of class "owin" or a line segment pattern (object of class
"psp") or a point pattern (object of class "ppp").

r positive number: the radius of the opening.

... extra arguments passed to as.mask controlling the pixel resolution, if a pixel
approximation is used

polygonal Logical flag indicating whether to compute a polygonal approximation to the
erosion (polygonal=TRUE) or a pixel grid approximation (polygonal=FALSE).

Details

The morphological opening (Serra, 1982) of a set W by a distance r > 0 is the subset of points in
W that can be separated from the boundary of W by a circle of radius r. That is, a point x belongs
to the opening if it is possible to draw a circle of radius r (not necessarily centred on x) that has x
on the inside and the boundary of W on the outside. The opened set is a subset of W.

For a small radius r, the opening operation has the effect of smoothing out irregularities in the
boundary of W . For larger radii, the opening operation removes promontories in the boundary. For
very large radii, the opened set is empty.

The algorithm applies erosion followed by dilation.

Value

If r > 0, an object of class "owin" representing the opened region. If r=0, the result is identical to
w.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Serra, J. (1982) Image analysis and mathematical morphology. Academic Press.

See Also

closing for the opposite operation.

dilation, erosion for the basic operations.

owin, as.owin for information about windows.

Examples

v <- opening(letterR, 0.3)
plot(letterR, type="n", main="opening")
plot(v, add=TRUE, col="grey")
plot(letterR, add=TRUE)

1024 Ops.msr

Ops.msr Arithmetic Operations on Measures

Description

These group generic methods for the class "msr" allow the arithmetic operators +, -, * and / to be
applied directly to measures.

Usage

S3 methods for group generics have prototypes:
Ops(e1, e2)

Arguments

e1, e2 objects of class "msr".

Details

Arithmetic operators on a measure A are only defined in some cases. The arithmetic operator is
effectively applied to the value of A(W) for every spatial domain W. If the result is a measure, then
this operation is valid.

If A is a measure (object of class "msr") then the operations -A and +A are defined.

If A and B are measures with the same dimension (i.e. both are scalar-valued, or both are k-
dimensional vector-valued) then A + B and A -B are defined.

If A is a measure and z is a numeric value, then A * z and A / z are defined, and z * A is defined.

Value

Another measure (object of class "msr").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

with.msr

Ord 1025

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")
rp

-rp
2 * rp
rp /2

rp - rp

rr <- residuals(fit, type="raw")
rp - rr

Ord Generic Ord Interaction model

Description

Creates an instance of an Ord-type interaction point process model which can then be fitted to point
pattern data.

Usage

Ord(pot, name)

Arguments

pot An S language function giving the user-supplied interaction potential.

name Character string.

Details

Ord’s point process model (Ord, 1977) is a Gibbs point process of infinite order. Each point xi in
the point pattern x contributes a factor g(ai) where ai = a(xi, x) is the area of the tile associated
with xi in the Dirichlet tessellation of x.

Ord (1977) proposed fitting this model to forestry data when g(a) has a simple “threshold” form.
That model is implemented in our function OrdThresh. The present function Ord implements the
case of a completely general Ord potential g(a) specified as an S language function pot.

This is experimental.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

1026 ord.family

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ord, J.K. (1977) Contribution to the discussion of Ripley (1977).

Ord, J.K. (1978) How many trees in a forest? Mathematical Scientist 3, 23–33.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

ppm, ppm.object, OrdThresh

ord.family Ord Interaction Process Family

Description

An object describing the family of all Ord interaction point processes

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the family of point process
models introduced by Ord (1977).

If you need to create a specific Ord-type model for use in analysis, use the function OrdThresh or
Ord.

Anyway, ord.family is an object of class "isf" containing a function ord.family$eval for eval-
uating the sufficient statistics of any Ord type point process model taking an exponential family
form.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

OrdThresh 1027

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ord, J.K. (1977) Contribution to the discussion of Ripley (1977).

Ord, J.K. (1978) How many trees in a forest? Mathematical Scientist 3, 23–33.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

pairwise.family, pairsat.family, Poisson, Pairwise, PairPiece, Strauss, StraussHard,
Softcore, Geyer, SatPiece, Saturated, Ord, OrdThresh

OrdThresh Ord’s Interaction model

Description

Creates an instance of Ord’s point process model which can then be fitted to point pattern data.

Usage

OrdThresh(r)

Arguments

r Positive number giving the threshold value for Ord’s model.

Details

Ord’s point process model (Ord, 1977) is a Gibbs point process of infinite order. Each point xi in the
point pattern x contributes a factor g(ai) where ai = a(xi, x) is the area of the tile associated with
xi in the Dirichlet tessellation of x. The function g is simply g(a) = 1 if a ≥ r and g(a) = γ < 1
if a < r, where r is called the threshold value.

This function creates an instance of Ord’s model with a given value of r. It can then be fitted to
point process data using ppm.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

1028 overlap.owin

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ord, J.K. (1977) Contribution to the discussion of Ripley (1977).

Ord, J.K. (1978) How many trees in a forest? Mathematical Scientist 3, 23–33.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

ppm, ppm.object

overlap.owin Compute Area of Overlap

Description

Computes the area of the overlap (intersection) of two windows.

Usage

overlap.owin(A, B)

Arguments

A,B Windows (objects of class "owin").

Details

This function computes the area of the overlap between the two windows A and B.

If one of the windows is a binary mask, then both windows are converted to masks on the same grid,
and the area is computed by counting pixels. Otherwise, the area is computed analytically (using
the discrete Stokes theorem).

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

intersect.owin, area.owin, setcov.

owin 1029

Examples

A <- square(1)
B <- shift(A, c(0.3, 0.2))
overlap.owin(A, B)

owin Create a Window

Description

Creates an object of class "owin" representing an observation window in the two-dimensional plane

Usage

owin(xrange=c(0,1), yrange=c(0,1), ..., poly=NULL, mask=NULL,
unitname=NULL, xy=NULL)

Arguments

xrange x coordinate limits of enclosing box

yrange y coordinate limits of enclosing box

... Ignored.

poly Optional. Polygonal boundary of window. Incompatible with mask.

mask Optional. Logical matrix giving binary image of window. Incompatible with
poly.

unitname Optional. Name of unit of length. Either a single character string, or a vector of
two character strings giving the singular and plural forms, respectively.

xy Optional. List with components x and y specifying the pixel coordinates for
mask.

Details

In the spatstat library, a point pattern dataset must include information about the window of obser-
vation. This is represented by an object of class "owin". See owin.object for an overview.

To create a window in its own right, users would normally invoke owin, although sometimes
as.owin may be convenient.

A window may be rectangular, polygonal, or a mask (a binary image).

• rectangular windows: If only xrange and yrange are given, then the window will be rect-
angular, with its x and y coordinate dimensions given by these two arguments (which must
be vectors of length 2). If no arguments are given at all, the default is the unit square with
dimensions xrange=c(0,1) and yrange=c(0,1).

• polygonal windows: If poly is given, then the window will be polygonal.

1030 owin

– single polygon: If poly is a matrix or data frame with two columns, or a structure with
two component vectors x and y of equal length, then these values are interpreted as the
cartesian coordinates of the vertices of a polygon circumscribing the window. The ver-
tices must be listed anticlockwise. No vertex should be repeated (i.e. do not repeat the
first vertex).

– multiple polygons or holes: If poly is a list, each entry poly[[i]] of which is a matrix or
data frame with two columns or a structure with two component vectors x and y of equal
length, then the successive list members poly[[i]] are interpreted as separate polygons
which together make up the boundary of the window. The vertices of each polygon must
be listed anticlockwise if the polygon is part of the external boundary, but clockwise if the
polygon is the boundary of a hole in the window. Again, do not repeat any vertex.

• binary masks: If mask is given, then the window will be a binary image.

– Specified by logical matrix: Normally the argument mask should be a logical matrix such
that mask[i,j] is TRUE if the point (x[j],y[i]) belongs to the window, and FALSE if it
does not. Note carefully that rows of mask correspond to the y coordinate, and columns
to the x coordinate. Here x and y are vectors of x and y coordinates equally spaced over
xrange and yrange respectively. The pixel coordinate vectors x and y may be specified
explicitly using the argument xy, which should be a list containing components x and y.
Alternatively there is a sensible default.

– Specified by list of pixel coordinates: Alternatively the argument mask can be a data frame
with 2 or 3 columns. If it has 2 columns, it is expected to contain the spatial coordinates
of all the pixels which are inside the window. If it has 3 columns, it should contain the
spatial coordinates (x, y) of every pixel in the grid, and the logical value associated with
each pixel. The pixels may be listed in any order.

To create a window which is mathematically defined by inequalities in the Cartesian coordinates,
use raster.x() and raster.y() as in the examples below.

Functions square and disc will create square and circular windows, respectively.

Value

An object of class "owin" describing a window in the two-dimensional plane.

Validity of polygon data

Polygon data may contain geometrical inconsistencies such as self-intersections and overlaps. These
inconsistencies must be removed to prevent problems in other spatstat functions. By default, poly-
gon data will be repaired automatically using polygon-clipping code. The repair process may
change the number of vertices in a polygon and the number of polygon components. To disable
the repair process, set spatstat.options(fixpolygons=FALSE).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

owin 1031

See Also

owin.object, as.owin, complement.owin, ppp.object, ppp

square, hexagon, regularpolygon, disc, ellipse.

Examples

w <- owin()
w <- owin(c(0,1), c(0,1))
the unit square

w <- owin(c(10,20), c(10,30), unitname=c("foot","feet"))
a rectangle of dimensions 10 x 20 feet
with lower left corner at (10,10)

polygon (diamond shape)
w <- owin(poly=list(x=c(0.5,1,0.5,0),y=c(0,1,2,1)))
w <- owin(c(0,1), c(0,2), poly=list(x=c(0.5,1,0.5,0),y=c(0,1,2,1)))

polygon with hole
ho <- owin(poly=list(list(x=c(0,1,1,0), y=c(0,0,1,1)),

list(x=c(0.6,0.4,0.4,0.6), y=c(0.2,0.2,0.4,0.4))))

w <- owin(c(-1,1), c(-1,1), mask=matrix(TRUE, 100,100))
100 x 100 image, all TRUE

X <- raster.x(w)
Y <- raster.y(w)
wm <- owin(w$xrange, w$yrange, mask=(X^2 + Y^2 <= 1))

discrete approximation to the unit disc

Not run:
if(FALSE) {

plot(c(0,1),c(0,1),type="n")
bdry <- locator()
click the vertices of a polygon (anticlockwise)

}

End(Not run)

w <- owin(poly=bdry)
Not run: plot(w)

Not run:
im <- as.logical(matrix(scan("myfile"), nrow=128, ncol=128))
read in an arbitrary 128 x 128 digital image from text file
rim <- im[, 128:1]
Assuming it was given in row-major order in the file
i.e. scanning left-to-right in rows from top-to-bottom,
the use of matrix() has effectively transposed rows & columns,
so to convert it to our format just reverse the column order.
w <- owin(mask=rim)
plot(w)
display it to check!

1032 owin.object

End(Not run)

owin.object Class owin

Description

A class owin to define the “observation window” of a point pattern

Details

In the spatstat library, a point pattern dataset must include information about the window or region
in which the pattern was observed. A window is described by an object of class "owin". Windows
of arbitrary shape are supported.

An object of class "owin" has one of three types:

"rectangle": a rectangle in the two-dimensional plane with edges parallel to the axes
"polygonal": a region whose boundary is a polygon or several polygons. The region may have holes and may consist of several disconnected pieces.
"mask": a binary image (a logical matrix) set to TRUE for pixels inside the window and FALSE outside the window.

Objects of class "owin" may be created by the function owin and converted from other types of
data by the function as.owin.

They may be manipulated by the functions as.rectangle, as.mask, complement.owin, rotate,
shift, affine, erosion, dilation, opening and closing.

Geometrical calculations available for windows include area.owin, perimeter, diameter.owin,
boundingbox, eroded.areas, bdist.points, bdist.pixels, and even.breaks.owin. The map-
ping between continuous coordinates and pixel raster indices is facilitated by the functions raster.x,
raster.y and nearest.raster.point.

There is a plot method for window objects, plot.owin. This may be useful if you wish to plot a
point pattern’s window without the points for graphical purposes.

There are also methods for summary and print.

Warnings

In a window of type "mask", the row index corresponds to increasing y coordinate, and the column
index corresponds to increasing x coordinate.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

padimage 1033

See Also

owin, as.owin, as.rectangle, as.mask, summary.owin, print.owin, complement.owin, erosion,
dilation, opening, closing, affine.owin, shift.owin, rotate.owin, raster.x, raster.y,
nearest.raster.point, plot.owin, area.owin, boundingbox, diameter, eroded.areas, bdist.points,
bdist.pixels

Examples

w <- owin()
w <- owin(c(0,1), c(0,1))
the unit square

w <- owin(c(0,1), c(0,2))
Not run:
if(FALSE) {

plot(w)
plots edges of a box 1 unit x 2 units
v <- locator()
click on points in the plot window
to be the vertices of a polygon
traversed in anticlockwise order
u <- owin(c(0,1), c(0,2), poly=v)
plot(u)
plots polygonal boundary using polygon()
plot(as.mask(u, eps=0.02))
plots discrete pixel approximation to polygon

}

End(Not run)

padimage Pad the Border of a Pixel Image

Description

Fills the border of a pixel image with a given value or values, or extends a pixel image to fill a larger
window.

Usage

padimage(X, value=NA, n=1, W=NULL)

Arguments

X Pixel image (object of class "im").

value Single value to be placed around the border of X.

n Width of border, in pixels. See Details.

W Window for the resulting image. Incompatible with n.

1034 pairdist

Details

The image X will be expanded by a margin of n pixels, or extended to fill the window W, with new
pixel values set to value.

The argument value should be a single value (a vector of length 1), normally a value of the same
type as the pixel values of X. It may be NA. Alternatively if X is a factor-valued image, value can be
one of the levels of X.

If n is given, it may be a single number, specifying the width of the border in pixels. Alternatively
it may be a vector of length 2 or 4. It will be replicated to length 4, and these numbers will be
interpreted as the border widths for the (left, right, top, bottom) margins respectively.

Alternatively if W is given, the image will be extended to the window W.

Value

Another object of class "im", of the same type as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

im

Examples

Z <- setcov(owin())
plot(padimage(Z, 1, 10))

pairdist Pairwise distances

Description

Computes the matrix of distances between all pairs of ‘things’ in a dataset

Usage

pairdist(X, ...)

Arguments

X Object specifying the locations of a set of ‘things’ (such as a set of points or a
set of line segments).

... Further arguments depending on the method.

pairdist.default 1035

Details

Given a dataset X and Y (representing either a point pattern or a line segment pattern) pairdist
computes the distance between each pair of ‘things’ in the dataset, and returns a matrix containing
these distances.

The function pairdist is generic, with methods for point patterns (objects of class "ppp"), line seg-
ment patterns (objects of class "psp") and a default method. See the documentation for pairdist.ppp,
pairdist.psp or pairdist.default for details.

Value

A square matrix whose [i,j] entry is the distance between the ‘things’ numbered i and j.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

pairdist.ppp, pairdist.psp, pairdist.default, crossdist, nndist, Kest

pairdist.default Pairwise distances

Description

Computes the matrix of distances between all pairs of points in a set of points in two dimensional
space

Usage

Default S3 method:
pairdist(X, Y=NULL, ..., period=NULL, method="C", squared=FALSE)

Arguments

X,Y Arguments specifying the coordinates of a set of points. Typically X and Y would
be numeric vectors of equal length. Alternatively Y may be omitted and X may
be a list with two components x and y, or a matrix with two columns.

... Ignored.

period Optional. Dimensions for periodic edge correction.

method String specifying which method of calculation to use. Values are "C" and "interpreted".
Usually not specified.

squared Logical. If squared=TRUE, the squared distances are returned instead (this com-
putation is faster).

1036 pairdist.default

Details

Given the coordinates of a set of points in two dimensional space, this function computes the Eu-
clidean distances between all pairs of points, and returns the matrix of distances. It is a method for
the generic function pairdist.

Note: If only pairwise distances within some threshold value are needed the low-level function
closepairs may be much faster to use.

The arguments X and Y must determine the coordinates of a set of points. Typically X and Y would
be numeric vectors of equal length. Alternatively Y may be omitted and X may be a list with two
components named x and y, or a matrix or data frame with two columns.

For typical input the result is numerically equivalent to (but computationally faster than) as.matrix(dist(x))
where x = cbind(X,Y), but that command is useful for calculating all pairwise distances between
points in k-dimensional space when x has k columns.

Alternatively if period is given, then the distances will be computed in the ‘periodic’ sense (also
known as ‘torus’ distance). The points will be treated as if they are in a rectangle of width
period[1] and height period[2]. Opposite edges of the rectangle are regarded as equivalent.

If squared=TRUE then the squared Euclidean distances d2 are returned, instead of the Euclidean
distances d. The squared distances are faster to calculate, and are sufficient for many purposes
(such as finding the nearest neighbour of a point).

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted" then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is somewhat faster.

Value

A square matrix whose [i,j] entry is the distance between the points numbered i and j.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

crossdist, nndist, Kest, closepairs

Examples

x <- runif(100)
y <- runif(100)
d <- pairdist(x, y)
d <- pairdist(cbind(x,y))
d <- pairdist(x, y, period=c(1,1))
d <- pairdist(x, y, squared=TRUE)

pairdist.lpp 1037

pairdist.lpp Pairwise shortest-path distances between points on a linear network

Description

Given a pattern of points on a linear network, compute the matrix of distances between all pairs of
points, measuring distance by the shortest path in the network.

Usage

S3 method for class 'lpp'
pairdist(X, ..., method="C")

Arguments

X Point pattern on linear network (object of class "lpp").

method Optional string determining the method of calculation. Either "interpreted"
or "C".

... Ignored.

Details

Given a pattern of points on a linear network, this function computes the matrix of distances between
all pairs of points, measuring distance by the shortest path in the network.

If two points cannot be joined by a path, the distance between them is infinite (Inf).

The argument method is not normally used. It is retained only for developers to check the validity
of the software.

Value

A symmetric matrix, whose values are nonnegative numbers or infinity (Inf).

Algorithms and accuracy

Distances are accurate within the numerical tolerance of the network, summary(X)$toler.

For network data stored in the non-sparse representation described in linnet, then pairwise dis-
tances are computed using the matrix of path distances between vertices of the network, using R
code if method = "interpreted", or using C code if method="C" (the default).

For networks stored in the sparse representation, the argument method has no effect, and the dis-
tances are computed using an efficient C algorithm.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

1038 pairdist.pp3

See Also

lpp

Examples

X <- runiflpp(12, simplenet)
d <- pairdist(X)
d[1:3, 1:3]

pairdist.pp3 Pairwise distances in Three Dimensions

Description

Computes the matrix of distances between all pairs of points in a three-dimensional point pattern.

Usage

S3 method for class 'pp3'
pairdist(X, ..., periodic=FALSE, squared=FALSE)

Arguments

X A point pattern (object of class "pp3").

... Ignored.

periodic Logical. Specifies whether to apply a periodic edge correction.

squared Logical. If squared=TRUE, the squared distances are returned instead (this com-
putation is faster).

Details

This is a method for the generic function pairdist.

Given a three-dimensional point pattern X (an object of class "pp3"), this function computes the
Euclidean distances between all pairs of points in X, and returns the matrix of distances.

Alternatively if periodic=TRUE and the window containing X is a box, then the distances will be
computed in the ‘periodic’ sense (also known as ‘torus’ distance): opposite faces of the box are
regarded as equivalent. This is meaningless if the window is not a box.

If squared=TRUE then the squared Euclidean distances d2 are returned, instead of the Euclidean
distances d. The squared distances are faster to calculate, and are sufficient for many purposes
(such as finding the nearest neighbour of a point).

Value

A square matrix whose [i,j] entry is the distance between the points numbered i and j.

pairdist.ppp 1039

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

based on two-dimensional code by Pavel Grabarnik.

See Also

pairdist, crossdist, nndist, K3est

Examples

X <- runifpoint3(20)
d <- pairdist(X)
d <- pairdist(X, periodic=TRUE)
d <- pairdist(X, squared=TRUE)

pairdist.ppp Pairwise distances

Description

Computes the matrix of distances between all pairs of points in a point pattern.

Usage

S3 method for class 'ppp'
pairdist(X, ..., periodic=FALSE, method="C", squared=FALSE)

Arguments

X A point pattern (object of class "ppp").

... Ignored.

periodic Logical. Specifies whether to apply a periodic edge correction.

method String specifying which method of calculation to use. Values are "C" and "interpreted".
Usually not specified.

squared Logical. If squared=TRUE, the squared distances are returned instead (this com-
putation is faster).

Details

This is a method for the generic function pairdist.

Given a point pattern X (an object of class "ppp"), this function computes the Euclidean distances
between all pairs of points in X, and returns the matrix of distances.

Alternatively if periodic=TRUE and the window containing X is a rectangle, then the distances will
be computed in the ‘periodic’ sense (also known as ‘torus’ distance): opposite edges of the rectangle
are regarded as equivalent. This is meaningless if the window is not a rectangle.

1040 pairdist.ppx

If squared=TRUE then the squared Euclidean distances d2 are returned, instead of the Euclidean
distances d. The squared distances are faster to calculate, and are sufficient for many purposes
(such as finding the nearest neighbour of a point).

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted" then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is somewhat faster.

Value

A square matrix whose [i,j] entry is the distance between the points numbered i and j.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

pairdist, pairdist.default, pairdist.psp, crossdist, nndist, Kest

Examples

data(cells)
d <- pairdist(cells)
d <- pairdist(cells, periodic=TRUE)
d <- pairdist(cells, squared=TRUE)

pairdist.ppx Pairwise Distances in Any Dimensions

Description

Computes the matrix of distances between all pairs of points in a multi-dimensional point pattern.

Usage

S3 method for class 'ppx'
pairdist(X, ...)

Arguments

X A point pattern (object of class "ppx").

... Arguments passed to coords.ppx to determine which coordinates should be
used.

pairdist.psp 1041

Details

This is a method for the generic function pairdist.

Given a multi-dimensional point pattern X (an object of class "ppx"), this function computes the
Euclidean distances between all pairs of points in X, and returns the matrix of distances.

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance
between points in a space-time point pattern, set temporal=FALSE.

Value

A square matrix whose [i,j] entry is the distance between the points numbered i and j.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

pairdist, crossdist, nndist

Examples

df <- data.frame(x=runif(4),y=runif(4),z=runif(4),w=runif(4))
X <- ppx(data=df)
pairdist(X)

pairdist.psp Pairwise distances between line segments

Description

Computes the matrix of distances between all pairs of line segments in a line segment pattern.

Usage

S3 method for class 'psp'
pairdist(X, ..., method="C", type="Hausdorff")

Arguments

X A line segment pattern (object of class "psp").

... Ignored.

method String specifying which method of calculation to use. Values are "C" and "interpreted".
Usually not specified.

type Type of distance to be computed. Options are "Hausdorff" and "separation".
Partial matching is used.

1042 pairorient

Details

This function computes the distance between each pair of line segments in X, and returns the matrix
of distances.

This is a method for the generic function pairdist for the class "psp".

The distances between line segments are measured in one of two ways:

• if type="Hausdorff", distances are computed in the Hausdorff metric. The Hausdorff dis-
tance between two line segments is the maximum distance from any point on one of the seg-
ments to the nearest point on the other segment.

• if type="separation", distances are computed as the minimum distance from a point on one
line segment to a point on the other line segment. For example, line segments which cross
over each other have separation zero.

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted" then the distances are computed using interpreted R code
only. If method="C" (the default) then compiled C code is used, which is somewhat faster.

Value

A square matrix whose [i,j] entry is the distance between the line segments numbered i and j.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

crossdist, nndist, pairdist.ppp

Examples

L <- psp(runif(10), runif(10), runif(10), runif(10), owin())
D <- pairdist(L)
S <- pairdist(L, type="sep")

pairorient Point Pair Orientation Distribution

Description

Computes the distribution of the orientation of vectors joining pairs of points at a particular range
of distances.

pairorient 1043

Usage

pairorient(X, r1, r2, ..., cumulative=FALSE,
correction, ratio = FALSE,
unit=c("degree", "radian"), domain=NULL)

Arguments

X Point pattern (object of class "ppp").
r1,r2 Minimum and maximum values of distance to be considered.
... Arguments passed to circdensity to control the kernel smoothing, if cumulative=FALSE.
cumulative Logical value specifying whether to estimate the probability density (cumulative=FALSE,

the default) or the cumulative distribution function (cumulative=TRUE).
correction Character vector specifying edge correction or corrections. Options are "none",

"isotropic", "translate", "border", "bord.modif", "good" and "best".
Alternatively correction="all" selects all options. The default is to compute
all edge corrections except "none".

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

unit Unit in which the angles should be expressed. Either "degree" or "radian".
domain Optional window. The first point xi of each pair of points will be constrained to

lie in domain.

Details

This algorithm considers all pairs of points in the pattern X that lie more than r1 and less than r2
units apart. The direction of the arrow joining the points is measured, as an angle in degrees or
radians, anticlockwise from the x axis.

If cumulative=FALSE (the default), a kernel estimate of the probability density of the orientations
is calculated using circdensity.

If cumulative=TRUE, then the cumulative distribution function of these directions is calculated.
This is the function Or1,r2(φ) defined in Stoyan and Stoyan (1994), equation (14.53), page 271.

In either case the result can be plotted as a rose diagram by rose, or as a function plot by plot.fv.

The algorithm gives each observed direction a weight, determined by an edge correction, to ad-
just for the fact that some interpoint distances are more likely to be observed than others. The
choice of edge correction or corrections is determined by the argument correction. See the help
for Kest for details of edge corrections, and explanation of the options available. The choice
correction="none" is not recommended; it is included for demonstration purposes only. The
default is to compute all corrections except "none".

It is also possible to calculate an estimate of the probability density from the cumulative distribution
function, by numerical differentiation. Use deriv.fv with the argument Dperiodic=TRUE.

Value

A function value table (object of class "fv") containing the estimates of the probability density
or the cumulative distribution function of angles, in degrees (if unit="degree") or radians (if
unit="radian").

1044 PairPiece

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Stoyan, D. and Stoyan, H. (1994) Fractals, Random Shapes and Point Fields: Methods of Geomet-
rical Statistics. John Wiley and Sons.

See Also

Kest, Ksector, nnorient

Examples

rose(pairorient(redwood, 0.05, 0.15, sigma=8), col="grey")
plot(CDF <- pairorient(redwood, 0.05, 0.15, cumulative=TRUE))
plot(f <- deriv(CDF, spar=0.6, Dperiodic=TRUE))

PairPiece The Piecewise Constant Pairwise Interaction Point Process Model

Description

Creates an instance of a pairwise interaction point process model with piecewise constant potential
function. The model can then be fitted to point pattern data.

Usage

PairPiece(r)

Arguments

r vector of jump points for the potential function

Details

A pairwise interaction point process in a bounded region is a stochastic point process with proba-
bility density of the form

f(x1, . . . , xn) = α
∏
i

b(xi)
∏
i<j

h(xi, xj)

where x1, . . . , xn represent the points of the pattern. The first product on the right hand side is over
all points of the pattern; the second product is over all unordered pairs of points of the pattern.

Thus each point xi of the pattern contributes a factor b(xi) to the probability density, and each pair
of points xi, xj contributes a factor h(xi, xj) to the density.

PairPiece 1045

The pairwise interaction term h(u, v) is called piecewise constant if it depends only on the distance
between u and v, say h(u, v) = H(||u − v||), and H is a piecewise constant function (a function
which is constant except for jumps at a finite number of places). The use of piecewise constant
interaction terms was first suggested by Takacs (1986).

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the piecewise constant pairwise interaction is yielded by the function
PairPiece(). See the examples below.

The entries of r must be strictly increasing, positive numbers. They are interpreted as the points of
discontinuity of H . It is assumed that H(s) = 1 for all s > rmax where rmax is the maximum
value in r. Thus the model has as many regular parameters (see ppm) as there are entries in r. The
i-th regular parameter θi is the logarithm of the value of the interaction function H on the interval
[ri−1, ri).

If r is a single number, this model is similar to the Strauss process, see Strauss. The difference
is that in PairPiece the interaction function is continuous on the right, while in Strauss it is
continuous on the left.

The analogue of this model for multitype point processes has not yet been implemented.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.
The process is a pairwise interaction process, whose interaction potential is piecewise constant,
with jumps at the distances given in the vector r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Takacs, R. (1986) Estimator for the pair potential of a Gibbsian point process. Statistics 17, 429–
433.

See Also

ppm, pairwise.family, ppm.object, Strauss rmh.ppm

Examples

PairPiece(c(0.1,0.2))
prints a sensible description of itself
data(cells)

Not run:
ppm(cells, ~1, PairPiece(r = c(0.05, 0.1, 0.2)))
fit a stationary piecewise constant pairwise interaction process

End(Not run)

1046 pairs.im

ppm(cells, ~polynom(x,y,3), PairPiece(c(0.05, 0.1)))
nonstationary process with log-cubic polynomial trend

pairs.im Scatterplot Matrix for Pixel Images

Description

Produces a scatterplot matrix of the pixel values in two or more pixel images.

Usage

S3 method for class 'im'
pairs(..., plot=TRUE)

Arguments

... Any number of arguments, each of which is either a pixel image (object of class
"im") or a named argument to be passed to pairs.default.

plot Logical. If TRUE, the scatterplot matrix is plotted.

Details

This is a method for the generic function pairs for the class of pixel images.

It produces a square array of plot panels, in which each panel shows a scatterplot of the pixel values
of one image against the corresponding pixel values of another image.

At least two of the arguments ... should be pixel images (objects of class "im"). Their spatial
domains must overlap, but need not have the same pixel dimensions.

First the pixel image domains are intersected, and converted to a common pixel resolution. Then
the corresponding pixel values of each image are extracted. Then pairs.default is called to plot
the scatterplot matrix.

Any arguments in ... which are not pixel images will be passed to pairs.default to control the
plot.

Value

Invisible. A data.frame containing the corresponding pixel values for each image. The return
value also belongs to the class plotpairsim which has a plot method, so that it can be re-plotted.

Image or Contour Plots

Since the scatterplots may show very dense concentrations of points, it may be useful to set panel=panel.image
or panel=panel.contour to draw a colour image or contour plot of the kernel-smoothed density
of the scatterplot in each panel. The argument panel is passed to pairs.default. See the help for
panel.image and panel.contour.

pairs.linim 1047

Low Level Control of Graphics

To control the appearance of the individual scatterplot panels, see pairs.default, points or par.
To control the plotting symbol for the points in the scatterplot, use the arguments pch, col, bg as
described under points (because the default panel plotter is the function points). To suppress the
tick marks on the plot axes, type par(xaxt="n",yaxt="n") before calling pairs.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pairs, pairs.default, panel.contour, panel.image, plot.im, im, par

Examples

X <- density(rpoispp(30))
Y <- density(rpoispp(40))
Z <- density(rpoispp(30))
p <- pairs(X,Y,Z)
p
plot(p)

pairs.linim Scatterplot Matrix for Pixel Images on a Linear Network

Description

Produces a scatterplot matrix of the pixel values in two or more pixel images on a linear network.

Usage

S3 method for class 'linim'
pairs(..., plot=TRUE, eps=NULL)

Arguments

... Any number of arguments, each of which is either a pixel image on a linear
network (object of class "linim"), a pixel image (object of class "im"), or a
named argument to be passed to pairs.default.

plot Logical. If TRUE, the scatterplot matrix is plotted.

eps Optional. Spacing between sample points on the network. A positive number.

1048 pairsat.family

Details

This is a method for the generic function pairs for the class of pixel images on a linear network.

It produces a square array of plot panels, in which each panel shows a scatterplot of the pixel values
of one image against the corresponding pixel values of another image.

At least two of the arguments ... should be a pixel image on a linear network (object of class
"linim"). They should be defined on the same linear network, but may have different pixel resolu-
tions.

First the pixel values of each image are extracted at a set of sample points equally-spaced across the
network. Then pairs.default is called to plot the scatterplot matrix.

Any arguments in ... which are not pixel images will be passed to pairs.default to control the
plot.

Value

Invisible. A data.frame containing the corresponding pixel values for each image. The return
value also belongs to the class plotpairsim which has a plot method, so that it can be re-plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

pairs.default, pairs.im

Examples

fit <- lppm(chicago ~ marks * (x+y))
lam <- predict(fit)
do.call(pairs, lam)

pairsat.family Saturated Pairwise Interaction Point Process Family

Description

An object describing the Saturated Pairwise Interaction family of point process models

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the “saturated pairwise
interaction” family of point process models.

Pairwise 1049

If you need to create a specific interaction model for use in spatial pattern analysis, use the func-
tion Saturated() or the two existing implementations of models in this family, Geyer() and
SatPiece().

Geyer (1999) introduced the “saturation process”, a modification of the Strauss process in which
the total contribution to the potential from each point (from its pairwise interaction with all other
points) is trimmed to a maximum value c. This model is implemented in the function Geyer().

The present class pairsat.family is the extension of this saturation idea to all pairwise inter-
actions. Note that the resulting models are no longer pairwise interaction processes - they have
interactions of infinite order.

pairsat.family is an object of class "isf" containing a function pairwise$eval for evaluat-
ing the sufficient statistics of any saturated pairwise interaction point process model in which the
original pair potentials take an exponential family form.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

Geyer to create the Geyer saturation process.

SatPiece to create a saturated process with piecewise constant pair potential.

Saturated to create a more general saturation model.

Other families: inforder.family, ord.family, pairwise.family.

Pairwise Generic Pairwise Interaction model

Description

Creates an instance of a pairwise interaction point process model which can then be fitted to point
pattern data.

Usage

Pairwise(pot, name, par, parnames, printfun)

1050 Pairwise

Arguments

pot An R language function giving the user-supplied pairwise interaction potential.

name Character string.

par List of numerical values for irregular parameters

parnames Vector of names of irregular parameters

printfun Do not specify this argument: for internal use only.

Details

This code constructs a member of the pairwise interaction family pairwise.family with arbitrary
pairwise interaction potential given by the user.

Each pair of points in the point pattern contributes a factor h(d) to the probability density, where d
is the distance between the two points. The factor term h(d) is

h(d) = exp(−θpot(d))

provided pot(d) is finite, where θ is the coefficient vector in the model.

The function pot must take as its first argument a matrix of interpoint distances, and evaluate the
potential for each of these distances. The result must be either a matrix with the same dimensions as
its input, or an array with its first two dimensions the same as its input (the latter case corresponds
to a vector-valued potential).

If irregular parameters are present, then the second argument to pot should be a vector of the same
type as par giving those parameter values.

The values returned by pot may be finite numeric values, or -Inf indicating a hard core (that is,
the corresponding interpoint distance is forbidden). We define h(d) = 0 if pot(d) = −∞. Thus, a
potential value of minus infinity is always interpreted as corresponding to h(d) = 0, regardless of
the sign and magnitude of θ.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, pairwise.family, ppm.object

Examples

#This is the same as StraussHard(r=0.7,h=0.05)
strpot <- function(d,par) {

r <- par$r
h <- par$h

pairwise.family 1051

value <- (d <= r)
value[d < h] <- -Inf
value

}
mySH <- Pairwise(strpot, "StraussHard process", list(r=0.7,h=0.05),

c("interaction distance r", "hard core distance h"))
data(cells)
ppm(cells, ~ 1, mySH, correction="isotropic")

Fiksel (1984) double exponential interaction
see Stoyan, Kendall, Mecke 1987 p 161

fikspot <- function(d, par) {
r <- par$r
h <- par$h
zeta <- par$zeta
value <- exp(-zeta * d)
value[d < h] <- -Inf
value[d > r] <- 0
value

}
Fiksel <- Pairwise(fikspot, "Fiksel double exponential process",

list(r=3.5, h=1, zeta=1),
c("interaction distance r",

"hard core distance h",
"exponential coefficient zeta"))

data(spruces)
fit <- ppm(unmark(spruces), ~1, Fiksel, rbord=3.5)
fit
plot(fitin(fit), xlim=c(0,4))
coef(fit)
corresponding values obtained by Fiksel (1984) were -1.9 and -6.0

pairwise.family Pairwise Interaction Process Family

Description

An object describing the family of all pairwise interaction Gibbs point processes.

Details

Advanced Use Only!
This structure would not normally be touched by the user. It describes the pairwise interaction
family of point process models.

If you need to create a specific pairwise interaction model for use in modelling, use the function
Pairwise or one of the existing functions listed below.

Anyway, pairwise.family is an object of class "isf" containing a function pairwise.family$eval
for evaluating the sufficient statistics of any pairwise interaction point process model taking an ex-
ponential family form.

1052 panel.contour

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Other families: pairsat.family, ord.family, inforder.family.

Pairwise interactions: Poisson, Pairwise, PairPiece, Fiksel, Hardcore, LennardJones, MultiHard,
MultiStrauss, MultiStraussHard, Strauss, StraussHard, Softcore.

Other interactions: AreaInter, Geyer, Saturated, Ord, OrdThresh.

panel.contour Panel Plots using Colour Image or Contour Lines

Description

These functions can be passed to pairs or coplot to determine what kind of plotting is done in
each panel of a multi-panel graphical display.

Usage

panel.contour(x, y, ..., sigma = NULL)

panel.image(x, y, ..., sigma = NULL)

panel.histogram(x, ...)

Arguments

x,y Coordinates of points in a scatterplot.

... Extra graphics arguments, passed to contour.im, plot.im or rect, respec-
tively, to control the appearance of the panel.

sigma Bandwidth of kernel smoother, on a scale where x and y range between 0 and 1.

Details

These functions can serve as one of the arguments panel, lower.panel, upper.panel, diag.panel
passed to graphics commands like pairs or coplot, to determine what kind of plotting is done in
each panel of a multi-panel graphical display. In particular they work with pairs.im.

The functions panel.contour and panel.contour are suitable for the off-diagonal plots which
involve two datasets x and y. They first rescale x and y to the unit square, then apply kernel
smoothing with bandwidth sigma using density.ppp. Then panel.contour draws a contour plot
while panel.image draws a colour image.

The function panel.histogram is suitable for the diagonal plots which involve a single dataset x.
It displays a histogram of the data.

parameters 1053

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pairs.im, pairs.default, panel.smooth

Examples

pairs(bei.extra,
panel = panel.contour,
diag.panel = panel.histogram)

with(bei.extra,
pairs(grad, elev,

panel = panel.image,
diag.panel = panel.histogram))

pairs(marks(finpines), panel=panel.contour, diag.panel=panel.histogram)

parameters Extract Model Parameters in Understandable Form

Description

Given a fitted model of some kind, this function extracts all the parameters needed to specify the
model, and returns them as a list.

Usage

parameters(model, ...)

S3 method for class 'dppm'
parameters(model, ...)

S3 method for class 'kppm'
parameters(model, ...)

S3 method for class 'ppm'
parameters(model, ...)

S3 method for class 'profilepl'
parameters(model, ...)

S3 method for class 'fii'

1054 parres

parameters(model, ...)

S3 method for class 'interact'
parameters(model, ...)

Arguments

model A fitted model of some kind.

... Arguments passed to methods.

Details

The argument model should be a fitted model of some kind. This function extracts all the parameters
that would be needed to specify the model, and returns them as a list.

The function parameters is generic, with methods for class "ppm", "kppm", "dppm" and "profilepl"
and other classes.

Value

A named list, whose format depends on the fitted model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

coef

Examples

parameters(Strauss(0.1))
fit1 <- ppm(cells ~ x, Strauss(0.1))
parameters(fit1)
fit2 <- kppm(redwood ~ x, "Thomas")
parameters(fit2)

parres Partial Residuals for Point Process Model

Description

Computes the smoothed partial residuals, a diagnostic for transformation of a covariate in a Poisson
point process model.

parres 1055

Usage

parres(model, covariate, ...,
smooth.effect=FALSE, subregion=NULL,
bw = "nrd0", adjust=1, from = NULL, to = NULL, n = 512,
bw.input = c("points", "quad"), bw.restrict=FALSE, covname)

Arguments

model Fitted point process model (object of class "ppm").

covariate The covariate of interest. Either a character string matching the name of one of
the canonical covariates in the model, or one of the names "x" or "y" referring
to the Cartesian coordinates, or one of the names of the covariates given when
model was fitted, or a pixel image (object of class "im") or function(x,y)
supplying the values of a covariate at any location. If the model depends on
only one covariate, then this covariate is the default; otherwise a covariate must
be specified.

smooth.effect Logical. Determines the choice of algorithm. See Details.

subregion Optional. A window (object of class "owin") specifying a subset of the spatial
domain of the data. The calculation will be confined to the data in this subregion.

bw Smoothing bandwidth or bandwidth rule (passed to density.default).

adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of val-
ues at which the function will be estimated.

... Additional arguments passed to density.default.

bw.input Character string specifying the input data used for automatic bandwidth selec-
tion.

bw.restrict Logical value, specifying whether bandwidth selection is performed using data
from the entire spatial domain or from the subregion.

covname Optional. Character string to use as the name of the covariate.

Details

This command computes the smoothed partial residual diagnostic (Baddeley, Chang, Song and
Turner, 2012) for the transformation of a covariate in a Poisson point process model.

The argument model must be a fitted Poisson point process model.

The diagnostic works in two different ways:

Canonical covariate: The argument covariate may be a character string which is the name of
one of the canonical covariates in the model. The canonical covariates are the functions Zj
that appear in the expression for the Poisson point process intensity

λ(u) = exp(β1Z1(u) + . . .+ βpZp(u))

at spatial location u. Type names(coef(model)) to see the names of the canonical covariates
in model. If the selected covariate is Zj , then the diagnostic plot concerns the model term

1056 parres

βjZj(u). The plot shows a smooth estimate of a function h(z) that should replace this linear
term, that is, βjZj(u) should be replaced by h(Zj(u)). The linear function is also plotted as
a dotted line.

New covariate: If the argument covariate is a pixel image (object of class "im") or a function(x,y),
it is assumed to provide the values of a covariate that is not present in the model. Alternatively
covariate can be the name of a covariate that was supplied when the model was fitted (i.e.
in the call to ppm) but which does not feature in the model formula. In either case we speak
of a new covariate Z(u). If the fitted model intensity is λ(u) then we consider modifying this
to λ(u) exp(h(Z(u))) where h(z) is some function. The diagnostic plot shows an estimate
of h(z). Warning: in this case the diagnostic is not theoretically justified. This option is
provided for research purposes.

Alternatively covariate can be one of the character strings "x" or "y" signifying the Cartesian
coordinates. The behaviour here depends on whether the coordinate was one of the canonical co-
variates in the model.

If there is more than one canonical covariate in the model that depends on the specified covariate,
then the covariate effect is computed using all these canonical covariates. For example in a log-
quadratic model which includes the terms x and I(x^2), the quadratic effect involving both these
terms will be computed.

There are two choices for the algorithm. If smooth.effect=TRUE, the fitted covariate effect (ac-
cording to model) is added to the point process residuals, then smoothing is applied to these values.
If smooth.effect=FALSE, the point process residuals are smoothed first, and then the fitted covari-
ate effect is added to the result.

The smoothing bandwidth is controlled by the arguments bw, adjust, bw.input and bw.restrict.
If bw is a numeric value, then the bandwidth is taken to be adjust * bw. If bw is a string representing
a bandwidth selection rule (recognised by density.default) then the bandwidth is selected by this
rule.

The data used for automatic bandwidth selection are specified by bw.input and bw.restrict. If
bw.input="points" (the default) then bandwidth selection is based on the covariate values at the
points of the original point pattern dataset to which the model was fitted. If bw.input="quad" then
bandwidth selection is based on the covariate values at every quadrature point used to fit the model.
If bw.restrict=TRUE then the bandwidth selection is performed using only data from inside the
subregion.

Value

A function value table (object of class "fv") containing the values of the smoothed partial residual,
the estimated variance, and the fitted effect of the covariate. Also belongs to the class "parres"
which has methods for print and plot.

Slow computation

In a large dataset, computation can be very slow if the default settings are used, because the smooth-
ing bandwidth is selected automatically. To avoid this, specify a numerical value for the bandwidth
bw. One strategy is to use a coarser subset of the data to select bw automatically. The selected
bandwidth can be read off the print output for parres.

pcf 1057

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>,
Ya-Mei Chang and Yong Song.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2013) Residual diagnostics for covariate
effects in spatial point process models. Journal of Computational and Graphical Statistics, 22,
886–905.

See Also

addvar, rhohat, rho2hat

Examples

X <- rpoispp(function(x,y){exp(3+x+2*x^2)})
model <- ppm(X ~x+y)
tra <- parres(model, "x")
plot(tra)
tra
plot(parres(model, "x", subregion=square(0.5)))
model2 <- ppm(X ~x+I(x^2)+y)
plot(parres(model2, "x"))
Z <- setcov(owin())
plot(parres(model2, Z))

#' when the model involves only one covariate
modelb <- ppm(bei ~ elev + I(elev^2), data=bei.extra)
plot(parres(modelb))

pcf Pair Correlation Function

Description

Estimate the pair correlation function.

Usage

pcf(X, ...)

Arguments

X Either the observed data point pattern, or an estimate of its K function, or an
array of multitype K functions (see Details).

... Other arguments passed to the appropriate method.

1058 pcf

Details

The pair correlation function of a stationary point process is

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r). For a stationary Poisson
process, the pair correlation function is identically equal to 1. Values g(r) < 1 suggest inhibition
between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classicalK function, such as the multitype
K functions (see Kcross, Kdot) and the inhomogeneous K function (see Kinhom). For all these
variants, the benchmark value of K(r) = πr2 corresponds to g(r) = 1.

This routine computes an estimate of g(r) either directly from a point pattern, or indirectly from an
estimate of K(r) or one of its variants.

This function is generic, with methods for the classes "ppp", "fv" and "fasp".

If X is a point pattern (object of class "ppp") then the pair correlation function is estimated using a
traditional kernel smoothing method (Stoyan and Stoyan, 1994). See pcf.ppp for details.

If X is a function value table (object of class "fv"), then it is assumed to contain estimates of the K
function or one of its variants (typically obtained from Kest or Kinhom). This routine computes an
estimate of g(r) using smoothing splines to approximate the derivative. See pcf.fv for details.

If X is a function value array (object of class "fasp"), then it is assumed to contain estimates of
several K functions (typically obtained from Kmulti or alltypes). This routine computes an
estimate of g(r) for each cell in the array, using smoothing splines to approximate the derivatives.
See pcf.fasp for details.

Value

Either a function value table (object of class "fv", see fv.object) representing a pair correlation
function, or a function array (object of class "fasp", see fasp.object) representing an array of
pair correlation functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

pcf.ppp, pcf.fv, pcf.fasp, Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes

pcf.fasp 1059

Examples

ppp object
X <- simdat

p <- pcf(X)
plot(p)

fv object
K <- Kest(X)
p2 <- pcf(K, spar=0.8, method="b")
plot(p2)

multitype pattern; fasp object
amaK <- alltypes(amacrine, "K")
amap <- pcf(amaK, spar=1, method="b")
plot(amap)

pcf.fasp Pair Correlation Function obtained from array of K functions

Description

Estimates the (bivariate) pair correlation functions of a point pattern, given an array of (bivariate) K
functions.

Usage

S3 method for class 'fasp'
pcf(X, ..., method="c")

Arguments

X An array of multitype K functions (object of class "fasp").

... Arguments controlling the smoothing spline function smooth.spline.

method Letter "a", "b", "c" or "d" indicating the method for deriving the pair correla-
tion function from the K function.

Details

The pair correlation function of a stationary point process is

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r). For a stationary Poisson
process, the pair correlation function is identically equal to 1. Values g(r) < 1 suggest inhibition
between points; values greater than 1 suggest clustering.

1060 pcf.fasp

We also apply the same definition to other variants of the classicalK function, such as the multitype
K functions (see Kcross, Kdot) and the inhomogeneous K function (see Kinhom). For all these
variants, the benchmark value of K(r) = πr2 corresponds to g(r) = 1.

This routine computes an estimate of g(r) from an array of estimates of K(r) or its variants, using
smoothing splines to approximate the derivatives. It is a method for the generic function pcf.

The argument X should be a function array (object of class "fasp", see fasp.object) containing
several estimates ofK functions. This should have been obtained from alltypes with the argument
fun="K".

The smoothing spline operations are performed by smooth.spline and predict.smooth.spline
from the modreg library. Four numerical methods are available:

• "a" apply smoothing to K(r), estimate its derivative, and plug in to the formula above;

• "b" apply smoothing to Y (r) = K(r)
2πr constraining Y (0) = 0, estimate the derivative of Y ,

and solve;

• "c" apply smoothing to Z(r) = K(r)
πr2 constraining Z(0) = 1, estimate its derivative, and

solve.

• "d" apply smoothing to V (r) =
√
K(r), estimate its derivative, and solve.

Method "c" seems to be the best at suppressing variability for small values of r. However it effec-
tively constrains g(0) = 1. If the point pattern seems to have inhibition at small distances, you may
wish to experiment with method "b" which effectively constrains g(0) = 0. Method "a" seems
comparatively unreliable.

Useful arguments to control the splines include the smoothing tradeoff parameter spar and the
degrees of freedom df. See smooth.spline for details.

Value

A function array (object of class "fasp", see fasp.object) representing an array of pair correlation
functions. This can be thought of as a matrix Y each of whose entries Y[i,j] is a function value
table (class "fv") representing the pair correlation function between points of type i and points of
type j.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes, smooth.spline, predict.smooth.spline

pcf.fv 1061

Examples

multitype point pattern
KK <- alltypes(amacrine, "K")
p <- pcf.fasp(KK, spar=0.5, method="b")
plot(p)
strong inhibition between points of the same type

pcf.fv Pair Correlation Function obtained from K Function

Description

Estimates the pair correlation function of a point pattern, given an estimate of the K function.

Usage

S3 method for class 'fv'
pcf(X, ..., method="c")

Arguments

X An estimate of the K function or one of its variants. An object of class "fv".

... Arguments controlling the smoothing spline function smooth.spline.

method Letter "a", "b", "c" or "d" indicating the method for deriving the pair correla-
tion function from the K function.

Details

The pair correlation function of a stationary point process is

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r). For a stationary Poisson
process, the pair correlation function is identically equal to 1. Values g(r) < 1 suggest inhibition
between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classicalK function, such as the multitype
K functions (see Kcross, Kdot) and the inhomogeneous K function (see Kinhom). For all these
variants, the benchmark value of K(r) = πr2 corresponds to g(r) = 1.

This routine computes an estimate of g(r) from an estimate ofK(r) or its variants, using smoothing
splines to approximate the derivative. It is a method for the generic function pcf for the class "fv".

The argument X should be an estimated K function, given as a function value table (object of
class "fv", see fv.object). This object should be the value returned by Kest, Kcross, Kmulti or
Kinhom.

The smoothing spline operations are performed by smooth.spline and predict.smooth.spline
from the modreg library. Four numerical methods are available:

1062 pcf.fv

• "a" apply smoothing to K(r), estimate its derivative, and plug in to the formula above;

• "b" apply smoothing to Y (r) = K(r)
2πr constraining Y (0) = 0, estimate the derivative of Y ,

and solve;
• "c" apply smoothing to Z(r) = K(r)

πr2 constraining Z(0) = 1, estimate its derivative, and
solve.

• "d" apply smoothing to V (r) =
√
K(r), estimate its derivative, and solve.

Method "c" seems to be the best at suppressing variability for small values of r. However it effec-
tively constrains g(0) = 1. If the point pattern seems to have inhibition at small distances, you may
wish to experiment with method "b" which effectively constrains g(0) = 0. Method "a" seems
comparatively unreliable.

Useful arguments to control the splines include the smoothing tradeoff parameter spar and the
degrees of freedom df. See smooth.spline for details.

Value

A function value table (object of class "fv", see fv.object) representing a pair correlation func-
tion.

Essentially a data frame containing (at least) the variables

r the vector of values of the argument r at which the pair correlation function g(r)
has been estimated

pcf vector of values of g(r)

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

pcf, pcf.ppp, Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes, smooth.spline, predict.smooth.spline

Examples

univariate point pattern
X <- simdat

K <- Kest(X)
p <- pcf.fv(K, spar=0.5, method="b")
plot(p, main="pair correlation function for simdat")
indicates inhibition at distances r < 0.3

pcf.ppp 1063

pcf.ppp Pair Correlation Function of Point Pattern

Description

Estimates the pair correlation function of a point pattern using kernel methods.

Usage

S3 method for class 'ppp'
pcf(X, ..., r = NULL, kernel="epanechnikov", bw=NULL,

stoyan=0.15,
correction=c("translate", "Ripley"),
divisor = c("r", "d"),
var.approx = FALSE,
domain=NULL,
ratio=FALSE, close=NULL)

Arguments

X A point pattern (object of class "ppp").

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default. Either a sin-
gle numeric value, or a character string specifying a bandwidth selection rule
recognised by density.default. If bw is missing or NULL, the default value is
computed using Stoyan’s rule of thumb: see Details.

... Other arguments passed to the kernel density estimation function density.default.

stoyan Coefficient for Stoyan’s bandwidth selection rule; see Details.

correction Edge correction. A character vector specifying the choice (or choices) of edge
correction. See Details.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
Details.

var.approx Logical value indicating whether to compute an analytic approximation to the
variance of the estimated pair correlation.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

close Advanced use only. Precomputed data. See section on Advanced Use.

1064 pcf.ppp

Details

The pair correlation function g(r) is a summary of the dependence between points in a spatial point
process. The best intuitive interpretation is the following: the probability p(r) of finding two points
at locations x and y separated by a distance r is equal to

p(r) = λ2g(r) dxdy

where λ is the intensity of the point process. For a completely random (uniform Poisson) process,
p(r) = λ2 dxdy so g(r) = 1. Formally, the pair correlation function of a stationary point process
is defined by

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r).

For a stationary Poisson process, the pair correlation function is identically equal to 1. Values
g(r) < 1 suggest inhibition between points; values greater than 1 suggest clustering.

This routine computes an estimate of g(r) by kernel smoothing.

• If divisor="r" (the default), then the standard kernel estimator (Stoyan and Stoyan, 1994,
pages 284–285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are
followed exactly.

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance
dij to the estimate of g(r) is divided by dij instead of dividing by r. This usually improves
the bias of the estimator when r is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window):

• If correction="translate" or correction="translation" then the translation correction
is used. For divisor="r" the translation-corrected estimate is given in equation (15.15), page
284 of Stoyan and Stoyan (1994).

• If correction="Ripley" or correction="isotropic" then Ripley’s isotropic edge correc-
tion is used. For divisor="r" the isotropic-corrected estimate is given in equation (15.18),
page 285 of Stoyan and Stoyan (1994).

• If correction="none" then no edge correction is used, that is, an uncorrected estimate is
computed.

Multiple corrections can be selected. The default is correction=c("translate","Ripley").

Alternatively correction="all" selects all options; correction="best" selects the option which
has the best statistical performance; correction="good" selects the option which is the best com-
promise between statistical performance and speed of computation.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.default.
The default is the Epanechnikov kernel, recommended by Stoyan and Stoyan (1994, page 285).

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpre-
tation is explained in the documentation for density.default. For the Epanechnikov kernel, the
argument bw is equivalent to h/

√
5.

pcf.ppp 1065

Stoyan and Stoyan (1994, page 285) recommend using the Epanechnikov kernel with support
[−h, h] chosen by the rule of thumn h = c/

√
λ, where λ is the (estimated) intensity of the point

process, and c is a constant in the range from 0.1 to 0.2. See equation (15.16). If bw is missing or
NULL, then this rule of thumb will be applied. The argument stoyan determines the value of c. The
smoothing bandwidth that was used in the calculation is returned as an attribute of the final result.

The argument r is the vector of values for the distance r at which g(r) should be evaluated. There
is a sensible default. If it is specified, r must be a vector of increasing numbers starting from r[1]
= 0, and max(r) must not exceed half the diameter of the window.

If the argument domain is given, estimation will be restricted to this region. That is, the estimate of
g(r) will be based on pairs of points in which the first point lies inside domain and the second point
is unrestricted. The argument domain should be a window (object of class "owin") or something
acceptable to as.owin. It must be a subset of the window of the point pattern X.

To compute a confidence band for the true value of the pair correlation function, use lohboot.

If var.approx = TRUE, the variance of the estimate of the pair correlation will also be calculated
using an analytic approximation (Illian et al, 2008, page 234) which is valid for stationary point
processes which are not too clustered. This calculation is not yet implemented when the argument
domain is given.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

r the vector of values of the argument r at which the pair correlation function g(r)
has been estimated

theo vector of values equal to 1, the theoretical value of g(r) for the Poisson process

trans vector of values of g(r) estimated by translation correction

iso vector of values of g(r) estimated by Ripley isotropic correction

v vector of approximate values of the variance of the estimate of g(r)

as required.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of g(r).

The return value also has an attribute "bw" giving the smoothing bandwidth that was used.

Advanced Use

To perform the same computation using several different bandwidths bw, it is efficient to use the
argument close. This should be the result of closepairs(X,rmax) for a suitably large value of
rmax, namely rmax >= max(r) + 3 * bw.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Martin Hazelton.

1066 pcf3est

References

Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical Analysis and Modelling of
Spatial Point Patterns. Wiley.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Kest, pcf, density.default, bw.stoyan, bw.pcf, lohboot.

Examples

X <- simdat

p <- pcf(X)
plot(p, main="pair correlation function for X")
indicates inhibition at distances r < 0.3

pd <- pcf(X, divisor="d")

compare estimates
plot(p, cbind(iso, theo) ~ r, col=c("blue", "red"),

ylim.covers=0, main="", lwd=c(2,1), lty=c(1,3), legend=FALSE)
plot(pd, iso ~ r, col="green", lwd=2, add=TRUE)
legend("center", col=c("blue", "green"), lty=1, lwd=2,

legend=c("divisor=r","divisor=d"))

calculate approximate variance and show POINTWISE confidence bands
pv <- pcf(X, var.approx=TRUE)
plot(pv, cbind(iso, iso+2*sqrt(v), iso-2*sqrt(v)) ~ r)

pcf3est Pair Correlation Function of a Three-Dimensional Point Pattern

Description

Estimates the pair correlation function from a three-dimensional point pattern.

Usage

pcf3est(X, ..., rmax = NULL, nrval = 128,
correction = c("translation", "isotropic"),
delta=NULL, adjust=1, biascorrect=TRUE)

pcf3est 1067

Arguments

X Three-dimensional point pattern (object of class "pp3").

... Ignored.

rmax Optional. Maximum value of argument r for which g3(r) will be estimated.

nrval Optional. Number of values of r for which g3(r) will be estimated.

correction Optional. Character vector specifying the edge correction(s) to be applied. See
Details.

delta Optional. Half-width of the Epanechnikov smoothing kernel.

adjust Optional. Adjustment factor for the default value of delta.

biascorrect Logical value. Whether to correct for underestimation due to truncation of the
kernel near r = 0.

Details

For a stationary point process Φ in three-dimensional space, the pair correlation function is

g3(r) =
K ′3(r)

4πr2

where K ′3 is the derivative of the three-dimensional K-function (see K3est).

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point pro-
cess Φ. The distance between each pair of distinct points is computed. Kernel smoothing is applied
to these distance values (weighted by an edge correction factor) and the result is renormalised to
give the estimate of g3(r).

The available edge corrections are:

"translation": the Ohser translation correction estimator (Ohser, 1983; Baddeley et al, 1993)

"isotropic": the three-dimensional counterpart of Ripley’s isotropic edge correction (Ripley,
1977; Baddeley et al, 1993).

Kernel smoothing is performed using the Epanechnikov kernel with half-width delta. If delta is
missing, the default is to use the rule-of-thumb δ = 0.26/λ1/3 where λ = n/v is the estimated
intensity, computed from the number n of data points and the volume v of the enclosing box. This
default value of delta is multiplied by the factor adjust.

The smoothing estimate of the pair correlation g3(r) is typically an underestimate when r is small,
due to truncation of the kernel at r = 0. If biascorrect=TRUE, the smoothed estimate is approx-
imately adjusted for this bias. This is advisable whenever the dataset contains a sufficiently large
number of points.

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Additionally the value of delta is returned as an attribute of this object.

1068 pcfcross

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

F3est, G3est, K3est for other summary functions of a three-dimensional point pattern.

pcf to estimate the pair correlation function of point patterns in two dimensions or other spaces.

Examples

X <- rpoispp3(250)
Z <- pcf3est(X)
Zbias <- pcf3est(X, biascorrect=FALSE)
if(interactive()) {

opa <- par(mfrow=c(1,2))
plot(Z, ylim.covers=c(0, 1.2))
plot(Zbias, ylim.covers=c(0, 1.2))
par(opa)

}
attr(Z, "delta")

pcfcross Multitype pair correlation function (cross-type)

Description

Calculates an estimate of the cross-type pair correlation function for a multitype point pattern.

Usage

pcfcross(X, i, j, ...,
r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("isotropic", "Ripley", "translate"),
divisor = c("r", "d"))

pcfcross 1069

Arguments

X The observed point pattern, from which an estimate of the cross-type pair corre-
lation function gij(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

... Ignored.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

stoyan Coefficient for default bandwidth rule; see Details.

correction Choice of edge correction.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
Details.

Details

The cross-type pair correlation function is a generalisation of the pair correlation function pcf to
multitype point patterns.

For two locations x and y separated by a distance r, the probability p(r) of finding a point of type i
at location x and a point of type j at location y is

p(r) = λiλjgi,j(r) dx dy

where λi is the intensity of the points of type i. For a completely random Poisson marked point
process, p(r) = λiλj so gi,j(r) = 1. Indeed for any marked point pattern in which the points of
type i are independent of the points of type j, the theoretical value of the cross-type pair correlation
is gi,j(r) = 1.

For a stationary multitype point process, the cross-type pair correlation function between marks i
and j is formally defined as

gi,j(r) =
K ′i,j(r)

2πr

where K ′i,j is the derivative of the cross-type K function Ki,j(r). of the point process. See Kest
for information about K(r).

The command pcfcross computes a kernel estimate of the cross-type pair correlation function
between marks i and j.

• If divisor="r" (the default), then the multitype counterpart of the standard kernel estima-
tor (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of
Stoyan and Stoyan (1994) are followed exactly.

1070 pcfcross

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance
dij to the estimate of g(r) is divided by dij instead of dividing by r. This usually improves
the bias of the estimator when r is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window): correction="translate" is the Ohser-
Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley’s isotropic
correction.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.
The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpre-
tation is explained in the documentation for density.default. For the Epanechnikov kernel with
support [−h, h], the argument bw is equivalent to h/

√
5.

If bw is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and
Stoyan, 1994, page 285) applied to the points of type j. That is, h = c/

√
λ, where λ is the

(estimated) intensity of the point process of type j, and c is a constant in the range from 0.1 to 0.2.
The argument stoyan determines the value of c.

The companion function pcfdot computes the corresponding analogue of Kdot.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function gi,j has been esti-
mated

theo the theoretical value gi,j(r) = 1 for independent marks.

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function gi,j obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Mark connection function markconnect.

Multitype pair correlation pcfdot, pcfmulti.

Pair correlation pcf,pcf.ppp.

Kcross

pcfcross.inhom 1071

Examples

data(amacrine)
p <- pcfcross(amacrine, "off", "on")
p <- pcfcross(amacrine, "off", "on", stoyan=0.1)
plot(p)

pcfcross.inhom Inhomogeneous Multitype Pair Correlation Function (Cross-Type)

Description

Estimates the inhomogeneous cross-type pair correlation function for a multitype point pattern.

Usage

pcfcross.inhom(X, i, j, lambdaI = NULL, lambdaJ = NULL, ...,
r = NULL, breaks = NULL,
kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction = c("isotropic", "Ripley", "translate"),
sigma = NULL, varcov = NULL)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross-
type pair correlation function gij(r) will be computed. It must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

lambdaI Optional. Values of the estimated intensity function of the points of type i. Ei-
ther a vector giving the intensity values at the points of type i, a pixel image (ob-
ject of class "im") giving the intensity values at all locations, or a function(x,y)
which can be evaluated to give the intensity value at any location.

lambdaJ Optional. Values of the estimated intensity function of the points of type j. A
numeric vector, pixel image or function(x,y).

r Vector of values for the argument r at which gij(r) should be evaluated. There
is a sensible default.

breaks This argument is for internal use only.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

... Other arguments passed to the kernel density estimation function density.default.

1072 pcfcross.inhom

stoyan Bandwidth coefficient; see Details.

correction Choice of edge correction.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambdaI or lambdaJ is estimated by kernel smoothing.

Details

The inhomogeneous cross-type pair correlation function gij(r) is a summary of the dependence
between two types of points in a multitype spatial point process that does not have a uniform density
of points.

The best intuitive interpretation is the following: the probability p(r) of finding two points, of types
i and j respectively, at locations x and y separated by a distance r is equal to

p(r) = λi(x)lambdaj(y)g(r) dxdy

where λi is the intensity function of the process of points of type i. For a multitype Poisson point
process, this probability is p(r) = λi(x)λj(y) so gij(r) = 1.

The command pcfcross.inhom estimates the inhomogeneous pair correlation using a modified
version of the algorithm in pcf.ppp.

If the arguments lambdaI and lambdaJ are missing or null, they are estimated from X by kernel
smoothing using a leave-one-out estimator.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

r the vector of values of the argument r at which the inhomogeneous cross-type
pair correlation function gij(r) has been estimated

theo vector of values equal to 1, the theoretical value of gij(r) for the Poisson process

trans vector of values of gij(r) estimated by translation correction

iso vector of values of gij(r) estimated by Ripley isotropic correction

as required.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pcf.ppp, pcfinhom, pcfcross, pcfdot.inhom

Examples

data(amacrine)
plot(pcfcross.inhom(amacrine, "on", "off", stoyan=0.1),

legendpos="bottom")

pcfdot 1073

pcfdot Multitype pair correlation function (i-to-any)

Description

Calculates an estimate of the multitype pair correlation function (from points of type i to points of
any type) for a multitype point pattern.

Usage

pcfdot(X, i, ..., r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("isotropic", "Ripley", "translate"),
divisor = c("r", "d"))

Arguments

X The observed point pattern, from which an estimate of the dot-type pair corre-
lation function gi•(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

... Ignored.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

stoyan Coefficient for default bandwidth rule; see Details.

correction Choice of edge correction.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
Details.

Details

This is a generalisation of the pair correlation function pcf to multitype point patterns.

For two locations x and y separated by a nonzero distance r, the probability p(r) of finding a point
of type i at location x and a point of any type at location y is

p(r) = λiλgi•(r) dx dy

where λ is the intensity of all points, and λi is the intensity of the points of type i. For a completely
random Poisson marked point process, p(r) = λiλ so gi•(r) = 1.

1074 pcfdot

For a stationary multitype point process, the type-i-to-any-type pair correlation function between
marks i and j is formally defined as

gi•(r) =
K ′i•(r)

2πr

where K ′i• is the derivative of the type-i-to-any-type K function Ki•(r). of the point process. See
Kdot for information about Ki•(r).

The command pcfdot computes a kernel estimate of the multitype pair correlation function from
points of type i to points of any type.

• If divisor="r" (the default), then the multitype counterpart of the standard kernel estima-
tor (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of
Stoyan and Stoyan (1994) are followed exactly.

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance
dij to the estimate of g(r) is divided by dij instead of dividing by r. This usually improves
the bias of the estimator when r is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window): correction="translate" is the Ohser-
Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley’s isotropic
correction.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.
The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpre-
tation is explained in the documentation for density.default. For the Epanechnikov kernel with
support [−h, h], the argument bw is equivalent to h/

√
5.

If bw is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and
Stoyan, 1994, page 285). That is, h = c/

√
λ, where λ is the (estimated) intensity of the unmarked

point process, and c is a constant in the range from 0.1 to 0.2. The argument stoyan determines the
value of c.

The companion function pcfcross computes the corresponding analogue of Kcross.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function gi• has been esti-
mated

theo the theoretical value gi•(r) = 1 for independent marks.

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function gi,j obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

pcfdot.inhom 1075

See Also

Mark connection function markconnect.

Multitype pair correlation pcfcross, pcfmulti.

Pair correlation pcf,pcf.ppp.

Kdot

Examples

data(amacrine)
p <- pcfdot(amacrine, "on")
p <- pcfdot(amacrine, "on", stoyan=0.1)
plot(p)

pcfdot.inhom Inhomogeneous Multitype Pair Correlation Function (Type-i-To-Any-
Type)

Description

Estimates the inhomogeneous multitype pair correlation function (from type i to any type) for a
multitype point pattern.

Usage

pcfdot.inhom(X, i, lambdaI = NULL, lambdadot = NULL, ...,
r = NULL, breaks = NULL,
kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction = c("isotropic", "Ripley", "translate"),
sigma = NULL, varcov = NULL)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous mul-
titype pair correlation function gi•(r) will be computed. It must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

lambdaI Optional. Values of the estimated intensity function of the points of type i. Ei-
ther a vector giving the intensity values at the points of type i, a pixel image (ob-
ject of class "im") giving the intensity values at all locations, or a function(x,y)
which can be evaluated to give the intensity value at any location.

lambdadot Optional. Values of the estimated intensity function of the point pattern X. A
numeric vector, pixel image or function(x,y).

1076 pcfdot.inhom

r Vector of values for the argument r at which gi•(r) should be evaluated. There
is a sensible default.

breaks This argument is for internal use only.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

... Other arguments passed to the kernel density estimation function density.default.

stoyan Bandwidth coefficient; see Details.

correction Choice of edge correction.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambdaI or lambdadot is estimated by kernel smoothing.

Details

The inhomogeneous multitype (type i to any type) pair correlation function gi•(r) is a summary of
the dependence between different types of points in a multitype spatial point process that does not
have a uniform density of points.

The best intuitive interpretation is the following: the probability p(r) of finding a point of type i at
location x and another point of any type at location y, where x and y are separated by a distance r,
is equal to

p(r) = λi(x)lambda(y)g(r) dxdy

where λi is the intensity function of the process of points of type i, and where λ is the intensity
function of the points of all types. For a multitype Poisson point process, this probability is p(r) =
λi(x)λ(y) so gi•(r) = 1.

The command pcfdot.inhom estimates the inhomogeneous multitype pair correlation using a mod-
ified version of the algorithm in pcf.ppp.

If the arguments lambdaI and lambdadot are missing or null, they are estimated from X by kernel
smoothing using a leave-one-out estimator.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

r the vector of values of the argument r at which the inhomogeneous multitype
pair correlation function gi•(r) has been estimated

theo vector of values equal to 1, the theoretical value of gi•(r) for the Poisson process

trans vector of values of gi•(r) estimated by translation correction

iso vector of values of gi•(r) estimated by Ripley isotropic correction

as required.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

pcfinhom 1077

See Also

pcf.ppp, pcfinhom, pcfdot, pcfcross.inhom

Examples

data(amacrine)
plot(pcfdot.inhom(amacrine, "on", stoyan=0.1), legendpos="bottom")

pcfinhom Inhomogeneous Pair Correlation Function

Description

Estimates the inhomogeneous pair correlation function of a point pattern using kernel methods.

Usage

pcfinhom(X, lambda = NULL, ..., r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("translate", "Ripley"),
divisor = c("r", "d"),
renormalise = TRUE, normpower=1,
update = TRUE, leaveoneout = TRUE,
reciplambda = NULL,
sigma = NULL, varcov = NULL, close=NULL)

Arguments

X A point pattern (object of class "ppp").

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm", "kppm" or "dppm") or a function(x,y) which can be evaluated
to give the intensity value at any location.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default. Either a sin-
gle numeric value, or a character string specifying a bandwidth selection rule
recognised by density.default. If bw is missing or NULL, the default value is
computed using Stoyan’s rule of thumb: see bw.stoyan.

... Other arguments passed to the kernel density estimation function density.default.

stoyan Coefficient for Stoyan’s bandwidth selection rule; see bw.stoyan.

correction Character string or character vector specifying the choice of edge correction.
See Kest for explanation and options.

1078 pcfinhom

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
pcf.ppp.

renormalise Logical. Whether to renormalise the estimate. See Details.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

update Logical. If lambda is a fitted model (class "ppm", "kppm" or "dppm") and
update=TRUE (the default), the model will first be refitted to the data X (us-
ing update.ppm or update.kppm) before the fitted intensity is computed. If
update=FALSE, the fitted intensity of the model will be computed without re-
fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

reciplambda Alternative to lambda. Values of the estimated reciprocal 1/λ of the intensity
function. Either a vector giving the reciprocal intensity values at the points of
the pattern X, a pixel image (object of class "im") giving the reciprocal intensity
values at all locations, or a function(x,y) which can be evaluated to give the
reciprocal intensity value at any location.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

close Advanced use only. Precomputed data. See section on Advanced Use.

Details

The inhomogeneous pair correlation function ginhom(r) is a summary of the dependence between
points in a spatial point process that does not have a uniform density of points.

The best intuitive interpretation is the following: the probability p(r) of finding two points at loca-
tions x and y separated by a distance r is equal to

p(r) = λ(x)lambda(y)g(r) dxdy

where λ is the intensity function of the point process. For a Poisson point process with intensity
function λ, this probability is p(r) = λ(x)λ(y) so ginhom(r) = 1.

The inhomogeneous pair correlation function is related to the inhomogeneous K function through

ginhom(r) =
K ′inhom(r)

2πr

where K ′inhom(r) is the derivative of Kinhom(r), the inhomogeneous K function. See Kinhom for
information about Kinhom(r).

The command pcfinhom estimates the inhomogeneous pair correlation using a modified version of
the algorithm in pcf.ppp.

If renormalise=TRUE (the default), then the estimates are multiplied by cnormpower where c =
area(W)/

∑
(1/λ(xi)). This rescaling reduces the variability and bias of the estimate in small sam-

ples and in cases of very strong inhomogeneity. The default value of normpower is 1 but the most
sensible value is 2, which would correspond to rescaling the lambda values so that

∑
(1/λ(xi)) =

area(W).

pcfmulti 1079

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

r the vector of values of the argument r at which the inhomogeneous pair correla-
tion function ginhom(r) has been estimated

theo vector of values equal to 1, the theoretical value of ginhom(r) for the Poisson
process

trans vector of values of ginhom(r) estimated by translation correction
iso vector of values of ginhom(r) estimated by Ripley isotropic correction

as required.

Advanced Use

To perform the same computation using several different bandwidths bw, it is efficient to use the
argument close. This should be the result of closepairs(X,rmax) for a suitably large value of
rmax, namely rmax >= max(r) + 3 * bw.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pcf, pcf.ppp, bw.stoyan, bw.pcf, Kinhom

Examples

data(residualspaper)
X <- residualspaper$Fig4b
plot(pcfinhom(X, stoyan=0.2, sigma=0.1))
fit <- ppm(X, ~polynom(x,y,2))
plot(pcfinhom(X, lambda=fit, normpower=2))

pcfmulti Marked pair correlation function

Description

For a marked point pattern, estimate the multitype pair correlation function using kernel methods.

Usage

pcfmulti(X, I, J, ..., r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("translate", "Ripley"),
divisor = c("r", "d"),
Iname = "points satisfying condition I",
Jname = "points satisfying condition J")

1080 pcfmulti

Arguments

X The observed point pattern, from which an estimate of the cross-type pair corre-
lation function gij(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor).

I Subset index specifying the points of X from which distances are measured.

J Subset index specifying the points in X to which distances are measured.

... Ignored.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

stoyan Coefficient for default bandwidth rule.

correction Choice of edge correction.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d".

Iname,Jname Optional. Character strings describing the members of the subsets I and J.

Details

This is a generalisation of pcfcross to arbitrary collections of points.

The algorithm measures the distance from each data point in subset I to each data point in subset J,
excluding identical pairs of points. The distances are kernel-smoothed and renormalised to form a
pair correlation function.

• If divisor="r" (the default), then the multitype counterpart of the standard kernel estima-
tor (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of
Stoyan and Stoyan (1994) are followed exactly.

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance
dij to the estimate of g(r) is divided by dij instead of dividing by r. This usually improves
the bias of the estimator when r is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window): correction="translate" is the Ohser-
Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley’s isotropic
correction.

The arguments I and J specify two subsets of the point pattern X. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.
The default is the Epanechnikov kernel.

Penttinen 1081

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpre-
tation is explained in the documentation for density.default. For the Epanechnikov kernel with
support [−h, h], the argument bw is equivalent to h/

√
5.

If bw is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and
Stoyan, 1994, page 285) applied to the points of type j. That is, h = c/

√
λ, where λ is the

(estimated) intensity of the point process of type j, and c is a constant in the range from 0.1 to 0.2.
The argument stoyan determines the value of c.

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pcfcross, pcfdot, pcf.ppp.

Examples

adult <- (marks(longleaf) >= 30)
juvenile <- !adult
p <- pcfmulti(longleaf, adult, juvenile)

Penttinen Penttinen Interaction

Description

Creates an instance of the Penttinen pairwise interaction point process model, which can then be
fitted to point pattern data.

Usage

Penttinen(r)

Arguments

r circle radius

1082 Penttinen

Details

Penttinen (1984, Example 2.1, page 18), citing Cormack (1979), described the pairwise interaction
point process with interaction factor

h(d) = eθA(d) = γA(d)

between each pair of points separated by a distance d. Here A(d) is the area of intersection
between two discs of radius r separated by a distance d, normalised so that A(0) = 1.

The scale of interaction is controlled by the disc radius r: two points interact if they are closer than
2r apart. The strength of interaction is controlled by the canonical parameter θ, which must be less
than or equal to zero, or equivalently by the parameter γ = eθ, which must lie between 0 and 1.

The potential is inhibitory, i.e.\ this model is only appropriate for regular point patterns. For γ = 0
the model is a hard core process with hard core diameter 2r. For γ = 1 the model is a Poisson
process.

The irregular parameter r must be given in the call to Penttinen, while the regular parameter θ
will be estimated.

This model can be considered as a pairwise approximation to the area-interaction model AreaInter.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Cormack, R.M. (1979) Spatial aspects of competition between individuals. Pages 151–212 in Spa-
tial and Temporal Analysis in Ecology, eds. R.M. Cormack and J.K. Ord, International Co-operative
Publishing House, Fairland, MD, USA.

Penttinen, A. (1984) Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the
Maximum Likelihood Method. Jyväskylä Studies in Computer Science, Economics and Statistics 7,
University of Jyväskylä, Finland.

See Also

ppm, ppm.object, Pairwise, AreaInter.

Examples

fit <- ppm(cells ~ 1, Penttinen(0.07))
fit
reach(fit) # interaction range is circle DIAMETER

perimeter 1083

perimeter Perimeter Length of Window

Description

Computes the perimeter length of a window

Usage

perimeter(w)

Arguments

w A window (object of class "owin") or data that can be converted to a window
by as.owin.

Details

This function computes the perimeter (length of the boundary) of the window w. If w is a rectangle
or a polygonal window, the perimeter is the sum of the lengths of the edges of w. If w is a mask, it is
first converted to a polygonal window using as.polygonal, then staircase edges are removed using
simplify.owin, and the perimeter of the resulting polygon is computed.

Value

A numeric value giving the perimeter length of the window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

area.owin diameter.owin, owin.object, as.owin

Examples

perimeter(square(3))
data(letterR)
perimeter(letterR)
if(interactive()) print(perimeter(as.mask(letterR)))

1084 periodify

periodify Make Periodic Copies of a Spatial Pattern

Description

Given a spatial pattern (point pattern, line segment pattern, window, etc) make shifted copies of the
pattern and optionally combine them to make a periodic pattern.

Usage

periodify(X, ...)
S3 method for class 'ppp'
periodify(X, nx = 1, ny = 1, ...,

combine=TRUE, warn=TRUE, check=TRUE,
ix=(-nx):nx, iy=(-ny):ny,
ixy=expand.grid(ix=ix,iy=iy))

S3 method for class 'psp'
periodify(X, nx = 1, ny = 1, ...,

combine=TRUE, warn=TRUE, check=TRUE,
ix=(-nx):nx, iy=(-ny):ny,
ixy=expand.grid(ix=ix,iy=iy))

S3 method for class 'owin'
periodify(X, nx = 1, ny = 1, ...,

combine=TRUE, warn=TRUE,
ix=(-nx):nx, iy=(-ny):ny,
ixy=expand.grid(ix=ix,iy=iy))

Arguments

X An object representing a spatial pattern (point pattern, line segment pattern or
window).

nx,ny Integers. Numbers of additional copies of X in each direction. The result will
be a grid of 2 * nx + 1 by 2 * ny + 1 copies of the original object. (Overruled by
ix,iy,ixy).

... Ignored.

combine Logical flag determining whether the copies should be superimposed to make an
object like X (if combine=TRUE) or simply returned as a list of objects (combine=FALSE).

warn Logical flag determining whether to issue warnings.

check Logical flag determining whether to check the validity of the combined pattern.

ix, iy Integer vectors determining the grid positions of the copies of X. (Overruled by
ixy).

ixy Matrix or data frame with two columns, giving the grid positions of the copies
of X.

persp.im 1085

Details

Given a spatial pattern (point pattern, line segment pattern, etc) this function makes a number of
shifted copies of the pattern and optionally combines them. The function periodify is generic,
with methods for various kinds of spatial objects.

The default is to make a 3 by 3 array of copies of X and combine them into a single pattern of the
same kind as X. This can be used (for example) to compute toroidal or periodic edge corrections for
various operations on X.

If the arguments nx, ny are given and other arguments are missing, the original object will be copied
nx times to the right and nx times to the left, then ny times upward and ny times downward, making
(2 * nx + 1) * (2 * ny + 1) copies altogether, arranged in a grid, centred on the original object.

If the arguments ix, iy or ixy are specified, then these determine the grid positions of the copies of
X that will be made. For example (ix,iy) = (1,2) means a copy of X shifted by the vector (ix *
w,iy * h) where w,h are the width and height of the bounding rectangle of X.

If combine=TRUE (the default) the copies of X are superimposed to create an object of the same kind
as X. If combine=FALSE the copies of X are returned as a list.

Value

If combine=TRUE, an object of the same class as X. If combine=FALSE, a list of objects of the same
class as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

shift

Examples

data(cells)
plot(periodify(cells))
a <- lapply(periodify(Window(cells), combine=FALSE),

plot, add=TRUE,lty=2)

persp.im Perspective Plot of Pixel Image

Description

Displays a perspective plot of a pixel image.

1086 persp.im

Usage

S3 method for class 'im'
persp(x, ...,

colmap=NULL, colin=x, apron=FALSE, visible=FALSE)

Arguments

x The pixel image to be plotted as a surface. An object of class "im" (see im.object).

... Extra arguments passed to persp.default to control the display.

colmap Optional data controlling the colour map. See Details.

colin Optional. Colour input. Another pixel image (of the same dimensions as x)
containing the values that will be mapped to colours.

apron Logical. If TRUE, a grey apron is placed around the sides of the perspective plot.

visible Logical value indicating whether to compute which pixels of x are visible in the
perspective view. See Details.

Details

This is the persp method for the class "im".

The pixel image x must have real or integer values. These values are treated as heights of a surface,
and the surface is displayed as a perspective plot on the current plot device, using equal scales on
the x and y axes.

The optional argument colmap gives an easy way to display different altitudes in different colours
(if this is what you want).

• If colmap is a colour map (object of class "colourmap", created by the function colourmap)
then this colour map will be used to associate altitudes with colours.

• If colmap is a character vector, then the range of altitudes in the perspective plot will be
divided into length(colmap) intervals, and those parts of the surface which lie in a particular
altitude range will be assigned the corresponding colour from colmap.

• If colmap is a function in the R language of the form function(n,...), this function will be
called with an appropriate value of n to generate a character vector of n colours. Examples of
such functions are heat.colors, terrain.colors, topo.colors and cm.colors.

• If colmap is a function in the R language of the form function(range,...) then it will be
called with range equal to the range of altitudes, to determine the colour values or colour map.
Examples of such functions are beachcolours and beachcolourmap.

• If colmap is a list with entries breaks and col, then colmap$breaks determines the break-
points of the altitude intervals, and colmap$col provides the corresponding colours.

Alternatively, if the argument colin (colour input) is present, then the colour map colmap will be
applied to the pixel values of colin instead of the pixel values of x. The result is a perspective view
of a surface with heights determined by x and colours determined by colin (mapped by colmap).

If apron=TRUE, vertical surface is drawn around the boundary of the perspective plot, so that the
terrain appears to have been cut out of a solid material. If colour data were supplied, then the apron
is coloured light grey.

persp.im 1087

Graphical parameters controlling the perspective plot are passed through the ... arguments directly
to the function persp.default. See the examples in persp.default or in demo(persp).

The vertical scale is controlled by the argument expand: setting expand=1 will interpret the pixel
values as being in the same units as the spatial coordinates x and y and represent them at the same
scale.

If visible=TRUE, the algorithm also computes whether each pixel in x is visible in the perspective
view. In order to be visible, a pixel must not be obscured by another pixel which lies in front of it (as
seen from the viewing direction), and the three-dimensional vector normal to the surface must be
pointing toward the viewer. The return value of persp.im then has an attribute "visible" which
is a pixel image, compatible with x, with pixel value equal to TRUE if the corresponding pixel in x
is visible, and FALSE if it is not visible.

Value

(invisibly) the 3D transformation matrix returned by persp.default, together with an attribute
"expand" which gives the relative scale of the z coordinate.

If argument visible=TRUE was given, the return value also has an attribute "visible" which is a
pixel image, compatible with x, with logical values which are TRUE when the corresponding pixel
is visible in the perspective view, and FALSE when it is obscured.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

perspPoints, perspLines for drawing additional points or lines on the surface.

trans3d for mapping arbitrary (x, y, z) coordinate locations to the plotting coordinates.

im.object, plot.im, contour.im

Examples

an image
Z <- setcov(owin())
persp(Z, colmap=terrain.colors(128))
co <- colourmap(range=c(0,1), col=rainbow(128))
persp(Z, colmap=co, axes=FALSE, shade=0.3)

Terrain elevation
persp(bei.extra$elev, colmap=terrain.colors(128),

apron=TRUE, theta=-30, phi=20,
zlab="Elevation", main="", ticktype="detailed",
expand=6)

1088 perspPoints

perspPoints Draw Points or Lines on a Surface Viewed in Perspective

Description

After a surface has been plotted in a perspective view using persp.im, these functions can be used
to draw points or lines on the surface.

Usage

perspPoints(x, y=NULL, ..., Z, M)

perspLines(x, y = NULL, ..., Z, M)

perspSegments(x0, y0 = NULL, x1 = NULL, y1 = NULL, ..., Z, M)

perspContour(Z, M, ...,
nlevels=10, levels=pretty(range(Z), nlevels))

Arguments

x,y Spatial coordinates, acceptable to xy.coords, for the points or lines on the hor-
izontal plane.

Z Pixel image (object of class "im") specifying the surface heights.

M Projection matrix returned from persp.im when Z was plotted.

... Graphical arguments passed to points, lines or segments to control the draw-
ing.

x0,y0,x1,y1 Spatial coordinates of the line segments, on the horizontal plane. Alternatively
x0 can be a line segment pattern (object of class "psp") and y0,x1,y1 can be
NULL.

nlevels Number of contour levels

levels Vector of heights of contours.

Details

After a surface has been plotted in a perspective view, these functions can be used to draw points or
lines on the surface.

The user should already have called persp.im in the form M <-persp(Z,visible=TRUE,...) to
display the perspective view of the surface Z.

Only points and lines which are visible from the viewer’s standpoint will be drawn.

Value

Same as the return value from points or segments.

pixelcentres 1089

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

persp.im

Examples

M <- persp(bei.extra$elev, colmap=terrain.colors(128),
apron=TRUE, theta=-30, phi=20,
zlab="Elevation", main="",
expand=6, visible=TRUE, shade=0.3)

perspContour(bei.extra$elev, M=M, col="pink", nlevels=12)
perspPoints(bei, Z=bei.extra$elev, M=M, pch=16, cex=0.3, col="chartreuse")

pixelcentres Extract Pixel Centres as Point Pattern

Description

Given a pixel image or binary mask window, extract the centres of all pixels and return them as a
point pattern.

Usage

pixelcentres(X, W = NULL, ...)

Arguments

X Pixel image (object of class "im") or window (object of class "owin").

W Optional window to contain the resulting point pattern.

... Optional arguments defining the pixel resolution.

Details

If the argument X is a pixel image, the result is a point pattern, consisting of the centre of every pixel
whose pixel value is not NA.

If X is a window which is a binary mask, the result is a point pattern consisting of the centre of every
pixel inside the window (i.e. every pixel for which the mask value is TRUE).

Otherwise, X is first converted to a window, then converted to a mask using as.mask, then handled
as above.

1090 pixellate

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

raster.xy

Examples

pixelcentres(letterR, dimyx=5)

pixellate Convert Spatial Object to Pixel Image

Description

Convert a spatial object to a pixel image by measuring the amount of stuff in each pixel.

Usage

pixellate(x, ...)

Arguments

x Spatial object to be converted. A point pattern (object of class "ppp"), a window
(object of class "owin"), a line segment pattern (object of class "psp"), or some
other suitable data.

... Arguments passed to methods.

Details

The function pixellate converts a geometrical object x into a pixel image, by measuring the
amount of x that is inside each pixel.

If x is a point pattern, pixellate(x) counts the number of points of x falling in each pixel. If x is
a window, pixellate(x) measures the area of intersection of each pixel with the window.

The function pixellate is generic, with methods for point patterns (pixellate.ppp), windows
(pixellate.owin), and line segment patterns (pixellate.psp), See the separate documentation
for these methods.

The related function as.im also converts x into a pixel image, but typically measures only the
presence or absence of x inside each pixel.

pixellate.owin 1091

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pixellate.ppp, pixellate.owin, pixellate.psp, pixellate.linnet, as.im

pixellate.owin Convert Window to Pixel Image

Description

Convert a window to a pixel image by measuring the area of intersection between the window and
each pixel in a raster.

Usage

S3 method for class 'owin'
pixellate(x, W = NULL, ..., DivideByPixelArea=FALSE)

Arguments

x Window (object of class "owin") to be converted.

W Optional. Window determining the pixel raster on which the conversion should
occur.

... Optional. Extra arguments passed to as.mask to determine the pixel raster.
DivideByPixelArea

Logical value, indicating whether the resulting pixel values should be divided
by the pixel area.

Details

This is a method for the generic function pixellate.

It converts a window x into a pixel image, by measuring the amount of x that is inside each pixel.

(The related function as.im also converts x into a pixel image, but records only the presence or
absence of x in each pixel.)

The pixel raster for the conversion is determined by the argument W and the extra arguments

• If W is given, and it is a binary mask (a window of type "mask") then it determines the pixel
raster.

1092 pixellate.ppp

• If W is given, but it is not a binary mask (it is a window of another type) then it will be converted
to a binary mask using as.mask(W,...).

• If W is not given, it defaults to as.mask(as.rectangle(x),...)

In the second and third cases it would be common to use the argument dimyx to control the number
of pixels. See the Examples.

The algorithm then computes the area of intersection of each pixel with the window.

The result is a pixel image with pixel entries equal to these intersection areas.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pixellate.ppp, pixellate, as.im

Examples

data(letterR)
plot(pixellate(letterR, dimyx=15))
W <- grow.rectangle(as.rectangle(letterR), 0.2)
plot(pixellate(letterR, W, dimyx=15))

pixellate.ppp Convert Point Pattern to Pixel Image

Description

Converts a point pattern to a pixel image. The value in each pixel is the number of points falling in
that pixel, and is typically either 0 or 1.

Usage

S3 method for class 'ppp'
pixellate(x, W=NULL, ..., weights = NULL,

padzero=FALSE, fractional=FALSE, preserve=FALSE,
DivideByPixelArea=FALSE, savemap=FALSE)

S3 method for class 'ppp'
as.im(X, ...)

pixellate.ppp 1093

Arguments

x,X Point pattern (object of class "ppp").

... Arguments passed to as.mask to determine the pixel resolution

W Optional window mask (object of class "owin") determining the pixel raster.

weights Optional vector of weights associated with the points.

padzero Logical value indicating whether to set pixel values to zero outside the window.
fractional,preserve

Logical values determining the type of discretisation. See Details.
DivideByPixelArea

Logical value, indicating whether the resulting pixel values should be divided
by the pixel area.

savemap Logical value, indicating whether to save information about the discretised co-
ordinates of the points of x.

Details

The functions pixellate.ppp and as.im.ppp convert a spatial point pattern x into a pixel image,
by counting the number of points (or the total weight of points) falling in each pixel.

Calling as.im.ppp is equivalent to calling pixellate.ppp with its default arguments. Note that
pixellate.ppp is more general than as.im.ppp (it has additional arguments for greater flexibility).

The functions as.im.ppp and pixellate.ppp are methods for the generic functions as.im and
pixellate respectively, for the class of point patterns.

The pixel raster (in which points are counted) is determined by the argument W if it is present (for
pixellate.ppp only). In this case W should be a binary mask (a window object of class "owin"
with type "mask"). Otherwise the pixel raster is determined by extracting the window containing x
and converting it to a binary pixel mask using as.mask. The arguments ... are passed to as.mask
to control the pixel resolution.

If weights is NULL, then for each pixel in the mask, the algorithm counts how many points in x fall
in the pixel. This count is usually either 0 (for a pixel with no data points in it) or 1 (for a pixel
containing one data point) but may be greater than 1. The result is an image with these counts as its
pixel values.

If weights is given, it should be a numeric vector of the same length as the number of points in x.
For each pixel, the algorithm finds the total weight associated with points in x that fall in the given
pixel. The result is an image with these total weights as its pixel values.

By default (if zeropad=FALSE) the resulting pixel image has the same spatial domain as the window
of the point pattern x. If zeropad=TRUE then the resulting pixel image has a rectangular domain;
pixels outside the original window are assigned the value zero.

The discretisation procedure is controlled by the arguments fractional and preserve.

• The argument fractional specifies how data points are mapped to pixels. If fractional=FALSE
(the default), each data point is allocated to the nearest pixel centre. If fractional=TRUE, each
data point is allocated with fractional weight to four pixel centres (the corners of a rectangle
containing the data point).

1094 pixellate.psp

• The argument preserve specifies what to do with pixels lying near the boundary of the win-
dow, if the window is not a rectangle. If preserve=FALSE (the default), any contributions that
are attributed to pixel centres lying outside the window are reset to zero. If preserve=TRUE,
any such contributions are shifted to the nearest pixel lying inside the window, so that the total
mass is preserved.

If savemap=TRUE then the result has an attribute "map" which is a 2-column matrix containing the
row and column indices of the discretised positions of the points of x in the pixel grid.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pixellate, im, as.im, density.ppp, Smooth.ppp.

Examples

plot(pixellate(humberside))
plot(pixellate(humberside, fractional=TRUE))

pixellate.psp Convert Line Segment Pattern to Pixel Image

Description

Converts a line segment pattern to a pixel image by measuring the length or number of lines inter-
secting each pixel.

Usage

S3 method for class 'psp'
pixellate(x, W=NULL, ..., weights = NULL,

what=c("length", "number"),
DivideByPixelArea=FALSE)

pixellate.psp 1095

Arguments

x Line segment pattern (object of class "psp").

W Optional window (object of class "owin") determining the pixel resolution.

... Optional arguments passed to as.mask to determine the pixel resolution.

weights Optional vector of weights associated with each line segment.

what String (partially matched) indicating whether to compute the total length of in-
tersection (what="length", the default) or the total number of segments inter-
secting each pixel (what="number").

DivideByPixelArea

Logical value, indicating whether the resulting pixel values should be divided
by the pixel area.

Details

This function converts a line segment pattern to a pixel image by computing, for each pixel, the
total length of intersection between the pixel and the line segments. Alternatively it can count the
number of line segments intersecting each pixel.

This is a method for the generic function pixellate for the class of line segment patterns.

The pixel raster is determined by W and the optional arguments If W is missing or NULL, it
defaults to the window containing x. Then W is converted to a binary pixel mask using as.mask.
The arguments ... are passed to as.mask to control the pixel resolution.

If weights are given, then the length of the intersection between line segment i and pixel j is
multiplied by weights[i] before the lengths are summed for each pixel.

Value

A pixel image (object of class "im") with numeric values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pixellate, as.mask, as.mask.psp.

Use as.mask.psp if you only want to know which pixels are intersected by lines.

Examples

X <- psp(runif(10),runif(10), runif(10), runif(10), window=owin())
plot(pixellate(X))
plot(X, add=TRUE)
sum(lengths_psp(X))
sum(pixellate(X))
plot(pixellate(X, what="n"))

1096 pixelquad

pixelquad Quadrature Scheme Based on Pixel Grid

Description

Makes a quadrature scheme with a dummy point at every pixel of a pixel image.

Usage

pixelquad(X, W = as.owin(X))

Arguments

X Point pattern (object of class "ppp") containing the data points for the quadrature
scheme.

W Specifies the pixel grid. A pixel image (object of class "im"), a window (object
of class "owin"), or anything that can be converted to a window by as.owin.

Details

This is a method for producing a quadrature scheme for use by ppm. It is an alternative to quadscheme.

The function ppm fits a point process model to an observed point pattern using the Berman-Turner
quadrature approximation (Berman and Turner, 1992; Baddeley and Turner, 2000) to the pseudo-
likelihood of the model. It requires a quadrature scheme consisting of the original data point pattern,
an additional pattern of dummy points, and a vector of quadrature weights for all these points. Such
quadrature schemes are represented by objects of class "quad". See quad.object for a description
of this class.

Given a grid of pixels, this function creates a quadrature scheme in which there is one dummy point
at the centre of each pixel. The counting weights are used (the weight attached to each quadrature
point is 1 divided by the number of quadrature points falling in the same pixel).

The argument X specifies the locations of the data points for the quadrature scheme. Typically this
would be a point pattern dataset.

The argument W specifies the grid of pixels for the dummy points of the quadrature scheme. It
should be a pixel image (object of class "im"), a window (object of class "owin"), or anything that
can be converted to a window by as.owin. If W is a pixel image or a binary mask (a window of type
"mask") then the pixel grid of W will be used. If W is a rectangular or polygonal window, then it will
first be converted to a binary mask using as.mask at the default pixel resolution.

Value

An object of class "quad" describing the quadrature scheme (data points, dummy points, and
quadrature weights) suitable as the argument Q of the function ppm() for fitting a point process
model.

The quadrature scheme can be inspected using the print and plot methods for objects of class
"quad".

plot.anylist 1097

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quadscheme, quad.object, ppm

Examples

W <- owin(c(0,1),c(0,1))
X <- runifpoint(42, W)
W <- as.mask(W,dimyx=128)
pixelquad(X,W)

plot.anylist Plot a List of Things

Description

Plots a list of things

Usage

S3 method for class 'anylist'
plot(x, ..., main, arrange=TRUE,

nrows=NULL, ncols=NULL, main.panel=NULL,
mar.panel=c(2,1,1,2), hsep=0, vsep=0,
panel.begin=NULL, panel.end=NULL, panel.args=NULL,
panel.begin.args=NULL, panel.end.args=NULL, panel.vpad=0.2,
plotcommand="plot",
adorn.left=NULL, adorn.right=NULL, adorn.top=NULL, adorn.bottom=NULL,
adorn.size=0.2, equal.scales=FALSE, halign=FALSE, valign=FALSE)

Arguments

x An object of the class "anylist". Essentially a list of objects.

... Arguments passed to plot when generating each plot panel.

main Overall heading for the plot.

arrange Logical flag indicating whether to plot the objects side-by-side on a single page
(arrange=TRUE) or plot them individually in a succession of frames (arrange=FALSE).

nrows,ncols Optional. The number of rows/columns in the plot layout (assuming arrange=TRUE).
You can specify either or both of these numbers.

main.panel Optional. A character string, or a vector of character strings, giving the headings
for each of the objects.

1098 plot.anylist

mar.panel Size of the margins outside each plot panel. A numeric vector of length 4 giving
the bottom, left, top, and right margins in that order. (Alternatively the vector
may have length 1 or 2 and will be replicated to length 4). See the section on
Spacing between plots.

hsep,vsep Additional horizontal and vertical separation between plot panels, expressed in
the same units as mar.panel.

panel.begin,panel.end

Optional. Functions that will be executed before and after each panel is plotted.
See Details.

panel.args Optional. Function that determines different plot arguments for different panels.
See Details.

panel.begin.args

Optional. List of additional arguments for panel.begin when it is a function.

panel.end.args Optional. List of additional arguments for panel.end when it is a function.

panel.vpad Amount of extra vertical space that should be allowed for the title of each panel,
if a title will be displayed. Expressed as a fraction of the height of the panel. Ap-
plies only when equal.scales=FALSE (the default) and requires that the height
of each panel can be determined.

plotcommand Optional. Character string containing the name of the command that should be
executed to plot each panel.

adorn.left,adorn.right,adorn.top,adorn.bottom

Optional. Functions (with no arguments) that will be executed to generate ad-
ditional plots at the margins (left, right, top and/or bottom, respectively) of the
array of plots.

adorn.size Relative width (as a fraction of the other panels’ widths) of the margin plots.

equal.scales Logical value indicating whether the components should be plotted at (approxi-
mately) the same physical scale.

halign,valign Logical values indicating whether panels in a column should be aligned to the
same x coordinate system (halign=TRUE) and whether panels in a row should be
aligned to the same y coordinate system (valign=TRUE). These are applicable
only if equal.scales=TRUE.

Details

This is the plot method for the class "anylist".

An object of class "anylist" represents a list of objects intended to be treated in the same way.
This is the method for plot.

In the spatstat package, various functions produce an object of class "anylist", essentially a list of
objects of the same kind. These objects can be plotted in a nice arrangement using plot.anylist.
See the Examples.

The argument panel.args determines extra graphics parameters for each panel. It should be a
function that will be called as panel.args(i) where i is the panel number. Its return value should
be a list of graphics parameters that can be passed to the relevant plot method. These parameters
override any parameters specified in the ... arguments.

plot.anylist 1099

The arguments panel.begin and panel.end determine graphics that will be plotted before and af-
ter each panel is plotted. They may be objects of some class that can be plotted with the generic plot
command. Alternatively they may be functions that will be called as panel.begin(i,y,main=main.panel[i])
and panel.end(i,y,add=TRUE) where i is the panel number and y = x[[i]].

If all entries of x are pixel images, the function image.listof is called to control the plotting. The
arguments equal.ribbon and col can be used to determine the colour map or maps applied.

If equal.scales=FALSE (the default), then the plot panels will have equal height on the plot device
(unless there is only one column of panels, in which case they will have equal width on the plot
device). This means that the objects are plotted at different physical scales, by default.

If equal.scales=TRUE, then the dimensions of the plot panels on the plot device will be propor-
tional to the spatial dimensions of the corresponding components of x. This means that the objects
will be plotted at approximately equal physical scales. If these objects have very different spatial
sizes, the plot command could fail (when it tries to plot the smaller objects at a tiny scale), with an
error message that the figure margins are too large.

The objects will be plotted at exactly equal physical scales, and exactly aligned on the device, under
the following conditions:

• every component of x is a spatial object whose position can be shifted by shift;

• panel.begin and panel.end are either NULL or they are spatial objects whose position can
be shifted by shift;

• adorn.left, adorn.right, adorn.top and adorn.bottom are all NULL.

Another special case is when every component of x is an object of class "fv" representing a func-
tion. If equal.scales=TRUE then all these functions will be plotted with the same axis scales (i.e.
with the same xlim and the same ylim).

Value

Null.

Spacing between plots

The spacing between individual plots is controlled by the parameters mar.panel, hsep and vsep.

If equal.scales=FALSE, the plot panels are logically separate plots. The margins for each panel
are determined by the argument mar.panel which becomes the graphics parameter mar described
in the help file for par. One unit of mar corresponds to one line of text in the margin. If hsep or
vsep are present, mar.panel is augmented by c(vsep,hsep,vsep,hsep)/2.

If equal.scales=TRUE, all the plot panels are drawn in the same coordinate system which repre-
sents a physical scale. The unit of measurement for mar.panel[1,3] is one-sixth of the greatest
height of any object plotted in the same row of panels, and the unit for mar.panel[2,4] is one-
sixth of the greatest width of any object plotted in the same column of panels. If hsep or vsep are
present, they are interpreted in the same units as mar.panel[2] and mar.panel[1] respectively.

Error messages

If the error message ‘Figure margins too large’ occurs, this generally means that one of the objects
had a much smaller physical scale than the others. Ensure that equal.scales=FALSE and increase
the values of mar.panel.

1100 plot.bermantest

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

contour.listof, image.listof, density.splitppp

Examples

trichotomy <- list(regular=cells,
random=japanesepines,
clustered=redwood)

K <- lapply(trichotomy, Kest)
K <- as.anylist(K)
plot(K, main="")

list of 3D point patterns
ape1 <- osteo[osteo$shortid==4, "pts", drop=TRUE]
class(ape1)
plot(ape1, main.panel="", mar.panel=0.1, hsep=0.7, vsep=1,

cex=1.5, pch=21, bg='white')

plot.bermantest Plot Result of Berman Test

Description

Plot the result of Berman’s test of goodness-of-fit

Usage

S3 method for class 'bermantest'
plot(x, ...,

lwd=par("lwd"), col=par("col"), lty=par("lty"),
lwd0=lwd, col0=2, lty0=2)

Arguments

x Object to be plotted. An object of class "bermantest" produced by berman.test.

... extra arguments that will be passed to the plotting function plot.ecdf.

col,lwd,lty The width, colour and type of lines used to plot the empirical distribution curve.

col0,lwd0,lty0 The width, colour and type of lines used to plot the predicted (null) distribution
curve.

plot.bermantest 1101

Details

This is the plot method for the class "bermantest". An object of this class represents the out-
come of Berman’s test of goodness-of-fit of a spatial Poisson point process model, computed by
berman.test.

For the Z1 test (i.e. if x was computed using berman.test(,which="Z1")), the plot displays
the two cumulative distribution functions that are compared by the test: namely the empirical cu-
mulative distribution function of the covariate at the data points, F̂ , and the predicted cumulative
distribution function of the covariate under the model, F0, both plotted against the value of the co-
variate. Two vertical lines show the mean values of these two distributions. If the model is correct,
the two curves should be close; the test is based on comparing the two vertical lines.

For the Z2 test (i.e. if x was computed using berman.test(,which="Z2")), the plot displays the
empirical cumulative distribution function of the values Ui = F0(Yi) where Yi is the value of the
covariate at the i-th data point. The diagonal line with equation y = x is also shown. Two vertical
lines show the mean of the values Ui and the value 1/2. If the model is correct, the two curves
should be close. The test is based on comparing the two vertical lines.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

berman.test

Examples

synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(-x) }, win=square(1))

fit uniform Poisson process
fit0 <- ppm(X, ~1)

test covariate = x coordinate
xcoord <- function(x,y) { x }

test wrong model
k <- berman.test(fit0, xcoord, "Z1")

plot result of test
plot(k, col="red", col0="green")

Z2 test
k2 <- berman.test(fit0, xcoord, "Z2")

1102 plot.cdftest

plot(k2, col="red", col0="green")

plot.cdftest Plot a Spatial Distribution Test

Description

Plot the result of a spatial distribution test computed by cdf.test.

Usage

S3 method for class 'cdftest'
plot(x, ...,

style=c("cdf", "PP", "QQ"),
lwd=par("lwd"), col=par("col"), lty=par("lty"),
lwd0=lwd, col0=2, lty0=2,
do.legend)

Arguments

x Object to be plotted. An object of class "cdftest" produced by a method for
cdf.test.

... extra arguments that will be passed to the plotting function plot.default.

style Style of plot. See Details.

col,lwd,lty The width, colour and type of lines used to plot the empirical curve (the empiri-
cal distribution, or PP plot or QQ plot).

col0,lwd0,lty0 The width, colour and type of lines used to plot the reference curve (the predicted
distribution, or the diagonal).

do.legend Logical value indicating whether to add an explanatory legend. Applies only
when style="cdf".

Details

This is the plot method for the class "cdftest". An object of this class represents the outcome of
a spatial distribution test, computed by cdf.test, and based on either the Kolmogorov-Smirnov,
Cramér-von Mises or Anderson-Darling test.

If style="cdf" (the default), the plot displays the two cumulative distribution functions that are
compared by the test: namely the empirical cumulative distribution function of the covariate at
the data points, and the predicted cumulative distribution function of the covariate under the model,
both plotted against the value of the covariate. The Kolmogorov-Smirnov test statistic (for example)
is the maximum vertical separation between the two curves.

If style="PP" then the P-P plot is drawn. The x coordinates of the plot are cumulative probabilities
for the covariate under the model. The y coordinates are cumulative probabilities for the covariate
at the data points. The diagonal line y = x is also drawn for reference. The Kolmogorov-Smirnov

plot.cdftest 1103

test statistic is the maximum vertical separation between the P-P plot and the diagonal reference
line.

If style="QQ" then the Q-Q plot is drawn. The x coordinates of the plot are quantiles of the
covariate under the model. The y coordinates are quantiles of the covariate at the data points. The
diagonal line y = x is also drawn for reference. The Kolmogorov-Smirnov test statistic cannot be
read off the Q-Q plot.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

cdf.test

Examples

op <- options(useFancyQuotes=FALSE)

synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(x) }, win=square(1))

fit uniform Poisson process
fit0 <- ppm(X, ~1)

test covariate = x coordinate
xcoord <- function(x,y) { x }

test wrong model
k <- cdf.test(fit0, xcoord)

plot result of test
plot(k, lwd0=3)

plot(k, style="PP")

plot(k, style="QQ")

options(op)

1104 plot.colourmap

plot.colourmap Plot a Colour Map

Description

Displays a colour map as a colour ribbon

Usage

S3 method for class 'colourmap'
plot(x, ...,

main, xlim = NULL, ylim = NULL, vertical = FALSE, axis = TRUE,
labelmap=NULL, gap=0.25, add=FALSE, increasing=NULL)

Arguments

x Colour map to be plotted. An object of class "colourmap".

... Graphical arguments passed to image.default or axis.

main Main title for plot. A character string.

xlim Optional range of x values for the location of the colour ribbon.

ylim Optional range of y values for the location of the colour ribbon.

vertical Logical flag determining whether the colour ribbon is plotted as a horizontal
strip (FALSE) or a vertical strip (TRUE).

axis Logical flag determining whether an axis should be plotted showing the numer-
ical values that are mapped to the colours.

labelmap Function. If this is present, then the labels on the plot, which indicate the input
values corresponding to particular colours, will be transformed by labelmap
before being displayed on the plot. Typically used to simplify or shorten the
labels on the plot.

gap Distance between separate blocks of colour, as a fraction of the width of one
block, if the colourmap is discrete.

add Logical value indicating whether to add the colourmap to the existing plot (add=TRUE),
or to start a new plot (add=FALSE, the default).

increasing Logical value indicating whether to display the colour map in increasing order.
See Details.

Details

This is the plot method for the class "colourmap". An object of this class (created by the function
colourmap) represents a colour map or colour lookup table associating colours with each data value.

The command plot.colourmap displays the colour map as a colour ribbon or as a colour legend (a
sequence of blocks of colour). This plot can be useful on its own to inspect the colour map.

If the domain of the colourmap is an interval of real numbers, the colourmap is displayed as a
continuous ribbon of colour. If the domain of the colourmap is a finite set of inputs, the colours

plot.dppm 1105

are displayed as separate blocks of colour. The separation between blocks is equal to gap times the
width of one block.

To annotate an existing plot with an explanatory colour ribbon or colour legend, specify add=TRUE
and use the arguments xlim and/or ylim to control the physical position of the ribbon on the plot.

Labels explaining the colour map are drawn by axis and can be modified by specifying arguments
that will be passed to this function.

The argument increasing indicates whether the colourmap should be displayed so that the in-
put values are increasing with the spatial coordinate: that is, increasing from left to right (if
vertical=FALSE) or increasing from bottom to top (if vertical=TRUE). If increasing=FALSE,
this ordering will be reversed. The default is increasing=TRUE in all cases except when vertical=TRUE
and the domain of the colourmap is a finite set of discrete inputs.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

colourmap

Examples

co <- colourmap(rainbow(100), breaks=seq(-1,1,length=101))
plot(co)
plot(co, col.ticks="pink")
ca <- colourmap(rainbow(8), inputs=letters[1:8])
plot(ca, vertical=TRUE)

plot.dppm Plot a fitted determinantal point process

Description

Plots a fitted determinantal point process model, displaying the fitted intensity and the fitted sum-
mary function.

Usage

S3 method for class 'dppm'
plot(x, ..., what=c("intensity", "statistic"))

1106 plot.dppm

Arguments

x Fitted determinantal point process model. An object of class "dppm".

... Arguments passed to plot.ppm and plot.fv to control the plot.

what Character vector determining what will be plotted.

Details

This is a method for the generic function plot for the class "dppm" of fitted determinantal point
process models.

The argument x should be a determinantal point process model (object of class "dppm") obtained
using the function dppm.

The choice of plots (and the order in which they are displayed) is controlled by the argument what.
The options (partially matched) are "intensity" and "statistic".

This command is capable of producing two different plots:

what="intensity" specifies the fitted intensity of the model, which is plotted using plot.ppm. By
default this plot is not produced for stationary models.

what="statistic" specifies the empirical and fitted summary statistics, which are plotted using
plot.fv. This is only meaningful if the model has been fitted using the Method of Minimum
Contrast, and it is turned off otherwise.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

dppm, plot.ppm,

Examples

fit <- dppm(swedishpines ~ x + y, dppGauss())
plot(fit)

plot.envelope 1107

plot.envelope Plot a Simulation Envelope

Description

Plot method for the class "envelope".

Usage

S3 method for class 'envelope'
plot(x, ..., main)

Arguments

x An object of class "envelope", containing the variables to be plotted or vari-
ables from which the plotting coordinates can be computed.

main Main title for plot.

... Extra arguments passed to plot.fv.

Details

This is the plot method for the class "envelope" of simulation envelopes. Objects of this class are
created by the command envelope.

This plot method is currently identical to plot.fv.

Its default behaviour is to shade the region between the upper and lower envelopes in a light grey
colour. To suppress the shading and plot the upper and lower envelopes as curves, set shade=NULL.
To change the colour of the shading, use the argument shadecol which is passed to plot.fv.

See plot.fv for further information on how to control the plot.

Value

Either NULL, or a data frame giving the meaning of the different line types and colours.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

envelope, plot.fv

1108 plot.fasp

Examples

data(cells)
E <- envelope(cells, Kest, nsim=19)
plot(E)
plot(E, sqrt(./pi) ~ r)

plot.fasp Plot a Function Array

Description

Plots an array of summary functions, usually associated with a point pattern, stored in an object of
class "fasp". A method for plot.

Usage

S3 method for class 'fasp'
plot(x,formule=NULL, ...,

subset=NULL, title=NULL, banner=TRUE,
transpose=FALSE,
samex=FALSE, samey=FALSE,
mar.panel=NULL,
outerlabels=TRUE, cex.outerlabels=1.25,
legend=FALSE)

Arguments

x An object of class "fasp" representing a function array.

formule A formula or list of formulae indicating what variables are to be plotted against
what variable. Each formula is either an R language formula object, or a string
that can be parsed as a formula. If formule is a list, its kth component should
be applicable to the (i, j)th plot where x$which[i,j]=k. If the formula is left
as NULL, then plot.fasp attempts to use the component default.formula of
x. If that component is NULL as well, it gives up.

... Arguments passed to plot.fv to control the individual plot panels.

subset A logical vector, or a vector of indices, or an expression or a character string,
or a list of such, indicating a subset of the data to be included in each plot. If
subset is a list, its kth component should be applicable to the (i, j)th plot where
x$which[i,j]=k.

title Overall title for the plot.

banner Logical. If TRUE, the overall title is plotted. If FALSE, the overall title is not
plotted and no space is allocated for it.

transpose Logical. If TRUE, rows and columns will be exchanged.

plot.fasp 1109

samex,samey Logical values indicating whether all individual plot panels should have the
same x axis limits and the same y axis limits, respectively. This makes it easier
to compare the plots.

mar.panel Vector of length 4 giving the value of the graphics parameter mar controlling the
size of plot margins for each individual plot panel. See par.

outerlabels Logical. If TRUE, the row and column names of the array of functions are plotted
in the margins of the array of plot panels. If FALSE, each individual plot panel is
labelled by its row and column name.

cex.outerlabels

Character expansion factor for row and column labels of array.

legend Logical flag determining whether to plot a legend in each panel.

Details

An object of class "fasp" represents an array of summary functions, usually associated with a point
pattern. See fasp.object for details. Such an object is created, for example, by alltypes.

The function plot.fasp is a method for plot. It calls plot.fv to plot the individual panels.

For information about the interpretation of the arguments formule and subset, see plot.fv.

Arguments that are often passed through ... include col to control the colours of the different lines
in a panel, and lty and lwd to control the line type and line width of the different lines in a panel.
The argument shade can also be used to display confidence intervals or significance bands as filled
grey shading. See plot.fv.

The argument title, if present, will determine the overall title of the plot. If it is absent, it defaults
to x$title. Titles for the individual plot panels will be taken from x$titles.

Value

None.

Warnings

(Each component of) the subset argument may be a logical vector (of the same length as the
vectors of data which are extracted from x), or a vector of indices, or an expression such as
expression(r<=0.2), or a text string, such as "r<=0.2".

Attempting a syntax such as subset = r<=0.2 (without wrapping r<=0.2 either in quote marks or
in expression()) will cause this function to fall over.

Variables referred to in any formula must exist in the data frames stored in x. What the names of
these variables are will of course depend upon the nature of x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

alltypes, plot.fv, fasp.object

1110 plot.fv

Examples

Not run:
Bramble Canes data.
data(bramblecanes)

X.G <- alltypes(bramblecanes,"G",dataname="Bramblecanes",verb=TRUE)
plot(X.G)
plot(X.G,subset="r<=0.2")
plot(X.G,formule=asin(sqrt(cbind(km,theo))) ~ asin(sqrt(theo)))
plot(X.G,fo=cbind(km,theo) - theo~r,subset="r<=0.2")

Simulated data.
pp <- runifpoint(350, owin(c(0,1),c(0,1)))
pp <- pp %mark% factor(c(rep(1,50),rep(2,100),rep(3,200)))
X.K <- alltypes(pp,"K",verb=TRUE,dataname="Fake Data")
plot(X.K,fo=cbind(border,theo)~theo,subset="theo<=0.75")

End(Not run)

plot.fv Plot Function Values

Description

Plot method for the class "fv".

Usage

S3 method for class 'fv'
plot(x, fmla, ..., subset=NULL, lty=NULL, col=NULL, lwd=NULL,

xlim=NULL, ylim=NULL, xlab=NULL, ylab=NULL, ylim.covers=NULL,
legend=!add, legendpos="topleft", legendavoid=missing(legendpos),
legendmath=TRUE, legendargs=list(),
shade=fvnames(x, ".s"), shadecol="grey",
add=FALSE, log="",
mathfont=c("italic", "plain", "bold", "bolditalic"),
limitsonly=FALSE)

Arguments

x An object of class "fv", containing the variables to be plotted or variables from
which the plotting coordinates can be computed.

fmla an R language formula determining which variables or expressions are plotted.
Either a formula object, or a string that can be parsed as a formula. See Details.

subset (optional) subset of rows of the data frame that will be plotted.

lty (optional) numeric vector of values of the graphical parameter lty controlling
the line style of each plot.

plot.fv 1111

col (optional) numeric vector of values of the graphical parameter col controlling
the colour of each plot.

lwd (optional) numeric vector of values of the graphical parameter lwd controlling
the line width of each plot.

xlim (optional) range of x axis

ylim (optional) range of y axis

xlab (optional) label for x axis

ylab (optional) label for y axis

... Extra arguments passed to plot.default.

ylim.covers Optional vector of y values that must be included in the y axis. For example
ylim.covers=0 will ensure that the y axis includes the origin.

legend Logical flag or NULL. If legend=TRUE, the algorithm plots a legend in the top left
corner of the plot, explaining the meaning of the different line types and colours.

legendpos The position of the legend. Either a character string keyword (see legend for
keyword options) or a pair of coordinates in the format list(x,y). Alterna-
tively if legendpos="float", a location will be selected inside the plot region,
avoiding the graphics.

legendavoid Whether to avoid collisions between the legend and the graphics. Logical value.
If TRUE, the code will check for collisions between the legend box and the graph-
ics, and will override legendpos if a collision occurs. If FALSE, the value of
legendpos is always respected.

legendmath Logical. If TRUE, the legend will display the mathematical notation for each
curve. If FALSE, the legend text is the identifier (column name) for each curve.

legendargs Named list containing additional arguments to be passed to legend controlling
the appearance of the legend.

shade A character vector giving the names of two columns of x, or another type of
index that identifies two columns. When the corresponding curves are plotted,
the region between the curves will be shaded in light grey. The object x may or
may not contain two columns which are designated as boundaries for shading;
they are identified by fvnames(x,".s"). The default is to shade between these
two curves if they exist. To suppress this behaviour, set shade=NULL.

shadecol The colour to be used in the shade plot. A character string or an integer speci-
fying a colour.

add Logical. Whether the plot should be added to an existing plot

log A character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

mathfont Character string. The font to be used for mathematical expressions in the axis
labels and the legend.

limitsonly Logical. If FALSE, plotting is performed normally. If TRUE, no plotting is per-
formed at all; just the x and y limits of the plot are computed and returned.

1112 plot.fv

Details

This is the plot method for the class "fv".

The use of the argument fmla is like plot.formula, but offers some extra functionality.

The left and right hand sides of fmla are evaluated, and the results are plotted against each other
(the left side on the y axis against the right side on the x axis).

The left and right hand sides of fmla may be the names of columns of the data frame x, or expres-
sions involving these names. If a variable in fmla is not the name of a column of x, the algorithm
will search for an object of this name in the environment where plot.fv was called, and then in the
enclosing environment, and so on.

Multiple curves may be specified by a single formula of the form cbind(y1,y2,...,yn) ~ x, where
x,y1,y2,...,yn are expressions involving the variables in the data frame. Each of the variables
y1,y2,...,yn in turn will be plotted against x. See the examples.

Convenient abbreviations which can be used in the formula are

• the symbol . which represents all the columns in the data frame that will be plotted by default;

• the symbol .x which represents the function argument;

• the symbol .y which represents the recommended value of the function.

For further information, see fvnames.

The value returned by this plot function indicates the meaning of the line types and colours in the
plot. It can be used to make a suitable legend for the plot if you want to do this by hand. See the
examples.

The argument shade can be used to display critical bands or confidence intervals. If it is not NULL,
then it should be a subset index for the columns of x, that identifies exactly 2 columns. When the
corresponding curves are plotted, the region between the curves will be shaded in light grey. See
the Examples.

The default values of lty, col and lwd can be changed using spatstat.options("plot.fv").

Use type = "n" to create the plot region and draw the axes without plotting any data.

Use limitsonly=TRUE to suppress all plotting and just compute the x and y limits. This can be
used to calculate common x and y scales for several plots.

To change the kind of parenthesis enclosing the explanatory text about the unit of length, use
spatstat.options('units.paren')

Value

Invisible: either NULL, or a data frame giving the meaning of the different line types and colours.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, Kest

plot.hyperframe 1113

Examples

K <- Kest(cells)
K is an object of class "fv"

plot(K, iso ~ r) # plots iso against r

plot(K, sqrt(iso/pi) ~ r) # plots sqrt(iso/r) against r

plot(K, cbind(iso,theo) ~ r) # plots iso against r AND theo against r

plot(K, . ~ r) # plots all available estimates of K against r

plot(K, sqrt(./pi) ~ r) # plots all estimates of L-function
L(r) = sqrt(K(r)/pi)

plot(K, cbind(iso,theo) ~ r, col=c(2,3))
plots iso against r in colour 2
and theo against r in colour 3

plot(K, iso ~ r, subset=quote(r < 0.2))
plots iso against r for r < 10

Can't remember the names of the columns? No problem..
plot(K, sqrt(./pi) ~ .x)

making a legend by hand
v <- plot(K, . ~ r, legend=FALSE)
legend("topleft", legend=v$meaning, lty=v$lty, col=v$col)

significance bands
KE <- envelope(cells, Kest, nsim=19)
plot(KE, shade=c("hi", "lo"))

how to display two functions on a common scale
Kr <- Kest(redwood)
a <- plot(K, limitsonly=TRUE)
b <- plot(Kr, limitsonly=TRUE)
xlim <- range(a$xlim, b$xlim)
ylim <- range(a$ylim, b$ylim)
opa <- par(mfrow=c(1,2))
plot(K, xlim=xlim, ylim=ylim)
plot(Kr, xlim=xlim, ylim=ylim)
par(opa)

plot.hyperframe Plot Entries in a Hyperframe

Description

Plots the entries in a hyperframe, in a series of panels, one panel for each row of the hyperframe.

1114 plot.hyperframe

Usage

S3 method for class 'hyperframe'
plot(x, e, ..., main, arrange=TRUE,

nrows=NULL, ncols=NULL,
parargs=list(mar=mar * marsize),
marsize=1, mar=c(1,1,3,1))

Arguments

x Data to be plotted. A hyperframe (object of class "hyperframe", see hyperframe).

e How to plot each row. Optional. An R language call or expression (typically
enclosed in quote() that will be evaluated in each row of the hyperframe to
generate the plots.

... Extra arguments controlling the plot (when e is missing).

main Overall title for the array of plots.

arrange Logical flag indicating whether to plot the objects side-by-side on a single page
(arrange=TRUE) or plot them individually in a succession of frames (arrange=FALSE).

nrows,ncols Optional. The number of rows/columns in the plot layout (assuming arrange=TRUE).
You can specify either or both of these numbers.

parargs Optional list of arguments passed to par before plotting each panel. Can be used
to control margin sizes, etc.

marsize Optional scale parameter controlling the sizes of margins around the panels.
Incompatible with parargs.

mar Optional numeric vector of length 1, 2 or 4 controlling the relative sizes of mar-
gins between the panels. Incompatible with parargs.

Details

This is the plot method for the class "hyperframe".

The argument x must be a hyperframe (like a data frame, except that the entries can be objects of
any class; see hyperframe).

This function generates a series of plots, one plot for each row of the hyperframe. If arrange=TRUE
(the default), then these plots are arranged in a neat array of panels within a single plot frame. If
arrange=FALSE, the plots are simply executed one after another.

Exactly what is plotted, and how it is plotted, depends on the argument e. The default (if e is
missing) is to plot only the first column of x. Each entry in the first column is plotted using the
generic plot command, together with any extra arguments given in

If e is present, it should be an R language expression involving the column names of x. (It is
typically created using quote or expression.) The expression will be evaluated once for each row
of x. It will be evaluated in an environment where each column name of x is interpreted as meaning
the object in that column in the current row. See the Examples.

Value

NULL.

plot.im 1115

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

hyperframe, with.hyperframe

Examples

H <- hyperframe(id=1:10)
H$X <- with(H, rpoispp(100))
H$D <- with(H, distmap(X))
points only
plot(H[,"X"])
plot(H, quote(plot(X, main=id)))
points superimposed on images
plot(H, quote({plot(D, main=id); plot(X, add=TRUE)}))

plot.im Plot a Pixel Image

Description

Plot a pixel image.

Usage

S3 method for class 'im'
plot(x, ...,

main,
add=FALSE, clipwin=NULL,
col=NULL, valuesAreColours=NULL, log=FALSE,
ncolours=256, gamma=1,
ribbon=show.all, show.all=!add,
ribside=c("right", "left", "bottom", "top"),
ribsep=0.15, ribwid=0.05, ribn=1024,
ribscale=1, ribargs=list(), riblab=NULL, colargs=list(),
useRaster=NULL, workaround=FALSE, zap=1,
do.plot=TRUE)

S3 method for class 'im'
image(x, ...,

main,
add=FALSE, clipwin=NULL,
col=NULL, valuesAreColours=NULL, log=FALSE,
ncolours=256, gamma=1,

1116 plot.im

ribbon=show.all, show.all=!add,
ribside=c("right", "left", "bottom", "top"),
ribsep=0.15, ribwid=0.05, ribn=1024,
ribscale=1, ribargs=list(), riblab=NULL, colargs=list(),
useRaster=NULL, workaround=FALSE, zap=1,
do.plot=TRUE)

Arguments

x The pixel image to be plotted. An object of class "im" (see im.object).

... Extra arguments passed to image.default to control the plot. See Details.

main Main title for the plot.

add Logical value indicating whether to superimpose the image on the existing plot
(add=TRUE) or to initialise a new plot (add=FALSE, the default).

clipwin Optional. A window (object of class "owin"). Only this subset of the image will
be displayed.

col Colours for displaying the pixel values. Either a character vector of colour val-
ues, an object of class colourmap, or a function as described under Details.

valuesAreColours

Logical value. If TRUE, the pixel values of x are to be interpreted as colour
values.

log Logical value. If TRUE, the colour map will be evenly-spaced on a logarithmic
scale.

ncolours Integer. The default number of colours in the colour map for a real-valued image.

gamma Exponent for the gamma correction of the colours. A single positive number.

ribbon Logical flag indicating whether to display a ribbon showing the colour map.
Default is TRUE for new plots and FALSE for added plots.

show.all Logical value indicating whether to display all plot elements including the main
title and colour ribbon. Default is TRUE for new plots and FALSE for added plots.

ribside Character string indicating where to display the ribbon relative to the main im-
age.

ribsep Factor controlling the space between the ribbon and the image.

ribwid Factor controlling the width of the ribbon.

ribn Number of different values to display in the ribbon.

ribscale Rescaling factor for tick marks. The values on the numerical scale printed beside
the ribbon will be multiplied by this rescaling factor.

ribargs List of additional arguments passed to image.default, axis and axisTicks to
control the display of the ribbon and its scale axis. These may override the ...
arguments.

riblab Text to be plotted in the margin near the ribbon. A character string or expression
to be interpreted as text, or a list of arguments to be passed to mtext.

colargs List of additional arguments passed to col if it is a function.

plot.im 1117

useRaster Logical value, passed to image.default. Images are plotted using a bitmap
raster if useRaster=TRUE or by drawing polygons if useRaster=FALSE. Bitmap
raster display tends to produce better results, but is not supported on all graphics
devices. The default is to use bitmap raster display if it is supported.

workaround Logical value, specifying whether to use a workaround to avoid a bug which
occurs with some device drivers in R, in which the image has the wrong spatial
orientation. See the section on Image is Displayed in Wrong Spatial Orienta-
tion below.

zap Noise threshold factor. A numerical value greater than or equal to 1. If the
range of pixel values is less than zap * .Machine$double.eps, the image will
be treated as constant. This avoids displaying images which should be constant
but contain small numerical errors.

do.plot Logical value indicating whether to actually plot the image and colour ribbon.
Setting do.plot=FALSE will simply return the colour map and the bounding box
that were chosen for the plot.

Details

This is the plot method for the class "im". [It is also the image method for "im".]

The pixel image x is displayed on the current plot device, using equal scales on the x and y axes.

If ribbon=TRUE, a legend will be plotted. The legend consists of a colour ribbon and an axis with
tick-marks, showing the correspondence between the pixel values and the colour map.

Arguments ribside,ribsep,ribwid control the placement of the colour ribbon. By default, the
ribbon is placed at the right of the main image. This can be changed using the argument ribside.
The width of the ribbon is ribwid times the size of the pixel image, where ‘size’ means the larger
of the width and the height. The distance separating the ribbon and the image is ribsep times the
size of the pixel image.

The ribbon contains the colours representing ribn different numerical values, evenly spaced be-
tween the minimum and maximum pixel values in the image x, rendered according to the chosen
colour map.

The argument ribargs controls the annotation of the colour ribbon. It is a list of arguments to be
passed to image.default, axis and axisTicks. To plot the colour ribbon without the axis and
tick-marks, use ribargs=list(axes=FALSE). To ensure that the numerals or symbols printed next
to the colour map are oriented horizontally, use ribargs=list(las=1). To double the size of the
numerals or symbols, use ribargs=list(cex.axis=2). To control the number of tick-marks, use
ribargs=list(nint=N) where N is the desired number of intervals (so there will be N+1 tickmarks,
subject to the vagaries of R internal code).

The argument riblab contains text that will be displayed in the margin next to the ribbon.

The argument ribscale is used to rescale the numerical values printed next to the colour map,
for convenience. For example if the pixel values in x range between 1000 and 4000, it would be
sensible to use ribscale=1/1000 so that the colour map tickmarks would be labelled 1 to 4.

Normally the pixel values are displayed using the colours given in the argument col. This may be
either

• an explicit colour map (an object of class "colourmap", created by the command colourmap).
This is the best way to ensure that when we plot different images, the colour maps are consis-
tent.

1118 plot.im

• a character vector or integer vector that specifies a set of colours. The colour mapping will be
stretched to match the range of pixel values in the image x. The mapping of pixel values to
colours is determined as follows.
logical-valued images: the values FALSE and TRUE are mapped to the colours col[1] and

col[2] respectively. The vector col should have length 2.
factor-valued images: the factor levels levels(x) are mapped to the entries of col in order.

The vector col should have the same length as levels(x).
numeric-valued images: By default, the range of pixel values in x is divided into n = length(col)

equal subintervals, which are mapped to the colours in col. (If col was not specified, it
defaults to a vector of 255 colours.)
Alternatively if the argument zlim is given, it should be a vector of length 2 specifying
an interval of real numbers. This interval will be used instead of the range of pixel values.
The interval from zlim[1] to zlim[2] will be mapped to the colours in col. This facility
enables the user to plot several images using a consistent colour map.
Alternatively if the argument breaks is given, then this specifies the endpoints of the
subintervals that are mapped to each colour. This is incompatible with zlim.
The arguments col and zlim or breaks are then passed to the function image.default.
For examples of the use of these arguments, see image.default.

• a function in the R language with an argument named range or inputs.
If col is a function with an argument named range, and if the pixel values of x are numeric val-
ues, then the colour values will be determined by evaluating col(range=range(x)). The re-
sult of this evaluation should be a character vector containing colour values, or a "colourmap"
object. Examples of such functions are beachcolours and beachcolourmap.
If col is a function with an argument named inputs, and if the pixel values of x are discrete
values (integer, logical, factor or character), then the colour values will be determined by
evaluating col(inputs=p) where p is the set of possible pixel values. The result should be a
character vector containing colour values, or a "colourmap" object.

• a function in the R language with first argument named n. The colour values will be deter-
mined by evaluating col(n) where n is the number of distinct pixel values, up to a maximum
of 128. The result of this evaluation should be a character vector containing color values. Ex-
amples of such functions are heat.colors, terrain.colors, topo.colors and cm.colors.

If spatstat.options("monochrome") has been set to TRUE then all colours will be converted to
grey scale values.

Other graphical parameters controlling the display of both the pixel image and the ribbon can be
passed through the ... arguments to the function image.default. A parameter is handled only if
it is one of the following:

• a formal argument of image.default that is operative when add=TRUE.
• one of the parameters "main","asp","sub","axes","xlab","ylab" described in plot.default.
• one of the parameters "ann","cex","font","cex.axis","cex.lab","cex.main","cex.sub","col.axis","col.lab","col.main","col.sub","font.axis","font.lab","font.main","font.sub"

described in par.
• the argument box, a logical value specifying whether a box should be drawn.

Images are plotted using a bitmap raster if useRaster=TRUE or by drawing polygons if useRaster=FALSE.
Bitmap raster display (performed by rasterImage) tends to produce better results, but is not sup-
ported on all graphics devices. The default is to use bitmap raster display if it is supported according
to dev.capabilities.

plot.im 1119

Alternatively, the pixel values could be directly interpretable as colour values in R. That is, the
pixel values could be character strings that represent colours, or values of a factor whose levels are
character strings representing colours.

• If valuesAreColours=TRUE, then the pixel values will be interpreted as colour values and
displayed using these colours.

• If valuesAreColours=FALSE, then the pixel values will not be interpreted as colour values,
even if they could be.

• If valuesAreColours=NULL, the algorithm will guess what it should do. If the argument col
is given, the pixel values will not be interpreted as colour values. Otherwise, if all the pixel
values are strings that represent colours, then they will be interpreted and displayed as colours.

If pixel values are interpreted as colours, the arguments col and ribbon will be ignored, and a
ribbon will not be plotted.

Value

The colour map used. An object of class "colourmap".

Also has an attribute "bbox" giving a bounding box for the plot (containing the main colour image
and the colour ribbon if plotted). If a ribbon was plotted, there is also an attribute "bbox.legend"
giving a bounding box for the ribbon image. Text annotation occurs outside these bounding boxes.

Complex-valued images

If the pixel values in x are complex numbers, they will be converted into four images contain-
ing the real and imaginary parts and the modulus and argument, and plotted side-by-side using
plot.imlist.

Monochrome colours

If spatstat.options("monochrome") has been set to TRUE, then the image will be plotted in
greyscale. The colours are converted to grey scale values using to.grey. The choice of colour map
still has an effect, since it determines the final grey scale values.

Monochrome display can also be achieved by setting the graphics device parameter colormodel="grey"
when starting a new graphics device, or in a call to ps.options or pdf.options.

Image Looks Like Noise

An image plot which looks like digital noise can be produced when the pixel values are almost
exactly equal but include a tiny amount of numerical error. To check this, look at the numerals
plotted next to the colour ribbon, or compute diff(range(x)), to determine whether the range
of pixel values is almost zero. The behaviour can be suppressed by picking a larger value of the
argument zap.

Image Rendering Errors and Problems

The help for image.default and rasterImage explains that errors may occur, or images may be
rendered incorrectly, on some devices, depending on the availability of colours and other device-
specific constraints.

1120 plot.im

If the image is not displayed at all, try setting useRaster=FALSE in the call to plot.im. If the
ribbon colours are not displayed, set ribargs=list(useRaster=FALSE).

Errors may occur on some graphics devices if the image is very large. If this happens, try setting
useRaster=FALSE in the call to plot.im.

The error message useRaster=TRUE can only be used with a regular grid means that the x and
y coordinates of the pixels in the image are not perfectly equally spaced, due to numerical rounding.
This occurs with some images created by earlier versions of spatstat. To repair the coordinates in
an image X, type X <-as.im(X).

Image is Displayed in Wrong Spatial Orientation

If the image is displayed in the wrong spatial orientation, and you created the image data directly,
please check that you understand the spatstat convention for the spatial orientation of pixel images.
The row index of the matrix of pixel values corresponds to the increasing y coordinate; the column
index of the matrix corresponds to the increasing x coordinate (Baddeley, Rubak and Turner, 2015,
section 3.6.3, pages 66–67).

Images can be displayed in the wrong spatial orientation on some devices, due to a bug in the device
driver. This occurs only when the plot coordinates are reversed, that is, when the plot was initialised
with coordinate limits xlim,ylim such that xlim[1] > xlim[2] or ylim[1] > ylim[2] or both.
This bug is reported to occur only when useRaster=TRUE. To fix this, try setting workaround=TRUE,
or if that is unsuccessful, useRaster=FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

im.object, colourmap, contour.im, persp.im, hist.im, image.default, spatstat.options

Examples

an image
Z <- setcov(owin())
plot(Z)
plot(Z, ribside="bottom")
stretchable colour map
plot(Z, col=rainbow)
plot(Z, col=terrain.colors(128), axes=FALSE)
fixed colour map
tc <- colourmap(rainbow(128), breaks=seq(-1,2,length=129))
plot(Z, col=tc)
colour map function, with argument 'range'
plot(Z, col=beachcolours, colargs=list(sealevel=0.5))

plot.imlist 1121

tweaking the plot
plot(Z, main="La vie en bleu", col.main="blue", cex.main=1.5,

box=FALSE,
ribargs=list(col.axis="blue", col.ticks="blue", cex.axis=0.75))

add axes and axis labels
plot(Z, axes=TRUE, ann=TRUE, xlab="Easting", ylab="Northing")
log scale
V <- eval.im(exp(exp(Z+2))/1e4)
plot(V, log=TRUE, main="Log scale")
it's complex
Y <- exp(Z + V * 1i)
plot(Y)

plot.imlist Plot a List of Images

Description

Plots an array of pixel images.

Usage

S3 method for class 'imlist'
plot(x, ..., plotcommand="image",

equal.ribbon=FALSE, ribmar=NULL)

S3 method for class 'imlist'
image(x, ..., equal.ribbon=FALSE, ribmar=NULL)

S3 method for class 'listof'
image(x, ..., equal.ribbon=FALSE, ribmar=NULL)

Arguments

x An object of the class "imlist" representing a list of pixel images. Alternatively
x may belong to the outdated class "listof".

... Arguments passed to plot.solist to control the spatial arrangement of panels,
and arguments passed to plot.im to control the display of each panel.

equal.ribbon Logical. If TRUE, the colour maps of all the images will be the same. If FALSE,
the colour map of each image is adjusted to the range of values of that image.

ribmar Numeric vector of length 4 specifying the margins around the colour ribbon, if
equal.ribbon=TRUE. Entries in the vector give the margin at the bottom, left,
top, and right respectively, as a multiple of the height of a line of text.

plotcommand Character string giving the name of a function to be used to display each image.
Recognised by plot.imlist only.

1122 plot.influence.ppm

Details

These are methods for the generic plot commands plot and image for the class "imlist". They
are currently identical.

An object of class "imlist" represents a list of pixel images. (The outdated class "listof" is also
handled.)

Each entry in the list x will be displayed as a pixel image, in an array of panels laid out on the same
graphics display, using plot.solist. Individual panels are plotted by plot.im.

If equal.ribbon=FALSE (the default), the images are rendered using different colour maps, which
are displayed as colour ribbons beside each image. If equal.ribbon=TRUE, the images are rendered
using the same colour map, and a single colour ribbon will be displayed at the right side of the array.
The colour maps and the placement of the colour ribbons are controlled by arguments ... passed
to plot.im.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

plot.solist, plot.im

Examples

D <- density(split(amacrine))
image(D, equal.ribbon=TRUE, main="", col.ticks="red", col.axis="red")

plot.influence.ppm Plot Influence Measure

Description

Plots an influence measure that has been computed by influence.ppm.

Usage

S3 method for class 'influence.ppm'
plot(x, ..., multiplot=TRUE)

plot.influence.ppm 1123

Arguments

x Influence measure (object of class "influence.ppm") computed by influence.ppm.

... Arguments passed to plot.ppp to control the plotting.

multiplot Logical value indicating whether it is permissible to plot more than one panel.
This happens if the original point process model is multitype.

Details

This is the plot method for objects of class "influence.ppm". These objects are computed by the
command influence.ppm.

For a point process model fitted by maximum likelihood or maximum pseudolikelihood (the de-
fault), influence values are associated with the data points. The display shows circles centred at the
data points with radii proportional to the influence values. If the original data were a multitype point
pattern, then if multiplot=TRUE (the default), there is one such display for each possible type of
point, while if multiplot=FALSE there is a single plot combining all data points regardless of type.

For a model fitted by logistic composite likelihood (method="logi" in ppm) influence values are
associated with the data points and also with the dummy points used to fit the model. The display
consist of two panels, for the data points and dummy points respectively, showing circles with radii
proportional to the influence values. If the original data were a multitype point pattern, then if
multiplot=TRUE (the default), there is one pair of panels for each possible type of point, while if
multiplot=FALSE there is a single plot combining all data and dummy points regardless of type.

Use the argument clipwin to restrict the plot to a subset of the full data.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial
point process models. Scandinavian Journal of Statistics 40, 86–104.

See Also

influence.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
plot(influence(fit))

1124 plot.kppm

plot.kppm Plot a fitted cluster point process

Description

Plots a fitted cluster point process model, displaying the fitted intensity and the fitted K-function.

Usage

S3 method for class 'kppm'
plot(x, ...,

what=c("intensity", "statistic", "cluster"),
pause=interactive(),
xname)

Arguments

x Fitted cluster point process model. An object of class "kppm".
... Arguments passed to plot.ppm and plot.fv to control the plot.
what Character vector determining what will be plotted.
pause Logical value specifying whether to pause between plots.
xname Optional. Character string. The name of the object x for use in the title of the

plot.

Details

This is a method for the generic function plot for the class "kppm" of fitted cluster point process
models.

The argument x should be a cluster point process model (object of class "kppm") obtained using the
function kppm.

The choice of plots (and the order in which they are displayed) is controlled by the argument what.
The options (partially matched) are "intensity", "statistic" and "cluster".

This command is capable of producing three different plots:

what="intensity" specifies the fitted intensity of the model, which is plotted using plot.ppm. By
default this plot is not produced for stationary models.

what="statistic" specifies the empirical and fitted summary statistics, which are plotted using
plot.fv. This is only meaningful if the model has been fitted using the Method of Minimum
Contrast, and it is turned off otherwise.

what="cluster" specifies a fitted cluster, which is computed by clusterfield and plotted by
plot.im. It is only meaningful for Poisson cluster (incl. Neyman-Scott) processes, and it is
turned off for log-Gaussian Cox processes (LGCP). If the model is stationary (and non-LGCP)
this option is turned on by default and shows a fitted cluster positioned at the centroid of the
observation window. For non-stationary (and non-LGCP) models this option is only invoked
if explicitly told so, and in that case an additional argument locations (see clusterfield)
must be given to specify where to position the parent point(s) .

plot.laslett 1125

Alternatively what="all" selects all available options.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

kppm, plot.ppm,

Examples

data(redwood)
fit <- kppm(redwood~1, "Thomas")
plot(fit)

plot.laslett Plot Laslett Transform

Description

Plot the result of Laslett’s Transform.

Usage

S3 method for class 'laslett'
plot(x, ...,

Xpars = list(box = TRUE, col = "grey"),
pointpars = list(pch = 3, cols = "blue"),
rectpars = list(lty = 3, border = "green"))

Arguments

x Object of class "laslett" produced by laslett representing the result of Laslett’s
transform.

... Additional plot arguments passed to plot.solist.

Xpars A list of plot arguments passed to plot.owin or plot.im to display the original
region X before transformation.

pointpars A list of plot arguments passed to plot.ppp to display the tangent points.

rectpars A list of plot arguments passed to plot.owin to display the maximal rectangle.

1126 plot.layered

Details

This is the plot method for the class "laslett".

The function laslett applies Laslett’s Transform to a spatial region X and returns an object of class
"laslett" representing the result of the transformation. The result is plotted by this method.

The plot function plot.solist is used to align the before-and-after pictures. See plot.solist for
further options to control the plot.

Value

None.

Author(s)

Kassel Hingee and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

laslett

Examples

b <- laslett(heather$coarse, plotit=FALSE)
plot(b, main="Heather Data")

plot.layered Layered Plot

Description

Generates a layered plot. The plot method for objects of class "layered".

Usage

S3 method for class 'layered'
plot(x, ..., which = NULL, plotargs = NULL,

add=FALSE, show.all=!add, main=NULL,
do.plot=TRUE)

Arguments

x An object of class "layered" created by the function layered.

... Arguments to be passed to the plot method for every layer.

which Subset index specifying which layers should be plotted.

plotargs Arguments to be passed to the plot methods for individual layers. A list of lists
of arguments of the form name=value.

add Logical value indicating whether to add the graphics to an existing plot.

plot.layered 1127

show.all Logical value indicating whether the first layer should be displayed in full (in-
cluding the main title, bounding window, coordinate axes, colour ribbon, and so
on).

main Main title for the plot

do.plot Logical value indicating whether to actually do the plotting.

Details

Layering is a simple mechanism for controlling a high-level plot that is composed of several suc-
cessive plots, for example, a background and a foreground plot. The layering mechanism makes
it easier to plot, to switch on or off the plotting of each individual layer, to control the plotting
arguments that are passed to each layer, and to zoom in on a subregion.

The layers of data to be plotted should first be converted into a single object of class "layered"
using the function layered. Then the layers can be plotted using the method plot.layered.

To zoom in on a subregion, apply the subset operator [.layered to x before plotting.

Graphics parameters for each layer are determined by (in order of precedence) ..., plotargs, and
layerplotargs(x).

The graphics parameters may also include the special argument .plot specifying (the name of) a
function which will be used to perform the plotting instead of the generic plot.

The argument show.all is recognised by many plot methods in spatstat. It determines whether a
plot is drawn with all its additional components such as the main title, bounding window, coordinate
axes, colour ribbons and legends. The default is TRUE for new plots and FALSE for added plots.

In plot.layered, the argument show.all applies only to the first layer. The subsequent layers are
plotted with show.all=FALSE.

To override this, that is, if you really want to draw all the components of all layers of x, insert the
argument show.all=TRUE in each entry of plotargs or layerplotargs(x).

Value

(Invisibly) a list containing the return values from the plot commands for each layer. This list has
an attribute "bbox" giving a bounding box for the entire plot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

layered, layerplotargs, [.layered, plot.

Examples

data(cells)
D <- distmap(cells)
L <- layered(D, cells)
plot(L)

1128 plot.leverage.ppm

plot(L, which = 2)
plot(L, plotargs=list(list(ribbon=FALSE), list(pch=3, cols="white")))
plot a subregion
plot(L[, square(0.5)])

plot.leverage.ppm Plot Leverage Function

Description

Generate a pixel image plot, or a contour plot, or a perspective plot, of a leverage function that has
been computed by leverage.ppm.

Usage

S3 method for class 'leverage.ppm'
plot(x, ...,

what=c("smooth", "nearest", "exact"),
showcut=TRUE,
args.cut=list(drawlabels=FALSE),
multiplot=TRUE)

S3 method for class 'leverage.ppm'
contour(x, ...,

what=c("smooth", "nearest"),
showcut=TRUE,
args.cut=list(col=3, lwd=3, drawlabels=FALSE),
multiplot=TRUE)

S3 method for class 'leverage.ppm'
persp(x, ...,

what=c("smooth", "nearest"),
main, zlab="leverage")

Arguments

x Leverage function (object of class "leverage.ppm") computed by leverage.ppm.
... Arguments passed to plot.im or contour.im or persp.im controlling the plot.
what Character string (partially matched) specifying the values to be plotted. See

Details.
showcut Logical. If TRUE, a contour line is plotted at the level equal to the theoretical

mean of the leverage.
args.cut Optional list of arguments passed to contour.default to control the plotting

of the contour line for the mean leverage.
multiplot Logical value indicating whether it is permissible to display several plot panels.
main Optional main title. A character string or character vector.
zlab Label for the z axis. A character string.

plot.leverage.ppm 1129

Details

These functions are the plot, contour and persp methods for objects of class "leverage.ppm".
Such objects are computed by the command leverage.ppm.

The plot method displays the leverage function as a colour pixel image using plot.im, and draws a
single contour line at the mean leverage value using contour.default. Use the argument clipwin
to restrict the plot to a subset of the full data.

The contour method displays the leverage function as a contour plot, and also draws a single
contour line at the mean leverage value, using contour.im.

The persp method displays the leverage function as a surface in perspective view, using persp.im.

Since the exact values of leverage are computed only at a finite set of quadrature locations, there
are several options for these plots:

what="smooth": (the default) an image plot showing a smooth function, obtained by applying
kernel smoothing to the exact leverage values;

what="nearest": an image plot showing a piecewise-constant function, obtained by taking the
exact leverage value at the nearest quadrature point;

what="exact": a symbol plot showing the exact values of leverage as circles, centred at the quadra-
ture points, with diameters proportional to leverage.

The pixel images are already contained in the object x and were computed by leverage.ppm; the
resolution of these images is controlled by arguments to leverage.ppm.

Value

Same as for plot.im, contour.im and persp.im respectively.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial point
process models. Scandinavian Journal of Statistics 40, 86–104.

See Also

leverage.ppm.

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
lef <- leverage(fit)
plot(lef)
contour(lef)
persp(lef)

1130 plot.linim

plot.linim Plot Pixel Image on Linear Network

Description

Given a pixel image on a linear network, the pixel values are displayed either as colours or as line
widths.

Usage

S3 method for class 'linim'
plot(x, ..., style = c("colour", "width"),

scale, adjust = 1, fatten = 0,
negative.args = list(col=2),
legend=TRUE,
leg.side=c("right", "left", "bottom", "top"),
leg.sep=0.1,
leg.wid=0.1,
leg.args=list(),
leg.scale=1,
zlim,
box=FALSE,
do.plot=TRUE)

Arguments

x The pixel image to be plotted. An object of class "linim".

... Extra graphical parameters, passed to plot.im if style="colour", or to polygon
if style="width".

style Character string (partially matched) specifying the type of plot. See Details.

scale Physical scale factor for representing the pixel values as line widths.

adjust Adjustment factor for the conversion of pixel value to line width, when style="width".

fatten Distance by which the line segments should be thickened, when style="colour".

negative.args A list of arguments to be passed to polygon specifying how to plot negative
values of x when style="width".

legend Logical value indicating whether to plot a legend (colour ribbon or scale bar).

leg.side Character string (partially matched) indicating where to display the legend rela-
tive to the main image.

leg.sep Factor controlling the space between the legend and the image.

leg.wid Factor controlling the width of the legend.

leg.scale Rescaling factor for annotations on the legend. The values on the numerical
scale printed beside the legend will be multiplied by this rescaling factor.

leg.args List of additional arguments passed to image.default, axis or text.default
to control the display of the legend. These may override the ... arguments.

plot.linim 1131

zlim The range of numerical values that should be mapped. A numeric vector of
length 2. Defaults to the range of values of x.

box Logical value indicating whether to draw a bounding box.

do.plot Logical value indicating whether to actually perform the plot.

Details

This is the plot method for objects of class "linim". Such an object represents a pixel image
defined on a linear network.

If style="colour" (the default) then the pixel values of x are plotted as colours, using plot.im.
The mapping from pixel values to colours is determined by any additional arguments ... which are
passed to plot.im.

If style="width" then the pixel values of x are used to determine the widths of thick lines cen-
tred on the line segments of the linear network. The mapping from pixel values to line widths
is determined by the arguments scale and adjust. The plotting of colours and borders of the
lines is controlled by the additional arguments ... which are passed to polygon. A different set
of colours and borders can be assigned to negative pixel values by passing a list of arguments in
negative.args as shown in the Examples.

A legend is displayed alongside the plot if legend=TRUE (the default). The legend displays the
relationship between pixel values and colours (if style="colour") or between pixel values and
line widths (if style="width").

The plotting of the legend itself is controlled by the arguments leg.side, leg.sep, leg.wid,
leg.scale and the list of arguments leg.args, which are described above. If style="colour",
these arguments are mapped to the arguments ribside, ribsep, ribwid, ribscale and ribargs
respectively, which are passed to plot.im.

Value

If style="colour", the result is an object of class "colourmap" specifying the colour map used.
If style="width", the result is a numeric value v giving the physical scale: one unit of pixel value
is represented as v physical units on the plot.

The result also has an attribute "bbox" giving a bounding box for the plot. The bounding box
includes the ribbon or scale bar, if present, but not the main title.

Thin lines

When style="colour" it often appears that the lines are drawn too thin. This occurs because x is a
pixel image, in which the only pixels that have a defined value are those which lie directly over the
network. To make the lines appear thicker in the plot, use the argument fatten. The domain of the
image will be expanded by a distance equal to fatten/2 in every direction using dilation.owin;
the pixel values will be extrapolated to this expanded domain using nearestValue. This may
improve the visual appearance of the plot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

1132 plot.linnet

References

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

See Also

linim, plot.im, polygon

Examples

X <- linfun(function(x,y,seg,tp){y^2+x}, simplenet)
X <- as.linim(X)

plot(X, main="Colour represents function value")
plot(X, fatten=0.02, main="fattened")

plot(X, style="width", main="Width proportional to function value")

signed values
f <- linfun(function(x,y,seg,tp){y-x}, simplenet)
plot(f, style="w", main="Negative values in red")

plot(f, style="w", negative.args=list(density=10),
main="Negative values are hatched")

plot.linnet Plot a linear network

Description

Plots a linear network

Usage

S3 method for class 'linnet'
plot(x, ..., main=NULL, add=FALSE,

vertices=FALSE, window=FALSE,
do.plot=TRUE)

Arguments

x Linear network (object of class "linnet").

... Arguments passed to plot.psp controlling the plot.

main Main title for plot. Use main="" to suppress it.

add Logical. If codeTRUE, superimpose the graphics over the current plot. If FALSE,
generate a new plot.

plot.lintess 1133

vertices Logical. Whether to plot the vertices as well.

window Logical. Whether to plot the window containing the linear network.

do.plot Logical. Whether to actually perform the plot.

Details

This is the plot method for class "linnet".

Value

An (invisible) object of class "owin" giving the bounding box of the network.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

linnet

Examples

plot(simplenet)

plot.lintess Plot a Tessellation on a Linear Network

Description

Plot a tessellation or division of a linear network into tiles.

Usage

S3 method for class 'lintess'
plot(x, ...,

main, add = FALSE,
style = c("colour", "width", "image"),
col = NULL, values=marks(x),
ribbon=TRUE, ribargs=list(), multiplot=TRUE, do.plot=TRUE)

Arguments

x Tessellation on a linear network (object of class "lintess").

... Arguments passed to segments (if style="segments") or to plot.im (if style="image")
to control the plot.

main Optional main title for the plot.

add Logical value indicating whether the plot is to be added to an existing plot.

1134 plot.lintess

style Character string (partially matched) specifying the type of plot. If style="colour"
(the default), tiles are plotted using segments using colours to distinguish the
different tiles or values. If style="width", tiles are plotted using segments
using different segment widths to distinguish the different tiles or values. If
style="image", the tessellation is converted to a pixel image and plotted by
plot.im.

col Vector of colours, or colour map, determining the colours used to plot the dif-
ferent tiles of the tessellation.

values Values associated with each tile of the tessellation, used to determine the colours
or widths. A vector with one entry for each tile, or a data frame with one row
for each tile. The default is marks(x), or if that is null, then tilenames(x).

ribbon Logical value specifying whether to print an explanatory legend for the colour
map or width map.

ribargs Arguments passed to plot.colourmap controlling the display of the colour map
legend.

multiplot Logical value determining what should happen if marks(x) has more than one
column. If multiplot=TRUE (the default), several plot panels will be generated,
one panel for each column of marks. If multiplot=FALSE, the first column of
marks will be selected.

do.plot Logical value specifying whether to actually generate the plot (do.plot=TRUE,
the default) or just to compute the colour map and return it (do.plot=FALSE).

Details

A tessellation on a linear network L is a partition of the network into non-overlapping pieces (tiles).
Each tile consists of one or more line segments which are subsets of the line segments making up
the network. A tile can consist of several disjoint pieces.

This function plots the tessellation on the current device. It is a method for the generic plot.

If style="colour", each tile is plotted using segments, drawing segments of different colours.

If style="width", each tile is plotted using segments, drawing segments of different widths.

If style="image", the tessellation is converted to a pixel image, and plotted as a colour image
using plot.im.

The colours or widths are determined by the values associated with each tile of the tessellation. If
values is missing, the default is to use the marks of the tessellation, or if there are no marks, the
names of the tiles.

Value

(Invisible) colour map.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

lintess

plot.listof 1135

Examples

X <- runiflpp(7, simplenet)
Z <- divide.linnet(X)
plot(Z, main="tessellation on network")
points(as.ppp(X))
plot(Z, main="tessellation on network",

values=1:nobjects(Z), style="w")

plot.listof Plot a List of Things

Description

Plots a list of things

Usage

S3 method for class 'listof'
plot(x, ..., main, arrange=TRUE,

nrows=NULL, ncols=NULL, main.panel=NULL,
mar.panel=c(2,1,1,2), hsep=0, vsep=0,
panel.begin=NULL, panel.end=NULL, panel.args=NULL,
panel.begin.args=NULL, panel.end.args=NULL, panel.vpad=0.2,
plotcommand="plot",
adorn.left=NULL, adorn.right=NULL, adorn.top=NULL, adorn.bottom=NULL,
adorn.size=0.2, equal.scales=FALSE, halign=FALSE, valign=FALSE)

Arguments

x An object of the class "listof". Essentially a list of objects.

... Arguments passed to plot when generating each plot panel.

main Overall heading for the plot.

arrange Logical flag indicating whether to plot the objects side-by-side on a single page
(arrange=TRUE) or plot them individually in a succession of frames (arrange=FALSE).

nrows,ncols Optional. The number of rows/columns in the plot layout (assuming arrange=TRUE).
You can specify either or both of these numbers.

main.panel Optional. A character string, or a vector of character strings, giving the headings
for each of the objects.

mar.panel Size of the margins outside each plot panel. A numeric vector of length 4 giving
the bottom, left, top, and right margins in that order. (Alternatively the vector
may have length 1 or 2 and will be replicated to length 4). See the section on
Spacing between plots.

hsep,vsep Additional horizontal and vertical separation between plot panels, expressed in
the same units as mar.panel.

1136 plot.listof

panel.begin,panel.end

Optional. Functions that will be executed before and after each panel is plotted.
See Details.

panel.args Optional. Function that determines different plot arguments for different panels.
See Details.

panel.begin.args

Optional. List of additional arguments for panel.begin when it is a function.

panel.end.args Optional. List of additional arguments for panel.end when it is a function.

panel.vpad Amount of extra vertical space that should be allowed for the title of each panel,
if a title will be displayed. Expressed as a fraction of the height of the panel. Ap-
plies only when equal.scales=FALSE (the default) and requires that the height
of each panel can be determined.

plotcommand Optional. Character string containing the name of the command that should be
executed to plot each panel.

adorn.left,adorn.right,adorn.top,adorn.bottom

Optional. Functions (with no arguments) that will be executed to generate ad-
ditional plots at the margins (left, right, top and/or bottom, respectively) of the
array of plots.

adorn.size Relative width (as a fraction of the other panels’ widths) of the margin plots.

equal.scales Logical value indicating whether the components should be plotted at (approxi-
mately) the same physical scale.

halign,valign Logical values indicating whether panels in a column should be aligned to the
same x coordinate system (halign=TRUE) and whether panels in a row should be
aligned to the same y coordinate system (valign=TRUE). These are applicable
only if equal.scales=TRUE.

Details

This is the plot method for the class "listof".

An object of class "listof" (defined in the base R package) represents a list of objects, all be-
longing to a common class. The base R package defines a method for printing these objects,
print.listof, but does not define a method for plot. So here we have provided a method for
plot.

In the spatstat package, various functions produce an object of class "listof", essentially a list
of spatial objects of the same kind. These objects can be plotted in a nice arrangement using
plot.listof. See the Examples.

The argument panel.args determines extra graphics parameters for each panel. It should be a
function that will be called as panel.args(i) where i is the panel number. Its return value should
be a list of graphics parameters that can be passed to the relevant plot method. These parameters
override any parameters specified in the ... arguments.

The arguments panel.begin and panel.end determine graphics that will be plotted before and af-
ter each panel is plotted. They may be objects of some class that can be plotted with the generic plot
command. Alternatively they may be functions that will be called as panel.begin(i,y,main=main.panel[i])
and panel.end(i,y,add=TRUE) where i is the panel number and y = x[[i]].

plot.listof 1137

If all entries of x are pixel images, the function image.listof is called to control the plotting. The
arguments equal.ribbon and col can be used to determine the colour map or maps applied.

If equal.scales=FALSE (the default), then the plot panels will have equal height on the plot device
(unless there is only one column of panels, in which case they will have equal width on the plot
device). This means that the objects are plotted at different physical scales, by default.

If equal.scales=TRUE, then the dimensions of the plot panels on the plot device will be propor-
tional to the spatial dimensions of the corresponding components of x. This means that the objects
will be plotted at approximately equal physical scales. If these objects have very different spatial
sizes, the plot command could fail (when it tries to plot the smaller objects at a tiny scale), with an
error message that the figure margins are too large.

The objects will be plotted at exactly equal physical scales, and exactly aligned on the device, under
the following conditions:

• every component of x is a spatial object whose position can be shifted by shift;
• panel.begin and panel.end are either NULL or they are spatial objects whose position can

be shifted by shift;
• adorn.left, adorn.right, adorn.top and adorn.bottom are all NULL.

Another special case is when every component of x is an object of class "fv" representing a func-
tion. If equal.scales=TRUE then all these functions will be plotted with the same axis scales (i.e.
with the same xlim and the same ylim).

Value

Null.

Spacing between plots

The spacing between individual plots is controlled by the parameters mar.panel, hsep and vsep.

If equal.scales=FALSE, the plot panels are logically separate plots. The margins for each panel
are determined by the argument mar.panel which becomes the graphics parameter mar described
in the help file for par. One unit of mar corresponds to one line of text in the margin. If hsep or
vsep are present, mar.panel is augmented by c(vsep,hsep,vsep,hsep)/2.

If equal.scales=TRUE, all the plot panels are drawn in the same coordinate system which repre-
sents a physical scale. The unit of measurement for mar.panel[1,3] is one-sixth of the greatest
height of any object plotted in the same row of panels, and the unit for mar.panel[2,4] is one-
sixth of the greatest width of any object plotted in the same column of panels. If hsep or vsep are
present, they are interpreted in the same units as mar.panel[2] and mar.panel[1] respectively.

Error messages

If the error message ‘Figure margins too large’ occurs, this generally means that one of the objects
had a much smaller physical scale than the others. Ensure that equal.scales=FALSE and increase
the values of mar.panel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

1138 plot.lpp

See Also

print.listof, contour.listof, image.listof, density.splitppp

Examples

Intensity estimate of multitype point pattern
plot(D <- density(split(amacrine)))
plot(D, main="", equal.ribbon=TRUE,

panel.end=function(i,y,...){contour(y, ...)})

list of 3D point patterns
ape1 <- osteo[osteo$shortid==4, "pts", drop=TRUE]
class(ape1)
plot(ape1, main.panel="", mar.panel=0.1, hsep=0.7, vsep=1,

cex=1.5, pch=21, bg='white')

plot.lpp Plot Point Pattern on Linear Network

Description

Plots a point pattern on a linear network. Plot method for the class "lpp" of point patterns on a
linear network.

Usage

S3 method for class 'lpp'
plot(x, ..., main, add = FALSE,

use.marks=TRUE, which.marks=NULL,
show.all = !add, show.window=FALSE, show.network=TRUE,
do.plot = TRUE, multiplot=TRUE)

Arguments

x Point pattern on a linear network (object of class "lpp").

... Additional arguments passed to plot.linnet or plot.ppp.

main Main title for plot.

add Logical value indicating whether the plot is to be added to the existing plot
(add=TRUE) or whether a new plot should be initialised (add=FALSE, the default).

use.marks logical flag; if TRUE, plot points using a different plotting symbol for each mark;
if FALSE, only the locations of the points will be plotted, using points().

which.marks Index determining which column of marks to use, if the marks of x are a data
frame. A character or integer vector identifying one or more columns of marks.
If add=FALSE then the default is to plot all columns of marks, in a series of
separate plots. If add=TRUE then only one column of marks can be plotted, and
the default is which.marks=1 indicating the first column of marks.

plot.lpp 1139

show.all Logical value indicating whether to plot everything including the main title and
the window containing the network.

show.window Logical value indicating whether to plot the window containing the network.
Overrides show.all.

show.network Logical value indicating whether to plot the network.

do.plot Logical value determining whether to actually perform the plotting.

multiplot Logical value giving permission to display multiple plots.

Details

The linear network is plotted by plot.linnet, then the points are plotted by plot.ppp.

Commonly-used arguments include:

• col and lwd for the colour and width of lines in the linear network

• cols for the colour or colours of the points

• chars for the plot characters representing different types of points

• legend and leg.side to control the graphics legend

Note that the linear network will be plotted even when add=TRUE, unless show.network=FALSE.

Value

(Invisible) object of class "symbolmap" giving the correspondence between mark values and plot-
ting characters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

lpp.

See plot.ppp for options for representing the points.

See also points.lpp, text.lpp.

Examples

plot(chicago, cols=1:6)

1140 plot.lppm

plot.lppm Plot a Fitted Point Process Model on a Linear Network

Description

Plots the fitted intensity of a point process model on a linear network.

Usage

S3 method for class 'lppm'
plot(x, ..., type="trend")

Arguments

x An object of class "lppm" representing a fitted point process model on a linear
network.

... Arguments passed to plot.linim to control the plot.

type Character string (either "trend" or "cif") determining whether to plot the fitted
first order trend or the conditional intensity.

Details

This function is the plot method for the class "lppm". It computes the fitted intensity of the point
process model, and displays it using plot.linim.

The default is to display intensity values as colours. Alternatively if the argument style="width"
is given, intensity values are displayed as the widths of thick lines drawn over the network.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

lppm, plot.linim, methods.lppm, predict.lppm.

Examples

X <- runiflpp(10, simplenet)
fit <- lppm(X ~x)
plot(fit)
plot(fit, style="width")

plot.mppm 1141

plot.mppm plot a Fitted Multiple Point Process Model

Description

Given a point process model fitted to multiple point patterns by mppm, compute spatial trend or
conditional intensity surface of the model, in a form suitable for plotting, and (optionally) plot this
surface.

Usage

S3 method for class 'mppm'
plot(x, ...,

trend=TRUE, cif=FALSE, se=FALSE,
how=c("image", "contour", "persp"))

Arguments

x A point process model fitted to multiple point patterns, typically obtained from
the model-fitting algorithm mppm. An object of class "mppm".

... Arguments passed to plot.ppm or plot.anylist controlling the plot.

trend Logical value indicating whether to plot the fitted trend.

cif Logical value indicating whether to plot the fitted conditional intensity.

se Logical value indicating whether to plot the standard error of the fitted trend.

how Single character string indicating the style of plot to be performed.

Details

This is the plot method for the class "mppm" of point process models fitted to multiple point patterns
(see mppm).

It invokes subfits to compute the fitted model for each individual point pattern dataset, then calls
plot.ppm to plot these individual models. These individual plots are displayed using plot.anylist,
which generates either a series of separate plot frames or an array of plot panels on a single page.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

1142 plot.msr

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

plot.ppm, mppm, plot.listof

Examples

Synthetic data from known model
n <- 9
H <- hyperframe(V=1:n,

U=runif(n, min=-1, max=1))
H$Z <- setcov(square(1))
H$U <- with(H, as.im(U, as.rectangle(Z)))
H$Y <- with(H, rpoispp(eval.im(exp(2+3*Z))))

fit <- mppm(Y ~Z + U + V, data=H)

plot(fit)

plot.msr Plot a Signed or Vector-Valued Measure

Description

Plot a signed measure or vector-valued measure.

Usage

S3 method for class 'msr'
plot(x, ...,

add = FALSE,
how = c("image", "contour", "imagecontour"),
main = NULL,
do.plot = TRUE,
multiplot = TRUE,
massthresh = 0,
equal.markscale = FALSE,
equal.ribbon = FALSE)

Arguments

x The signed or vector measure to be plotted. An object of class "msr" (see msr).

... Extra arguments passed to Smooth.ppp to control the interpolation of the con-
tinuous density component of x, or passed to plot.im or plot.ppp to control
the appearance of the plot.

plot.msr 1143

add Logical flag; if TRUE, the graphics are added to the existing plot. If FALSE (the
default) a new plot is initialised.

how String indicating how to display the continuous density component.

main String. Main title for the plot.

do.plot Logical value determining whether to actually perform the plotting.

multiplot Logical value indicating whether it is permissible to display a plot with mul-
tiple panels (representing different components of a vector-valued measure, or
different types of points in a multitype measure.)

massthresh Threshold for plotting atoms. A single numeric value or NULL. If massthresh=0
(the default) then only atoms with nonzero mass will be plotted. If massthresh
> 0 then only atoms whose absolute mass exceeds massthresh will be plotted.
If massthresh=NULL, then all atoms of the measure will be plotted.

equal.markscale

Logical value indicating whether different panels should use the same symbol
map (to represent the masses of atoms of the measure).

equal.ribbon Logical value indicating whether different panels should use the same colour
map (to represent the density values in the diffuse component of the measure).

Details

This is the plot method for the class "msr".

The continuous density component of x is interpolated from the existing data by Smooth.ppp, and
then displayed as a colour image by plot.im.

The discrete atomic component of x is then superimposed on this image by plotting the atoms as
circles (for positive mass) or squares (for negative mass) by plot.ppp. By default, atoms with zero
mass are not plotted at all.

To smooth both the discrete and continuous components, use Smooth.msr.

Use the argument clipwin to restrict the plot to a subset of the full data.

To remove atoms with tiny masses, use the argument massthresh.

Value

(Invisible) colour map (object of class "colourmap") for the colour image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

msr, Smooth.ppp, Smooth.msr, plot.im, plot.ppp

1144 plot.onearrow

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")
rs <- residuals(fit, type="score")

plot(rp)
plot(rs)
plot(rs, how="contour")

plot.onearrow Plot an Arrow

Description

Plots an object of class "onearrow".

Usage

S3 method for class 'onearrow'
plot(x, ...,
add = FALSE, main = "",
retract = 0.05, headfraction = 0.25, headangle = 12, headnick = 0.1,
col.head = NA, lwd.head = lwd, lwd = 1, col = 1,
zap = FALSE, zapfraction = 0.07,
pch = 1, cex = 1, do.plot = TRUE, do.points = FALSE, show.all = !add)

Arguments

x Object of class "onearrow" to be plotted. This object is created by the command
onearrow.

... Additional graphics arguments passed to segments to control the appearance of
the line.

add Logical value indicating whether to add graphics to the existing plot (add=TRUE)
or to start a new plot (add=FALSE).

main Main title for the plot.

retract Fraction of length of arrow to remove at each end.

headfraction Length of arrow head as a fraction of overall length of arrow.

headangle Angle (in degrees) between the outer edge of the arrow head and the shaft of the
arrow.

headnick Size of the nick in the trailing edge of the arrow head as a fraction of length of
arrow head.

col.head,lwd.head

Colour and line style of the filled arrow head.

col,lwd Colour and line style of the arrow shaft.

plot.owin 1145

zap Logical value indicating whether the arrow should include a Z-shaped (lightning-
bolt) feature in the middle of the shaft.

zapfraction Size of Z-shaped deviation as a fraction of total arrow length.

pch,cex Plot character and character size for the two end points of the arrow, if do.points=TRUE.

do.plot Logical. Whether to actually perform the plot.

do.points Logical. Whether to display the two end points of the arrow as well.

show.all Internal use only.

Details

The argument x should be an object of class "onearrow" created by the command onearrow.

Value

A window (class "owin") enclosing the plotted graphics.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

onearrow, yardstick

Examples

oa <- onearrow(cells[c(1, 42)])
oa
plot(oa)
plot(oa, zap=TRUE, do.points=TRUE, col.head="pink", col="red")

plot.owin Plot a Spatial Window

Description

Plot a two-dimensional window of observation for a spatial point pattern

Usage

S3 method for class 'owin'
plot(x, main, add=FALSE, ..., box, edge=0.04,

type=c("w","n"), show.all=!add,
hatch=FALSE,
hatchargs=list(),
invert=FALSE, do.plot=TRUE,
claim.title.space=FALSE, use.polypath=TRUE)

1146 plot.owin

Arguments

x The window to be plotted. An object of class owin, or data which can be con-
verted into this format by as.owin().

main text to be displayed as a title above the plot.

add logical flag: if TRUE, draw the window in the current plot; if FALSE, generate a
new plot.

... extra arguments controlling the appearance of the plot. These arguments are
passed to polygon if x is a polygonal or rectangular window, or passed to
image.default if x is a binary mask. Some arguments are passed to plot.default.
See Details.

box logical flag; if TRUE, plot the enclosing rectangular box

edge nonnegative number; the plotting region will have coordinate limits that are 1 +
edge times as large as the limits of the rectangular box that encloses the pattern.

type Type of plot: either "w" or "n". If type="w" (the default), the window is plotted.
If type="n" and add=TRUE, a new plot is initialised and the coordinate system
is established, but nothing is drawn.

show.all Logical value indicating whether to plot everything including the main title.

hatch logical flag; if TRUE, the interior of the window will be shaded by texture, such
as a grid of parallel lines.

hatchargs List of arguments passed to add.texture to control the texture shading when
hatch=TRUE.

invert logical flag; when the window is a binary pixel mask, the mask colours will be
inverted if invert=TRUE.

do.plot Logical value indicating whether to actually perform the plot.
claim.title.space

Logical value indicating whether extra space for the main title should be allo-
cated when declaring the plot dimensions. Should be set to FALSE under normal
conditions.

use.polypath Logical value indicating what graphics capabilities should be used to draw a
polygon filled with colour when the polygon has holes. If TRUE (the default),
then the polygon will be filled using polypath, provided the graphics device
supports this function. If FALSE, the polygon will be decomposed into simple
closed polygons, which will be colour filled using polygon.

Details

This is the plot method for the class owin. The action is to plot the boundary of the window on the
current plot device, using equal scales on the x and y axes.

If the window x is of type "rectangle" or "polygonal", the boundary of the window is plotted
as a polygon or series of polygons. If x is of type "mask" the discrete raster approximation of the
window is displayed as a binary image (white inside the window, black outside).

Graphical parameters controlling the display (e.g. setting the colours) may be passed directly via
the ... arguments, or indirectly reset using spatstat.options.

plot.owin 1147

If add=FALSE (the default), the plot is initialised by calling the base graphics function plot.default
to create the plot area. By default, coordinate axes and axis labels are not plotted. To plot coordi-
nate axes, use the argument axes=TRUE; to plot axis labels, use the argument ann=TRUE and then
specify the labels with xlab and ylab; see the help file for plot.default for information on these
arguments, and for additional arguments controlling the appearance of the axes. See the Examples
also.

When x is of type "rectangle" or "polygonal", it is plotted by the R function polygon. To control
the appearance (colour, fill density, line density etc) of the polygon plot, determine the required
argument of polygon and pass it through ... For example, to paint the interior of the polygon in
red, use the argument col="red". To draw the polygon edges in green, use border="green". To
suppress the drawing of polygon edges, use border=NA.

When x is of type "mask", it is plotted by image.default. The appearance of the image plot can
be controlled by passing arguments to image.default through The default appearance can
also be changed by setting the parameter par.binary of spatstat.options.

To zoom in (to view only a subset of the window at higher magnification), use the graphical argu-
ments xlim and ylim to specify the desired rectangular field of view. (The actual field of view may
be larger, depending on the graphics device).

Value

none.

Notes on Filled Polygons with Holes

The function polygon can only handle polygons without holes. To plot polygons with holes in a
solid colour, we have implemented two workarounds.

polypath function: The first workaround uses the relatively new function polypath which does
have the capability to handle polygons with holes. However, not all graphics devices support
polypath. The older devices xfig and pictex do not support polypath. On a Windows sys-
tem, the default graphics device windows supports polypath. On a Linux system, the default
graphics device X11(type="Xlib") does not support polypath but X11(type="cairo")
does support it. See X11 and the section on Cairo below.

polygon decomposition: The other workaround involves decomposing the polygonal window into
pieces which do not have holes. This code is experimental but works in all our test cases. If
this code fails, a warning will be issued, and the filled colours will not be plotted.

Cairo graphics on a Linux system

Linux systems support the graphics device X11(type="cairo") (see X11) provided the external
library cairo is installed on the computer. See www.cairographics.org for instructions on obtain-
ing and installing cairo. After having installed cairo one needs to re-install R from source so that
it has cairo capabilites. To check whether your current installation of R has cairo capabilities, type
(in R) capabilities()["cairo"]. The default type for X11 is controlled by X11.options. You
may find it convenient to make cairo the default, e.g. via your .Rprofile. The magic incantation
to put into .Rprofile is

1148 plot.plotppm

setHook(packageEvent("graphics", "onLoad"),
function(...) grDevices::X11.options(type="cairo"))

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

owin.object, plot.ppp, polygon, image.default, spatstat.options

Examples

rectangular window
plot(Window(nztrees))
abline(v=148, lty=2)

polygonal window
w <- Window(demopat)
plot(w)
plot(w, col="red", border="green", lwd=2)
plot(w, hatch=TRUE, lwd=2)

binary mask
we <- as.mask(w)
plot(we)
op <- spatstat.options(par.binary=list(col=grey(c(0.5,1))))
plot(we)
spatstat.options(op)

axis annotation
plot(letterR, axes=TRUE, ann=TRUE, xlab="Easting", ylab="Northing")
plot(letterR, ann=TRUE, xlab="Declination", ylab="Right Ascension")

plot.plotppm Plot a plotppm Object Created by plot.ppm

Description

The function plot.ppm produces objects which specify plots of fitted point process models. The
function plot.plotppm carries out the actual plotting of these objects.

Usage

S3 method for class 'plotppm'
plot(x, data = NULL, trend = TRUE, cif = TRUE,

se = TRUE, pause = interactive(),
how = c("persp", "image", "contour"),
..., pppargs)

plot.plotppm 1149

Arguments

x An object of class plotppm produced by plot.ppm() .
data The point pattern (an object of class ppp) to which the point process model was

fitted (by ppm).
trend Logical scalar; should the trend component of the fitted model be plotted?
cif Logical scalar; should the complete conditional intensity of the fitted model be

plotted?
se Logical scalar; should the estimated standard error of the fitted intensity be plot-

ted?
pause Logical scalar indicating whether to pause with a prompt after each plot. Set

pause=FALSE if plotting to a file.
how Character string or character vector indicating the style or styles of plots to be

performed.
... Extra arguments to the plotting functions persp, image and contour.
pppargs List of extra arguments passed to plot.ppp when displaying the original point

pattern data.

Details

If argument data is supplied then the point pattern will be superimposed on the image and contour
plots.

Sometimes a fitted model does not have a trend component, or the trend component may constitute
all of the conditional intensity (if the model is Poisson). In such cases the object x will not contain
a trend component, or will contain only a trend component. This will also be the case if one of
the arguments trend and cif was set equal to FALSE in the call to plot.ppm() which produced x.
If this is so then only the item which is present will be plotted. Explicitly setting trend=TRUE, or
cif=TRUE, respectively, will then give an error.

Value

None.

Warning

Arguments which are passed to persp, image, and contour via the . . . argument get passed to any
of the other functions listed in the how argument, and won’t be recognized by them. This leads
to a lot of annoying but harmless warning messages. Arguments to persp may be supplied via
spatstat.options() which alleviates the warning messages in this instance.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.ppm()

1150 plot.pp3

Examples

Not run:
m <- ppm(cells ~ 1, Strauss(0.05))
mpic <- plot(m)
Perspective plot only, with altered parameters:
plot(mpic,how="persp", theta=-30,phi=40,d=4)
All plots, with altered parameters for perspective plot:
op <- spatstat.options(par.persp=list(theta=-30,phi=40,d=4))
plot(mpic)
Revert
spatstat.options(op)

End(Not run)

plot.pp3 Plot a Three-Dimensional Point Pattern

Description

Plots a three-dimensional point pattern.

Usage

S3 method for class 'pp3'
plot(x, ..., eye=NULL, org=NULL, theta=25, phi=15,

type=c("p", "n", "h"),
box.back=list(col="pink"),
box.front=list(col="blue", lwd=2))

Arguments

x Three-dimensional point pattern (object of class "pp3").

... Arguments passed to points controlling the appearance of the points.

eye Optional. Eye position. A numeric vector of length 3 giving the location from
which the scene is viewed.

org Optional. Origin (centre) of the view. A numeric vector of length 3 which will
be at the centre of the view.

theta,phi Optional angular coordinates (in degrees) specifying the direction from which
the scene is viewed: theta is the azimuth and phi is the colatitude. Ignored if
eye is given.

type Type of plot: type="p" for points, type="h" for points on vertical lines, type="n"
for box only.

box.front,box.back

How to plot the three-dimensional box that contains the points. A list of graphi-
cal arguments passed to segments, or a logical value indicating whether or not
to plot the relevant part of the box. See Details.

plot.ppm 1151

Details

This is the plot method for objects of class "pp3". It generates a two-dimensional plot of the point
pattern x and its containing box as if they had been viewed from the location specified by eye (or
from the direction specified by theta and phi).

The edges of the box at the ‘back’ of the scene (as viewed from the eye position) are plotted first.
Then the points are added. Finally the remaining ‘front’ edges are plotted. The arguments box.back
and box.front specify graphical parameters for drawing the back and front edges, respectively.
Alternatively box.back=FALSE specifies that the back edges shall not be drawn.

Note that default values of arguments to plot.pp3 can be set by spatstat.options("par.pp3").

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pp3, spatstat.options.

Examples

X <- osteo$pts[[1]]
plot(X, main="Osteocyte lacunae, animal 1, brick 1",

cex=1.5, pch=16)
plot(X, type="h", main="", box.back=list(lty=3))

plot.ppm plot a Fitted Point Process Model

Description

Given a fitted point process model obtained by ppm, create spatial trend and conditional intensity
surfaces of the model, in a form suitable for plotting, and (optionally) plot these surfaces.

Usage

S3 method for class 'ppm'
plot(x, ngrid = c(40,40), superimpose = TRUE,

trend = TRUE, cif = TRUE, se = TRUE, pause = interactive(),
how=c("persp","image", "contour"), plot.it = TRUE,
locations = NULL, covariates=NULL, ...)

1152 plot.ppm

Arguments

x A fitted point process model, typically obtained from the model-fitting algorithm
ppm. An object of class "ppm".

ngrid The dimensions for a grid on which to evaluate, for plotting, the spatial trend
and conditional intensity. A vector of 1 or 2 integers. If it is of length 1, ngrid
is replaced by c(ngrid,ngrid).

superimpose logical flag; if TRUE (and if plot=TRUE) the original data point pattern will be
superimposed on the plots.

trend logical flag; if TRUE, the spatial trend surface will be produced.

cif logical flag; if TRUE, the conditional intensity surface will be produced.

se logical flag; if TRUE, the estimated standard error of the spatial trend surface will
be produced.

pause logical flag indicating whether to pause with a prompt after each plot. Set
pause=FALSE if plotting to a file. (This flag is ignored if plot=FALSE).

how character string or character vector indicating the style or styles of plots to be
performed. Ignored if plot=FALSE.

plot.it logical scalar; should a plot be produced immediately?

locations If present, this determines the locations of the pixels at which predictions are
computed. It must be a binary pixel image (an object of class "owin" with type
"mask"). (Incompatible with ngrid).

covariates Values of external covariates required by the fitted model. Passed to predict.ppm.

... extra arguments to the plotting functions persp, image and contour.

Details

This is the plot method for the class "ppm" (see ppm.object for details of this class).

It invokes predict.ppm to compute the spatial trend and conditional intensity of the fitted point
process model. See predict.ppm for more explanation about spatial trend and conditional intensity.

The default action is to create a rectangular grid of points in (the bounding box of) the observation
window of the data point pattern, and evaluate the spatial trend and conditional intensity of the fitted
spatial point process model x at these locations. If the argument locations= is supplied, then the
spatial trend and conditional intensity are calculated at the grid of points specified by this argument.

The argument locations, if present, should be a binary image mask (an object of class "owin" and
type "mask"). This determines a rectangular grid of locations, or a subset of such a grid, at which
predictions will be computed. Binary image masks are conveniently created using as.mask.

The argument covariates gives the values of any spatial covariates at the prediction locations. If
the trend formula in the fitted model involves spatial covariates (other than the Cartesian coordinates
x, y) then covariates is required.

The argument covariates has the same format and interpretation as in predict.ppm. It may be
either a data frame (the number of whose rows must match the number of pixels in locations
multiplied by the number of possible marks in the point pattern), or a list of images. If argument
locations is not supplied, and covariates is supplied, then it must be a list of images.

plot.ppm 1153

If the fitted model was a marked (multitype) point process, then predictions are made for each
possible mark value in turn.

If the fitted model had no spatial trend, then the default is to omit calculating this (flat) surface,
unless trend=TRUE is set explicitly.

If the fitted model was Poisson, so that there were no spatial interactions, then the conditional
intensity and spatial trend are identical, and the default is to omit the conditional intensity, unless
cif=TRUE is set explicitly.

If plot.it=TRUE then plot.plotppm() is called upon to plot the class plotppm object which is
produced. (That object is also returned, silently.)

Plots are produced successively using persp, image and contour (or only a selection of these three,
if how is given). Extra graphical parameters controlling the display may be passed directly via the
arguments ... or indirectly reset using spatstat.options.

Value

An object of class plotppm. Such objects may be plotted by plot.plotppm().

This is a list with components named trend and cif, either of which may be missing. They will be
missing if the corresponding component does not make sense for the model, or if the corresponding
argument was set equal to FALSE.

Both trend and cif are lists of images. If the model is an unmarked point process, then they are
lists of length 1, so that trend[[1]] is an image of the spatial trend and cif[[1]] is an image of
the conditional intensity.

If the model is a marked point process, then trend[[i]] is an image of the spatial trend for the
mark m[i], and cif[[1]] is an image of the conditional intensity for the mark m[i], where m is the
vector of levels of the marks.

Warnings

See warnings in predict.ppm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

plot.plotppm, ppm, ppm.object, predict.ppm, print.ppm, persp, image, contour, plot, spatstat.options

Examples

m <- ppm(cells ~1, Strauss(0.05))
pm <- plot(m) # The object ``pm'' will be plotted as well as saved

for future plotting.
pm

1154 plot.ppp

plot.ppp plot a Spatial Point Pattern

Description

Plot a two-dimensional spatial point pattern

Usage

S3 method for class 'ppp'
plot(x, main, ..., clipwin=NULL,

chars=NULL, cols=NULL,
use.marks=TRUE, which.marks=NULL,
add=FALSE, type=c("p","n"),
legend=TRUE,
leg.side=c("left", "bottom", "top", "right"),
leg.args=list(),
symap=NULL, maxsize=NULL, meansize=NULL, markscale=NULL,
zap=0.01,
show.window=show.all, show.all=!add, do.plot=TRUE,
multiplot=TRUE)

Arguments

x The spatial point pattern to be plotted. An object of class "ppp", or data which
can be converted into this format by as.ppp().

main text to be displayed as a title above the plot.

... extra arguments that will be passed to the plotting functions plot.default,
points and/or symbols. Not all arguments will be recognised.

clipwin Optional. A window (object of class "owin"). Only this subset of the image will
be displayed.

chars plotting character(s) used to plot points.

cols the colour(s) used to plot points.

use.marks logical flag; if TRUE, plot points using a different plotting symbol for each mark;
if FALSE, only the locations of the points will be plotted, using points().

which.marks Index determining which column of marks to use, if the marks of x are a data
frame. A character or integer vector identifying one or more columns of marks.
If add=FALSE then the default is to plot all columns of marks, in a series of
separate plots. If add=TRUE then only one column of marks can be plotted, and
the default is which.marks=1 indicating the first column of marks.

add logical flag; if TRUE, just the points are plotted, over the existing plot. A new
plot is not created, and the window is not plotted.

type Type of plot: either "p" or "n". If type="p" (the default), both the points and
the observation window are plotted. If type="n", only the window is plotted.

plot.ppp 1155

legend Logical value indicating whether to add a legend showing the mapping between
mark values and graphical symbols (for a marked point pattern).

leg.side Position of legend relative to main plot.

leg.args List of additional arguments passed to plot.symbolmap or symbolmap to con-
trol the legend. In addition to arguments documented under plot.symbolmap,
and graphical arguments recognised by symbolmap, the list may also include the
argument sep giving the separation between the main plot and the legend, or
sep.frac giving the separation as a fraction of the relevant dimension (width or
height) of the main plot.

symap Optional. The graphical symbol map to be applied to the marks. An object of
class "symbolmap"; see symbolmap.

maxsize Maximum physical size of the circles/squares plotted when x is a marked point
pattern with numerical marks. Incompatible with meansize and markscale.
Ignored if symap is given.

meansize Average physical size of the circles/squares plotted when x is a marked point
pattern with numerical marks. Incompatible with maxsize and markscale. Ig-
nored if symap is given.

markscale physical scale factor determining the sizes of the circles/squares plotted when
x is a marked point pattern with numerical marks. Mark value will be multi-
plied by markscale to determine physical size. Incompatible with maxsize and
meansize. Ignored if symap is given.

zap Fraction between 0 and 1. When x is a marked point pattern with numerical
marks, zap is the smallest mark value (expressed as a fraction of the maximum
possible mark) that will be plotted. Any points which have marks smaller in
absolute value than zap * max(abs(marks(x))) will not be plotted.

show.window Logical value indicating whether to plot the observation window of x.

show.all Logical value indicating whether to plot everything including the main title and
the observation window of x.

do.plot Logical value determining whether to actually perform the plotting.

multiplot Logical value giving permission to display multiple plots.

Details

This is the plot method for point pattern datasets (of class "ppp", see ppp.object).

First the observation window Window(x) is plotted (if show.window=TRUE). Then the points them-
selves are plotted, in a fashion that depends on their marks, as follows.

unmarked point pattern: If the point pattern does not have marks, or if use.marks = FALSE, then
the locations of all points will be plotted using a single plot character

multitype point pattern: If x$marks is a factor, then each level of the factor is represented by a
different plot character.

continuous marks: If x$marks is a numeric vector, the marks are rescaled to the unit interval and
each point is represented by a circle with diameter proportional to the rescaled mark (if the
value is positive) or a square with side length proportional to the absolute value of the rescaled
mark (if the value is negative).

1156 plot.ppp

other kinds of marks: If x$marks is neither numeric nor a factor, then each possible mark will be
represented by a different plotting character. The default is to represent the ith smallest mark
value by points(...,pch=i).

If there are several columns of marks, and if which.marks is missing or NULL, then

• if add=FALSE and multiplot=TRUE the default is to plot all columns of marks, in a series of
separate plots, placed side-by-side. The plotting is coordinated by plot.listof, which calls
plot.ppp to make each of the individual plots.

• Otherwise, only one column of marks can be plotted, and the default is which.marks=1 indi-
cating the first column of marks.

Plotting of the window Window(x) is performed by plot.owin. This plot may be modified through
the ... arguments. In particular the extra argument border determines the colour of the window,
if the window is not a binary mask.

Plotting of the points themselves is performed by the function points, except for the case of contin-
uous marks, where it is performed by symbols. Their plotting behaviour may be modified through
the ... arguments.

The argument chars determines the plotting character or characters used to display the points (in
all cases except for the case of continuous marks). For an unmarked point pattern, this should be a
single integer or character determining a plotting character (see par("pch")). For a multitype point
pattern, chars should be a vector of integers or characters, of the same length as levels(x$marks),
and then the ith level or type will be plotted using character chars[i].

If chars is absent, but there is an extra argument pch, then this will determine the plotting character
for all points.

The argument cols determines the colour or colours used to display the points. For an unmarked
point pattern, cols should be a character string determining a colour. For a multitype point pattern,
cols should be a character vector, of the same length as levels(marks(x)): that is, there is one
colour for each possible mark value. The ith level or type will be plotted using colour cols[i]. For
a point pattern with continuous marks, cols can be either a character string or a character vector
specifying colour values: the range of mark values will be mapped to the specified colours.

If cols is absent, the colours used to plot the points may be determined by the extra argument fg
(for multitype point patterns) or the extra argument col (for all other cases). Note that specifying
col will also apply this colour to the window itself.

The default colour for the points is a semi-transparent grey, if this is supported by the plot de-
vice. This behaviour can be suppressed (so that the default colour is non-transparent) by setting
spatstat.options(transparent=FALSE).

The arguments maxsize, meansize and markscale incompatible. They control the physical size
of the circles and squares which represent the marks in a point pattern with continuous marks. The
size of a circle is defined as its diameter; the size of a square is its side length. If markscale is
given, then a mark value of m is plotted as a circle of diameter m * markscale (if m is positive) or
a square of side abs(m) * markscale (if m is negative). If maxsize is given, then the largest mark
in absolute value, mmax=max(abs(marks(x))), will be scaled to have physical size maxsize. If
meansize is given, then the average absolute mark value, mmean=mean(abs(marks(x))), will be
scaled to have physical size meansize.

The user can set the default values of these plotting parameters using spatstat.options("par.points").

plot.ppp 1157

To zoom in (to view only a subset of the point pattern at higher magnification), use the graphical
arguments xlim and ylim to specify the rectangular field of view.

The value returned by this plot function is an object of class "symbolmap" representing the mapping
from mark values to graphical symbols. See symbolmap. It can be used to make a suitable legend,
or to ensure that two plots use the same graphics map.

Value

(Invisible) object of class "symbolmap" giving the correspondence between mark values and plot-
ting characters.

Removing White Space Around The Plot

A frequently-asked question is: How do I remove the white space around the plot? Currently
plot.ppp uses the base graphics system of R, so the space around the plot is controlled by parame-
ters to par. To reduce the white space, change the parameter mar. Typically, par(mar=rep(0.5,4))
is adequate, if there are no annotations or titles outside the window.

Drawing coordinate axes and axis labels

Coordinate axes and axis labels are not drawn, by default. To draw coordinate axes, set axes=TRUE.
To draw axis labels, set ann=TRUE and give values to the arguments xlab and ylab. See the Exam-
ples. Only the default style of axis is supported; for more control over the placement and style of
axes, use the graphics commands axis and mtext.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppp.object, plot, par, points, text.ppp, plot.owin, symbols.

See also the command iplot in the spatstat.gui package.

Examples

plot(cells)

plot(cells, pch=16)

make the plotting symbols larger (for publication at reduced scale)
plot(cells, cex=2)

set it in spatstat.options
oldopt <- spatstat.options(par.points=list(cex=2))
plot(cells)
spatstat.options(oldopt)

multitype

1158 plot.ppp

plot(lansing)

marked by a real number
plot(longleaf)

just plot the points
plot(longleaf, use.marks=FALSE)
plot(unmark(longleaf)) # equivalent

point pattern with multiple marks
plot(finpines)
plot(finpines, which.marks="height")

controlling COLOURS of points
plot(cells, cols="blue")
plot(lansing, cols=c("black", "yellow", "green",

"blue","red","pink"))
plot(longleaf, fg="blue")

make window purple
plot(lansing, border="purple")
make everything purple
plot(lansing, border="purple", cols="purple", col.main="purple",

leg.args=list(col.axis="purple"))

controlling PLOT CHARACTERS for multitype pattern
plot(lansing, chars = 11:16)
plot(lansing, chars = c("o","h","m",".","o","o"))

multitype pattern mapped to symbols
plot(amacrine, shape=c("circles", "squares"), size=0.04)
plot(amacrine, shape="arrows", direction=c(0,90), size=0.07)

plot trees as trees!
plot(lansing, shape="arrows", direction=90, cols=1:6)

controlling MARK SCALE for pattern with numeric marks
plot(longleaf, markscale=0.1)
plot(longleaf, maxsize=5)
plot(longleaf, meansize=2)

draw circles of diameter equal to nearest neighbour distance
plot(cells %mark% nndist(cells), markscale=1, legend=FALSE)

inspecting the symbol map
v <- plot(amacrine)
v

variable colours ('cols' not 'col')
plot(longleaf, cols=function(x) ifelse(x < 30, "red", "black"))

re-using the same mark scale
a <- plot(longleaf)

plot.pppmatching 1159

juveniles <- longleaf[marks(longleaf) < 30]
plot(juveniles, symap=a)

numerical marks mapped to symbols of fixed size with variable colour
ra <- range(marks(longleaf))
colmap <- colourmap(terrain.colors(20), range=ra)
filled plot characters are the codes 21-25
fill colour is indicated by 'bg'
sy <- symbolmap(pch=21, bg=colmap, range=ra)
plot(longleaf, symap=sy)

or more compactly..
plot(longleaf, bg=terrain.colors(20), pch=21, cex=1)

clipping
plot(humberside)
B <- owin(c(4810, 5190), c(4180, 4430))
plot(B, add=TRUE, border="red")
plot(humberside, clipwin=B, main="Humberside (clipped)")

coordinate axes and labels
plot(humberside, axes=TRUE)
plot(humberside, ann=TRUE, xlab="Easting", ylab="Northing")
plot(humberside, axes=TRUE, ann=TRUE, xlab="Easting", ylab="Northing")

plot.pppmatching Plot a Point Matching

Description

Plot an object of class "pppmatching" which represents a matching of two planar point patterns.

Usage

S3 method for class 'pppmatching'
plot(x, addmatch = NULL, main = NULL, ..., adjust = 1)

Arguments

x Point pattern matching object (class "pppmatching") to be plotted.

addmatch Optional. A matrix indicating additional pairs of points that should be matched.
See Details.

main Main title for the plot.

... Additional arguments passed to other plot methods.

adjust Adjustment factor for the widths of line segments. A positive number.

1160 plot.profilepl

Details

The object x represents a matching found between two point patterns X and Y. The matching may
be incomplete. See pppmatching.object for further description.

This function plots the matching by drawing the two point patterns X and Y as red and blue dots
respectively, and drawing line segments between each pair of matched points. The width of the line
segments is proportional to the strength of matching. The proportionality constant can be adjusted
using the argument adjust.

Additional graphics arguments ... control the plotting of the window (and are passed to plot.owin)
and the plotting of the line segments (and are passed to plot.psp, plot.linim and ultimately to
the base graphics function polygon).

The argument addmatch is for use mainly by developers to study algorithms which update the
matching. If addmatch is given, it should be a matrix with dimensions npoints(X) * npoints(Y).
If addmatch[i,j] > 0 then a light grey line segment will be drawn between X[i] and Y[j.

Value

Null.

Author(s)

Dominic Schuhmacher and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

pppmatching.object

Examples

X <- runifpoint(7)
Y <- runifpoint(7)
am <- r2dtable(1, rep(10,7), rep(10,7))[[1]]/10
m2 <- pppmatching(X, Y, am)
plot(m2, adjust=0.3)

plot.profilepl Plot Profile Likelihood

Description

Plot the profile (pseudo) likelihood against the irregular parameters, for a model that was fitted by
maximum profile (pseudo)likelihood.

plot.profilepl 1161

Usage

S3 method for class 'profilepl'
plot(x, ..., add = FALSE, main = NULL, tag = TRUE,

coeff = NULL, xvariable = NULL,
col = 1, lty = 1, lwd = 1,
col.opt = "green", lty.opt = 3, lwd.opt = 1)

Arguments

x A point process model fitted by maximum profile (pseudo)likelihood. Object of
class "profilepl", obtained from profilepl.

... Additional plot arguments passed to plot.default and lines.
add Logical. If TRUE, the plot is drawn over the existing plot.
main Optional. Main title for the plot. A character string or character vector.
tag Logical value. If TRUE (the default), when the plot contains multiple curves

corresponding to different values of a parameter, each curve will be labelled
with the values of the irregular parameter.

coeff Optional. If this is given, it should be a character string matching the name of
one of the fitted model coefficients. This coefficient will then be plotted on the
vertical axis.

xvariable Optional. The name of the irregular parameter that should be plotted along the
horizontal axis. The default is the first irregular parameter.

col,lty,lwd Graphical parameters (colour, line type, line width) for the curves on the plot.
col.opt, lty.opt, lwd.opt

Graphical parameters for indicating the optimal parameter value.

Details

This is the plot method for the class "profilepl" of fitted point process models obtained by
maximising the profile likelihood or profile pseudolikelihood.

The default behaviour is to plot the profile likelihood or profile pseudolikelihood on the vertical
axis, against the value of the irregular parameter on the horizontal axis.

If there are several irregular parameters, then one of them is plotted on the horizontal axis, and the
plot consists of many different curves, corresponding to different values of the other parameters.
The parameter to be plotted on the horizontal axis is specified by the argument xvariable; the
default is to use the parameter that was listed first in the original call to profilepl.

If coeff is given, it should be the name of one of the fitted model coefficients names(coef(as.ppm(x))).
The fitted value of that coefficient is plotted on the vertical axis.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

1162 plot.psp

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

profilepl

Examples

rstep <- if(interactive()) 0.005 else 0.02

one irregular parameter
rr <- data.frame(r=seq(0.05,0.15, by=rstep))
ps <- profilepl(rr, Strauss, cells)
plot(ps) # profile pseudolikelihood
plot(ps, coeff="Interaction") # fitted interaction coefficient log(gamma)

two irregular parameters
rs <- expand.grid(r=seq(0.05,0.15, by=rstep),sat=1:3)
pg <- profilepl(rs, Geyer, cells)
plot(pg) # profile pseudolikelihood against r for each value of 'sat'
plot(pg, coeff="Interaction")
plot(pg, xvariable="sat", col=ifelse(r < 0.1, "red", "green"))

plot.psp plot a Spatial Line Segment Pattern

Description

Plot a two-dimensional line segment pattern

Usage

S3 method for class 'psp'
plot(x, ..., main, add=FALSE,

show.all=!add, show.window=show.all,
which.marks=1,
style=c("colour", "width", "none"),
col=NULL,
ribbon=show.all,
ribsep=0.15, ribwid=0.05, ribn=1024,
do.plot=TRUE)

plot.psp 1163

Arguments

x The line segment pattern to be plotted. An object of class "psp", or data which
can be converted into this format by as.psp().

... extra arguments that will be passed to the plotting functions segments (to plot
the segments) and plot.owin (to plot the observation window).

main Character string giving a title for the plot.

add Logical. If TRUE, the current plot is not erased; the segments are plotted on top
of the current plot, and the window is not plotted (by default).

show.all Logical value specifying whether to plot everything including the window, main
title, and colour ribbon.

show.window Logical value specifying whether to plot the window.

which.marks Index determining which column of marks to use, if the marks of x are a data
frame. A character string or an integer. Defaults to 1 indicating the first column
of marks.

style Character string specifying how to represent the mark value of each segment.
If style="colour" (the default) segments are coloured according to their mark
value. If style="width", segments are drawn with a width proportional to their
mark value. If style="none" the mark values are ignored.

col Colour information. If style="width" or style="none", then col should be
a single value, interpretable as a colour; the line segments will be plotted using
this colour. If style="colour" and x has marks, then the mark values will be
mapped to colours using the information in col, which should be a colour map
(object of class "colourmap") or a vector of colour values.

ribbon Logical flag indicating whether to display a ribbon showing the colour map (in
which mark values are associated with colours) when style="colour".

ribsep Factor controlling the space between the ribbon and the image.

ribwid Factor controlling the width of the ribbon.

ribn Number of different values to display in the ribbon.

do.plot Logical value indicating whether to actually perform the plot.

Details

This is the plot method for line segment pattern datasets (of class "psp", see psp.object). It plots
both the observation window Window(x) and the line segments themselves.

Plotting of the window Window(x) is performed by plot.owin. This plot may be modified through
the ... arguments.

Plotting of the segments themselves is performed by the standard R function segments. Its plotting
behaviour may also be modified through the ... arguments.

If the segments do not have marks (i.e. if marks(x) = NULL) then

There are three different styles of plotting which apply when the segments have marks (i.e. when
marks(x) is not null):

1164 plot.quad

style="colour" (the default): Segments are plotted with different colours depending on their
mark values. The colour map, associating mark values with colours, is determined by the
argument col. The colour map will be displayed as a vertical colour ribbon to the right of the
plot, if ribbon=TRUE (the default).

style="width": Segments are plotted with different widths depending on their mark values. The
width map, associating mark values with line widths, is determined by leg.scale (see plot.linim).
The width map will be displayed as a vertical stack of lines to the right of the plot, if legend=TRUE
(the default).

style="none": Mark information is ignored.

If marks(x) is a data frame, the default is to use the first column of marks(x) to determine the
colours. To specify another column, use the argument which.marks.

Value

(Invisibly) a colour map object specifying the association between marks and colours, if any. The
return value also has an attribute "bbox" giving a bounding box for the plot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

psp.object, plot, par, plot.owin, text.psp, symbols

Examples

X <- psp(runif(20), runif(20), runif(20), runif(20), window=owin())
plot(X)
plot(X, lwd=3)
lettuce <- sample(letters[1:4], 20, replace=TRUE)
marks(X) <- data.frame(A=1:20, B=factor(lettuce))
plot(X)
plot(X, which.marks="B")
plot(X, style="width", col="grey")

plot.quad Plot a Spatial Quadrature Scheme

Description

Plot a two-dimensional spatial quadrature scheme.

Usage

S3 method for class 'quad'
plot(x, ..., main, add=FALSE, dum=list(), tiles=FALSE)

plot.quad 1165

Arguments

x The spatial quadrature scheme to be plotted. An object of class "quad".
... extra arguments controlling the plotting of the data points of the quadrature

scheme.
main text to be displayed as a title above the plot.
add Logical value indicating whether the graphics should be added to the current

plot if there is one (add=TRUE) or whether a new plot should be initialised
(add=FALSE, the default).

dum list of extra arguments controlling the plotting of the dummy points of the quadra-
ture scheme. See below.

tiles Logical value indicating whether to display the tiles used to compute the quadra-
ture weights.

Details

This is the plot method for quadrature schemes (objects of class "quad", see quad.object).

First the data points of the quadrature scheme are plotted (in their observation window) using
plot.ppp with any arguments specified in ...

Then the dummy points of the quadrature scheme are plotted using plot.ppp with any arguments
specified in dum.

By default the dummy points are superimposed onto the plot of data points. This can be overridden
by including the argument add=FALSE in the list dum as shown in the examples. In this case the data
and dummy point patterns are plotted separately.

See par and plot.ppp for other possible arguments controlling the plots.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, plot.ppp, par

Examples

data(nztrees)
Q <- quadscheme(nztrees)

plot(Q, main="NZ trees: quadrature scheme")

oldpar <- par(mfrow=c(2,1))
plot(Q, main="NZ trees", dum=list(add=FALSE))
par(oldpar)

1166 plot.quadratcount

plot.quadratcount Plot Quadrat Counts

Description

Given a table of quadrat counts for a spatial point pattern, plot the quadrats which were used, and
display the quadrat count as text in the centre of each quadrat.

Usage

S3 method for class 'quadratcount'
plot(x, ..., add = FALSE,

entries = as.vector(t(as.table(x))),
dx = 0, dy = 0, show.tiles = TRUE,
textargs = list())

Arguments

x Object of class "quadratcount" produced by the function quadratcount.

... Additional arguments passed to plot.tess to plot the quadrats.

add Logical. Whether to add the graphics to an existing plot.

entries Vector of numbers to be plotted in each quadrat. The default is to plot the quadrat
counts.

dx,dy Horizontal and vertical displacement of text relative to centroid of quadrat.

show.tiles Logical value indicating whether to plot the quadrats.

textargs List containing extra arguments passed to text.default to control the annota-
tion.

Details

This is the plot method for the objects of class "quadratcount" that are produced by the function
quadratcount. Given a spatial point pattern, quadratcount divides the observation window into
disjoint tiles or quadrats, counts the number of points in each quadrat, and stores the result as a
contingency table which also belongs to the class "quadratcount".

First the quadrats are plotted (provided show.tiles=TRUE, the default). This display can be con-
trolled by passing additional arguments ... to plot.tess.

Then the quadrat counts are printed using text.default. This display can be controlled using the
arguments dx,dy and textargs.

Value

Null.

plot.quadrattest 1167

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quadratcount, plot.tess, text.default, plot.quadrattest.

Examples

plot(quadratcount(swedishpines, 5))

plot.quadrattest Display the result of a quadrat counting test.

Description

Given the result of a quadrat counting test, graphically display the quadrats that were used, the
observed and expected counts, and the residual in each quadrat.

Usage

S3 method for class 'quadrattest'
plot(x, ..., textargs=list())

Arguments

x Object of class "quadrattest" containing the result of quadrat.test.

... Additional arguments passed to plot.tess to control the display of the quadrats.

textargs List of additional arguments passed to text.default to control the appearance
of the text.

Details

This is the plot method for objects of class "quadrattest". Such an object is produced by
quadrat.test and represents the result of a χ2 test for a spatial point pattern.

The quadrats are first plotted using plot.tess. Then in each quadrat, the observed and expected
counts and the Pearson residual are displayed as text using text.default. Observed count is
displayed at top left; expected count at top right; and Pearson residual at bottom.

Value

Null.

1168 plot.rppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quadrat.test, plot.tess, text.default, plot.quadratcount

Examples

plot(quadrat.test(swedishpines, 3))

plot.rppm Plot a Recursively Partitioned Point Process Model

Description

Given a model which has been fitted to point pattern data by recursive partitioning, plot the partition
tree or the fitted intensity.

Usage

S3 method for class 'rppm'
plot(x, ..., what = c("tree", "spatial"), treeplot=NULL)

Arguments

x Fitted point process model of class "rppm" produced by the function rppm.

what Character string (partially matched) specifying whether to plot the partition tree
or the fitted intensity.

... Arguments passed to plot.rpart and text.rpart (if what="tree") or passed
to plot.im (if what="spatial") controlling the appearance of the plot.

treeplot Optional. A function to be used to plot and label the partition tree, replacing the
two functions plot.rpart and text.rpart.

Details

If what="tree" (the default), the partition tree will be plotted using plot.rpart, and labelled using
text.rpart.

If the argument treeplot is given, then plotting and labelling will be performed by treeplot
instead. A good choice is the function prp in package rpart.plot.

If what="spatial", the predicted intensity will be computed using predict.rppm, and this inten-
sity will be plotted as an image using plot.im.

plot.scan.test 1169

Value

If what="tree", a list containing x and y coordinates of the plotted nodes of the tree. If what="spatial",
the return value of plot.im.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

rppm

Examples

Murchison gold data
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
#
fit <- rppm(gold ~ dfault + greenstone, data=mur)
#
opa <- par(mfrow=c(1,2))
plot(fit)
plot(fit, what="spatial")
par(opa)

plot.scan.test Plot Result of Scan Test

Description

Computes or plots an image showing the likelihood ratio test statistic for the scan test, or the optimal
circle radius.

Usage

S3 method for class 'scan.test'
plot(x, ..., what=c("statistic", "radius"),

do.window = TRUE)

S3 method for class 'scan.test'
as.im(X, ..., what=c("statistic", "radius"))

1170 plot.scan.test

Arguments

x,X Result of a scan test. An object of class "scan.test" produced by scan.test.

... Arguments passed to plot.im to control the appearance of the plot.

what Character string indicating whether to produce an image of the (profile) like-
lihood ratio test statistic (what="statistic", the default) or an image of the
optimal value of circle radius (what="radius").

do.window Logical value indicating whether to plot the original window of the data as well.

Details

These functions extract, and plot, the spatially-varying value of the likelihood ratio test statistic
which forms the basis of the scan test.

If the test result X was based on circles of the same radius r, then as.im(X) is a pixel image of the
likelihood ratio test statistic as a function of the position of the centre of the circle.

If the test result X was based on circles of several different radii r, then as.im(X) is a pixel image
of the profile (maximum value over all radii r) likelihood ratio test statistic as a function of the
position of the centre of the circle, and as.im(X,what="radius") is a pixel image giving for each
location u the value of r which maximised the likelihood ratio test statistic at that location.

The plot method plots the corresponding image.

Value

The value of as.im.scan.test is a pixel image (object of class "im"). The value of plot.scan.test
is NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

scan.test, scanLRTS

Examples

if(interactive()) {
a <- scan.test(redwood, seq(0.04, 0.1, by=0.01),

method="poisson", nsim=19)
} else {

a <- scan.test(redwood, c(0.05, 0.1), method="poisson", nsim=2)
}
plot(a)
as.im(a)
plot(a, what="radius")

plot.slrm 1171

plot.slrm Plot a Fitted Spatial Logistic Regression

Description

Plots a fitted Spatial Logistic Regression model.

Usage

S3 method for class 'slrm'
plot(x, ..., type = "intensity")

Arguments

x a fitted spatial logistic regression model. An object of class "slrm".

... Extra arguments passed to plot.im to control the appearance of the plot.

type Character string (partially) matching one of "probabilities", "intensity"
or "link".

Details

This is a method for plot for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm).

This function plots the result of predict.slrm.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm, predict.slrm, plot.im

Examples

data(copper)
X <- copper$SouthPoints
Y <- copper$SouthLines
Z <- distmap(Y)
fit <- slrm(X ~ Z)
plot(fit)
plot(fit, type="link")

1172 plot.solist

plot.solist Plot a List of Spatial Objects

Description

Plots a list of two-dimensional spatial objects.

Usage

S3 method for class 'solist'
plot(x, ..., main, arrange=TRUE,

nrows=NULL, ncols=NULL, main.panel=NULL,
mar.panel=c(2,1,1,2), hsep=0, vsep=0,
panel.begin=NULL, panel.end=NULL, panel.args=NULL,
panel.begin.args=NULL, panel.end.args=NULL, panel.vpad = 0.2,
plotcommand="plot",
adorn.left=NULL, adorn.right=NULL, adorn.top=NULL, adorn.bottom=NULL,
adorn.size=0.2, equal.scales=FALSE, halign=FALSE, valign=FALSE)

Arguments

x An object of the class "solist", essentially a list of two-dimensional spatial
datasets.

... Arguments passed to plot when generating each plot panel.

main Overall heading for the plot.

arrange Logical flag indicating whether to plot the objects side-by-side on a single page
(arrange=TRUE) or plot them individually in a succession of frames (arrange=FALSE).

nrows,ncols Optional. The number of rows/columns in the plot layout (assuming arrange=TRUE).
You can specify either or both of these numbers.

main.panel Optional. A character string, or a vector of character strings, or a vector of
expressions, giving the headings for each plot panel.

mar.panel Size of the margins outside each plot panel. A numeric vector of length 4 giving
the bottom, left, top, and right margins in that order. (Alternatively the vector
may have length 1 or 2 and will be replicated to length 4). See the section on
Spacing between plots.

hsep,vsep Additional horizontal and vertical separation between plot panels, expressed in
the same units as mar.panel.

panel.begin,panel.end

Optional. Functions that will be executed before and after each panel is plotted.
See Details.

panel.args Optional. Function that determines different plot arguments for different panels.
See Details.

panel.begin.args

Optional. List of additional arguments for panel.begin when it is a function.

plot.solist 1173

panel.end.args Optional. List of additional arguments for panel.end when it is a function.

panel.vpad Amount of extra vertical space that should be allowed for the title of each panel,
if a title will be displayed. Expressed as a fraction of the height of the panel.
Applies only when equal.scales=FALSE (the default).

plotcommand Optional. Character string containing the name of the command that should be
executed to plot each panel.

adorn.left,adorn.right,adorn.top,adorn.bottom

Optional. Functions (with no arguments) that will be executed to generate ad-
ditional plots at the margins (left, right, top and/or bottom, respectively) of the
array of plots.

adorn.size Relative width (as a fraction of the other panels’ widths) of the margin plots.

equal.scales Logical value indicating whether the components should be plotted at (approxi-
mately) the same physical scale.

halign,valign Logical values indicating whether panels in a column should be aligned to the
same x coordinate system (halign=TRUE) and whether panels in a row should be
aligned to the same y coordinate system (valign=TRUE). These are applicable
only if equal.scales=TRUE.

Details

This is the plot method for the class "solist".

An object of class "solist" represents a list of two-dimensional spatial datasets. This is the plot
method for such objects.

In the spatstat package, various functions produce an object of class "solist". These objects can
be plotted in a nice arrangement using plot.solist. See the Examples.

The argument panel.args determines extra graphics parameters for each panel. It should be a
function that will be called as panel.args(i) where i is the panel number. Its return value should
be a list of graphics parameters that can be passed to the relevant plot method. These parameters
override any parameters specified in the ... arguments.

The arguments panel.begin and panel.end determine graphics that will be plotted before and af-
ter each panel is plotted. They may be objects of some class that can be plotted with the generic plot
command. Alternatively they may be functions that will be called as panel.begin(i,y,main=main.panel[i])
and panel.end(i,y,add=TRUE) where i is the panel number and y = x[[i]].

If all entries of x are pixel images, the function image.listof is called to control the plotting. The
arguments equal.ribbon and col can be used to determine the colour map or maps applied.

If equal.scales=FALSE (the default), then the plot panels will have equal height on the plot device
(unless there is only one column of panels, in which case they will have equal width on the plot
device). This means that the objects are plotted at different physical scales, by default.

If equal.scales=TRUE, then the dimensions of the plot panels on the plot device will be propor-
tional to the spatial dimensions of the corresponding components of x. This means that the objects
will be plotted at approximately equal physical scales. If these objects have very different spatial
sizes, the plot command could fail (when it tries to plot the smaller objects at a tiny scale), with an
error message that the figure margins are too large.

The objects will be plotted at exactly equal physical scales, and exactly aligned on the device, under
the following conditions:

1174 plot.solist

• every component of x is a spatial object whose position can be shifted by shift;

• panel.begin and panel.end are either NULL or they are spatial objects whose position can
be shifted by shift;

• adorn.left, adorn.right, adorn.top and adorn.bottom are all NULL.

Another special case is when every component of x is an object of class "fv" representing a func-
tion. If equal.scales=TRUE then all these functions will be plotted with the same axis scales (i.e.
with the same xlim and the same ylim).

Value

Null.

Spacing between plots

The spacing between individual plots is controlled by the parameters mar.panel, hsep and vsep.

If equal.scales=FALSE, the plot panels are logically separate plots. The margins for each panel
are determined by the argument mar.panel which becomes the graphics parameter mar described
in the help file for par. One unit of mar corresponds to one line of text in the margin. If hsep or
vsep are present, mar.panel is augmented by c(vsep,hsep,vsep,hsep)/2.

If equal.scales=TRUE, all the plot panels are drawn in the same coordinate system which repre-
sents a physical scale. The unit of measurement for mar.panel[1,3] is one-sixth of the greatest
height of any object plotted in the same row of panels, and the unit for mar.panel[2,4] is one-
sixth of the greatest width of any object plotted in the same column of panels. If hsep or vsep are
present, they are interpreted in the same units as mar.panel[2] and mar.panel[1] respectively.

Error messages

If the error message ‘Figure margins too large’ occurs, this generally means that one of the objects
had a much smaller physical scale than the others. Ensure that equal.scales=FALSE and increase
the values of mar.panel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

plot.anylist, contour.listof, image.listof, density.splitppp

Examples

Intensity estimate of multitype point pattern
plot(D <- density(split(amacrine)))
plot(D, main="", equal.ribbon=TRUE,

panel.end=function(i,y,...){contour(y, ...)})

plot.splitppp 1175

plot.splitppp Plot a List of Point Patterns

Description

Plots a list of point patterns.

Usage

S3 method for class 'splitppp'
plot(x, ..., main)

Arguments

x A named list of point patterns, typically obtained from split.ppp.

... Arguments passed to plot.listof which control the layout of the plot panels,
their appearance, and the plot behaviour in individual plot panels.

main Optional main title for the plot.

Details

This is the plot method for the class "splitppp". It is typically used to plot the result of the
function split.ppp.

The argument x should be a named list of point patterns (objects of class "ppp", see ppp.object).
Each of these point patterns will be plotted in turn using plot.ppp.

Plotting is performed by plot.listof.

Value

Null.

Error messages

If the error message ‘Figure margins too large’ occurs, ensure that equal.scales=FALSE and in-
crease the values of mar.panel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.listof for arguments controlling the plot.

split.ppp, plot.ppp, ppp.object.

1176 plot.ssf

Examples

Multitype point pattern
plot(split(amacrine))
plot(split(amacrine), main="",

panel.begin=function(i, y, ...) { plot(density(y), ribbon=FALSE, ...) })

plot.ssf Plot a Spatially Sampled Function

Description

Plot a spatially sampled function object.

Usage

S3 method for class 'ssf'
plot(x, ...,

how = c("smoothed", "nearest", "points"),
style = c("image", "contour", "imagecontour"),
sigma = NULL, contourargs=list())

S3 method for class 'ssf'
image(x, ...)

S3 method for class 'ssf'
contour(x, ..., main, sigma = NULL)

Arguments

x Spatially sampled function (object of class "ssf").

... Arguments passed to image.default or plot.ppp to control the plot.

how Character string determining whether to display the function values at the data
points (how="points"), a smoothed interpolation of the function (how="smoothed"),
or the function value at the nearest data point (how="nearest").

style Character string indicating whether to plot the smoothed function as a colour
image, a contour map, or both.

contourargs Arguments passed to contour.default to control the contours, if style="contour"
or style="imagecontour".

sigma Smoothing bandwidth for smooth interpolation.

main Optional main title for the plot.

plot.studpermutest 1177

Details

These are methods for the generic plot, image and contour for the class "ssf".

An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a
finite set of points.

For plot.ssf there are three types of display. If how="points" the exact function values will be
displayed as circles centred at the locations where they were computed. If how="smoothed" (the
default) these values will be kernel-smoothed using Smooth.ppp and displayed as a pixel image.
If how="nearest" the values will be interpolated by nearest neighbour interpolation using nnmark
and displayed as a pixel image.

For image.ssf and contour.ssf the values are kernel-smoothed before being displayed.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A. (2017) Local composite likelihood for spatial point processes. Spatial Statistics 22,
261–295.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

ssf

Examples

a <- ssf(cells, nndist(cells, k=1:3))
plot(a, how="points")
plot(a, how="smoothed")
plot(a, how="nearest")

plot.studpermutest Plot a Studentised Permutation Test

Description

Plot the result of the studentised permutation test.

1178 plot.studpermutest

Usage

S3 method for class 'studpermutest'
plot(x, fmla, ...,

lty = NULL, col = NULL, lwd = NULL,
lty.theo = NULL, col.theo = NULL, lwd.theo = NULL,
lwd.mean = if (meanonly) 1 else NULL,
lty.mean = lty, col.mean = col,
separately = FALSE, meanonly = FALSE,
main = if (meanonly) "group means" else NULL,
xlim = NULL, ylim = NULL, ylab = NULL,
legend = !add, legendpos = "topleft", lbox = FALSE, add = FALSE)

Arguments

x An object of class "studpermutest" generated by studpermu.test and rep-
resenting the result of a studentised permutation test for spatial point pattern
data.

fmla Plot formula used in plot.fv.

... Additional graphical arguments passed to plot.fv.

lty,col,lwd Line type, colour, and line width of the curves plotting the summary function
for each point pattern in the original data. Either a single value or a vector of
length equal to the number of point patterns.

lty.theo,col.theo,lwd.theo

Line type, colour, and line width of the curve representing the theoretical value
of the summary function.

lty.mean,col.mean,lwd.mean

Line type, colour, and line width (as a multiple of lwd) of the curve representing
the group mean of the summary function.

separately Logical value indicating whether to plot each group of data in a separate panel.

meanonly Logical value indicating whether to plot only the group means of the summary
function.

main Character string giving a main title for the plot.

xlim,ylim Numeric vectors of length 2 giving the limits for the x and y coordinates of the
plot or plots.

ylab Character string or expression to be used for the label on the y axis.

legend Logical value indicating whether to plot a legend explaining the meaning of each
curve.

legendpos Position of legend. See plot.fv.

lbox Logical value indicating whether to plot a box around the plot.

add Logical value indicating whether the plot should be added to the existing plot
(add=TRUE) or whether a new frame should be created (add=FALSE, the default).

plot.symbolmap 1179

Details

This is the plot method for objects of class "studpermutest" which represent the result of a stu-
dentised permutation test applied to several point patterns. The test is performed by studpermu.test.

The plot shows the summary functions for each point pattern, coloured according to group. Op-
tionally it can show the different groups in separate plot panels, or show only the group means in a
single panel.

Value

Null.

Author(s)

Ute Hahn.

Modified for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner
<r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

studpermu.test

Examples

np <- if(interactive()) 99 else 19
testpyramidal <- studpermu.test(pyramidal, Neurons ~ group, nperm=np)
plot(testpyramidal)
plot(testpyramidal, meanonly=TRUE)
plot(testpyramidal, col.theo=8, lwd.theo=4, lty.theo=1)
plot(testpyramidal, . ~ pi * r^2)
op <- par(mfrow=c(1,3))
plot(testpyramidal, separately=TRUE)
plot(testpyramidal, separately=TRUE, col=2, lty=1, lwd.mean=2, col.mean=4)
par(op)

plot.symbolmap Plot a Graphics Symbol Map

Description

Plot a representation of a graphics symbol map, similar to a plot legend.

Usage

S3 method for class 'symbolmap'
plot(x, ..., main, xlim = NULL, ylim = NULL,

vertical = FALSE,
side = c("bottom", "left", "top", "right"),
annotate = TRUE, labelmap = NULL, add = FALSE,
nsymbols = NULL)

1180 plot.symbolmap

Arguments

x Graphics symbol map (object of class "symbolmap").

... Additional graphics arguments passed to points, symbols or axis.

main Main title for the plot. A character string.

xlim,ylim Coordinate limits for the plot. Numeric vectors of length 2.

vertical Logical. Whether to plot the symbol map in a vertical orientation.

side Character string specifying the position of the text that annotates the symbols.

annotate Logical. Whether to annotate the symbols with labels.

labelmap Transformation of the labels. A function or a scale factor which will be applied
to the data values corresponding to the plotted symbols.

add Logical value indicating whether to add the plot to the current plot (add=TRUE)
or to initialise a new plot.

nsymbols Optional. The number of symbols that should be displayed. (This may not be
exactly obeyed.)

Details

A graphics symbol map is an association between data values and graphical symbols.

This command plots the graphics symbol map itself, in the style of a plot legend.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

symbolmap to create a symbol map.

invoke.symbolmap to apply the symbol map to some data and plot the resulting symbols.

Examples

g <- symbolmap(inputs=letters[1:10], pch=11:20)
plot(g)

g2 <- symbolmap(range=c(-1,1),
shape=function(x) ifelse(x > 0, "circles", "squares"),
size=function(x) sqrt(ifelse(x > 0, x/pi, -x)),
bg = function(x) ifelse(abs(x) < 1, "red", "black"))

plot(g2, vertical=TRUE, side="left", col.axis="blue", cex.axis=2)

plot.tess 1181

plot.tess Plot a Tessellation

Description

Plots a tessellation, with optional labels for the tiles, and optional filled colour in each tile.

Usage

S3 method for class 'tess'
plot(x, ..., main, add=FALSE,

show.all=!add,
border=NULL,
do.plot=TRUE,
do.labels=FALSE,
labels=tilenames(x), labelargs=list(),
do.col=FALSE,
values=marks(x),
multiplot=TRUE,
col=NULL, ribargs=list())

Arguments

x Tessellation (object of class "tess") to be plotted.

... Arguments controlling the appearance of the plot.

main Heading for the plot. A character string.

add Logical. Determines whether the tessellation plot is added to the existing plot.

show.all Logical value indicating whether to plot everything including the main title and
the observation window of x.

border Colour of the tile boundaries. A character string or other value specifying a
single colour. Ignored for pixel tessellations.

do.plot Logical value indicating whether to actually perform the plot.

do.labels Logical value indicating whether to show a text label for each tile of the tessel-
lation.

labels Character vector of labels for the tiles.

labelargs List of arguments passed to text.default to control display of the text labels.

do.col Logical value indicating whether tiles should be filled with colour. Always TRUE
for pixel tessellations.

values A vector of numerical values (or a factor, or vector of character strings) that will
be associated with each tile of the tessellation and which determine the colour of
the tile. The default is the marks of x. If the tessellation is not marked, or if the
argument values=NULL is given, the default is a factor giving the tile identifier.

multiplot Logical value giving permission to display multiple plot panels. This applies
when do.col=TRUE and ncol(values) > 1.

1182 plot.tess

col A vector of colours for each of the values, or a colourmap that maps these
values to colours.

ribargs List of additional arguments to control the plot of the colour map, if do.col=TRUE.
See explanation in plot.im.

Details

This is a method for the generic plot function for the class "tess" of tessellations (see tess).

The window of the tessellation is plotted, and then the tiles of the tessellation are plotted in their
correct positions in the window.

Rectangular or polygonal tiles are plotted individually using plot.owin, while a tessellation repre-
sented by a pixel image is plotted using plot.im. The arguments ... control the appearance of the
plot, and are passed to segments, plot.owin or plot.im as appropriate.

If do.col=TRUE, then the tiles of the tessellation are filled with colours determined by the argument
values. By default, these values are the marks associated with each of the tiles. If there is more
than one column of marks or values, then the default behaviour (if multiplot=TRUE) is to display
several plot panels, one for each column of mark values. Then the arguments ... are passed to
plot.solist to determine the arrangement of the panels.

Value

(Invisible) window of class "owin" specifying a bounding box for the plot, or an object of class
"colourmap" specifying the colour map. (In the latter case, the bounding box information is avail-
able as an attribute, and can be extracted using as.owin.)

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

tess

Examples

Rect <- tess(xgrid=0:4,ygrid=0:4)
Diri <- dirichlet(runifpoint(7))
plot(Diri)
plot(Rect, border="blue", lwd=2, lty=2)
plot(Rect, do.col=TRUE, border="white")
plot(Rect, do.col=TRUE, values=runif(16), border="white")
B <- Rect[c(1, 2, 5, 7, 9)]
plot(B, hatch=TRUE)
plot(Diri, do.col=TRUE)
plot(Diri, do.col=TRUE, do.labels=TRUE, labelargs=list(col="white"),

ribbon=FALSE)
v <- as.im(function(x,y){factor(round(5 * (x^2 + y^2)))}, W=owin())
levels(v) <- letters[seq(length(levels(v)))]

plot.textstring 1183

Img <- tess(image=v)
plot(Img)
plot(Img, col=rainbow(11), ribargs=list(las=1))
a <- tile.areas(Diri)
marks(Diri) <- data.frame(area=a, random=runif(7, max=max(a)))
plot(Diri, do.col=TRUE, equal.ribbon=TRUE)

plot.textstring Plot a Text String

Description

Plots an object of class "textstring".

Usage

S3 method for class 'textstring'
plot(x, ..., do.plot = TRUE)

Arguments

x Object of class "textstring" to be plotted. This object is created by the com-
mand textstring.

... Additional graphics arguments passed to text to control the plotting of text.
do.plot Logical value indicating whether to actually plot the text.

Details

The argument x should be an object of class "textstring" created by the command textstring.
This function displays the text using text.

Value

A window (class "owin") enclosing the plotted graphics.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

onearrow, yardstick

Examples

W <- Window(humberside)
te <- textstring(centroid.owin(W), txt="Humberside", cex=2.5)
te
plot(layered(W, te), main="")

1184 plot.texturemap

plot.texturemap Plot a Texture Map

Description

Plot a representation of a texture map, similar to a plot legend.

Usage

S3 method for class 'texturemap'
plot(x, ..., main, xlim = NULL, ylim = NULL,

vertical = FALSE, axis = TRUE,
labelmap = NULL, gap = 0.25,
spacing = NULL, add = FALSE)

Arguments

x Texture map object (class "texturemap").

... Additional graphics arguments passed to add.texture or axis.default.

main Main title for plot.

xlim,ylim Optional vectors of length 2 giving the x and y limits of the plot.

vertical Logical value indicating whether to arrange the texture boxes in a vertical col-
umn (vertical=TRUE or a horizontal row (vertical=FALSE, the default).

axis Logical value indicating whether to plot an axis line joining the texture boxes.

labelmap Optional. A function which will be applied to the data values (the inputs of the
texture map) before they are displayed on the plot.

gap Separation between texture boxes, as a fraction of the width or height of a box.

spacing Argument passed to add.texture controlling the density of lines in a texture.
Expressed in spatial coordinate units.

add Logical value indicating whether to add the graphics to an existing plot (add=TRUE)
or to initialise a new plot (add=FALSE, the default).

Details

A texture map is an association between data values and graphical textures. An object of class
"texturemap" represents a texture map. Such objects are returned from the plotting function
textureplot, and can be created directly by the function texturemap.

This function plot.texturemap is a method for the generic plot for the class "texturemap". It
displays a sample of each of the textures in the texture map, in a separate box, annotated by the data
value which is mapped to that texture.

The arrangement and position of the boxes is controlled by the arguments vertical, xlim, ylim
and gap.

plot.yardstick 1185

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

texturemap, textureplot, add.texture.

Examples

tm <- texturemap(c("First", "Second", "Third"), 2:4, col=2:4)
plot(tm, vertical=FALSE)
abbreviate the labels
plot(tm, labelmap=function(x) substr(x, 1, 2))

plot.yardstick Plot a Yardstick or Scale Bar

Description

Plots an object of class "yardstick".

Usage

S3 method for class 'yardstick'
plot(x, ...,

angle = 20, frac = 1/8,
split = FALSE, shrink = 1/4,
pos = NULL,
txt.args=list(),
txt.shift=c(0,0),
do.plot = TRUE)

Arguments

x Object of class "yardstick" to be plotted. This object is created by the com-
mand yardstick.

... Additional graphics arguments passed to segments to control the appearance of
the line.

angle Angle between the arrows and the line segment, in degrees.

frac Length of arrow as a fraction of total length of the line segment.

1186 plot.yardstick

split Logical. If TRUE, then the line will be broken in the middle, and the text will
be placed in this gap. If FALSE, the line will be unbroken, and the text will be
placed beside the line.

shrink Fraction of total length to be removed from the middle of the line segment, if
split=TRUE.

pos Integer (passed to text) determining the position of the annotation text relative
to the line segment, if split=FALSE. Values of 1, 2, 3 and 4 indicate positions
below, to the left of, above and to the right of the line, respectively.

txt.args Optional list of additional arguments passed to text controlling the appearance
of the text. Examples include adj, srt, col, cex, font.

txt.shift Optional numeric vector of length 2 specifying displacement of the text position
relative to the centre of the yardstick.

do.plot Logical. Whether to actually perform the plot (do.plot=TRUE).

Details

A yardstick or scale bar is a line segment, drawn on any spatial graphics display, indicating the scale
of the plot.

The argument x should be an object of class "yardstick" created by the command yardstick.

Value

A window (class "owin") enclosing the plotted graphics.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

yardstick

Examples

plot(owin(), main="Yardsticks")
ys <- yardstick(as.psp(list(xmid=0.5, ymid=0.1, length=0.4, angle=0),

window=owin(c(0.2, 0.8), c(0, 0.2))),
txt="1 km")

plot(ys)
ys <- shift(ys, c(0, 0.3))
plot(ys, angle=90, frac=0.08)
ys <- shift(ys, c(0, 0.3))
plot(ys, split=TRUE)

points.lpp 1187

points.lpp Draw Points on Existing Plot

Description

For a point pattern on a linear network, this function draws the coordinates of the points only, on
the existing plot display.

Usage

S3 method for class 'lpp'
points(x, ...)

Arguments

x A point pattern on a linear network (object of class "lpp").
... Additional arguments passed to points.default.

Details

This is a method for the generic function points for the class "lpp" of point patterns on a linear
network.

If x is a point pattern on a linear network, then points(x) plots the spatial coordinates of the points
only, on the existing plot display, without plotting the underlying network. It is an error to call this
function if a plot has not yet been initialised.

The spatial coordinates are extracted and passed to points.default along with any extra argu-
ments. Arguments controlling the colours and the plot symbols are interpreted by points.default.
For example, if the argument col is a vector, then the ith point is drawn in the colour col[i].

Value

Null.

Difference from plot method

The more usual way to plot the points is using plot.lpp. For example plot(x) would plot both the
points and the underlying network, while plot(x,add=TRUE) would plot only the points. The in-
terpretation of arguments controlling the colours and plot symbols is different here: they determine
a symbol map, as explained in the help for plot.ppp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.lpp, points.default

1188 pointsOnLines

Examples

plot(Frame(spiders), main="Spiders on a Brick Wall")
points(spiders)

pointsOnLines Place Points Evenly Along Specified Lines

Description

Given a line segment pattern, place a series of points at equal distances along each line segment.

Usage

pointsOnLines(X, eps = NULL, np = 1000, shortok=TRUE)

Arguments

X A line segment pattern (object of class "psp").

eps Spacing between successive points.

np Approximate total number of points (incompatible with eps).

shortok Logical. If FALSE, very short segments (of length shorter than eps) will not
generate any points. If TRUE, a very short segment will be represented by its
midpoint.

Details

For each line segment in the pattern X, a succession of points is placed along the line segment. These
points are equally spaced at a distance eps, except for the first and last points in the sequence.

The spacing eps is measured in coordinate units of X.

If eps is not given, then it is determined by eps = len/np where len is the total length of the
segments in X. The actual number of points will then be slightly larger than np.

Value

A point pattern (object of class "ppp") in the same window as X. The result also has an attribute
called "map" which maps the points to their parent line segments.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp, ppp, runifpointOnLines

Poisson 1189

Examples

X <- psp(runif(20), runif(20), runif(20), runif(20), window=owin())
Y <- pointsOnLines(X, eps=0.05)
plot(X, main="")
plot(Y, add=TRUE, pch="+")

Poisson Poisson Point Process Model

Description

Creates an instance of the Poisson point process model which can then be fitted to point pattern
data.

Usage

Poisson()

Details

The function ppm, which fits point process models to point pattern data, requires an argument
interaction of class "interact" describing the interpoint interaction structure of the model to be
fitted. The appropriate description of the Poisson process is provided by the value of the function
Poisson.

This works for all types of Poisson processes including multitype and nonstationary Poisson pro-
cesses.

Value

An object of class "interact" describing the interpoint interaction structure of the Poisson point
process (namely, there are no interactions).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

ppm, Strauss

1190 polartess

Examples

ppm(nztrees ~1, Poisson())
fit the stationary Poisson process to 'nztrees'
no edge correction needed

lon <- longleaf

longadult <- unmark(subset(lon, marks >= 30))
ppm(longadult ~ x, Poisson())
fit the nonstationary Poisson process
with intensity lambda(x,y) = exp(a + bx)

trees marked by species
lans <- lansing

ppm(lans ~ marks, Poisson())
fit stationary marked Poisson process
with different intensity for each species

Not run:
ppm(lansing ~ marks * polynom(x,y,3), Poisson())

End(Not run)
fit nonstationary marked Poisson process
with different log-cubic trend for each species

polartess Tessellation Using Polar Coordinates

Description

Create a tessellation with tiles defined by polar coordinates (radius and angle).

Usage

polartess(W, ..., nradial = NULL, nangular = NULL,
radii = NULL, angles = NULL,
origin = NULL, sep = "x")

Arguments

W A window (object of class "owin") or anything that can be coerced to a window
using as.owin, such as a point pattern.

... Ignored.

nradial Number of tiles in the radial direction. A single integer. Ignored if radii is
given.

polartess 1191

nangular Number of tiles in the angular coordinate. A single integer. Ignored if angles
is given.

radii The numeric values of the radii, defining the tiles in the radial direction. A nu-
meric vector, of length at least 2, containing nonnegative numbers in increasing
order. The value Inf is permitted.

angles The numeric values of the angles defining the tiles in the angular coordinate.
A numeric vector, of length at least 2, in increasing order, containing angles in
radians.

origin Location to be used as the origin of the polar coordinates. Either a numeric
vector of length 2 giving the spatial location of the origin, or one of the strings
"centroid", "midpoint", "left", "right", "top", "bottom", "topleft",
"bottomleft", "topright" or "bottomright" indicating the location in the
window.

sep Argument passed to intersect.tess specifying the character string to be used
as a separator when forming the names of the tiles.

Details

A tessellation will be formed from tiles defined by intervals in the polar coordinates r (radial dis-
tance from the origin) or θ (angle from the horizontal axis) or both. These tiles look like the cells
on a dartboard.

If the argument radii is given, tiles will be demarcated by circles centred at the origin, with the
specified radii. If radii is absent but nradial is given, then radii will default to a sequence of
nradial+1 radii equally spaced from zero to the maximum possible radius. If neither radii nor
nradial are given, the tessellation will not include circular arc boundaries.

If the argument angles is given, tiles will be demarcated by lines emanating from the origin at the
specified angles. The angular values can be any real numbers; they will be interpreted as angles in
radians modulo 2*pi, but they must be an increasing sequence of numbers. If angles is absent but
nangular is given, then angles will default to a sequence of nangular+1 angles equally spaced
from 0 to 2*pi. If neither angles nor nangular are given, the tessellation will not include linear
boundaries.

Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

intersect.tess

To construct other kinds of tessellations, see tess, quadrats, hextess, venn.tess, dirichlet,
delaunay, quantess and rpoislinetess.

1192 polynom

Examples

Y <- c(2.8, 1.5)
plot(polartess(letterR, nangular=6, radii=(0:4)/2, origin=Y),

do.col=TRUE)

polynom Polynomial in One or Two Variables

Description

This function is used to represent a polynomial term in a model formula. It computes the homoge-
neous terms in the polynomial of degree n in one variable x or two variables x,y.

Usage

polynom(x, ...)

Arguments

x A numerical vector.

... Either a single integer n specifying the degree of the polynomial, or two argu-
ments y,n giving another vector of data y and the degree of the polynomial.

Details

This function is typically used inside a model formula in order to specify the most general possible
polynomial of order n involving one numerical variable x or two numerical variables x,y.

It is equivalent to poly(,raw=TRUE).

If only one numerical vector argument x is given, the function computes the vectors x^k for k =
1,2,...,n. These vectors are combined into a matrix with n columns.

If two numerical vector arguments x,y are given, the function computes the vectors x^k * y^m for k
>= 0 and m >= 0 satisfying 0 < k + m <= n. These vectors are combined into a matrix with one column
for each homogeneous term.

Value

A numeric matrix, with rows corresponding to the entries of x, and columns corresponding to the
terms in the polynomial.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

poly, harmonic

pool 1193

Examples

x <- 1:4
y <- 10 * (0:3)
polynom(x, 3)
polynom(x, y, 3)

pool Pool Data

Description

Pool the data from several objects of the same class.

Usage

pool(...)

Arguments

... Objects of the same type.

Details

The function pool is generic. There are methods for several classes, listed below.

pool is used to combine the data from several objects of the same type, and to compute statistics
based on the combined dataset. It may be used to pool the estimates obtained from replicated
datasets. It may also be used in high-performance computing applications, when the objects ...
have been computed on different processors or in different batch runs, and we wish to combine
them.

Value

An object of the same class as the arguments

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pool.envelope, pool.fasp, pool.rat, pool.fv

1194 pool.anylist

pool.anylist Pool Data from a List of Objects

Description

Pool the data from the objects in a list.

Usage

S3 method for class 'anylist'
pool(x, ...)

Arguments

x A list, belonging to the class "anylist", containing objects that can be pooled.

... Optional additional objects which can be pooled with the elements of x.

Details

The function pool is generic. Its purpose is to combine data from several objects of the same type
(typically computed from different datasets) into a common, pooled estimate.

The function pool.anyist is the method for the class "anylist". It is used when the objects to be
pooled are given in a list x.

Each of the elements of the list x, and each of the subsequent arguments ... if provided, must be
an object of the same class.

Value

An object of the same class as each of the entries in x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

anylist, pool.

Examples

Keach <- anylapply(waterstriders, Kest, ratio=TRUE, correction="iso")
K <- pool(Keach)

pool.envelope 1195

pool.envelope Pool Data from Several Envelopes

Description

Pool the simulation data from several simulation envelopes (objects of class "envelope") and com-
pute a new envelope.

Usage

S3 method for class 'envelope'
pool(..., savefuns=FALSE, savepatterns=FALSE)

Arguments

... Objects of class "envelope".

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

Details

The function pool is generic. This is the method for the class "envelope" of simulation envelopes.
It is used to combine the simulation data from several simulation envelopes and to compute an
envelope based on the combined data.

Each of the arguments ... must be an object of class "envelope". These envelopes must be
compatible, in that they are envelopes for the same function, and were computed using the same
options.

• In normal use, each envelope object will have been created by running the command envelope
with the argument savefuns=TRUE. This ensures that each object contains the simulated data
(summary function values for the simulated point patterns) that were used to construct the
envelope.
The simulated data are extracted from each object and combined. A new envelope is computed
from the combined set of simulations.

• Alternatively, if each envelope object was created by running envelope with VARIANCE=TRUE,
then the saved functions are not required.
The sample means and sample variances from each envelope will be pooled. A new envelope
is computed from the pooled mean and variance.

Warnings or errors will be issued if the envelope objects ... appear to be incompatible. Apart from
these basic checks, the code is not smart enough to decide whether it is sensible to pool the data.

To modify the envelope parameters or the type of envelope that is computed, first pool the envelope
data using pool.envelope, then use envelope.envelope to modify the envelope parameters.

Value

An object of class "envelope".

1196 pool.fasp

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

envelope, envelope.envelope, pool, pool.fasp

Examples

E1 <- envelope(cells, Kest, nsim=10, savefuns=TRUE)
E2 <- envelope(cells, Kest, nsim=20, savefuns=TRUE)
pool(E1, E2)

V1 <- envelope(E1, VARIANCE=TRUE)
V2 <- envelope(E2, VARIANCE=TRUE)
pool(V1, V2)

pool.fasp Pool Data from Several Function Arrays

Description

Pool the simulation data from several function arrays (objects of class "fasp") and compute a new
function array.

Usage

S3 method for class 'fasp'
pool(...)

Arguments

... Objects of class "fasp".

Details

The function pool is generic. This is the method for the class "fasp" of function arrays. It is used
to combine the simulation data from several arrays of simulation envelopes and to compute a new
array of envelopes based on the combined data.

Each of the arguments ... must be a function array (object of class "fasp") containing simula-
tion envelopes. This is typically created by running the command alltypes with the arguments
envelope=TRUE and savefuns=TRUE. This ensures that each object is an array of simulation en-
velopes, and that each envelope contains the simulated data (summary function values) that were
used to construct the envelope.

The simulated data are extracted from each object and combined. A new array of envelopes is
computed from the combined set of simulations.

pool.fv 1197

Warnings or errors will be issued if the objects ... appear to be incompatible. However, the code
is not smart enough to decide whether it is sensible to pool the data.

Value

An object of class "fasp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fasp, alltypes, pool.envelope, pool

Examples

data(amacrine)
A1 <- alltypes(amacrine,"K",nsim=9,envelope=TRUE,savefuns=TRUE)
A2 <- alltypes(amacrine,"K",nsim=10,envelope=TRUE,savefuns=TRUE)
pool(A1, A2)

pool.fv Pool Several Functions

Description

Combine several summary functions into a single function.

Usage

S3 method for class 'fv'
pool(..., weights=NULL, relabel=TRUE, variance=TRUE)

Arguments

... Objects of class "fv".

weights Optional numeric vector of weights for the functions.

relabel Logical value indicating whether the columns of the resulting function should
be labelled to show that they were obtained by pooling.

variance Logical value indicating whether to compute the sample variance and related
terms.

1198 pool.quadrattest

Details

The function pool is generic. This is the method for the class "fv" of summary functions. It is used
to combine several estimates of the same function into a single function.

Each of the arguments ... must be an object of class "fv". They must be compatible, in that they
are estimates of the same function, and were computed using the same options.

The sample mean and sample variance of the corresponding estimates will be computed.

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pool, pool.anylist, pool.rat

Examples

K <- lapply(waterstriders, Kest, correction="iso")
Kall <- pool(K[[1]], K[[2]], K[[3]])
Kall <- pool(as.anylist(K))
plot(Kall, cbind(pooliso, pooltheo) ~ r,

shade=c("loiso", "hiiso"),
main="Pooled K function of waterstriders")

pool.quadrattest Pool Several Quadrat Tests

Description

Pool several quadrat tests into a single quadrat test.

Usage

S3 method for class 'quadrattest'
pool(..., df=NULL, df.est=NULL, nsim=1999,

Xname=NULL, CR=NULL)

pool.quadrattest 1199

Arguments

... Any number of objects, each of which is a quadrat test (object of class "quadrattest").

df Optional. Number of degrees of freedom of the test statistic. Relevant only for
χ2 tests. Incompatible with df.est.

df.est Optional. The number of fitted parameters, or the number of degrees of freedom
lost by estimation of parameters. Relevant only for χ2 tests. Incompatible with
df.

nsim Number of simulations, for Monte Carlo test.

Xname Optional. Name of the original data.

CR Optional. Numeric value of the Cressie-Read exponent CR overriding the value
used in the tests.

Details

The function pool is generic. This is the method for the class "quadrattest".

An object of class "quadrattest" represents a χ2 test or Monte Carlo test of goodness-of-fit
for a point process model, based on quadrat counts. Such objects are created by the command
quadrat.test.

Each of the arguments ... must be an object of class "quadrattest". They must all be the same
type of test (chi-squared test or Monte Carlo test, conditional or unconditional) and must all have
the same type of alternative hypothesis.

The test statistic of the pooled test is the Pearson X2 statistic taken over all cells (quadrats) of all
tests. The p value of the pooled test is then computed using either a Monte Carlo test or a χ2 test.

For a pooled χ2 test, the number of degrees of freedom of the combined test is computed by adding
the degrees of freedom of all the tests (equivalent to assuming the tests are independent) unless it is
determined by the arguments df or df.est. The resulting p value is computed to obtain the pooled
test.

For a pooled Monte Carlo test, new simulations are performed to determine the pooled Monte Carlo
p value.

Value

Another object of class "quadrattest".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pool, quadrat.test

1200 pool.rat

Examples

Y <- split(humberside)
test1 <- quadrat.test(Y[[1]])
test2 <- quadrat.test(Y[[2]])
pool(test1, test2, Xname="Humberside")

pool.rat Pool Data from Several Ratio Objects

Description

Pool the data from several ratio objects (objects of class "rat") and compute a pooled estimate.

Usage

S3 method for class 'rat'
pool(..., weights=NULL, relabel=TRUE, variance=TRUE)

Arguments

... Objects of class "rat".

weights Numeric vector of weights.

relabel Logical value indicating whether the result should be relabelled to show that it
was obtained by pooling.

variance Logical value indicating whether to compute the sample variance and related
terms.

Details

The function pool is generic. This is the method for the class "rat" of ratio objects. It is used to
combine several estimates of the same quantity when each estimate is a ratio.

Each of the arguments ... must be an object of class "rat" representing a ratio object (basically a
numerator and a denominator; see rat). We assume that these ratios are all estimates of the same
quantity.

If the objects are called R1, . . . , Rn and if Ri has numerator Yi and denominator Xi, so that no-
tionally Ri = Yi/Xi, then the pooled estimate is the ratio-of-sums estimator

R =

∑
i Yi∑
iXi

.

The standard error of R is computed using the delta method as described in Baddeley et al. (1993)
or Cochran (1977, pp 154, 161).

If the argument weights is given, it should be a numeric vector of length equal to the number of
objects to be pooled. The pooled estimator is the ratio-of-sums estimator

R =

∑
i wiYi∑
i wiXi

pp3 1201

where w_iw[i] is the ith weight.

This calculation is implemented only for certain classes of objects where the arithmetic can be
performed.

This calculation is currently implemented only for objects which also belong to the class "fv"
(function value tables). For example, if Kest is called with argument ratio=TRUE, the result is a
suitable object (belonging to the classes "rat" and "fv").

Warnings or errors will be issued if the ratio objects ... appear to be incompatible. However, the
code is not smart enough to decide whether it is sensible to pool the data.

Value

An object of the same class as the input.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Cochran, W.G. (1977) Sampling techniques, 3rd edition. New York: John Wiley and Sons.

See Also

rat, pool, pool.fv, Kest

Examples

K1 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K2 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K3 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K <- pool(K1, K2, K3)
plot(K, pooliso ~ r, shade=c("hiiso", "loiso"))

pp3 Three Dimensional Point Pattern

Description

Create a three-dimensional point pattern

Usage

pp3(x, y, z, ..., marks=NULL)

1202 ppm

Arguments

x,y,z Numeric vectors of equal length, containing Cartesian coordinates of points in
three-dimensional space.

... Arguments passed to as.box3 to determine the three-dimensional box in which
the points have been observed.

marks Optional. Vector, data frame, or hyperframe of mark values associated with the
points.

Details

An object of class "pp3" represents a pattern of points in three-dimensional space. The points are
assumed to have been observed by exhaustively inspecting a three-dimensional rectangular box.
The boundaries of the box are included as part of the dataset.

Value

Object of class "pp3" representing a three dimensional point pattern. Also belongs to class "ppx".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

box3, print.pp3, ppx

Examples

X <- pp3(runif(10), runif(10), runif(10),
box3(c(0,1)),
marks=rnorm(10))

X

ppm Fit Point Process Model to Data

Description

Fits a point process model to an observed point pattern.

Usage

ppm(Q, ...)

S3 method for class 'formula'
ppm(Q, interaction=NULL, ..., data=NULL, subset)

ppm 1203

Arguments

Q A formula in the R language describing the model to be fitted.

interaction An object of class "interact" describing the point process interaction struc-
ture, or a function that makes such an object, or NULL indicating that a Poisson
process (stationary or nonstationary) should be fitted.

... Arguments passed to ppm.ppp or ppm.quad to control the model-fitting process.

data Optional. The values of spatial covariates (other than the Cartesian coordinates)
required by the model. Either a data frame, or a list whose entries are images,
functions, windows, tessellations or single numbers. See Details.

subset Optional. An expression (which may involve the names of the Cartesian coordi-
nates x and y and the names of entries in data) defining a subset of the spatial
domain, to which the model-fitting should be restricted. The result of evaluating
the expression should be either a logical vector, or a window (object of class
"owin") or a logical-valued pixel image (object of class "im").

Details

This function fits a point process model to an observed point pattern. The model may include spatial
trend, interpoint interaction, and dependence on covariates.

The model fitted by ppm is either a Poisson point process (in which different points do not interact
with each other) or a Gibbs point process (in which different points typically inhibit each other).
For clustered point process models, use kppm.

The function ppm is generic, with methods for the classes formula, ppp and quad. This page
describes the method for a formula.

The first argument is a formula in the R language describing the spatial trend model to be fitted.
It has the general form pattern ~ trend where the left hand side pattern is usually the name of
a spatial point pattern (object of class "ppp") to which the model should be fitted, or an expression
which evaluates to a point pattern; and the right hand side trend is an expression specifying the
spatial trend of the model.

Systematic effects (spatial trend and/or dependence on spatial covariates) are specified by the trend
expression on the right hand side of the formula. The trend may involve the Cartesian coordinates
x, y, the marks marks, the names of entries in the argument data (if supplied), or the names of
objects that exist in the R session. The trend formula specifies the logarithm of the intensity of a
Poisson process, or in general, the logarithm of the first order potential of the Gibbs process. The
formula should not use any names beginning with .mpl as these are reserved for internal use. If the
formula is pattern~1, then the model to be fitted is stationary (or at least, its first order potential is
constant).

The symbol . in the trend expression stands for all the covariates supplied in the argument data. For
example the formula pattern ~ . indicates an additive model with a main effect for each covariate
in data.

Stochastic interactions between random points of the point process are defined by the argument
interaction. This is an object of class "interact" which is initialised in a very similar way
to the usage of family objects in glm and gam. The interaction models currently available are:
AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore,
HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard, MultiStrauss,

1204 ppm

MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen, Poisson, Saturated,
SatPiece, Softcore, Strauss, StraussHard and Triplets. See the examples below. Note that it
is possible to combine several interactions using Hybrid.

If interaction is missing or NULL, then the model to be fitted has no interpoint interactions, that is,
it is a Poisson process (stationary or nonstationary according to trend). In this case the methods of
maximum pseudolikelihood and maximum logistic likelihood coincide with maximum likelihood.

The fitted point process model returned by this function can be printed (by the print method print.ppm)
to inspect the fitted parameter values. If a nonparametric spatial trend was fitted, this can be ex-
tracted using the predict method predict.ppm.

To fit a model involving spatial covariates other than the Cartesian coordinates x and y, the values
of the covariates should either be supplied in the argument data, or should be stored in objects
that exist in the R session. Note that it is not sufficient to have observed the covariate only at the
points of the data point pattern; the covariate must also have been observed at other locations in the
window.

If it is given, the argument data is typically a list, with names corresponding to variables in the
trend formula. Each entry in the list is either

a pixel image, giving the values of a spatial covariate at a fine grid of locations. It should be an
object of class "im", see im.object.

a function, which can be evaluated at any location (x,y) to obtain the value of the spatial covari-
ate. It should be a function(x,y) or function(x,y,...) in the R language. The first two
arguments of the function should be the Cartesian coordinates x and y. The function may
have additional arguments; if the function does not have default values for these additional
arguments, then the user must supply values for them, in covfunargs. See the Examples.

a window, interpreted as a logical variable which is TRUE inside the window and FALSE outside it.
This should be an object of class "owin".

a tessellation, interpreted as a factor covariate. For each spatial location, the factor value indicates
which tile of the tessellation it belongs to. This should be an object of class "tess". (To make
a covariate in which each tile of the tessellation has a numerical value, convert the tessellation
to a function(x,y) using as.function.tess.)

a single number, indicating a covariate that is constant in this dataset.

The software will look up the values of each covariate at the required locations (quadrature points).

Note that, for covariate functions, only the name of the function appears in the trend formula. A
covariate function is treated as if it were a single variable. The function arguments do not appear in
the trend formula. See the Examples.

If data is a list, the list entries should have names corresponding to (some of) the names of covari-
ates in the model formula trend. The variable names x, y and marks are reserved for the Cartesian
coordinates and the mark values, and these should not be used for variables in data.

Alternatively, data may be a data frame giving the values of the covariates at specified locations.
Then pattern should be a quadrature scheme (object of class "quad") giving the corresponding
locations. See ppm.quad for details.

Value

An object of class "ppm" describing a fitted point process model.

See ppm.object for details of the format of this object and methods available for manipulating it.

ppm 1205

Interaction parameters

Apart from the Poisson model, every point process model fitted by ppm has parameters that deter-
mine the strength and range of ‘interaction’ or dependence between points. These parameters are
of two types:

regular parameters: A parameter φ is called regular if the log likelihood is a linear function of θ
where θ = θ(ψ) is some transformation of ψ. [Then θ is called the canonical parameter.]

irregular parameters Other parameters are called irregular.

Typically, regular parameters determine the ‘strength’ of the interaction, while irregular parameters
determine the ‘range’ of the interaction. For example, the Strauss process has a regular parameter γ
controlling the strength of interpoint inhibition, and an irregular parameter r determining the range
of interaction.

The ppm command is only designed to estimate regular parameters of the interaction. It requires
the values of any irregular parameters of the interaction to be fixed. For example, to fit a Strauss
process model to the cells dataset, you could type ppm(cells ~ 1,Strauss(r=0.07)). Note that
the value of the irregular parameter r must be given. The result of this command will be a fitted
model in which the regular parameter γ has been estimated.

To determine the irregular parameters, there are several practical techniques, but no general sta-
tistical theory available. Useful techniques include maximum profile pseudolikelihood, which is
implemented in the command profilepl, and Newton-Raphson maximisation, implemented in the
experimental command ippm.

Some irregular parameters can be estimated directly from data: the hard-core radius in the model
Hardcore and the matrix of hard-core radii in MultiHard can be estimated easily from data. In
these cases, ppm allows the user to specify the interaction without giving the value of the irregu-
lar parameter. The user can give the hard core interaction as interaction=Hardcore() or even
interaction=Hardcore, and the hard core radius will then be estimated from the data.

Technical Warnings and Error Messages

See ppm.ppp for some technical warnings about the weaknesses of the algorithm, and explanation
of some common error messages.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2014) Logistic regression for
spatial Gibbs point processes. Biometrika 101 (2) 377–392.

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42 283–322.

Berman, M. and Turner, T.R. (1992) Approximating point process likelihoods with GLIM. Applied
Statistics 41, 31–38.

Besag, J. (1975) Statistical analysis of non-lattice data. The Statistician 24, 179-195.

1206 ppm

Diggle, P.J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. and Tanemura, M. (1994) On parameter
estimation for pairwise interaction processes. International Statistical Review 62, 99-117.

Huang, F. and Ogata, Y. (1999) Improvements of the maximum pseudo-likelihood estimators in
various spatial statistical models. Journal of Computational and Graphical Statistics 8, 510–530.

Jensen, J.L. and Moeller, M. (1991) Pseudolikelihood for exponential family models of spatial point
processes. Annals of Applied Probability 1, 445–461.

Jensen, J.L. and Kuensch, H.R. (1994) On asymptotic normality of pseudo likelihood estimates for
pairwise interaction processes, Annals of the Institute of Statistical Mathematics 46, 475–486.

See Also

ppm.ppp and ppm.quad for more details on the fitting technique and edge correction.

ppm.object for details of how to print, plot and manipulate a fitted model.

ppp and quadscheme for constructing data.

Interactions: AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer,
Hardcore, HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard, MultiStrauss,
MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen, Poisson, Saturated,
SatPiece, Softcore, Strauss, StraussHard and Triplets.

See profilepl for advice on fitting nuisance parameters in the interaction, and ippm for irregular
parameters in the trend.

See valid.ppm and project.ppm for ensuring the fitted model is a valid point process.

See kppm for fitting Cox point process models and cluster point process models, and dppm for fitting
determinantal point process models.

Examples

fit the stationary Poisson process
to point pattern 'nztrees'

ppm(nztrees ~ 1)

Not run:
Q <- quadscheme(nztrees)
ppm(Q ~ 1)
equivalent.

End(Not run)

fit1 <- ppm(nztrees ~ x)
fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(a + bx)
where x,y are the Cartesian coordinates
and a,b are parameters to be estimated

fit1
coef(fit1)
coef(summary(fit1))

ppm 1207

Not run:
ppm(nztrees ~ polynom(x,2))

End(Not run)

fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(a + bx + cx^2)

Not run:
library(splines)
ppm(nztrees ~ bs(x,df=3))

End(Not run)
WARNING: do not use predict.ppm() on this result
Fits the nonstationary Poisson process
with intensity function lambda(x,y) = exp(B(x))
where B is a B-spline with df = 3

Not run:
ppm(nztrees ~ 1, Strauss(r=10), rbord=10)

End(Not run)

Fit the stationary Strauss process with interaction range r=10
using the border method with margin rbord=10

Not run:
ppm(nztrees ~ x, Strauss(13), correction="periodic")

End(Not run)

Fit the nonstationary Strauss process with interaction range r=13
and exp(first order potential) = activity = beta(x,y) = exp(a+bx)
using the periodic correction.

Compare Maximum Pseudolikelihood, Huang-Ogata and Variational Bayes fits:
Not run: ppm(swedishpines ~ 1, Strauss(9))

Not run: ppm(swedishpines ~ 1, Strauss(9), method="ho")

ppm(swedishpines ~ 1, Strauss(9), method="VBlogi")

COVARIATES
#
X <- rpoispp(42)
weirdfunction <- function(x,y){ 10 * x^2 + 5 * sin(10 * y) }
#
(a) covariate values as function
ppm(X ~ y + weirdfunction)
#

1208 ppm.object

(b) covariate values in pixel image
Zimage <- as.im(weirdfunction, unit.square())
ppm(X ~ y + Z, covariates=list(Z=Zimage))
#
(c) covariate values in data frame
Q <- quadscheme(X)
xQ <- x.quad(Q)
yQ <- y.quad(Q)
Zvalues <- weirdfunction(xQ,yQ)
ppm(Q ~ y + Z, data=data.frame(Z=Zvalues))
Note Q not X

COVARIATE FUNCTION WITH EXTRA ARGUMENTS
#

f <- function(x,y,a){ y - a }
ppm(X ~ x + f, covfunargs=list(a=1/2))

COVARIATE: inside/outside window
b <- owin(c(0.1, 0.6), c(0.1, 0.9))
ppm(X ~ b)

MULTITYPE POINT PROCESSES
fit stationary marked Poisson process
with different intensity for each species

Not run: ppm(lansing ~ marks, Poisson())

fit nonstationary marked Poisson process
with different log-cubic trend for each species

Not run: ppm(lansing ~ marks * polynom(x,y,3), Poisson())

ppm.object Class of Fitted Point Process Models

Description

A class ppm to represent a fitted stochastic model for a point process. The output of ppm.

Details

An object of class ppm represents a stochastic point process model that has been fitted to a point
pattern dataset. Typically it is the output of the model fitter, ppm.

The class ppm has methods for the following standard generic functions:

generic method description
print print.ppm print details
plot plot.ppm plot fitted model

ppm.object 1209

predict predict.ppm fitted intensity and conditional intensity
fitted fitted.ppm fitted intensity
coef coef.ppm fitted coefficients of model
anova anova.ppm Analysis of Deviance
formula formula.ppm Extract model formula
terms terms.ppm Terms in the model formula
labels labels.ppm Names of estimable terms in the model formula
residuals residuals.ppm Point process residuals
simulate simulate.ppm Simulate the fitted model
update update.ppm Change or refit the model
vcov vcov.ppm Variance/covariance matrix of parameter estimates
model.frame model.frame.ppm Model frame
model.matrix model.matrix.ppm Design matrix
logLik logLik.ppm log pseudo likelihood
extractAIC extractAIC.ppm pseudolikelihood counterpart of AIC
nobs nobs.ppm number of observations

Objects of class ppm can also be handled by the following standard functions, without requiring a
special method:

name description
confint Confidence intervals for parameters
step Stepwise model selection
drop1 One-step model improvement
add1 One-step model improvement

The class ppm also has methods for the following generic functions defined in the spatstat package:

generic method description
as.interact as.interact.ppm Interpoint interaction structure
as.owin as.owin.ppm Observation window of data
berman.test berman.test.ppm Berman’s test
envelope envelope.ppm Simulation envelopes
fitin fitin.ppm Fitted interaction
is.marked is.marked.ppm Determine whether the model is marked
is.multitype is.multitype.ppm Determine whether the model is multitype
is.poisson is.poisson.ppm Determine whether the model is Poisson
is.stationary is.stationary.ppm Determine whether the model is stationary
cdf.test cdf.test.ppm Spatial distribution test
quadrat.test quadrat.test.ppm Quadrat counting test
reach reach.ppm Interaction range of model
rmhmodel rmhmodel.ppm Model in a form that can be simulated
rmh rmh.ppm Perform simulation
unitname unitname.ppm Name of unit of length

Information about the data (to which the model was fitted) can be extracted using data.ppm,
dummy.ppm and quad.ppm.

1210 ppm.object

Internal format

If you really need to get at the internals, a ppm object contains at least the following entries:

coef the fitted regular parameters (as returned by glm)
trend the trend formula or NULL
interaction the point process interaction family (an object of class "interact") or NULL
Q the quadrature scheme used
maxlogpl the maximised value of log pseudolikelihood
correction name of edge correction method used

See ppm for explanation of these concepts. The irregular parameters (e.g. the interaction radius of
the Strauss process) are encoded in the interaction entry. However see the Warnings.

Warnings

The internal representation of ppm objects may change slightly between releases of the spatstat
package.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, coef.ppm, fitted.ppm, print.ppm, predict.ppm, plot.ppm.

Examples

fit <- ppm(cells ~ x, Strauss(0.1), correction="periodic")
fit
coef(fit)
Not run:
pred <- predict(fit)

End(Not run)
pred <- predict(fit, ngrid=20, type="trend")
Not run:
plot(fit)

End(Not run)

ppm.ppp 1211

ppm.ppp Fit Point Process Model to Point Pattern Data

Description

Fits a point process model to an observed point pattern.

Usage

S3 method for class 'ppp'
ppm(Q, trend=~1, interaction=Poisson(),

...,
covariates=data,
data=NULL,
covfunargs = list(),
subset,
clipwin,
correction="border",
rbord=reach(interaction),
use.gam=FALSE,
method="mpl",
forcefit=FALSE,
emend=project,
project=FALSE,
prior.mean = NULL,
prior.var = NULL,
nd = NULL,
eps = NULL,
gcontrol=list(),
nsim=100, nrmh=1e5, start=NULL, control=list(nrep=nrmh),
verb=TRUE,
callstring=NULL)

S3 method for class 'quad'
ppm(Q, trend=~1, interaction=Poisson(),

...,
covariates=data,
data=NULL,
covfunargs = list(),
subset,
clipwin,
correction="border",
rbord=reach(interaction),
use.gam=FALSE,
method="mpl",
forcefit=FALSE,
emend=project,

1212 ppm.ppp

project=FALSE,
prior.mean = NULL,
prior.var = NULL,
nd = NULL,
eps = NULL,
gcontrol=list(),
nsim=100, nrmh=1e5, start=NULL, control=list(nrep=nrmh),
verb=TRUE,
callstring=NULL)

Arguments

Q A data point pattern (of class "ppp") to which the model will be fitted, or a
quadrature scheme (of class "quad") containing this pattern.

trend An R formula object specifying the spatial trend to be fitted. The default for-
mula, ~1, indicates the model is stationary and no trend is to be fitted.

interaction An object of class "interact" describing the point process interaction struc-
ture, or a function that makes such an object, or NULL indicating that a Poisson
process (stationary or nonstationary) should be fitted.

... Ignored.
data,covariates

The values of any spatial covariates (other than the Cartesian coordinates) re-
quired by the model. Either a data frame, or a list whose entries are images,
functions, windows, tessellations or single numbers. See Details.

subset Optional. An expression (which may involve the names of the Cartesian coordi-
nates x and y and the names of entries in data) defining a subset of the spatial
domain, to which the likelihood or pseudolikelihood should be restricted. See
Details. The result of evaluating the expression should be either a logical vector,
or a window (object of class "owin") or a logical-valued pixel image (object of
class "im").

clipwin Optional. A spatial window (object of class "owin") to which data will be re-
stricted, before model-fitting is performed. See Details.

covfunargs A named list containing the values of any additional arguments required by co-
variate functions.

correction The name of the edge correction to be used. The default is "border" indicating
the border correction. Other possibilities may include "Ripley", "isotropic",
"periodic", "translate" and "none", depending on the interaction.

rbord If correction = "border" this argument specifies the distance by which the
window should be eroded for the border correction.

use.gam Logical flag; if TRUE then computations are performed using gam instead of glm.

method The method used to fit the model. Options are "mpl" for the method of Maxi-
mum PseudoLikelihood, "logi" for the Logistic Likelihood method, "VBlogi"
for the Variational Bayes Logistic Likelihood method, and "ho" for the Huang-
Ogata approximate maximum likelihood method.

ppm.ppp 1213

forcefit Logical flag for internal use. If forcefit=FALSE, some trivial models will be
fitted by a shortcut. If forcefit=TRUE, the generic fitting method will always
be used.

emend,project (These are equivalent: project is an older name for emend.) Logical value.
Setting emend=TRUE will ensure that the fitted model is always a valid point
process by applying emend.ppm.

prior.mean Optional vector of prior means for canonical parameters (for method="VBlogi").
See Details.

prior.var Optional prior variance covariance matrix for canonical parameters (for method="VBlogi").
See Details.

nd Optional. Integer or pair of integers. The dimension of the grid of dummy points
(nd * nd or nd[1] * nd[2]) used to evaluate the integral in the pseudolikelihood.
Incompatible with eps.

eps Optional. A positive number, or a vector of two positive numbers, giving the
horizontal and vertical spacing, respectively, of the grid of dummy points. In-
compatible with nd.

gcontrol Optional. List of parameters passed to glm.control (or passed to gam.control
if use.gam=TRUE) controlling the model-fitting algorithm.

nsim Number of simulated realisations to generate (for method="ho")

nrmh Number of Metropolis-Hastings iterations for each simulated realisation (for
method="ho")

start,control Arguments passed to rmh controlling the behaviour of the Metropolis-Hastings
algorithm (for method="ho")

verb Logical flag indicating whether to print progress reports (for method="ho")

callstring Internal use only.

Details

NOTE: This help page describes the old syntax of the function ppm, described in many older
documents. This old syntax is still supported. However, if you are learning about ppm for the first
time, we recommend you use the new syntax described in the help file for ppm.

This function fits a point process model to an observed point pattern. The model may include spatial
trend, interpoint interaction, and dependence on covariates.

basic use: In basic use, Q is a point pattern dataset (an object of class "ppp") to which we wish to
fit a model.
The syntax of ppm() is closely analogous to the R functions glm and gam. The analogy is:

glm ppm
formula trend
family interaction

The point process model to be fitted is specified by the arguments trend and interaction
which are respectively analogous to the formula and family arguments of glm().
Systematic effects (spatial trend and/or dependence on spatial covariates) are specified by

1214 ppm.ppp

the argument trend. This is an R formula object, which may be expressed in terms of the
Cartesian coordinates x, y, the marks marks, or the variables in covariates (if supplied), or
both. It specifies the logarithm of the first order potential of the process. The formula should
not use any names beginning with .mpl as these are reserved for internal use. If trend is
absent or equal to the default, ~1, then the model to be fitted is stationary (or at least, its first
order potential is constant).
The symbol . in the trend expression stands for all the covariates supplied in the argument
data. For example the formula ~ . indicates an additive model with a main effect for each
covariate in data.
Stochastic interactions between random points of the point process are defined by the ar-
gument interaction. This is an object of class "interact" which is initialised in a very
similar way to the usage of family objects in glm and gam. The models currently available
are: AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer,
Hardcore, HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard,
MultiStrauss, MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen,
Poisson, Saturated, SatPiece, Softcore, Strauss, StraussHard and Triplets. See the
examples below. It is also possible to combine several interactions using Hybrid.
If interaction is missing or NULL, then the model to be fitted has no interpoint interactions,
that is, it is a Poisson process (stationary or nonstationary according to trend). In this case
the methods of maximum pseudolikelihood and maximum logistic likelihood coincide with
maximum likelihood.
The fitted point process model returned by this function can be printed (by the print method
print.ppm) to inspect the fitted parameter values. If a nonparametric spatial trend was fitted,
this can be extracted using the predict method predict.ppm.

Models with covariates: To fit a model involving spatial covariates other than the Cartesian coor-
dinates x and y, the values of the covariates should be supplied in the argument covariates.
Note that it is not sufficient to have observed the covariate only at the points of the data point
pattern; the covariate must also have been observed at other locations in the window.
Typically the argument covariates is a list, with names corresponding to variables in the
trend formula. Each entry in the list is either

a pixel image, giving the values of a spatial covariate at a fine grid of locations. It should be
an object of class "im", see im.object.

a function, which can be evaluated at any location (x,y) to obtain the value of the spatial
covariate. It should be a function(x,y) or function(x,y,...) in the R language. The
first two arguments of the function should be the Cartesian coordinates x and y. The
function may have additional arguments; if the function does not have default values for
these additional arguments, then the user must supply values for them, in covfunargs.
See the Examples.

a window, interpreted as a logical variable which is TRUE inside the window and FALSE out-
side it. This should be an object of class "owin".

a tessellation, interpreted as a factor covariate. For each spatial location, the factor value
indicates which tile of the tessellation it belongs to. This should be an object of class
"tess".

a single number, indicating a covariate that is constant in this dataset.

The software will look up the values of each covariate at the required locations (quadrature
points).

ppm.ppp 1215

Note that, for covariate functions, only the name of the function appears in the trend formula.
A covariate function is treated as if it were a single variable. The function arguments do not
appear in the trend formula. See the Examples.

If covariates is a list, the list entries should have names corresponding to the names of
covariates in the model formula trend. The variable names x, y and marks are reserved for
the Cartesian coordinates and the mark values, and these should not be used for variables in
covariates.

If covariates is a data frame, Q must be a quadrature scheme (see under Quadrature Schemes
below). Then covariates must have as many rows as there are points in Q. The ith row of
covariates should contain the values of spatial variables which have been observed at the ith
point of Q.

Quadrature schemes: In advanced use, Q may be a ‘quadrature scheme’. This was originally just
a technicality but it has turned out to have practical uses, as we explain below.

Quadrature schemes are required for our implementation of the method of maximum pseudo-
likelihood. The definition of the pseudolikelihood involves an integral over the spatial window
containing the data. In practice this integral must be approximated by a finite sum over a set
of quadrature points. We use the technique of Baddeley and Turner (2000), a generalisation
of the Berman-Turner (1992) device. In this technique the quadrature points for the numeri-
cal approximation include all the data points (points of the observed point pattern) as well as
additional ‘dummy’ points.

Quadrature schemes are also required for the method of maximum logistic likelihood, which
combines the data points with additional ‘dummy’ points.

A quadrature scheme is an object of class "quad" (see quad.object) which specifies both
the data point pattern and the dummy points for the quadrature scheme, as well as the quadra-
ture weights associated with these points. If Q is simply a point pattern (of class "ppp", see
ppp.object) then it is interpreted as specifying the data points only; a set of dummy points
specified by default.dummy() is added, and the default weighting rule is invoked to compute
the quadrature weights.

Finer quadrature schemes (i.e. those with more dummy points) generally yield a better ap-
proximation, at the expense of higher computational load.

An easy way to fit models using a finer quadrature scheme is to let Q be the original point pat-
tern data, and use the argument nd to determine the number of dummy points in the quadrature
scheme.

Complete control over the quadrature scheme is possible. See quadscheme for an overview.
Use quadscheme(X,D,method="dirichlet") to compute quadrature weights based on the
Dirichlet tessellation, or quadscheme(X,D,method="grid") to compute quadrature weights
by counting points in grid squares, where X and D are the patterns of data points and dummy
points respectively. Alternatively use pixelquad to make a quadrature scheme with a dummy
point at every pixel in a pixel image.

A practical advantage of quadrature schemes arises when we want to fit a model involving
covariates (e.g. soil pH). Suppose we have only been able to observe the covariates at a small
number of locations. Suppose cov.dat is a data frame containing the values of the covariates
at the data points (i.e.\ cov.dat[i,] contains the observations for the ith data point) and
cov.dum is another data frame (with the same columns as cov.dat) containing the covariate
values at another set of points whose locations are given by the point pattern Y. Then setting
Q = quadscheme(X,Y) combines the data points and dummy points into a quadrature scheme,

1216 ppm.ppp

and covariates = rbind(cov.dat,cov.dum) combines the covariate data frames. We can
then fit the model by calling ppm(Q,...,covariates).

Model-fitting technique: There are several choices for the technique used to fit the model.

method="mpl" (the default): the model will be fitted by maximising the pseudolikelihood
(Besag, 1975) using the Berman-Turner computational approximation (Berman and Turner,
1992; Baddeley and Turner, 2000). Maximum pseudolikelihood is equivalent to maxi-
mum likelihood if the model is a Poisson process. Maximum pseudolikelihood is biased
if the interpoint interaction is very strong, unless there is a large number of dummy points.
The default settings for method='mpl' specify a moderately large number of dummy
points, striking a compromise between speed and accuracy.

method="logi": the model will be fitted by maximising the logistic likelihood (Baddeley
et al, 2014). This technique is roughly equivalent in speed to maximum pseudolikeli-
hood, but is believed to be less biased. Because it is less biased, the default settings for
method='logi' specify a relatively small number of dummy points, so that this method
is the fastest, in practice.

method="VBlogi": the model will be fitted in a Bayesian setup by maximising the posterior
probability density for the canonical model parameters. This uses the variational Bayes
approximation to the posterior derived from the logistic likelihood as described in Rajala
(2014). The prior is assumed to be multivariate Gaussian with mean vector prior.mean
and variance-covariance matrix prior.var.

method="ho": the model will be fitted by applying the approximate maximum likelihood
method of Huang and Ogata (1999). See below. The Huang-Ogata method is slower than
the other options, but has better statistical properties.

Note that method='logi', method='VBlogi' and method='ho' involve randomisation, so
that the results are subject to random variation.

Huang-Ogata method: If method="ho" then the model will be fitted using the Huang-Ogata (1999)
approximate maximum likelihood method. First the model is fitted by maximum pseudolike-
lihood as described above, yielding an initial estimate of the parameter vector θ0. From this
initial model, nsim simulated realisations are generated. The score and Fisher information
of the model at θ = θ0 are estimated from the simulated realisations. Then one step of the
Fisher scoring algorithm is taken, yielding an updated estimate θ1. The corresponding model
is returned.
Simulated realisations are generated using rmh. The iterative behaviour of the Metropolis-
Hastings algorithm is controlled by the arguments start and control which are passed to
rmh.
As a shortcut, the argument nrmh determines the number of Metropolis-Hastings iterations run
to produce one simulated realisation (if control is absent). Also if start is absent or equal
to NULL, it defaults to list(n.start=N) where N is the number of points in the data point
pattern.

Edge correction Edge correction should be applied to the sufficient statistics of the model, to re-
duce bias. The argument correction is the name of an edge correction method. The de-
fault correction="border" specifies the border correction, in which the quadrature window
(the domain of integration of the pseudolikelihood) is obtained by trimming off a margin of
width rbord from the observation window of the data pattern. Not all edge corrections are
implemented (or implementable) for arbitrary windows. Other options depend on the argu-
ment interaction, but these generally include correction="periodic" (the periodic or

ppm.ppp 1217

toroidal edge correction in which opposite edges of a rectangular window are identified) and
correction="translate" (the translation correction, see Baddeley 1998 and Baddeley and
Turner 2000). For pairwise interaction models there is also Ripley’s isotropic correction, iden-
tified by correction="isotropic" or "Ripley".

Subsetting The arguments subset and clipwin specify that the model should be fitted to a re-
stricted subset of the available data. These arguments are equivalent for Poisson point process
models, but different for Gibbs models. If clipwin is specified, then all the available data will
be restricted to this spatial region, and data outside this region will be discarded, before the
model is fitted. If subset is specified, then no data are deleted, but the domain of integration
of the likelihood or pseudolikelihood is restricted to the subset. For Poisson models, these
two arguments have the same effect; but for a Gibbs model, interactions between points inside
and outside the subset are taken into account, while interactions between points inside and
outside the clipwin are ignored.

Value

An object of class "ppm" describing a fitted point process model.

See ppm.object for details of the format of this object and methods available for manipulating it.

Interaction parameters

Apart from the Poisson model, every point process model fitted by ppm has parameters that deter-
mine the strength and range of ‘interaction’ or dependence between points. These parameters are
of two types:

regular parameters: A parameter φ is called regular if the log likelihood is a linear function of θ
where θ = θ(ψ) is some transformation of ψ. [Then θ is called the canonical parameter.]

irregular parameters Other parameters are called irregular.

Typically, regular parameters determine the ‘strength’ of the interaction, while irregular parameters
determine the ‘range’ of the interaction. For example, the Strauss process has a regular parameter γ
controlling the strength of interpoint inhibition, and an irregular parameter r determining the range
of interaction.

The ppm command is only designed to estimate regular parameters of the interaction. It requires
the values of any irregular parameters of the interaction to be fixed. For example, to fit a Strauss
process model to the cells dataset, you could type ppm(cells,~1,Strauss(r=0.07)). Note that
the value of the irregular parameter r must be given. The result of this command will be a fitted
model in which the regular parameter γ has been estimated.

To determine the irregular parameters, there are several practical techniques, but no general sta-
tistical theory available. Useful techniques include maximum profile pseudolikelihood, which is
implemented in the command profilepl, and Newton-Raphson maximisation, implemented in the
experimental command ippm.

Some irregular parameters can be estimated directly from data: the hard-core radius in the model
Hardcore and the matrix of hard-core radii in MultiHard can be estimated easily from data. In
these cases, ppm allows the user to specify the interaction without giving the value of the irregu-
lar parameter. The user can give the hard core interaction as interaction=Hardcore() or even
interaction=Hardcore, and the hard core radius will then be estimated from the data.

1218 ppm.ppp

Error and Warning Messages

Some common error messages and warning messages are listed below, with explanations.

“System is computationally singular” The Fisher information matrix of the fitted model has a
determinant close to zero, so that the matrix cannot be inverted, and the software cannot cal-
culate standard errors or confidence intervals. This error is usually reported when the model
is printed, because the print method calculates standard errors for the fitted parameters. Sin-
gularity usually occurs because the spatial coordinates in the original data were very large
numbers (e.g. expressed in metres) so that the fitted coefficients were very small numbers.
The simple remedy is to rescale the data, for example, to convert from metres to kilometres
by X <-rescale(X,1000), then re-fit the model. Singularity can also occur if the covariate
values are very large numbers, or if the covariates are approximately collinear.

“Covariate values were NA or undefined at X% (M out of N) of the quadrature points” The co-
variate data (typically a pixel image) did not provide values of the covariate at some of the
spatial locations in the observation window of the point pattern. This means that the spatial
domain of the pixel image does not completely cover the observation window of the point
pattern. If the percentage is small, this warning can be ignored - typically it happens because
of rounding effects which cause the pixel image to be one-pixel-width narrower than the ob-
servation window. However if more than a few percent of covariate values are undefined, it
would be prudent to check that the pixel images are correct, and are correctly registered in
their spatial relation to the observation window.

“Model is unidentifiable” It is not possible to estimate all the model parameters from this dataset.
The error message gives a further explanation, such as “data pattern is empty”. Choose a
simpler model, or check the data.

“N data points are illegal (zero conditional intensity)” In a Gibbs model (i.e. with interaction
between points), the conditional intensity may be zero at some spatial locations, indicating
that the model forbids the presence of a point at these locations. However if the conditional
intensity is zero at a data point, this means that the model is inconsistent with the data. Modify
the interaction parameters so that the data point is not illegal (e.g. reduce the value of the hard
core radius) or choose a different interaction.

Warnings

The implementation of the Huang-Ogata method is experimental; several bugs were fixed in spat-
stat 1.19-0.

See the comments above about the possible inefficiency and bias of the maximum pseudolikelihood
estimator.

The accuracy of the Berman-Turner approximation to the pseudolikelihood depends on the number
of dummy points used in the quadrature scheme. The number of dummy points should at least equal
the number of data points.

The parameter values of the fitted model do not necessarily determine a valid point process. Some
of the point process models are only defined when the parameter values lie in a certain subset. For
example the Strauss process only exists when the interaction parameter γ is less than or equal to 1,
corresponding to a value of ppm()$theta[2] less than or equal to 0.

By default (if emend=FALSE) the algorithm maximises the pseudolikelihood without constraining
the parameters, and does not apply any checks for sanity after fitting the model. This is because the

ppm.ppp 1219

fitted parameter value could be useful information for data analysis. To constrain the parameters to
ensure that the model is a valid point process, set emend=TRUE. See also the functions valid.ppm
and emend.ppm.

The trend formula should not use any variable names beginning with the prefixes .mpl or Interaction
as these names are reserved for internal use. The data frame covariates should have as many rows
as there are points in Q. It should not contain variables called x, y or marks as these names are
reserved for the Cartesian coordinates and the marks.

If the model formula involves one of the functions poly(), bs() or ns() (e.g. applied to spatial
coordinates x and y), the fitted coefficients can be misleading. The resulting fit is not to the raw
spatial variates (x, x^2, x*y, etc.) but to a transformation of these variates. The transformation
is implemented by poly() in order to achieve better numerical stability. However the resulting
coefficients are appropriate for use with the transformed variates, not with the raw variates. This
affects the interpretation of the constant term in the fitted model, logbeta. Conventionally, β is the
background intensity, i.e. the value taken by the conditional intensity function when all predictors
(including spatial or “trend” predictors) are set equal to 0. However the coefficient actually produced
is the value that the log conditional intensity takes when all the predictors, including the transformed
spatial predictors, are set equal to 0, which is not the same thing.

Worse still, the result of predict.ppm can be completely wrong if the trend formula contains one of
the functions poly(), bs() or ns(). This is a weakness of the underlying function predict.glm.

If you wish to fit a polynomial trend, we offer an alternative to poly(), namely polynom(), which
avoids the difficulty induced by transformations. It is completely analogous to poly except that it
does not orthonormalise. The resulting coefficient estimates then have their natural interpretation
and can be predicted correctly. Numerical stability may be compromised.

Values of the maximised pseudolikelihood are not comparable if they have been obtained with
different values of rbord.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2014) Logistic regression for
spatial Gibbs point processes. Biometrika 101 (2) 377–392.

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Berman, M. and Turner, T.R. Approximating point process likelihoods with GLIM. Applied Statis-
tics 41 (1992) 31–38.

Besag, J. Statistical analysis of non-lattice data. The Statistician 24 (1975) 179-195.

Diggle, P.J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. and Tanemura, M. On parameter esti-
mation for pairwise interaction processes. International Statistical Review 62 (1994) 99-117.

Huang, F. and Ogata, Y. Improvements of the maximum pseudo-likelihood estimators in various
spatial statistical models. Journal of Computational and Graphical Statistics 8 (1999) 510-530.

Jensen, J.L. and Moeller, M. Pseudolikelihood for exponential family models of spatial point pro-
cesses. Annals of Applied Probability 1 (1991) 445–461.

1220 ppm.ppp

Jensen, J.L. and Kuensch, H.R. On asymptotic normality of pseudo likelihood estimates for pairwise
interaction processes, Annals of the Institute of Statistical Mathematics 46 (1994) 475-486.

Rajala T. (2014) A note on Bayesian logistic regression for spatial exponential family Gibbs point
processes, Preprint on ArXiv.org. http://arxiv.org/abs/1411.0539

See Also

ppm.object for details of how to print, plot and manipulate a fitted model.

ppp and quadscheme for constructing data.

Interactions: AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer,
Hardcore, HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard, MultiStrauss,
MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen, Poisson, Saturated,
SatPiece, Softcore, Strauss, StraussHard and Triplets.

See profilepl for advice on fitting nuisance parameters in the interaction, and ippm for irregular
parameters in the trend.

See valid.ppm and emend.ppm for ensuring the fitted model is a valid point process.

Examples

fit the stationary Poisson process
to point pattern 'nztrees'

ppm(nztrees)
ppm(nztrees ~ 1)

Not run:
Q <- quadscheme(nztrees)
ppm(Q)
equivalent.

End(Not run)

Not run:
ppm(nztrees, nd=128)

End(Not run)

fit1 <- ppm(nztrees, ~ x)
fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(a + bx)
where x,y are the Cartesian coordinates
and a,b are parameters to be estimated

fit1
coef(fit1)
coef(summary(fit1))

Not run:
ppm(nztrees, ~ polynom(x,2))

http://arxiv.org/abs/1411.0539

ppm.ppp 1221

End(Not run)

fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(a + bx + cx^2)

Not run:
library(splines)
ppm(nztrees, ~ bs(x,df=3))

End(Not run)
WARNING: do not use predict.ppm() on this result
Fits the nonstationary Poisson process
with intensity function lambda(x,y) = exp(B(x))
where B is a B-spline with df = 3

Not run:
ppm(nztrees, ~1, Strauss(r=10), rbord=10)

End(Not run)

Fit the stationary Strauss process with interaction range r=10
using the border method with margin rbord=10

Not run:
ppm(nztrees, ~ x, Strauss(13), correction="periodic")

End(Not run)

Fit the nonstationary Strauss process with interaction range r=13
and exp(first order potential) = activity = beta(x,y) = exp(a+bx)
using the periodic correction.

Compare Maximum Pseudolikelihood, Huang-Ogata and VB fits:
Not run: ppm(swedishpines, ~1, Strauss(9))

Not run: ppm(swedishpines, ~1, Strauss(9), method="ho")

ppm(swedishpines, ~1, Strauss(9), method="VBlogi")

COVARIATES
#
X <- rpoispp(42)
weirdfunction <- function(x,y){ 10 * x^2 + 5 * sin(10 * y) }
#
(a) covariate values as function
ppm(X, ~ y + Z, covariates=list(Z=weirdfunction))
#
(b) covariate values in pixel image
Zimage <- as.im(weirdfunction, unit.square())

1222 ppmInfluence

ppm(X, ~ y + Z, covariates=list(Z=Zimage))
#
(c) covariate values in data frame
Q <- quadscheme(X)
xQ <- x.quad(Q)
yQ <- y.quad(Q)
Zvalues <- weirdfunction(xQ,yQ)
ppm(Q, ~ y + Z, covariates=data.frame(Z=Zvalues))
Note Q not X

COVARIATE FUNCTION WITH EXTRA ARGUMENTS
#

f <- function(x,y,a){ y - a }
ppm(X, ~x + f, covariates=list(f=f), covfunargs=list(a=1/2))

COVARIATE: inside/outside window
b <- owin(c(0.1, 0.6), c(0.1, 0.9))
ppm(X, ~w, covariates=list(w=b))

MULTITYPE POINT PROCESSES
fit stationary marked Poisson process
with different intensity for each species

Not run: ppm(lansing, ~ marks, Poisson())

fit nonstationary marked Poisson process
with different log-cubic trend for each species

Not run: ppm(lansing, ~ marks * polynom(x,y,3), Poisson())

ppmInfluence Leverage and Influence Measures for Spatial Point Process Model

Description

Calculates all the leverage and influence measures described in influence.ppm, leverage.ppm
and dfbetas.ppm.

Usage

ppmInfluence(fit,
what = c("leverage", "influence", "dfbetas"),
...,
iScore = NULL, iHessian = NULL, iArgs = NULL,
drop = FALSE,
fitname = NULL)

ppmInfluence 1223

Arguments

fit A fitted point process model of class "ppm".

what Character vector specifying which quantities are to be calculated. Default is to
calculate all quantities.

... Ignored.
iScore,iHessian

Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-
tions from quadrature points that were not used to fit the model.

fitname Optional character string name for the fitted model fit.

Details

This function calculates all the leverage and influence measures described in influence.ppm,
leverage.ppm and dfbetas.ppm.

When analysing large datasets, the user can call ppmInfluence to perform the calculations effi-
ciently, then extract the leverage and influence values as desired. For example the leverage can be
extracted either as result$leverage or leverage(result).

If the point process model trend has irregular parameters that were fitted (using ippm) then the
influence calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

Value

A list containing the leverage and influence measures specified by what. The result also belongs to
the class "ppmInfluence".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

leverage.ppm, influence.ppm, dfbetas.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~ x+y)
fI <- ppmInfluence(fit)

1224 ppp

fitlev <- fI$leverage
fitlev <- leverage(fI)

fitinf <- fI$influence
fitinf <- influence(fI)

fitdfb <- fI$dfbetas
fitdfb <- dfbetas(fI)

ppp Create a Point Pattern

Description

Creates an object of class "ppp" representing a point pattern dataset in the two-dimensional plane.

Usage

ppp(x,y, ..., window, marks,
check=TRUE, checkdup=check, drop=TRUE)

Arguments

x Vector of x coordinates of data points

y Vector of y coordinates of data points

window window of observation, an object of class "owin"

... arguments passed to owin to create the window, if window is missing

marks (optional) mark values for the points. A vector or data frame.

check Logical value indicating whether to check that all the (x, y) points lie inside the
specified window. Do not set this to FALSE unless you are absolutely sure that
this check is unnecessary. See Warnings below.

checkdup Logical value indicating whether to check for duplicated coordinates. See Warn-
ings below.

drop Logical flag indicating whether to simplify data frames of marks. See Details.

Details

In the spatstat library, a point pattern dataset is described by an object of class "ppp". This function
creates such objects.

The vectors x and y must be numeric vectors of equal length. They are interpreted as the carte-
sian coordinates of the points in the pattern. Note that x and y are permitted to have length zero,
corresponding to an empty point pattern; this is the default if these arguments are missing.

A point pattern dataset is assumed to have been observed within a specific region of the plane called
the observation window. An object of class "ppp" representing a point pattern contains information
specifying the observation window. This window must always be specified when creating a point

ppp 1225

pattern dataset; there is intentionally no default action of “guessing” the window dimensions from
the data points alone.

You can specify the observation window in several (mutually exclusive) ways:

• xrange,yrange specify a rectangle with these dimensions;

• poly specifies a polygonal boundary. If the boundary is a single polygon then poly must be
a list with components x,y giving the coordinates of the vertices. If the boundary consists of
several disjoint polygons then poly must be a list of such lists so that poly[[i]]$x gives the
x coordinates of the vertices of the ith boundary polygon.

• mask specifies a binary pixel image with entries that are TRUE if the corresponding pixel is
inside the window.

• window is an object of class "owin" specifying the window. A window object can be created
by owin from raw coordinate data. Special shapes of windows can be created by the functions
square, hexagon, regularpolygon, disc and ellipse. See the Examples.

The arguments xrange,yrange or poly or mask are passed to the window creator function owin
for interpretation. See owin for further details.

The argument window, if given, must be an object of class "owin". It is a full description of the
window geometry, and could have been obtained from owin or as.owin, or by just extracting the
observation window of another point pattern, or by manipulating such windows. See owin or the
Examples below.

The points with coordinates x and y must lie inside the specified window, in order to define a valid
object of this class. Any points which do not lie inside the window will be removed from the point
pattern, and a warning will be issued. See the section on Rejected Points.

The name of the unit of length for the x and y coordinates can be specified in the dataset, using the
argument unitname, which is passed to owin. See the examples below, or the help file for owin.

The optional argument marks is given if the point pattern is marked, i.e. if each data point carries
additional information. For example, points which are classified into two or more different types, or
colours, may be regarded as having a mark which identifies which colour they are. Data recording
the locations and heights of trees in a forest can be regarded as a marked point pattern where the
mark is the tree height.

The argument marks can be either

• a vector, of the same length as x and y, which is interpreted so that marks[i] is the mark
attached to the point (x[i],y[i]). If the mark is a real number then marks should be a
numeric vector, while if the mark takes only a finite number of possible values (e.g. colours
or types) then marks should be a factor.

• a data frame, with the number of rows equal to the number of points in the point pattern. The
ith row of the data frame is interpreted as containing the mark values for the ith point in the
point pattern. The columns of the data frame correspond to different mark variables (e.g. tree
species and tree diameter).

If drop=TRUE (the default), then a data frame with only one column will be converted to a vector,
and a data frame with no columns will be converted to NULL.

See ppp.object for a description of the class "ppp".

Users would normally invoke ppp to create a point pattern, but the functions as.ppp and scanpp
may sometimes be convenient.

1226 ppp

Value

An object of class "ppp" describing a point pattern in the two-dimensional plane (see ppp.object).

Invalid coordinate values

The coordinate vectors x and y must contain only finite numerical values. If the coordinates include
any of the values NA, NaN, Inf or -Inf, these will be removed.

Rejected points

The points with coordinates x and y must lie inside the specified window, in order to define a valid
object of class "ppp". Any points which do not lie inside the window will be removed from the
point pattern, and a warning will be issued.

The rejected points are still accessible: they are stored as an attribute of the point pattern called
"rejects" (which is an object of class "ppp" containing the rejected points in a large window).
However, rejected points in a point pattern will be ignored by all other functions except plot.ppp.

To remove the rejected points altogether, use as.ppp. To include the rejected points, you will need
to find a larger window that contains them, and use this larger window in a call to ppp.

Warnings

The code will check for problems with the data, and issue a warning if any problems are found. The
checks and warnings can be switched off, for efficiency’s sake, but this should only be done if you
are confident that the data do not have these problems.

Setting check=FALSE will disable all the checking procedures: the check for points outside the
window, and the check for duplicated points. This is extremely dangerous, because points lying
outside the window will break many of the procedures in spatstat, causing crashes and strange
errors. Set check=FALSE only if you are absolutely sure that there are no points outside the window.

If duplicated points are found, a warning is issued, but no action is taken. Duplicated points are not
illegal, but may cause unexpected problems later. Setting checkdup=FALSE will disable the check
for duplicated points. Do this only if you already know the answer.

Methodology and software for spatial point patterns often assume that all points are distinct so
that there are no duplicated points. If duplicated points are present, the consequence could be
an incorrect result or a software crash. To the best of our knowledge, all spatstat code handles
duplicated points correctly. However, if duplicated points are present, we advise using unique.ppp
or multiplicity.ppp to eliminate duplicated points and re-analyse the data.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, as.ppp, owin.object, owin, as.owin

ppp.object 1227

Examples

some arbitrary coordinates in [0,1]
x <- runif(20)
y <- runif(20)

the following are equivalent
X <- ppp(x, y, c(0,1), c(0,1))
X <- ppp(x, y)
X <- ppp(x, y, window=owin(c(0,1),c(0,1)))

specify that the coordinates are given in metres
X <- ppp(x, y, c(0,1), c(0,1), unitname=c("metre","metres"))

Not run: plot(X)

marks
m <- sample(1:2, 20, replace=TRUE)
m <- factor(m, levels=1:2)
X <- ppp(x, y, c(0,1), c(0,1), marks=m)
Not run: plot(X)

polygonal window
X <- ppp(x, y, poly=list(x=c(0,10,0), y=c(0,0,10)))
Not run: plot(X)

circular window of radius 2
X <- ppp(x, y, window=disc(2))

copy the window from another pattern
data(cells)
X <- ppp(x, y, window=Window(cells))

ppp.object Class of Point Patterns

Description

A class "ppp" to represent a two-dimensional point pattern. Includes information about the window
in which the pattern was observed. Optionally includes marks.

Details

This class represents a two-dimensional point pattern dataset. It specifies

• the locations of the points

• the window in which the pattern was observed

• optionally, “marks” attached to each point (extra information such as a type label).

If X is an object of type ppp, it contains the following elements:

1228 ppp.object

x vector of x coordinates of data points
y vector of y coordinates of data points
n number of points
window window of observation

(an object of class owin)
marks optional vector or data frame of marks

Users are strongly advised not to manipulate these entries directly.

Objects of class "ppp" may be created by the function ppp and converted from other types of data
by the function as.ppp. Note that you must always specify the window of observation; there is
intentionally no default action of “guessing” the window dimensions from the data points alone.

Standard point pattern datasets provided with the package include amacrine, betacells, bramblecanes,
cells, demopat, ganglia, lansing, longleaf, nztrees, redwood, simdat and swedishpines.

Point patterns may be scanned from your own data files by scanpp or by using read.table and
as.ppp.

They may be manipulated by the functions [.ppp and superimpose.

Point pattern objects can be plotted just by typing plot(X) which invokes the plot method for
point pattern objects, plot.ppp. See plot.ppp for further information.

There are also methods for summary and print for point patterns. Use summary(X) to see a useful
description of the data.

Patterns may be generated at random by runifpoint, rpoispp, rMaternI, rMaternII, rSSI,
rNeymanScott, rMatClust, and rThomas.

Most functions which are intended to operate on a window (of class owin) will, if presented with a
ppp object instead, automatically extract the window information from the point pattern.

Warnings

The internal representation of marks is likely to change in the next release of this package.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin, ppp, as.ppp, [.ppp

Examples

x <- runif(100)
y <- runif(100)
X <- ppp(x, y, c(0,1),c(0,1))
X
Not run: plot(X)
mar <- sample(1:3, 100, replace=TRUE)
mm <- ppp(x, y, c(0,1), c(0,1), marks=mar)

pppdist 1229

Not run: plot(mm)
points with mark equal to 2
ss <- mm[mm$marks == 2 ,]
Not run: plot(ss)
left half of pattern 'mm'
lu <- owin(c(0,0.5),c(0,1))
mmleft <- mm[, lu]
Not run: plot(mmleft)
Not run:
if(FALSE) {
input data from file
qq <- scanpp("my.table", unit.square())

interactively build a point pattern
plot(unit.square())
X <- as.ppp(locator(10), unit.square())
plot(X)
}

End(Not run)

pppdist Distance Between Two Point Patterns

Description

Given two point patterns, find the distance between them based on optimal point matching.

Usage

pppdist(X, Y, type = "spa", cutoff = 1, q = 1, matching = TRUE,
ccode = TRUE, auction = TRUE, precision = NULL, approximation = 10,
show.rprimal = FALSE, timelag = 0)

Arguments

X,Y Two point patterns (objects of class "ppp").

type A character string giving the type of distance to be computed. One of "spa" (de-
fault), "ace" or "mat", indicating whether the algorithm should find the optimal
matching based on “subpattern assignment”, “assignment only if cardinalities
are equal” or “mass transfer”. See Details.

cutoff The value > 0 at which interpoint distances are cut off.

q The order of the average that is applied to the interpoint distances. May be Inf,
in which case the maximum of the interpoint distances is taken.

matching Logical. Whether to return the optimal matching or only the associated distance.

ccode Logical. If FALSE, R code is used which allows for higher precision, but is much
slower.

1230 pppdist

auction Logical. By default a version of Bertsekas’ auction algorithm is used to compute
an optimal point matching if type is either "spa" or "ace". If auction is FALSE
(or type is "mat") a specialized primal-dual algorithm is used instead. This was
the standard in earlier versions of spatstat, but is several orders of magnitudes
slower.

precision Index controlling accuracy of algorithm. The q-th powers of interpoint distances
will be rounded to the nearest multiple of 10^(-precision). There is a sensible
default which depends on ccode.

approximation If q = Inf, compute distance based on the optimal matching for the correspond-
ing distance of order approximation. Can be Inf, but this makes computations
extremely slow.

show.rprimal Logical. Whether to plot the progress of the primal-dual algorithm. If TRUE,
slow primal-dual R code is used, regardless of the arguments ccode and auction.

timelag Time lag, in seconds, between successive displays of the iterative solution of the
restricted primal problem.

Details

Computes the distance between point patterns X and Y based on finding the matching between
them which minimizes the average of the distances between matched points (if q=1), the maximum
distance between matched points (if q=Inf), and in general the q-th order average (i.e. the 1/qth
power of the sum of the qth powers) of the distances between matched points. Distances between
matched points are Euclidean distances cut off at the value of cutoff.

The parameter type controls the behaviour of the algorithm if the cardinalities of the point patterns
are different. For the type "spa" (subpattern assignment) the subpattern of the point pattern with the
larger cardinality n that is closest to the point pattern with the smaller cardinality m is determined;
then the q-th order average is taken over n values: the m distances of matched points and n −m
"penalty distances" of value cutoff for the unmatched points. For the type "ace" (assignment only
if cardinalities equal) the matching is empty and the distance returned is equal to cutoff if the
cardinalities differ. For the type "mat" (mass transfer) each point pattern is assumed to have total
mass m (= the smaller cardinality) distributed evenly among its points; the algorithm finds then
the "mass transfer plan" that minimizes the q-th order weighted average of the distances, where the
weights are given by the transferred mass divided by m. The result is a fractional matching (each
match of two points has a weight in (0, 1]) with the minimized quantity as the associated distance.

The central problem to be solved is the assignment problem (for types "spa" and "ace") or the more
general transport problem (for type "mat"). Both are well-known problems in discrete optimization,
see e.g. Luenberger (2003).

For the assignment problem pppdist uses by default the forward/backward version of Bertsekas’
auction algorithm with automated epsilon scaling; see Bertsekas (1992). The implemented version
gives good overall performance and can handle point patterns with several thousand points.

For the transport problem a specialized primal-dual algorithm is employed; see Luenberger (2003),
Section 5.9. The C implementation used by default can handle patterns with a few hundreds of
points, but should not be used with thousands of points. By setting show.rprimal = TRUE, some
insight in the working of the algorithm can be gained.

For a broader selection of optimal transport algorithms that are not restricted to spatial point patterns
and allow for additional fine tuning, we recommend the R package transport.

pppdist 1231

For moderate and large values of q there can be numerical issues based on the fact that the q-th
powers of distances are taken and some positive values enter the optimization algorithm as zeroes
because they are too small in comparison with the larger values. In this case the number of zeroes
introduced is given in a warning message, and it is possible then that the matching obtained is not
optimal and the associated distance is only a strict upper bound of the true distance. As a general
guideline (which can be very wrong in special situations) a small number of zeroes (up to about
50% of the smaller point pattern cardinality m) usually still results in the right matching, and the
number can even be quite a bit higher and usually still provides a highly accurate upper bound for
the distance. These numerical problems can be reduced by enforcing (much slower) R code via the
argument ccode = FALSE.

For q = Inf there is no fast algorithm available, which is why approximation is normally used: for
finding the optimal matching, q is set to the value of approximation. The resulting distance is still
given as the maximum rather than the q-th order average in the corresponding distance computation.
If approximation = Inf, approximation is suppressed and a very inefficient exhaustive search for
the best matching is performed.

The value of precision should normally not be supplied by the user. If ccode = TRUE, this value is
preset to the highest exponent of 10 that the C code still can handle (usually 9). If ccode = FALSE,
the value is preset according to q (usually 15 if q is small), which can sometimes be changed to
obtain less severe warning messages.

Value

Normally an object of class pppmatching that contains detailed information about the parameters
used and the resulting distance. See pppmatching.object for details. If matching = FALSE, only
the numerical value of the distance is returned.

Author(s)

Dominic Schuhmacher <dominic.schuhmacher@mathematik.uni-goettingen.de>
http://www.dominic.schuhmacher.name

References

Bertsekas, D.P. (1992). Auction algorithms for network flow problems: a tutorial introduction.
Computational Optimization and Applications 1, 7-66.

Luenberger, D.G. (2003). Linear and nonlinear programming. Second edition. Kluwer.

Schuhmacher, D. (2014). transport: optimal transport in various forms. R package version 0.6-2
(or later)

Schuhmacher, D. and Xia, A. (2008). A new metric between distributions of point processes. Ad-
vances in Applied Probability 40, 651–672

Schuhmacher, D., Vo, B.-T. and Vo, B.-N. (2008). A consistent metric for performance evaluation
of multi-object filters. IEEE Transactions on Signal Processing 56, 3447–3457.

See Also

pppmatching.object, matchingdist, plot.pppmatching

http://www.dominic.schuhmacher.name

1232 pppmatching

Examples

equal cardinalities
set.seed(140627)
X <- runifpoint(500)
Y <- runifpoint(500)
m <- pppdist(X, Y)
m
Not run:
plot(m)
End(Not run)

differing cardinalities
X <- runifpoint(14)
Y <- runifpoint(10)
m1 <- pppdist(X, Y, type="spa")
m2 <- pppdist(X, Y, type="ace")
m3 <- pppdist(X, Y, type="mat", auction=FALSE)
summary(m1)
summary(m2)
summary(m3)
Not run:
m1$matrix
m2$matrix
m3$matrix
End(Not run)

q = Inf
X <- runifpoint(10)
Y <- runifpoint(10)
mx1 <- pppdist(X, Y, q=Inf, matching=FALSE)
mx2 <- pppdist(X, Y, q=Inf, matching=FALSE, ccode=FALSE, approximation=50)
mx3 <- pppdist(X, Y, q=Inf, matching=FALSE, approximation=Inf)
all.equal(mx1,mx2,mx3)
sometimes TRUE
all.equal(mx2,mx3)
very often TRUE

pppmatching Create a Point Matching

Description

Creates an object of class "pppmatching" representing a matching of two planar point patterns
(objects of class "ppp").

Usage

pppmatching(X, Y, am, type = NULL, cutoff = NULL, q = NULL,
mdist = NULL)

pppmatching 1233

Arguments

X,Y Two point patterns (objects of class "ppp").

am An npoints(X) by npoints(Y) matrix with entries ≥ 0 that specifies which
points are matched and with what weight; alternatively, an object that can be
coerced to this form by as.matrix.

type A character string giving the type of the matching. One of "spa", "ace" or
"mat", or NULL for a generic or unknown matching.

cutoff, q Numerical values specifying the cutoff value> 0 for interpoint distances and the
order q ∈ [1,∞] of the average that is applied to them. NULL if not applicable or
unknown.

mdist Numerical value for the distance to be associated with the matching.

Details

The argument am is interpreted as a "generalized adjacency matrix": if the [i,j]-th entry is positive,
then the i-th point of X and the j-th point of Y are matched and the value of the entry gives the
corresponding weight of the match. For an unweighted matching all the weights should be set to 1.

The remaining arguments are optional and allow to save additional information about the matching.
See the help files for pppdist and matchingdist for details on the meaning of these parameters.

Author(s)

Dominic Schuhmacher <dominic.schuhmacher@stat.unibe.ch> http://www.dominic.schuhmacher.
name

See Also

pppmatching.object matchingdist

Examples

a random unweighted complete matching
X <- runifpoint(10)
Y <- runifpoint(10)
am <- r2dtable(1, rep(1,10), rep(1,10))[[1]]

generates a random permutation matrix
m <- pppmatching(X, Y, am)
summary(m)
m$matrix
plot(m)

a random weighted complete matching
X <- runifpoint(7)
Y <- runifpoint(7)
am <- r2dtable(1, rep(10,7), rep(10,7))[[1]]/10

generates a random doubly stochastic matrix
m2 <- pppmatching(X, Y, am)
summary(m2)
m2$matrix

http://www.dominic.schuhmacher.name
http://www.dominic.schuhmacher.name

1234 pppmatching.object

plot(m2)
m3 <- pppmatching(X, Y, am, "ace")
m4 <- pppmatching(X, Y, am, "mat")

pppmatching.object Class of Point Matchings

Description

A class "pppmatching" to represent a matching of two planar point patterns. Optionally includes
information about the construction of the matching and its associated distance between the point
patterns.

Details

This class represents a (possibly weighted and incomplete) matching between two planar point
patterns (objects of class "ppp").

A matching can be thought of as a bipartite weighted graph where the vertices are given by the two
point patterns and edges of positive weights are drawn each time a point of the first point pattern is
"matched" with a point of the second point pattern.

If m is an object of type pppmatching, it contains the following elements

pp1, pp2 the two point patterns to be matched (vertices)
matrix a matrix specifying which points are matched

and with what weights (edges)
type (optional) a character string for the type of

the matching (one of "spa", "ace" or "mat")
cutoff (optional) cutoff value for interpoint distances
q (optional) the order for taking averages of

interpoint distances
distance (optional) the distance associated with the matching

The element matrix is a "generalized adjacency matrix". The numbers of rows and columns match
the cardinalities of the first and second point patterns, respectively. The [i,j]-th entry is positive
if the i-th point of X and the j-th point of Y are matched (zero otherwise) and its value then gives
the corresponding weight of the match. For an unweighted matching all the weights are set to 1.

The optional elements are for saving details about matchings in the context of optimal point match-
ing techniques. type can be one of "spa" (for "subpattern assignment"), "ace" (for "assignment
only if cardinalities differ") or "mat" (for "mass transfer"). cutoff is a positive numerical value
that specifies the maximal interpoint distance and q is a value in [1,∞] that gives the order of the
average applied to the interpoint distances. See the help files for pppdist and matchingdist for
detailed information about these elements.

Objects of class "pppmatching" may be created by the function pppmatching, and are most com-
monly obtained as output of the function pppdist. There are methods plot, print and summary
for this class.

PPversion 1235

Author(s)

Dominic Schuhmacher <dominic.schuhmacher@stat.unibe.ch> http://www.dominic.schuhmacher.
name

See Also

matchingdist, pppmatching, plot.pppmatching

Examples

a random complete unweighted matching
X <- runifpoint(10)
Y <- runifpoint(10)
am <- r2dtable(1, rep(1,10), rep(1,10))[[1]]

generates a random permutation matrix
m <- pppmatching(X, Y, am)
summary(m)
m$matrix
Not run:

plot(m)

End(Not run)

an optimal complete unweighted matching
m2 <- pppdist(X,Y)
summary(m2)
m2$matrix
Not run:
plot(m2)

End(Not run)

PPversion Transform a Function into its P-P or Q-Q Version

Description

Given a function object f containing both the estimated and theoretical versions of a summary
function, these operations combine the estimated and theoretical functions into a new function.
When plotted, the new function gives either the P-P plot or Q-Q plot of the original f.

Usage

PPversion(f, theo = "theo", columns = ".")

QQversion(f, theo = "theo", columns = ".")

http://www.dominic.schuhmacher.name
http://www.dominic.schuhmacher.name

1236 PPversion

Arguments

f The function to be transformed. An object of class "fv".

theo The name of the column of f that should be treated as the theoretical value of
the function.

columns Character vector, specifying the columns of f to which the transformation will
be applied. Either a vector of names of columns of f, or one of the abbreviations
recognised by fvnames.

Details

The argument f should be an object of class "fv", containing both empirical estimates f̂(r) and a
theoretical value f0(r) for a summary function.

The P–P version of f is the function g(x) = f̂(f−10 (x)) where f−10 is the inverse function of f0.
A plot of g(x) against x is equivalent to a plot of f̂(r) against f0(r) for all r. If f is a cumulative
distribution function (such as the result of Fest or Gest) then this is a P–P plot, a plot of the
observed versus theoretical probabilities for the distribution. The diagonal line y = x corresponds
to perfect agreement between observed and theoretical distribution.

The Q–Q version of f is the function h(x) = f−10 (f̂(x)). If f is a cumulative distribution func-
tion, a plot of h(x) against x is a Q–Q plot, a plot of the observed versus theoretical quantiles of
the distribution. The diagonal line y = x corresponds to perfect agreement between observed and
theoretical distribution. Another straight line corresponds to the situation where the observed vari-
able is a linear transformation of the theoretical variable. For a point pattern X, the Q–Q version of
Kest(X) is essentially equivalent to Lest(X).

Value

Another object of class "fv".

Author(s)

Tom Lawrence and Adrian Baddeley.

Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.fv

Examples

opa <- par(mar=0.1+c(5,5,4,2))
G <- Gest(redwoodfull)
plot(PPversion(G))
plot(QQversion(G))
par(opa)

ppx 1237

ppx Multidimensional Space-Time Point Pattern

Description

Creates a multidimensional space-time point pattern with any kind of coordinates and marks.

Usage

ppx(data, domain=NULL, coord.type=NULL, simplify=FALSE)

Arguments

data The coordinates and marks of the points. A data.frame or hyperframe.

domain Optional. The space-time domain containing the points. An object in some
appropriate format, or NULL.

coord.type Character vector specifying how each column of data should be interpreted:
as a spatial coordinate, a temporal coordinate, a local coordinate or a mark.
Entries are partially matched to the values "spatial", "temporal", "local"
and "mark".

simplify Logical value indicating whether to simplify the result in special cases. If
simplify=TRUE, a two-dimensional point pattern will be returned as an object
of class "ppp", and a three-dimensional point pattern will be returned as an ob-
ject of class "pp3". If simplify=FALSE (the default) then the result is always
an object of class "ppx".

Details

An object of class "ppx" represents a marked point pattern in multidimensional space and/or time.
There may be any number of spatial coordinates, any number of temporal coordinates, any number
of local coordinates, and any number of mark variables. The individual marks may be atomic
(numeric values, factor values, etc) or objects of any kind.

The argument data should contain the coordinates and marks of the points. It should be a data.frame
or more generally a hyperframe (see hyperframe) with one row of data for each point.

Each column of data is either a spatial coordinate, a temporal coordinate, a local coordinate, or a
mark variable. The argument coord.type determines how each column is interpreted. It should be
a character vector, of length equal to the number of columns of data. It should contain strings that
partially match the values "spatial", "temporal", "local" and "mark". (The first letters will be
sufficient.)

By default (if coord.type is missing or NULL), columns of numerical data are assumed to represent
spatial coordinates, while other columns are assumed to be marks.

Value

Usually an object of class "ppx". If simplify=TRUE the result may be an object of class "ppp" or
"pp3".

1238 predict.dppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pp3, print.ppx

Examples

df <- data.frame(x=runif(4),y=runif(4),t=runif(4),
age=rep(c("old", "new"), 2),
size=runif(4))

X <- ppx(data=df, coord.type=c("s","s","t","m","m"))
X

val <- 20 * runif(4)
E <- lapply(val, function(s) { rpoispp(s) })
hf <- hyperframe(t=val, e=as.listof(E))
Z <- ppx(data=hf, domain=c(0,1))
Z

predict.dppm Prediction from a Fitted Determinantal Point Process Model

Description

Given a fitted determinantal point process model, these functions compute the fitted intensity.

Usage

S3 method for class 'dppm'
fitted(object, ...)

S3 method for class 'dppm'
predict(object, ...)

Arguments

object Fitted determinantal point process model. An object of class "dppm".

... Arguments passed to fitted.ppm or predict.ppm respectively.

Details

These functions are methods for the generic functions fitted and predict. The argument object
should be a determinantal point process model (object of class "dppm") obtained using the function
dppm.

The intensity of the fitted model is computed, using fitted.ppm or predict.ppm respectively.

predict.kppm 1239

Value

The value of fitted.dppm is a numeric vector giving the fitted values at the quadrature points.

The value of predict.dppm is usually a pixel image (object of class "im"), but see predict.ppm
for details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

dppm, plot.dppm, fitted.ppm, predict.ppm

Examples

fit <- dppm(swedishpines ~ x + y, dppGauss())
predict(fit)

predict.kppm Prediction from a Fitted Cluster Point Process Model

Description

Given a fitted cluster point process model, these functions compute the fitted intensity.

Usage

S3 method for class 'kppm'
fitted(object, ...)

S3 method for class 'kppm'
predict(object, ...)

Arguments

object Fitted cluster point process model. An object of class "kppm".

... Arguments passed to fitted.ppm or predict.ppm respectively.

Details

These functions are methods for the generic functions fitted and predict. The argument object
should be a cluster point process model (object of class "kppm") obtained using the function kppm.

The intensity of the fitted model is computed, using fitted.ppm or predict.ppm respectively.

1240 predict.lppm

Value

The value of fitted.kppm is a numeric vector giving the fitted values at the quadrature points.

The value of predict.kppm is usually a pixel image (object of class "im"), but see predict.ppm
for details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

kppm, plot.kppm, vcov.kppm, fitted.ppm, predict.ppm

Examples

data(redwood)
fit <- kppm(redwood ~ x, "Thomas")
predict(fit)

predict.lppm Predict Point Process Model on Linear Network

Description

Given a fitted point process model on a linear network, compute the fitted intensity or conditional
intensity of the model.

Usage

S3 method for class 'lppm'
predict(object, ...,

type = "trend", locations = NULL, new.coef=NULL)

Arguments

object The fitted model. An object of class "lppm", see lppm.

type Type of values to be computed. Either "trend", "cif" or "se".

locations Optional. Locations at which predictions should be computed. Either a data
frame with two columns of coordinates, or a binary image mask.

new.coef Optional. Numeric vector of model coefficients, to be used instead of the fitted
coefficients coef(object) when calculating the prediction.

... Optional arguments passed to as.mask to determine the pixel resolution (if
locations is missing).

predict.lppm 1241

Details

This function computes the fitted poin process intensity, fitted conditional intensity, or standard
error of the fitted intensity, for a point process model on a linear network. It is a method for the
generic predict for the class "lppm".

The argument object should be an object of class "lppm" (produced by lppm) representing a point
process model on a linear network.

Predicted values are computed at the locations given by the argument locations. If this argument
is missing, then predicted values are computed at a fine grid of points on the linear network.

• If locations is missing or NULL (the default), the return value is a pixel image (object of class
"linim" which inherits class "im") corresponding to a discretisation of the linear network,
with numeric pixel values giving the predicted values at each location on the linear network.

• If locations is a data frame, the result is a numeric vector of predicted values at the locations
specified by the data frame.

• If locations is a binary mask, the result is a pixel image with predicted values computed at
the pixels of the mask.

Value

A pixel image (object of class "linim" which inherits class "im") or a numeric vector, depending
on the argument locations. See Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ang, Q.W. (2010) Statistical methodology for events on a network. Master’s thesis, School of
Mathematics and Statistics, University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

McSwiggan, G., Nair, M.G. and Baddeley, A. (2012) Fitting Poisson point process models to events
on a linear network. Manuscript in preparation.

See Also

lpp, linim

Examples

X <- runiflpp(12, simplenet)
fit <- lppm(X ~ x)
v <- predict(fit, type="trend")
plot(v)

1242 predict.mppm

predict.mppm Prediction for Fitted Multiple Point Process Model

Description

Given a fitted multiple point process model obtained by mppm, evaluate the spatial trend and/or the
conditional intensity of the model. By default, predictions are evaluated over a grid of locations,
yielding pixel images of the trend and conditional intensity. Alternatively predictions may be eval-
uated at specified locations with specified values of the covariates.

Usage

S3 method for class 'mppm'
predict(object, ..., newdata = NULL, type = c("trend", "cif"),

ngrid = 40, locations=NULL, verbose=FALSE)

Arguments

object The fitted model. An object of class "mppm" obtained from mppm.

... Ignored.

newdata New values of the covariates, for which the predictions should be computed. If
newdata=NULL, predictions are computed for the original values of the covari-
ates, to which the model was fitted. Otherwise newdata should be a hyperframe
(see hyperframe) containing columns of covariates as required by the model. If
type includes "cif", then newdata must also include a column of spatial point
pattern responses, in order to compute the conditional intensity.

type Type of predicted values required. A character string or vector of character
strings. Options are "trend" for the spatial trend (first-order term) and "cif"
or "lambda" for the conditional intensity. Alternatively type="all" selects all
options.

ngrid Dimensions of the grid of spatial locations at which prediction will be performed
(if locations=NULL). An integer or a pair of integers.

locations Optional. The locations at which predictions should be performed. A list of
point patterns, with one entry for each row of newdata.

verbose Logical flag indicating whether to print progress reports.

Details

This function computes the spatial trend and the conditional intensity of a fitted multiple spatial
point process model. See Baddeley and Turner (2000) and Baddeley et al (2007) for explanation
and examples.

Note that by “spatial trend” we mean the (exponentiated) first order potential and not the intensity
of the process. [For example if we fit the stationary Strauss process with parameters β and γ, then
the spatial trend is constant and equal to β.] The conditional intensity λ(u,X) of the fitted model
is evaluated at each required spatial location u, with respect to the response point pattern X.

predict.mppm 1243

If locations=NULL, then predictions are performed at an ngrid by ngrid grid of locations in the
window for each response point pattern. The result will be a hyperframe containing a column of
images of the trend (if selected) and a column of images of the conditional intensity (if selected).
The result can be plotted.

If locations is given, then it should be a list of point patterns (objects of class "ppp"). Predictions
are performed at these points. The result is a hyperframe containing a column of marked point
patterns where the locations each point.

Value

A hyperframe with columns named trend and cif.

If locations=NULL, the entries of the hyperframe are pixel images.

If locations is not null, the entries are marked point patterns constructed by attaching the predicted
values to the locations point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Baddeley, A., Bischof, L., Sintorn, I.-M., Haggarty, S., Bell, M. and Turner, R. Analysis of a
designed experiment where the response is a spatial point pattern. In preparation.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm, fitted.mppm, hyperframe

Examples

h <- hyperframe(Bugs=waterstriders)
fit <- mppm(Bugs ~ x, data=h, interaction=Strauss(7))
prediction on a grid
p <- predict(fit)
plot(p$trend)
prediction at specified locations
loc <- with(h, runifpoint(20, Window(Bugs)))
p2 <- predict(fit, locations=loc)
plot(p2$trend)

1244 predict.ppm

predict.ppm Prediction from a Fitted Point Process Model

Description

Given a fitted point process model obtained by ppm, evaluate the spatial trend or the conditional
intensity of the model at new locations.

Usage

S3 method for class 'ppm'
predict(object, window=NULL, ngrid=NULL, locations=NULL,

covariates=NULL,
type=c("trend", "cif", "intensity", "count"),
se=FALSE,
interval=c("none", "confidence", "prediction"),
level = 0.95,
X=data.ppm(object), correction, ignore.hardcore=FALSE,
...,
dimyx=NULL, eps=NULL,
new.coef=NULL, check=TRUE, repair=TRUE)

Arguments

object A fitted point process model, typically obtained from the model-fitting algorithm
ppm. An object of class "ppm" (see ppm.object).

window Optional. A window (object of class "owin") delimiting the locations where
predictions should be computed. Defaults to the window of the original data
used to fit the model object.

ngrid Optional. Dimensions of a rectangular grid of locations inside window where
the predictions should be computed. An integer, or an integer vector of length
2, specifying the number of grid points in the y and x directions. (Incompatible
with locations. Equivalent to dimyx.)

locations Optional. Data giving the exact x, y coordinates (and marks, if required) of
locations at which predictions should be computed. Either a point pattern, or
a data frame with columns named x and y, or a binary image mask, or a pixel
image. (Incompatible with ngrid, dimyx and eps).

covariates Values of external covariates required by the model. Either a data frame or a list
of images. See Details.

type Character string. Indicates which property of the fitted model should be pre-
dicted. Options are "trend" for the spatial trend, "cif" or "lambda" for the
conditional intensity, "intensity" for the intensity, and "count" for the total
number of points in window.

se Logical value indicating whether to calculate standard errors as well.

predict.ppm 1245

interval String (partially matched) indicating whether to produce estimates (interval="none",
the default) or a confidence interval (interval="confidence") or a prediction
interval (interval="prediction").

level Coverage probability for the confidence or prediction interval.

X Optional. A point pattern (object of class "ppp") to be taken as the data point
pattern when calculating the conditional intensity. The default is to use the orig-
inal data to which the model was fitted.

correction Name of the edge correction to be used in calculating the conditional intensity.
Options include "border" and "none". Other options may include "periodic",
"isotropic" and "translate" depending on the model. The default correction
is the one that was used to fit object.

ignore.hardcore

Advanced use only. Logical value specifying whether to compute only the finite
part of the interaction potential (effectively removing any hard core interaction
terms).

... Ignored.

dimyx Equivalent to ngrid.

eps Width and height of pixels in the prediction grid. A numerical value, or numeric
vector of length 2.

new.coef Numeric vector of parameter values to replace the fitted model parameters coef(object).

check Logical value indicating whether to check the internal format of object. If
there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

repair Logical value indicating whether to repair the internal format of object, if it is
found to be damaged.

Details

This function computes properties of a fitted spatial point process model (object of class "ppm").
For a Poisson point process it can compute the fitted intensity function, or the expected number of
points in a region. For a Gibbs point process it can compute the spatial trend (first order potential),
conditional intensity, and approximate intensity of the process. Point estimates, standard errors,
confidence intervals and prediction intervals are available.

Given a point pattern dataset, we may fit a point process model to the data using the model-fitting
algorithm ppm. This returns an object of class "ppm" representing the fitted point process model (see
ppm.object). The parameter estimates in this fitted model can be read off simply by printing the
ppm object. The spatial trend, conditional intensity and intensity of the fitted model are evaluated
using this function predict.ppm.

The default action is to create a rectangular grid of points in the observation window of the data
point pattern, and evaluate the spatial trend at these locations.

The argument type specifies the values that are desired:

If type="trend": the “spatial trend” of the fitted model is evaluated at each required spatial loca-
tion u. See below.

1246 predict.ppm

If type="cif": the conditional intensity λ(u,X) of the fitted model is evaluated at each required
spatial location u, with respect to the data point pattern X .

If type="intensity": the intensity λ(u) of the fitted model is evaluated at each required spatial
location u.

If type="count": the expected total number of points (or the expected number of points falling in
window) is evaluated. If window is a tessellation, the expected number of points in each tile of
the tessellation is evaluated.

The spatial trend, conditional intensity, and intensity are all equivalent if the fitted model is a Poisson
point process. However, if the model is not a Poisson process, then they are all different. The
“spatial trend” is the (exponentiated) first order potential, and not the intensity of the process. [For
example if we fit the stationary Strauss process with parameters β and γ, then the spatial trend is
constant and equal to β, while the intensity is a smaller value.]

The default is to compute an estimate of the desired quantity. If interval="confidence" or
interval="prediction", the estimate is replaced by a confidence interval or prediction interval.

If se=TRUE, then a standard error is also calculated, and is returned together with the (point or
interval) estimate.

The spatial locations where predictions are required, are determined by the (incompatible) argu-
ments ngrid and locations.

• If the argument ngrid is present, then predictions are performed at a rectangular grid of loca-
tions in the window window. The result of prediction will be a pixel image or images.

• If locations is present, then predictions will be performed at the spatial locations given by
this dataset. These may be an arbitrary list of spatial locations, or they may be a rectangular
grid. The result of prediction will be either a numeric vector or a pixel image or images.

• If neither ngrid nor locations is given, then ngrid is assumed. The value of ngrid defaults
to spatstat.options("npixel"), which is initialised to 128 when spatstat is loaded.

The argument locations may be a point pattern, a data frame or a list specifying arbitrary locations;
or it may be a binary image mask (an object of class "owin" with type "mask") or a pixel image
(object of class "im") specifying (a subset of) a rectangular grid of locations.

• If locations is a point pattern (object of class "ppp"), then prediction will be performed at
the points of the point pattern. The result of prediction will be a vector of predicted values,
one value for each point. If the model is a marked point process, then locations should be a
marked point pattern, with marks of the same kind as the model; prediction will be performed
at these marked points. The result of prediction will be a vector of predicted values, one value
for each (marked) point.

• If locations is a data frame or list, then it must contain vectors locations$x and locations$y
specifying the x, y coordinates of the prediction locations. Additionally, if the model is a
marked point process, then locations must also contain a factor locations$marks specify-
ing the marks of the prediction locations. These vectors must have equal length. The result of
prediction will be a vector of predicted values, of the same length.

• If locations is a binary image mask, then prediction will be performed at each pixel in this
binary image where the pixel value is TRUE (in other words, at each pixel that is inside the
window). If the fitted model is an unmarked point process, then the result of prediction will
be an image. If the fitted model is a marked point process, then prediction will be performed

predict.ppm 1247

for each possible value of the mark at each such location, and the result of prediction will be
a list of images, one for each mark value.

• If locations is a pixel image (object of class "im"), then prediction will be performed at each
pixel in this image where the pixel value is defined (i.e.\ where the pixel value is not NA).

The argument covariates gives the values of any spatial covariates at the prediction locations. If
the trend formula in the fitted model involves spatial covariates (other than the Cartesian coordinates
x, y) then covariates is required. The format and use of covariates are analogous to those of
the argument of the same name in ppm. It is either a data frame or a list of images.

• If covariates is a list of images, then the names of the entries should correspond to the names
of covariates in the model formula trend. Each entry in the list must be an image object (of
class "im", see im.object). The software will look up the pixel values of each image at the
quadrature points.

• If covariates is a data frame, then the ith row of covariates is assumed to contain covariate
data for the ith location. When locations is a data frame, this just means that each row of
covariates contains the covariate data for the location specified in the corresponding row
of locations. When locations is a binary image mask, the row covariates[i,] must
correspond to the location x[i],y[i] where x = as.vector(raster.x(locations)) and y
= as.vector(raster.y(locations)).

Note that if you only want to use prediction in order to generate a plot of the predicted values, it
may be easier to use plot.ppm which calls this function and plots the results.

Value

If total is given: a numeric vector or matrix.

If locations is given and is a data frame: a vector of predicted values for the spatial locations
(and marks, if required) given in locations.

If ngrid is given, or if locations is given and is a binary image mask or a pixel image: If object
is an unmarked point process, the result is a pixel image object (of class "im", see im.object)
containing the predictions. If object is a multitype point process, the result is a list of pixel images,
containing the predictions for each type at the same grid of locations.

The “predicted values” are either values of the spatial trend (if type="trend"), values of the condi-
tional intensity (if type="cif" or type="lambda"), values of the intensity (if type="intensity")
or numbers of points (if type="count").

If se=TRUE, then the result is a list with two entries, the first being the predicted values in the format
described above, and the second being the standard errors in the same format.

Warnings

The current implementation invokes predict.glm so that prediction is wrong if the trend formula
in object involves terms in ns(), bs() or poly(). This is a weakness of predict.glm itself!

Error messages may be very opaque, as they tend to come from deep in the workings of predict.glm.
If you are passing the covariates argument and the function crashes, it is advisable to start by
checking that all the conditions listed above are satisfied.

1248 predict.ppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Berman, M. and Turner, T.R. Approximating point process likelihoods with GLIM. Applied Statis-
tics 41 (1992) 31–38.

See Also

ppm, ppm.object, plot.ppm, print.ppm, fitted.ppm, spatstat.options

Examples

m <- ppm(cells ~ polynom(x,y,2), Strauss(0.05))
trend <- predict(m, type="trend")
Not run:
image(trend)
points(cells)

End(Not run)
cif <- predict(m, type="cif")
Not run:
persp(cif)

End(Not run)
mj <- ppm(japanesepines ~ harmonic(x,y,2))
se <- predict(mj, se=TRUE) # image of standard error
ci <- predict(mj, interval="c") # two images, confidence interval

prediction interval for total number of points
predict(mj, type="count", interval="p")

prediction intervals for counts in tiles
predict(mj, window=quadrats(japanesepines, 3), type="count", interval="p")

prediction at arbitrary locations
predict(mj, locations=data.frame(x=0.3, y=0.4))

X <- runifpoint(5, Window(japanesepines))
predict(mj, locations=X, se=TRUE)

multitype
rr <- matrix(0.06, 2, 2)
ma <- ppm(amacrine ~ marks, MultiStrauss(rr))
Z <- predict(ma)
Z <- predict(ma, type="cif")
predict(ma, locations=data.frame(x=0.8, y=0.5,marks="on"), type="cif")

predict.rppm 1249

predict.rppm Make Predictions From a Recursively Partitioned Point Process Model

Description

Given a model which has been fitted to point pattern data by recursive partitioning, compute the
predicted intensity of the model.

Usage

S3 method for class 'rppm'
predict(object, ...)

S3 method for class 'rppm'
fitted(object, ...)

Arguments

object Fitted point process model of class "rppm" produced by the function rppm.
... Optional arguments passed to predict.ppm to specify the locations where pre-

diction is required. (Ignored by fitted.rppm)

Details

These functions are methods for the generic functions fitted and predict. They compute the
fitted intensity of a point process model. The argument object should be a fitted point process
model of class "rppm" produced by the function rppm.

The fitted method computes the fitted intensity at the original data points, yielding a numeric
vector with one entry for each data point.

The predict method computes the fitted intensity at any locations. By default, predictions are
calculated at a regular grid of spatial locations, and the result is a pixel image giving the predicted
intensity values at these locations.

Alternatively, predictions can be performed at other locations, or a finer grid of locations, or
only at certain specified locations, using additional arguments ... which will be interpreted by
predict.ppm. Common arguments are ngrid to increase the grid resolution, window to specify the
prediction region, and locations to specify the exact locations of predictions. See predict.ppm
for details of these arguments.

Predictions are computed by evaluating the explanatory covariates at each desired location, and
applying the recursive partitioning rule to each set of covariate values.

Value

The result of fitted.rppm is a numeric vector.

The result of predict.rppm is a pixel image, a list of pixel images, or a numeric vector.

1250 predict.slrm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rppm, plot.rppm

Examples

fit <- rppm(unmark(gorillas) ~ vegetation, data=gorillas.extra)
plot(predict(fit))
lambdaX <- fitted(fit)
lambdaX[1:5]
Mondriaan pictures
plot(predict(rppm(redwoodfull ~ x + y)))
points(redwoodfull)

predict.slrm Predicted or Fitted Values from Spatial Logistic Regression

Description

Given a fitted Spatial Logistic Regression model, this function computes the fitted probabilities for
each pixel, or the fitted point process intensity, or the values of the linear predictor in each pixel.

Usage

S3 method for class 'slrm'
predict(object, ..., type = "intensity",

newdata=NULL, window=NULL)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... Optional arguments passed to pixellate determining the pixel resolution for
the discretisation of the point pattern.

type Character string (partially) matching one of "probabilities", "intensity"
or "link".

newdata Optional. List containing new covariate values for the prediction. See Details.

window Optional. New window in which to predict. An object of class "owin".

predict.slrm 1251

Details

This is a method for predict for spatial logistic regression models (objects of class "slrm", usually
obtained from the function slrm).

The argument type determines which quantity is computed. If type="intensity"), the value of
the point process intensity is computed at each pixel. If type="probabilities") the probability of
the presence of a random point in each pixel is computed. If type="link", the value of the linear
predictor is computed at each pixel.

If newdata = NULL (the default), the algorithm computes fitted values of the model (based on the
data that was originally used to fit the model object).

If newdata is given, the algorithm computes predicted values of the model, using the new values
of the covariates provided by newdata. The argument newdata should be a list; names of entries
in the list should correspond to variables appearing in the model formula of the object. Each list
entry may be a pixel image or a single numeric value.

Value

A pixel image (object of class "im") containing the predicted values for each pixel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
plot(predict(fit))

data(copper)
X <- copper$SouthPoints
Y <- copper$SouthLines
Z <- distmap(Y)
fitc <- slrm(X ~ Z)
pc <- predict(fitc)

Znew <- distmap(copper$Lines)[copper$SouthWindow]
pcnew <- predict(fitc, newdata=list(Z=Znew))

1252 print.im

print.im Print Brief Details of an Image

Description

Prints a very brief description of a pixel image object.

Usage

S3 method for class 'im'
print(x, ...)

Arguments

x Pixel image (object of class "im").

... Ignored.

Details

A very brief description of the pixel image x is printed.

This is a method for the generic function print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

print, im.object, summary.im

Examples

data(letterR)
U <- as.im(letterR)
U

print.owin 1253

print.owin Print Brief Details of a Spatial Window

Description

Prints a very brief description of a window object.

Usage

S3 method for class 'owin'
print(x, ..., prefix="window: ")

Arguments

x Window (object of class "owin").

... Ignored.

prefix Character string to be printed at the start of the output.

Details

A very brief description of the window x is printed.

This is a method for the generic function print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

print, print.ppp, summary.owin

Examples

owin() # the unit square

data(demopat)
W <- Window(demopat)
W # just says it is polygonal
as.mask(W) # just says it is a binary image

1254 print.ppm

print.ppm Print a Fitted Point Process Model

Description

Default print method for a fitted point process model.

Usage

S3 method for class 'ppm'
print(x,...,

what=c("all", "model", "trend", "interaction", "se", "errors"))

Arguments

x A fitted point process model, typically obtained from the model-fittingg algo-
rithm ppm. An object of class "ppm".

what Character vector (partially-matched) indicating what information should be printed.

... Ignored.

Details

This is the print method for the class "ppm". It prints information about the fitted model in a
sensible format.

The argument what makes it possible to print only some of the information.

If what is missing, then by default, standard errors for the estimated coefficients of the model will be
printed only if the model is a Poisson point process. To print the standard errors for a non-Poisson
model, call print.ppm with the argument what given explicitly, or reset the default rule by typing
spatstat.options(print.ppm.SE="always").

Value

none.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm.object for details of the class "ppm".

ppm for generating these objects.

plot.ppm, predict.ppm

print.ppp 1255

Examples

Not run:
m <- ppm(cells, ~1, Strauss(0.05))
m

End(Not run)

print.ppp Print Brief Details of a Point Pattern Dataset

Description

Prints a very brief description of a point pattern dataset.

Usage

S3 method for class 'ppp'
print(x, ...)

Arguments

x Point pattern (object of class "ppp").

... Ignored.

Details

A very brief description of the point pattern x is printed.

This is a method for the generic function print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

print, print.owin, summary.ppp

Examples

data(cells) # plain vanilla point pattern
cells

data(lansing) # multitype point pattern
lansing

data(longleaf) # numeric marks
longleaf

1256 print.psp

data(demopat) # weird polygonal window
demopat

print.psp Print Brief Details of a Line Segment Pattern Dataset

Description

Prints a very brief description of a line segment pattern dataset.

Usage

S3 method for class 'psp'
print(x, ...)

Arguments

x Line segment pattern (object of class "psp").

... Ignored.

Details

A very brief description of the line segment pattern x is printed.

This is a method for the generic function print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

print, print.owin, summary.psp

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
a

print.quad 1257

print.quad Print a Quadrature Scheme

Description

print method for a quadrature scheme.

Usage

S3 method for class 'quad'
print(x,...)

Arguments

x A quadrature scheme object, typically obtained from quadscheme. An object of
class "quad".

... Ignored.

Details

This is the print method for the class "quad". It prints simple information about the quadrature
scheme.

See quad.object for details of the class "quad".

Value

none.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quadscheme, quad.object, plot.quad, summary.quad

Examples

data(cells)
Q <- quadscheme(cells)
Q

1258 profilepl

profilepl Fit Models by Profile Maximum Pseudolikelihood or AIC

Description

Fits point process models by maximising the profile likelihood, profile pseudolikelihood, profile
composite likelihood or AIC.

Usage

profilepl(s, f, ..., aic=FALSE, rbord=NULL, verbose = TRUE, fast=TRUE)

Arguments

s Data frame containing values of the irregular parameters over which the criterion
will be computed.

f Function (such as Strauss) that generates an interpoint interaction object, given
values of the irregular parameters.

... Data passed to ppm to fit the model.

aic Logical value indicating whether to find the parameter values which minimise
the AIC (aic=TRUE) or maximise the profile likelihood (aic=FALSE, the default).

rbord Radius for border correction (same for all models). If omitted, this will be com-
puted from the interactions.

verbose Logical value indicating whether to print progress reports.

fast Logical value indicating whether to use a faster, less accurate model-fitting tech-
nique when computing the profile pseudolikelihood. See Section on Speed and
Accuracy.

Details

The model-fitting function ppm fits point process models to point pattern data. However, only the
‘regular’ parameters of the model can be fitted by ppm. The model may also depend on ‘irregular’
parameters that must be fixed in any call to ppm.

This function profilepl is a wrapper which finds the values of the irregular parameters that give
the best fit. If aic=FALSE (the default), the best fit is the model which maximises the likelihood
(if the models are Poisson processes) or maximises the pseudolikelihood or logistic likelihood. If
aic=TRUE then the best fit is the model which minimises the Akaike Information Criterion AIC.ppm.

The argument s must be a data frame whose columns contain values of the irregular parameters
over which the maximisation is to be performed.

An irregular parameter may affect either the interpoint interaction or the spatial trend.

interaction parameters: in a call to ppm, the argument interaction determines the interaction
between points. It is usually a call to a function such as Strauss. The arguments of this
call are irregular parameters. For example, the interaction radius parameter r of the Strauss
process, determined by the argument r to the function Strauss, is an irregular parameter.

profilepl 1259

trend parameters: in a call to ppm, the spatial trend may depend on covariates, which are supplied
by the argument covariates. These covariates may be functions written by the user, of the
form function(x,y,...), and the extra arguments ... are irregular parameters.

The argument f determines the interaction for each model to be fitted. It would typically be one
of the functions Poisson, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel,
Geyer, Hardcore, LennardJones, OrdThresh, Softcore, Strauss or StraussHard. Alternatively
it could be a function written by the user.

Columns of s which match the names of arguments of f will be interpreted as interaction parame-
ters. Other columns will be interpreted as trend parameters.

The data frame s must provide values for each argument of f, except for the optional arguments,
which are those arguments of f that have the default value NA.

To find the best fit, each row of s will be taken in turn. Interaction parameters in this row will be
passed to f, resulting in an interaction object. Then ppm will be applied to the data ... using this
interaction. Any trend parameters will be passed to ppm through the argument covfunargs. This
results in a fitted point process model. The value of the log pseudolikelihood or AIC from this
model is stored. After all rows of s have been processed in this way, the row giving the maximum
value of log pseudolikelihood will be found.

The object returned by profilepl contains the profile pseudolikelihood (or profile AIC) function,
the best fitting model, and other data. It can be plotted (yielding a plot of the log pseudolikelihood or
AIC values against the irregular parameters) or printed (yielding information about the best fitting
values of the irregular parameters).

In general, f may be any function that will return an interaction object (object of class "interact")
that can be used in a call to ppm. Each argument of f must be a single value.

Value

An object of class "profilepl". There are methods for plot, print, summary, simulate, as.ppm,
fitin and parameters for objects of this class.

The components of the object include

fit Best-fitting model

param The data frame s

iopt Row index of the best-fitting parameters in s

To extract the best fitting model you can also use as.ppm.

Speed and Accuracy

Computation of the profile pseudolikelihood can be time-consuming. We recommend starting with
a small experiment in which s contains only a few rows of values. This will indicate roughly
the optimal values of the parameters. Then a full calculation using more finely spaced values can
identify the exact optimal values.

It is normal that the procedure appears to slow down at the end. During the computation of the
profile pseudolikelihood, the model-fitting procedure is accelerated by omitting some calculations
that are not needed for computing the pseudolikelihood. When the optimal parameter values have

1260 profilepl

been identified, they are used to fit the final model in its entirety. Fitting the final model can take
longer than computing the profile pseudolikelihood.

If fast=TRUE (the default), then additional shortcuts are taken in order to accelerate the computation
of the profile log pseudolikelihood. These shortcuts mean that the values of the profile log pseudo-
likelihood in the result ($prof) may not be equal to the values that would be obtained if the model
was fitted normally. Currently this happens only for the area interaction AreaInter. It may be wise
to do a small experiment with fast=TRUE and then a definitive calculation with fast=FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

plot.profilepl

Examples

one irregular parameter
rr <- data.frame(r=seq(0.05,0.15, by=0.01))

ps <- profilepl(rr, Strauss, cells)
ps
plot(ps)

two irregular parameters
rs <- expand.grid(r=seq(0.05,0.15, by=0.01),sat=1:3)

pg <- profilepl(rs, Geyer, cells)
pg
as.ppm(pg)

multitype pattern with a common interaction radius
Not run:
RR <- data.frame(R=seq(0.03,0.05,by=0.01))
MS <- function(R) { MultiStrauss(radii=diag(c(R,R))) }
pm <- profilepl(RR, MS, amacrine ~marks)

End(Not run)
more information
summary(pg)

progressreport 1261

progressreport Print Progress Reports

Description

Prints Progress Reports during a loop or iterative calculation.

Usage

progressreport(i, n,
every = min(100,max(1, ceiling(n/100))),
tick = 1,
nperline = NULL,
charsperline = getOption("width"),
style = spatstat.options("progress"),
showtime = NULL,
state=NULL)

Arguments

i Integer. The current iteration number (from 1 to n).

n Integer. The (maximum) number of iterations to be computed.

every Optional integer. Iteration number will be printed when i is a multiple of every.

tick Optional integer. A tick mark or dot will be printed when i is a multiple of tick.

nperline Optional integer. Number of iterations per line of output.

charsperline Optional integer. The number of characters in a line of output.

style Character string determining the style of display. Options are "tty" (the de-
fault), "tk" and "txtbar". See Details.

showtime Optional. Logical value indicating whether to print the estimated time remain-
ing. Applies only when style="tty".

state Optional. A list containing the internal data.

Details

This is a convenient function for reporting progress during an iterative sequence of calculations or
a suite of simulations.

• If style="tk" then tcltk::tkProgressBar is used to pop-up a new graphics window show-
ing a progress bar. This requires the package tcltk. As i increases from 1 to n, the bar will
lengthen. The arguments every,tick,nperline,showtime are ignored.

• If style="txtbar" then txtProgressBar is used to represent progress as a bar made of text
characters in the R interpreter window. As i increases from 1 to n, the bar will lengthen. The
arguments every,tick,nperline,showtime are ignored.

1262 progressreport

• If style="tty" (the default), then progress reports are printed to the console. This only seems
to work well under Linux. As i increases from 1 to n, the output will be a sequence of dots
(one dot for every tick iterations), iteration numbers (printed when iteration number is a
multiple of every or is less than 4), and optionally the estimated time remaining. For example
[etd 1:20:05] means an estimated time of 1 hour, 20 minutes and 5 seconds until finished.
The estimated time remaining will be printed only if style="tty", and the argument state
is given, and either showtime=TRUE, or showtime=NULL and the iterations are slow (defined
as: the estimated time remaining is longer than 3 minutes, or the average time per iteration is
longer than 20 seconds).

It is optional, but strongly advisable, to use the argument state to store and update the internal data
for the progress reports (such as the cumulative time taken for computation) as shown in the last
example below. This avoids conflicts with other programs that might be calling progressreport
at the same time.

Value

If state was NULL, the result is NULL. Otherwise the result is the updated value of state.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

for(i in 1:40) {
#
code that does something...
#
progressreport(i, 40)

}

saving internal state: *recommended*
sta <- list()
for(i in 1:20) {

some code ...
sta <- progressreport(i, 20, state=sta)

}

#' use text progress bar
sta <- list()
for(i in 1:10) {

some code ...
sta <- progressreport(i, 10, state=sta, style="txtbar")

}

project2segment 1263

project2segment Move Point To Nearest Line

Description

Given a point pattern and a line segment pattern, this function moves each point to the closest
location on a line segment.

Usage

project2segment(X, Y)

Arguments

X A point pattern (object of class "ppp").

Y A line segment pattern (object of class "psp").

Details

For each point x in the point pattern X, this function finds the closest line segment y in the line
segment pattern Y. It then ‘projects’ the point x onto the line segment y by finding the position z
along y which is closest to x. This position z is returned, along with supplementary information.

Value

A list with the following components. Each component has length equal to the number of points in
X, and its entries correspond to the points of X.

Xproj Point pattern (object of class "ppp" containing the projected points.

mapXY Integer vector identifying the nearest segment to each point.

d Numeric vector of distances from each point of X to the corresponding projected
point.

tp Numeric vector giving the scaled parametric coordinate 0 ≤ tp ≤ 1 of the
position of the projected point along the segment.

For example suppose mapXY[2] = 5 and tp[2] = 0.33. Then Y[5] is the line segment lying closest
to X[2]. The projection of the point X[2] onto the segment Y[5] is the point Xproj[2], which lies
one-third of the way between the first and second endpoints of the line segment Y[5].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

nearestsegment for a faster way to determine which segment is closest to each point.

1264 project2set

Examples

X <- rstrat(square(1), 5)
Y <- as.psp(matrix(runif(20), 5, 4), window=owin())
plot(Y, lwd=3, col="green")
plot(X, add=TRUE, col="red", pch=16)
v <- project2segment(X,Y)
Xproj <- v$Xproj
plot(Xproj, add=TRUE, pch=16)
arrows(Xx, Xy, Xproj$x, Xproj$y, angle=10, length=0.15, col="red")

project2set Find Nearest Point in a Region

Description

For each data point in a point pattern X, find the nearest location in a given spatial region W.

Usage

project2set(X, W, ...)

Arguments

X Point pattern (object of class "ppp").

W Window (object of class "owin") or something acceptable to as.owin.

... Arguments passed to as.mask controlling the pixel resolution.

Details

The window W is first discretised as a binary mask using as.mask.

For each data point X[i] in the point pattern X, the algorithm finds the nearest pixel in W.

The result is a point pattern Y containing these nearest points, that is, Y[i] is the nearest point in W
to the point X[i].

Value

A point pattern (object of class "ppp") with the same number of points as X in the window W.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

project2segment, nncross

prune.rppm 1265

Examples

He <- heather$fine[owin(c(2.8, 7.4), c(4.0, 7.8))]
plot(He, main="project2set")
X <- runifpoint(4, erosion(complement.owin(He), 0.2))
points(X, col="red")
Y <- project2set(X, He)
points(Y, col="green")
arrows(Xx, Xy, Yx, Yy, angle=15, length=0.2)

prune.rppm Prune a Recursively Partitioned Point Process Model

Description

Given a model which has been fitted to point pattern data by recursive partitioning, apply pruning
to reduce the complexity of the partition tree.

Usage

S3 method for class 'rppm'
prune(tree, ...)

Arguments

tree Fitted point process model of class "rppm" produced by the function rppm.

... Arguments passed to prune.rpart to control the pruning procedure.

Details

This is a method for the generic function prune for the class "rppm". An object of this class is a
point process model, fitted to point pattern data by recursive partitioning, by the function rppm.

The recursive partition tree will be pruned using prune.rpart. The result is another object of class
"rppm".

Value

Object of class "rppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

rppm, plot.rppm, predict.rppm.

1266 pseudoR2

Examples

Murchison gold data
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
fit <- rppm(gold ~ dfault + greenstone, data=mur)
fit
prune(fit, cp=0.1)

pseudoR2 Calculate Pseudo-R-Squared for Point Process Model

Description

Given a fitted point process model, calculate the pseudo-R-squared value, which measures the frac-
tion of variation in the data that is explained by the model.

Usage

pseudoR2(object, ...)

S3 method for class 'ppm'
pseudoR2(object, ..., keepoffset=TRUE)

S3 method for class 'lppm'
pseudoR2(object, ..., keepoffset=TRUE)

Arguments

object Fitted point process model. An object of class "ppm" or "lppm".

keepoffset Logical value indicating whether to retain offset terms in the model when com-
puting the deviance difference. See Details.

... Additional arguments passed to deviance.ppm or deviance.lppm.

Details

The function pseudoR2 is generic, with methods for fitted point process models of class "ppm" and
"lppm".

This function computes McFadden’s pseudo-Rsquared

R2 = 1− D

D0

where D is the deviance of the fitted model object, and D0 is the deviance of the null model.
Deviance is defined as twice the negative log-likelihood or log-pseudolikelihood.

The null model is usually obtained by re-fitting the model using the trend formula ~1. However
if the original model formula included offset terms, and if keepoffset=TRUE (the default), then
the null model formula consists of these offset terms. This ensures that the pseudoR2 value is
non-negative.

psib 1267

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

deviance.ppm, deviance.lppm.

Examples

fit <- ppm(swedishpines ~ x+y)
pseudoR2(fit)

xcoord <- as.im(function(x,y) x, Window(swedishpines))
fut <- ppm(swedishpines ~ offset(xcoord/200) + y)
pseudoR2(fut)

psib Sibling Probability of Cluster Point Process

Description

Computes the sibling probability of a cluster point process model.

Usage

psib(object)

S3 method for class 'kppm'
psib(object)

Arguments

object Fitted cluster point process model (object of class "kppm").

Details

In a Poisson cluster process, two points are called siblings if they belong to the same cluster, that
is, if they had the same parent point. If two points of the process are separated by a distance r, the
probability that they are siblings is p(r) = 1 − 1/g(r) where g is the pair correlation function of
the process.

The value p(0) = 1 − 1/g(0) is the probability that, if two points of the process are situated very
close to each other, they came from the same cluster. This probability is an index of the strength of
clustering, with high values suggesting strong clustering.

This concept was proposed in Baddeley, Rubak and Turner (2015, page 479) and Baddeley (2017).

1268 psp

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A. (2017) Local composite likelihood for spatial point processes. Spatial Statistics 22,
261–295.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

kppm

Examples

fit <- kppm(redwood ~1, "Thomas")
psib(fit)

psp Create a Line Segment Pattern

Description

Creates an object of class "psp" representing a line segment pattern in the two-dimensional plane.

Usage

psp(x0,y0, x1, y1, window, marks=NULL,
check=spatstat.options("checksegments"))

Arguments

x0 Vector of x coordinates of first endpoint of each segment

y0 Vector of y coordinates of first endpoint of each segment

x1 Vector of x coordinates of second endpoint of each segment

y1 Vector of y coordinates of second endpoint of each segment

window window of observation, an object of class "owin"

marks (optional) vector or data frame of mark values

check Logical value indicating whether to check that the line segments lie inside the
window.

psp 1269

Details

In the spatstat library, a spatial pattern of line segments is described by an object of class "psp".
This function creates such objects.

The vectors x0, y0, x1 and y1 must be numeric vectors of equal length. They are interpreted as the
cartesian coordinates of the endpoints of the line segments.

A line segment pattern is assumed to have been observed within a specific region of the plane called
the observation window. An object of class "psp" representing a point pattern contains information
specifying the observation window. This window must always be specified when creating a point
pattern dataset; there is intentionally no default action of “guessing” the window dimensions from
the data points alone.

The argument window must be an object of class "owin". It is a full description of the window
geometry, and could have been obtained from owin or as.owin, or by just extracting the observation
window of another dataset, or by manipulating such windows. See owin or the Examples below.

The optional argument marks is given if the line segment pattern is marked, i.e. if each line segment
carries additional information. For example, line segments which are classified into two or more
different types, or colours, may be regarded as having a mark which identifies which colour they
are.

The object marks must be a vector of the same length as x0, or a data frame with number of rows
equal to the length of x0. The interpretation is that marks[i] or marks[i,] is the mark attached to
the ith line segment. If the marks are real numbers then marks should be a numeric vector, while
if the marks takes only a finite number of possible values (e.g. colours or types) then marks should
be a factor.

See psp.object for a description of the class "psp".

Users would normally invoke psp to create a line segment pattern, and the function as.psp to
convert data in another format into a line segment pattern.

Value

An object of class "psp" describing a line segment pattern in the two-dimensional plane (see
psp.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

psp.object, as.psp, owin.object, owin, as.owin.

Function for extracting information from a segment pattern: marks.psp, summary.psp, midpoints.psp,
lengths_psp angles.psp, endpoints.psp

Convert line segments to infinite lines: extrapolate.psp.

Examples

X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
m <- data.frame(A=1:10, B=letters[1:10])
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin(), marks=m)

1270 psp.object

psp.object Class of Line Segment Patterns

Description

A class "psp" to represent a spatial pattern of line segments in the plane. Includes information
about the window in which the pattern was observed. Optionally includes marks.

Details

An object of this class represents a two-dimensional pattern of line segments. It specifies

• the locations of the line segments (both endpoints)

• the window in which the pattern was observed

• optionally, a “mark” attached to each line segment (extra information such as a type label).

If X is an object of type psp, it contains the following elements:

ends data frame with entries x0, y0, x1, y1
giving coordinates of segment endpoints

window window of observation
(an object of class owin)

n number of line segments
marks optional vector or data frame of marks
markformat character string specifying the format of the

marks; “none”, “vector”, or “dataframe”

Users are strongly advised not to manipulate these entries directly.

Objects of class "psp" may be created by the function psp and converted from other types of data
by the function as.psp. Note that you must always specify the window of observation; there is
intentionally no default action of “guessing” the window dimensions from the line segments alone.

Subsets of a line segment pattern may be obtained by the functions [.psp and clip.psp.

Line segment pattern objects can be plotted just by typing plot(X) which invokes the plot method
for line segment pattern objects, plot.psp. See plot.psp for further information.

There are also methods for summary and print for line segment patterns. Use summary(X) to see a
useful description of the data.

Utilities for line segment patterns include midpoints.psp (to compute the midpoints of each seg-
ment), lengths_psp, (to compute the length of each segment), angles.psp, (to compute the angle
of orientation of each segment), and distmap.psp to compute the distance map of a line segment
pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

psst 1271

See Also

psp, as.psp, [.psp

Examples

creating
a <- psp(runif(20),runif(20),runif(20),runif(20), window=owin())

converting from other formats
a <- as.psp(matrix(runif(80), ncol=4), window=owin())
a <- as.psp(data.frame(x0=runif(20), y0=runif(20),

x1=runif(20), y1=runif(20)), window=owin())
clipping

w <- owin(c(0.1,0.7), c(0.2, 0.8))
b <- clip.psp(a, w)
b <- a[w]

the last two lines are equivalent.

psst Pseudoscore Diagnostic For Fitted Model against General Alternative

Description

Given a point process model fitted to a point pattern dataset, and any choice of functional summary
statistic, this function computes the pseudoscore test statistic of goodness-of-fit for the model.

Usage

psst(object, fun, r = NULL, breaks = NULL, ...,
model=NULL,
trend = ~1, interaction = Poisson(), rbord = reach(interaction),
truecoef=NULL, hi.res=NULL, funargs = list(correction="best"),
verbose=TRUE)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

fun Summary function to be applied to each point pattern.

r Optional. Vector of values of the argument r at which the function S(r) should
be computed. This argument is usually not specified. There is a sensible default.

breaks Optional alternative to r for advanced use.

... Ignored.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord.

1272 psst

trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

funargs List of additional arguments to be passed to fun.

verbose Logical value determining whether to print progress reports during the compu-
tation.

Details

Let x be a point pattern dataset consisting of points x1, . . . , xn in a window W . Consider a point
process model fitted to x, with conditional intensity λ(u, x) at location u. For the purpose of testing
goodness-of-fit, we regard the fitted model as the null hypothesis. Given a functional summary
statistic S, consider a family of alternative models obtained by exponential tilting of the null model
by S. The pseudoscore for the null model is

V (r) =
∑
i

∆S(xi, x, r)−
∫
W

∆S(u, x, r)λ(u, x)du

where the ∆ operator is

∆S(u, x, r) = S(x ∪ {u}, r)− S(x \ u, r)

the difference between the values of S for the point pattern with and without the point u.

According to the Georgii-Nguyen-Zessin formula, V (r) should have mean zero if the model is
correct (ignoring the fact that the parameters of the model have been estimated). Hence V (r) can
be used as a diagnostic for goodness-of-fit.

This algorithm computes V (r) by direct evaluation of the sum and integral. It is computationally
intensive, but it is available for any summary statistic S(r).

The diagnostic V (r) is also called the pseudoresidual of S. On the right hand side of the equation
for V (r) given above, the sum over points of x is called the pseudosum and the integral is called
the pseudocompensator.

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include dat for the pseudosum, com for the compensator and res for
the pseudoresidual.

There is a plot method for this class. See fv.object.

psstA 1273

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Special cases: psstA, psstG.

Alternative functions: Kres, Gres.

Examples

data(cells)
fit0 <- ppm(cells, ~1) # uniform Poisson

G0 <- psst(fit0, Gest)
G0
if(interactive()) plot(G0)

psstA Pseudoscore Diagnostic For Fitted Model against Area-Interaction Al-
ternative

Description

Given a point process model fitted to a point pattern dataset, this function computes the pseudoscore
diagnostic of goodness-of-fit for the model, against moderately clustered or moderately inhibited
alternatives of area-interaction type.

Usage

psstA(object, r = NULL, breaks = NULL, ...,
model = NULL,
trend = ~1, interaction = Poisson(),
rbord = reach(interaction), ppmcorrection = "border",
correction = "all",
truecoef = NULL, hi.res = NULL,
nr=spatstat.options("psstA.nr"),
ngrid=spatstat.options("psstA.ngrid"))

1274 psstA

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the diagnostic should be
computed. This argument is usually not specified. There is a sensible default.

breaks This argument is for internal use only.
... Extra arguments passed to quadscheme to determine the quadrature scheme, if

object is a point pattern.
model Optional. A fitted point process model (object of class "ppm") to be re-fitted to

the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord,ppmcorrection.

trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

ppmcorrection Optional. Character string specifying the edge correction for the pseudolikeli-
hood to be used in fitting the point process model. Passed to ppm.

correction Optional. Character string specifying which diagnostic quantities will be com-
puted. Options are "all" and "best". The default is to compute all diagnostic
quantities.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

nr Optional. Number of r values to be used if r is not specified.
ngrid Integer. Number of points in the square grid used to compute the approximate

area.

Details

This function computes the pseudoscore test statistic which can be used as a diagnostic for goodness-
of-fit of a fitted point process model.

Let x be a point pattern dataset consisting of points x1, . . . , xn in a window W . Consider a point
process model fitted to x, with conditional intensity λ(u, x) at location u. For the purpose of testing
goodness-of-fit, we regard the fitted model as the null hypothesis. The alternative hypothesis is a
family of hybrid models obtained by combining the fitted model with the area-interaction process
(see AreaInter). The family of alternatives includes models that are slightly more regular than the
fitted model, and others that are slightly more clustered than the fitted model.

The pseudoscore, evaluated at the null model, is

V (r) =
∑
i

A(xi, x, r)−
∫
W

A(u, x, r)λ(u, x)du

psstA 1275

where
A(u, x, r) = B(x ∪ {u}, r)−B(x \ u, r)

where B(x, r) is the area of the union of the discs of radius r centred at the points of x (i.e. B(x, r)
is the area of the dilation of x by a distance r). Thus A(u, x, r) is the unclaimed area associated
with u, that is, the area of that part of the disc of radius r centred at the point u that is not covered
by any of the discs of radius r centred at points of x.

According to the Georgii-Nguyen-Zessin formula, V (r) should have mean zero if the model is
correct (ignoring the fact that the parameters of the model have been estimated). Hence V (r) can
be used as a diagnostic for goodness-of-fit.

The diagnostic V (r) is also called the pseudoresidual of S. On the right hand side of the equation
for V (r) given above, the sum over points of x is called the pseudosum and the integral is called
the pseudocompensator.

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include dat for the pseudosum, com for the compensator and res for
the pseudoresidual.

There is a plot method for this class. See fv.object.

Warning

This computation can take a very long time.

To shorten the computation time, choose smaller values of the arguments nr and ngrid, or reduce
the values of their defaults spatstat.options("psstA.nr") and spatstat.options("psstA.ngrid").

Computation time is roughly proportional to nr * npoints * ngrid^2 where npoints is the number
of points in the point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Alternative functions: psstG, psst, Gres, Kres.

Point process models: ppm.

Options: spatstat.options

1276 psstG

Examples

pso <- spatstat.options(psstA.ngrid=16,psstA.nr=10)
X <- rStrauss(200,0.1,0.05)
plot(psstA(X))
plot(psstA(X, interaction=Strauss(0.05)))
spatstat.options(pso)

psstG Pseudoscore Diagnostic For Fitted Model against Saturation Alterna-
tive

Description

Given a point process model fitted to a point pattern dataset, this function computes the pseudoscore
diagnostic of goodness-of-fit for the model, against moderately clustered or moderately inhibited
alternatives of saturation type.

Usage

psstG(object, r = NULL, breaks = NULL, ...,
model=NULL,
trend = ~1, interaction = Poisson(), rbord = reach(interaction),
truecoef = NULL, hi.res = NULL)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the diagnostic should be
computed. This argument is usually not specified. There is a sensible default.

breaks Optional alternative to r for advanced use.
... Ignored.
model Optional. A fitted point process model (object of class "ppm") to be re-fitted to

the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord,ppmcorrection.

trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

psstG 1277

Details

This function computes the pseudoscore test statistic which can be used as a diagnostic for goodness-
of-fit of a fitted point process model.

Consider a point process model fitted to x, with conditional intensity λ(u, x) at location u. For the
purpose of testing goodness-of-fit, we regard the fitted model as the null hypothesis. The alternative
hypothesis is a family of hybrid models obtained by combining the fitted model with the Geyer
saturation process (see Geyer) with saturation parameter 1. The family of alternatives includes
models that are more regular than the fitted model, and others that are more clustered than the fitted
model.

For any point pattern x, and any r > 0, let S(x, r) be the number of points in x whose nearest
neighbour (the nearest other point in x) is closer than r units. Then the pseudoscore for the null
model is

V (r) =
∑
i

∆S(xi, x, r)−
∫
W

∆S(u, x, r)λ(u, x)du

where the ∆ operator is

∆S(u, x, r) = S(x ∪ {u}, r)− S(x \ u, r)

the difference between the values of S for the point pattern with and without the point u.

According to the Georgii-Nguyen-Zessin formula, V (r) should have mean zero if the model is
correct (ignoring the fact that the parameters of the model have been estimated). Hence V (r) can
be used as a diagnostic for goodness-of-fit.

The diagnostic V (r) is also called the pseudoresidual of S. On the right hand side of the equation
for V (r) given above, the sum over points of x is called the pseudosum and the integral is called
the pseudocompensator.

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include dat for the pseudosum, com for the compensator and res for
the pseudoresidual.

There is a plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Alternative functions: psstA, psst, Kres, Gres.

1278 qqplot.ppm

Examples

X <- rStrauss(200,0.1,0.05)
plot(psstG(X))
plot(psstG(X, interaction=Strauss(0.05)))

qqplot.ppm Q-Q Plot of Residuals from Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, produce a Q-Q plot based on residuals from
the model.

Usage

qqplot.ppm(fit, nsim=100, expr=NULL, ..., type="raw",
style="mean", fast=TRUE, verbose=TRUE, plot.it=TRUE,
dimyx=NULL, nrep=if(fast) 5e4 else 1e5,
control=update(default.rmhcontrol(fit), nrep=nrep),
saveall=FALSE,
monochrome=FALSE,
limcol=if(monochrome) "black" else "red",
maxerr=max(100, ceiling(nsim/10)),
check=TRUE, repair=TRUE, envir.expr)

Arguments

fit The fitted point process model, which is to be assessed using the Q-Q plot. An
object of class "ppm". Smoothed residuals obtained from this fitted model will
provide the “data” quantiles for the Q-Q plot.

nsim The number of simulations from the “reference” point process model.

expr Determines the simulation mechanism which provides the “theoretical” quan-
tiles for the Q-Q plot. See Details.

... Arguments passed to diagnose.ppm influencing the computation of residuals.

type String indicating the type of residuals or weights to be used. Current options are
"eem" for the Stoyan-Grabarnik exponential energy weights, "raw" for the raw
residuals, "inverse" for the inverse-lambda residuals, and "pearson" for the
Pearson residuals. A partial match is adequate.

style Character string controlling the type of Q-Q plot. Options are "classical" and
"mean". See Details.

fast Logical flag controlling the speed and accuracy of computation. Use fast=TRUE
for interactive use and fast=FALSE for publication standard plots. See Details.

verbose Logical flag controlling whether the algorithm prints progress reports during
long computations.

qqplot.ppm 1279

plot.it Logical flag controlling whether the function produces a plot or simply returns
a value (silently).

dimyx Dimensions of the pixel grid on which the smoothed residual field will be cal-
culated. A vector of two integers.

nrep If control is absent, then nrep gives the number of iterations of the Metropolis-
Hastings algorithm that should be used to generate one simulation of the fitted
point process.

control List of parameters controlling the Metropolis-Hastings algorithm rmh which
generates each simulated realisation from the model (unless the model is Pois-
son). This list becomes the argument control of rmh.default. It overrides
nrep.

saveall Logical flag indicating whether to save all the intermediate calculations.

monochrome Logical flag indicating whether the plot should be in black and white (monochrome=TRUE),
or in colour (monochrome=FALSE).

limcol String. The colour to be used when plotting the 95% limit curves.

maxerr Maximum number of failures tolerated while generating simulated realisations.
See Details.

check Logical value indicating whether to check the internal format of fit. If there
is any possibility that this object has been restored from a dump file, or has
otherwise lost track of the environment where it was originally computed, set
check=TRUE.

repair Logical value indicating whether to repair the internal format of fit, if it is
found to be damaged.

envir.expr Optional. An environment in which the expression expr should be evaluated.

Details

This function generates a Q-Q plot of the residuals from a fitted point process model. It is an
addendum to the suite of diagnostic plots produced by the function diagnose.ppm, kept separate
because it is computationally intensive. The quantiles of the theoretical distribution are estimated
by simulation.

In classical statistics, a Q-Q plot of residuals is a useful diagnostic for checking the distributional
assumptions. Analogously, in spatial statistics, a Q-Q plot of the (smoothed) residuals from a fitted
point process model is a useful way to check the interpoint interaction part of the model (Baddeley
et al, 2005). The systematic part of the model (spatial trend, covariate effects, etc) is assessed using
other plots made by diagnose.ppm.

The argument fit represents the fitted point process model. It must be an object of class "ppm"
(typically produced by the maximum pseudolikelihood fitting algorithm ppm). Residuals will be
computed for this fitted model using residuals.ppm, and the residuals will be kernel-smoothed to
produce a “residual field”. The values of this residual field will provide the “data” quantiles for the
Q-Q plot.

The argument expr is not usually specified. It provides a way to modify the “theoretical” or “refer-
ence” quantiles for the Q-Q plot.

In normal usage we set expr=NULL. The default is to generate nsim simulated realisations of the
fitted model fit, re-fit this model to each of the simulated patterns, evaluate the residuals from

1280 qqplot.ppm

these fitted models, and use the kernel-smoothed residual field from these fitted models as a sample
from the reference distribution for the Q-Q plot.

In advanced use, expr may be an expression. It will be re-evaluated nsim times, and should
include random computations so that the results are not identical each time. The result of evaluating
expr should be either a point pattern (object of class "ppp") or a fitted point process model (object
of class "ppm"). If the value is a point pattern, then the original fitted model fit will be fitted to this
new point pattern using update.ppm, to yield another fitted model. Smoothed residuals obtained
from these nsim fitted models will yield the “theoretical” quantiles for the Q-Q plot.

Alternatively expr can be a list of point patterns, or an envelope object that contains a list of point
patterns (typically generated by calling envelope with savepatterns=TRUE). These point patterns
will be used as the simulated patterns.

Simulation is performed (if expr=NULL) using the Metropolis-Hastings algorithm rmh. Each sim-
ulated realisation is the result of running the Metropolis-Hastings algorithm from an independent
random starting state each time. The iterative and termination behaviour of the Metropolis-Hastings
algorithm are governed by the argument control. See rmhcontrol for information about this ar-
gument. As a shortcut, the argument nrep determines the number of Metropolis-Hastings iterations
used to generate each simulated realisation, if control is absent.

By default, simulations are generated in an expanded window. Use the argument control to change
this, as explained in the section on Warning messages.

The argument type selects the type of residual or weight that will be computed. For options, see
diagnose.ppm.

The argument style determines the type of Q-Q plot. It is highly recommended to use the default,
style="mean".

style="classical" The quantiles of the residual field for the data (on the y axis) are plotted
against the quantiles of the pooled simulations (on the x axis). This plot is biased, and there-
fore difficult to interpret, because of strong autocorrelations in the residual field and the large
differences in sample size.

style="mean" The order statistics of the residual field for the data are plotted against the sample
means, over the nsim simulations, of the corresponding order statistics of the residual field
for the simulated datasets. Dotted lines show the 2.5 and 97.5 percentiles, over the nsim
simulations, of each order statistic.

The argument fast is a simple way to control the accuracy and speed of computation. If fast=FALSE,
the residual field is computed on a fine grid of pixels (by default 100 by 100 pixels, see below)
and the Q-Q plot is based on the complete set of order statistics (usually 10,000 quantiles). If
fast=TRUE, the residual field is computed on a coarse grid (at most 40 by 40 pixels) and the Q-
Q plot is based on the percentiles only. This is about 7 times faster. It is recommended to use
fast=TRUE for interactive data analysis and fast=FALSE for definitive plots for publication.

The argument dimyx gives full control over the resolution of the pixel grid used to calculate the
smoothed residuals. Its interpretation is the same as the argument dimyx to the function as.mask.
Note that dimyx[1] is the number of pixels in the y direction, and dimyx[2] is the number in
the x direction. If dimyx is not present, then the default pixel grid dimensions are controlled by
spatstat.options("npixel").

Since the computation is so time-consuming, qqplot.ppm returns a list containing all the data
necessary to re-display the Q-Q plot. It is advisable to assign the result of qqplot.ppm to something

qqplot.ppm 1281

(or use .Last.value if you forgot to.) The return value is an object of class "qqppm". There are
methods for plot.qqppm and print.qqppm. See the Examples.

The argument saveall is usually set to FALSE. If saveall=TRUE, then the intermediate results
of calculation for each simulated realisation are saved and returned. The return value includes a
3-dimensional array sim containing the smoothed residual field images for each of the nsim real-
isations. When saveall=TRUE, the return value is an object of very large size, and should not be
saved on disk.

Errors may occur during the simulation process, because random data are generated. For example:

• one of the simulated patterns may be empty.

• one of the simulated patterns may cause an error in the code that fits the point process model.

• the user-supplied argument expr may have a bug.

Empty point patterns do not cause a problem for the code, but they are reported. Other problems that
would lead to a crash are trapped; the offending simulated data are discarded, and the simulation is
retried. The argument maxerr determines the maximum number of times that such errors will be
tolerated (mainly as a safeguard against an infinite loop).

Value

An object of class "qqppm" containing the information needed to reproduce the Q-Q plot. Entries x
and y are numeric vectors containing quantiles of the simulations and of the data, respectively.

Side Effects

Produces a Q-Q plot if plot.it is TRUE.

Warning messages

A warning message will be issued if any of the simulations trapped an error (a potential crash).

A warning message will be issued if all, or many, of the simulated point patterns are empty. This
usually indicates a problem with the simulation procedure.

The default behaviour of qqplot.ppm is to simulate patterns on an expanded window (specified
through the argument control) in order to avoid edge effects. The model’s trend is extrapolated
over this expanded window. If the trend is strongly inhomogeneous, the extrapolated trend may
have very large (or even infinite) values. This can cause the simulation algorithm to produce empty
patterns.

The only way to suppress this problem entirely is to prohibit the expansion of the window, by setting
the control argument to something like control=list(nrep=1e6,expand=1). Here expand=1
means there will be no expansion. See rmhcontrol for more information about the argument
control.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

1282 qqplot.ppm

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

diagnose.ppm, lurking, residuals.ppm, eem, ppm.object, ppm, rmh, rmhcontrol

Examples

data(cells)

fit <- ppm(cells, ~1, Poisson())
diagnose.ppm(fit) # no suggestion of departure from stationarity
Not run: qqplot.ppm(fit, 80) # strong evidence of non-Poisson interaction

Not run:
diagnose.ppm(fit, type="pearson")
qqplot.ppm(fit, type="pearson")

End(Not run)

###
oops, I need the plot coordinates
mypreciousdata <- .Last.value
Not run: mypreciousdata <- qqplot.ppm(fit, type="pearson")

plot(mypreciousdata)

##
Q-Q plots based on fixed n
The above QQ plots used simulations from the (fitted) Poisson process.
But I want to simulate conditional on n, instead of Poisson
Do this by setting rmhcontrol(p=1)
fixit <- list(p=1)
Not run: qqplot.ppm(fit, 100, control=fixit)

##
Inhomogeneous Poisson data
X <- rpoispp(function(x,y){1000 * exp(-3*x)}, 1000)
plot(X)
Inhomogeneous Poisson model
fit <- ppm(X, ~x, Poisson())
Not run: qqplot.ppm(fit, 100)

conclusion: fitted inhomogeneous Poisson model looks OK

quad.object 1283

##
Advanced use of 'expr' argument
#
set the initial conditions in Metropolis-Hastings algorithm
#
expr <- expression(rmh(fit, start=list(n.start=42), verbose=FALSE))
Not run: qqplot.ppm(fit, 100, expr)

quad.object Class of Quadrature Schemes

Description

A class "quad" to represent a quadrature scheme.

Details

A (finite) quadrature scheme is a list of quadrature points uj and associated weights wj which is
used to approximate an integral by a finite sum:∫

f(x)dx ≈
∑
j

f(uj)wj

Given a point pattern dataset, a Berman-Turner quadrature scheme is one which includes all these
data points, as well as a nonzero number of other (“dummy”) points.

These quadrature schemes are used to approximate the pseudolikelihood of a point process, in the
method of Baddeley and Turner (2000) (see Berman and Turner (1992)). Accuracy and computation
time both increase with the number of points in the quadrature scheme.

An object of class "quad" represents a Berman-Turner quadrature scheme. It can be passed as an
argument to the model-fitting function ppm, which requires a quadrature scheme.

An object of this class contains at least the following elements:

data: an object of class "ppp"
giving the locations (and marks) of the data points.

dummy: an object of class "ppp"
giving the locations (and marks) of the dummy points.

w: vector of nonnegative weights for the quadrature points

Users are strongly advised not to manipulate these entries directly.

The domain of quadrature is specified by Window(dummy) while the observation window (if this
needs to be specified separately) is taken to be Window(data).

The weights vector w may also have an attribute attr(w,"zeroes") equivalent to the logical vector

1284 quad.ppm

(w == 0). If this is absent then all points are known to have positive weights.

To create an object of class "quad", users would typically call the high level function quadscheme.
(They are actually created by the low level function quad.)

Entries are extracted from a "quad" object by the functions x.quad, y.quad, w.quad and marks.quad,
which extract the x coordinates, y coordinates, weights, and marks, respectively. The function
n.quad returns the total number of quadrature points (dummy plus data).

An object of class "quad" can be converted into an ordinary point pattern by the function union.quad
which simply takes the union of the data and dummy points.

Quadrature schemes can be plotted using plot.quad (a method for the generic plot).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quadscheme, ppm

quad.ppm Extract Quadrature Scheme Used to Fit a Point Process Model

Description

Given a fitted point process model, this function extracts the quadrature scheme used to fit the
model.

Usage

quad.ppm(object, drop=FALSE, clip=FALSE)

Arguments

object fitted point process model (an object of class "ppm" or "kppm" or "lppm").

drop Logical value determining whether to delete quadrature points that were not
used to fit the model.

clip Logical value determining whether to erode the window, if object was fitted
using the border correction. See Details.

quad.ppm 1285

Details

An object of class "ppm" represents a point process model that has been fitted to data. It is typically
produced by the model-fitting algorithm ppm.

The maximum pseudolikelihood algorithm in ppm approximates the pseudolikelihood integral by
a sum over a finite set of quadrature points, which is constructed by augmenting the original data
point pattern by a set of “dummy” points. The fitted model object returned by ppm contains complete
information about this quadrature scheme. See ppm or ppm.object for further information.

This function quad.ppm extracts the quadrature scheme. A typical use of this function would be to
inspect the quadrature scheme (points and weights) to gauge the accuracy of the approximation to
the exact pseudolikelihood.

Some quadrature points may not have been used in fitting the model. This happens if the border
correction is used, and in other cases (e.g. when the value of a covariate is NA at these points). The
argument drop specifies whether these unused quadrature points shall be deleted (drop=TRUE) or
retained (drop=FALSE) in the return value.

The quadrature scheme has a window, which by default is set to equal the window of the original
data. However this window may be larger than the actual domain of integration of the pseudolike-
lihood or composite likelihood that was used to fit the model. If clip=TRUE then the window of the
quadrature scheme is set to the actual domain of integration. This option only has an effect when the
model was fitted using the border correction; then the window is obtained by eroding the original
data window by the border correction distance.

See ppm.object for a list of all operations that can be performed on objects of class "ppm". See
quad.object for a list of all operations that can be performed on objects of class "quad".

This function can also be applied to objects of class "kppm" and "lppm".

Value

A quadrature scheme (object of class "quad").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm.object, quad.object, ppm

Examples

fit <- ppm(cells ~1, Strauss(r=0.1))
Q <- quad.ppm(fit)
Not run: plot(Q)
npoints(Q$data)
npoints(Q$dummy)

1286 quadrat.test

quadrat.test Dispersion Test for Spatial Point Pattern Based on Quadrat Counts

Description

Performs a test of Complete Spatial Randomness for a given point pattern, based on quadrat counts.
Alternatively performs a goodness-of-fit test of a fitted inhomogeneous Poisson model. By default
performs chi-squared tests; can also perform Monte Carlo based tests.

Usage

quadrat.test(X, ...)

S3 method for class 'ppp'
quadrat.test(X, nx=5, ny=nx,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1,
lambda=NULL, df.est=NULL,
...,
xbreaks=NULL, ybreaks=NULL, tess=NULL,
nsim=1999)

S3 method for class 'ppm'
quadrat.test(X, nx=5, ny=nx,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1, df.est=NULL,
...,
xbreaks=NULL, ybreaks=NULL, tess=NULL,
nsim=1999)

S3 method for class 'quadratcount'
quadrat.test(X,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1,
lambda=NULL, df.est=NULL,
...,
nsim=1999)

Arguments

X A point pattern (object of class "ppp") to be subjected to the goodness-of-fit test.
Alternatively a fitted point process model (object of class "ppm") to be tested.
Alternatively X can be the result of applying quadratcount to a point pattern.

quadrat.test 1287

nx,ny Numbers of quadrats in the x and y directions. Incompatible with xbreaks and
ybreaks.

alternative Character string (partially matched) specifying the alternative hypothesis.

method Character string (partially matched) specifying the test to use: either method="Chisq"
for the chi-squared test (the default), or method="MonteCarlo" for a Monte
Carlo test.

conditional Logical. Should the Monte Carlo test be conducted conditionally upon the ob-
served number of points of the pattern? Ignored if method="Chisq".

CR Optional. Numerical value. The exponent for the Cressie-Read test statistic. See
Details.

lambda Optional. Pixel image (object of class "im") or function (class "funxy") giving
the predicted intensity of the point process.

df.est Optional. Advanced use only. The number of fitted parameters, or the number
of degrees of freedom lost by estimation of parameters.

... Ignored.

xbreaks Optional. Numeric vector giving the x coordinates of the boundaries of the
quadrats. Incompatible with nx.

ybreaks Optional. Numeric vector giving the y coordinates of the boundaries of the
quadrats. Incompatible with ny.

tess Tessellation (object of class "tess" or something acceptable to as.tess) deter-
mining the quadrats. Incompatible with nx,ny,xbreaks,ybreaks.

nsim The number of simulated samples to generate when method="MonteCarlo".

Details

These functions perform χ2 tests or Monte Carlo tests of goodness-of-fit for a point process model,
based on quadrat counts.

The function quadrat.test is generic, with methods for point patterns (class "ppp"), split point
patterns (class "splitppp"), point process models (class "ppm") and quadrat count tables (class
"quadratcount").

• if X is a point pattern, we test the null hypothesis that the data pattern is a realisation of
Complete Spatial Randomness (the uniform Poisson point process). Marks in the point pattern
are ignored. (If lambda is given then the null hypothesis is the Poisson process with intensity
lambda.)

• if X is a split point pattern, then for each of the component point patterns (taken separately)
we test the null hypotheses of Complete Spatial Randomness. See quadrat.test.splitppp
for documentation.

• If X is a fitted point process model, then it should be a Poisson point process model. The data
to which this model was fitted are extracted from the model object, and are treated as the data
point pattern for the test. We test the null hypothesis that the data pattern is a realisation of the
(inhomogeneous) Poisson point process specified by X.

1288 quadrat.test

In all cases, the window of observation is divided into tiles, and the number of data points in each
tile is counted, as described in quadratcount. The quadrats are rectangular by default, or may be
regions of arbitrary shape specified by the argument tess. The expected number of points in each
quadrat is also calculated, as determined by CSR (in the first case) or by the fitted model (in the
second case). Then the Pearson X2 statistic

X2 = sum((observed− expected)2/expected)

is computed.

If method="Chisq" then a χ2 test of goodness-of-fit is performed by comparing the test statistic to
the χ2 distribution with m− k degrees of freedom, where m is the number of quadrats and k is the
number of fitted parameters (equal to 1 for quadrat.test.ppp). The default is to compute the two-
sided p-value, so that the test will be declared significant if X2 is either very large or very small.
One-sided p-values can be obtained by specifying the alternative. An important requirement of
the χ2 test is that the expected counts in each quadrat be greater than 5.

If method="MonteCarlo" then a Monte Carlo test is performed, obviating the need for all expected
counts to be at least 5. In the Monte Carlo test, nsim random point patterns are generated from
the null hypothesis (either CSR or the fitted point process model). The Pearson X2 statistic is
computed as above. The p-value is determined by comparing the X2 statistic for the observed
point pattern, with the values obtained from the simulations. Again the default is to compute the
two-sided p-value.

If conditional is TRUE then the simulated samples are generated from the multinomial distribution
with the number of “trials” equal to the number of observed points and the vector of probabilities
equal to the expected counts divided by the sum of the expected counts. Otherwise the simulated
samples are independent Poisson counts, with means equal to the expected counts.

If the argument CR is given, then instead of the Pearson X2 statistic, the Cressie-Read (1984) power
divergence test statistic

2nI =
2

CR(CR+ 1)

∑
i

[(
Xi

Ei

)C
R− 1

]

is computed, where Xi is the ith observed count and Ei is the corresponding expected count. The
value CR=1 gives the Pearson X2 statistic; CR=0 gives the likelihood ratio test statistic G2; CR=-1/2
gives the Freeman-Tukey statistic T 2; CR=-1 gives the modified likelihood ratio test statistic GM2;
and CR=-2 gives Neyman’s modified statistic NM2. In all cases the asymptotic distribution of this
test statistic is the same χ2 distribution as above.

The return value is an object of class "htest". Printing the object gives comprehensible output
about the outcome of the test.

The return value also belongs to the special class "quadrat.test". Plotting the object will display
the quadrats, annotated by their observed and expected counts and the Pearson residuals. See the
examples.

Value

An object of class "htest". See chisq.test for explanation.

The return value is also an object of the special class "quadrattest", and there is a plot method
for this class. See the examples.

quadrat.test 1289

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Cressie, N. and Read, T.R.C. (1984) Multinomial goodness-of-fit tests. Journal of the Royal Statis-
tical Society, Series B 46, 440–464.

See Also

quadrat.test.splitppp, quadratcount, quadrats, quadratresample, chisq.test, cdf.test.

To test a Poisson point process model against a specific alternative, use anova.ppm.

Examples

quadrat.test(simdat)
quadrat.test(simdat, 4, 3)

quadrat.test(simdat, alternative="regular")
quadrat.test(simdat, alternative="clustered")

Likelihood ratio test
quadrat.test(simdat, CR=0)
Power divergence tests
quadrat.test(simdat, CR=-1)$p.value
quadrat.test(simdat, CR=-2)$p.value

Using Monte Carlo p-values
quadrat.test(swedishpines) # Get warning, small expected values.
Not run:

quadrat.test(swedishpines, method="M", nsim=4999)
quadrat.test(swedishpines, method="M", nsim=4999, conditional=FALSE)

End(Not run)

quadrat counts
qS <- quadratcount(simdat, 4, 3)
quadrat.test(qS)

fitted model: inhomogeneous Poisson
fitx <- ppm(simdat ~ x)
quadrat.test(fitx)

an equivalent test (results differ due to discretisation effects):
quadrat.test(simdat, lambda=predict(fitx), df.est=length(coef(fitx)))

te <- quadrat.test(simdat, 4)
residuals(te) # Pearson residuals

plot(te)

1290 quadrat.test.mppm

plot(simdat, pch="+", cols="green", lwd=2)
plot(te, add=TRUE, col="red", cex=1.4, lty=2, lwd=3)

sublab <- eval(substitute(expression(p[chi^2]==z),
list(z=signif(te$p.value,3))))

title(sub=sublab, cex.sub=3)

quadrats of irregular shape
B <- dirichlet(runifpoint(6, Window(simdat)))
qB <- quadrat.test(simdat, tess=B)
plot(simdat, main="quadrat.test(simdat, tess=B)", pch="+")
plot(qB, add=TRUE, col="red", lwd=2, cex=1.2)

quadrat.test.mppm Chi-Squared Test for Multiple Point Process Model Based on Quadrat
Counts

Description

Performs a chi-squared goodness-of-fit test of a Poisson point process model fitted to multiple point
patterns.

Usage

S3 method for class 'mppm'
quadrat.test(X, ...)

Arguments

X An object of class "mppm" representing a point process model fitted to multiple
point patterns. It should be a Poisson model.

... Arguments passed to quadrat.test.ppm which determine the size of the quadrats.

Details

This function performs a χ2 test of goodness-of-fit for a Poisson point process model, based on
quadrat counts. It can also be used to perform a test of Complete Spatial Randomness for a list of
point patterns.

The function quadrat.test is generic, with methods for point patterns (class "ppp"), point process
models (class "ppm") and multiple point process models (class "mppm").

For this function, the argument X should be a multiple point process model (object of class "mppm")
obtained by fitting a point process model to a list of point patterns using the function mppm.

To perform the test, the data point patterns are extracted from X. For each point pattern

• the window of observation is divided into rectangular tiles, and the number of data points in
each tile is counted, as described in quadratcount.

quadrat.test.mppm 1291

• The expected number of points in each quadrat is calculated, as determined by the fitted model.

Then we perform a single χ2 test of goodness-of-fit based on these observed and expected counts.

Value

An object of class "htest". Printing the object gives comprehensible output about the outcome of
the test. The p-value of the test is stored in the component p.value.

The return value also belongs to the special class "quadrat.test". Plotting the object will display,
for each window, the position of the quadrats, annotated by their observed and expected counts and
the Pearson residuals. See the examples.

The return value also has an attribute "components" which is a list containing the results of χ2 tests
of goodness-of-fit for each individual point pattern.

Testing Complete Spatial Randomness

If the intention is to test Complete Spatial Randomness (CSR) there are two options:

• CSR with the same intensity of points in each point pattern;

• CSR with a different, unrelated intensity of points in each point pattern.

In the first case, suppose P is a list of point patterns we want to test. Then fit the multiple model
fit1 <-mppm(P,~1) which signifies a Poisson point process model with a constant intensity. Then
apply quadrat.test(fit1).

In the second case, fit the model codefit2 <- mppm(P, ~id) which signifies a Poisson point process
with a different constant intensity for each point pattern. Then apply quadrat.test(fit2).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm, quadrat.test

1292 quadrat.test.splitppp

Examples

H <- hyperframe(X=waterstriders)
Poisson with constant intensity for all patterns
fit1 <- mppm(X~1, H)
quadrat.test(fit1, nx=2)

uniform Poisson with different intensity for each pattern
fit2 <- mppm(X ~ id, H)
quadrat.test(fit2, nx=2)

quadrat.test.splitppp Dispersion Test of CSR for Split Point Pattern Based on Quadrat
Counts

Description

Performs a test of Complete Spatial Randomness for each of the component patterns in a split point
pattern, based on quadrat counts. By default performs chi-squared tests; can also perform Monte
Carlo based tests.

Usage

S3 method for class 'splitppp'
quadrat.test(X, ..., df=NULL, df.est=NULL, Xname=NULL)

Arguments

X A split point pattern (object of class "splitppp"), each component of which
will be subjected to the goodness-of-fit test.

... Arguments passed to quadrat.test.ppp.
df,df.est,Xname

Arguments passed to pool.quadrattest.

Details

The function quadrat.test is generic, with methods for point patterns (class "ppp"), split point
patterns (class "splitppp") and point process models (class "ppm").

If X is a split point pattern, then for each of the component point patterns (taken separately) we test
the null hypotheses of Complete Spatial Randomness, then combine the result into a single test.

The method quadrat.test.ppp is applied to each component point pattern. Then the results are
pooled using pool.quadrattest to obtain a single test.

Value

An object of class "quadrattest" which can be printed and plotted.

quadratcount 1293

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quadrat.test, quadratcount, quadrats, quadratresample, chisq.test, cdf.test.

To test a Poisson point process model against a specific Poisson alternative, use anova.ppm.

Examples

data(humberside)
qH <- quadrat.test(split(humberside), 2, 3)
plot(qH)
qH

quadratcount Quadrat counting for a point pattern

Description

Divides window into quadrats and counts the numbers of points in each quadrat.

Usage

quadratcount(X, ...)

S3 method for class 'ppp'
quadratcount(X, nx=5, ny=nx, ...,

xbreaks=NULL, ybreaks=NULL, tess=NULL)

S3 method for class 'splitppp'
quadratcount(X, ...)

Arguments

X A point pattern (object of class "ppp") or a split point pattern (object of class
"splitppp").

nx,ny Numbers of rectangular quadrats in the x and y directions. Incompatible with
xbreaks and ybreaks.

... Additional arguments passed to quadratcount.ppp.
xbreaks Numeric vector giving the x coordinates of the boundaries of the rectangular

quadrats. Incompatible with nx.
ybreaks Numeric vector giving the y coordinates of the boundaries of the rectangular

quadrats. Incompatible with ny.
tess Tessellation (object of class "tess" or something acceptable to as.tess) deter-

mining the quadrats. Incompatible with nx,ny,xbreaks,ybreaks.

1294 quadratcount

Details

Quadrat counting is an elementary technique for analysing spatial point patterns. See Diggle (2003).

If X is a point pattern, then by default, the window containing the point pattern X is divided into an
nx * ny grid of rectangular tiles or ‘quadrats’. (If the window is not a rectangle, then these tiles are
intersected with the window.) The number of points of X falling in each quadrat is counted. These
numbers are returned as a contingency table.

If xbreaks is given, it should be a numeric vector giving the x coordinates of the quadrat bound-
aries. If it is not given, it defaults to a sequence of nx+1 values equally spaced over the range of x
coordinates in the window Window(X).

Similarly if ybreaks is given, it should be a numeric vector giving the y coordinates of the quadrat
boundaries. It defaults to a vector of ny+1 values equally spaced over the range of y coordinates in
the window. The lengths of xbreaks and ybreaks may be different.

Alternatively, quadrats of any shape may be used. The argument tess can be a tessellation (object
of class "tess") whose tiles will serve as the quadrats.

The algorithm counts the number of points of X falling in each quadrat, and returns these counts as
a contingency table.

The return value is a table which can be printed neatly. The return value is also a member of
the special class "quadratcount". Plotting the object will display the quadrats, annotated by their
counts. See the examples.

To perform a chi-squared test based on the quadrat counts, use quadrat.test.

To calculate an estimate of intensity based on the quadrat counts, use intensity.quadratcount.

To extract the quadrats used in a quadratcount object, use as.tess.

If X is a split point pattern (object of class "splitppp" then quadrat counting will be performed
on each of the components point patterns, and the resulting contingency tables will be returned in a
list. This list can be printed or plotted.

Marks attached to the points are ignored by quadratcount.ppp. To obtain a separate contingency
table for each type of point in a multitype point pattern, first separate the different points using
split.ppp, then apply quadratcount.splitppp. See the Examples.

Value

The value of quadratcount.ppp is a contingency table containing the number of points in each
quadrat. The table is also an object of the special class "quadratcount" and there is a plot method
for this class.

The value of quadratcount.splitppp is a list of such contingency tables, each containing the
quadrat counts for one of the component point patterns in X. This list also has the class "solist"
which has print and plot methods.

Warning

If Q is the result of quadratcount using rectangular tiles, then as.numeric(Q) extracts the counts
in the wrong order. To obtain the quadrat counts in the same order as the tiles of the corresponding
tessellation would be listed, use as.vector(t(Q)), which works in all cases.

quadratcount 1295

Note

To perform a chi-squared test based on the quadrat counts, use quadrat.test.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 2003.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

plot.quadratcount, intensity.quadratcount, quadrats, quadrat.test, tess, hextess, quadratresample,
miplot

Examples

X <- runifpoint(50)
quadratcount(X)
quadratcount(X, 4, 5)
quadratcount(X, xbreaks=c(0, 0.3, 1), ybreaks=c(0, 0.4, 0.8, 1))
qX <- quadratcount(X, 4, 5)

plotting:
plot(X, pch="+")
plot(qX, add=TRUE, col="red", cex=1.5, lty=2)

irregular window
data(humberside)
plot(humberside)
qH <- quadratcount(humberside, 2, 3)
plot(qH, add=TRUE, col="blue", cex=1.5, lwd=2)

multitype - split
plot(quadratcount(split(humberside), 2, 3))

quadrats determined by tessellation:
B <- dirichlet(runifpoint(6))
qX <- quadratcount(X, tess=B)
plot(X, pch="+")
plot(qX, add=TRUE, col="red", cex=1.5, lty=2)

1296 quadratresample

quadratresample Resample a Point Pattern by Resampling Quadrats

Description

Given a point pattern dataset, create a resampled point pattern by dividing the window into rectan-
gular quadrats and randomly resampling the list of quadrats.

Usage

quadratresample(X, nx, ny=nx, ...,
replace = FALSE, nsamples = 1,
verbose = (nsamples > 1))

Arguments

X A point pattern dataset (object of class "ppp").

nx,ny Numbers of quadrats in the x and y directions.

... Ignored.

replace Logical value. Specifies whether quadrats should be sampled with or without
replacement.

nsamples Number of randomised point patterns to be generated.

verbose Logical value indicating whether to print progress reports.

Details

This command implements a very simple bootstrap resampling procedure for spatial point patterns
X.

The dataset X must be a point pattern (object of class "ppp") and its observation window must be a
rectangle.

The window is first divided into N = nx * ny rectangular tiles (quadrats) of equal size and shape.
To generate one resampled point pattern, a random sample of N quadrats is selected from the list
of N quadrats, with replacement (if replace=TRUE) or without replacement (if replace=FALSE).
The ith quadrat in the original dataset is then replaced by the ith sampled quadrat, after the latter
is shifted so that it occupies the correct spatial position. The quadrats are then reconstituted into a
point pattern inside the same window as X.

If replace=FALSE, this procedure effectively involves a random permutation of the quadrats. The
resulting resampled point pattern has the same number of points as X. If replace=TRUE, the number
of points in the resampled point pattern is random.

Value

A point pattern (if nsamples = 1) or a list of point patterns (if nsamples > 1).

quadrats 1297

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quadrats, quadratcount.

See varblock to estimate the variance of a summary statistic by block resampling.

Examples

data(bei)
quadratresample(bei, 6, 3)

quadrats Divide Region into Quadrats

Description

Divides window into rectangular quadrats and returns the quadrats as a tessellation.

Usage

quadrats(X, nx = 5, ny = nx, xbreaks = NULL, ybreaks = NULL, keepempty=FALSE)

Arguments

X A window (object of class "owin") or anything that can be coerced to a window
using as.owin, such as a point pattern.

nx,ny Numbers of quadrats in the x and y directions. Incompatible with xbreaks and
ybreaks.

xbreaks Numeric vector giving the x coordinates of the boundaries of the quadrats. In-
compatible with nx.

ybreaks Numeric vector giving the y coordinates of the boundaries of the quadrats. In-
compatible with ny.

keepempty Logical value indicating whether to delete or retain empty quadrats. See Details.

Details

If the window X is a rectangle, it is divided into an nx * ny grid of rectangular tiles or ‘quadrats’.

If X is not a rectangle, then the bounding rectangle of X is first divided into an nx * ny grid of
rectangular tiles, and these tiles are then intersected with the window X.

The resulting tiles are returned as a tessellation (object of class "tess") which can be plotted and
used in other analyses.

1298 quadscheme

If xbreaks is given, it should be a numeric vector giving the x coordinates of the quadrat bound-
aries. If it is not given, it defaults to a sequence of nx+1 values equally spaced over the range of x
coordinates in the window Window(X).

Similarly if ybreaks is given, it should be a numeric vector giving the y coordinates of the quadrat
boundaries. It defaults to a vector of ny+1 values equally spaced over the range of y coordinates in
the window. The lengths of xbreaks and ybreaks may be different.

By default (if keepempty=FALSE), any rectangular tile which does not intersect the window X is ig-
nored, and only the non-empty intersections are treated as quadrats, so the tessellation may consist
of fewer than nx * ny tiles. If keepempty=TRUE, empty intersections are retained, and the tessella-
tion always contains exactly nx * ny tiles, some of which may be empty.

Value

A tessellation (object of class "tess") as described under tess.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

For calculations using quadrats, see quadratcount, quadrat.test, quadratresample

For other kinds of tessellations, see tess, hextess, venn.tess, polartess, dirichlet, delaunay,
rpoislinetess and quantess.

Examples

W <- square(10)
Z <- quadrats(W, 4, 5)
plot(Z)

data(letterR)
plot(quadrats(letterR, 5, 7))

quadscheme Generate a Quadrature Scheme from a Point Pattern

Description

Generates a quadrature scheme (an object of class "quad") from point patterns of data and dummy
points.

Usage

quadscheme(data, dummy, method="grid", ...)

quadscheme 1299

Arguments

data The observed data point pattern. An object of class "ppp" or in a format recog-
nised by as.ppp()

dummy The pattern of dummy points for the quadrature. An object of class "ppp" or in
a format recognised by as.ppp() Defaults to default.dummy(data,...)

method The name of the method for calculating quadrature weights: either "grid" or
"dirichlet".

... Parameters of the weighting method (see below) and parameters for constructing
the dummy points if necessary.

Details

This is the primary method for producing a quadrature schemes for use by ppm.

The function ppm fits a point process model to an observed point pattern using the Berman-Turner
quadrature approximation (Berman and Turner, 1992; Baddeley and Turner, 2000) to the pseudo-
likelihood of the model. It requires a quadrature scheme consisting of the original data point pattern,
an additional pattern of dummy points, and a vector of quadrature weights for all these points. Such
quadrature schemes are represented by objects of class "quad". See quad.object for a description
of this class.

Quadrature schemes are created by the function quadscheme. The arguments data and dummy
specify the data and dummy points, respectively. There is a sensible default for the dummy points
(provided by default.dummy). Alternatively the dummy points may be specified arbitrarily and
given in any format recognised by as.ppp. There are also functions for creating dummy patterns
including corners, gridcentres, stratrand and spokes.

The quadrature region is the region over which we are integrating, and approximating integrals by
finite sums. If dummy is a point pattern object (class "ppp") then the quadrature region is taken to
be Window(dummy). If dummy is just a list of x, y coordinates then the quadrature region defaults to
the observation window of the data pattern, Window(data).

If dummy is missing, then a pattern of dummy points will be generated using default.dummy, taking
account of the optional arguments By default, the dummy points are arranged in a rectangular
grid; recognised arguments include nd (the number of grid points in the horizontal and vertical
directions) and eps (the spacing between dummy points). If random=TRUE, a systematic random
pattern of dummy points is generated instead. See default.dummy for details.

If method = "grid" then the optional arguments (for ...) are (nd,ntile,eps). The quadrature
region (defined above) is divided into an ntile[1] by ntile[2] grid of rectangular tiles. The
weight for each quadrature point is the area of a tile divided by the number of quadrature points in
that tile.

If method="dirichlet" then the optional arguments are (exact=TRUE,nd,eps). The quadrature
points (both data and dummy) are used to construct the Dirichlet tessellation. The quadrature weight
of each point is the area of its Dirichlet tile inside the quadrature region. If exact == TRUE then this
area is computed exactly using the package deldir; otherwise it is computed approximately by
discretisation.

1300 quadscheme

Value

An object of class "quad" describing the quadrature scheme (data points, dummy points, and
quadrature weights) suitable as the argument Q of the function ppm() for fitting a point process
model.

The quadrature scheme can be inspected using the print and plot methods for objects of class
"quad".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Berman, M. and Turner, T.R. Approximating point process likelihoods with GLIM. Applied Statis-
tics 41 (1992) 31–38.

See Also

ppm, as.ppp, quad.object, gridweights, dirichletWeights, corners, gridcentres, stratrand,
spokes

Examples

data(simdat)

grid weights
Q <- quadscheme(simdat)
Q <- quadscheme(simdat, method="grid")
Q <- quadscheme(simdat, eps=0.5) # dummy point spacing 0.5 units

Q <- quadscheme(simdat, nd=50) # 1 dummy point per tile
Q <- quadscheme(simdat, ntile=25, nd=50) # 4 dummy points per tile

Dirichlet weights
Q <- quadscheme(simdat, method="dirichlet", exact=FALSE)

random dummy pattern
Not run:
D <- runifpoint(250, Window(simdat))
Q <- quadscheme(simdat, D, method="dirichlet", exact=FALSE)

End(Not run)

polygonal window
data(demopat)
X <- unmark(demopat)
Q <- quadscheme(X)

quadscheme.logi 1301

mask window
Window(X) <- as.mask(Window(X))
Q <- quadscheme(X)

quadscheme.logi Generate a Logistic Regression Quadrature Scheme from a Point Pat-
tern

Description

Generates a logistic regression quadrature scheme (an object of class "logiquad" inheriting from
"quad") from point patterns of data and dummy points.

Usage

quadscheme.logi(data, dummy, dummytype = "stratrand",
nd = NULL, mark.repeat = FALSE, ...)

Arguments

data The observed data point pattern. An object of class "ppp" or in a format recog-
nised by as.ppp()

dummy The pattern of dummy points for the quadrature. An object of class "ppp" or in
a format recognised by as.ppp(). If missing a sensible default is generated.

dummytype The name of the type of dummy points to use when "dummy" is missing. Cur-
rently available options are: "stratrand" (default), "binomial", "poisson",
"grid" and "transgrid".

nd Integer, or integer vector of length 2 controlling the intensity of dummy points
when "dummy" is missing.

mark.repeat Repeating the dummy points for each level of a marked data pattern when
"dummy" is missing. (See details.)

... Ignored.

Details

This is the primary method for producing a quadrature schemes for use by ppm when the logistic
regression approximation (Baddeley et al. 2013) to the pseudolikelihood of the model is applied
(i.e. when method="logi" in ppm).

The function ppm fits a point process model to an observed point pattern. When used with the option
method="logi" it requires a quadrature scheme consisting of the original data point pattern and an
additional pattern of dummy points. Such quadrature schemes are represented by objects of class
"logiquad".

Quadrature schemes are created by the function quadscheme.logi. The arguments data and dummy
specify the data and dummy points, respectively. There is a sensible default for the dummy points.

1302 quadscheme.logi

Alternatively the dummy points may be specified arbitrarily and given in any format recognised by
as.ppp.

The quadrature region is the region over which we are integrating, and approximating integrals by
finite sums. If dummy is a point pattern object (class "ppp") then the quadrature region is taken to
be Window(dummy). If dummy is just a list of x, y coordinates then the quadrature region defaults to
the observation window of the data pattern, Window(data).

If dummy is missing, then a pattern of dummy points will be generated, taking account of the optional
arguments dummytype, nd, and mark.repeat.

The currently accepted values for dummytype are:

• "grid" where the frame of the window is divided into a nd * nd or nd[1] * nd[2] regular
grid of tiles and the centers constitutes the dummy points.

• "transgrid" where a regular grid as above is translated by a random vector.

• "stratrand" where each point of a regular grid as above is randomly translated within its
tile.

• "binomial" where nd * nd or nd[1] * nd[2] points are generated uniformly in the frame of
the window. "poisson" where a homogeneous Poisson point process with intensity nd * nd
or nd[1] * nd[2] is generated within the frame of observation window.

Then if the window is not rectangular, any dummy points lying outside it are deleted.

If data is a multitype point pattern the dummy points should also be marked (with the same levels of
the marks as data). If dummy is missing and the dummy pattern is generated by quadscheme.logi
the default behaviour is to attach a uniformly distributed mark (from the levels of the marks) to each
dummy point. Alternatively, if mark.repeat=TRUE each dummy point is repeated as many times as
there are levels of the marks with a distinct mark value attached to it.

Finally, each point (data and dummy) is assigned the weight 1. The weights are never used and only
appear to be compatible with the class "quad" from which the "logiquad" object inherits.

Value

An object of class "logiquad" inheriting from "quad" describing the quadrature scheme (data
points, dummy points, and quadrature weights) suitable as the argument Q of the function ppm() for
fitting a point process model.

The quadrature scheme can be inspected using the print and plot methods for objects of class
"quad".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk> .

References

Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2014) Logistic regression for
spatial Gibbs point processes. Biometrika 101 (2) 377–392.

quantess 1303

See Also

ppm, as.ppp

Examples

data(simdat)

Q <- quadscheme.logi(simdat)

quantess Quantile Tessellation

Description

Divide space into tiles which contain equal amounts of stuff.

Usage

quantess(M, Z, n, ...)

S3 method for class 'owin'
quantess(M, Z, n, ..., type=2, origin=c(0,0), eps=NULL)

S3 method for class 'ppp'
quantess(M, Z, n, ..., type=2, origin=c(0,0), eps=NULL)

S3 method for class 'im'
quantess(M, Z, n, ..., type=2, origin=c(0,0))

Arguments

M A spatial object (such as a window, point pattern or pixel image) determining
the weight or amount of stuff at each location.

Z A spatial covariate (a pixel image or a function(x,y)) or one of the strings "x"
or "y" indicating the Cartesian coordinates x or y, or one of the strings "rad"
or "ang" indicating polar coordinates. The range of values of Z will be broken
into n bands containing equal amounts of stuff.

n Number of bands. A positive integer.

type Integer specifying the rule for calculating quantiles. Passed to quantile.default.

... Additional arguments passed to quadrats or tess defining another tessellation
which should be intersected with the quantile tessellation.

origin Location of the origin of polar coordinates, if Z="rad" or Z="ang". Either a
numeric vector of length 2 giving the location, or a point pattern containing only
one point, or a list with two entries named x and y, or one of the character strings
"centroid", "midpoint", "left", "right", "top", "bottom", "topleft",
"bottomleft", "topright" or "bottomright" (partially matched).

1304 quantess

eps Optional. The size of pixels in the approximation which is used to compute the
quantiles. A positive numeric value, or vector of two positive numeric values.

Details

A quantile tessellation is a division of space into pieces which contain equal amounts of stuff.

The function quantess computes a quantile tessellation and returns the tessellation itself. The
function quantess is generic, with methods for windows (class "owin"), point patterns ("ppp")
and pixel images ("im").

The first argument M (for mass) specifies the spatial distribution of stuff that is to be divided. If M
is a window, the area of the window is to be divided into n equal pieces. If M is a point pattern, the
number of points in the pattern is to be divided into n equal parts, as far as possible. If M is a pixel
image, the pixel values are interpreted as weights, and the total weight is to be divided into n equal
parts.

The second argument Z is a spatial covariate. The range of values of Z will be divided into n bands,
each containing the same total weight. That is, we determine the quantiles of Z with weights given
by M.

For convenience, additional arguments ... can be given, to further subdivide the tiles of the tes-
sellation. These arguments should be recognised by one of the functions quadrats or tess. The
tessellation determined by these arguments is intersected with the quantile tessellation.

The result of quantess is a tessellation of as.owin(M) determined by the quantiles of Z.

Value

A tessellation (object of class "tess").

Author(s)

Original idea by Ute Hahn. Implemented in spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

tess, quadrats, quantile, tilenames

Examples

plot(quantess(letterR, "x", 5))

plot(quantess(bronzefilter, "x", 6))
points(unmark(bronzefilter))

plot(quantess(letterR, "rad", 7, origin=c(2.8, 1.5)))
plot(quantess(letterR, "ang", 7, origin=c(2.8, 1.5)))

opa <- par(mar=c(0,0,2,5))
A <- quantess(Window(bei), bei.extra$elev, 4)
plot(A, ribargs=list(las=1))

quantile.density 1305

B <- quantess(bei, bei.extra$elev, 4)
tilenames(B) <- paste(spatstat.utils::ordinal(1:4), "quartile")
plot(B, ribargs=list(las=1))
points(bei, pch=".", cex=2, col="white")
par(opa)

quantile.density Quantiles of a Density Estimate

Description

Given a kernel estimate of a probability density, compute quantiles.

Usage

S3 method for class 'density'
quantile(x, probs = seq(0, 1, 0.25), names = TRUE,

..., warn = TRUE)

Arguments

x Object of class "density" computed by a method for density

probs Numeric vector of probabilities for which the quantiles are required.

names Logical value indicating whether to attach names (based on probs) to the result.

... Ignored.

warn Logical value indicating whether to issue a warning if the density estimate x had
to be renormalised because it was computed in a restricted interval.

Details

This function calculates quantiles of the probability distribution whose probability density has been
estimated and stored in the object x. The object x must belong to the class "density", and would
typically have been obtained from a call to the function density.

The probability density is first normalised so that the total probability is equal to 1. A warning is
issued if the density estimate was restricted to an interval (i.e. if x was created by a call to density
which included either of the arguments from and to).

Next, the density estimate is numerically integrated to obtain an estimate of the cumulative distri-
bution function F (x). Then for each desired probability p, the algorithm finds the corresponding
quantile q.

The quantile q corresponding to probability p satisfies F (q) = p up to the resolution of the grid of
values contained in x. The quantile is computed from the right, that is, q is the smallest available
value of x such that F (x) ≥ p.

Value

A numeric vector containing the quantiles.

1306 quantile.ewcdf

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

quantile, quantile.ewcdf, quantile.im, CDF.

Examples

dd <- density(runif(10))
quantile(dd)

quantile.ewcdf Quantiles of Weighted Empirical Cumulative Distribution Function

Description

Compute quantiles of a weighted empirical cumulative distribution function.

Usage

S3 method for class 'ewcdf'
quantile(x, probs = seq(0, 1, 0.25),

names = TRUE, ...,
normalise = TRUE, type=1)

Arguments

x A weighted empirical cumulative distribution function (object of class "ewcdf",
produced by ewcdf) for which the quantiles are desired.

probs probabilities for which the quantiles are desired. A numeric vector of values
between 0 and 1.

names Logical. If TRUE, the resulting vector of quantiles is annotated with names cor-
responding to probs.

... Ignored.

normalise Logical value indicating whether x should first be normalised so that it ranges
between 0 and 1.

type Integer specifying the type of quantile to be calculated, as explained in quantile.default.
Only types 1 and 2 are currently implemented.

quantile.im 1307

Details

This is a method for the generic quantile function for the class ewcdf of empirical weighted
cumulative distribution functions.

The quantile for a probability p is computed as the right-continuous inverse of the cumulative dis-
tribution function x (assuming type=1, the default).

If normalise=TRUE (the default), the weighted cumulative function x is first normalised to have
total mass 1 so that it can be interpreted as a cumulative probability distribution function.

Value

Numeric vector of quantiles, of the same length as probs.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Kevin Ummel.

See Also

ewcdf, quantile

Examples

z <- rnorm(50)
w <- runif(50)
Fun <- ewcdf(z, w)
quantile(Fun, c(0.95,0.99))

quantile.im Sample Quantiles of Pixel Image

Description

Compute the sample quantiles of the pixel values of a given pixel image.

Usage

S3 method for class 'im'
quantile(x, ...)

Arguments

x A pixel image. An object of class "im".

... Optional arguments passed to quantile.default. They determine the proba-
bilities for which quantiles should be computed. See quantile.default.

1308 quasirandom

Details

This simple function applies the generic quantile operation to the pixel values of the image x.

This function is a convenient way to inspect an image and to obtain summary statistics. See the
examples.

Value

A vector of quantiles.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quantile, cut.im, im.object

Examples

artificial image data
Z <- setcov(square(1))

find the quartiles
quantile(Z)

find the deciles
quantile(Z, probs=(0:10)/10)

quasirandom Quasirandom Patterns

Description

Generates quasirandom sequences of numbers and quasirandom spatial patterns of points in any
dimension.

Usage

vdCorput(n, base)

Halton(n, bases = c(2, 3), raw = FALSE, simplify = TRUE)

Hammersley(n, bases = 2, raw = FALSE, simplify = TRUE)

quasirandom 1309

Arguments

n Number of points to generate.

base A prime number giving the base of the sequence.

bases Vector of prime numbers giving the bases of the sequences for each coordinate
axis.

raw Logical value indicating whether to return the coordinates as a matrix (raw=TRUE)
or as a spatial point pattern (raw=FALSE, the default).

simplify Argument passed to ppx indicating whether point patterns of dimension 2 or 3
should be returned as objects of class "ppp" or "pp3" respectively (simplify=TRUE,
the default) or as objects of class "ppx" (simplify=FALSE).

Details

The function vdCorput generates the quasirandom sequence of Van der Corput (1935) of length
n with the given base. These are numbers between 0 and 1 which are in some sense uniformly
distributed over the interval.

The function Halton generates the Halton quasirandom sequence of points in d-dimensional space,
where d = length(bases). The values of the i-th coordinate of the points are generated using the
van der Corput sequence with base equal to bases[i].

The function Hammersley generates the Hammersley set of points in d+1-dimensional space, where
d = length(bases). The first d coordinates of the points are generated using the van der Corput
sequence with base equal to bases[i]. The d+1-th coordinate is the sequence 1/n,2/n,...,1.

If raw=FALSE (the default) then the Halton and Hammersley sets are interpreted as spatial point pat-
terns of the appropriate dimension. They are returned as objects of class "ppx" (multidimensional
point patterns) unless simplify=TRUE and d=2 or d=3 when they are returned as objects of class
"ppp" or "pp3". If raw=TRUE, the coordinates are returned as a matrix with n rows and D columns
where D is the spatial dimension.

Value

For vdCorput, a numeric vector.

For Halton and Hammersley, an object of class "ppp", "pp3" or "ppx"; or if raw=TRUE, a numeric
matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

References

Van der Corput, J. G. (1935) Verteilungsfunktionen. Proc. Ned. Akad. v. Wetensch. 38: 813–821.

Kuipers, L. and Niederreiter, H. (2005) Uniform distribution of sequences, Dover Publications.

1310 rags

See Also

rQuasi

Examples

vdCorput(10, 2)

plot(Halton(256, c(2,3)))

plot(Hammersley(256, 3))

rags Alternating Gibbs Sampler for Multitype Point Processes

Description

Simulate a realisation of a point process model using the alternating Gibbs sampler.

Usage

rags(model, ..., ncycles = 100)

Arguments

model Data specifying some kind of point process model.

... Additional arguments passed to other code.

ncycles Number of cycles of the alternating Gibbs sampler that should be performed.

Details

The Alternating Gibbs Sampler for a multitype point process is an iterative simulation procedure.
Each step of the sampler updates the pattern of points of a particular type i, by drawing a realisation
from the conditional distribution of points of type i given the points of all other types. Successive
steps of the sampler update the points of type 1, then type 2, type 3, and so on.

This is an experimental implementation which currently works only for multitype hard core pro-
cesses (see MultiHard) in which there is no interaction between points of the same type.

The argument model should be an object describing a point process model. At the moment, the
only permitted format for model is of the form list(beta,hradii) where beta gives the first
order trend and hradii is the matrix of interaction radii. See ragsMultiHard for full details.

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

ragsAreaInter 1311

See Also

ragsMultiHard, ragsAreaInter

Examples

mo <- list(beta=c(30, 20),
hradii = 0.05 * matrix(c(0,1,1,0), 2, 2))

rags(mo, ncycles=10)

ragsAreaInter Alternating Gibbs Sampler for Area-Interaction Process

Description

Generate a realisation of the area-interaction process using the alternating Gibbs sampler. Applies
only when the interaction parameter eta is greater than 1.

Usage

ragsAreaInter(beta, eta, r, ...,
win = NULL, bmax = NULL, periodic = FALSE, ncycles = 100)

Arguments

beta First order trend. A number, a pixel image (object of class "im"), or a function(x,y).

eta Interaction parameter (canonical form) as described in the help for AreaInter.
A number greater than 1.

r Disc radius in the model. A number greater than 1.

... Additional arguments for beta if it is a function.

win Simulation window. An object of class "owin". (Ignored if beta is a pixel
image.)

bmax Optional. The maximum possible value of beta, or a number larger than this.

periodic Logical value indicating whether to treat opposite sides of the simulation win-
dow as being the same, so that points close to one side may interact with points
close to the opposite side. Feasible only when the window is a rectangle.

ncycles Number of cycles of the alternating Gibbs sampler to be performed.

Details

This function generates a simulated realisation of the area-interaction process (see AreaInter)
using the alternating Gibbs sampler (see rags).

It exploits a mathematical relationship between the (unmarked) area-interaction process and the
two-type hard core process (Baddeley and Van Lieshout, 1995; Widom and Rowlinson, 1970).
This relationship only holds when the interaction parameter eta is greater than 1 so that the area-
interaction process is clustered.

1312 ragsMultiHard

The parameters beta,eta are the canonical parameters described in the help for AreaInter. The
first order trend beta may be a constant, a function, or a pixel image.

The simulation window is determined by beta if it is a pixel image, and otherwise by the argument
win (the default is the unit square).

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A.J. and Van Lieshout, M.N.M. (1995). Area-interaction point processes. Annals of the
Institute of Statistical Mathematics 47 (1995) 601–619.

Widom, B. and Rowlinson, J.S. (1970). New model for the study of liquid-vapor phase transitions.
The Journal of Chemical Physics 52 (1970) 1670–1684.

See Also

rags, ragsMultiHard

AreaInter

Examples

plot(ragsAreaInter(100, 2, 0.07, ncycles=15))

ragsMultiHard Alternating Gibbs Sampler for Multitype Hard Core Process

Description

Generate a realisation of the multitype hard core point process using the alternating Gibbs sampler.

Usage

ragsMultiHard(beta, hradii, ..., types=NULL, bmax = NULL,
periodic=FALSE, ncycles = 100)

ragsMultiHard 1313

Arguments

beta First order trend. A numeric vector, a pixel image, a function, a list of functions,
or a list of pixel images.

hradii Matrix of hard core radii between each pair of types. Diagonal entries should be
0 or NA.

types Vector of all possible types for the multitype point pattern.
... Arguments passed to rmpoispp when generating random points.
bmax Optional upper bound on beta.
periodic Logical value indicating whether to measure distances in the periodic sense, so

that opposite sides of the (rectangular) window are treated as identical.
ncycles Number of cycles of the sampler to be performed.

Details

The Alternating Gibbs Sampler for a multitype point process is an iterative simulation procedure.
Each step of the sampler updates the pattern of points of a particular type i, by drawing a realisation
from the conditional distribution of points of type i given the points of all other types. Successive
steps of the sampler update the points of type 1, then type 2, type 3, and so on.

This is an experimental implementation which currently works only for multitype hard core pro-
cesses (see MultiHard) in which there is no interaction between points of the same type, and for
the area-interaction process (see ragsAreaInter).

The argument beta gives the first order trend for each possible type of point. It may be a single
number, a numeric vector, a function(x,y), a pixel image, a list of functions, a function(x,y,m),
or a list of pixel images.

The argument hradii is the matrix of hard core radii between each pair of possible types of points.
Two points of types i and j respectively are forbidden to lie closer than a distance hradii[i,j]
apart. The diagonal of this matrix must contain NA or 0 values, indicating that there is no hard core
constraint applying between points of the same type.

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rags, ragsAreaInter

Examples

b <- c(30,20)
h <- 0.05 * matrix(c(0,1,1,0), 2, 2)
ragsMultiHard(b, h, ncycles=10)
ragsMultiHard(b, h, ncycles=5, periodic=TRUE)

1314 ranef.mppm

ranef.mppm Extract Random Effects from Point Process Model

Description

Given a point process model fitted to a list of point patterns, extract the fixed effects of the model.
A method for ranef.

Usage

S3 method for class 'mppm'
ranef(object, ...)

Arguments

object A fitted point process model (an object of class "mppm").

... Ignored.

Details

This is a method for the generic function ranef.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

This function extracts the coefficients of the random effects of the model.

Value

A data frame, or list of data frames, as described in the help for ranef.lme.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and
Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

fixef.mppm, coef.mppm

range.fv 1315

Examples

H <- hyperframe(Y = waterstriders)
Tweak data to exaggerate differences
H$Y[[1]] <- rthin(H$Y[[1]], 0.3)

m1 <- mppm(Y ~ id, data=H, Strauss(7))
ranef(m1)
m2 <- mppm(Y ~ 1, random=~1|id, data=H, Strauss(7))
ranef(m2)

range.fv Range of Function Values

Description

Compute the range, maximum, or minimum of the function values in a summary function.

Usage

S3 method for class 'fv'
range(..., na.rm = TRUE, finite = na.rm)

S3 method for class 'fv'
max(..., na.rm = TRUE, finite = na.rm)

S3 method for class 'fv'
min(..., na.rm = TRUE, finite = na.rm)

Arguments

... One or more function value tables (objects of class "fv" representing summary
functions) or other data.

na.rm Logical. Whether to ignore NA values.

finite Logical. Whether to ignore values that are infinite, NaN or NA.

Details

These are methods for the generic range, max and min. They compute the range, maximum, and
minimum of the function values that would be plotted on the y axis by default.

For more complicated calculations, use with.fv.

Value

Numeric vector of length 2.

1316 raster.x

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

with.fv

Examples

G <- Gest(cells)
range(G)
max(G)
min(G)

raster.x Cartesian Coordinates for a Pixel Raster

Description

Return the x and y coordinates of each pixel in a pixel image or binary mask.

Usage

raster.x(w, drop=FALSE)
raster.y(w, drop=FALSE)
raster.xy(w, drop=FALSE)

Arguments

w A pixel image (object of class "im") or a mask window (object of class "owin"
of type "mask").

drop Logical. If TRUE, then coordinates of pixels that lie outside the window are
removed. If FALSE (the default) then the coordinates of every pixel in the con-
taining rectangle are retained.

Details

The argument w should be either a pixel image (object of class "im") or a mask window (an object
of class "owin" of type "mask").

If drop=FALSE (the default), the functions raster.x and raster.y return a matrix of the same
dimensions as the pixel image or mask itself, with entries giving the x coordinate (for raster.x)
or y coordinate (for raster.y) of each pixel in the pixel grid.

If drop=TRUE, pixels that lie outside the window w (or outside the domain of the image w) are
removed, and raster.x and raster.y return numeric vectors containing the coordinates of the
pixels that are inside the window w.

The function raster.xy returns a list with components x and y which are numeric vectors of equal
length containing the pixel coordinates.

rat 1317

Value

raster.xy returns a list with components x and y which are numeric vectors of equal length con-
taining the pixel coordinates.

If drop=FALSE, raster.x and raster.y return a matrix of the same dimensions as the pixel grid
in w, and giving the value of the x (or y) coordinate of each pixel in the raster.

If drop=TRUE, raster.x and raster.y return numeric vectors.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> , Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

owin, as.mask, pixelcentres

Examples

u <- owin(c(-1,1),c(-1,1)) # square of side 2
w <- as.mask(u, eps=0.01) # 200 x 200 grid
X <- raster.x(w)
Y <- raster.y(w)
disc <- owin(c(-1,1), c(-1,1), mask=(X^2 + Y^2 <= 1))
Not run: plot(disc)
approximation to the unit disc

rat Ratio object

Description

Stores the numerator, denominator, and value of a ratio as a single object.

Usage

rat(ratio, numerator, denominator, check = TRUE)

Arguments

ratio,numerator,denominator

Three objects belonging to the same class.

check Logical. Whether to check that the objects are compatible.

1318 rCauchy

Details

The class "rat" is a simple mechanism for keeping track of the numerator and denominator when
calculating a ratio. Its main purpose is simply to signal that the object is a ratio.

The function rat creates an object of class "rat" given the numerator, the denominator and the
ratio. No calculation is performed; the three objects are simply stored together.

The arguments ratio, numerator, denominator can be objects of any kind. They should belong
to the same class. It is assumed that the relationship

ratio =
numerator

denominator

holds in some version of arithmetic. However, no calculation is performed.

By default the algorithm checks whether the three arguments ratio, numerator, denominator are
compatible objects, according to compatible.

The result is equivalent to ratio except for the addition of extra information.

Value

An object equivalent to the object ratio except that it also belongs to the class "rat" and has
additional attributes numerator and denominator.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

compatible, pool

rCauchy Simulate Neyman-Scott Point Process with Cauchy cluster kernel

Description

Generate a random point pattern, a simulated realisation of the Neyman-Scott process with Cauchy
cluster kernel.

Usage

rCauchy(kappa, scale, mu, win = owin(), thresh = 0.001,
nsim=1, drop=TRUE,
saveLambda=FALSE, expand = NULL, ...,
poisthresh=1e-6, saveparents=TRUE)

rCauchy 1319

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

scale Scale parameter for cluster kernel. Determines the size of clusters. A positive
number, in the same units as the spatial coordinates.

mu Mean number of points per cluster (a single positive number) or reference inten-
sity for the cluster points (a function or a pixel image).

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

thresh Threshold relative to the cluster kernel value at the origin (parent location) deter-
mining when the cluster kernel will be treated as zero for simulation purposes.
Will be overridden by argument expand if that is given.

nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.
saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent

points will also be calculated and saved, and returns as an attribute of the point
pattern.

expand Numeric. Size of window expansion for generation of parent points. By default
determined by calling clusterradius with the numeric threshold value given
in thresh.

... Passed to clusterfield to control the image resolution when saveLambda=TRUE
and to clusterradius when expand is missing or NULL.

poisthresh Numerical threshold below which the model will be treated as a Poisson process.
See Details.

saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

Details

This algorithm generates a realisation of the Neyman-Scott process with Cauchy cluster kernel,
inside the window win.

The process is constructed by first generating a Poisson point process of “parent” points with in-
tensity kappa. Then each parent point is replaced by a random cluster of points, the number of
points in each cluster being random with a Poisson (mu) distribution, and the points being placed
independently and uniformly according to a Cauchy kernel.

In this implementation, parent points are not restricted to lie in the window; the parent process is
effectively the uniform Poisson process on the infinite plane.

This model can be fitted to data by the method of minimum contrast, maximum composite likeli-
hood or Palm likelihood using kppm.

The algorithm can also generate spatially inhomogeneous versions of the cluster process:

• The parent points can be spatially inhomogeneous. If the argument kappa is a function(x,y)
or a pixel image (object of class "im"), then it is taken as specifying the intensity function of
an inhomogeneous Poisson process that generates the parent points.

1320 rCauchy

• The offspring points can be inhomogeneous. If the argument mu is a function(x,y) or a
pixel image (object of class "im"), then it is interpreted as the reference density for offspring
points, in the sense of Waagepetersen (2006).

When the parents are homogeneous (kappa is a single number) and the offspring are inhomogeneous
(mu is a function or pixel image), the model can be fitted to data using kppm.

If the pair correlation function of the model is very close to that of a Poisson process, deviating by
less than poisthresh, then the model is approximately a Poisson process, and will be simulated as
a Poisson process with intensity kappa * mu, using rpoispp. This avoids computations that would
otherwise require huge amounts of memory.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point pat-
tern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute
"Lambda", if saveLambda=TRUE.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ghorbani, M. (2013) Cauchy cluster process. Metrika 76, 697-706.

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

rpoispp, rMatClust, rThomas, rVarGamma, rNeymanScott, rGaussPoisson, kppm, clusterfit.

Examples

homogeneous
X <- rCauchy(30, 0.01, 5)
inhomogeneous
ff <- function(x,y){ exp(2 - 3 * abs(x)) }
Z <- as.im(ff, W= owin())
Y <- rCauchy(50, 0.01, Z)
YY <- rCauchy(ff, 0.01, 5)

rcell 1321

rcell Simulate Baddeley-Silverman Cell Process

Description

Generates a random point pattern, a simulated realisation of the Baddeley-Silverman cell process
model.

Usage

rcell(win=square(1), nx=NULL, ny=nx, ..., dx=NULL, dy=dx,
N=10, nsim=1, drop=TRUE)

Arguments

win A window. An object of class owin, or data in any format acceptable to as.owin().
nx Number of columns of cells in the window. Incompatible with dx.
ny Number of rows of cells in the window. Incompatible with dy.
... Ignored.
dx Width of the cells. Incompatible with nx.
dy Height of the cells. Incompatible with ny.
N Integer. Distributional parameter: the maximum number of random points in

each cell. Passed to rcellnumber.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.

Details

This function generates a simulated realisation of the “cell process” (Baddeley and Silverman,
1984), a random point process with the same second-order properties as the uniform Poisson pro-
cess. In particular, the K function of this process is identical to the K function of the uniform
Poisson process (aka Complete Spatial Randomness). The same holds for the pair correlation func-
tion and all other second-order properties. The cell process is a counterexample to the claim that
the K function completely characterises a point pattern.

A cell process is generated by dividing space into equal rectangular tiles. In each tile, a random
number of random points is placed. By default, there are either 0, 1 or 10 points, with probabilities
1/10, 8/9 and 1/90 respectively. The points within a tile are independent and uniformly distributed
in that tile, and the numbers of points in different tiles are independent random integers.

The tile width is determined either by the number of columns nx or by the horizontal spacing
dx. The tile height is determined either by the number of rows ny or by the vertical spacing dy.
The cell process is then generated in these tiles. The random numbers of points are generated by
rcellnumber.

Some of the resulting random points may lie outside the window win: if they do, they are deleted.
The result is a point pattern inside the window win.

1322 rcelllpp

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A.J. and Silverman, B.W. (1984) A cautionary example on the use of second-order meth-
ods for analyzing point patterns. Biometrics 40, 1089-1094.

See Also

rcellnumber, rstrat, rsyst, runifpoint, Kest

Examples

X <- rcell(nx=15)
plot(X)
plot(Kest(X))

rcelllpp Simulate Cell Process on Linear Network

Description

Generate a realisation of the cell process on a linear network.

Usage

rcelllpp(L, lambda, rnumgen = NULL, ..., saveid=FALSE)

Arguments

L Either a linear network (object of class "linnet") or a tessellation on a linear
network (object of class "lintess").

lambda Intensity of the process (expected number of points per unit length),

rnumgen Optional. Random number generator for the number of points in each cell.

... Additional arguments to rnumgen.

saveid Logical value indicating whether to save information about cell membership.

rcelllpp 1323

Details

This function generates simulated realisations of a cell point process on a network, as described in
Baddeley et al (2017). This is the analogue on a linear network of the two-dimensional cell point
process of Baddeley and Silverman (1988).

The argument L should be a tessellation on a linear network. Alternatively if L is a linear network,
it is converted to a tessellation by treating each network segment as a tile in the tessellation.

The cell process generates a point process by generating independent point processes inside each
tile of the tessellation. Within each tile, given the number of random points in the tile, the points
are independent and uniformly distributed within the tile.

By default (when rnumgen is not given), the number of points in a tile of length t is a random
variable with mean and variance equal to lambda * t, generated by calling rcellnumber.

If rnumgen is given, it should be a function with arguments rnumgen(n,mu,...) where n is the
number of random integers to be generated, mu is the mean value of the distribution, and ... are
additional arguments, if needed. It will be called in the form rnumgen(1,lambda * t,...) to de-
termine the number of random points falling in each tile of length t.

Value

Point pattern on a linear network (object of class "lpp"). If saveid=TRUE, the result has an attribute
"cellid" which is a factor specifying the cell that contains each point.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A.J. and Silverman, B.W. (1984) A cautionary example on the use of second-order meth-
ods for analyzing point patterns. Biometrics 40, 1089-1094.

Baddeley, A., Nair, G., Rakshit, S. and McSwiggan, G. (2017) ‘Stationary’ point processes are
uncommon on linear networks. STAT 6, 68–78.

See Also

rSwitzerlpp

Examples

X <- rcelllpp(domain(spiders), 0.01)
plot(X)
plot(linearK(X))

1324 rcellnumber

rcellnumber Generate Random Numbers of Points for Cell Process

Description

Generates random integers for the Baddeley-Silverman counterexample.

Usage

rcellnumber(n, N = 10, mu=1)

Arguments

n Number of random integers to be generated.

N Distributional parameter: the largest possible value (when mu <= 1). An integer
greater than 1.

mu Mean of the distribution (equals the variance). Any positive real number.

Details

If mu = 1 (the default), this function generates random integers which have mean and variance equal
to 1, but which do not have a Poisson distribution. The random integers take the values 0, 1 and
N with probabilities 1/N , (N − 2)/(N − 1) and 1/(N(N − 1)) respectively. See Baddeley and
Silverman (1984).

If mu is another positive number, the random integers will have mean and variance equal to mu.
They are obtained by generating the one-dimensional counterpart of the cell process and counting
the number of points in the interval from 0 to mu. The maximum possible value of each random
integer is N * ceiling(mu).

Value

An integer vector of length n.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A.J. and Silverman, B.W. (1984) A cautionary example on the use of second-order meth-
ods for analyzing point patterns. Biometrics 40, 1089-1094.

See Also

rcell

rDGS 1325

Examples

rcellnumber(30, 3)

rDGS Perfect Simulation of the Diggle-Gates-Stibbard Process

Description

Generate a random pattern of points, a simulated realisation of the Diggle-Gates-Stibbard process,
using a perfect simulation algorithm.

Usage

rDGS(beta, rho, W = owin(), expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta intensity parameter (a positive number).
rho interaction range (a non-negative number).
W window (object of class "owin") in which to generate the random pattern.
expand Logical. If FALSE, simulation is performed in the window W, which must be

rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Diggle-Gates-Stibbard point process in the window W
using a ‘perfect simulation’ algorithm.

Diggle, Gates and Stibbard (1987) proposed a pairwise interaction point process in which each pair
of points separated by a distance d contributes a factor e(d) to the probability density, where

e(d) = sin2

(
πd

2ρ

)
for d < ρ, and e(d) is equal to 1 for d ≥ ρ.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.

1326 rDiggleGratton

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, based on original code for the Strauss pro-
cess by Kasper Klitgaard Berthelsen.

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes.
Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference
for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of
Statistics 30, 549-564.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770. Scandinavian Journal of Statistics 21, 359–373.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

See Also

rmh, DiggleGatesStibbard.

rStrauss, rHardcore, rStraussHard, rDiggleGratton, rPenttinen.

Examples

X <- rDGS(50, 0.05)
Z <- rDGS(50, 0.03, nsim=2)

rDiggleGratton Perfect Simulation of the Diggle-Gratton Process

Description

Generate a random pattern of points, a simulated realisation of the Diggle-Gratton process, using a
perfect simulation algorithm.

Usage

rDiggleGratton(beta, delta, rho, kappa=1, W = owin(),
expand=TRUE, nsim=1, drop=TRUE)

rDiggleGratton 1327

Arguments

beta intensity parameter (a positive number).

delta hard core distance (a non-negative number).

rho interaction range (a number greater than delta).

kappa interaction exponent (a non-negative number).

W window (object of class "owin") in which to generate the random pattern. Cur-
rently this must be a rectangular window.

expand Logical. If FALSE, simulation is performed in the window W, which must be
rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Diggle-Gratton point process in the window W using a
‘perfect simulation’ algorithm.

Diggle and Gratton (1984, pages 208-210) introduced the pairwise interaction point process with
pair potential h(t) of the form

h(t) =

(
t− δ
ρ− δ

)κ
if δ ≤ t ≤ ρ

with h(t) = 0 for t < δ and h(t) = 1 for t > ρ. Here δ, ρ and κ are parameters.

Note that we use the symbol κ where Diggle and Gratton (1984) use β, since in spatstat we reserve
the symbol β for an intensity parameter.

The parameters must all be nonnegative, and must satisfy δ ≤ ρ.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

based on original code for the Strauss process by Kasper Klitgaard Berthelsen.

1328 rdpp

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes.
Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference
for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of
Statistics 30, 549-564.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

See Also

rmh, DiggleGratton.

rStrauss, rHardcore, rStraussHard, rDGS, rPenttinen.

Examples

X <- rDiggleGratton(50, 0.02, 0.07)
Z <- rDiggleGratton(50, 0.02, 0.07, 2, nsim=2)

rdpp Simulation of a Determinantal Point Process

Description

Generates simulated realisations from a determinantal point process.

Usage

rdpp(eig, index, basis = "fourierbasis",
window = boxx(rep(list(0:1), ncol(index))),
reject_max = 10000, progress = 0, debug = FALSE, ...)

Arguments

eig vector of values between 0 and 1 specifying the non-zero eigenvalues for the
process.

index data.frame or matrix (or something acceptable to as.matrix) specifying in-
dices of the basis functions.

basis character string giving the name of the basis.

window window (of class "owin", "box3" or "boxx") giving the domain of the point
process.

reject_max integer giving the maximal number of trials for rejection sampling.

reach 1329

progress integer giving the interval for making a progress report. The value zero turns
reporting off.

debug logical value indicating whether debug informationb should be outputted.

... Ignored.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

index <- expand.grid(-2:2,-2:2)
eig <- exp(-rowSums(index^2))
X <- rdpp(eig, index)
X
To simulate a det. projection p. p. with the given indices set eig=1:
XX <- rdpp(1, index)
XX

reach Interaction Distance of a Point Process

Description

Computes the interaction distance of a point process.

Usage

reach(x, ...)

S3 method for class 'ppm'
reach(x, ..., epsilon=0)

S3 method for class 'interact'
reach(x, ...)

S3 method for class 'rmhmodel'
reach(x, ...)

S3 method for class 'fii'
reach(x, ..., epsilon)

1330 reach

Arguments

x Either a fitted point process model (object of class "ppm"), an interpoint interac-
tion (object of class "interact"), a fitted interpoint interaction (object of class
"fii") or a point process model for simulation (object of class "rmhmodel").

epsilon Numerical threshold below which interaction is treated as zero. See details.

... Other arguments are ignored.

Details

The ‘interaction distance’ or ‘interaction range’ of a point process model of class "ppm" is the
smallest distance D such that any two points in the process which are separated by a distance
greater than D do not interact with each other.

For example, the interaction range of a Strauss process (see Strauss) with parameters β, γ, r is
equal to r, unless γ = 1 in which case the model is Poisson and the interaction range is 0. The
interaction range of a Poisson process is zero. The interaction range of the Ord threshold process
(see OrdThresh) is infinite, since two points may interact at any distance apart.

The function reach(x) is generic, with methods for the case where x is

• a fitted point process model (object of class "ppm", usually obtained from the model-fitting
function ppm);

• an interpoint interaction structure (object of class "interact"), created by one of the func-
tions Poisson, Strauss, StraussHard, MultiStrauss, MultiStraussHard, Softcore, DiggleGratton,
Pairwise, PairPiece, Geyer, LennardJones, Saturated, OrdThresh or Ord;

• a fitted interpoint interaction (object of class "fii") extracted from a fitted point process
model by the command fitin;

• a point process model for simulation (object of class "rmhmodel"), usually obtained from
rmhmodel.

When x is an "interact" object, reach(x) returns the maximum possible interaction range for any
point process model with interaction structure given by x. For example, reach(Strauss(0.2))
returns 0.2.

When x is a "ppm" object, reach(x) returns the interaction range for the point process model
represented by x. For example, a fitted Strauss process model with parameters beta,gamma,r will
return either 0 or r, depending on whether the fitted interaction parameter gamma is equal or not
equal to 1.

For some point process models, such as the soft core process (see Softcore), the interaction dis-
tance is infinite, because the interaction terms are positive for all pairs of points. A practical solution
is to compute the distance at which the interaction contribution from a pair of points falls below a
threshold epsilon, on the scale of the log conditional intensity. This is done by setting the argument
epsilon to a positive value.

Value

The interaction distance, or NA if this cannot be computed from the information given.

reach.dppm 1331

Other types of models

Methods for reach are also defined for point process models of class "kppm" and "dppm". Their
technical definition is different from this one. See reach.kppm and reach.dppm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, Poisson, Strauss, StraussHard, MultiStrauss, MultiStraussHard, Softcore, DiggleGratton,
Pairwise, PairPiece, Geyer, LennardJones, Saturated, OrdThresh, Ord, rmhmodel

See reach.kppm and reach.dppm for other types of point process models.

Examples

reach(Poisson())
returns 0

reach(Strauss(r=7))
returns 7
fit <- ppm(swedishpines ~ 1, Strauss(r=7))
reach(fit)
returns 7

reach(OrdThresh(42))
returns Inf

reach(MultiStrauss(matrix(c(1,3,3,1),2,2)))
returns 3

reach.dppm Range of Interaction for a Determinantal Point Process Model

Description

Returns the range of interaction for a determinantal point process model.

Usage

S3 method for class 'dppm'
reach(x, ...)

S3 method for class 'detpointprocfamily'
reach(x, ...)

1332 reach.kppm

Arguments

x Model of class "detpointprocfamily" or "dppm".

... Additional arguments passed to the range function of the given model.

Details

The range of interaction for a determinantal point process model may defined as the smallest number
R such that g(r) = 1 for all r ≥ R, where g is the pair correlation function. For many models the
range is infinite, but one may instead use a value where the pair correlation function is sufficiently
close to 1. For example in the Matérn model this defaults to finding R such that g(R) = 0.99.

Value

Numeric

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

reach(dppMatern(lambda=100, alpha=.01, nu=1, d=2))

reach.kppm Range of Interaction for a Cox or Cluster Point Process Model

Description

Returns the range of interaction for a Cox or cluster point process model.

Usage

S3 method for class 'kppm'
reach(x, ..., epsilon)

Arguments

x Fitted point process model of class "kppm".

epsilon Optional numerical value. Differences smaller than epsilon are treated as zero.

... Additional arguments passed to the range function of the given model.

rectcontact 1333

Details

The range of interaction for a fitted point process model of class "kppm" may defined as the smallest
number R such that g(r) = 1 for all r ≥ R, where g is the pair correlation function.

For many models the range is infinite, but one may instead use a value where the pair correlation
function is sufficiently close to 1. The argument epsilon specifies the tolerance; there is a sensible
default.

Value

Numeric

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

fit <- kppm(redwood ~ 1)
reach(fit)

rectcontact Contact Distribution Function using Rectangular Structuring Element

Description

Computes an estimate of the contact distribution function of a set, using a rectangular structuring
element.

Usage

rectcontact(X, ..., asp = 1, npasses=4,
eps = NULL, r = NULL, breaks = NULL, correction = c("rs", "km"))

Arguments

X Logical-valued image. The TRUE values in the image determine the spatial re-
gion whose contact distribution function should be estimated.

... Ignored.
asp Aspect ratio for the rectangular metric. A single positive number. See rectdistmap

for explanation.
npasses Number of passes to perform in the distance algorithm. A positive integer. See

rectdistmap for explanation.
eps Pixel size, if the image should be converted to a finer grid.
r Optional vector of distance values. Do Not Use This.
breaks Do Not Use This.
correction Character vector specifying the edge correction.

1334 rectdistmap

Details

To be written.

Value

Object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

Hest

Examples

make an image which is TRUE/FALSE inside/outside the letter R
V <- letterR
Frame(V) <- grow.rectangle(Frame(V), 0.5)
Z <- as.im(V, value=TRUE, na.replace=FALSE)
analyse
plot(rectcontact(Z))

rectdistmap Distance Map Using Rectangular Distance Metric

Description

Computes the distance map of a spatial region based on the rectangular distance metric.

Usage

rectdistmap(X, asp = 1, npasses=1, verbose=FALSE)

Arguments

X A window (object of class "owin").

asp Aspect ratio for the metric. See Details.

npasses Experimental.

verbose Logical value indicating whether to print trace information.

Details

This function computes the distance map of the spatial region X using the rectangular distance metric
with aspect ratio asp. This metric is defined so that the set of all points lying at most 1 unit away
from the origin (according to the metric) form a rectangle of width 1 and height asp.

reduced.sample 1335

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

distmap

Examples

V <- letterR
Frame(V) <- grow.rectangle(Frame(V), 0.5)
plot(rectdistmap(V))

reduced.sample Reduced Sample Estimator using Histogram Data

Description

Compute the Reduced Sample estimator of a survival time distribution function, from histogram
data

Usage

reduced.sample(nco, cen, ncc, show=FALSE, uppercen=0)

Arguments

nco vector of counts giving the histogram of uncensored observations (those survival
times that are less than or equal to the censoring time)

cen vector of counts giving the histogram of censoring times

ncc vector of counts giving the histogram of censoring times for the uncensored
observations only

uppercen number of censoring times greater than the rightmost histogram breakpoint (if
there are any)

show Logical value controlling the amount of detail returned by the function value
(see below)

1336 reduced.sample

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications
where you want to form the reduced sample estimator from a huge dataset.

Suppose Ti are the survival times of individuals i = 1, . . . ,M with unknown distribution function
F (t) which we wish to estimate. Suppose these times are right-censored by random censoring
times Ci. Thus the observations consist of right-censored survival times T̃i = min(Ti, Ci) and
non-censoring indicators Di = 1{Ti ≤ Ci} for each i.

If the number of observations M is large, it is efficient to use histograms. Form the histogram
cen of all censoring times Ci. That is, obs[k] counts the number of values Ci in the interval
(breaks[k],breaks[k+1]] for k > 1 and [breaks[1],breaks[2]] for k = 1. Also form the
histogram nco of all uncensored times, i.e. those T̃i such that Di = 1, and the histogram of all
censoring times for which the survival time is uncensored, i.e. those Ci such that Di = 1. These
three histograms are the arguments passed to kaplan.meier.

The return value rs is the reduced-sample estimator of the distribution function F (t). Specifically,
rs[k] is the reduced sample estimate of F(breaks[k+1]). The value is exact, i.e. the use of
histograms does not introduce any approximation error.

Note that, for the results to be valid, either the histogram breaks must span the censoring times,
or the number of censoring times that do not fall in a histogram cell must have been counted in
uppercen.

Value

If show = FALSE, a numeric vector giving the values of the reduced sample estimator. If show=TRUE,
a list with three components which are vectors of equal length,

rs Reduced sample estimate of the survival time c.d.f. F (t)

numerator numerator of the reduced sample estimator

denominator denominator of the reduced sample estimator

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

kaplan.meier, km.rs

reflect 1337

reflect Reflect In Origin

Description

Reflects a geometrical object through the origin.

Usage

reflect(X)

S3 method for class 'im'
reflect(X)

Default S3 method:
reflect(X)

Arguments

X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), or a window (object of class "owin").

Details

The object X is reflected through the origin. That is, each point in X with coordinates (x, y) is
mapped to the position (−x,−y).

This is equivalent to applying the affine transformation with matrix diag(c(-1,-1)). It is also
equivalent to rotation about the origin by 180 degrees.

The command reflect is generic, with a method for pixel images and a default method.

Value

Another object of the same type, representing the result of reflection.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine, flipxy

Examples

plot(reflect(as.im(letterR)))
plot(reflect(letterR), add=TRUE)

1338 regularpolygon

regularpolygon Create A Regular Polygon

Description

Create a window object representing a regular (equal-sided) polygon.

Usage

regularpolygon(n, edge = 1, centre = c(0, 0), ...,
align = c("bottom", "top", "left", "right", "no"))

hexagon(edge = 1, centre = c(0,0), ...,
align = c("bottom", "top", "left", "right", "no"))

Arguments

n Number of edges in the polygon.
edge Length of each edge in the polygon. A single positive number.
centre Coordinates of the centre of the polygon. A numeric vector of length 2, or a

list(x,y) giving the coordinates of exactly one point, or a point pattern (object
of class "ppp") containing exactly one point.

align Character string specifying whether to align one of the edges with a vertical or
horizontal boundary.

... Ignored.

Details

The function regularpolygon creates a regular (equal-sided) polygon with n sides, centred at
centre, with sides of equal length edge. The function hexagon is the special case n=6.

The orientation of the polygon is determined by the argument align. If align="no", one vertex of
the polygon is placed on the x-axis. Otherwise, an edge of the polygon is aligned with one side of
the frame, specified by the value of align.

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

disc, ellipse, owin.

hextess for hexagonal tessellations.

relevel.im 1339

Examples

plot(hexagon())
plot(regularpolygon(7))
plot(regularpolygon(7, align="left"))

relevel.im Reorder Levels of a Factor-Valued Image or Pattern

Description

For a pixel image with factor values, or a point pattern with factor-valued marks, the levels of the
factor are re-ordered so that the level ref is first and the others are moved down.

Usage

S3 method for class 'im'
relevel(x, ref, ...)

S3 method for class 'ppp'
relevel(x, ref, ...)

S3 method for class 'ppx'
relevel(x, ref, ...)

Arguments

x A pixel image (object of class "im") with factor values, or a point pattern (object
of class "ppp", "ppx", "lpp" or "pp3") with factor-valued marks.

ref The reference level.

... Ignored.

Details

These functions are methods for the generic relevel.

If x is a pixel image (object of class "im") with factor values, or a point pattern (object of class
"ppp", "ppx", "lpp" or "pp3") with factor-valued marks, the levels of the factor are changed so
that the level specified by ref comes first.

Value

Object of the same kind as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

1340 reload.or.compute

See Also

mergeLevels

Examples

amacrine
relevel(amacrine, "on")

reload.or.compute Compute Unless Previously Saved

Description

If the designated file does not yet exist, evaluate the expression and save the results in the file. If
the file already exists, re-load the results from the file.

Usage

reload.or.compute(filename, expr, objects = NULL,
destination = parent.frame(), force=FALSE)

Arguments

filename Name of data file. A character string.
expr R language expression to be evaluated.
objects Optional character vector of names of objects to be saved in filename after

evaluating expr, or names of objects that should be present in filename when
loaded.

destination Environment in which the resulting objects should be assigned.
force Logical value indicating whether to perform the computation in any case.

Details

This facility is useful for saving, and later re-loading, the results of time-consuming computations.
It would typically be used in an R script file or an Sweave document.

If the file called filename does not yet exist, then expr will be evaluated and the results will be
saved in filename. The optional argument objects specifies which results should be saved to the
file: the default is to save all objects that were created by evaluating the expression.

If the file called filename already exists, then it will be loaded. The optional argument objects
specifies the names of objects that should be present in the file; a warning is issued if any of them
are missing.

The resulting objects can be assigned into any desired destination. The default behaviour is
equivalent to evaluating expr in the current environment.

If force=TRUE then expr will be evaluated (regardless of whether the file already exists or not)
and the results will be saved in filename, overwriting any previously-existing file with that name.
This is a convenient way to force the code to re-compute everything in an R script file or Sweave
document.

relrisk 1341

Value

Character vector (invisible) giving the names of the objects computed or loaded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

Not run:
if(FALSE) {
reload.or.compute("mydata.rda", {

x <- very.long.computation()
y <- 42

})
}

End(Not run)

relrisk Estimate of Spatially-Varying Relative Risk

Description

Generic command to estimate the spatially-varying probability of each type of point, or the ratios
of such probabilities.

Usage

relrisk(X, ...)

Arguments

X Either a point pattern (class "ppp") or a fitted point process model (class "ppm")
from which the probabilities will be estimated.

... Additional arguments appropriate to the method.

Details

In a point pattern containing several different types of points, we may be interested in the spatially-
varying probability of each possible type, or the relative risks which are the ratios of such probabil-
ities.

The command relrisk is generic and can be used to estimate relative risk in different ways.

The function relrisk.ppp is the method for point pattern datasets. It computes nonparametric
estimates of relative risk by kernel smoothing.

The function relrisk.ppm is the method for fitted point process models (class "ppm"). It computes
parametric estimates of relative risk, using the fitted model.

1342 relrisk.lpp

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

relrisk.ppp, relrisk.ppm.

relrisk.lpp Nonparametric Estimate of Spatially-Varying Relative Risk on a Net-
work

Description

Given a multitype point pattern on a linear network, this function estimates the spatially-varying
probability of each type of point, or the ratios of such probabilities, using kernel smoothing.

Usage

S3 method for class 'lpp'
relrisk(X, sigma, ...,

at = c("pixels", "points"),
relative=FALSE,
adjust=1,
casecontrol=TRUE, control=1, case,
finespacing=FALSE)

Arguments

X A multitype point pattern (object of class "lpp" which has factor valued marks).

sigma The numeric value of the smoothing bandwidth (the standard deviation of Gaus-
sian smoothing kernel) passed to density.lpp. Alternatively sigma may be a
function which can be used to select the bandwidth. See Details.

... Arguments passed to density.lpp to control the pixel resolution.

at Character string specifying whether to compute the probability values at a grid
of pixel locations (at="pixels") or only at the points of X (at="points").

relative Logical. If FALSE (the default) the algorithm computes the probabilities of each
type of point. If TRUE, it computes the relative risk, the ratio of probabilities of
each type relative to the probability of a control.

adjust Optional. Adjustment factor for the bandwidth sigma.

casecontrol Logical. Whether to treat a bivariate point pattern as consisting of cases and
controls, and return only the probability or relative risk of a case. Ignored if
there are more than 2 types of points. See Details.

relrisk.lpp 1343

control Integer, or character string, identifying which mark value corresponds to a con-
trol.

case Integer, or character string, identifying which mark value corresponds to a case
(rather than a control) in a bivariate point pattern. This is an alternative to the
argument control in a bivariate point pattern. Ignored if there are more than 2
types of points.

finespacing Logical value specifying whether to use a finer spatial resolution (with longer
computation time but higher accuracy).

Details

The command relrisk is generic and can be used to estimate relative risk in different ways.

This function relrisk.lpp is the method for point patterns on a linear network (objects of class
"lpp"). It computes nonparametric estimates of relative risk by kernel smoothing.

If X is a bivariate point pattern (a multitype point pattern consisting of two types of points) then by
default, the points of the first type (the first level of marks(X)) are treated as controls or non-events,
and points of the second type are treated as cases or events. Then by default this command computes
the spatially-varying probability of a case, i.e. the probability p(u) that a point at location u on the
network will be a case. If relative=TRUE, it computes the spatially-varying relative risk of a case
relative to a control, r(u) = p(u)/(1− p(u)).

If X is a multitype point pattern withm > 2 types, or if X is a bivariate point pattern and casecontrol=FALSE,
then by default this command computes, for each type j, a nonparametric estimate of the spatially-
varying probability of an event of type j. This is the probability pj(u) that a point at location u on
the network will belong to type j. If relative=TRUE, the command computes the relative risk of
an event of type j relative to a control, rj(u) = pj(u)/pk(u), where events of type k are treated as
controls. The argument control determines which type k is treated as a control.

If at = "pixels" the calculation is performed for every location u on a fine pixel grid over the
network, and the result is a pixel image on the network representing the function p(u), or a list
of pixel images representing the functions pj(u) or rj(u) for j = 1, . . . ,m. An infinite value of
relative risk (arising because the probability of a control is zero) will be returned as NA.

If at = "points" the calculation is performed only at the data points xi. By default the result is
a vector of values p(xi) giving the estimated probability of a case at each data point, or a matrix
of values pj(xi) giving the estimated probability of each possible type j at each data point. If
relative=TRUE then the relative risks r(xi) or rj(xi) are returned. An infinite value of relative risk
(arising because the probability of a control is zero) will be returned as Inf.

Estimation is performed by a Nadaraja-Watson type kernel smoother (McSwiggan et al., 2019).

The smoothing bandwidth sigma should be a single numeric value, giving the standard deviation of
the isotropic Gaussian kernel. If adjust is given, the smoothing bandwidth will be adjust * sigma
before the computation of relative risk.

Alternatively, sigma may be a function that can be applied to the point pattern X to select a band-
width; the function must return a single numerical value; examples include the functions bw.relrisklpp
and bw.scott.iso.

Accuracy depends on the spatial resolution of the density computations. If the arguments dx and
dt are present, they are passed to density.lpp to determine the spatial resolution. Otherwise,
the spatial resolution is determined by a default rule that depends on finespacing and sigma. If

1344 relrisk.lpp

finespacing=FALSE (the default), the spatial resolution is equal to the default resolution for pixel
images. If finespacing=TRUE, the spatial resolution is much finer and is determined by a rule
which guarantees higher accuracy, but takes a longer time.

Value

If X consists of only two types of points, and if casecontrol=TRUE, the result is a pixel image on
the network (if at="pixels") or a vector (if at="points"). The pixel values or vector values are
the probabilities of a case if relative=FALSE, or the relative risk of a case (probability of a case
divided by the probability of a control) if relative=TRUE.

If X consists of more than two types of points, or if casecontrol=FALSE, the result is:

• (if at="pixels") a list of pixel images on the network, with one image for each possible type
of point. The result also belongs to the class "solist" so that it can be printed and plotted.

• (if at="points") a matrix of probabilities, with rows corresponding to data points xi, and
columns corresponding to types j.

The pixel values or matrix entries are the probabilities of each type of point if relative=FALSE,
or the relative risk of each type (probability of each type divided by the probability of a control) if
relative=TRUE.

If relative=FALSE, the resulting values always lie between 0 and 1. If relative=TRUE, the results
are either non-negative numbers, or the values Inf or NA.

Author(s)

Greg McSwiggan and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

McSwiggan, G., Baddeley, A. and Nair, G. (2019) Estimation of relative risk for events on a linear
network. Statistics and Computing 30 (2) 469–484.

See Also

relrisk

Examples

case-control data: 2 types of points
set.seed(2020)
X <- superimpose(A=runiflpp(20, simplenet),

B=runifpointOnLines(20, as.psp(simplenet)[1]))
plot(X)
plot(relrisk(X, 0.2))
plot(relrisk(X, 0.2, case="B"))
head(relrisk(X, 0.2, at="points"))
cross-validated bandwidth selection
plot(relrisk(X, bw.relrisklpp, hmax=0.3))

more than 2 types

relrisk.ppm 1345

if(interactive()) {
U <- chicago
sig <- 170

} else {
U <- do.call(superimpose,

split(chicago)[c("theft", "cartheft", "burglary")])
sig <- 50

}
plot(relrisk(U, sig))
head(relrisk(U, sig, at="points"))
plot(relrisk(U, sig, relative=TRUE, control="theft"))

relrisk.ppm Parametric Estimate of Spatially-Varying Relative Risk

Description

Given a point process model fitted to a multitype point pattern, this function computes the fitted
spatially-varying probability of each type of point, or the ratios of such probabilities, according to
the fitted model. Optionally the standard errors of the estimates are also computed.

Usage

S3 method for class 'ppm'
relrisk(X, ...,

at = c("pixels", "points"),
relative = FALSE, se = FALSE,
casecontrol = TRUE, control = 1, case,
ngrid = NULL, window = NULL)

Arguments

X A fitted point process model (object of class "ppm").

... Ignored.

at String specifying whether to compute the probability values at a grid of pixel
locations (at="pixels") or only at the points of X (at="points").

relative Logical. If FALSE (the default) the algorithm computes the probabilities of each
type of point. If TRUE, it computes the relative risk, the ratio of probabilities of
each type relative to the probability of a control.

se Logical value indicating whether to compute standard errors as well.

casecontrol Logical. Whether to treat a bivariate point pattern as consisting of cases and
controls, and return only the probability or relative risk of a case. Ignored if
there are more than 2 types of points. See Details.

control Integer, or character string, identifying which mark value corresponds to a con-
trol.

1346 relrisk.ppm

case Integer, or character string, identifying which mark value corresponds to a case
(rather than a control) in a bivariate point pattern. This is an alternative to the
argument control in a bivariate point pattern. Ignored if there are more than 2
types of points.

ngrid Optional. Dimensions of a rectangular grid of locations inside window where
the predictions should be computed. An integer, or an integer vector of length
2, specifying the number of grid points in the y and x directions. (Applies only
when at="pixels".)

window Optional. A window (object of class "owin") delimiting the locations where
predictions should be computed. Defaults to the window of the original data
used to fit the model object. (Applies only when at="pixels".)

Details

The command relrisk is generic and can be used to estimate relative risk in different ways.

This function relrisk.ppm is the method for fitted point process models (class "ppm"). It computes
parametric estimates of relative risk, using the fitted model.

If X is a bivariate point pattern (a multitype point pattern consisting of two types of points) then by
default, the points of the first type (the first level of marks(X)) are treated as controls or non-events,
and points of the second type are treated as cases or events. Then by default this command computes
the spatially-varying probability of a case, i.e. the probability p(u) that a point at spatial location u
will be a case. If relative=TRUE, it computes the spatially-varying relative risk of a case relative
to a control, r(u) = p(u)/(1− p(u)).

If X is a multitype point pattern withm > 2 types, or if X is a bivariate point pattern and casecontrol=FALSE,
then by default this command computes, for each type j, a nonparametric estimate of the spatially-
varying probability of an event of type j. This is the probability pj(u) that a point at spatial location
u will belong to type j. If relative=TRUE, the command computes the relative risk of an event of
type j relative to a control, rj(u) = pj(u)/pk(u), where events of type k are treated as controls.
The argument control determines which type k is treated as a control.

If at = "pixels" the calculation is performed for every spatial location u on a fine pixel grid, and
the result is a pixel image representing the function p(u) or a list of pixel images representing the
functions pj(u) or rj(u) for j = 1, . . . ,m. An infinite value of relative risk (arising because the
probability of a control is zero) will be returned as NA.

If at = "points" the calculation is performed only at the data points xi. By default the result is
a vector of values p(xi) giving the estimated probability of a case at each data point, or a matrix
of values pj(xi) giving the estimated probability of each possible type j at each data point. If
relative=TRUE then the relative risks r(xi) or rj(xi) are returned. An infinite value of relative risk
(arising because the probability of a control is zero) will be returned as Inf.

Probabilities and risks are computed from the fitted intensity of the model, using predict.ppm. If
se=TRUE then standard errors will also be computed, based on asymptotic theory, using vcov.ppm.

Value

If se=FALSE (the default), the format is described below. If se=TRUE, the result is a list of two
entries, estimate and SE, each having the format described below.

relrisk.ppp 1347

If X consists of only two types of points, and if casecontrol=TRUE, the result is a pixel image (if
at="pixels") or a vector (if at="points"). The pixel values or vector values are the probabilities
of a case if relative=FALSE, or the relative risk of a case (probability of a case divided by the
probability of a control) if relative=TRUE.

If X consists of more than two types of points, or if casecontrol=FALSE, the result is:

• (if at="pixels") a list of pixel images, with one image for each possible type of point. The
result also belongs to the class "solist" so that it can be printed and plotted.

• (if at="points") a matrix of probabilities, with rows corresponding to data points xi, and
columns corresponding to types j.

The pixel values or matrix entries are the probabilities of each type of point if relative=FALSE,
or the relative risk of each type (probability of each type divided by the probability of a control) if
relative=TRUE.

If relative=FALSE, the resulting values always lie between 0 and 1. If relative=TRUE, the results
are either non-negative numbers, or the values Inf or NA.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

There is another method relrisk.ppp for point pattern datasets which computes nonparametric
estimates of relative risk by kernel smoothing.

See also relrisk, relrisk.ppp, ppm

Examples

fit <- ppm(chorley ~ marks * (x+y))
rr <- relrisk(fit, relative=TRUE, control="lung", se=TRUE)
plot(rr$estimate)
plot(rr$SE)
rrX <- relrisk(fit, at="points", relative=TRUE, control="lung")

relrisk.ppp Nonparametric Estimate of Spatially-Varying Relative Risk

Description

Given a multitype point pattern, this function estimates the spatially-varying probability of each
type of point, or the ratios of such probabilities, using kernel smoothing. The default smoothing
bandwidth is selected by cross-validation.

1348 relrisk.ppp

Usage

S3 method for class 'ppp'
relrisk(X, sigma = NULL, ...,

at = c("pixels", "points"),
weights = NULL, varcov = NULL,
relative=FALSE,
adjust=1, edge=TRUE, diggle=FALSE, se=FALSE,
casecontrol=TRUE, control=1, case)

Arguments

X A multitype point pattern (object of class "ppp" which has factor valued marks).

sigma Optional. The numeric value of the smoothing bandwidth (the standard devi-
ation of isotropic Gaussian smoothing kernel). Alternatively sigma may be a
function which can be used to select a different bandwidth for each type of
point. See Details.

... Arguments passed to bw.relrisk to select the bandwidth, or passed to density.ppp
to control the pixel resolution.

at Character string specifying whether to compute the probability values at a grid
of pixel locations (at="pixels") or only at the points of X (at="points").

weights Optional. Weights for the data points of X. A numeric vector, an expression,
or a pixel image.

varcov Optional. Variance-covariance matrix of anisotopic Gaussian smoothing kernel.
Incompatible with sigma.

relative Logical. If FALSE (the default) the algorithm computes the probabilities of each
type of point. If TRUE, it computes the relative risk, the ratio of probabilities of
each type relative to the probability of a control.

adjust Optional. Adjustment factor for the bandwidth sigma.

edge Logical value indicating whether to apply edge correction.

diggle Logical. If TRUE, use the Jones-Diggle improved edge correction, which is more
accurate but slower to compute than the default correction.

se Logical value indicating whether to compute standard errors as well.

casecontrol Logical. Whether to treat a bivariate point pattern as consisting of cases and
controls, and return only the probability or relative risk of a case. Ignored if
there are more than 2 types of points. See Details.

control Integer, or character string, identifying which mark value corresponds to a con-
trol.

case Integer, or character string, identifying which mark value corresponds to a case
(rather than a control) in a bivariate point pattern. This is an alternative to the
argument control in a bivariate point pattern. Ignored if there are more than 2
types of points.

relrisk.ppp 1349

Details

The command relrisk is generic and can be used to estimate relative risk in different ways.

This function relrisk.ppp is the method for point pattern datasets. It computes nonparametric
estimates of relative risk by kernel smoothing.

If X is a bivariate point pattern (a multitype point pattern consisting of two types of points) then by
default, the points of the first type (the first level of marks(X)) are treated as controls or non-events,
and points of the second type are treated as cases or events. Then by default this command computes
the spatially-varying probability of a case, i.e. the probability p(u) that a point at spatial location u
will be a case. If relative=TRUE, it computes the spatially-varying relative risk of a case relative
to a control, r(u) = p(u)/(1− p(u)).

If X is a multitype point pattern withm > 2 types, or if X is a bivariate point pattern and casecontrol=FALSE,
then by default this command computes, for each type j, a nonparametric estimate of the spatially-
varying probability of an event of type j. This is the probability pj(u) that a point at spatial location
u will belong to type j. If relative=TRUE, the command computes the relative risk of an event of
type j relative to a control, rj(u) = pj(u)/pk(u), where events of type k are treated as controls.
The argument control determines which type k is treated as a control.

If at = "pixels" the calculation is performed for every spatial location u on a fine pixel grid, and
the result is a pixel image representing the function p(u) or a list of pixel images representing the
functions pj(u) or rj(u) for j = 1, . . . ,m. An infinite value of relative risk (arising because the
probability of a control is zero) will be returned as NA.

If at = "points" the calculation is performed only at the data points xi. By default the result is
a vector of values p(xi) giving the estimated probability of a case at each data point, or a matrix
of values pj(xi) giving the estimated probability of each possible type j at each data point. If
relative=TRUE then the relative risks r(xi) or rj(xi) are returned. An infinite value of relative risk
(arising because the probability of a control is zero) will be returned as Inf.

Estimation is performed by a simple Nadaraja-Watson type kernel smoother (Diggle, 2003). The
smoothing bandwidth can be specified in any of the following ways:

• sigma is a single numeric value, giving the standard deviation of the isotropic Gaussian kernel.

• sigma is a numeric vector of length 2, giving the standard deviations in the x and y directions
of a Gaussian kernel.

• varcov is a 2 by 2 matrix giving the variance-covariance matrix of the Gaussian kernel.

• sigma is a function which selects the bandwidth. Bandwidth selection will be applied sepa-
rately to each type of point. An example of such a function is bw.diggle.

• sigma and varcov are both missing or null. Then a common smoothing bandwidth sigma
will be selected by cross-validation using bw.relrisk.

• An infinite smoothing bandwidth, sigma=Inf, is permitted and yields a constant estimate of
relative risk.

If se=TRUE then standard errors will also be computed, based on asymptotic theory, assuming a
Poisson process.

The optional argument weights may provide numerical weights for the points of X. It should be a
numeric vector of length equal to npoints(X).

1350 relrisk.ppp

The argument weights can also be an expression. It will be evaluated in the data frame as.data.frame(X)
to obtain a vector of weights. The expression may involve the symbols x and y representing the
Cartesian coordinates, and the symbol marks representing the mark values.

The argument weights can also be a pixel image (object of class "im"). numerical weights for the
data points will be extracted from this image (by looking up the pixel values at the locations of the
data points in X).

Value

If se=FALSE (the default), the format is described below. If se=TRUE, the result is a list of two
entries, estimate and SE, each having the format described below.

If X consists of only two types of points, and if casecontrol=TRUE, the result is a pixel image (if
at="pixels") or a vector (if at="points"). The pixel values or vector values are the probabilities
of a case if relative=FALSE, or the relative risk of a case (probability of a case divided by the
probability of a control) if relative=TRUE.

If X consists of more than two types of points, or if casecontrol=FALSE, the result is:

• (if at="pixels") a list of pixel images, with one image for each possible type of point. The
result also belongs to the class "solist" so that it can be printed and plotted.

• (if at="points") a matrix of probabilities, with rows corresponding to data points xi, and
columns corresponding to types j.

The pixel values or matrix entries are the probabilities of each type of point if relative=FALSE,
or the relative risk of each type (probability of each type divided by the probability of a control) if
relative=TRUE.

If relative=FALSE, the resulting values always lie between 0 and 1. If relative=TRUE, the results
are either non-negative numbers, or the values Inf or NA.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

See Also

There is another method relrisk.ppm for point process models which computes parametric esti-
mates of relative risk, using the fitted model.

See also bw.relrisk, density.ppp, Smooth.ppp, eval.im

Examples

p.oak <- relrisk(urkiola, 20)
if(interactive()) {

plot(p.oak, main="proportion of oak")
plot(eval.im(p.oak > 0.3), main="More than 30 percent oak")
plot(split(lansing), main="Lansing Woods")

repairNetwork 1351

p.lan <- relrisk(lansing, 0.05, se=TRUE)
plot(p.lan$estimate, main="Lansing Woods species probability")
plot(p.lan$SE, main="Lansing Woods standard error")
wh <- im.apply(p.lan$estimate, which.max)
types <- levels(marks(lansing))
wh <- eval.im(types[wh])
plot(wh, main="Most common species")

}

repairNetwork Repair Internal Data in a Linear Network

Description

Detect and repair inconsistencies or duplication in the internal data of a network object.

Usage

repairNetwork(X)

Arguments

X A linear network (object of class "linnet") or a point pattern on a linear net-
work (object of class "lpp").

Details

This function detects and repairs inconsistencies in the internal data of X. Currently it does the
following:

• checks that different ways of calculating the number of edges give the same answer

• removes any duplicated edges of the network

• ensures that each edge is recorded as a pair of vertex indices (from,to) with from < to.

Value

An object of the same kind as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

thinNetwork

1352 Replace.im

Replace.im Reset Values in Subset of Image

Description

Reset the values in a subset of a pixel image.

Usage

S3 replacement method for class 'im'
x[i, j, ..., drop=TRUE] <- value

Arguments

x A two-dimensional pixel image. An object of class "im".

i Object defining the subregion or subset to be replaced. Either a spatial window
(an object of class "owin"), or a pixel image with logical values, or a point
pattern (an object of class "ppp"), or any type of index that applies to a matrix, or
something that can be converted to a point pattern by as.ppp (using the window
of x).

j An integer or logical vector serving as the column index if matrix indexing is
being used. Ignored if i is appropriate to some sort of replacement other than
matrix indexing.

... Ignored.

drop Logical value specifying what happens when i and j are both missing. See
Details.

value Vector, matrix, factor or pixel image containing the replacement values. Short
vectors will be recycled.

Details

This function changes some of the pixel values in a pixel image. The image x must be an object
of class "im" representing a pixel image defined inside a rectangle in two-dimensional space (see
im.object).

The subset to be changed is determined by the arguments i,j according to the following rules
(which are checked in this order):

1. i is a spatial object such as a window, a pixel image with logical values, or a point pattern; or

2. i,j are indices for the matrix as.matrix(x); or

3. i can be converted to a point pattern by as.ppp(i,W=Window(x)), and i is not a matrix.

If i is a spatial window (an object of class "owin"), the values of the image inside this window are
changed.

If i is a point pattern (an object of class "ppp"), then the values of the pixel image at the points of
this pattern are changed.

Replace.im 1353

If i does not satisfy any of the conditions above, then the algorithm tries to interpret i,j as indices
for the matrix as.matrix(x). Either i or j may be missing or blank.

If none of the conditions above are met, and if i is not a matrix, then i is converted into a point
pattern by as.ppp(i,W=Window(x)). Again the values of the pixel image at the points of this
pattern are changed.

If i and j are both missing, as in the call x[] <-value, then all pixel values in x are replaced by
value:

• If drop=TRUE (the default), then this replacement applies only to pixels whose values are
currently defined (i.e. where the current pixel value is not NA). If value is a vector, then its
length must equal the number of pixels whose values are currently defined.

• If drop=FALSE then the replacement applies to all pixels inside the rectangle Frame(x). If
value is a vector, then its length must equal the number of pixels in the entire rectangle.

Value

The image x with the values replaced.

Warning

If you have a 2-column matrix containing the x, y coordinates of point locations, then to prevent
this being interpreted as an array index, you should convert it to a data.frame or to a point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

im.object, [.im, [, ppp.object, as.ppp, owin.object

Examples

make up an image
X <- setcov(unit.square())
plot(X)

a rectangular subset
W <- owin(c(0,0.5),c(0.2,0.8))
X[W] <- 2
plot(X)

a polygonal subset
data(letterR)
R <- affine(letterR, diag(c(1,1)/2), c(-2,-0.7))
X[R] <- 3
plot(X)

a point pattern

1354 Replace.linim

P <- rpoispp(20)
X[P] <- 10
plot(X)

change pixel value at a specific location
X[list(x=0.1,y=0.2)] <- 7

matrix indexing --- single vector index
X[1:2570] <- 10
plot(X)

matrix indexing using double indices
X[1:257,1:10] <- 5
plot(X)

matrix indexing using a matrix of indices
X[cbind(1:257,1:257)] <- 10
X[cbind(257:1,1:257)] <- 10
plot(X)

Blank indices
Y <- as.im(letterR)
plot(Y)
Y[] <- 42 # replace values only inside the window 'R'
plot(Y)
Y[drop=FALSE] <- 7 # replace all values in the rectangle
plot(Y)

Z <- as.im(letterR)
Z[] <- raster.x(Z, drop=TRUE) # excludes NA
plot(Z)
Z[drop=FALSE] <- raster.y(Z, drop=FALSE) # includes NA
plot(Z)

Replace.linim Reset Values in Subset of Image on Linear Network

Description

Reset the values in a subset of a pixel image on a linear network.

Usage

S3 replacement method for class 'linim'
x[i, j] <- value

Arguments

x A pixel image on a linear network. An object of class "linim".

Replace.linim 1355

i Object defining the subregion or subset to be replaced. Either a spatial window
(an object of class "owin"), or a pixel image with logical values, or a point
pattern (an object of class "ppp"), or any type of index that applies to a matrix, or
something that can be converted to a point pattern by as.ppp (using the window
of x).

j An integer or logical vector serving as the column index if matrix indexing is
being used. Ignored if i is appropriate to some sort of replacement other than
matrix indexing.

value Vector, matrix, factor or pixel image containing the replacement values. Short
vectors will be recycled.

Details

This function changes some of the pixel values in a pixel image. The image x must be an object of
class "linim" representing a pixel image on a linear network.

The pixel values are replaced according to the rules described in the help for [<-.im. Then the
auxiliary data are updated.

Value

The image x with the values replaced.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

[<-.im.

Examples

make a function
Y <- as.linim(distfun(runiflpp(5, simplenet)))
replace some values
B <- square(c(0.25, 0.55))
Y[B] <- 2
plot(Y, main="")
plot(B, add=TRUE, lty=3)
X <- runiflpp(4, simplenet)
Y[X] <- 5

1356 repul.dppm

repul.dppm Repulsiveness Index of a Determinantal Point Process Model

Description

Computes a measure of the degree of repulsion between points in a determinantal point process
model.

Usage

repul(model, ...)

S3 method for class 'dppm'
repul(model, ...)

Arguments

model A fitted point process model of determinantal type (object of class "dppm").

... Ignored.

Details

The repulsiveness index µ of a determinantal point process model was defined by Lavancier, Møller
and Rubak (2015) as

µ = λ

∫
(1− g(x)) dx

where λ is the intensity of the model and g(x) is the pair correlation function, and the integral is
taken over all two-dimensional vectors x.

Values of µ are dimensionless. Larger values of µ indicate stronger repulsion between points.

If the model is stationary, the result is a single number.

If the model is not stationary, the result is a pixel image (obtained by multiplying the spatially-
varying intensity by the integral defined above).

Value

A numeric value or a pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Lavancier, F., Møller, J. and Rubak, E. (2015), Determinantal point process models and statistical
inference. Journal of Royal Statistical Society: Series B (Statistical Methodology), 77, 853–877.

requireversion 1357

See Also

dppm

Examples

jpines <- residualspaper$Fig1

fit <- dppm(jpines ~ 1, dppGauss)
repul(fit)

requireversion Require a Specific Version of a Package

Description

Checks that the version number of a specified package is greater than or equal to the specified
version number. For use in stand-alone R scripts.

Usage

requireversion(pkg, ver, fatal=TRUE)

Arguments

pkg Package name.

ver Character string containing version number.

fatal Logical value indicating whether an error should occur when the package ver-
sion is less than ver.

Details

This function checks whether the installed version of the package pkg is greater than or equal to
ver. By default, an error occurs if this condition is not met.

It is useful in stand-alone R scripts, which often require a particular version of a package in order
to work correctly.

This function should not be used inside a package: for that purpose, the dependence on packages
and versions should be specified in the package description file.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

1358 rescale

Examples

requireversion(spatstat, "1.42-0")
requireversion(spatstat, "999.999-999", fatal=FALSE)

rescale Convert dataset to another unit of length

Description

Converts between different units of length in a spatial dataset, such as a point pattern or a window.

Usage

rescale(X, s, unitname)

Arguments

X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), or a window (object of class "owin").

s Conversion factor: the new units are s times the old units.

unitname Optional. New name for the unit of length. See unitname.

Details

This is generic. Methods are provided for many spatial objects.

The spatial coordinates in the dataset X will be re-expressed in terms of a new unit of length that is
s times the current unit of length given in X. The name of the unit of length will also be adjusted.
The result is an object of the same type, representing the same data, but expressed in the new units.

For example if X is a dataset giving coordinates in metres, then rescale(X,1000) will take the new
unit of length to be 1000 metres. To do this, it will divide the old coordinate values by 1000 to obtain
coordinates expressed in kilometres, and change the name of the unit of length from "metres" to
"1000 metres".

If unitname is given, it will be taken as the new name of the unit of length. It should be a valid
name for the unit of length, as described in the help for unitname. For example if X is a dataset
giving coordinates in metres, rescale(X,1000,"km") will divide the coordinate values by 1000 to
obtain coordinates in kilometres, and the unit name will be changed to "km".

Value

Another object of the same type, representing the same data, but expressed in the new units.

Note

The result of this operation is equivalent to the original dataset. If you want to actually change the
coordinates by a linear transformation, producing a dataset that is not equivalent to the original one,
use affine.

rescale.im 1359

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Available methods: rescale.im, rescale.layered, rescale.linnet, rescale.lpp, rescale.owin,
rescale.ppp, rescale.psp and rescale.unitname.

Other generics: unitname, affine, rotate, shift.

rescale.im Convert Pixel Image to Another Unit of Length

Description

Converts a pixel image to another unit of length.

Usage

S3 method for class 'im'
rescale(X, s, unitname)

Arguments

X Pixel image (object of class "im").

s Conversion factor: the new units are s times the old units.

unitname Optional. New name for the unit of length. See unitname.

Details

This is a method for the generic function rescale.

The spatial coordinates of the pixels in X will be re-expressed in terms of a new unit of length that
is s times the current unit of length given in X. (Thus, the coordinate values are divided by s, while
the unit value is multiplied by s).

If s is missing, then the coordinates will be re-expressed in ‘native’ units; for example if the current
unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.

The result is a pixel image representing the same data but re-expressed in a different unit.

Pixel values are unchanged. This may not be what you intended!

Value

Another pixel image (of class "im"), containing the same pixel values, but with pixel coordinates
expressed in the new units.

1360 rescale.owin

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

im, rescale, unitname, eval.im

Examples

Bramble Canes data: 1 unit = 9 metres
data(bramblecanes)

distance transform
Z <- distmap(bramblecanes)

convert to metres
first alter the pixel values

Zm <- eval.im(9 * Z)
now rescale the pixel coordinates

Z <- rescale(Zm, 1/9)
or equivalently

Z <- rescale(Zm)

rescale.owin Convert Window to Another Unit of Length

Description

Converts a window to another unit of length.

Usage

S3 method for class 'owin'
rescale(X, s, unitname)

Arguments

X Window (object of class "owin").

s Conversion factor: the new units are s times the old units.

unitname Optional. New name for the unit of length. See unitname.

Details

This is a method for the generic function rescale.

The spatial coordinates in the window X (and its window) will be re-expressed in terms of a new
unit of length that is s times the current unit of length given in X. (Thus, the coordinate values are
divided by s, while the unit value is multiplied by s).

The result is a window representing the same region of space, but re-expressed in a different unit.

rescale.ppp 1361

If s is missing, then the coordinates will be re-expressed in ‘native’ units; for example if the current
unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.

Value

Another window object (of class "owin") representing the same window, but expressed in the new
units.

Note

The result of this operation is equivalent to the original window. If you want to actually change
the coordinates by a linear transformation, producing a window that is larger or smaller than the
original one, use affine.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

unitname, rescale, rescale.owin, affine, rotate, shift

Examples

data(swedishpines)
W <- Window(swedishpines)
W

coordinates are in decimetres (0.1 metre)
convert to metres:

rescale(W, 10)
or equivalently

rescale(W)

rescale.ppp Convert Point Pattern to Another Unit of Length

Description

Converts a point pattern dataset to another unit of length.

Usage

S3 method for class 'ppp'
rescale(X, s, unitname)

1362 rescale.ppp

Arguments

X Point pattern (object of class "ppp").

s Conversion factor: the new units are s times the old units.

unitname Optional. New name for the unit of length. See unitname.

Details

This is a method for the generic function rescale.

The spatial coordinates in the point pattern X (and its window) will be re-expressed in terms of a
new unit of length that is s times the current unit of length given in X. (Thus, the coordinate values
are divided by s, while the unit value is multiplied by s).

The result is a point pattern representing the same data but re-expressed in a different unit.

Mark values are unchanged.

If s is missing, then the coordinates will be re-expressed in ‘native’ units; for example if the current
unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.

Value

Another point pattern (of class "ppp"), representing the same data, but expressed in the new units.

Note

The result of this operation is equivalent to the original point pattern. If you want to actually change
the coordinates by a linear transformation, producing a point pattern that is not equivalent to the
original one, use affine.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

unitname, rescale, rescale.owin, affine, rotate, shift

Examples

Bramble Canes data: 1 unit = 9 metres
data(bramblecanes)

convert to metres
bram <- rescale(bramblecanes, 1/9)

or equivalently
bram <- rescale(bramblecanes)

rescale.psp 1363

rescale.psp Convert Line Segment Pattern to Another Unit of Length

Description

Converts a line segment pattern dataset to another unit of length.

Usage

S3 method for class 'psp'
rescale(X, s, unitname)

Arguments

X Line segment pattern (object of class "psp").

s Conversion factor: the new units are s times the old units.

unitname Optional. New name for the unit of length. See unitname.

Details

This is a method for the generic function rescale.

The spatial coordinates in the line segment pattern X (and its window) will be re-expressed in terms
of a new unit of length that is s times the current unit of length given in X. (Thus, the coordinate
values are divided by s, while the unit value is multiplied by s).

The result is a line segment pattern representing the same data but re-expressed in a different unit.

Mark values are unchanged.

If s is missing, then the coordinates will be re-expressed in ‘native’ units; for example if the current
unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.

Value

Another line segment pattern (of class "psp"), representing the same data, but expressed in the new
units.

Note

The result of this operation is equivalent to the original segment pattern. If you want to actually
change the coordinates by a linear transformation, producing a segment pattern that is not equivalent
to the original one, use affine.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

1364 rescue.rectangle

See Also

units, affine, rotate, shift

Examples

data(copper)
X <- copper$Lines
X
data are in km
convert to metres
rescale(X, 1/1000)

convert data and rename unit
rescale(X, 1/1000, c("metre", "metres"))

rescue.rectangle Convert Window Back To Rectangle

Description

Determines whether the given window is really a rectangle aligned with the coordinate axes, and if
so, converts it to a rectangle object.

Usage

rescue.rectangle(W)

Arguments

W A window (object of class "owin").

Details

This function decides whether the window W is actually a rectangle aligned with the coordinate axes.
This will be true if W is

• a rectangle (window object of type "rectangle");

• a polygon (window object of type "polygonal" with a single polygonal boundary) that is a
rectangle aligned with the coordinate axes;

• a binary mask (window object of type "mask") in which all the pixel entries are TRUE.

If so, the function returns this rectangle, a window object of type "rectangle". If not, the function
returns W.

Value

Another object of class "owin" representing the same window.

residuals.dppm 1365

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

as.owin, owin.object

Examples

w <- owin(poly=list(x=c(0,1,1,0),y=c(0,0,1,1)))
rw <- rescue.rectangle(w)

w <- as.mask(unit.square())
rw <- rescue.rectangle(w)

residuals.dppm Residuals for Fitted Determinantal Point Process Model

Description

Given a determinantal point process model fitted to a point pattern, compute residuals.

Usage

S3 method for class 'dppm'
residuals(object, ...)

Arguments

object The fitted determinatal point process model (an object of class "dppm") for
which residuals should be calculated.

... Arguments passed to residuals.ppm.

Details

This function extracts the intensity component of the model using as.ppm and then applies residuals.ppm
to compute the residuals.

Use plot.msr to plot the residuals directly.

Value

An object of class "msr" representing a signed measure or vector-valued measure (see msr). This
object can be plotted.

1366 residuals.kppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

msr, dppm

Examples

fit <- dppm(swedishpines ~ x, dppGauss())
rr <- residuals(fit)

residuals.kppm Residuals for Fitted Cox or Cluster Point Process Model

Description

Given a Cox or cluster point process model fitted to a point pattern, compute residuals.

Usage

S3 method for class 'kppm'
residuals(object, ...)

Arguments

object The fitted point process model (an object of class "kppm") for which residuals
should be calculated.

... Arguments passed to residuals.ppm.

Details

This function extracts the intensity component of the model using as.ppm and then applies residuals.ppm
to compute the residuals.

Use plot.msr to plot the residuals directly.

Value

An object of class "msr" representing a signed measure or vector-valued measure (see msr). This
object can be plotted.

residuals.mppm 1367

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

msr, kppm

Examples

fit <- kppm(redwood ~ x, "Thomas")
rr <- residuals(fit)

residuals.mppm Residuals for Point Process Model Fitted to Multiple Point Patterns

Description

Given a point process model fitted to multiple point patterns, compute residuals for each pattern.

Usage

S3 method for class 'mppm'
residuals(object, type = "raw", ...,

fittedvalues = fitted.mppm(object))

Arguments

object Fitted point process model (object of class "mppm").

... Ignored.

type Type of residuals: either "raw", "pearson" or "inverse". Partially matched.

fittedvalues Advanced use only. Fitted values of the model to be used in the calculation.

Details

Baddeley et al (2005) defined residuals for the fit of a point process model to spatial point pattern
data. For an explanation of these residuals, see the help file for residuals.ppm.

This function computes the residuals for a point process model fitted to multiple point patterns. The
object should be an object of class "mppm" obtained from mppm.

The return value is a list. The number of entries in the list equals the number of point patterns in
the original data. Each entry in the list has the same format as the output of residuals.ppm. That
is, each entry in the list is a signed measure (object of class "msr") giving the residual measure for
the corresponding point pattern.

1368 residuals.ppm

Value

A list of signed measures (objects of class "msr") giving the residual measure for each of the
original point patterns. See Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm, residuals.mppm

Examples

fit <- mppm(Bugs ~ x, hyperframe(Bugs=waterstriders))
r <- residuals(fit)
compute total residual for each point pattern
rtot <- sapply(r, integral.msr)
standardise the total residuals
areas <- sapply(windows.mppm(fit), area.owin)
rtot/sqrt(areas)

residuals.ppm Residuals for Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, compute residuals.

Usage

S3 method for class 'ppm'
residuals(object, type="raw", ...,

check=TRUE, drop=FALSE,
fittedvalues=NULL,
new.coef=NULL, dropcoef=FALSE,
quad=NULL)

residuals.ppm 1369

Arguments

object The fitted point process model (an object of class "ppm") for which residuals
should be calculated.

type String indicating the type of residuals to be calculated. Current options are
"raw", "inverse", "pearson" and "score". A partial match is adequate.

... Ignored.

check Logical value indicating whether to check the internal format of object. If
there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

drop Logical value determining whether to delete quadrature points that were not
used to fit the model. See quad.ppm for explanation.

fittedvalues Vector of fitted values for the conditional intensity at the quadrature points, from
which the residuals will be computed. For expert use only.

new.coef Optional. Numeric vector of coefficients for the model, replacing coef(object).
See the section on Modified Residuals below.

dropcoef Internal use only.

quad Optional. Data specifying how to re-fit the model. A list of arguments passed to
quadscheme. See the section on Modified Residuals below.

Details

This function computes several kinds of residuals for the fit of a point process model to a spa-
tial point pattern dataset (Baddeley et al, 2005). Use plot.msr to plot the residuals directly, or
diagnose.ppm to produce diagnostic plots based on these residuals.

The argument object must be a fitted point process model (object of class "ppm"). Such objects
are produced by the maximum pseudolikelihood fitting algorithm ppm. This fitted model object
contains complete information about the original data pattern.

Residuals are attached both to the data points and to some other points in the window of observation
(namely, to the dummy points of the quadrature scheme used to fit the model). If the fitted model
is correct, then the sum of the residuals over all (data and dummy) points in a spatial region B has
mean zero. For further explanation, see Baddeley et al (2005).

The type of residual is chosen by the argument type. Current options are

"raw": the raw residuals
rj = zj − wjλj

at the quadrature points uj , where zj is the indicator equal to 1 if uj is a data point and 0 if uj
is a dummy point; wj is the quadrature weight attached to uj ; and

λj = λ̂(uj , x)

is the conditional intensity of the fitted model at uj . These are the spatial analogue of the
martingale residuals of a one-dimensional counting process.

1370 residuals.ppm

"inverse": the ‘inverse-lambda’ residuals (Baddeley et al, 2005)

r
(I)
j =

rj
λj

=
zj
λj
− wj

obtained by dividing the raw residuals by the fitted conditional intensity. These are a counter-
part of the exponential energy marks (see eem).

"pearson": the Pearson residuals (Baddeley et al, 2005)

r
(P)
j =

rj√
λj

=
zj√
λj
− wj

√
λj

obtained by dividing the raw residuals by the square root of the fitted conditional intensity. The
Pearson residuals are standardised, in the sense that if the model (true and fitted) is Poisson,
then the sum of the Pearson residuals in a spatial region B has variance equal to the area of B.

"score": the score residuals (Baddeley et al, 2005)

rj = (zj − wjλj)xj

obtained by multiplying the raw residuals rj by the covariates xj for quadrature point j. The
score residuals always sum to zero.

The result of residuals.ppm is a measure (object of class "msr"). Use plot.msr to plot the
residuals directly, or diagnose.ppm to produce diagnostic plots based on these residuals. Use
integral.msr to compute the total residual.

By default, the window of the measure is the same as the original window of the data. If drop=TRUE
then the window is the domain of integration of the pseudolikelihood or composite likelihood.
This only matters when the model object was fitted using the border correction: in that case, if
drop=TRUE the window of the residuals is the erosion of the original data window by the border
correction distance rbord.

Value

An object of class "msr" representing a signed measure or vector-valued measure (see msr). This
object can be plotted.

Modified Residuals

Sometimes we want to modify the calculation of residuals by using different values for the model
parameters. This capability is provided by the arguments new.coef and quad.

If new.coef is given, then the residuals will be computed by taking the model parameters to be
new.coef. This should be a numeric vector of the same length as the vector of fitted model param-
eters coef(object).

If new.coef is missing and quad is given, then the model parameters will be determined by re-
fitting the model using a new quadrature scheme specified by quad. Residuals will be computed for
the original model object using these new parameter values.

The argument quad should normally be a list of arguments in name=value format that will be passed
to quadscheme (together with the original data points) to determine the new quadrature scheme. It
may also be a quadrature scheme (object of class "quad") to which the model should be fitted, or a
point pattern (object of class "ppp") specifying the dummy points in a new quadrature scheme.

rex 1371

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

See Also

msr, diagnose.ppm, ppm.object, ppm

Examples

fit <- ppm(cells, ~x, Strauss(r=0.15))

Pearson residuals
rp <- residuals(fit, type="pe")
rp

simulated data
X <- rStrauss(100,0.7,0.05)
fit Strauss model
fit <- ppm(X, ~1, Strauss(0.05))
res.fit <- residuals(fit)

check that total residual is 0
integral.msr(residuals(fit, drop=TRUE))

true model parameters
truecoef <- c(log(100), log(0.7))
res.true <- residuals(fit, new.coef=truecoef)

rex Richardson Extrapolation

Description

Performs Richardson Extrapolation on a sequence of approximate values.

Usage

rex(x, r = 2, k = 1, recursive = FALSE)

1372 rex

Arguments

x A numeric vector or matrix, whose columns are successive estimates or approx-
imations to a vector of parameters.

r A number greater than 1. The ratio of successive step sizes. See Details.

k Integer. The order of convergence assumed. See Details.

recursive Logical value indicating whether to perform one step of Richardson extrapola-
tion (recursive=FALSE, the default) or repeat the extrapolation procedure until
a best estimate is obtained (recursive=TRUE.

Details

Richardson extrapolation is a general technique for improving numerical approximations, often
used in numerical integration (Brezinski and Zaglia, 1991). It can also be used to improve parameter
estimates in statistical models (Baddeley and Turner, 2014).

The successive columns of x are assumed to have been obtained using approximations with step
sizes a, a/r, a/r2, . . . where a is the initial step size (which does not need to be specified).

Estimates based on a step size s are assumed to have an error of order sk.

Thus, the default values r=2 and k=1 imply that the errors in the second column of x should be
roughly (1/r)k = 1/2 as large as the errors in the first column, and so on.

Value

A matrix whose columns contain a sequence of improved estimates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Baddeley, A. and Turner, R. (2014) Bias correction for parameter estimates of spatial point process
models. Journal of Statistical Computation and Simulation 84, 1621–1643. DOI: 10.1080/00949655.2012.755976

Brezinski, C. and Zaglia, M.R. (1991) Extrapolation Methods. Theory and Practice. North-
Holland.

See Also

bc

Examples

integrals of sin(x) and cos(x) from 0 to pi
correct answers: 2, 0
est <- function(nsteps) {

xx <- seq(0, pi, length=nsteps)
ans <- pi * c(mean(sin(xx)), mean(cos(xx)))
names(ans) <- c("sin", "cos")
ans

rGaussPoisson 1373

}
X <- cbind(est(10), est(20), est(40))
X
rex(X)
rex(X, recursive=TRUE)

fitted Gibbs point process model
fit0 <- ppm(cells ~ 1, Strauss(0.07), nd=16)
fit1 <- update(fit0, nd=32)
fit2 <- update(fit0, nd=64)
co <- cbind(coef(fit0), coef(fit1), coef(fit2))
co
rex(co, k=2, recursive=TRUE)

rGaussPoisson Simulate Gauss-Poisson Process

Description

Generate a random point pattern, a simulated realisation of the Gauss-Poisson Process.

Usage

rGaussPoisson(kappa, r, p2, win = owin(c(0,1),c(0,1)),
..., nsim=1, drop=TRUE)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

r Diameter of each cluster that consists of exactly 2 points.
p2 Probability that a cluster contains exactly 2 points.
win Window in which to simulate the pattern. An object of class "owin" or some-

thing acceptable to as.owin.
... Ignored.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.

Details

This algorithm generates a realisation of the Gauss-Poisson point process inside the window win.
The process is constructed by first generating a Poisson point process of parent points with intensity
kappa. Then each parent point is either retained (with probability 1 -p2) or replaced by a pair of
points at a fixed distance r apart (with probability p2). In the case of clusters of 2 points, the line
joining the two points has uniform random orientation.

In this implementation, parent points are not restricted to lie in the window; the parent process is
effectively the uniform Poisson process on the infinite plane.

1374 rgbim

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of the point
pattern. See rNeymanScott.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rpoispp, rThomas, rMatClust, rNeymanScott

Examples

pp <- rGaussPoisson(30, 0.07, 0.5)

rgbim Create Colour-Valued Pixel Image

Description

Creates an object of class "im" representing a two-dimensional pixel image whose pixel values are
colours.

Usage

rgbim(R, G, B, A, maxColorValue=255, autoscale=FALSE)
hsvim(H, S, V, A, autoscale=FALSE)

Arguments

R,G,B Pixel images (objects of class "im") or constants giving the red, green, and blue
components of a colour, respectively.

A Optional. Pixel image or constant value giving the alpha (transparency) compo-
nent of a colour.

maxColorValue Maximum colour channel value for R,G,B,A.

H,S,V Pixel images (objects of class "im") or constants giving the hue, saturation, and
value components of a colour, respectively.

autoscale Logical. If TRUE, input values are automatically rescaled to fit the permitted
range. RGB values are scaled to lie between 0 and maxColorValue. HSV values
are scaled to lie between 0 and 1.

rHardcore 1375

Details

These functions take three pixel images, with real or integer pixel values, and create a single pixel
image whose pixel values are colours recognisable to R.

Some of the arguments may be constant numeric values, but at least one of the arguments must
be a pixel image. The image arguments should be compatible (in array dimension and in spatial
position).

rgbim calls rgb to compute the colours, while hsvim calls hsv. See the help for the relevant function
for more information about the meaning of the colour channels.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

im.object, rgb, hsv.

See colourtools for additional colour tools.

Examples

create three images with values in [0,1]
X <- setcov(owin())
X <- eval.im(pmin(1,X))
M <- Window(X)
Y <- as.im(function(x,y){(x+1)/2}, W=M)
Z <- as.im(function(x,y){(y+1)/2}, W=M)
convert
RGB <- rgbim(X, Y, Z, maxColorValue=1)
HSV <- hsvim(X, Y, Z)
opa <- par(mfrow=c(1,2))
plot(RGB, valuesAreColours=TRUE)
plot(HSV, valuesAreColours=TRUE)
par(opa)

rHardcore Perfect Simulation of the Hardcore Process

Description

Generate a random pattern of points, a simulated realisation of the Hardcore process, using a perfect
simulation algorithm.

Usage

rHardcore(beta, R = 0, W = owin(), expand=TRUE, nsim=1, drop=TRUE)

1376 rHardcore

Arguments

beta intensity parameter (a positive number).
R hard core distance (a non-negative number).
W window (object of class "owin") in which to generate the random pattern. Cur-

rently this must be a rectangular window.
expand Logical. If FALSE, simulation is performed in the window W, which must be

rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Hardcore point process in the window W using a ‘perfect
simulation’ algorithm.

The Hardcore process is a model for strong spatial inhibition. Two points of the process are forbid-
den to lie closer than R units apart. The Hardcore process is the special case of the Strauss process
(see rStrauss) with interaction parameter γ equal to zero.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

based on original code for the Strauss process by Kasper Klitgaard Berthelsen.

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes.
Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference
for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of
Statistics 30, 549-564.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

rho2hat 1377

See Also

rmh, Hardcore, rStrauss, rStraussHard, rDiggleGratton. rDGS, rPenttinen.

Examples

X <- rHardcore(0.05,1.5,square(141.4))
Z <- rHardcore(100,0.05, nsim=2)

rho2hat Smoothed Relative Density of Pairs of Covariate Values

Description

Given a point pattern and two spatial covariates Z1 and Z2, construct a smooth estimate of the
relative risk of the pair (Z1, Z2).

Usage

rho2hat(object, cov1, cov2, ..., method=c("ratio", "reweight"))

Arguments

object A point pattern (object of class "ppp"), a quadrature scheme (object of class
"quad") or a fitted point process model (object of class "ppm").

cov1,cov2 The two covariates. Each argument is either a function(x,y) or a pixel image
(object of class "im") providing the values of the covariate at any location, or
one of the strings "x" or "y" signifying the Cartesian coordinates.

... Additional arguments passed to density.ppp to smooth the scatterplots.

method Character string determining the smoothing method. See Details.

Details

This is a bivariate version of rhohat.

If object is a point pattern, this command produces a smoothed version of the scatterplot of the
values of the covariates cov1 and cov2 observed at the points of the point pattern.

The covariates cov1,cov2 must have continuous values.

If object is a fitted point process model, suppose X is the original data point pattern to which the
model was fitted. Then this command assumes X is a realisation of a Poisson point process with
intensity function of the form

λ(u) = ρ(Z1(u), Z2(u))κ(u)

where κ(u) is the intensity of the fitted model object, and ρ(z1, z2) is a function to be estimated.
The algorithm computes a smooth estimate of the function ρ.

The method determines how the density estimates will be combined to obtain an estimate of ρ(z1, z2):

1378 rhohat

• If method="ratio", then ρ(z1, z2) is estimated by the ratio of two density estimates. The
numerator is a (rescaled) density estimate obtained by smoothing the points (Z1(yi), Z2(yi))
obtained by evaluating the two covariate Z1, Z2 at the data points yi. The denominator is a
density estimate of the reference distribution of (Z1, Z2).

• If method="reweight", then ρ(z1, z2) is estimated by applying density estimation to the
points (Z1(yi), Z2(yi)) obtained by evaluating the two covariate Z1, Z2 at the data points
yi, with weights inversely proportional to the reference density of (Z1, Z2).

Value

A pixel image (object of class "im"). Also belongs to the special class "rho2hat" which has a plot
method.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2012) Nonparametric estimation of the de-
pendence of a point process on spatial covariates. Statistics and Its Interface 5 (2), 221–236.

See Also

rhohat, methods.rho2hat

Examples

data(bei)
attach(bei.extra)
plot(rho2hat(bei, elev, grad))
fit <- ppm(bei, ~elev, covariates=bei.extra)
Not run:
plot(rho2hat(fit, elev, grad))

End(Not run)
plot(rho2hat(fit, elev, grad, method="reweight"))

rhohat Nonparametric Estimate of Intensity as Function of a Covariate

Description

Computes a nonparametric estimate of the intensity of a point process, as a function of a (continu-
ous) spatial covariate.

rhohat 1379

Usage

rhohat(object, covariate, ...)

S3 method for class 'ppp'
rhohat(object, covariate, ...,

baseline=NULL, weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing"),
subset=NULL,
dimyx=NULL, eps=NULL,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI)

S3 method for class 'quad'
rhohat(object, covariate, ...,

baseline=NULL, weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing"),
subset=NULL,
dimyx=NULL, eps=NULL,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI)

S3 method for class 'ppm'
rhohat(object, covariate, ...,

weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing"),
subset=NULL,
dimyx=NULL, eps=NULL,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI)

S3 method for class 'lpp'
rhohat(object, covariate, ...,

weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing"),
subset=NULL,
nd=1000, eps=NULL, random=TRUE,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,

1380 rhohat

bwref=bw,
covname, confidence=0.95, positiveCI)

S3 method for class 'lppm'
rhohat(object, covariate, ...,

weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing"),
subset=NULL,
nd=1000, eps=NULL, random=TRUE,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI)

Arguments

object A point pattern (object of class "ppp" or "lpp"), a quadrature scheme (object of
class "quad") or a fitted point process model (object of class "ppm" or "lppm").

covariate Either a function(x,y) or a pixel image (object of class "im") providing the
values of the covariate at any location. Alternatively one of the strings "x" or
"y" signifying the Cartesian coordinates.

weights Optional weights attached to the data points. Either a numeric vector of weights
for each data point, or a pixel image (object of class "im") or a function(x,y)
providing the weights.

baseline Optional baseline for intensity function. A function(x,y) or a pixel image
(object of class "im") providing the values of the baseline at any location.

method Character string determining the smoothing method. See Details.

horvitz Logical value indicating whether to use Horvitz-Thompson weights. See De-
tails.

smoother Character string determining the smoothing algorithm. See Details.

subset Optional. A spatial window (object of class "owin") specifying a subset of the
data, from which the estimate should be calculated.

dimyx,eps,nd,random

Arguments controlling the pixel resolution at which the covariate will be evalu-
ated. See Details.

bw Smoothing bandwidth or bandwidth rule (passed to density.default).

adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of val-
ues at which the function will be estimated.

bwref Optional. An alternative value of bw to use when smoothing the reference den-
sity (the density of the covariate values observed at all locations in the window).

... Additional arguments passed to density.default or locfit.

covname Optional. Character string to use as the name of the covariate.

rhohat 1381

confidence Confidence level for confidence intervals. A number between 0 and 1.

positiveCI Logical value. If TRUE, confidence limits are always positive numbers; if FALSE,
the lower limit of the confidence interval may sometimes be negative. Default is
FALSE if smoother="kernel" and TRUE if smoother="local". See Details.

Details

This command estimates the relationship between point process intensity and a given spatial co-
variate. Such a relationship is sometimes called a resource selection function (if the points are
organisms and the covariate is a descriptor of habitat) or a prospectivity index (if the points are min-
eral deposits and the covariate is a geological variable). This command uses nonparametric methods
which do not assume a particular form for the relationship.

If object is a point pattern, and baseline is missing or null, this command assumes that object
is a realisation of a point process with intensity function λ(u) of the form

λ(u) = ρ(Z(u))

where Z is the spatial covariate function given by covariate, and ρ(z) is the resource selection
function or prospectivity index. A nonparametric estimator of the function ρ(z) is computed.

If object is a point pattern, and baseline is given, then the intensity function is assumed to be

λ(u) = ρ(Z(u))B(u)

where B(u) is the baseline intensity at location u. A nonparametric estimator of the relative inten-
sity ρ(z) is computed.

If object is a fitted point process model, suppose X is the original data point pattern to which the
model was fitted. Then this command assumes X is a realisation of a Poisson point process with
intensity function of the form

λ(u) = ρ(Z(u))κ(u)

where κ(u) is the intensity of the fitted model object. A nonparametric estimator of the relative
intensity ρ(z) is computed.

The nonparametric estimation procedure is controlled by the arguments smoother, method and
horvitz.

The argument smoother selects the type of estimation technique.

• If smoother="kernel" (the default) or smoother="local", the nonparametric estimator is a
smoothing estimator of ρ(z), effectively a kind of density estimator (Baddeley et al, 2012).
The estimated function ρ(z) will be a smooth function of z. Confidence bands are also com-
puted, assuming a Poisson point process. See the section on Smooth estimates.

• If smoother="increasing" or smoother="decreasing", we use the nonparametric maxi-
mum likelihood estimator of ρ(z) described by Sager (1982). This assumes that ρ(z) is either
an increasing function of z, or a decreasing function of z. The estimated function will be a step
function, increasing or decreasing as a function of z. See the section on Monotone estimates.

See Baddeley (2018) for a comparison of these estimation techniques.

If the argument weights is present, then the contribution from each data point X[i] to the estimate
of ρ is multiplied by weights[i].

1382 rhohat

If the argument subset is present, then the calculations are performed using only the data inside
this spatial region.

This technique assumes that covariate has continuous values. It is not applicable to covariates with
categorical (factor) values or discrete values such as small integers. For a categorical covariate, use
intensity.quadratcount applied to the result of quadratcount(X,tess=covariate).

The argument covariate should be a pixel image, or a function, or one of the strings "x" or "y"
signifying the cartesian coordinates. It will be evaluated on a fine grid of locations, with spatial
resolution controlled by the arguments dimyx,eps,nd,random. In two dimensions (i.e. if object
is of class "ppp", "ppm" or "quad") the arguments dimyx,eps are passed to as.mask to control the
pixel resolution. On a linear network (i.e. if object is of class "lpp") the argument nd specifies
the total number of test locations on the linear network, eps specifies the linear separation between
test locations, and random specifies whether the test locations have a randomised starting position.

Value

A function value table (object of class "fv") containing the estimated values of ρ (and confidence
limits) for a sequence of values ofZ. Also belongs to the class "rhohat" which has special methods
for print, plot and predict.

Smooth estimates

Smooth estimators of ρ(z) were proposed by Baddeley and Turner (2005) and Baddeley et al (2012).
Similar estimators were proposed by Guan (2008) and in the literature on relative distributions
(Handcock and Morris, 1999).

The estimated function ρ(z) will be a smooth function of z.

The smooth estimation procedure involves computing several density estimates and combining
them. The algorithm used to compute density estimates is determined by smoother:

• If smoother="kernel", the smoothing procedure is based on fixed-bandwidth kernel density
estimation, performed by density.default.

• If smoother="local", the smoothing procedure is based on local likelihood density estima-
tion, performed by locfit.

The argument method determines how the density estimates will be combined to obtain an estimate
of ρ(z):

• If method="ratio", then ρ(z) is estimated by the ratio of two density estimates, The numer-
ator is a (rescaled) density estimate obtained by smoothing the values Z(yi) of the covariate
Z observed at the data points yi. The denominator is a density estimate of the reference dis-
tribution of Z. See Baddeley et al (2012), equation (8). This is similar but not identical to an
estimator proposed by Guan (2008).

• If method="reweight", then ρ(z) is estimated by applying density estimation to the values
Z(yi) of the covariate Z observed at the data points yi, with weights inversely proportional to
the reference density of Z. See Baddeley et al (2012), equation (9).

• If method="transform", the smoothing method is variable-bandwidth kernel smoothing, im-
plemented by applying the Probability Integral Transform to the covariate values, yielding
values in the range 0 to 1, then applying edge-corrected density estimation on the interval
[0, 1], and back-transforming. See Baddeley et al (2012), equation (10).

rhohat 1383

If horvitz=TRUE, then the calculations described above are modified by using Horvitz-Thompson
weighting. The contribution to the numerator from each data point is weighted by the reciprocal
of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is
made to the denominator.

Pointwise confidence intervals for the true value of ρ(z) are also calculated for each z, and will
be plotted as grey shading. The confidence intervals are derived using the central limit theorem,
based on variance calculations which assume a Poisson point process. If positiveCI=FALSE, the
lower limit of the confidence interval may sometimes be negative, because the confidence intervals
are based on a normal approximation to the estimate of ρ(z). If positiveCI=TRUE, the confidence
limits are always positive, because the confidence interval is based on a normal approximation to
the estimate of log(ρ(z)). For consistency with earlier versions, the default is positiveCI=FALSE
for smoother="kernel" and positiveCI=TRUE for smoother="local".

Monotone estimates

The nonparametric maximum likelihood estimator of a monotone function ρ(z) was described by
Sager (1982). This method assumes that ρ(z) is either an increasing function of z, or a decreasing
function of z. The estimated function will be a step function, increasing or decreasing as a function
of z.

This estimator is chosen by specifying smoother="increasing" or smoother="decreasing".
The argument method is ignored this case.

To compute the estimate of ρ(z), the algorithm first computes several primitive step-function esti-
mates, and then takes the maximum of these primitive functions.

If smoother="decreasing", each primitive step function takes the form ρ(z) = λ when z ≤ t, and
ρ(z) = 0 when z > t, where and λ is a primitive estimate of intensity based on the data for Z ≤ t.
The jump location t will be the value of the covariate Z at one of the data points. The primitive
estimate λ is the average intensity (number of points divided by area) for the region of space where
the covariate value is less than or equal to t.

If horvitz=TRUE, then the calculations described above are modified by using Horvitz-Thompson
weighting. The contribution to the numerator from each data point is weighted by the reciprocal
of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is
made to the denominator.

Confidence intervals are not available for the monotone estimators.

Author(s)

Smoothing algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ya-Mei Chang,
Yong Song, and Rolf Turner <r.turner@auckland.ac.nz>.

Nonparametric maximum likelihood algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2012) Nonparametric estimation of the de-
pendence of a point process on spatial covariates. Statistics and Its Interface 5 (2), 221–236.

Baddeley, A. and Turner, R. (2005) Modelling spatial point patterns in R. In: A. Baddeley, P. Gre-
gori, J. Mateu, R. Stoica, and D. Stoyan, editors, Case Studies in Spatial Point Pattern Modelling,

1384 ripras

Lecture Notes in Statistics number 185. Pages 23–74. Springer-Verlag, New York, 2006. ISBN:
0-387-28311-0.

Baddeley, A. (2018) A statistical commentary on mineral prospectivity analysis. Chapter 2, pages
25–65 in Handbook of Mathematical Geosciences: Fifty Years of IAMG, edited by B.S. Daya Sagar,
Q. Cheng and F.P. Agterberg. Springer, Berlin.

Guan, Y. (2008) On consistent nonparametric intensity estimation for inhomogeneous spatial point
processes. Journal of the American Statistical Association 103, 1238–1247.

Handcock, M.S. and Morris, M. (1999) Relative Distribution Methods in the Social Sciences.
Springer, New York.

Sager, T.W. (1982) Nonparametric maximum likelihood estimation of spatial patterns. Annals of
Statistics 10, 1125–1136.

See Also

rho2hat, methods.rhohat, parres.

See ppm for a parametric method for the same problem.

Examples

X <- rpoispp(function(x,y){exp(3+3*x)})
rho <- rhohat(X, "x")
rho <- rhohat(X, function(x,y){x})
plot(rho)
curve(exp(3+3*x), lty=3, col=2, add=TRUE)

rhoB <- rhohat(X, "x", method="reweight")
rhoC <- rhohat(X, "x", method="transform")

rhoM <- rhohat(X, "x", smoother="increasing")
plot(rhoM, add=TRUE, col=5)

fit <- ppm(X, ~x)
rr <- rhohat(fit, "y")

linear network
Y <- runiflpp(30, simplenet)
rhoY <- rhohat(Y, "y")

ripras Estimate window from points alone

Description

Given an observed pattern of points, computes the Ripley-Rasson estimate of the spatial domain
from which they came.

ripras 1385

Usage

ripras(x, y=NULL, shape="convex", f)

Arguments

x vector of x coordinates of observed points, or a 2-column matrix giving x,y
coordinates, or a list with components x,y giving coordinates (such as a point
pattern object of class "ppp".)

y (optional) vector of y coordinates of observed points, if x is a vector.

shape String indicating the type of window to be estimated: either "convex" or "rectangle".

f (optional) scaling factor. See Details.

Details

Given an observed pattern of points with coordinates given by x and y, this function computes an
estimate due to Ripley and Rasson (1977) of the spatial domain from which the points came.

The points are assumed to have been generated independently and uniformly distributed inside an
unknown domain D.

If shape="convex" (the default), the domain D is assumed to be a convex set. The maximum like-
lihood estimate of D is the convex hull of the points (computed by convexhull.xy). Analogously
to the problems of estimating the endpoint of a uniform distribution, the MLE is not optimal. Ripley
and Rasson’s estimator is a rescaled copy of the convex hull, centred at the centroid of the convex
hull. The scaling factor is 1/sqrt(1−m/n) where n is the number of data points andm the number
of vertices of the convex hull. The scaling factor may be overridden using the argument f.

If shape="rectangle", the domain D is assumed to be a rectangle with sides parallel to the coor-
dinate axes. The maximum likelihood estimate of D is the bounding box of the points (computed
by bounding.box.xy). The Ripley-Rasson estimator is a rescaled copy of the bounding box, with
scaling factor (n + 1)/(n− 1) where n is the number of data points, centred at the centroid of the
bounding box. The scaling factor may be overridden using the argument f.

Value

A window (an object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Ripley, B.D. and Rasson, J.-P. (1977) Finding the edge of a Poisson forest. Journal of Applied
Probability, 14, 483 – 491.

See Also

owin, as.owin, bounding.box.xy, convexhull.xy

1386 rjitter

Examples

x <- runif(30)
y <- runif(30)
w <- ripras(x,y)
plot(owin(), main="ripras(x,y)")
plot(w, add=TRUE)
points(x,y)

X <- rpoispp(15)
plot(X, main="ripras(X)")
plot(ripras(X), add=TRUE)

two points insufficient
ripras(c(0,1),c(0,0))
triangle
ripras(c(0,1,0.5), c(0,0,1))
three collinear points
ripras(c(0,0,0), c(0,1,2))

rjitter Random Perturbation of a Point Pattern

Description

Applies independent random displacements to each point in a point pattern.

Usage

rjitter(X, radius, retry=TRUE, giveup = 10000, ..., nsim=1, drop=TRUE)

Arguments

X A point pattern (object of class "ppp").

radius Scale of perturbations. A positive numerical value. The displacement vectors
will be uniformly distributed in a circle of this radius. There is a sensible default.

retry What to do when a perturbed point lies outside the window of the original point
pattern. If retry=FALSE, the point will be lost; if retry=TRUE, the algorithm
will try again.

giveup Maximum number of unsuccessful attempts.

... Ignored.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

rknn 1387

Details

Each of the points in the point pattern X is subjected to an independent random displacement. The
displacement vectors are uniformly distributed in a circle of radius radius.

If a displaced point lies outside the window, then if retry=FALSE the point will be lost.

However if retry=TRUE, the algorithm will try again: each time a perturbed point lies outside the
window, the algorithm will reject it and generate another proposed perturbation of the original point,
until one lies inside the window, or until giveup unsuccessful attempts have been made. In the latter
case, any unresolved points will be included without any perturbation. The return value will always
be a point pattern with the same number of points as X.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1, in the
same window as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

X <- rsyst(owin(), 10, 10)
Y <- rjitter(X, 0.02)
plot(Y)
Z <- rjitter(X)

rknn Theoretical Distribution of Nearest Neighbour Distance

Description

Density, distribution function, quantile function and random generation for the random distance to
the kth nearest neighbour in a Poisson point process in d dimensions.

Usage

dknn(x, k = 1, d = 2, lambda = 1)
pknn(q, k = 1, d = 2, lambda = 1)
qknn(p, k = 1, d = 2, lambda = 1)
rknn(n, k = 1, d = 2, lambda = 1)

1388 rknn

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations to be generated.

k order of neighbour.

d dimension of space.

lambda intensity of Poisson point process.

Details

In a Poisson point process in d-dimensional space, let the random variable R be the distance from a
fixed point to the k-th nearest random point, or the distance from a random point to the k-th nearest
other random point.

Then Rd has a Gamma distribution with shape parameter k and rate λ ∗ α where α is a constant
(equal to the volume of the unit ball in d-dimensional space). See e.g. Cressie (1991, page 61).

These functions support calculation and simulation for the distribution of R.

Value

A numeric vector: dknn returns the probability density, pknn returns cumulative probabilities (dis-
tribution function), qknn returns quantiles, and rknn generates random deviates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.

Examples

x <- seq(0, 5, length=20)
densities <- dknn(x, k=3, d=2)
cdfvalues <- pknn(x, k=3, d=2)
randomvalues <- rknn(100, k=3, d=2)
deciles <- qknn((1:9)/10, k=3, d=2)

rlabel 1389

rlabel Random Re-Labelling of Point Pattern

Description

Randomly allocates marks to a point pattern, or permutes the existing marks, or resamples from the
existing marks.

Usage

rlabel(X, labels=marks(X), permute=TRUE, nsim=1, drop=TRUE)

Arguments

X Point pattern (object of class "ppp", "lpp", "pp3" or "ppx") or line segment
pattern (object of class "psp").

labels Vector of values from which the new marks will be drawn at random. Defaults
to the vector of existing marks.

permute Logical value indicating whether to generate new marks by randomly permuting
labels or by drawing a random sample with replacement.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This very simple function allocates random marks to an existing point pattern X. It is useful for
hypothesis testing purposes. (The function can also be applied to line segment patterns.)

In the simplest case, the command rlabel(X) yields a point pattern obtained from X by randomly
permuting the marks of the points.

If permute=TRUE, then labels should be a vector of length equal to the number of points in X. The
result of rlabel will be a point pattern with locations given by X and marks given by a random
permutation of labels (i.e. a random sample without replacement).

If permute=FALSE, then labels may be a vector of any length. The result of rlabel will be a
point pattern with locations given by X and marks given by a random sample from labels (with
replacement).

Value

If nsim = 1 and drop=TRUE, a marked point pattern (of the same class as X). If nsim > 1, a list of
point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

1390 rLGCP

See Also

marks<- to assign arbitrary marks.

Examples

amacrine

Randomly permute the marks "on" and "off"
Result always has 142 "off" and 152 "on"
Y <- rlabel(amacrine)

randomly allocate marks "on" and "off"
with probabilities p(off) = 0.48, p(on) = 0.52
Y <- rlabel(amacrine, permute=FALSE)

randomly allocate marks "A" and "B" with equal probability
data(cells)
Y <- rlabel(cells, labels=factor(c("A", "B")), permute=FALSE)

rLGCP Simulate Log-Gaussian Cox Process

Description

Generate a random point pattern, a realisation of the log-Gaussian Cox process.

Usage

rLGCP(model="exp", mu = 0, param = NULL,
...,
win=NULL, saveLambda=TRUE, nsim=1, drop=TRUE)

Arguments

model character string: the short name of a covariance model for the Gaussian random
field. After adding the prefix "RM", the code will search for a function of this
name in the RandomFields package.

mu mean function of the Gaussian random field. Either a single number, a function(x,y,...)
or a pixel image (object of class "im").

param List of parameters for the covariance. Standard arguments are var and scale.
... Additional parameters for the covariance, or arguments passed to as.mask to

determine the pixel resolution.
win Window in which to simulate the pattern. An object of class "owin".
saveLambda Logical. If TRUE (the default) then the simulated random intensity will also be

saved, and returns as an attribute of the point pattern.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.

rLGCP 1391

Details

This function generates a realisation of a log-Gaussian Cox process (LGCP). This is a Cox point
process in which the logarithm of the random intensity is a Gaussian random field with mean func-
tion µ and covariance function c(r). Conditional on the random intensity, the point process is a
Poisson process with this intensity.

The string model specifies the covariance function of the Gaussian random field, and the parameters
of the covariance are determined by param and

To determine the covariance model, the string model is prefixed by "RM", and a function of this
name is sought in the RandomFields package. For a list of available models see RMmodel in the
RandomFields package. For example the Matérn covariance is specified by model="matern",
corresponding to the function RMmatern in the RandomFields package.

Standard variance parameters (for all functions beginning with "RM" in the RandomFields package)
are var for the variance at distance zero, and scale for the scale parameter. Other parameters are
specified in the help files for the individual functions beginning with "RM". For example the help
file for RMmatern states that nu is a parameter for this model.

This algorithm uses the function RFsimulate in the RandomFields package to generate values of
a Gaussian random field, with the specified mean function mu and the covariance specified by the
arguments model and param, on the points of a regular grid. The exponential of this random field
is taken as the intensity of a Poisson point process, and a realisation of the Poisson process is then
generated by the function rpoispp in the spatstat package.

If the simulation window win is missing or NULL, then it defaults to Window(mu) if mu is a pixel
image, and it defaults to the unit square otherwise.

The LGCP model can be fitted to data using kppm.

Value

A point pattern (object of class "ppp") or a list of point patterns.

Additionally, the simulated intensity function for each point pattern is returned as an attribute
"Lambda" of the point pattern, if saveLambda=TRUE.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Modified by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

Møller, J., Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox Processes. Scandina-
vian Journal of Statistics 25, 451–482.

See Also

rpoispp, rMatClust, rGaussPoisson, rNeymanScott, lgcp.estK, kppm

1392 rlinegrid

Examples

if(require(RandomFields)) {
homogeneous LGCP with exponential covariance function
X <- rLGCP("exp", 3, var=0.2, scale=.1)

inhomogeneous LGCP with Gaussian covariance function
m <- as.im(function(x, y){5 - 1.5 * (x - 0.5)^2 + 2 * (y - 0.5)^2}, W=owin())
X <- rLGCP("gauss", m, var=0.15, scale =0.5)
plot(attr(X, "Lambda"))
points(X)

inhomogeneous LGCP with Matern covariance function
X <- rLGCP("matern", function(x, y){ 1 - 0.4 * x},

var=2, scale=0.7, nu=0.5,
win = owin(c(0, 10), c(0, 10)))

plot(X)
}

rlinegrid Generate grid of parallel lines with random displacement

Description

Generates a grid of parallel lines, equally spaced, inside the specified window.

Usage

rlinegrid(angle = 45, spacing = 0.1, win = owin())

Arguments

angle Common orientation of the lines, in degrees anticlockwise from the x axis.

spacing Spacing between successive lines.

win Window in which to generate the lines. An object of class "owin" or something
acceptable to as.owin.

Details

The grid is randomly displaced from the origin.

Value

A line segment pattern (object of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

rlpp 1393

See Also

psp, rpoisline

Examples

plot(rlinegrid(30, 0.05))

rlpp Random Points on a Linear Network

Description

Generates n independent random points on a linear network with a specified probability density.

Usage

rlpp(n, f, ..., nsim=1, drop=TRUE)

Arguments

n Number of random points to generate. A nonnegative integer giving the number
of points, or an integer vector giving the numbers of points of each type.

f Probability density (not necessarily normalised). A pixel image on a linear net-
work (object of class "linim") or a function on a linear network (object of class
"linfun"). Alternatively, f can be a list of functions or pixel images, giving the
densities of points of each type.

... Additional arguments passed to f if it is a function or a list of functions.

nsim Number of simulated realisations to generate.

drop Logical value indicating what to do when nsim=1. If drop=TRUE (the default),
the result is a point pattern. If drop=FALSE, the result is a list with one entry
which is a point pattern.

Details

The linear network L, on which the points will be generated, is determined by the argument f.

If f is a function, it is converted to a pixel image on the linear network, using any additional function
arguments

If n is a single integer and f is a function or pixel image, then independent random points are
generated on L with probability density proportional to f.

If n is an integer vector and f is a list of functions or pixel images, where n and f have the same
length, then independent random points of several types are generated on L, with n[i] points of
type i having probability density proportional to f[[i]].

1394 rMatClust

Value

If nsim = 1 and drop=TRUE, a point pattern on the linear network, i.e.\ an object of class "lpp".
Otherwise, a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

runiflpp

Examples

g <- function(x, y, seg, tp) { exp(x + 3*y) }
f <- linfun(g, simplenet)

rlpp(20, f)

plot(rlpp(20, f, nsim=3))

rMatClust Simulate Matern Cluster Process

Description

Generate a random point pattern, a simulated realisation of the Matérn Cluster Process.

Usage

rMatClust(kappa, scale, mu, win = owin(c(0,1),c(0,1)),
nsim=1, drop=TRUE,
saveLambda=FALSE, expand = scale, ...,
poisthresh=1e-6, saveparents=TRUE)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

scale Radius parameter of the clusters.

mu Mean number of points per cluster (a single positive number) or reference inten-
sity for the cluster points (a function or a pixel image).

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

rMatClust 1395

saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent
points will also be calculated and saved, and returns as an attribute of the point
pattern.

expand Numeric. Size of window expansion for generation of parent points. Defaults to
scale which is the cluster radius.

... Passed to clusterfield to control the image resolution when saveLambda=TRUE.

poisthresh Numerical threshold below which the model will be treated as a Poisson process.
See Details.

saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

Details

This algorithm generates a realisation of Matérn’s cluster process, a special case of the Neyman-
Scott process, inside the window win.

In the simplest case, where kappa and mu are single numbers, the algorithm generates a uniform
Poisson point process of “parent” points with intensity kappa. Then each parent point is replaced
by a random cluster of “offspring” points, the number of points per cluster being Poisson (mu)
distributed, and their positions being placed and uniformly inside a disc of radius scale centred
on the parent point. The resulting point pattern is a realisation of the classical “stationary Matérn
cluster process” generated inside the window win. This point process has intensity kappa * mu.

The algorithm can also generate spatially inhomogeneous versions of the Matérn cluster process:

• The parent points can be spatially inhomogeneous. If the argument kappa is a function(x,y)
or a pixel image (object of class "im"), then it is taken as specifying the intensity function of
an inhomogeneous Poisson process that generates the parent points.

• The offspring points can be inhomogeneous. If the argument mu is a function(x,y) or a
pixel image (object of class "im"), then it is interpreted as the reference density for offspring
points, in the sense of Waagepetersen (2007). For a given parent point, the offspring constitute
a Poisson process with intensity function equal to mu/(pi * scale^2) inside the disc of radius
scale centred on the parent point, and zero intensity outside this disc. Equivalently we first
generate, for each parent point, a Poisson (M) random number of offspring (where M is the
maximum value of mu) placed independently and uniformly in the disc of radius scale centred
on the parent location, and then randomly thin the offspring points, with retention probability
mu/M.

• Both the parent points and the offspring points can be inhomogeneous, as described above.

Note that if kappa is a pixel image, its domain must be larger than the window win. This is because
an offspring point inside win could have its parent point lying outside win. In order to allow this,
the simulation algorithm first expands the original window win by a distance expand and generates
the Poisson process of parent points on this larger window. If kappa is a pixel image, its domain
must contain this larger window.

The intensity of the Matérn cluster process is kappa * mu if either kappa or mu is a single number.
In the general case the intensity is an integral involving kappa, mu and scale.

The Matérn cluster process model with homogeneous parents (i.e. where kappa is a single number)
can be fitted to data using kppm. Currently it is not possible to fit the Matérn cluster process model
with inhomogeneous parents.

1396 rMaternI

If the pair correlation function of the model is very close to that of a Poisson process, deviating by
less than poisthresh, then the model is approximately a Poisson process, and will be simulated as
a Poisson process with intensity kappa * mu, using rpoispp. This avoids computations that would
otherwise require huge amounts of memory.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point pat-
tern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute
"Lambda", if saveLambda=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Matérn, B. (1960) Spatial Variation. Meddelanden från Statens Skogsforskningsinstitut, volume
59, number 5. Statens Skogsforskningsinstitut, Sweden.

Matérn, B. (1986) Spatial Variation. Lecture Notes in Statistics 36, Springer-Verlag, New York.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

rpoispp, rThomas, rCauchy, rVarGamma, rNeymanScott, rGaussPoisson, kppm, clusterfit.

Examples

homogeneous
X <- rMatClust(10, 0.05, 4)
inhomogeneous
ff <- function(x,y){ 4 * exp(2 * abs(x) - 1) }
Z <- as.im(ff, owin())
Y <- rMatClust(10, 0.05, Z)
YY <- rMatClust(ff, 0.05, 3)

rMaternI Simulate Matern Model I

Description

Generate a random point pattern, a simulated realisation of the Matérn Model I inhibition process
model.

rMaternI 1397

Usage

rMaternI(kappa, r, win = owin(c(0,1),c(0,1)), stationary=TRUE, ...,
nsim=1, drop=TRUE)

Arguments

kappa Intensity of the Poisson process of proposal points. A single positive number.

r Inhibition distance.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. Alternatively a higher-dimensional box of class
"box3" or "boxx".

stationary Logical. Whether to start with a stationary process of proposal points (stationary=TRUE)
or to generate the proposal points only inside the window (stationary=FALSE).

... Ignored.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This algorithm generates one or more realisations of Matérn’s Model I inhibition process inside the
window win.

The process is constructed by first generating a uniform Poisson point process of “proposal” points
with intensity kappa. If stationary = TRUE (the default), the proposal points are generated in a
window larger than win that effectively means the proposals are stationary. If stationary=FALSE
then the proposal points are only generated inside the window win.

A proposal point is then deleted if it lies within r units’ distance of another proposal point. Other-
wise it is retained.

The retained points constitute Matérn’s Model I.

Value

A point pattern if nsim=1, or a list of point patterns if nsim > 1. Each point pattern is normally an
object of class "ppp", but may be of class "pp3" or "ppx" depending on the window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Ute Hahn, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

rpoispp, rMatClust

1398 rMaternII

Examples

X <- rMaternI(20, 0.05)
Y <- rMaternI(20, 0.05, stationary=FALSE)

rMaternII Simulate Matern Model II

Description

Generate a random point pattern, a simulated realisation of the Matérn Model II inhibition process.

Usage

rMaternII(kappa, r, win = owin(c(0,1),c(0,1)), stationary=TRUE, ...,
nsim=1, drop=TRUE)

Arguments

kappa Intensity of the Poisson process of proposal points. A single positive number.

r Inhibition distance.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. Alternatively a higher-dimensional box of class
"box3" or "boxx".

stationary Logical. Whether to start with a stationary process of proposal points (stationary=TRUE)
or to generate the proposal points only inside the window (stationary=FALSE).

... Ignored.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This algorithm generates one or more realisations of Matérn’s Model II inhibition process inside
the window win.

The process is constructed by first generating a uniform Poisson point process of “proposal” points
with intensity kappa. If stationary = TRUE (the default), the proposal points are generated in a
window larger than win that effectively means the proposals are stationary. If stationary=FALSE
then the proposal points are only generated inside the window win.

Then each proposal point is marked by an “arrival time”, a number uniformly distributed in [0, 1]
independently of other variables.

A proposal point is deleted if it lies within r units’ distance of another proposal point that has an
earlier arrival time. Otherwise it is retained. The retained points constitute Matérn’s Model II.

The difference between Matérn’s Model I and II is the italicised statement above. Model II has a
higher intensity for the same parameter values.

rmh 1399

Value

A point pattern if nsim=1, or a list of point patterns if nsim > 1. Each point pattern is normally an
object of class "ppp", but may be of class "pp3" or "ppx" depending on the window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Ute Hahn, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

rpoispp, rMatClust, rMaternI

Examples

X <- rMaternII(20, 0.05)
Y <- rMaternII(20, 0.05, stationary=FALSE)

rmh Simulate point patterns using the Metropolis-Hastings algorithm.

Description

Generic function for running the Metropolis-Hastings algorithm to produce simulated realisations
of a point process model.

Usage

rmh(model, ...)

Arguments

model The point process model to be simulated.

... Further arguments controlling the simulation.

Details

The Metropolis-Hastings algorithm can be used to generate simulated realisations from a wide range
of spatial point processes. For caveats, see below.

The function rmh is generic; it has methods rmh.ppm (for objects of class "ppm") and rmh.default
(the default). The actual implementation of the Metropolis-Hastings algorithm is contained in
rmh.default. For details of its use, see rmh.ppm or rmh.default.

[If the model is a Poisson process, then Metropolis-Hastings is not used; the Poisson model is
generated directly using rpoispp or rmpoispp.]

1400 rmh.default

In brief, the Metropolis-Hastings algorithm is a Markov Chain, whose states are spatial point pat-
terns, and whose limiting distribution is the desired point process. After running the algorithm for
a very large number of iterations, we may regard the state of the algorithm as a realisation from the
desired point process.

However, there are difficulties in deciding whether the algorithm has run for “long enough”. The
convergence of the algorithm may indeed be extremely slow. No guarantees of convergence are
given!

While it is fashionable to decry the Metropolis-Hastings algorithm for its poor convergence and
other properties, it has the advantage of being easy to implement for a wide range of models.

Value

A point pattern, in the form of an object of class "ppp". See rmh.default for details.

Warning

As of version 1.22-1 of spatstat a subtle change was made to rmh.default(). We had noticed
that the results produced were sometimes not “scalable” in that two models, differing in effect only
by the units in which distances are measured and starting from the same seed, gave different results.
This was traced to an idiosyncracy of floating point arithmetic. The code of rmh.default() has
been changed so that the results produced by rmh are now scalable. The downside of this is that
code which users previously ran may now give results which are different from what they formerly
were.

In order to recover former behaviour (so that previous results can be reproduced) set spatstat.options(scalable=FALSE).
See the last example in the help for rmh.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rmh.default

Examples

See examples in rmh.default and rmh.ppm

rmh.default Simulate Point Process Models using the Metropolis-Hastings Algo-
rithm.

Description

Generates a random point pattern, simulated from a chosen point process model, using the Metropolis-
Hastings algorithm.

rmh.default 1401

Usage

Default S3 method:
rmh(model, start=NULL,

control=default.rmhcontrol(model),
...,
nsim=1, drop=TRUE, saveinfo=TRUE,
verbose=TRUE, snoop=FALSE)

Arguments

model Data specifying the point process model that is to be simulated.

start Data determining the initial state of the algorithm.

control Data controlling the iterative behaviour and termination of the algorithm.

... Further arguments passed to rmhcontrol or to trend functions in model.

nsim Number of simulated point patterns that should be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a single point pattern.

saveinfo Logical value indicating whether to save auxiliary information.

verbose Logical value indicating whether to print progress reports.

snoop Logical. If TRUE, activate the visual debugger.

Details

This function generates simulated realisations from any of a range of spatial point processes, using
the Metropolis-Hastings algorithm. It is the default method for the generic function rmh.

This function executes a Metropolis-Hastings algorithm with birth, death and shift proposals as
described in Geyer and Møller (1994).

The argument model specifies the point process model to be simulated. It is either a list, or an object
of class "rmhmodel", with the following components:

cif A character string specifying the choice of interpoint interaction for the point process.

par Parameter values for the conditional intensity function.

w (Optional) window in which the pattern is to be generated. An object of class "owin", or data
acceptable to as.owin.

trend Data specifying the spatial trend in the model, if it has a trend. This may be a function, a
pixel image (of class "im"), (or a list of functions or images if the model is multitype).
If the trend is a function or functions, any auxiliary arguments ... to rmh.default will be
passed to these functions, which should be of the form function(x,y,...).

types List of possible types, for a multitype point process.

For full details of these parameters, see rmhmodel.default.

The argument start determines the initial state of the Metropolis-Hastings algorithm. It is either
NULL, or an object of class "rmhstart", or a list with the following components:

1402 rmh.default

n.start Number of points in the initial point pattern. A single integer, or a vector of integers giving
the numbers of points of each type in a multitype point pattern. Incompatible with x.start.

x.start Initial point pattern configuration. Incompatible with n.start.
x.start may be a point pattern (an object of class "ppp"), or data which can be coerced to
this class by as.ppp, or an object with components x and y, or a two-column matrix. In the
last two cases, the window for the pattern is determined by model$w. In the first two cases,
if model$w is also present, then the final simulated pattern will be clipped to the window
model$w.

For full details of these parameters, see rmhstart.

The third argument control controls the simulation procedure (including conditional simulation),
iterative behaviour, and termination of the Metropolis-Hastings algorithm. It is either NULL, or a
list, or an object of class "rmhcontrol", with components:

p The probability of proposing a “shift” (as opposed to a birth or death) in the Metropolis-Hastings
algorithm.

q The conditional probability of proposing a death (rather than a birth) given that birth/death has
been chosen over shift.

nrep The number of repetitions or iterations to be made by the Metropolis-Hastings algorithm. It
should be large.

expand Either a numerical expansion factor, or a window (object of class "owin"). Indicates that
the process is to be simulated on a larger domain than the original data window w, then clipped
to w when the algorithm has finished.
The default is to expand the simulation window if the model is stationary and non-Poisson
(i.e. it has no trend and the interaction is not Poisson) and not to expand in all other cases.
If the model has a trend, then in order for expansion to be feasible, the trend must be given
either as a function, or an image whose bounding box is large enough to contain the expanded
window.

periodic A logical scalar; if periodic is TRUE we simulate a process on the torus formed by
identifying opposite edges of a rectangular window.

ptypes A vector of probabilities (summing to 1) to be used in assigning a random type to a new
point.

fixall A logical scalar specifying whether to condition on the number of points of each type.

nverb An integer specifying how often “progress reports” (which consist simply of the number of
repetitions completed) should be printed out. If nverb is left at 0, the default, the simulation
proceeds silently.

x.cond If this argument is present, then conditional simulation will be performed, and x.cond
specifies the conditioning points and the type of conditioning.

nsave,nburn If these values are specified, then intermediate states of the simulation algorithm will
be saved every nsave iterations, after an initial burn-in period of nburn iterations.

track Logical flag indicating whether to save the transition history of the simulations.

For full details of these parameters, see rmhcontrol. The control parameters can also be given in
the ... arguments.

rmh.default 1403

Value

A point pattern (an object of class "ppp", see ppp.object) or a list of point patterns.

The returned value has an attribute info containing modified versions of the arguments model,
start, and control which together specify the exact simulation procedure. The info attribute can
be printed (and is printed automatically by summary.ppp). For computational efficiency, the info
attribute can be omitted by setting saveinfo=FALSE.

The value of .Random.seed at the start of the simulations is also saved and returned as an attribute
seed.

If the argument track=TRUE was given (see rmhcontrol), the transition history of the algorithm
is saved, and returned as an attribute history. The transition history is a data frame containing
a factor proposaltype identifying the proposal type (Birth, Death or Shift) and a logical vec-
tor accepted indicating whether the proposal was accepted. The data frame also has columns
numerator, denominator which give the numerator and denominator of the Hastings ratio for the
proposal.

If the argument nsave was given (see rmhcontrol), the return value has an attribute saved which
is a list of point patterns, containing the intermediate states of the algorithm.

Conditional Simulation

There are several kinds of conditional simulation.

• Simulation conditional upon the number of points, that is, holding the number of points fixed.
To do this, set control$p (the probability of a shift) equal to 1. The number of points is then
determined by the starting state, which may be specified either by setting start$n.start to
be a scalar, or by setting the initial pattern start$x.start.

• In the case of multitype processes, it is possible to simulate the model conditionally upon the
number of points of each type, i.e. holding the number of points of each type to be fixed. To do
this, set control$p equal to 1 and control$fixall to be TRUE. The number of points is then
determined by the starting state, which may be specified either by setting start$n.start to
be an integer vector, or by setting the initial pattern start$x.start.

• Simulation conditional on the configuration observed in a sub-window, that is, requiring that,
inside a specified sub-window V , the simulated pattern should agree with a specified point
pattern y.To do this, set control$x.cond to equal the specified point pattern y, making sure
that it is an object of class "ppp" and that the window Window(control$x.cond) is the con-
ditioning window V .

• Simulation conditional on the presence of specified points, that is, requiring that the simulated
pattern should include a specified set of points. This is simulation from the Palm distribution
of the point process given a pattern y. To do this, set control$x.cond to be a data.frame
containing the coordinates (and marks, if appropriate) of the specified points.

For further information, see rmhcontrol.

Note that, when we simulate conditionally on the number of points, or conditionally on the number
of points of each type, no expansion of the window is possible.

1404 rmh.default

Visual Debugger

If snoop = TRUE, an interactive debugger is activated. On the current plot device, the debugger
displays the current state of the Metropolis-Hastings algorithm together with the proposed transition
to the next state. Clicking on this graphical display (using the left mouse button) will re-centre the
display at the clicked location. Surrounding this graphical display is an array of boxes representing
different actions. Clicking on one of the action boxes (using the left mouse button) will cause the
action to be performed. Debugger actions include:

• Zooming in or out

• Panning (shifting the field of view) left, right, up or down

• Jumping to the next iteration

• Skipping 10, 100, 1000, 10000 or 100000 iterations

• Jumping to the next Birth proposal (etc)

• Changing the fate of the proposal (i.e. changing whether the proposal is accepted or rejected)

• Dumping the current state and proposal to a file

• Printing detailed information at the terminal

• Exiting the debugger (so that the simulation algorithm continues without further interruption).

Right-clicking the mouse will also cause the debugger to exit.

Warnings

There is never a guarantee that the Metropolis-Hastings algorithm has converged to its limiting
distribution.

If start$x.start is specified then expand is set equal to 1 and simulation takes place in Window(x.start).
Any specified value for expand is simply ignored.

The presence of both a component w of model and a non-null value for Window(x.start) makes
sense ONLY if w is contained in Window(x.start).

For multitype processes make sure that, even if there is to be no trend corresponding to a particular
type, there is still a component (a NULL component) for that type, in the list.

Other models

In theory, any finite point process model can be simulated using the Metropolis-Hastings algorithm,
provided the conditional intensity is uniformly bounded.

In practice, the list of point process models that can be simulated using rmh.default is limited to
those that have been implemented in the package’s internal C code. More options will be added in
the future.

Note that the lookup conditional intensity function permits the simulation (in theory, to any desired
degree of approximation) of any pairwise interaction process for which the interaction depends only
on the distance between the pair of points.

rmh.default 1405

Reproducible simulations

If the user wants the simulation to be exactly reproducible (e.g. for a figure in a journal article,
where it is useful to have the figure consistent from draft to draft) then the state of the random
number generator should be set before calling rmh.default. This can be done either by calling
set.seed or by assigning a value to .Random.seed. In the examples below, we use set.seed.

If a simulation has been performed and the user now wants to repeat it exactly, the random seed
should be extracted from the simulated point pattern X by seed <-attr(x,"seed"), then assigned
to the system random nunber state by .Random.seed <-seed before calling rmh.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283 – 322.

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770.

Geyer, C.J. and Møller, J. (1994) Simulation procedures and likelihood inference for spatial point
processes. Scandinavian Journal of Statistics 21, 359–373.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

rmh, rmh.ppm, rStrauss, ppp, ppm, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton,
Fiksel, Geyer, Hardcore, LennardJones, MultiHard, MultiStrauss, MultiStraussHard, PairPiece,
Penttinen, Poisson, Softcore, Strauss, StraussHard, Triplets

Examples

if(interactive()) {
nr <- 1e5
nv <- 5000
ns <- 200

} else {
nr <- 20
nv <- 5
ns <- 20
oldopt <- spatstat.options()

1406 rmh.default

spatstat.options(expand=1.05)
}
set.seed(961018)

Strauss process.
mod01 <- list(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))
X1.strauss <- rmh(model=mod01,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X1.strauss)

Strauss process, conditioning on n = 42:
X2.strauss <- rmh(model=mod01,start=list(n.start=42),

control=list(p=1,nrep=nr,nverb=nv))

Tracking algorithm progress:
(a) saving intermediate states:
X <- rmh(model=mod01,start=list(n.start=ns),

control=list(nrep=nr, nsave=nr/5, nburn=nr/2))
Saved <- attr(X, "saved")
plot(Saved)

(b) inspecting transition history:
X <- rmh(model=mod01,start=list(n.start=ns),

control=list(nrep=nr, track=TRUE))
History <- attr(X, "history")
head(History)

Hard core process:
mod02 <- list(cif="hardcore",par=list(beta=2,hc=0.7),w=c(0,10,0,10))
X3.hardcore <- rmh(model=mod02,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X3.hardcore)

Strauss process equal to pure hardcore:
mod02s <- list(cif="strauss",par=list(beta=2,gamma=0,r=0.7),w=c(0,10,0,10))
X3.strauss <- rmh(model=mod02s,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

Strauss process in a polygonal window.
x <- c(0.55,0.68,0.75,0.58,0.39,0.37,0.19,0.26,0.42)
y <- c(0.20,0.27,0.68,0.99,0.80,0.61,0.45,0.28,0.33)
mod03 <- list(cif="strauss",par=list(beta=2000,gamma=0.6,r=0.07),

w=owin(poly=list(x=x,y=y)))
X4.strauss <- rmh(model=mod03,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X4.strauss)

Strauss process in a polygonal window, conditioning on n = 80.
X5.strauss <- rmh(model=mod03,start=list(n.start=ns),

control=list(p=1,nrep=nr,nverb=nv))

rmh.default 1407

Strauss process, starting off from X4.strauss, but with the
polygonal window replace by a rectangular one. At the end,
the generated pattern is clipped to the original polygonal window.
xxx <- X4.strauss
Window(xxx) <- as.owin(c(0,1,0,1))
X6.strauss <- rmh(model=mod03,start=list(x.start=xxx),

control=list(nrep=nr,nverb=nv))

Strauss with hardcore:
mod04 <- list(cif="straush",par=list(beta=2,gamma=0.2,r=0.7,hc=0.3),

w=c(0,10,0,10))
X1.straush <- rmh(model=mod04,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

Another Strauss with hardcore (with a perhaps surprising result):
mod05 <- list(cif="straush",par=list(beta=80,gamma=0.36,r=45,hc=2.5),

w=c(0,250,0,250))
X2.straush <- rmh(model=mod05,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

Pure hardcore (identical to X3.strauss).
mod06 <- list(cif="straush",par=list(beta=2,gamma=1,r=1,hc=0.7),

w=c(0,10,0,10))
X3.straush <- rmh(model=mod06,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

Soft core:
w <- c(0,10,0,10)
mod07 <- list(cif="sftcr",par=list(beta=0.8,sigma=0.1,kappa=0.5),

w=c(0,10,0,10))
X.sftcr <- rmh(model=mod07,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.sftcr)

Area-interaction process:
mod42 <- rmhmodel(cif="areaint",par=list(beta=2,eta=1.6,r=0.7),

w=c(0,10,0,10))
X.area <- rmh(model=mod42,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.area)

Triplets process
modtrip <- list(cif="triplets",par=list(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))
X.triplets <- rmh(model=modtrip,

start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X.triplets)

Multitype Strauss:
beta <- c(0.027,0.008)
gmma <- matrix(c(0.43,0.98,0.98,0.36),2,2)

1408 rmh.default

r <- matrix(c(45,45,45,45),2,2)
mod08 <- list(cif="straussm",par=list(beta=beta,gamma=gmma,radii=r),

w=c(0,250,0,250))
X1.straussm <- rmh(model=mod08,start=list(n.start=ns),

control=list(ptypes=c(0.75,0.25),nrep=nr,nverb=nv))
if(interactive()) plot(X1.straussm)

Multitype Strauss conditioning upon the total number
of points being 80:
X2.straussm <- rmh(model=mod08,start=list(n.start=ns),

control=list(p=1,ptypes=c(0.75,0.25),nrep=nr,
nverb=nv))

Conditioning upon the number of points of type 1 being 60
and the number of points of type 2 being 20:
X3.straussm <- rmh(model=mod08,start=list(n.start=c(60,20)),

control=list(fixall=TRUE,p=1,ptypes=c(0.75,0.25),
nrep=nr,nverb=nv))

Multitype Strauss hardcore:
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
mod09 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,

iradii=r,hradii=rhc),w=c(0,250,0,250))
X.straushm <- rmh(model=mod09,start=list(n.start=ns),

control=list(ptypes=c(0.75,0.25),nrep=nr,nverb=nv))

Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
tr3 <- function(x,y){x <- x/250; y <- y/250;

exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
log quadratic trend

tr4 <- function(x,y){x <- x/250; y <- y/250;
exp(-0.6*x+0.5*y)}
log linear trend

mod10 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,
iradii=r,hradii=rhc),w=c(0,250,0,250),
trend=list(tr3,tr4))

X1.straushm.trend <- rmh(model=mod10,start=list(n.start=ns),
control=list(ptypes=c(0.75,0.25),
nrep=nr,nverb=nv))

if(interactive()) plot(X1.straushm.trend)

Multitype Strauss hardcore with trends for each type, given as images:
bigwin <- square(250)
i1 <- as.im(tr3, bigwin)
i2 <- as.im(tr4, bigwin)
mod11 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,

iradii=r,hradii=rhc),w=bigwin,
trend=list(i1,i2))

X2.straushm.trend <- rmh(model=mod11,start=list(n.start=ns),
control=list(ptypes=c(0.75,0.25),expand=1,
nrep=nr,nverb=nv))

rmh.default 1409

Diggle, Gates, and Stibbard:
mod12 <- list(cif="dgs",par=list(beta=3600,rho=0.08),w=c(0,1,0,1))
X.dgs <- rmh(model=mod12,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.dgs)

Diggle-Gratton:
mod13 <- list(cif="diggra",

par=list(beta=1800,kappa=3,delta=0.02,rho=0.04),
w=square(1))

X.diggra <- rmh(model=mod13,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X.diggra)

Fiksel:
modFik <- list(cif="fiksel",

par=list(beta=180,r=0.15,hc=0.07,kappa=2,a= -1.0),
w=square(1))

X.fiksel <- rmh(model=modFik,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X.fiksel)

Geyer:
mod14 <- list(cif="geyer",par=list(beta=1.25,gamma=1.6,r=0.2,sat=4.5),

w=c(0,10,0,10))
X1.geyer <- rmh(model=mod14,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X1.geyer)

Geyer; same as a Strauss process with parameters
(beta=2.25,gamma=0.16,r=0.7):

mod15 <- list(cif="geyer",par=list(beta=2.25,gamma=0.4,r=0.7,sat=10000),
w=c(0,10,0,10))

X2.geyer <- rmh(model=mod15,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

mod16 <- list(cif="geyer",par=list(beta=8.1,gamma=2.2,r=0.08,sat=3))
data(redwood)
X3.geyer <- rmh(model=mod16,start=list(x.start=redwood),

control=list(periodic=TRUE,nrep=nr,nverb=nv))

Geyer, starting from the redwood data set, simulating
on a torus, and conditioning on n:
X4.geyer <- rmh(model=mod16,start=list(x.start=redwood),

control=list(p=1,periodic=TRUE,nrep=nr,nverb=nv))

Lookup (interaction function h_2 from page 76, Diggle (2003)):
r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
h <- 20*(r-0.05)
h[r<0.05] <- 0
h[r>0.10] <- 1

1410 rmh.default

mod17 <- list(cif="lookup",par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))
X.lookup <- rmh(model=mod17,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.lookup)

Strauss with trend
tr <- function(x,y){x <- x/250; y <- y/250;

exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}

beta <- 0.3
gmma <- 0.5
r <- 45
modStr <- list(cif="strauss",par=list(beta=beta,gamma=gmma,r=r),

w=square(250), trend=tr)
X1.strauss.trend <- rmh(model=modStr,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
Baddeley-Geyer
r <- seq(0,0.2,length=8)[-1]
gmma <- c(0.5,0.6,0.7,0.8,0.7,0.6,0.5)
mod18 <- list(cif="badgey",par=list(beta=4000, gamma=gmma,r=r,sat=5),

w=square(1))
X1.badgey <- rmh(model=mod18,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
mod19 <- list(cif="badgey",

par=list(beta=4000, gamma=gmma,r=r,sat=1e4),
w=square(1))

set.seed(1329)
X2.badgey <- rmh(model=mod18,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

Check:
h <- ((prod(gmma)/cumprod(c(1,gmma)))[-8])^2
hs <- stepfun(r,c(h,1))
mod20 <- list(cif="lookup",par=list(beta=4000,h=hs),w=square(1))
set.seed(1329)
X.check <- rmh(model=mod20,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
X2.badgey and X.check will be identical.

mod21 <- list(cif="badgey",par=list(beta=300,gamma=c(1,0.4,1),
r=c(0.035,0.07,0.14),sat=5), w=square(1))

X3.badgey <- rmh(model=mod21,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

Same result as Geyer model with beta=300, gamma=0.4, r=0.07,
sat = 5 (if seeds and control parameters are the same)

Or more simply:
mod22 <- list(cif="badgey",

par=list(beta=300,gamma=0.4,r=0.07, sat=5),
w=square(1))

X4.badgey <- rmh(model=mod22,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

Same again --- i.e. the BadGey model includes the Geyer model.

rmh.ppm 1411

Illustrating scalability.
Not run:
M1 <- rmhmodel(cif="strauss",par=list(beta=60,gamma=0.5,r=0.04),w=owin())
set.seed(496)
X1 <- rmh(model=M1,start=list(n.start=300))
M2 <- rmhmodel(cif="strauss",par=list(beta=0.6,gamma=0.5,r=0.4),

w=owin(c(0,10),c(0,10)))
set.seed(496)
X2 <- rmh(model=M2,start=list(n.start=300))
chk <- affine(X1,mat=diag(c(10,10)))
all.equal(chk,X2,check.attributes=FALSE)
Under the default spatstat options the foregoing all.equal()
will yield TRUE. Setting spatstat.options(scalable=FALSE) and
re-running the code will reveal differences between X1 and X2.

End(Not run)

if(!interactive()) spatstat.options(oldopt)

rmh.ppm Simulate from a Fitted Point Process Model

Description

Given a point process model fitted to data, generate a random simulation of the model, using the
Metropolis-Hastings algorithm.

Usage

S3 method for class 'ppm'
rmh(model, start=NULL,

control=default.rmhcontrol(model, w=w),
...,
w = NULL,
project=TRUE,
nsim=1, drop=TRUE, saveinfo=TRUE,
verbose=TRUE, new.coef=NULL)

Arguments

model A fitted point process model (object of class "ppm", see ppm.object) which it
is desired to simulate. This fitted model is usually the result of a call to ppm. See
Details below.

start Data determining the initial state of the Metropolis-Hastings algorithm. See
rmhstart for description of these arguments. Defaults to list(x.start=data.ppm(model))

control Data controlling the iterative behaviour of the Metropolis-Hastings algorithm.
See rmhcontrol for description of these arguments.

1412 rmh.ppm

... Further arguments passed to rmhcontrol, or to rmh.default, or to covariate
functions in the model.

w Optional. Window in which the simulations should be generated. Default is the
window of the original data.

project Logical flag indicating what to do if the fitted model is invalid (in the sense
that the values of the fitted coefficients do not specify a valid point process). If
project=TRUE the closest valid model will be simulated; if project=FALSE an
error will occur.

nsim Number of simulated point patterns that should be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a single point pattern.

saveinfo Logical value indicating whether to save auxiliary information.

verbose Logical flag indicating whether to print progress reports.

new.coef New values for the canonical parameters of the model. A numeric vector of the
same length as coef(model).

Details

This function generates simulated realisations from a point process model that has been fitted to
point pattern data. It is a method for the generic function rmh for the class "ppm" of fitted point
process models. To simulate other kinds of point process models, see rmh or rmh.default.

The argument model describes the fitted model. It must be an object of class "ppm" (see ppm.object),
and will typically be the result of a call to the point process model fitting function ppm.

The current implementation enables simulation from any fitted model involving the interactions
AreaInter, DiggleGratton, DiggleGatesStibbard, Geyer, Hardcore, MultiStrauss, MultiStraussHard,
PairPiece, Poisson, Strauss, StraussHard and Softcore, including nonstationary models. See
the examples.

It is also possible to simulate hybrids of several such models. See Hybrid and the examples.

It is possible that the fitted coefficients of a point process model may be “illegal”, i.e. that there may
not exist a mathematically well-defined point process with the given parameter values. For example,
a Strauss process with interaction parameter γ > 1 does not exist, but the model-fitting procedure
used in ppm will sometimes produce values of γ greater than 1. In such cases, if project=FALSE
then an error will occur, while if project=TRUE then rmh.ppm will find the nearest legal model
and simulate this model instead. (The nearest legal model is obtained by projecting the vector of
coefficients onto the set of valid coefficient vectors. The result is usually the Poisson process with
the same fitted intensity.)

The arguments start and control are lists of parameters determining the initial state and the
iterative behaviour, respectively, of the Metropolis-Hastings algorithm.

The argument start is passed directly to rmhstart. See rmhstart for details of the parameters of
the initial state, and their default values.

The argument control is first passed to rmhcontrol. Then if any additional arguments ... are
given, update.rmhcontrol is called to update the parameter values. See rmhcontrol for details of
the iterative behaviour parameters, and default.rmhcontrol for their default values.

rmh.ppm 1413

Note that if you specify expansion of the simulation window using the parameter expand (so that
the model will be simulated on a window larger than the original data window) then the model must
be capable of extrapolation to this larger window. This is usually not possible for models which
depend on external covariates, because the domain of a covariate image is usually the same as the
domain of the fitted model.

After extracting the relevant information from the fitted model object model, rmh.ppm invokes the
default rmh algorithm rmh.default, unless the model is Poisson. If the model is Poisson then
the Metropolis-Hastings algorithm is not needed, and the model is simulated directly, using one of
rpoispp, rmpoispp, rpoint or rmpoint.

See rmh.default for further information about the implementation, or about the Metropolis-Hastings
algorithm.

Value

A point pattern (an object of class "ppp"; see ppp.object) or a list of point patterns.

Warnings

See Warnings in rmh.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

simulate.ppm, rmh, rmhmodel, rmhcontrol, default.rmhcontrol, update.rmhcontrol, rmhstart,
rmh.default, ppp.object, ppm,

Interactions: AreaInter, DiggleGratton, DiggleGatesStibbard, Geyer, Hardcore, Hybrid,
MultiStrauss, MultiStraussHard, PairPiece, Poisson, Strauss, StraussHard, Softcore

Examples

live <- interactive()
op <- spatstat.options()
spatstat.options(rmh.nrep=1e5)
Nrep <- 1e5

X <- swedishpines
if(live) plot(X, main="Swedish Pines data")

Poisson process
fit <- ppm(X, ~1, Poisson())
Xsim <- rmh(fit)
if(live) plot(Xsim, main="simulation from fitted Poisson model")

Strauss process
fit <- ppm(X, ~1, Strauss(r=7))
Xsim <- rmh(fit)

1414 rmh.ppm

if(live) plot(Xsim, main="simulation from fitted Strauss model")

Not run:
Strauss process simulated on a larger window
then clipped to original window
Xsim <- rmh(fit, control=list(nrep=Nrep, expand=1.1, periodic=TRUE))
Xsim <- rmh(fit, nrep=Nrep, expand=2, periodic=TRUE)

End(Not run)

Not run:
X <- rSSI(0.05, 100)
piecewise-constant pairwise interaction function
fit <- ppm(X, ~1, PairPiece(seq(0.02, 0.1, by=0.01)))
Xsim <- rmh(fit)

End(Not run)

marked point pattern
Y <- amacrine

Not run:
marked Poisson models
fit <- ppm(Y)
fit <- ppm(Y,~marks)
fit <- ppm(Y,~polynom(x,2))
fit <- ppm(Y,~marks+polynom(x,2))
fit <- ppm(Y,~marks*polynom(x,y,2))
Ysim <- rmh(fit)

End(Not run)

multitype Strauss models
MS <- MultiStrauss(radii=matrix(0.07, ncol=2, nrow=2),

types = levels(Y$marks))
Not run:
fit <- ppm(Y ~marks, MS)
Ysim <- rmh(fit)

End(Not run)

fit <- ppm(Y ~ marks*polynom(x,y,2), MS)
Ysim <- rmh(fit)
if(live) plot(Ysim, main="simulation from fitted inhomogeneous Multitype Strauss")

spatstat.options(op)

Not run:
Hybrid model
fit <- ppm(redwood, ~1, Hybrid(A=Strauss(0.02), B=Geyer(0.1, 2)))
Y <- rmh(fit)

End(Not run)

rmhcontrol 1415

rmhcontrol Set Control Parameters for Metropolis-Hastings Algorithm.

Description

Sets up a list of parameters controlling the iterative behaviour of the Metropolis-Hastings algorithm.

Usage

rmhcontrol(...)

Default S3 method:
rmhcontrol(..., p=0.9, q=0.5, nrep=5e5,

expand=NULL, periodic=NULL, ptypes=NULL,
x.cond=NULL, fixall=FALSE, nverb=0,
nsave=NULL, nburn=nsave, track=FALSE,
pstage=c("block", "start"))

Arguments

... Arguments passed to methods.
p Probability of proposing a shift (as against a birth/death).
q Conditional probability of proposing a death given that a birth or death will be

proposed.
nrep Total number of steps (proposals) of Metropolis-Hastings algorithm that should

be run.
expand Simulation window or expansion rule. Either a window (object of class "owin")

or a numerical expansion factor, specifying that simulations are to be performed
in a domain other than the original data window, then clipped to the original data
window. This argument is passed to rmhexpand. A numerical expansion factor
can be in several formats: see rmhexpand.

periodic Logical value (or NULL) indicating whether to simulate “periodically”, i.e. iden-
tifying opposite edges of the rectangular simulation window. A NULL value
means “undecided.”

ptypes For multitype point processes, the distribution of the mark attached to a new
random point (when a birth is proposed)

x.cond Conditioning points for conditional simulation.
fixall (Logical) for multitype point processes, whether to fix the number of points of

each type.
nverb Progress reports will be printed every nverb iterations
nsave,nburn If these values are specified, then intermediate states of the simulation algorithm

will be saved every nsave iterations, after an initial burn-in period of nburn
iterations.

track Logical flag indicating whether to save the transition history of the simulations.
pstage Character string specifying when to generate proposal points. Either "start"

or "block".

1416 rmhcontrol

Details

The Metropolis-Hastings algorithm, implemented as rmh, generates simulated realisations of point
process models. The function rmhcontrol sets up a list of parameters which control the iterative
behaviour and termination of the Metropolis-Hastings algorithm, for use in a subsequent call to rmh.
It also checks that the parameters are valid.

(A separate function rmhstart determines the initial state of the algorithm, and rmhmodel deter-
mines the model to be simulated.)

The parameters are as follows:

p The probability of proposing a “shift” (as opposed to a birth or death) in the Metropolis-Hastings
algorithm.
If p = 1 then the algorithm only alters existing points, so the number of points never changes,
i.e. we are simulating conditionally upon the number of points. The number of points is
determined by the initial state (specified by rmhstart).
If p = 1 and fixall=TRUE and the model is a multitype point process model, then the algo-
rithm only shifts the locations of existing points and does not alter their marks (types). This is
equivalent to simulating conditionally upon the number of points of each type. These numbers
are again specified by the initial state.
If p = 1 then no expansion of the simulation window is allowed (see expand below).
The default value of p can be changed by setting the parameter rmh.p in spatstat.options.

q The conditional probability of proposing a death (rather than a birth) given that a shift is not
proposed. This is of course ignored if p is equal to 1.
The default value of q can be changed by setting the parameter rmh.q in spatstat.options.

nrep The number of repetitions or iterations to be made by the Metropolis-Hastings algorithm. It
should be large.
The default value of nrep can be changed by setting the parameter rmh.nrep in spatstat.options.

expand Either a number or a window (object of class "owin"). Indicates that the process is to
be simulated on a domain other than the original data window w, then clipped to w when the
algorithm has finished. This would often be done in order to approximate the simulation of
a stationary process (Geyer, 1999) or more generally a process existing in the whole plane,
rather than just in the window w.
If expand is a window object, it is taken as the larger domain in which simulation is performed.
If expand is numeric, it is interpreted as an expansion factor or expansion distance for de-
termining the simulation domain from the data window. It should be a named scalar, such as
expand=c(area=2), expand=c(distance=0.1), expand=c(length=1.2). See rmhexpand()
for more details. If the name is omitted, it defaults to area.
Expansion is not permitted if the number of points has been fixed by setting p = 1 or if the
starting configuration has been specified via the argument x.start in rmhstart.
If expand is NULL, this is interpreted to mean “not yet decided”. An expansion rule will be
determined at a later stage, using appropriate defaults. See rmhexpand.

periodic A logical value (or NULL) determining whether to simulate “periodically”. If periodic is
TRUE, and if the simulation window is a rectangle, then the simulation algorithm effectively
identifies opposite edges of the rectangle. Points near the right-hand edge of the rectangle are
deemed to be close to points near the left-hand edge. Periodic simulation usually gives a better

rmhcontrol 1417

approximation to a stationary point process. For periodic simulation, the simulation window
must be a rectangle. (The simulation window is determined by expand as described above.)
The value NULL means ‘undecided’. The decision is postponed until rmh is called. Depending
on the point process model to be simulated, rmh will then set periodic=TRUE if the simu-
lation window is expanded and the expanded simulation window is rectangular; otherwise
periodic=FALSE.
Note that periodic=TRUE is only permitted when the simulation window (i.e. the expanded
window) is rectangular.

ptypes A vector of probabilities (summing to 1) to be used in assigning a random type to a new
point. Defaults to a vector each of whose entries is 1/nt where nt is the number of types for
the process. Convergence of the simulation algorithm should be improved if ptypes is close
to the relative frequencies of the types which will result from the simulation.

x.cond If this argument is given, then conditional simulation will be performed, and x.cond spec-
ifies the location of the fixed points as well as the type of conditioning. It should be either
a point pattern (object of class "ppp") or a list(x,y) or a data.frame. See the section on
Conditional Simulation.

fixall A logical scalar specifying whether to condition on the number of points of each type. Mean-
ingful only if a marked process is being simulated, and if p = 1. A warning message is given
if fixall is set equal to TRUE when it is not meaningful.

nverb An integer specifying how often “progress reports” (which consist simply of the number of
repetitions completed) should be printed out. If nverb is left at 0, the default, the simulation
proceeds silently.

nsave,nburn If these integers are given, then the current state of the simulation algorithm (i.e.
the current random point pattern) will be saved every nsave iterations, starting from itera-
tion nburn. (Alternatively nsave can be a vector, specifying different numbers of iterations
between each successive save. This vector will be recycled until the end of the simulations.)

track Logical flag indicating whether to save the transition history of the simulations (i.e. infor-
mation specifying what type of proposal was made, and whether it was accepted or rejected,
for each iteration).

pstage Character string specifying the stage of the algorithm at which the randomised proposal
points should be generated. If pstage="start" or if nsave=0, the entire sequence of nrep
random proposal points is generated at the start of the algorithm. This is the original behaviour
of the code, and should be used in order to maintain consistency with older versions of spat-
stat. If pstage="block" and nsave > 0, then a set of nsave random proposal points will be
generated before each block of nsave iterations. This is much more efficient. The default is
pstage="block".

Value

An object of class "rmhcontrol", which is essentially a list of parameter values for the algorithm.

There is a print method for this class, which prints a sensible description of the parameters chosen.

Conditional Simulation

For a Gibbs point processX , the Metropolis-Hastings algorithm easily accommodates several kinds
of conditional simulation:

1418 rmhcontrol

conditioning on the total number of points: We fix the total number of points N(X) to be equal
to n. We simulate from the conditional distribution of X given N(X) = n.

conditioning on the number of points of each type: In a multitype point process, where Yj de-
notes the process of points of type j, we fix the number N(Yj) of points of type j to be
equal to nj , for j = 1, 2, . . . ,m. We simulate from the conditional distribution of X given
N(Yj) = nj for j = 1, 2, . . . ,m.

conditioning on the realisation in a subwindow: We require that the point processX should, within
a specified sub-window V , coincide with a specified point pattern y. We simulate from the
conditional distribution of X given X ∩ V = y.

Palm conditioning: We require that the point process X include a specified list of points y. We
simulate from the point process with probability density g(x) = cf(x ∪ y) where f is the
probability density of the original process X , and c is a normalising constant.

To achieve each of these types of conditioning we do as follows:

conditioning on the total number of points: Set p=1. The number of points is determined by the
initial state of the simulation: see rmhstart.

conditioning on the number of points of each type: Set p=1 and fixall=TRUE. The number of
points of each type is determined by the initial state of the simulation: see rmhstart.

conditioning on the realisation in a subwindow: Set x.cond to be a point pattern (object of class
"ppp"). Its window V=Window(x.cond) becomes the conditioning subwindow V .

Palm conditioning: Set x.cond to be a list(x,y) or data.frame with two columns containing
the coordinates of the points, or a list(x,y,marks) or data.frame with three columns con-
taining the coordinates and marks of the points.

The arguments x.cond, p and fixall can be combined.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

rmh, rmhmodel, rmhstart, rmhexpand, spatstat.options

Examples

parameters given as named arguments
c1 <- rmhcontrol(p=0.3,periodic=TRUE,nrep=1e6,nverb=1e5)

parameters given as a list

rmhexpand 1419

liz <- list(p=0.9, nrep=1e4)
c2 <- rmhcontrol(liz)

parameters given in rmhcontrol object
c3 <- rmhcontrol(c1)

rmhexpand Specify Simulation Window or Expansion Rule

Description

Specify a spatial domain in which point process simulations will be performed. Alternatively, spec-
ify a rule which will be used to determine the simulation window.

Usage

rmhexpand(x = NULL, ..., area = NULL, length = NULL, distance = NULL)

Arguments

x Any kind of data determining the simulation window or the expansion rule. A
window (object of class "owin") specifying the simulation window, a numerical
value specifying an expansion factor or expansion distance, a list containing one
numerical value, an object of class "rmhexpand", or NULL.

... Ignored.

area Area expansion factor. Incompatible with other arguments.

length Length expansion factor. Incompatible with other arguments.

distance Expansion distance (buffer width). Incompatible with other arguments.

Details

In the Metropolis-Hastings algorithm rmh for simulating spatial point processes, simulations are
usually carried out on a spatial domain that is larger than the original window of the point process
model, then subsequently clipped to the original window.

The command rmhexpand can be used to specify the simulation window, or to specify a rule which
will later be used to determine the simulation window from data.

The arguments are all incompatible: at most one of them should be given.

If the first argument x is given, it may be any of the following:

• a window (object of class "owin") specifying the simulation window.

• an object of class "rmhexpand" specifying the expansion rule.

• a single numerical value, without attributes. This will be interpreted as the value of the argu-
ment area.

• either c(area=v) or list(area=v), where v is a single numeric value. This will be inter-
preted as the value of the argument area.

1420 rmhexpand

• either c(length=v) or list(length=v), where v is a single numeric value. This will be
interpreted as the value of the argument length.

• either c(distance=v) or list(distance=v), where v is a single numeric value. This will be
interpreted as the value of the argument distance.

• NULL, meaning that the expansion rule is not yet determined.

If one of the arguments area, length or distance is given, then the simulation window is deter-
mined from the original data window as follows.

area The bounding box of the original data window will be extracted, and the simulation window
will be a scalar dilation of this rectangle. The argument area should be a numerical value,
greater than or equal to 1. It specifies the area expansion factor, i.e. the ratio of the area of the
simulation window to the area of the original point process window’s bounding box.

length The bounding box of the original data window will be extracted, and the simulation window
will be a scalar dilation of this rectangle. The argument length should be a numerical value,
greater than or equal to 1. It specifies the length expansion factor, i.e. the ratio of the width
(height) of the simulation window to the width (height) of the original point process window’s
bounding box.

distance The argument distance should be a numerical value, greater than or equal to 0. It speci-
fies the width of a buffer region around the original data window. If the original data window
is a rectangle, then this window is extended by a margin of width equal to distance around
all sides of the original rectangle. The result is a rectangle. If the original data window is
not a rectangle, then morphological dilation is applied using dilation.owin so that a margin
or buffer of width equal to distance is created around all sides of the original window. The
result is a non-rectangular window, typically of a different shape.

Value

An object of class "rmhexpand" specifying the expansion rule. There is a print method for this
class.

Undetermined expansion

If expand=NULL, this is interpreted to mean that the expansion rule is “not yet decided”. Expansion
will be decided later, by the simulation algorithm rmh. If the model cannot be expanded (for example
if the covariate data in the model are not available on a larger domain) then expansion will not occur.
If the model can be expanded, then if the point process model has a finite interaction range r, the
default is rmhexpand(distance=2*r), and otherwise rmhexpand(area=2).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

expand.owin to apply the rule to a window.

will.expand to test whether expansion will occur.

rmh, rmhcontrol for background details.

rmhmodel 1421

Examples

rmhexpand()
rmhexpand(2)
rmhexpand(1)
rmhexpand(length=1.5)
rmhexpand(distance=0.1)
rmhexpand(letterR)

rmhmodel Define Point Process Model for Metropolis-Hastings Simulation.

Description

Builds a description of a point process model for use in simulating the model by the Metropolis-
Hastings algorithm.

Usage

rmhmodel(...)

Arguments

... Arguments specifying the point process model in some format.

Details

Simulated realisations of many point process models can be generated using the Metropolis-Hastings
algorithm rmh. The algorithm requires the model to be specified in a particular format: an object of
class "rmhmodel".

The function rmhmodel takes a description of a point process model in some other format, and
converts it into an object of class "rmhmodel". It also checks that the parameters of the model are
valid.

The function rmhmodel is generic, with methods for

fitted point process models: an object of class "ppm", obtained by a call to the model-fitting func-
tion ppm. See rmhmodel.ppm.

lists: a list of parameter values in a certain format. See rmhmodel.list.

default: parameter values specified as separate arguments to See rmhmodel.default.

Value

An object of class "rmhmodel", which is essentially a list of parameter values for the model.

There is a print method for this class, which prints a sensible description of the model chosen.

1422 rmhmodel.default

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770. Scandinavian Journal of Statistics 21, 359–373.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

rmhmodel.ppm, rmhmodel.default, rmhmodel.list, rmh, rmhcontrol, rmhstart, ppm, Strauss,
Softcore, StraussHard, Triplets, MultiStrauss, MultiStraussHard, DiggleGratton, PairPiece
Penttinen

rmhmodel.default Build Point Process Model for Metropolis-Hastings Simulation.

Description

Builds a description of a point process model for use in simulating the model by the Metropolis-
Hastings algorithm.

Usage

Default S3 method:
rmhmodel(...,

cif=NULL, par=NULL, w=NULL, trend=NULL, types=NULL)

Arguments

... Ignored.

cif Character string specifying the choice of model

par Parameters of the model

w Spatial window in which to simulate

trend Specification of the trend in the model

types A vector of factor levels defining the possible marks, for a multitype process.

rmhmodel.default 1423

Details

The generic function rmhmodel takes a description of a point process model in some format, and
converts it into an object of class "rmhmodel" so that simulations of the model can be generated
using the Metropolis-Hastings algorithm rmh.

This function rmhmodel.default is the default method. It builds a description of the point process
model from the simple arguments listed.

The argument cif is a character string specifying the choice of interpoint interaction for the point
process. The current options are

’areaint’ Area-interaction process.

’badgey’ Baddeley-Geyer (hybrid Geyer) process.

’dgs’ Diggle, Gates and Stibbard (1987) process

’diggra’ Diggle and Gratton (1984) process

’fiksel’ Fiksel double exponential process (Fiksel, 1984).

’geyer’ Saturation process (Geyer, 1999).

’hardcore’ Hard core process

’lennard’ Lennard-Jones process

’lookup’ General isotropic pairwise interaction process, with the interaction function specified
via a “lookup table”.

’multihard’ Multitype hardcore process

’penttinen’ The Penttinen process

’strauss’ The Strauss process

’straush’ The Strauss process with hard core

’sftcr’ The Softcore process

’straussm’ The multitype Strauss process

’straushm’ Multitype Strauss process with hard core

’triplets’ Triplets process (Geyer, 1999).

It is also possible to specify a hybrid of these interactions in the sense of Baddeley et al (2013). In
this case, cif is a character vector containing names from the list above. For example, cif=c('strauss','geyer')
would specify a hybrid of the Strauss and Geyer models.

The argument par supplies parameter values appropriate to the conditional intensity function being
invoked. For the interactions listed above, these parameters are:

areaint: (Area-interaction process.) A named list with components beta,eta,r which are respec-
tively the “base” intensity, the scaled interaction parameter and the interaction radius.

badgey: (Baddeley-Geyer process.) A named list with components beta (the “base” intensity),
gamma (a vector of non-negative interaction parameters), r (a vector of interaction radii, of the
same length as gamma, in increasing order), and sat (the saturation parameter(s); this may be
a scalar, or a vector of the same length as gamma and r; all values should be at least 1). Note
that because of the presence of “saturation” the gamma values are permitted to be larger than
1.

1424 rmhmodel.default

dgs: (Diggle, Gates, and Stibbard process. See Diggle, Gates, and Stibbard (1987)) A named list
with components beta and rho. This process has pairwise interaction function equal to

e(t) = sin2

(
πt

2ρ

)
for t < ρ, and equal to 1 for t ≥ ρ.

diggra: (Diggle-Gratton process. See Diggle and Gratton (1984) and Diggle, Gates and Stibbard
(1987).) A named list with components beta, kappa, delta and rho. This process has
pairwise interaction function e(t) equal to 0 for t < δ, equal to(

t− δ
ρ− δ

)κ
for δ ≤ t < ρ, and equal to 1 for t ≥ ρ. Note that here we use the symbol κ where Diggle,
Gates, and Stibbard use β since we reserve the symbol β for an intensity parameter.

fiksel: (Fiksel double exponential process, see Fiksel (1984)) A named list with components beta,
r, hc, kappa and a. This process has pairwise interaction function e(t) equal to 0 for t < hc,
equal to

exp(a exp(−κt))

for hc ≤ t < r, and equal to 1 for t ≥ r.

geyer: (Geyer’s saturation process. See Geyer (1999).) A named list with components beta,
gamma, r, and sat. The components beta, gamma, r are as for the Strauss model, and sat is the
“saturation” parameter. The model is Geyer’s “saturation” point process model, a modification
of the Strauss process in which we effectively impose an upper limit (sat) on the number of
neighbours which will be counted as close to a given point.
Explicitly, a saturation point process with interaction radius r, saturation threshold s, and
parameters β and γ, is the point process in which each point xi in the pattern X contributes a
factor

βγmin(s,t(xi,X))

to the probability density of the point pattern, where t(xi, X) denotes the number of “r-close
neighbours” of xi in the pattern X .
If the saturation threshold s is infinite, the Geyer process reduces to a Strauss process with
interaction parameter γ2 rather than γ.

hardcore: (Hard core process.) A named list with components beta and hc where beta is the
base intensity and hc is the hard core distance. This process has pairwise interaction function
e(t) equal to 1 if t > hc and 0 if t <= hc.

lennard: (Lennard-Jones process.) A named list with components sigma and epsilon, where
sigma is the characteristic diameter and epsilon is the well depth. See LennardJones for
explanation.

multihard: (Multitype hard core process.) A named list with components beta and hradii, where
beta is a vector of base intensities for each type of point, and hradii is a matrix of hard core
radii between each pair of types.

penttinen: (Penttinen process.) A named list with components beta,gamma,r which are respec-
tively the “base” intensity, the pairwise interaction parameter, and the disc radius. Note that
gamma must be less than or equal to 1. See Penttinen for explanation. (Note that there is also
an algorithm for perfect simulation of the Penttinen process, rPenttinen)

rmhmodel.default 1425

strauss: (Strauss process.) A named list with components beta,gamma,r which are respectively
the “base” intensity, the pairwise interaction parameter and the interaction radius. Note that
gamma must be less than or equal to 1. (Note that there is also an algorithm for perfect simula-
tion of the Strauss process, rStrauss)

straush: (Strauss process with hardcore.) A named list with entries beta,gamma,r,hc where
beta, gamma, and r are as for the Strauss process, and hc is the hardcore radius. Of course hc
must be less than r.

sftcr: (Softcore process.) A named list with components beta,sigma,kappa. Again beta is a
“base” intensity. The pairwise interaction between two points u 6= v is

exp

{
−
(

σ

||u− v||

)2/κ
}

Note that it is necessary that 0 < κ < 1.

straussm: (Multitype Strauss process.) A named list with components

• beta: A vector of “base” intensities, one for each possible type.
• gamma: A symmetric matrix of interaction parameters, with γij pertaining to the interac-

tion between type i and type j.
• radii: A symmetric matrix of interaction radii, with entries rij pertaining to the inter-

action between type i and type j.

straushm: (Multitype Strauss process with hardcore.) A named list with components beta and
gamma as for straussm and two “radii” components:

• iradii: the interaction radii
• hradii: the hardcore radii

which are both symmetric matrices of nonnegative numbers. The entries of hradii must be
less than the corresponding entries of iradii.

triplets: (Triplets process.) A named list with components beta,gamma,r which are respectively
the “base” intensity, the triplet interaction parameter and the interaction radius. Note that
gamma must be less than or equal to 1.

lookup: (Arbitrary pairwise interaction process with isotropic interaction.) A named list with
components beta, r, and h, or just with components beta and h.
This model is the pairwise interaction process with an isotropic interaction given by any cho-
sen functionH . Each pair of points xi, xj in the point pattern contributes a factorH(d(xi, xj))
to the probability density, where d denotes distance and H is the pair interaction function.
The component beta is a (positive) scalar which determines the “base” intensity of the pro-
cess.
In this implementation, H must be a step function. It is specified by the user in one of two
ways.

• as a vector of values: If r is present, then r is assumed to give the locations of jumps in
the function H , while the vector h gives the corresponding values of the function.
Specifically, the interaction function H(t) takes the value h[1] for distances t in the
interval [0,r[1]); takes the value h[i] for distances t in the interval [r[i-1],r[i])
where i = 2, . . . , n; and takes the value 1 for t ≥ r[n]. Here n denotes the length of r.
The components r and h must be numeric vectors of equal length. The r values must be
strictly positive, and sorted in increasing order.

1426 rmhmodel.default

The entries of h must be non-negative. If any entry of h is greater than 1, then the entry
h[1] must be 0 (otherwise the specified process is non-existent).
Greatest efficiency is achieved if the values of r are equally spaced.
[Note: The usage of r and h has changed from the previous usage in spatstat versions
1.4-7 to 1.5-1, in which ascending order was not required, and in which the first entry of
r had to be 0.]

• as a stepfun object: If r is absent, then h must be an object of class "stepfun" specifying
a step function. Such objects are created by stepfun.
The stepfun object h must be right-continuous (which is the default using stepfun.)
The values of the step function must all be nonnegative. The values must all be less than 1
unless the function is identically zero on some initial interval [0, r). The rightmost value
(the value of h(t) for large t) must be equal to 1.
Greatest efficiency is achieved if the jumps (the “knots” of the step function) are equally
spaced.

For a hybrid model, the argument par should be a list, of the same length as cif, such that par[[i]]
is a list of the parameters required for the interaction cif[i]. See the Examples.

The optional argument trend determines the spatial trend in the model, if it has one. It should be a
function or image (or a list of such, if the model is multitype) to provide the value of the trend at an
arbitrary point.

trend given as a function: A trend function may be a function of any number of arguments, but
the first two must be the x, y coordinates of a point. Auxiliary arguments may be passed to
the trend function at the time of simulation, via the ... argument to rmh.
The function must be vectorized. That is, it must be capable of accepting vector valued x and
y arguments. Put another way, it must be capable of calculating the trend value at a number of
points, simultaneously, and should return the vector of corresponding trend values.

trend given as an image: An image (see im.object) provides the trend values at a grid of points
in the observation window and determines the trend value at other points as the value at the
nearest grid point.

Note that the trend or trends must be non-negative; no checking is done for this.

The optional argument w specifies the window in which the pattern is to be generated. If specified,
it must be in a form which can be coerced to an object of class owin by as.owin.

The optional argument types specifies the possible types in a multitype point process. If the model
being simulated is multitype, and types is not specified, then this vector defaults to 1:ntypes
where ntypes is the number of types.

Value

An object of class "rmhmodel", which is essentially a list of parameter values for the model.

There is a print method for this class, which prints a sensible description of the model chosen.

Warnings in Respect of “lookup”

For the lookup cif, the entries of the r component of par must be strictly positive and sorted into
ascending order.

rmhmodel.default 1427

Note that if you specify the lookup pairwise interaction function via stepfun() the arguments x
and y which are passed to stepfun() are slightly different from r and h: length(y) is equal to
1+length(x); the final entry of y must be equal to 1 — i.e. this value is explicitly supplied by the
user rather than getting tacked on internally.

The step function returned by stepfun() must be right continuous (this is the default behaviour of
stepfun()) otherwise an error is given.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models
and their implementation. Journal of Statistical Software 55:11, 1–43. http://www.jstatsoft.
org/v55/i11/

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770. Scandinavian Journal of Statistics 21, 359–373.

Fiksel, T. (1984) Estimation of parameterized pair potentials of marked and non-marked Gibbsian
point processes. Electronische Informationsverabeitung und Kybernetika 20, 270–278.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

rmh, rmhcontrol, rmhstart, ppm, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton,
Fiksel, Geyer, Hardcore, Hybrid, LennardJones, MultiStrauss, MultiStraussHard, PairPiece,
Penttinen, Poisson, Softcore, Strauss, StraussHard and Triplets.

Examples

Strauss process:
mod01 <- rmhmodel(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))
mod01
The above could also be simulated using 'rStrauss'

Strauss with hardcore:
mod04 <- rmhmodel(cif="straush",par=list(beta=2,gamma=0.2,r=0.7,hc=0.3),

w=owin(c(0,10),c(0,5)))

Hard core:
mod05 <- rmhmodel(cif="hardcore",par=list(beta=2,hc=0.3),

w=square(5))

http://www.jstatsoft.org/v55/i11/
http://www.jstatsoft.org/v55/i11/

1428 rmhmodel.default

Soft core:
w <- square(10)
mod07 <- rmhmodel(cif="sftcr",

par=list(beta=0.8,sigma=0.1,kappa=0.5),
w=w)

Penttinen process:
modpen <- rmhmodel(cif="penttinen",par=list(beta=2,gamma=0.6,r=1),

w=c(0,10,0,10))

Area-interaction process:
mod42 <- rmhmodel(cif="areaint",par=list(beta=2,eta=1.6,r=0.7),

w=c(0,10,0,10))

Baddeley-Geyer process:
mod99 <- rmhmodel(cif="badgey",par=list(beta=0.3,

gamma=c(0.2,1.8,2.4),r=c(0.035,0.07,0.14),sat=5),
w=unit.square())

Multitype Strauss:
beta <- c(0.027,0.008)
gmma <- matrix(c(0.43,0.98,0.98,0.36),2,2)
r <- matrix(c(45,45,45,45),2,2)
mod08 <- rmhmodel(cif="straussm",

par=list(beta=beta,gamma=gmma,radii=r),
w=square(250))

specify types
mod09 <- rmhmodel(cif="straussm",

par=list(beta=beta,gamma=gmma,radii=r),
w=square(250),
types=c("A", "B"))

Multitype Hardcore:
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
mod08hard <- rmhmodel(cif="multihard",

par=list(beta=beta,hradii=rhc),
w=square(250),
types=c("A", "B"))

Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
ri <- matrix(c(45,45,45,45),2,2)
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
tr3 <- function(x,y){x <- x/250; y <- y/250;

exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
log quadratic trend

tr4 <- function(x,y){x <- x/250; y <- y/250;
exp(-0.6*x+0.5*y)}
log linear trend

mod10 <- rmhmodel(cif="straushm",par=list(beta=beta,gamma=gmma,

rmhmodel.list 1429

iradii=ri,hradii=rhc),w=c(0,250,0,250),
trend=list(tr3,tr4))

Triplets process:
mod11 <- rmhmodel(cif="triplets",par=list(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))

Lookup (interaction function h_2 from page 76, Diggle (2003)):
r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
h <- 20*(r-0.05)
h[r<0.05] <- 0
h[r>0.10] <- 1
mod17 <- rmhmodel(cif="lookup",par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))

hybrid model
modhy <- rmhmodel(cif=c('strauss', 'geyer'),

par=list(list(beta=100,gamma=0.5,r=0.05),
list(beta=1, gamma=0.7,r=0.1, sat=2)),

w=square(1))
modhy

rmhmodel.list Define Point Process Model for Metropolis-Hastings Simulation.

Description

Given a list of parameters, builds a description of a point process model for use in simulating the
model by the Metropolis-Hastings algorithm.

Usage

S3 method for class 'list'
rmhmodel(model, ...)

Arguments

model A list of parameters. See Details.

... Optional list of additional named parameters.

Details

The generic function rmhmodel takes a description of a point process model in some format, and
converts it into an object of class "rmhmodel" so that simulations of the model can be generated
using the Metropolis-Hastings algorithm rmh.

This function rmhmodel.list is the method for lists. The argument model should be a named list
of parameters of the form

list(cif,par,w,trend,types)

1430 rmhmodel.list

where cif and par are required and the others are optional. For details about these components,
see rmhmodel.default.

The subsequent arguments ... (if any) may also have these names, and they will take precedence
over elements of the list model.

Value

An object of class "rmhmodel", which is essentially a validated list of parameter values for the
model.

There is a print method for this class, which prints a sensible description of the model chosen.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770. Scandinavian Journal of Statistics 21, 359–373.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

rmhmodel, rmhmodel.default, rmhmodel.ppm, rmh, rmhcontrol, rmhstart, ppm, Strauss, Softcore,
StraussHard, MultiStrauss, MultiStraussHard, DiggleGratton, PairPiece

Examples

Strauss process:
mod01 <- list(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))
mod01 <- rmhmodel(mod01)

Strauss with hardcore:
mod04 <- list(cif="straush",par=list(beta=2,gamma=0.2,r=0.7,hc=0.3),

w=owin(c(0,10),c(0,5)))
mod04 <- rmhmodel(mod04)

Soft core:
w <- square(10)
mod07 <- list(cif="sftcr",

par=list(beta=0.8,sigma=0.1,kappa=0.5),

rmhmodel.ppm 1431

w=w)
mod07 <- rmhmodel(mod07)

Multitype Strauss:
beta <- c(0.027,0.008)
gmma <- matrix(c(0.43,0.98,0.98,0.36),2,2)
r <- matrix(c(45,45,45,45),2,2)
mod08 <- list(cif="straussm",

par=list(beta=beta,gamma=gmma,radii=r),
w=square(250))

mod08 <- rmhmodel(mod08)

specify types
mod09 <- rmhmodel(list(cif="straussm",

par=list(beta=beta,gamma=gmma,radii=r),
w=square(250),
types=c("A", "B")))

Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
ri <- matrix(c(45,45,45,45),2,2)
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
tr3 <- function(x,y){x <- x/250; y <- y/250;

exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
log quadratic trend

tr4 <- function(x,y){x <- x/250; y <- y/250;
exp(-0.6*x+0.5*y)}
log linear trend

mod10 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,
iradii=ri,hradii=rhc),w=c(0,250,0,250),
trend=list(tr3,tr4))

mod10 <- rmhmodel(mod10)

Lookup (interaction function h_2 from page 76, Diggle (2003)):
r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
h <- 20*(r-0.05)
h[r<0.05] <- 0
h[r>0.10] <- 1
mod17 <- list(cif="lookup",par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))
mod17 <- rmhmodel(mod17)

rmhmodel.ppm Interpret Fitted Model for Metropolis-Hastings Simulation.

Description

Converts a fitted point process model into a format that can be used to simulate the model by the
Metropolis-Hastings algorithm.

1432 rmhmodel.ppm

Usage

S3 method for class 'ppm'
rmhmodel(model, w, ..., verbose=TRUE, project=TRUE,

control=rmhcontrol(),
new.coef=NULL)

Arguments

model Fitted point process model (object of class "ppm").

w Optional. Window in which the simulations should be generated.

... Ignored.

verbose Logical flag indicating whether to print progress reports while the model is being
converted.

project Logical flag indicating what to do if the fitted model does not correspond to a
valid point process. See Details.

control Parameters determining the iterative behaviour of the simulation algorithm. Passed
to rmhcontrol.

new.coef New values for the canonical parameters of the model. A numeric vector of the
same length as coef(model).

Details

The generic function rmhmodel takes a description of a point process model in some format, and
converts it into an object of class "rmhmodel" so that simulations of the model can be generated
using the Metropolis-Hastings algorithm rmh.

This function rmhmodel.ppm is the method for the class "ppm" of fitted point process models.

The argument model should be a fitted point process model (object of class "ppm") typically ob-
tained from the model-fitting function ppm. This will be converted into an object of class "rmhmodel".

The optional argument w specifies the window in which the pattern is to be generated. If specified,
it must be in a form which can be coerced to an object of class owin by as.owin.

Not all fitted point process models obtained from ppm can be simulated. We have not yet imple-
mented simulation code for the LennardJones and OrdThresh models.

It is also possible that a fitted point process model obtained from ppm may not correspond to a valid
point process. For example a fitted model with the Strauss interpoint interaction may have any
value of the interaction parameter γ; however the Strauss process is not well-defined for γ > 1
(Kelly and Ripley, 1976).

The argument project determines what to do in such cases. If project=FALSE, a fatal error will
occur. If project=TRUE, the fitted model parameters will be adjusted to the nearest values which
do correspond to a valid point process. For example a Strauss process with γ > 1 will be projected
to a Strauss process with γ = 1, equivalent to a Poisson process.

Value

An object of class "rmhmodel", which is essentially a list of parameter values for the model.

There is a print method for this class, which prints a sensible description of the model chosen.

rmhstart 1433

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

Kelly, F.P. and Ripley, B.D. (1976) On Strauss’s model for clustering. Biometrika 63, 357–360.

See Also

rmhmodel, rmhmodel.list, rmhmodel.default, rmh, rmhcontrol, rmhstart, ppm, AreaInter,
BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore, Hybrid, LennardJones,
MultiStrauss, MultiStraussHard, PairPiece, Penttinen, Poisson, Softcore, Strauss, StraussHard
and Triplets.

Examples

fit1 <- ppm(cells ~1, Strauss(0.07))
mod1 <- rmhmodel(fit1)

fit2 <- ppm(cells ~x, Geyer(0.07, 2))
mod2 <- rmhmodel(fit2)

fit3 <- ppm(cells ~x, Hardcore(0.07))
mod3 <- rmhmodel(fit3)

Then rmh(mod1), etc

rmhstart Determine Initial State for Metropolis-Hastings Simulation.

Description

Builds a description of the initial state for the Metropolis-Hastings algorithm.

Usage

rmhstart(start, ...)
Default S3 method:

rmhstart(start=NULL, ..., n.start=NULL, x.start=NULL)

1434 rmhstart

Arguments

start An existing description of the initial state in some format. Incompatible with
the arguments listed below.

... There should be no other arguments.
n.start Number of initial points (to be randomly generated). Incompatible with x.start.
x.start Initial point pattern configuration. Incompatible with n.start.

Details

Simulated realisations of many point process models can be generated using the Metropolis-Hastings
algorithm implemented in rmh.

This function rmhstart creates a full description of the initial state of the Metropolis-Hastings al-
gorithm, including possibly the initial state of the random number generator, for use in a subsequent
call to rmh. It also checks that the initial state is valid.

The initial state should be specified either by the first argument start or by the other arguments
n.start, x.start etc.

If start is a list, then it should have components named n.start or x.start, with the same
interpretation as described below.

The arguments are:

n.start The number of “initial” points to be randomly (uniformly) generated in the simulation
window w. Incompatible with x.start.
For a multitype point process, n.start may be a vector (of length equal to the number of
types) giving the number of points of each type to be generated.
If expansion of the simulation window is selected (see the argument expand to rmhcontrol),
then the actual number of starting points in the simulation will be n.start multiplied by the
expansion factor (ratio of the areas of the expanded window and original window).
For faster convergence of the Metropolis-Hastings algorithm, the value of n.start should be
roughly equal to (an educated guess at) the expected number of points for the point process
inside the window.

x.start Initial point pattern configuration. Incompatible with n.start.
x.start may be a point pattern (an object of class ppp), or an object which can be coerced to
this class by as.ppp, or a dataset containing vectors x and y.
If x.start is specified, then expansion of the simulation window (the argument expand of
rmhcontrol) is not permitted.

The parameters n.start and x.start are incompatible.

Value

An object of class "rmhstart", which is essentially a list of parameters describing the initial point
pattern and (optionally) the initial state of the random number generator.

There is a print method for this class, which prints a sensible description of the initial state.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

rMosaicField 1435

See Also

rmh, rmhcontrol, rmhmodel

Examples

30 random points
a <- rmhstart(n.start=30)
a

a particular point pattern
b <- rmhstart(x.start=cells)

rMosaicField Mosaic Random Field

Description

Generate a realisation of a random field which is piecewise constant on the tiles of a given tessella-
tion.

Usage

rMosaicField(X,
rgen = function(n) { sample(0:1, n, replace = TRUE)},
...,
rgenargs=NULL)

Arguments

X A tessellation (object of class "tess").

... Arguments passed to as.mask determining the pixel resolution.

rgen Function that generates random values for the tiles of the tessellation.

rgenargs List containing extra arguments that should be passed to rgen (typically speci-
fying parameters of the distribution of the values).

Details

This function generates a realisation of a random field which is piecewise constant on the tiles of
the given tessellation X. The values in each tile are independent and identically distributed.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

1436 rMosaicSet

See Also

rpoislinetess, rMosaicSet

Examples

X <- rpoislinetess(3)
plot(rMosaicField(X, runif))
plot(rMosaicField(X, runif, dimyx=256))
plot(rMosaicField(X, rnorm, rgenargs=list(mean=10, sd=2)))

plot(rMosaicField(dirichlet(runifpoint(30)), rnorm))

rMosaicSet Mosaic Random Set

Description

Generate a random set by taking a random selection of tiles of a given tessellation.

Usage

rMosaicSet(X, p=0.5)

Arguments

X A tessellation (object of class "tess").

p Probability of including a given tile. A number strictly between 0 and 1.

Details

Given a tessellation X, this function randomly selects some of the tiles of X, including each tile with
probability p independently of the other tiles. The selected tiles are then combined to form a set in
the plane.

One application of this is Switzer’s (1965) example of a random set which has a Markov property.
It is constructed by generating X according to a Poisson line tessellation (see rpoislinetess).

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

rmpoint 1437

References

Switzer, P. A random set process in the plane with a Markovian property. Annals of Mathematical
Statistics 36 (1965) 1859–1863.

See Also

rpoislinetess, rMosaicField

Examples

Switzer's random set
X <- rpoislinetess(3)
plot(rMosaicSet(X, 0.5), col="green", border=NA)

another example
plot(rMosaicSet(dirichlet(runifpoint(30)), 0.4))

rmpoint Generate N Random Multitype Points

Description

Generate a random multitype point pattern with a fixed number of points, or a fixed number of
points of each type.

Usage

rmpoint(n, f=1, fmax=NULL, win=unit.square(),
types, ptypes,
..., giveup=1000, verbose=FALSE,
nsim=1, drop=TRUE)

Arguments

n Number of marked points to generate. Either a single number specifying the
total number of points, or a vector specifying the number of points of each type.

f The probability density of the multitype points, usually un-normalised. Either a
constant, a vector, a function f(x,y,m,...), a pixel image, a list of functions
f(x,y,...) or a list of pixel images.

fmax An upper bound on the values of f. If missing, this number will be estimated.

win Window in which to simulate the pattern. Ignored if f is a pixel image or list of
pixel images.

types All the possible types for the multitype pattern.

ptypes Optional vector of probabilities for each type.

... Arguments passed to f if it is a function.

1438 rmpoint

giveup Number of attempts in the rejection method after which the algorithm should
stop trying to generate new points.

verbose Flag indicating whether to report details of performance of the simulation algo-
rithm.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates random multitype point patterns consisting of a fixed number of points.

Three different models are available:

I. Random location and type: If n is a single number and the argument ptypes is missing, then
n independent, identically distributed random multitype points are generated. Their locations
(x[i],y[i]) and types m[i] have joint probability density proportional to f(x, y,m).

II. Random type, and random location given type: If n is a single number and ptypes is given,
then n independent, identically distributed random multitype points are generated. Their types
m[i] have probability distribution ptypes. Given the types, the locations (x[i],y[i]) have
conditional probability density proportional to f(x, y,m).

III. Fixed types, and random location given type: If n is a vector, then we generate n[i] inde-
pendent, identically distributed random points of type types[i]. For points of type m the
conditional probability density of location (x, y) is proportional to f(x, y,m).

Note that the density f is normalised in different ways in Model I and Models II and III. In Model I
the normalised joint density is g(x, y,m) = f(x, y,m)/Z where

Z =
∑
m

∫ ∫
λ(x, y,m)dxdy

while in Models II and III the normalised conditional density is g(x, y | m) = f(x, y,m)/Zm
where

Zm =

∫ ∫
λ(x, y,m)dx dy.

In Model I, the marginal distribution of types is pm = Zm/Z.

The unnormalised density f may be specified in any of the following ways.

single number: If f is a single number, the conditional density of location given type is uniform.
That is, the points of each type are uniformly distributed. In Model I, the marginal distribution
of types is also uniform (all possible types have equal probability).

vector: If f is a numeric vector, the conditional density of location given type is uniform. That
is, the points of each type are uniformly distributed. In Model I, the marginal distribution of
types is proportional to the vector f. In Model II, the marginal distribution of types is ptypes,
that is, the values in f are ignored. The argument types defaults to names(f), or if that is
null, 1:length(f).

rmpoint 1439

function: If f is a function, it will be called in the form f(x,y,m,...) at spatial location (x,y)
for points of type m. In Model I, the joint probability density of location and type is propor-
tional to f(x,y,m,...). In Models II and III, the conditional probability density of location
(x,y) given type m is proportional to f(x,y,m,...). The function f must work correctly
with vectors x, y and m, returning a vector of function values. (Note that m will be a factor with
levels types.) The value fmax must be given and must be an upper bound on the values of
f(x,y,m,...) for all locations (x,y) inside the window win and all types m. The argument
types must be given.

list of functions: If f is a list of functions, then the functions will be called in the form f[[i]](x,y,...)
at spatial location (x,y) for points of type types[i]. In Model I, the joint probability density
of location and type is proportional to f[[m]](x,y,...). In Models II and III, the condi-
tional probability density of location (x,y) given type m is proportional to f[[m]](x,y,...).
The function f[[i]] must work correctly with vectors x and y, returning a vector of func-
tion values. The value fmax must be given and must be an upper bound on the values of
f[[i]](x,y,...) for all locations (x,y) inside the window win. The argument types de-
faults to names(f), or if that is null, 1:length(f).

pixel image: If f is a pixel image object of class "im" (see im.object), the unnormalised density
at a location (x,y) for points of any type is equal to the pixel value of f for the pixel nearest
to (x,y). In Model I, the marginal distribution of types is uniform. The argument win is
ignored; the window of the pixel image is used instead. The argument types must be given.

list of pixel images: If f is a list of pixel images, then the image f[[i]] determines the density val-
ues of points of type types[i]. The argument win is ignored; the window of the pixel image
is used instead. The argument types defaults to names(f), or if that is null, 1:length(f).

The implementation uses the rejection method. For Model I, rmpoispp is called repeatedly until
n points have been generated. It gives up after giveup calls if there are still fewer than n points.
For Model II, the types are first generated according to ptypes, then the locations of the points of
each type are generated using rpoint. For Model III, the locations of the points of each type are
generated using rpoint.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, owin.object

Examples

abc <- c("a","b","c")

Model I

1440 rmpoint

rmpoint(25, types=abc)
rmpoint(25, 1, types=abc)
25 points, equal probability for each type, uniformly distributed locations

rmpoint(25, function(x,y,m) {rep(1, length(x))}, types=abc)
same as above
rmpoint(25, list(function(x,y){rep(1, length(x))},

function(x,y){rep(1, length(x))},
function(x,y){rep(1, length(x))}),

types=abc)
same as above

rmpoint(25, function(x,y,m) { x }, types=abc)
25 points, equal probability for each type,
locations nonuniform with density proportional to x

rmpoint(25, function(x,y,m) { ifelse(m == "a", 1, x) }, types=abc)
rmpoint(25, list(function(x,y) { rep(1, length(x)) },

function(x,y) { x },
function(x,y) { x }),
types=abc)

25 points, UNEQUAL probabilities for each type,
type "a" points uniformly distributed,
type "b" and "c" points nonuniformly distributed.

Model II

rmpoint(25, 1, types=abc, ptypes=rep(1,3)/3)
rmpoint(25, 1, types=abc, ptypes=rep(1,3))
25 points, equal probability for each type,
uniformly distributed locations

rmpoint(25, function(x,y,m) {rep(1, length(x))}, types=abc, ptypes=rep(1,3))
same as above
rmpoint(25, list(function(x,y){rep(1, length(x))},

function(x,y){rep(1, length(x))},
function(x,y){rep(1, length(x))}),

types=abc, ptypes=rep(1,3))
same as above

rmpoint(25, function(x,y,m) { x }, types=abc, ptypes=rep(1,3))
25 points, equal probability for each type,
locations nonuniform with density proportional to x

rmpoint(25, function(x,y,m) { ifelse(m == "a", 1, x) }, types=abc, ptypes=rep(1,3))
25 points, EQUAL probabilities for each type,
type "a" points uniformly distributed,
type "b" and "c" points nonuniformly distributed.

Model III

rmpoint(c(12, 8, 4), 1, types=abc)

rmpoispp 1441

12 points of type "a",
8 points of type "b",
4 points of type "c",
each uniformly distributed

rmpoint(c(12, 8, 4), function(x,y,m) { ifelse(m=="a", 1, x)}, types=abc)
rmpoint(c(12, 8, 4), list(function(x,y) { rep(1, length(x)) },

function(x,y) { x },
function(x,y) { x }),

types=abc)

12 points of type "a", uniformly distributed
8 points of type "b", nonuniform
4 points of type "c", nonuniform

#########

Randomising an existing point pattern:
same numbers of points of each type, uniform random locations (Model III)
rmpoint(table(marks(demopat)), 1, win=Window(demopat))

same total number of points, distribution of types estimated from X,
uniform random locations (Model II)
rmpoint(npoints(demopat), 1, types=levels(marks(demopat)), win=Window(demopat),

ptypes=table(marks(demopat)))

rmpoispp Generate Multitype Poisson Point Pattern

Description

Generate a random point pattern, a realisation of the (homogeneous or inhomogeneous) multitype
Poisson process.

Usage

rmpoispp(lambda, lmax=NULL, win, types, ...,
nsim=1, drop=TRUE, warnwin=!missing(win))

Arguments

lambda Intensity of the multitype Poisson process. Either a single positive number, a
vector, a function(x,y,m,...), a pixel image, a list of functions function(x,y,...),
or a list of pixel images.

lmax An upper bound for the value of lambda. May be omitted

1442 rmpoispp

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. Ignored if lambda is a pixel image or list of im-
ages.

types All the possible types for the multitype pattern.

... Arguments passed to lambda if it is a function.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

warnwin Logical value specifying whether to issue a warning when win is ignored.

Details

This function generates a realisation of the marked Poisson point process with intensity lambda.

Note that the intensity function λ(x, y,m) is the average number of points of type m per unit area
near the location (x, y). Thus a marked point process with a constant intensity of 10 and three
possible types will have an average of 30 points per unit area, with 10 points of each type on
average.

The intensity function may be specified in any of the following ways.

single number: If lambda is a single number, then this algorithm generates a realisation of the
uniform marked Poisson process inside the window win with intensity lambda for each type.
The total intensity of points of all types is lambda * length(types). The argument types
must be given and determines the possible types in the multitype pattern.

vector: If lambda is a numeric vector, then this algorithm generates a realisation of the stationary
marked Poisson process inside the window win with intensity lambda[i] for points of type
types[i]. The total intensity of points of all types is sum(lambda). The argument types
defaults to names(lambda), or if that is null, 1:length(lambda).

function: If lambda is a function, the process has intensity lambda(x,y,m,...) at spatial location
(x,y) for points of type m. The function lambda must work correctly with vectors x, y and m,
returning a vector of function values. (Note that m will be a factor with levels equal to types.)
The value lmax, if present, must be an upper bound on the values of lambda(x,y,m,...) for
all locations (x,y) inside the window win and all types m. The argument types must be given.

list of functions: If lambda is a list of functions, the process has intensity lambda[[i]](x,y,...)
at spatial location (x,y) for points of type types[i]. The function lambda[[i]] must work
correctly with vectors x and y, returning a vector of function values. The value lmax, if
given, must be an upper bound on the values of lambda(x,y,...) for all locations (x,y)
inside the window win. The argument types defaults to names(lambda), or if that is null,
1:length(lambda).

pixel image: If lambda is a pixel image object of class "im" (see im.object), the intensity at a
location (x,y) for points of any type is equal to the pixel value of lambda for the pixel nearest
to (x,y). The argument win is ignored; the window of the pixel image is used instead. The
argument types must be given.

list of pixel images: If lambda is a list of pixel images, then the image lambda[[i]] determines
the intensity of points of type types[i]. The argument win is ignored; the window of the
pixel image is used instead. The argument types defaults to names(lambda), or if that is null,
1:length(lambda).

rmpoispp 1443

If lmax is missing, an approximate upper bound will be calculated.

To generate an inhomogeneous Poisson process the algorithm uses “thinning”: it first generates a
uniform Poisson process of intensity lmax for points of each type m, then randomly deletes or retains
each point independently, with retention probability p(x, y,m) = λ(x, y,m)/lmax.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1. Each
point pattern is multitype (it carries a vector of marks which is a factor).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rpoispp for unmarked Poisson point process; rmpoint for a fixed number of random marked
points; ppp.object, owin.object.

Examples

uniform bivariate Poisson process with total intensity 100 in unit square
pp <- rmpoispp(50, types=c("a","b"))

stationary bivariate Poisson process with intensity A = 30, B = 70
pp <- rmpoispp(c(30,70), types=c("A","B"))
pp <- rmpoispp(c(30,70))

works in any window
data(letterR)
pp <- rmpoispp(c(30,70), win=letterR, types=c("A","B"))

inhomogeneous lambda(x,y,m)
note argument 'm' is a factor
lam <- function(x,y,m) { 50 * (x^2 + y^3) * ifelse(m=="A", 2, 1)}
pp <- rmpoispp(lam, win=letterR, types=c("A","B"))
extra arguments
lam <- function(x,y,m,scal) { scal * (x^2 + y^3) * ifelse(m=="A", 2, 1)}
pp <- rmpoispp(lam, win=letterR, types=c("A","B"), scal=50)

list of functions lambda[[i]](x,y)
lams <- list(function(x,y){50 * x^2}, function(x,y){20 * abs(y)})
pp <- rmpoispp(lams, win=letterR, types=c("A","B"))
pp <- rmpoispp(lams, win=letterR)
functions with extra arguments
lams <- list(function(x,y,scal){5 * scal * x^2},

function(x,y, scal){2 * scal * abs(y)})
pp <- rmpoispp(lams, win=letterR, types=c("A","B"), scal=10)
pp <- rmpoispp(lams, win=letterR, scal=10)

1444 rNeymanScott

florid example
lams <- list(function(x,y){

100*exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
log quadratic trend

,
function(x,y){

100*exp(-0.6*x+0.5*y)
}
log linear trend

)
X <- rmpoispp(lams, win=unit.square(), types=c("on", "off"))

pixel image
Z <- as.im(function(x,y){30 * (x^2 + y^3)}, letterR)
pp <- rmpoispp(Z, types=c("A","B"))

list of pixel images
ZZ <- list(

as.im(function(x,y){20 * (x^2 + y^3)}, letterR),
as.im(function(x,y){40 * (x^3 + y^2)}, letterR))

pp <- rmpoispp(ZZ, types=c("A","B"))
pp <- rmpoispp(ZZ)

randomising an existing point pattern
rmpoispp(intensity(amacrine), win=Window(amacrine))

rNeymanScott Simulate Neyman-Scott Process

Description

Generate a random point pattern, a realisation of the Neyman-Scott cluster process.

Usage

rNeymanScott(kappa, expand, rcluster, win = owin(c(0,1),c(0,1)),
..., lmax=NULL, nsim=1, drop=TRUE,
nonempty=TRUE, saveparents=TRUE)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

expand Size of the expansion of the simulation window for generating parent points. A
single non-negative number.

rcluster A function which generates random clusters, or other data specifying the random
cluster mechanism. See Details.

rNeymanScott 1445

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

... Arguments passed to rcluster.

lmax Optional. Upper bound on the values of kappa when kappa is a function or pixel
image.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

nonempty Logical. If TRUE (the default), a more efficient algorithm is used, in which par-
ents are generated conditionally on having at least one offspring point. If FALSE,
parents are generated even if they have no offspring. Both choices are valid;
the default is recommended unless you need to simulate all the parent points for
some other purpose.

saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

Details

This algorithm generates a realisation of the general Neyman-Scott process, with the cluster mech-
anism given by the function rcluster.

First, the algorithm generates a Poisson point process of “parent” points with intensity kappa in
an expanded window as explained below. Here kappa may be a single positive number, a function
kappa(x,y), or a pixel image object of class "im" (see im.object). See rpoispp for details.

Second, each parent point is replaced by a random cluster of points. These clusters are combined
together to yield a single point pattern, and the restriction of this pattern to the window win is then
returned as the result of rNeymanScott.

The expanded window consists of as.rectangle(win) extended by the amount expand in each
direction. The size of the expansion is saved in the attribute "expand" and may be extracted by
attr(X,"expand") where X is the generated point pattern.

The argument rcluster specifies the cluster mechanism. It may be either:

• A function which will be called to generate each random cluster (the offspring points of each
parent point). The function should expect to be called in the form rcluster(x0,y0,...)
for a parent point at a location (x0,y0). The return value of rcluster should specify the
coordinates of the points in the cluster; it may be a list containing elements x,y, or a point
pattern (object of class "ppp"). If it is a marked point pattern then the result of rNeymanScott
will be a marked point pattern.

• A list(mu,f) where mu specifies the mean number of offspring points in each cluster, and
f generates the random displacements (vectors pointing from the parent to the offspring).
In this case, the number of offspring in a cluster is assumed to have a Poisson distribution,
implying that the Neyman-Scott process is also a Cox process. The first element mu should
be either a single nonnegative number (interpreted as the mean of the Poisson distribution of
cluster size) or a pixel image or a function(x,y) giving a spatially varying mean cluster size
(interpreted in the sense of Waagepetersen, 2007). The second element f should be a function
that will be called once in the form f(n) to generate n independent and identically distributed
displacement vectors (i.e. as if there were a cluster of size n with a parent at the origin (0,0)).

1446 rNeymanScott

The function should return a point pattern (object of class "ppp") or something acceptable to
xy.coords that specifies the coordinates of n points.

If required, the intermediate stages of the simulation (the parents and the individual clusters) can
also be extracted from the return value of rNeymanScott through the attributes "parents" and
"parentid". The attribute "parents" is the point pattern of parent points. The attribute "parentid"
is an integer vector specifying the parent for each of the points in the simulated pattern.

Neyman-Scott models where kappa is a single number and rcluster = list(mu,f) can be fitted
to data using the function kppm.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point
pattern: see Details.

Inhomogeneous Neyman-Scott Processes

There are several different ways of specifying a spatially inhomogeneous Neyman-Scott process:

• The point process of parent points can be inhomogeneous. If the argument kappa is a function(x,y)
or a pixel image (object of class "im"), then it is taken as specifying the intensity function of
an inhomogeneous Poisson process according to which the parent points are generated.

• The number of points in a typical cluster can be spatially varying. If the argument rcluster is
a list of two elements mu,f and the first entry mu is a function(x,y) or a pixel image (object
of class "im"), then mu is interpreted as the reference intensity for offspring points, in the sense
of Waagepetersen (2007). For a given parent point, the offspring constitute a Poisson process
with intensity function equal to mu(x,y) * g(x-x0,y-y0) where g is the probability density
of the offspring displacements generated by the function f.

Equivalently, clusters are first generated with a constant expected number of points per cluster:
the constant is mumax, the maximum of mu. Then the offspring are randomly thinned (see
rthin) with spatially-varying retention probabilities given by mu/mumax.

• The entire mechanism for generating a cluster can be dependent on the location of the parent
point. If the argument rcluster is a function, then the cluster associated with a parent point
at location (x0,y0) will be generated by calling rcluster(x0,y0,...). The behaviour of
this function could depend on the location (x0,y0) in any fashion.

Note that if kappa is an image, the spatial domain covered by this image must be large enough
to include the expanded window in which the parent points are to be generated. This requirement
means that win must be small enough so that the expansion of as.rectangle(win) is contained
in the spatial domain of kappa. As a result, one may wind up having to simulate the process in a
window smaller than what is really desired.

In the first two cases, the intensity of the Neyman-Scott process is equal to kappa * mu if at least
one of kappa or mu is a single number, and is otherwise equal to an integral involving kappa, mu
and f.

rnoise 1447

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Neyman, J. and Scott, E.L. (1958) A statistical approach to problems of cosmology. Journal of the
Royal Statistical Society, Series B 20, 1–43.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

rpoispp, rThomas, rGaussPoisson, rMatClust, rCauchy, rVarGamma

Examples

each cluster consist of 10 points in a disc of radius 0.2
nclust <- function(x0, y0, radius, n) {

return(runifdisc(n, radius, centre=c(x0, y0)))
}

plot(rNeymanScott(10, 0.2, nclust, radius=0.2, n=5))

multitype Neyman-Scott process (each cluster is a multitype process)
nclust2 <- function(x0, y0, radius, n, types=c("a", "b")) {

X <- runifdisc(n, radius, centre=c(x0, y0))
M <- sample(types, n, replace=TRUE)
marks(X) <- M
return(X)

}
plot(rNeymanScott(15,0.1,nclust2, radius=0.1, n=5))

rnoise Random Pixel Noise

Description

Generate a pixel image whose pixel values are random numbers following a specified probability
distribution.

Usage

rnoise(rgen = runif, w = square(1), ...)

1448 roc

Arguments

rgen Random generator for the pixel values. A function in the R language.

w Window (region or pixel raster) in which to generate the image. Any data ac-
ceptable to as.mask.

... Arguments, matched by name, to be passed to rgen to specify the parameters of
the probability distribution, or passed to as.mask to control the pixel resolution.

Details

The argument w could be a window (class "owin"), a pixel image (class "im") or other data. It is
first converted to a binary mask by as.mask using any relevant arguments in

Then each pixel inside the window (i.e. with logical value TRUE in the mask) is assigned a random
numerical value by calling the function rgen.

The function rgen would typically be one of the standard random variable generators like runif
(uniformly distributed random values) or rnorm (Gaussian random values). Its first argument n is
the number of values to be generated. Other arguments to rgen must be matched by name.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

as.mask, as.im, Distributions.

Examples

plot(rnoise(), main="Uniform noise")
plot(rnoise(rnorm, dimyx=32, mean=2, sd=1),

main="White noise")

roc Receiver Operating Characteristic

Description

Computes the Receiver Operating Characteristic curve for a point pattern or a fitted point process
model.

roc 1449

Usage

roc(X, ...)

S3 method for class 'ppp'
roc(X, covariate, ..., high = TRUE)

S3 method for class 'ppm'
roc(X, ...)

S3 method for class 'kppm'
roc(X, ...)

S3 method for class 'lpp'
roc(X, covariate, ..., high = TRUE)

S3 method for class 'lppm'
roc(X, ...)

Arguments

X Point pattern (object of class "ppp" or "lpp") or fitted point process model
(object of class "ppm" or "kppm" or "lppm").

covariate Spatial covariate. Either a function(x,y), a pixel image (object of class "im"),
or one of the strings "x" or "y" indicating the Cartesian coordinates.

... Arguments passed to as.mask controlling the pixel resolution for calculations.

high Logical value indicating whether the threshold operation should favour high or
low values of the covariate.

Details

This command computes Receiver Operating Characteristic curve. The area under the ROC is
computed by auc.

For a point pattern X and a covariate Z, the ROC is a plot showing the ability of the covariate to
separate the spatial domain into areas of high and low density of points. For each possible threshold
z, the algorithm calculates the fraction a(z) of area in the study region where the covariate takes
a value greater than z, and the fraction b(z) of data points for which the covariate value is greater
than z. The ROC is a plot of b(z) against a(z) for all thresholds z.

For a fitted point process model, the ROC shows the ability of the fitted model intensity to separate
the spatial domain into areas of high and low density of points. The ROC is not a diagnostic for the
goodness-of-fit of the model (Lobo et al, 2007).

Value

Function value table (object of class "fv") which can be plotted to show the ROC curve.

1450 rose

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2007) AUC: a misleading measure of the perfor-
mance of predictive distribution models. Global Ecology and Biogeography 17(2) 145–151.

Nam, B.-H. and D’Agostino, R. (2002) Discrimination index, the area under the ROC curve. Pages
267–279 in Huber-Carol, C., Balakrishnan, N., Nikulin, M.S. and Mesbah, M., Goodness-of-fit tests
and model validity, Birkhäuser, Basel.

See Also

auc

Examples

plot(roc(swedishpines, "x"))
fit <- ppm(swedishpines ~ x+y)
plot(roc(fit))

rose Rose Diagram

Description

Plots a rose diagram (rose of directions), the analogue of a histogram or density plot for angular
data.

Usage

rose(x, ...)

Default S3 method:
rose(x, breaks = NULL, ...,

weights=NULL,
nclass = NULL,
unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main)

S3 method for class 'histogram'
rose(x, ...,

unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main, labels=TRUE, at=NULL, do.plot = TRUE)

rose 1451

S3 method for class 'density'
rose(x, ...,

unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main, labels=TRUE, at=NULL, do.plot = TRUE)

S3 method for class 'fv'
rose(x, ...,

unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main, labels=TRUE, at=NULL, do.plot = TRUE)

Arguments

x Data to be plotted. A numeric vector containing angles, or a histogram ob-
ject containing a histogram of angular values, or a density object containing a
smooth density estimate for angular data, or an fv object giving a function of an
angular argument.

breaks, nclass Arguments passed to hist to determine the histogram breakpoints.

... Additional arguments passed to polygon controlling the appearance of the plot
(or passed from rose.default to hist to control the calculation of the his-
togram).

unit The unit in which the angles are expressed.

start The starting direction for measurement of angles, that is, the spatial direction
which corresponds to a measured angle of zero. Either a character string giving
a compass direction ("N" for north, "S" for south, "E" for east, or "W" for west)
or a number giving the angle from the the horizontal (East) axis to the starting di-
rection. For example, if unit="degree" and clockwise=FALSE, then start=90
and start="N" are equivalent. The default is to measure angles anti-clockwise
from the horizontal axis (East direction).

clockwise Logical value indicating whether angles increase in the clockwise direction (clockwise=TRUE)
or anti-clockwise, counter-clockwise direction (clockwise=FALSE, the default).

weights Optional vector of numeric weights associated with x.

main Optional main title for the plot.

labels Either a logical value indicating whether to plot labels next to the tick marks, or
a vector of labels for the tick marks.

at Optional vector of angles at which tick marks should be plotted. Set at=numeric(0)
to suppress tick marks.

do.plot Logical value indicating whether to really perform the plot.

Details

A rose diagram or rose of directions is the analogue of a histogram or bar chart for data which
represent angles in two dimensions. The bars of the bar chart are replaced by circular sectors in the
rose diagram.

1452 rotate

The function rose is generic, with a default method for numeric data, and methods for histograms
and function tables.

If x is a numeric vector, it must contain angular values in the range 0 to 360 (if unit="degree") or
in the range 0 to 2 * pi (if unit="radian"). A histogram of the data will first be computed using
hist. Then the rose diagram of this histogram will be plotted by rose.histogram.

If x is an object of class "histogram" produced by the function hist, representing the histogram of
angular data, then the rose diagram of the densities (rather than the counts) in this histogram object
will be plotted.

If x is an object of class "density" produced by circdensity or density.default, representing
a kernel smoothed density estimate of angular data, then the rose diagram of the density estimate
will be plotted.

If x is a function value table (object of class "fv") then the argument of the function will be inter-
preted as an angle, and the value of the function will be interpreted as the radius.

By default, angles are interpreted using the mathematical convention where the zero angle is the
horizontal x axis, and angles increase anti-clockwise. Other conventions can be specified us-
ing the arguments start and clockwise. Standard compass directions are obtained by setting
unit="degree", start="N" and clockwise=TRUE.

Value

A window (class "owin") containing the plotted region.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

fv, hist, circdensity, density.default.

Examples

ang <- runif(1000, max=360)
rose(ang, col="grey")
rose(ang, col="grey", start="N", clockwise=TRUE)

rotate Rotate

Description

Applies a rotation to any two-dimensional object, such as a point pattern or a window.

rotate.im 1453

Usage

rotate(X, ...)

Arguments

X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), or a window (object of class "owin").

... Data specifying the rotation.

Details

This is generic. Methods are provided for point patterns (rotate.ppp) and windows (rotate.owin).

Value

Another object of the same type, representing the result of rotating X through the specified angle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rotate.ppp, rotate.owin

rotate.im Rotate a Pixel Image

Description

Rotates a pixel image

Usage

S3 method for class 'im'
rotate(X, angle=pi/2, ..., centre=NULL)

Arguments

X A pixel image (object of class "im").

angle Angle of rotation, in radians.

... Ignored.

centre Centre of rotation. Either a vector of length 2, or a character string (partially
matched to "centroid", "midpoint" or "bottomleft"). The default is the
coordinate origin c(0,0).

1454 rotate.infline

Details

The image is rotated by the angle specified. Angles are measured in radians, anticlockwise. The
default is to rotate the image 90 degrees anticlockwise.

Value

Another object of class "im" representing the rotated pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine.im, shift.im, rotate

Examples

Z <- distmap(letterR)
X <- rotate(Z)
Not run:
plot(X)

End(Not run)
Y <- rotate(X, centre="midpoint")

rotate.infline Rotate or Shift Infinite Lines

Description

Given the coordinates of one or more infinite straight lines in the plane, apply a rotation or shift.

Usage

S3 method for class 'infline'
rotate(X, angle = pi/2, ...)

S3 method for class 'infline'
shift(X, vec = c(0,0), ...)

S3 method for class 'infline'
reflect(X)

S3 method for class 'infline'
flipxy(X)

rotate.infline 1455

Arguments

X Object of class "infline" representing one or more infinite straight lines in the
plane.

angle Angle of rotation, in radians.
vec Translation (shift) vector: a numeric vector of length 2, or a list(x,y), or a

point pattern containing one point.
... Ignored.

Details

These functions are methods for the generic shift, rotate, reflect and flipxy for the class
"infline".

An object of class "infline" represents one or more infinite lines in the plane.

Value

Another "infline" object representing the result of the transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

infline

Examples

L <- infline(v=0.5)

plot(square(c(-1,1)), main="rotate lines", type="n")
points(0, 0, pch=3)
plot(L, col="green")
plot(rotate(L, pi/12), col="red")
plot(rotate(L, pi/6), col="red")
plot(rotate(L, pi/4), col="red")

L <- infline(p=c(0.4, 0.9), theta=pi* c(0.2, 0.6))

plot(square(c(-1,1)), main="shift lines", type="n")
L <- infline(p=c(0.7, 0.8), theta=pi* c(0.2, 0.6))
plot(L, col="green")
plot(shift(L, c(-0.5, -0.4)), col="red")

plot(square(c(-1,1)), main="reflect lines", type="n")
points(0, 0, pch=3)
L <- infline(p=c(0.7, 0.8), theta=pi* c(0.2, 0.6))
plot(L, col="green")
plot(reflect(L), col="red")

1456 rotate.owin

rotate.owin Rotate a Window

Description

Rotates a window

Usage

S3 method for class 'owin'
rotate(X, angle=pi/2, ..., rescue=TRUE, centre=NULL)

Arguments

X A window (object of class "owin").

angle Angle of rotation.

rescue Logical. If TRUE, the rotated window will be processed by rescue.rectangle.

... Optional arguments passed to as.mask controlling the resolution of the rotated
window, if X is a binary pixel mask. Ignored if X is not a binary mask.

centre Centre of rotation. Either a vector of length 2, or a character string (partially
matched to "centroid", "midpoint" or "bottomleft"). The default is the
coordinate origin c(0,0).

Details

Rotates the window by the specified angle. Angles are measured in radians, anticlockwise. The
default is to rotate the window 90 degrees anticlockwise. The centre of rotation is the origin, by
default, unless centre is specified.

Value

Another object of class "owin" representing the rotated window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin.object

rotate.ppp 1457

Examples

w <- owin(c(0,1),c(0,1))
v <- rotate(w, pi/3)
e <- rotate(w, pi/2, centre="midpoint")
Not run:
plot(v)

End(Not run)
w <- as.mask(letterR)
v <- rotate(w, pi/5)

rotate.ppp Rotate a Point Pattern

Description

Rotates a point pattern

Usage

S3 method for class 'ppp'
rotate(X, angle=pi/2, ..., centre=NULL)

Arguments

X A point pattern (object of class "ppp").

angle Angle of rotation.

... Arguments passed to rotate.owin affecting the handling of the observation
window, if it is a binary pixel mask.

centre Centre of rotation. Either a vector of length 2, or a character string (partially
matched to "centroid", "midpoint" or "bottomleft"). The default is the
coordinate origin c(0,0).

Details

The points of the pattern, and the window of observation, are rotated about the origin by the angle
specified. Angles are measured in radians, anticlockwise. The default is to rotate the pattern 90
degrees anticlockwise. If the points carry marks, these are preserved.

Value

Another object of class "ppp" representing the rotated point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

1458 rotate.psp

See Also

ppp.object, rotate.owin

Examples

data(cells)
X <- rotate(cells, pi/3)
Not run:
plot(X)

End(Not run)

rotate.psp Rotate a Line Segment Pattern

Description

Rotates a line segment pattern

Usage

S3 method for class 'psp'
rotate(X, angle=pi/2, ..., centre=NULL)

Arguments

X A line segment pattern (object of class "psp").
angle Angle of rotation.
... Arguments passed to rotate.owin affecting the handling of the observation

window, if it is a binary pixel mask.
centre Centre of rotation. Either a vector of length 2, or a character string (partially

matched to "centroid", "midpoint" or "bottomleft"). The default is the
coordinate origin c(0,0).

Details

The line segments of the pattern, and the window of observation, are rotated about the origin by the
angle specified. Angles are measured in radians, anticlockwise. The default is to rotate the pattern
90 degrees anticlockwise. If the line segments carry marks, these are preserved.

Value

Another object of class "psp" representing the rotated line segment pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

rotmean 1459

See Also

psp.object, rotate.owin, rotate.ppp

Examples

oldpar <- par(mfrow=c(2,1))
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(X, main="original")
Y <- rotate(X, pi/4)
plot(Y, main="rotated")
par(oldpar)

rotmean Rotational Average of a Pixel Image

Description

Compute the average pixel value over all rotations of the image about the origin, as a function of
distance from the origin.

Usage

rotmean(X, ..., origin, padzero=TRUE, Xname, result=c("fv", "im"))

Arguments

X A pixel image.

... Ignored.

origin Optional. Origin about which the rotations should be performed. Either a nu-
meric vector or a character string as described in the help for shift.owin.

padzero Logical. If TRUE (the default), the value of X is assumed to be zero outside
the window of X. If FALSE, the value of X is taken to be undefined outside the
window of X.

Xname Optional name for X to be used in the function labels.

result Character string specifying the kind of result required: either a function object
or a pixel image.

Details

This command computes, for each possible distance r, the average pixel value of the pixels lying at
distance r from the origin. Kernel smoothing is used to obtain a smooth function of r.

If result="fv" (the default) the result is a function object of class "fv" giving the mean pixel value
of X as a function of distance from the origin.

If result="im" the result is a pixel image, with the same dimensions as X, giving the mean value
of X over all pixels lying at the same distance from the origin as the current pixel.

1460 round.ppp

If padzero=TRUE (the default), the value of X is assumed to be zero outside the window of X. The
rotational mean at a given distance r is the average value of the image X over the entire circle of
radius r, including zero values outside the window if the circle lies partly outside the window.

If padzero=FALSE, the value of X is taken to be undefined outside the window of X. The rotational
mean is the average of the X values over the subset of the circle of radius r that lies entirely inside
the window.

Value

An object of class "fv" or "im".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

if(interactive()) {
Z <- setcov(square(1))
plot(rotmean(Z))
plot(rotmean(Z, result="im"))

} else {
Z <- setcov(square(1), dimyx=32)
f <- rotmean(Z)

}

round.ppp Apply Numerical Rounding to Spatial Coordinates

Description

Apply numerical rounding to the spatial coordinates of a point pattern.

Usage

S3 method for class 'ppp'
round(x, digits = 0)

S3 method for class 'pp3'
round(x, digits = 0)

S3 method for class 'ppx'
round(x, digits = 0)

rounding 1461

Arguments

x A spatial point pattern in any dimension (object of class "ppp", "pp3" or "ppx").

digits integer indicating the number of decimal places.

Details

These functions are methods for the generic function round. They apply numerical rounding to the
spatial coordinates of the point pattern x.

Value

A point pattern object, of the same class as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rounding to determine whether numbers have been rounded.

round in the Base package.

Examples

round(cells, 1)

rounding Detect Numerical Rounding

Description

Given a numeric vector, or an object containing numeric spatial coordinates, determine whether the
values have been rounded to a certain number of decimal places.

Usage

rounding(x)

Default S3 method:
rounding(x)

S3 method for class 'ppp'
rounding(x)

S3 method for class 'pp3'
rounding(x)

1462 rounding

S3 method for class 'ppx'
rounding(x)

Arguments

x A numeric vector, or an object containing numeric spatial coordinates.

Details

For a numeric vector x, this function determines whether the values have been rounded to a certain
number of decimal places.

• If the entries of x are not all integers, then rounding(x) returns the smallest number of digits
d after the decimal point such that round(x,digits=d) is identical to x. For example if
rounding(x) = 2 then the entries of x are rounded to 2 decimal places, and are multiples of
0.01.

• If all the entries of x are integers, then rounding(x) returns -d, where d is the smallest
number of digits before the decimal point such that round(x,digits=-d) is identical to x.
For example if rounding(x) = -3 then the entries of x are multiples of 1000. If rounding(x)
= 0 then the entries of x are integers but not multiples of 10.

• If all entries of x are equal to 0, the rounding is not determined, and a value of NULL is returned.

For a point pattern (object of class "ppp") or similar object x containing numeric spatial coordinates,
this procedure is applied to the spatial coordinates.

Value

An integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

round.ppp

Examples

rounding(c(0.1, 0.3, 1.2))
rounding(c(1940, 1880, 2010))
rounding(0)
rounding(cells)

rPenttinen 1463

rPenttinen Perfect Simulation of the Penttinen Process

Description

Generate a random pattern of points, a simulated realisation of the Penttinen process, using a perfect
simulation algorithm.

Usage

rPenttinen(beta, gamma=1, R, W = owin(), expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta intensity parameter (a positive number).

gamma Interaction strength parameter (a number between 0 and 1).

R disc radius (a non-negative number).

W window (object of class "owin") in which to generate the random pattern.

expand Logical. If FALSE, simulation is performed in the window W, which must be
rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Penttinen point process in the window W using a ‘perfect
simulation’ algorithm.

Penttinen (1984, Example 2.1, page 18), citing Cormack (1979), described the pairwise interaction
point process with interaction factor

h(d) = eθA(d) = γA(d)

between each pair of points separated by a distance d. Here A(d) is the area of intersection
between two discs of radius R separated by a distance d, normalised so that A(0) = 1.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.

1464 rpoint

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, based on original code for the Strauss pro-
cess by Kasper Klitgaard Berthelsen.

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes.
Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference
for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of
Statistics 30, 549-564.

Cormack, R.M. (1979) Spatial aspects of competition between individuals. Pages 151–212 in Spa-
tial and Temporal Analysis in Ecology, eds. R.M. Cormack and J.K. Ord, International Co-operative
Publishing House, Fairland, MD, USA.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

Penttinen, A. (1984) Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the
Maximum Likelihood Method. Jyväskylä Studies in Computer Science, Economics and Statistics 7,
University of Jyväskylä, Finland.

See Also

rmh, Penttinen.

rStrauss, rHardcore, rStraussHard, rDiggleGratton, rDGS.

Examples

X <- rPenttinen(50, 0.5, 0.02)
Z <- rPenttinen(50, 0.5, 0.01, nsim=2)

rpoint Generate N Random Points

Description

Generate a random point pattern containing n independent, identically distributed random points
with any specified distribution.

Usage

rpoint(n, f, fmax=NULL, win=unit.square(),
..., giveup=1000, verbose=FALSE,
nsim=1, drop=TRUE)

rpoint 1465

Arguments

n Number of points to generate.

f The probability density of the points, possibly un-normalised. Either a constant,
a function f(x,y,...), or a pixel image object.

fmax An upper bound on the values of f. If missing, this number will be estimated.

win Window in which to simulate the pattern. Ignored if f is a pixel image.

... Arguments passed to the function f.

giveup Number of attempts in the rejection method after which the algorithm should
stop trying to generate new points.

verbose Flag indicating whether to report details of performance of the simulation algo-
rithm.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates n independent, identically distributed random points with common proba-
bility density proportional to f.

The argument f may be

a numerical constant: uniformly distributed random points will be generated.

a function: random points will be generated in the window win with probability density propor-
tional to f(x,y,...) where x and y are the cartesian coordinates. The function f must accept
two vectors of coordinates x,y and return the corresponding vector of function values. Addi-
tional arguments ... of any kind may be passed to the function.

a pixel image: if f is a pixel image object of class "im" (see im.object) then random points will
be generated in the window of this pixel image, with probability density proportional to the
pixel values of f.

The algorithm is as follows:

• If f is a constant, we invoke runifpoint.

• If f is a function, then we use the rejection method. Proposal points are generated from the
uniform distribution. A proposal point (x, y) is accepted with probability f(x,y,...)/fmax
and otherwise rejected. The algorithm continues until n points have been accepted. It gives up
after giveup * n proposals if there are still fewer than n points.

• If f is a pixel image, then a random sequence of pixels is selected (using sample) with proba-
bilities proportional to the pixel values of f. Then for each pixel in the sequence we generate
a uniformly distributed random point in that pixel.

The algorithm for pixel images is more efficient than that for functions.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

1466 rpoisline

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, owin.object, runifpoint

Examples

100 uniform random points in the unit square
X <- rpoint(100)

100 random points with probability density proportional to x^2 + y^2
X <- rpoint(100, function(x,y) { x^2 + y^2}, 1)

`fmax' may be omitted
X <- rpoint(100, function(x,y) { x^2 + y^2})

irregular window
data(letterR)
X <- rpoint(100, function(x,y) { x^2 + y^2}, win=letterR)

make a pixel image
Z <- setcov(letterR)
100 points with density proportional to pixel values
X <- rpoint(100, Z)

rpoisline Generate Poisson Random Line Process

Description

Generate a random pattern of line segments obtained from the Poisson line process.

Usage

rpoisline(lambda, win=owin())

Arguments

lambda Intensity of the Poisson line process. A positive number.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

rpoislinetess 1467

Details

This algorithm generates a realisation of the uniform Poisson line process, and clips it to the window
win.

The argument lambda must be a positive number. It controls the intensity of the process. The
expected number of lines intersecting a convex region of the plane is equal to lambda times the
perimeter length of the region. The expected total length of the lines crossing a region of the plane
is equal to lambda * pi times the area of the region.

Value

A line segment pattern (an object of class "psp").

The result also has an attribute called "lines" (an object of class "infline" specifying the original
infinite random lines) and an attribute "linemap" (an integer vector mapping the line segments to
their parent lines).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

psp

Examples

uniform Poisson line process with intensity 10,
clipped to the unit square
rpoisline(10)

rpoislinetess Poisson Line Tessellation

Description

Generate a tessellation delineated by the lines of the Poisson line process

Usage

rpoislinetess(lambda, win = owin())

Arguments

lambda Intensity of the Poisson line process. A positive number.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. Currently, the window must be a rectangle.

1468 rpoislpp

Details

This algorithm generates a realisation of the uniform Poisson line process, and divides the window
win into tiles separated by these lines.

The argument lambda must be a positive number. It controls the intensity of the process. The
expected number of lines intersecting a convex region of the plane is equal to lambda times the
perimeter length of the region. The expected total length of the lines crossing a region of the plane
is equal to lambda * pi times the area of the region.

Value

A tessellation (object of class "tess").

Also has an attribute "lines" containing the realisation of the Poisson line process, as an object of
class "infline".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rpoisline to generate the lines only.

Examples

X <- rpoislinetess(3)
plot(as.im(X), main="rpoislinetess(3)")
plot(X, add=TRUE)

rpoislpp Poisson Point Process on a Linear Network

Description

Generates a realisation of the Poisson point process with specified intensity on the given linear
network.

Usage

rpoislpp(lambda, L, ..., nsim=1, drop=TRUE)

rpoislpp 1469

Arguments

lambda Intensity of the Poisson process. A single number, a function(x,y), a pixel
image (object of class "im"), or a vector of numbers, a list of functions, or a list
of images.

L A linear network (object of class "linnet", see linnet). Can be omitted in
some cases: see Details.

... Arguments passed to rpoisppOnLines.

nsim Number of simulated realisations to generate.

drop Logical value indicating what to do when nsim=1. If drop=TRUE (the default),
the result is a point pattern. If drop=FALSE, the result is a list with one entry
which is a point pattern.

Details

This function uses rpoisppOnLines to generate the random points.

Argument L can be omitted, and defaults to as.linnet(lambda), when lambda is a function on a
linear network (class "linfun") or a pixel image on a linear network ("linim").

Value

If nsim = 1 and drop=TRUE, a point pattern on the linear network, i.e.\ an object of class "lpp".
Otherwise, a list of such point patterns.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

runiflpp, rlpp, lpp, linnet

Examples

X <- rpoislpp(5, simplenet)
plot(X)
multitype
X <- rpoislpp(c(a=5, b=5), simplenet)

1470 rpoispp

rpoispp Generate Poisson Point Pattern

Description

Generate a random point pattern using the (homogeneous or inhomogeneous) Poisson process. In-
cludes CSR (complete spatial randomness).

Usage

rpoispp(lambda, lmax=NULL, win=owin(), ...,
nsim=1, drop=TRUE, ex=NULL, warnwin=TRUE)

Arguments

lambda Intensity of the Poisson process. Either a single positive number, a function(x,y,...),
or a pixel image.

lmax Optional. An upper bound for the value of lambda(x,y), if lambda is a function.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. Ignored if lambda is a pixel image.

... Arguments passed to lambda if it is a function.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

ex Optional. A point pattern to use as the example. If ex is given and lambda,lmax,win
are missing, then lambda and win will be calculated from the point pattern ex.

warnwin Logical value specifying whether to issue a warning when win is ignored (which
occurs when lambda is an image and win is present).

Details

If lambda is a single number, then this algorithm generates a realisation of the uniform Poisson
process (also known as Complete Spatial Randomness, CSR) inside the window win with intensity
lambda (points per unit area).

If lambda is a function, then this algorithm generates a realisation of the inhomogeneous Poisson
process with intensity function lambda(x,y,...) at spatial location (x,y) inside the window win.
The function lambda must work correctly with vectors x and y.

If lmax is given, it must be an upper bound on the values of lambda(x,y,...) for all locations
(x,y) inside the window win. That is, we must have lambda(x,y,...) <= lmax for all locations
(x,y). If this is not true then the results of the algorithm will be incorrect.

If lmax is missing or NULL, an approximate upper bound is computed by finding the maximum
value of lambda(x,y,...) on a grid of locations (x,y) inside the window win, and adding a safety
margin equal to 5 percent of the range of lambda values. This can be computationally intensive, so
it is advisable to specify lmax if possible.

rpoispp 1471

If lambda is a pixel image object of class "im" (see im.object), this algorithm generates a reali-
sation of the inhomogeneous Poisson process with intensity equal to the pixel values of the image.
(The value of the intensity function at an arbitrary location is the pixel value of the nearest pixel.)
The argument win is ignored; the window of the pixel image is used instead. It will be converted to
a rectangle if possible, using rescue.rectangle.

To generate an inhomogeneous Poisson process the algorithm uses “thinning”: it first generates a
uniform Poisson process of intensity lmax, then randomly deletes or retains each point, indepen-
dently of other points, with retention probability p(x, y) = λ(x, y)/lmax.

For marked point patterns, use rmpoispp.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Warning

Note that lambda is the intensity, that is, the expected number of points per unit area. The total
number of points in the simulated pattern will be random with expected value mu = lambda * a
where a is the area of the window win.

Reproducibility

The simulation algorithm, for the case where lambda is a pixel image, was changed in spatstat
version 1.42-3. Set spatstat.options(fastpois=FALSE) to use the previous, slower algorithm,
if it is desired to reproduce results obtained with earlier versions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

rmpoispp for Poisson marked point patterns, runifpoint for a fixed number of independent uni-
form random points; rpoint, rmpoint for a fixed number of independent random points with any
distribution; rMaternI, rMaternII, rSSI, rStrauss, rstrat for random point processes with spa-
tial inhibition or regularity; rThomas, rGaussPoisson, rMatClust, rcell for random point pro-
cesses exhibiting clustering; rmh.default for Gibbs processes. See also ppp.object, owin.object.

Examples

uniform Poisson process with intensity 100 in the unit square
pp <- rpoispp(100)

uniform Poisson process with intensity 1 in a 10 x 10 square
pp <- rpoispp(1, win=owin(c(0,10),c(0,10)))
plots should look similar !

1472 rpoispp3

inhomogeneous Poisson process in unit square
with intensity lambda(x,y) = 100 * exp(-3*x)
Intensity is bounded by 100
pp <- rpoispp(function(x,y) {100 * exp(-3*x)}, 100)

How to tune the coefficient of x
lamb <- function(x,y,a) { 100 * exp(- a * x)}
pp <- rpoispp(lamb, 100, a=3)

pixel image
Z <- as.im(function(x,y){100 * sqrt(x+y)}, unit.square())
pp <- rpoispp(Z)

randomising an existing point pattern
rpoispp(intensity(cells), win=Window(cells))
rpoispp(ex=cells)

rpoispp3 Generate Poisson Point Pattern in Three Dimensions

Description

Generate a random three-dimensional point pattern using the homogeneous Poisson process.

Usage

rpoispp3(lambda, domain = box3(), nsim=1, drop=TRUE)

Arguments

lambda Intensity of the Poisson process. A single positive number.

domain Three-dimensional box in which the process should be generated. An object of
class "box3".

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the homogeneous Poisson process in three dimensions, with
intensity lambda (points per unit volume).

The realisation is generated inside the three-dimensional region domain which currently must be a
rectangular box (object of class "box3").

Value

If nsim = 1 and drop=TRUE, a point pattern in three dimensions (an object of class "pp3"). If nsim
> 1, a list of such point patterns.

rpoisppOnLines 1473

Note

The intensity lambda is the expected number of points per unit volume.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

runifpoint3, pp3, box3

Examples

X <- rpoispp3(50)

rpoisppOnLines Generate Poisson Point Pattern on Line Segments

Description

Given a line segment pattern, generate a Poisson random point pattern on the line segments.

Usage

rpoisppOnLines(lambda, L, lmax = NULL, ..., nsim=1, drop=TRUE)

Arguments

lambda Intensity of the Poisson process. A single number, a function(x,y), a pixel
image (object of class "im"), or a vector of numbers, a list of functions, or a list
of images.

L Line segment pattern (object of class "psp") on which the points should be
generated.

lmax Optional upper bound (for increased computational efficiency). A known upper
bound for the values of lambda, if lambda is a function or a pixel image. That
is, lmax should be a number which is known to be greater than or equal to all
values of lambda.

... Additional arguments passed to lambda if it is a function.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

1474 rpoisppOnLines

Details

This command generates a Poisson point process on the one-dimensional system of line segments
in L. The result is a point pattern consisting of points lying on the line segments in L. The number
of random points falling on any given line segment follows a Poisson distribution. The patterns of
points on different segments are independent.

The intensity lambda is the expected number of points per unit length of line segment. It may be
constant, or it may depend on spatial location.

In order to generate an unmarked Poisson process, the argument lambda may be a single number,
or a function(x,y), or a pixel image (object of class "im").

In order to generate a marked Poisson process, lambda may be a numeric vector, a list of functions,
or a list of images, each entry giving the intensity for a different mark value.

If lambda is not numeric, then the (Lewis-Shedler) rejection method is used. The rejection method
requires knowledge of lmax, the maximum possible value of lambda. This should be either a single
number, or a numeric vector of the same length as lambda. If lmax is not given, it will be computed
approximately, by sampling many values of lambda.

If lmax is given, then it must be larger than any possible value of lambda, otherwise the results of
the algorithm will be incorrect.

Value

If nsim = 1, a point pattern (object of class "ppp") in the same window as L. If nsim > 1, a list of
such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

psp, ppp, runifpointOnLines, rpoispp

Examples

live <- interactive()
L <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
if(live) plot(L, main="")

uniform intensity
Y <- rpoisppOnLines(4, L)
if(live) plot(Y, add=TRUE, pch="+")

uniform MARKED process with types 'a' and 'b'
Y <- rpoisppOnLines(c(a=4, b=5), L)
if(live) {

plot(L, main="")
plot(Y, add=TRUE, pch="+")

}

rpoisppx 1475

intensity is a function
Y <- rpoisppOnLines(function(x,y){ 10 * x^2}, L, 10)
if(live) {

plot(L, main="")
plot(Y, add=TRUE, pch="+")

}

intensity is an image
Z <- as.im(function(x,y){10 * sqrt(x+y)}, unit.square())
Y <- rpoisppOnLines(Z, L, 15)
if(live) {
plot(L, main="")
plot(Y, add=TRUE, pch="+")
}

rpoisppx Generate Poisson Point Pattern in Any Dimensions

Description

Generate a random multi-dimensional point pattern using the homogeneous Poisson process.

Usage

rpoisppx(lambda, domain, nsim=1, drop=TRUE)

Arguments

lambda Intensity of the Poisson process. A single positive number.

domain Multi-dimensional box in which the process should be generated. An object of
class "boxx".

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a single point pattern.

Details

This function generates a realisation of the homogeneous Poisson process in multi dimensions, with
intensity lambda (points per unit volume).

The realisation is generated inside the multi-dimensional region domain which currently must be a
rectangular box (object of class "boxx").

Value

If nsim = 1 and drop=TRUE, a point pattern (an object of class "ppx"). If nsim > 1 or drop=FALSE,
a list of such point patterns.

1476 rPoissonCluster

Note

The intensity lambda is the expected number of points per unit volume.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

runifpointx, ppx, boxx

Examples

w <- boxx(x=c(0,1), y=c(0,1), z=c(0,1), t=c(0,3))
X <- rpoisppx(10, w)

rPoissonCluster Simulate Poisson Cluster Process

Description

Generate a random point pattern, a realisation of the general Poisson cluster process.

Usage

rPoissonCluster(kappa, expand, rcluster, win = owin(c(0,1),c(0,1)),
..., lmax=NULL, nsim=1, drop=TRUE, saveparents=TRUE)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

expand Size of the expansion of the simulation window for generating parent points. A
single non-negative number.

rcluster A function which generates random clusters.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

... Arguments passed to rcluster

lmax Optional. Upper bound on the values of kappa when kappa is a function or pixel
image.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

rPoissonCluster 1477

Details

This algorithm generates a realisation of the general Poisson cluster process, with the cluster mech-
anism given by the function rcluster.

First, the algorithm generates a Poisson point process of “parent” points with intensity kappa in an
expanded window as explained below.. Here kappa may be a single positive number, a function
kappa(x,y), or a pixel image object of class "im" (see im.object). See rpoispp for details.

Second, each parent point is replaced by a random cluster of points, created by calling the function
rcluster. These clusters are combined together to yield a single point pattern, and the restriction
of this pattern to the window win is then returned as the result of rPoissonCluster.

The expanded window consists of as.rectangle(win) extended by the amount expand in each
direction. The size of the expansion is saved in the attribute "expand" and may be extracted by
attr(X,"expand") where X is the generated point pattern.

The function rcluster should expect to be called as rcluster(xp[i],yp[i],...) for each parent
point at a location (xp[i],yp[i]). The return value of rcluster should be a list with elements
x,y which are vectors of equal length giving the absolute x and y coordinates of the points in the
cluster.

If the return value of rcluster is a point pattern (object of class "ppp") then it may have marks.
The result of rPoissonCluster will then be a marked point pattern.

If required, the intermediate stages of the simulation (the parents and the individual clusters) can
also be extracted from the return value of rPoissonCluster through the attributes "parents"
and "parentid". The attribute "parents" is the point pattern of parent points. The attribute
"parentid" is an integer vector specifying the parent for each of the points in the simulated pattern.
(If these data are not required, it is more efficient to set saveparents=FALSE.)

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of the point
pattern: see Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rpoispp, rMatClust, rThomas, rCauchy, rVarGamma, rNeymanScott, rGaussPoisson.

Examples

each cluster consist of 10 points in a disc of radius 0.2
nclust <- function(x0, y0, radius, n) {

return(runifdisc(n, radius, centre=c(x0, y0)))
}

plot(rPoissonCluster(10, 0.2, nclust, radius=0.2, n=5))

1478 rppm

multitype Neyman-Scott process (each cluster is a multitype process)
nclust2 <- function(x0, y0, radius, n, types=c("a", "b")) {

X <- runifdisc(n, radius, centre=c(x0, y0))
M <- sample(types, n, replace=TRUE)
marks(X) <- M
return(X)

}
plot(rPoissonCluster(15,0.1,nclust2, radius=0.1, n=5))

rppm Recursively Partitioned Point Process Model

Description

Fits a recursive partition model to point pattern data.

Usage

rppm(..., rpargs=list())

Arguments

... Arguments passed to ppm specifying the point pattern data and the explanatory
covariates.

rpargs Optional list of arguments passed to rpart controlling the recursive partitioning
procedure.

Details

This function attempts to find a simple rule for predicting low and high intensity regions of points
in a point pattern, using explanatory covariates.

The arguments ... specify the point pattern data and explanatory covariates in the same way as
they would be in the function ppm.

The recursive partitioning algorithm rpart is then used to find a partitioning rule.

Value

An object of class "rppm". There are methods for print, plot, fitted, predict and prune for
this class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984) Classification and Regression
Trees. Wadsworth.

rQuasi 1479

See Also

plot.rppm, predict.rppm, prune.rppm.

Examples

New Zealand trees data: trees planted along border
Use covariates 'x', 'y'
nzfit <- rppm(nztrees ~ x + y)
nzfit
prune(nzfit, cp=0.035)
Murchison gold data: numeric and logical covariates
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
#
mfit <- rppm(gold ~ dfault + greenstone, data=mur)
mfit
Gorillas data: factor covariates
(symbol '.' indicates 'all variables')
gfit <- rppm(unmark(gorillas) ~ . , data=gorillas.extra)
gfit

rQuasi Generate Quasirandom Point Pattern in Given Window

Description

Generates a quasirandom pattern of points in any two-dimensional window.

Usage

rQuasi(n, W, type = c("Halton", "Hammersley"), ...)

Arguments

n Maximum number of points to be generated.

W Window (object of class "owin") in which to generate the points.

type String identifying the quasirandom generator.

... Arguments passed to the quasirandom generator.

Details

This function generates a quasirandom point pattern, using the quasirandom sequence generator
Halton or Hammersley as specified.

If W is a rectangle, exactly n points will be generated.

If W is not a rectangle, n points will be generated in the containing rectangle as.rectangle(W), and
only the points lying inside W will be retained.

1480 rshift

Value

Point pattern (object of class "ppp") inside the window W.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

See Also

Halton

Examples

plot(rQuasi(256, letterR))

rshift Random Shift

Description

Randomly shifts the points of a point pattern or line segment pattern. Generic.

Usage

rshift(X, ...)

Arguments

X Pattern to be subjected to a random shift. A point pattern (class "ppp"), a line
segment pattern (class "psp") or an object of class "splitppp".

... Arguments controlling the generation of the random shift vector, or specifying
which parts of the pattern will be shifted.

Details

This operation applies a random shift (vector displacement) to the points in a point pattern, or to the
segments in a line segment pattern.

The argument X may be

• a point pattern (an object of class "ppp")
• a line segment pattern (an object of class "psp")
• an object of class "splitppp" (basically a list of point patterns, obtained from split.ppp).

The function rshift is generic, with methods for the three classes "ppp", "psp" and "splitppp".

See the help pages for these methods, rshift.ppp, rshift.psp and rshift.splitppp, for further
information.

rshift.ppp 1481

Value

An object of the same type as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rshift.ppp, rshift.psp, rshift.splitppp

rshift.ppp Randomly Shift a Point Pattern

Description

Randomly shifts the points of a point pattern.

Usage

S3 method for class 'ppp'
rshift(X, ..., which=NULL, group, nsim=1, drop=TRUE)

Arguments

X Point pattern to be subjected to a random shift. An object of class "ppp"

... Arguments that determine the random shift. See Details.

group Optional. Factor specifying a grouping of the points of X, or NULL indicating
that all points belong to the same group. Each group will be shifted together,
and separately from other groups. By default, points in a marked point pattern
are grouped according to their mark values, while points in an unmarked point
pattern are treated as a single group.

which Optional. Identifies which groups of the pattern will be shifted, while other
groups are not shifted. A vector of levels of group.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

1482 rshift.ppp

Details

This operation randomly shifts the locations of the points in a point pattern.

The function rshift is generic. This function rshift.ppp is the method for point patterns.

The most common use of this function is to shift the points in a multitype point pattern. By de-
fault, points of the same type are shifted in parallel (i.e. points of a common type are shifted by
a common displacement vector), and independently of other types. This is useful for testing the
hypothesis of independence of types (the null hypothesis that the sub-patterns of points of each type
are independent point processes).

In general the points of X are divided into groups, then the points within a group are shifted by a
common random displacement vector. Different groups of points are shifted independently. The
grouping is determined as follows:

• If the argument group is present, then this determines the grouping.

• Otherwise, if X is a multitype point pattern, the marks determine the grouping.

• Otherwise, all points belong to a single group.

The argument group should be a factor, of length equal to the number of points in X. Alternatively
group may be NULL, which specifies that all points of X belong to a single group.

By default, every group of points will be shifted. The argument which indicates that only some of
the groups should be shifted, while other groups should be left unchanged. which must be a vector
of levels of group (for example, a vector of types in a multitype pattern) indicating which groups
are to be shifted.

The displacement vector, i.e. the vector by which the data points are shifted, is generated at random.
Parameters that control the randomisation and the handling of edge effects are passed through the
... argument. They are

radius,width,height Parameters of the random shift vector.

edge String indicating how to deal with edges of the pattern. Options are "torus", "erode" and
"none".

clip Optional. Window to which the final point pattern should be clipped.

If the window is a rectangle, the default behaviour is to generate a displacement vector at random
with equal probability for all possible displacements. This means that the x and y coordinates of
the displacement vector are independent random variables, uniformly distributed over the range of
possible coordinates.

Alternatively, the displacement vector can be generated by another random mechanism, controlled
by the arguments radius, width and height.

rectangular: if width and height are given, then the displacement vector is uniformly distributed
in a rectangle of these dimensions, centred at the origin. The maximum possible displacement
in the x direction is width/2. The maximum possible displacement in the y direction is
height/2. The x and y displacements are independent. (If width and height are actually
equal to the dimensions of the observation window, then this is equivalent to the default.)

radial: if radius is given, then the displacement vector is generated by choosing a random point
inside a disc of the given radius, centred at the origin, with uniform probability density over
the disc. Thus the argument radius determines the maximum possible displacement distance.
The argument radius is incompatible with the arguments width and height.

rshift.ppp 1483

The argument edge controls what happens when a shifted point lies outside the window of X. Op-
tions are:

"none": Points shifted outside the window of X simply disappear.

"torus": Toroidal or periodic boundary. Treat opposite edges of the window as identical, so that
a point which disappears off the right-hand edge will re-appear at the left-hand edge. This is
called a “toroidal shift” because it makes the rectangle topologically equivalent to the surface
of a torus (doughnut).
The window must be a rectangle. Toroidal shifts are undefined if the window is non-rectangular.

"erode": Clip the point pattern to a smaller window.
If the random displacements are generated by a radial mechanism (see above), then the win-
dow of X is eroded by a distance equal to the value of the argument radius, using erosion.
If the random displacements are generated by a rectangular mechanism, then the window of X
is (if it is not rectangular) eroded by a distance max(height,width) using erosion; or (if it
is rectangular) trimmed by a margin of width width at the left and right sides and trimmed by
a margin of height height at the top and bottom.
The rationale for this is that the clipping window is the largest window for which edge effects
can be ignored.

The optional argument clip specifies a smaller window to which the pattern should be restricted.

If nsim > 1, then the simulation procedure is performed nsim times; the result is a list of nsim point
patterns.

Value

A point pattern (object of class "ppp") or a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rshift, rshift.psp

Examples

random toroidal shift
shift "on" and "off" points separately
X <- rshift(amacrine)

shift "on" points and leave "off" points fixed
X <- rshift(amacrine, which="on")

shift all points simultaneously
X <- rshift(amacrine, group=NULL)

maximum displacement distance 0.1 units
X <- rshift(amacrine, radius=0.1, nsim=2)

1484 rshift.psp

shift with erosion
X <- rshift(amacrine, radius=0.1, edge="erode")

rshift.psp Randomly Shift a Line Segment Pattern

Description

Randomly shifts the segments in a line segment pattern.

Usage

S3 method for class 'psp'
rshift(X, ..., group=NULL, which=NULL)

Arguments

X Line segment pattern to be subjected to a random shift. An object of class "psp".
... Arguments controlling the randomisation and the handling of edge effects. See

rshift.ppp.
group Optional. Factor specifying a grouping of the line segments of X, or NULL in-

dicating that all line segments belong to the same group. Each group will be
shifted together, and separately from other groups.

which Optional. Identifies which groups of the pattern will be shifted, while other
groups are not shifted. A vector of levels of group.

Details

This operation randomly shifts the locations of the line segments in a line segment pattern.

The function rshift is generic. This function rshift.psp is the method for line segment patterns.

The line segments of X are first divided into groups, then the line segments within a group are
shifted by a common random displacement vector. Different groups of line segments are shifted
independently. If the argument group is present, then this determines the grouping. Otherwise, all
line segments belong to a single group.

The argument group should be a factor, of length equal to the number of line segments in X. Alter-
natively group may be NULL, which specifies that all line segments of X belong to a single group.

By default, every group of line segments will be shifted. The argument which indicates that only
some of the groups should be shifted, while other groups should be left unchanged. which must be
a vector of levels of group indicating which groups are to be shifted.

The displacement vector, i.e. the vector by which the data line segments are shifted, is generated
at random. The default behaviour is to generate a displacement vector at random with equal prob-
ability for all possible displacements. This means that the x and y coordinates of the displacement
vector are independent random variables, uniformly distributed over the range of possible coordi-
nates.

Alternatively, the displacement vector can be generated by another random mechanism, controlled
by the arguments radius, width and height.

rshift.splitppp 1485

rectangular: if width and height are given, then the displacement vector is uniformly distributed
in a rectangle of these dimensions, centred at the origin. The maximum possible displacement
in the x direction is width/2. The maximum possible displacement in the y direction is
height/2. The x and y displacements are independent. (If width and height are actually
equal to the dimensions of the observation window, then this is equivalent to the default.)

radial: if radius is given, then the displacement vector is generated by choosing a random line
segment inside a disc of the given radius, centred at the origin, with uniform probability den-
sity over the disc. Thus the argument radius determines the maximum possible displacement
distance. The argument radius is incompatible with the arguments width and height.

The argument edge controls what happens when a shifted line segment lies partially or completely
outside the window of X. Currently the only option is "erode" which specifies that the segments
will be clipped to a smaller window.

The optional argument clip specifies a smaller window to which the pattern should be restricted.

Value

A line segment pattern (object of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rshift, rshift.ppp

Examples

X <- psp(runif(20), runif(20), runif(20), runif(20), window=owin())
Y <- rshift(X, radius=0.1)

rshift.splitppp Randomly Shift a List of Point Patterns

Description

Randomly shifts each point pattern in a list of point patterns.

Usage

S3 method for class 'splitppp'
rshift(X, ..., which=seq_along(X), nsim=1, drop=TRUE)

1486 rshift.splitppp

Arguments

X An object of class "splitppp". Basically a list of point patterns.

... Parameters controlling the generation of the random shift vector and the han-
dling of edge effects. See rshift.ppp.

which Optional. Identifies which patterns will be shifted, while other patterns are not
shifted. Any valid subset index for X.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a split point
pattern object, rather than a list containing the split point pattern.

Details

This operation applies a random shift to each of the point patterns in the list X.

The function rshift is generic. This function rshift.splitppp is the method for objects of class
"splitppp", which are essentially lists of point patterns, created by the function split.ppp.

By default, every pattern in the list X will be shifted. The argument which indicates that only some
of the patterns should be shifted, while other groups should be left unchanged. which can be any
valid subset index for X.

Each point pattern in the list X (or each pattern in X[which]) is shifted by a random displacement
vector. The shifting is performed by rshift.ppp.

See the help page for rshift.ppp for details of the other arguments.

If nsim > 1, then the simulation procedure is performed nsim times; the result is a list of split point
patterns.

Value

Another object of class "splitppp", or a list of such objects.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rshift, rshift.ppp

Examples

data(amacrine)
Y <- split(amacrine)

random toroidal shift
shift "on" and "off" points separately
X <- rshift(Y)

shift "on" points and leave "off" points fixed
X <- rshift(Y, which="on")

rSSI 1487

maximum displacement distance 0.1 units
X <- rshift(Y, radius=0.1)

shift with erosion
X <- rshift(Y, radius=0.1, edge="erode")

rSSI Simulate Simple Sequential Inhibition

Description

Generate a random point pattern, a realisation of the Simple Sequential Inhibition (SSI) process.

Usage

rSSI(r, n=Inf, win = square(1), giveup = 1000, x.init=NULL, ...,
f=NULL, fmax=NULL, nsim=1, drop=TRUE)

Arguments

r Inhibition distance.
n Maximum number of points allowed. If n is finite, stop when the total number

of points in the point pattern reaches n. If n is infinite (the default), stop only
when it is apparently impossible to add any more points. See Details.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. The default window is the unit square, unless
x.init is specified, when the default window is the window of x.init.

giveup Number of rejected proposals after which the algorithm should terminate.
x.init Optional. Initial configuration of points. A point pattern (object of class "ppp").

The pattern returned by rSSI consists of this pattern together with the points
added via simple sequential inhibition. See Details.

... Ignored.
f,fmax Optional arguments passed to rpoint to specify a non-uniform probability den-

sity for the random points.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.

Details

This algorithm generates one or more realisations of the Simple Sequential Inhibition point process
inside the window win.

Starting with an empty window (or with the point pattern x.init if specified), the algorithm adds
points one-by-one. Each new point is generated uniformly in the window and independently of
preceding points. If the new point lies closer than r units from an existing point, then it is rejected
and another random point is generated. The algorithm terminates when either

1488 rSSI

(a) the desired number n of points is reached, or
(b) the current point configuration has not changed for giveup iterations, suggesting that it is no

longer possible to add new points.

If n is infinite (the default) then the algorithm terminates only when (b) occurs. The result is some-
times called a Random Sequential Packing.

Note that argument n specifies the maximum permitted total number of points in the pattern re-
turned by rSSI(). If x.init is not NULL then the number of points that are added is at most n
-npoints(x.init) if n is finite.

Thus if x.init is not NULL then argument n must be at least as large as npoints(x.init), otherwise
an error is given. If n==npoints(x.init) then a warning is given and the call to rSSI() has no
real effect; x.init is returned.

There is no requirement that the points of x.init be at a distance at least r from each other. All of
the added points will be at a distance at least r from each other and from any point of x.init.

The points will be generated inside the window win and the result will be a point pattern in the same
window.

The default window is the unit square, win = square(1), unless x.init is specified, when the
default is win=Window(x.init), the window of x.init.

If both win and x.init are specified, and if the two windows are different, then a warning will be
issued. Any points of x.init lying outside win will be removed, with a warning.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rpoispp, rMaternI, rMaternII.

Examples

Vinf <- rSSI(0.07)

V100 <- rSSI(0.07, 100)

X <- runifpoint(100)
Y <- rSSI(0.03,142,x.init=X) # Y consists of X together with

42 added points.
plot(Y, main="rSSI")
plot(X,add=TRUE,chars=20,cols="red")

inhomogeneous
Z <- rSSI(0.07, 50, f=function(x,y){x})
plot(Z)

rstrat 1489

rstrat Simulate Stratified Random Point Pattern

Description

Generates a “stratified random” pattern of points in a window, by dividing the window into rectan-
gular tiles and placing k random points independently in each tile.

Usage

rstrat(win=square(1), nx, ny=nx, k = 1, nsim=1, drop=TRUE)

Arguments

win A window. An object of class owin, or data in any format acceptable to as.owin().

nx Number of tiles in each column.

ny Number of tiles in each row.

k Number of random points to generate in each tile.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a random pattern of points in a “stratified random” sampling design. It can
be useful for generating random spatial sampling points.

The bounding rectangle of win is divided into a regular nx × ny grid of rectangular tiles. In each
tile, k random points are generated independently with a uniform distribution in that tile.

Some of these grid points may lie outside the window win: if they do, they are deleted.

The result is a point pattern inside the window win.

This function is useful in creating dummy points for quadrature schemes (see quadscheme) as well
as in simulating random point patterns.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rsyst, runifpoint, quadscheme

1490 rStrauss

Examples

X <- rstrat(nx=10)
plot(X)

polygonal boundary
data(letterR)
X <- rstrat(letterR, 5, 10, k=3)
plot(X)

rStrauss Perfect Simulation of the Strauss Process

Description

Generate a random pattern of points, a simulated realisation of the Strauss process, using a perfect
simulation algorithm.

Usage

rStrauss(beta, gamma = 1, R = 0, W = owin(), expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta intensity parameter (a positive number).

gamma interaction parameter (a number between 0 and 1, inclusive).

R interaction radius (a non-negative number).

W window (object of class "owin") in which to generate the random pattern.

expand Logical. If FALSE, simulation is performed in the window W, which must be
rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Strauss point process in the window W using a ‘perfect
simulation’ algorithm.

The Strauss process (Strauss, 1975; Kelly and Ripley, 1976) is a model for spatial inhibition, ranging
from a strong ‘hard core’ inhibition to a completely random pattern according to the value of gamma.

The Strauss process with interaction radius R and parameters β and γ is the pairwise interaction
point process with probability density

f(x1, . . . , xn) = αβn(x)γs(x)

rStrauss 1491

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
s(x) is the number of distinct unordered pairs of points that are closer thanR units apart, and α is the
normalising constant. Intuitively, each point of the pattern contributes a factor β to the probability
density, and each pair of points closer than r units apart contributes a factor γ to the density.

The interaction parameter γ must be less than or equal to 1 in order that the process be well-defined
(Kelly and Ripley, 1976). This model describes an “ordered” or “inhibitive” pattern. If γ = 1 it
reduces to a Poisson process (complete spatial randomness) with intensity β. If γ = 0 it is called a
“hard core process” with hard core radius R/2, since no pair of points is permitted to lie closer than
R units apart.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Kasper Klitgaard Berthelsen, adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes.
Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference
for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of
Statistics 30, 549-564.

Kelly, F.P. and Ripley, B.D. (1976) On Strauss’s model for clustering. Biometrika 63, 357–360.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

Strauss, D.J. (1975) A model for clustering. Biometrika 62, 467–475.

See Also

rmh, Strauss, rHardcore, rStraussHard, rDiggleGratton, rDGS, rPenttinen.

Examples

X <- rStrauss(0.05,0.2,1.5,square(141.4))
Z <- rStrauss(100,0.7,0.05, nsim=2)

1492 rStraussHard

rStraussHard Perfect Simulation of the Strauss-Hardcore Process

Description

Generate a random pattern of points, a simulated realisation of the Strauss-Hardcore process, using
a perfect simulation algorithm.

Usage

rStraussHard(beta, gamma = 1, R = 0, H = 0, W = owin(),
expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta intensity parameter (a positive number).

gamma interaction parameter (a number between 0 and 1, inclusive).

R interaction radius (a non-negative number).

H hard core distance (a non-negative number smaller than R).

W window (object of class "owin") in which to generate the random pattern. Cur-
rently this must be a rectangular window.

expand Logical. If FALSE, simulation is performed in the window W, which must be
rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Strauss-Hardcore point process in the window W using a
‘perfect simulation’ algorithm.

The Strauss-Hardcore process is described in StraussHard.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

A limitation of the perfect simulation algorithm is that the interaction parameter γ must be less than
or equal to 1. To simulate a Strauss-hardcore process with γ > 1, use rmh.

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.

rSwitzerlpp 1493

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Kasper Klitgaard Berthelsen and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes.
Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference
for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of
Statistics 30, 549-564.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

See Also

rmh, StraussHard.

rHardcore, rStrauss, rDiggleGratton, rDGS, rPenttinen.

Examples

Z <- rStraussHard(100,0.7,0.05,0.02)
Y <- rStraussHard(100,0.7,0.05,0.01, nsim=2)

rSwitzerlpp Switzer-type Point Process on Linear Network

Description

Generate a realisation of the Switzer-type point process on a linear network.

Usage

rSwitzerlpp(L, lambdacut, rintens = rexp, ...,
cuts=c("points", "lines"))

Arguments

L Linear network (object of class "linnet").
lambdacut Intensity of Poisson process of breakpoints.
rintens Optional. Random variable generator used to generate the random intensity in

each component.
... Additional arguments to rintens.
cuts String (partially matched) specifying the type of random cuts to be generated.

1494 rSwitzerlpp

Details

This function generates simulated realisations of the Switzer-type point process on a network, as
described in Baddeley et al (2017).

The linear network is first divided into pieces by a random mechanism:

• if cuts="points", a Poisson process of breakpoints with intensity lambdacut is generated on
the network, and these breakpoints separate the network into connected pieces.

• if cuts="lines", a Poisson line process in the plane with intensity lambdacut is generated;
these lines divide space into tiles; the network is divided into subsets associated with the tiles.
Each subset may not be a connected sub-network.

In each piece of the network, a random intensity is generated using the random variable generator
rintens (the default is a negative exponential random variable with rate 1). Given the intensity
value, a Poisson process is generated with the specified intensity.

The intensity of the final process is determined by the mean of the values generated by rintens. If
rintens=rexp (the default), then the parameter rate specifies the inverse of the intensity.

Value

Point pattern on a linear network (object of class "lpp") with an attribute "breaks" containing the
breakpoints (if cuts="points") or the random lines (if cuts="lines").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Nair, G., Rakshit, S. and McSwiggan, G. (2017) ‘Stationary’ point processes are
uncommon on linear networks. STAT 6, 68–78.

See Also

rcelllpp

Examples

plot(rSwitzerlpp(domain(spiders), 0.01, rate=100))

plot(rSwitzerlpp(domain(spiders), 0.0005, rate=100, cuts="l"))

rsyst 1495

rsyst Simulate systematic random point pattern

Description

Generates a “systematic random” pattern of points in a window, consisting of a grid of equally-
spaced points with a random common displacement.

Usage

rsyst(win=square(1), nx=NULL, ny=nx, ..., dx=NULL, dy=dx,
nsim=1, drop=TRUE)

Arguments

win A window. An object of class owin, or data in any format acceptable to as.owin().

nx Number of columns of grid points in the window. Incompatible with dx.

ny Number of rows of grid points in the window. Incompatible with dy.

... Ignored.

dx Spacing of grid points in x direction. Incompatible with nx.

dy Spacing of grid points in y direction. Incompatible with ny.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a “systematic random” pattern of points in the window win. The pattern
consists of a rectangular grid of points with a random common displacement.

The grid spacing in the x direction is determined either by the number of columns nx or by the
horizontal spacing dx. The grid spacing in the y direction is determined either by the number of
rows ny or by the vertical spacing dy.

The grid is then given a random displacement (the common displacement of the grid points is a
uniformly distributed random vector in the tile of dimensions dx,dy).

Some of the resulting grid points may lie outside the window win: if they do, they are deleted. The
result is a point pattern inside the window win.

This function is useful in creating dummy points for quadrature schemes (see quadscheme) as well
as in simulating random point patterns.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

1496 rtemper

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rstrat, runifpoint, quadscheme

Examples

X <- rsyst(nx=10)
plot(X)

polygonal boundary
data(letterR)
X <- rsyst(letterR, 5, 10)
plot(X)

rtemper Simulated Annealing or Simulated Tempering for Gibbs Point Pro-
cesses

Description

Performs simulated annealing or simulated tempering for a Gibbs point process model using a
specified annealing schedule.

Usage

rtemper(model, invtemp, nrep, ..., track=FALSE, start = NULL, verbose = FALSE)

Arguments

model A Gibbs point process model: a fitted Gibbs point process model (object of class
"ppm"), or any data acceptable to rmhmodel.

invtemp A numeric vector of positive numbers. The sequence of values of inverse tem-
perature that will be used.

nrep An integer vector of the same length as invtemp. The value nrep[i] specifies
the number of steps of the Metropolis-Hastings algorithm that will be performed
at inverse temperature invtemp[i].

start Initial starting state for the simulation. Any data acceptable to rmhstart.

track Logical flag indicating whether to save the transition history of the simulations.

... Additional arguments passed to rmh.default.

verbose Logical value indicating whether to print progress reports.

rthin 1497

Details

The Metropolis-Hastings simulation algorithm rmh is run for nrep[1] steps at inverse temperature
invtemp[1], then for nrep[2] steps at inverse temperature invtemp[2], and so on.

Setting the inverse temperature to a value α means that the probability density of the Gibbs model,
f(x), is replaced by g(x) = C f(x)α where C is a normalising constant depending on α. Larger
values of α exaggerate the high and low values of probability density, while smaller values of α
flatten out the probability density.

For example if the original model is a Strauss process, the modified model is close to a hard core
process for large values of inverse temperature, and close to a Poisson process for small values of
inverse temperature.

Value

A point pattern (object of class "ppp").

If track=TRUE, the result also has an attribute "history" which is a data frame with columns
proposaltype, accepted, numerator and denominator, as described in rmh.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rmh.default, rmh.

Examples

stra <- rmhmodel(cif="strauss",
par=list(beta=2,gamma=0.2,r=0.7),
w=square(10))

nr <- if(interactive()) 1e5 else 1e4
Y <- rtemper(stra, c(1, 2, 4, 8), nr * (1:4), verbose=TRUE, track=TRUE)

rthin Random Thinning

Description

Applies independent random thinning to a point pattern or segment pattern.

Usage

rthin(X, P, ..., nsim=1, drop=TRUE)

1498 rthin

Arguments

X A point pattern (object of class "ppp" or "lpp" or "pp3" or "ppx") or line
segment pattern (object of class "psp") that will be thinned.

P Data giving the retention probabilities, i.e. the probability that each point or
line in X will be retained. Either a single number, or a vector of numbers, or
a function(x,y) in the R language, or a function object (class "funxy" or
"linfun"), or a pixel image (object of class "im" or "linim").

... Additional arguments passed to P, if it is a function.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

In a random thinning operation, each point of the point pattern X is randomly either deleted or
retained (i.e. not deleted). The result is a point pattern, consisting of those points of X that were
retained.

Independent random thinning means that the retention/deletion of each point is independent of other
points.

The argument P determines the probability of retaining each point. It may be

a single number, so that each point will be retained with the same probability P;

a vector of numbers, so that the ith point of X will be retained with probability P[i];

a function P(x,y), so that a point at a location (x,y) will be retained with probability P(x,y);

an object of class "funxy" or "linfun", so that points in the pattern X will be retained with prob-
abilities P(X);

a pixel image, containing values of the retention probability for all locations in a region encom-
passing the point pattern.

If P is a function P(x,y), it should be ‘vectorised’, that is, it should accept vector arguments x,y and
should yield a numeric vector of the same length. The function may have extra arguments which
are passed through the ... argument.

Value

An object of the same kind as X if nsim=1, or a list of such objects if nsim > 1.

Reproducibility

The algorithm for random thinning was changed in spatstat version 1.42-3. Set spatstat.options(fastthin=FALSE)
to use the previous, slower algorithm, if it is desired to reproduce results obtained with earlier ver-
sions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

rthinclumps 1499

Examples

plot(redwood, main="thinning")

delete 20% of points
Y <- rthin(redwood, 0.8)
points(Y, col="green", cex=1.4)

function
f <- function(x,y) { ifelse(x < 0.4, 1, 0.5) }
Y <- rthin(redwood, f)

pixel image
Z <- as.im(f, Window(redwood))
Y <- rthin(redwood, Z)

pattern on a linear network
A <- runiflpp(30, simplenet)
B <- rthin(A, 0.2)
g <- function(x,y,seg,tp) { ifelse(y < 0.4, 1, 0.5) }
B <- rthin(A, linfun(g, simplenet))

thin other kinds of patterns
E <- rthin(osteo$pts[[1]], 0.6)
L <- rthin(copper$Lines, 0.5)

rthinclumps Random Thinning of Clumps

Description

Finds the topologically-connected clumps of a spatial region and randomly deletes some of the
clumps.

Usage

rthinclumps(W, p, ...)

Arguments

W Window (object of class "owin" or pixel image (object of class "im").

p Probability of retaining each clump. A single number between 0 and 1.

... Additional arguments passed to connected.im or connected.owin to deter-
mine the connected clumps.

1500 rThomas

Details

The argument W specifies a region of space, typically consisting of several clumps that are not
connected to each other. The algorithm randomly deletes or retains each clump. The fate of each
clump is independent of other clumps.

If W is a spatial window (class "owin") then it will be divided into clumps using connected.owin.
Each clump will either be retained (with probability p) or deleted in its entirety (with probability
1-p).

If W is a pixel image (class "im") then its domain will be divided into clumps using connected.im.
The default behaviour depends on the type of pixel values. If the pixel values are logical, then the
spatial region will be taken to consist of all pixels whose value is TRUE. Otherwise, the spatial region
is taken to consist of all pixels whose value is defined (i.e. not equal to NA). This behaviour can be
changed using the argument background passed to connected.im.

The result is a window comprising all the clumps that were retained.

Value

Window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

rthin for thinning other kinds of objects.

Examples

A <- (distmap(cells) < 0.06)
opa <- par(mfrow=c(1,2))
plot(A)
plot(rthinclumps(A, 0.5))
par(opa)

rThomas Simulate Thomas Process

Description

Generate a random point pattern, a realisation of the Thomas cluster process.

Usage

rThomas(kappa, scale, mu, win = owin(c(0,1),c(0,1)),
nsim=1, drop=TRUE,
saveLambda=FALSE, expand = 4*scale, ...,
poisthresh=1e-6, saveparents=TRUE)

rThomas 1501

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

scale Standard deviation of random displacement (along each coordinate axis) of a
point from its cluster centre.

mu Mean number of points per cluster (a single positive number) or reference inten-
sity for the cluster points (a function or a pixel image).

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent
points will also be calculated and saved, and returns as an attribute of the point
pattern.

expand Numeric. Size of window expansion for generation of parent points. Has a
sensible default.

... Passed to clusterfield to control the image resolution when saveLambda=TRUE
and to clusterradius when expand is missing.

poisthresh Numerical threshold below which the model will be treated as a Poisson process.
See Details.

saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

Details

This algorithm generates a realisation of the (‘modified’) Thomas process, a special case of the
Neyman-Scott process, inside the window win.

In the simplest case, where kappa and mu are single numbers, the algorithm generates a uniform
Poisson point process of “parent” points with intensity kappa. Then each parent point is replaced
by a random cluster of “offspring” points, the number of points per cluster being Poisson (mu) dis-
tributed, and their positions being isotropic Gaussian displacements from the cluster parent location.
The resulting point pattern is a realisation of the classical “stationary Thomas process” generated
inside the window win. This point process has intensity kappa * mu.

The algorithm can also generate spatially inhomogeneous versions of the Thomas process:

• The parent points can be spatially inhomogeneous. If the argument kappa is a function(x,y)
or a pixel image (object of class "im"), then it is taken as specifying the intensity function of
an inhomogeneous Poisson process that generates the parent points.

• The offspring points can be inhomogeneous. If the argument mu is a function(x,y) or a
pixel image (object of class "im"), then it is interpreted as the reference density for offspring
points, in the sense of Waagepetersen (2007). For a given parent point, the offspring constitute
a Poisson process with intensity function equal to mu * f, where f is the Gaussian probability
density centred at the parent point. Equivalently we first generate, for each parent point, a

1502 rThomas

Poisson (mumax) random number of offspring (where M is the maximum value of mu) with
independent Gaussian displacements from the parent location, and then randomly thin the
offspring points, with retention probability mu/M.

• Both the parent points and the offspring points can be spatially inhomogeneous, as described
above.

Note that if kappa is a pixel image, its domain must be larger than the window win. This is because
an offspring point inside win could have its parent point lying outside win. In order to allow this,
the simulation algorithm first expands the original window win by a distance expand and generates
the Poisson process of parent points on this larger window. If kappa is a pixel image, its domain
must contain this larger window.

The intensity of the Thomas process is kappa * mu if either kappa or mu is a single number. In the
general case the intensity is an integral involving kappa, mu and f.

The Thomas process with homogeneous parents (i.e. where kappa is a single number) can be fitted
to data using kppm. Currently it is not possible to fit the Thomas model with inhomogeneous parents.

If the pair correlation function of the model is very close to that of a Poisson process, deviating by
less than poisthresh, then the model is approximately a Poisson process, and will be simulated as
a Poisson process with intensity kappa * mu, using rpoispp. This avoids computations that would
otherwise require huge amounts of memory.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point pat-
tern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute
"Lambda", if saveLambda=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Diggle, P. J., Besag, J. and Gleaves, J. T. (1976) Statistical analysis of spatial point patterns by
means of distance methods. Biometrics 32 659–667.

Thomas, M. (1949) A generalisation of Poisson’s binomial limit for use in ecology. Biometrika 36,
18–25.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

rpoispp, rMatClust, rCauchy, rVarGamma, rNeymanScott, rGaussPoisson, kppm, clusterfit.

run.simplepanel 1503

Examples

#homogeneous
X <- rThomas(10, 0.2, 5)
#inhomogeneous
Z <- as.im(function(x,y){ 5 * exp(2 * x - 1) }, owin())
Y <- rThomas(10, 0.2, Z)

run.simplepanel Run Point-and-Click Interface

Description

Execute various operations in a simple point-and-click user interface.

Usage

run.simplepanel(P, popup=TRUE, verbose = FALSE)
clear.simplepanel(P)
redraw.simplepanel(P, verbose = FALSE)

Arguments

P An interaction panel (object of class "simplepanel", created by simplepanel
or grow.simplepanel).

popup Logical. If popup=TRUE (the default), the panel will be displayed in a new popup
window. If popup=FALSE, the panel will be displayed on the current graphics
window if it already exists, and on a new window otherwise.

verbose Logical. If TRUE, debugging information will be printed.

Details

These commands enable the user to run a simple, robust, point-and-click interface to any R code.
The interface is implemented using only the basic graphics package in R.

The argument P is an object of class "simplepanel", created by simplepanel or grow.simplepanel,
which specifies the graphics to be displayed and the actions to be performed when the user interacts
with the panel.

The command run.simplepanel(P) activates the panel: the display is initialised and the graphics
system waits for the user to click the panel. While the panel is active, the user can only interact with
the panel; the R command line interface and the R GUI cannot be used. When the panel terminates
(typically because the user clicked a button labelled Exit), control returns to the R command line
interface and the R GUI.

The command clear.simplepanel(P) clears all the display elements in the panel, resulting in a
blank display except for the title of the panel.

The command redraw.simplepanel(P) redraws all the buttons of the panel, according to the
redraw functions contained in the panel.

1504 run.simplepanel

If popup=TRUE (the default), run.simplepanel begins by calling dev.new so that a new popup
window is created; this window is closed using dev.off when run.simplepanel terminates. If
popup=FALSE, the panel will be displayed on the current graphics window if it already exists, and
on a new window otherwise; this window is not closed when run.simplepanel terminates.

For more sophisticated control of the graphics focus (for example, to use the panel to control
the display on another window), initialise the graphics devices yourself using dev.new or simi-
lar commands; save these devices in the shared environment env of the panel P; and write the
click/redraw functions of P in such a way that they access these devices using dev.set. Then use
run.simplepanel with popup=FALSE.

Value

The return value of run.simplepanel(P) is the value returned by the exit function of P. See
simplepanel.

The functions clear.simplepanel and redraw.simplepanel return NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

simplepanel

Examples

if(interactive()) {
make boxes (alternatively use layout.boxes())
Bminus <- square(1)
Bvalue <- shift(Bminus, c(1.2, 0))
Bplus <- shift(Bvalue, c(1.2, 0))
Bdone <- shift(Bplus, c(1.2, 0))
myboxes <- list(Bminus, Bvalue, Bplus, Bdone)
myB <- do.call(boundingbox,myboxes)

make environment containing an integer count
myenv <- new.env()
assign("answer", 0, envir=myenv)

what to do when finished: return the count.
myexit <- function(e) { return(get("answer", envir=e)) }

button clicks
decrement the count
Cminus <- function(e, xy) {
ans <- get("answer", envir=e)
assign("answer", ans - 1, envir=e)
return(TRUE)

}

runifdisc 1505

display the count (clicking does nothing)
Cvalue <- function(...) { TRUE }
increment the count
Cplus <- function(e, xy) {
ans <- get("answer", envir=e)
assign("answer", ans + 1, envir=e)
return(TRUE)
}
quit button
Cdone <- function(e, xy) { return(FALSE) }

myclicks <- list("-"=Cminus,
value=Cvalue,
"+"=Cplus,
done=Cdone)

redraw the button that displays the current value of the count
Rvalue <- function(button, nam, e) {

plot(button, add=TRUE)
ans <- get("answer", envir=e)
text(centroid.owin(button), labels=ans)
return(TRUE)

}

make the panel
P <- simplepanel("Counter",

B=myB, boxes=myboxes,
clicks=myclicks,
redraws = list(NULL, Rvalue, NULL, NULL),
exit=myexit, env=myenv)

P

run.simplepanel(P)
}

runifdisc Generate N Uniform Random Points in a Disc

Description

Generate a random point pattern containing n independent uniform random points in a circular disc.

Usage

runifdisc(n, radius=1, centre=c(0,0), ..., nsim=1, drop=TRUE)

Arguments

n Number of points.

radius Radius of the circle.

1506 runifdisc

centre Coordinates of the centre of the circle.

... Arguments passed to disc controlling the accuracy of approximation to the cir-
cle.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates n independent random points, uniformly distributed in a circular disc.

It is faster (for a circular window) than the general code used in runifpoint.

To generate random points in an ellipse, first generate points in a circle using runifdisc, then
transform to an ellipse using affine, as shown in the examples.

To generate random points in other windows, use runifpoint. To generate non-uniform random
points, use rpoint.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

disc, runifpoint, rpoint

Examples

100 random points in the unit disc
plot(runifdisc(100))
42 random points in the ellipse with major axis 3 and minor axis 1
X <- runifdisc(42)
Y <- affine(X, mat=diag(c(3,1)))
plot(Y)

runiflpp 1507

runiflpp Uniform Random Points on a Linear Network

Description

Generates n random points, independently and uniformly distributed, on a linear network.

Usage

runiflpp(n, L, nsim=1, drop=TRUE)

Arguments

n Number of random points to generate. A nonnegative integer, or a vector of
integers specifying the number of points of each type.

L A linear network (object of class "linnet", see linnet).

nsim Number of simulated realisations to generate.

drop Logical value indicating what to do when nsim=1. If drop=TRUE (the default),
the result is a point pattern. If drop=FALSE, the result is a list with one entry
which is a point pattern.

Details

This function uses runifpointOnLines to generate the random points.

Value

If nsim = 1 and drop=TRUE, a point pattern on the linear network, i.e.\ an object of class "lpp".
Otherwise, a list of such point patterns.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rlpp for non-uniform random points; rpoislpp for Poisson point process;

lpp, linnet

Examples

data(simplenet)
X <- runiflpp(10, simplenet)
plot(X)
marked
Z <- runiflpp(c(a=10, b=3), simplenet)

1508 runifpoint

runifpoint Generate N Uniform Random Points

Description

Generate a random point pattern containing n independent uniform random points.

Usage

runifpoint(n, win=owin(c(0,1),c(0,1)), giveup=1000, warn=TRUE, ...,
nsim=1, drop=TRUE, ex=NULL)

Arguments

n Number of points.
win Window in which to simulate the pattern. An object of class "owin" or some-

thing acceptable to as.owin.
giveup Number of attempts in the rejection method after which the algorithm should

stop trying to generate new points.
warn Logical. Whether to issue a warning if n is very large. See Details.
... Ignored.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.
ex Optional. A point pattern to use as the example. If ex is given and n and win are

missing, then n and win will be calculated from the point pattern ex.

Details

This function generates n independent random points, uniformly distributed in the window win.
(For nonuniform distributions, see rpoint.)

The algorithm depends on the type of window, as follows:

• If win is a rectangle then n independent random points, uniformly distributed in the rectangle,
are generated by assigning uniform random values to their cartesian coordinates.

• If win is a binary image mask, then a random sequence of pixels is selected (using sample)
with equal probabilities. Then for each pixel in the sequence we generate a uniformly dis-
tributed random point in that pixel.

• If win is a polygonal window, the algorithm uses the rejection method. It finds a rectangle
enclosing the window, generates points in this rectangle, and tests whether they fall in the
desired window. It gives up when giveup * n tests have been performed without yielding n
successes.

The algorithm for binary image masks is faster than the rejection method but involves discretisation.

If warn=TRUE, then a warning will be issued if n is very large. The threshold is spatstat.options("huge.npoints").
This warning has no consequences, but it helps to trap a number of common errors.

runifpoint3 1509

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, owin.object, rpoispp, rpoint

Examples

100 random points in the unit square
pp <- runifpoint(100)
irregular window
data(letterR)
polygonal
pp <- runifpoint(100, letterR)
binary image mask
pp <- runifpoint(100, as.mask(letterR))
##
randomising an existing point pattern
runifpoint(npoints(cells), win=Window(cells))
runifpoint(ex=cells)

runifpoint3 Generate N Uniform Random Points in Three Dimensions

Description

Generate a random point pattern containing n independent, uniform random points in three dimen-
sions.

Usage

runifpoint3(n, domain = box3(), nsim=1, drop=TRUE)

Arguments

n Number of points to be generated.

domain Three-dimensional box in which the process should be generated. An object of
class "box3".

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

1510 runifpointOnLines

Details

This function generates n independent random points, uniformly distributed in the three-dimensional
box domain.

Value

If nsim = 1 and drop=TRUE, a point pattern in three dimensions (an object of class "pp3"). If nsim
> 1, a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rpoispp3, pp3, box3

Examples

X <- runifpoint3(50)

runifpointOnLines Generate N Uniform Random Points On Line Segments

Description

Given a line segment pattern, generate a random point pattern consisting of n points uniformly
distributed on the line segments.

Usage

runifpointOnLines(n, L, nsim=1, drop=TRUE)

Arguments

n Number of points to generate.

L Line segment pattern (object of class "psp") on which the points should lie.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

runifpointx 1511

Details

This command generates a point pattern consisting of n independent random points, each point
uniformly distributed on the line segment pattern. This means that, for each random point,

• the probability of falling on a particular segment is proportional to the length of the segment;
and

• given that the point falls on a particular segment, it has uniform probability density along that
segment.

If n is a single integer, the result is an unmarked point pattern containing n points. If n is a vector of
integers, the result is a marked point pattern, with m different types of points, where m = length(n),
in which there are n[j] points of type j.

Value

If nsim = 1, a point pattern (object of class "ppp") with the same window as L. If nsim > 1, a list of
point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

psp, ppp, pointsOnLines, runifpoint

Examples

X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
Y <- runifpointOnLines(20, X)
plot(X, main="")
plot(Y, add=TRUE)
Z <- runifpointOnLines(c(5,5), X)

runifpointx Generate N Uniform Random Points in Any Dimensions

Description

Generate a random point pattern containing n independent, uniform random points in any number
of spatial dimensions.

Usage

runifpointx(n, domain, nsim=1, drop=TRUE)

1512 rVarGamma

Arguments

n Number of points to be generated.

domain Multi-dimensional box in which the process should be generated. An object of
class "boxx".

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a single point pattern.

Details

This function generates a pattern of n independent random points, uniformly distributed in the
multi-dimensional box domain.

Value

If nsim = 1 and drop=TRUE, a point pattern (an object of class "ppx"). If nsim > 1 or drop=FALSE,
a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rpoisppx, ppx, boxx

Examples

w <- boxx(x=c(0,1), y=c(0,1), z=c(0,1), t=c(0,3))
X <- runifpointx(50, w)

rVarGamma Simulate Neyman-Scott Point Process with Variance Gamma cluster
kernel

Description

Generate a random point pattern, a simulated realisation of the Neyman-Scott process with Variance
Gamma (Bessel) cluster kernel.

Usage

rVarGamma(kappa, nu, scale, mu, win = owin(),
thresh = 0.001, nsim=1, drop=TRUE,
saveLambda=FALSE, expand = NULL, ...,
poisthresh=1e-6, saveparents=TRUE)

rVarGamma 1513

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

nu Shape parameter for the cluster kernel. A number greater than -1.

scale Scale parameter for cluster kernel. Determines the size of clusters. A positive
number in the same units as the spatial coordinates.

mu Mean number of points per cluster (a single positive number) or reference inten-
sity for the cluster points (a function or a pixel image).

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

thresh Threshold relative to the cluster kernel value at the origin (parent location) deter-
mining when the cluster kernel will be treated as zero for simulation purposes.
Will be overridden by argument expand if that is given.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent
points will also be calculated and saved, and returns as an attribute of the point
pattern.

expand Numeric. Size of window expansion for generation of parent points. By default
determined by calling clusterradius with the numeric threshold value given
in thresh.

... Passed to clusterfield to control the image resolution when saveLambda=TRUE
and to clusterradius when expand is missing or NULL.

poisthresh Numerical threshold below which the model will be treated as a Poisson process.
See Details.

saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

Details

This algorithm generates a realisation of the Neyman-Scott process with Variance Gamma (Bessel)
cluster kernel, inside the window win.

The process is constructed by first generating a Poisson point process of “parent” points with in-
tensity kappa. Then each parent point is replaced by a random cluster of points, the number of
points in each cluster being random with a Poisson (mu) distribution, and the points being placed
independently and uniformly according to a Variance Gamma kernel.

The shape of the kernel is determined by the dimensionless index nu. This is the parameter ν′ =
α/2− 1 appearing in equation (12) on page 126 of Jalilian et al (2013).

The scale of the kernel is determined by the argument scale, which is the parameter η appearing
in equations (12) and (13) of Jalilian et al (2013). It is expressed in units of length (the same as the
unit of length for the window win).

In this implementation, parent points are not restricted to lie in the window; the parent process is
effectively the uniform Poisson process on the infinite plane.

1514 rVarGamma

This model can be fitted to data by the method of minimum contrast, maximum composite likeli-
hood or Palm likelihood using kppm.

The algorithm can also generate spatially inhomogeneous versions of the cluster process:

• The parent points can be spatially inhomogeneous. If the argument kappa is a function(x,y)
or a pixel image (object of class "im"), then it is taken as specifying the intensity function of
an inhomogeneous Poisson process that generates the parent points.

• The offspring points can be inhomogeneous. If the argument mu is a function(x,y) or a
pixel image (object of class "im"), then it is interpreted as the reference density for offspring
points, in the sense of Waagepetersen (2006).

When the parents are homogeneous (kappa is a single number) and the offspring are inhomo-
geneous (mu is a function or pixel image), the model can be fitted to data using kppm, or using
vargamma.estK or vargamma.estpcf applied to the inhomogeneous K function.

If the pair correlation function of the model is very close to that of a Poisson process, deviating by
less than poisthresh, then the model is approximately a Poisson process, and will be simulated as
a Poisson process with intensity kappa * mu, using rpoispp. This avoids computations that would
otherwise require huge amounts of memory.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point pat-
tern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute
"Lambda", if saveLambda=TRUE.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

rpoispp, rNeymanScott, kppm.

vargamma.estK, vargamma.estpcf.

Examples

homogeneous
X <- rVarGamma(30, 2, 0.02, 5)
inhomogeneous
ff <- function(x,y){ exp(2 - 3 * abs(x)) }
Z <- as.im(ff, W= owin())

SatPiece 1515

Y <- rVarGamma(30, 2, 0.02, Z)
YY <- rVarGamma(ff, 2, 0.02, 3)

SatPiece Piecewise Constant Saturated Pairwise Interaction Point Process
Model

Description

Creates an instance of a saturated pairwise interaction point process model with piecewise constant
potential function. The model can then be fitted to point pattern data.

Usage

SatPiece(r, sat)

Arguments

r vector of jump points for the potential function

sat vector of saturation values, or a single saturation value

Details

This is a generalisation of the Geyer saturation point process model, described in Geyer, to the case
of multiple interaction distances. It can also be described as the saturated analogue of a pairwise
interaction process with piecewise-constant pair potential, described in PairPiece.

The saturated point process with interaction radii r1, . . . , rk, saturation thresholds s1, . . . , sk, in-
tensity parameter β and interaction parameters γ1, . . . , gammak, is the point process in which each
point xi in the pattern X contributes a factor

βγ
v1(xi,X)
1 . . . gamma

vk(xi,X)
k

to the probability density of the point pattern, where

vj(xi, X) = min(sj , tj(xi, X))

where tj(xi, X) denotes the number of points in the pattern X which lie at a distance between rj−1
and rj from the point xi. We take r0 = 0 so that t1(xi, X) is the number of points of X that lie
within a distance r1 of the point xi.

SatPiece is used to fit this model to data. The function ppm(), which fits point process models to
point pattern data, requires an argument of class "interact" describing the interpoint interaction
structure of the model to be fitted. The appropriate description of the piecewise constant Saturated
pairwise interaction is yielded by the function SatPiece(). See the examples below.

Simulation of this point process model is not yet implemented. This model is not locally stable (the
conditional intensity is unbounded).

The argument r specifies the vector of interaction distances. The entries of r must be strictly
increasing, positive numbers.

1516 Saturated

The argument sat specifies the vector of saturation parameters. It should be a vector of the same
length as r, and its entries should be nonnegative numbers. Thus sat[1] corresponds to the distance
range from 0 to r[1], and sat[2] to the distance range from r[1] to r[2], etc. Alternatively sat
may be a single number, and this saturation value will be applied to every distance range.

Infinite values of the saturation parameters are also permitted; in this case vj(xi, X) = tj(xi, X)
and there is effectively no ‘saturation’ for the distance range in question. If all the saturation pa-
rameters are set to Inf then the model is effectively a pairwise interaction process, equivalent to
PairPiece (however the interaction parameters γ obtained from SatPiece are the square roots of
the parameters γ obtained from PairPiece).

If r is a single number, this model is virtually equivalent to the Geyer process, see Geyer.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

in collaboration with Hao Wang and Jeff Picka

See Also

ppm, pairsat.family, Geyer, PairPiece, BadGey.

Examples

SatPiece(c(0.1,0.2), c(1,1))
prints a sensible description of itself
SatPiece(c(0.1,0.2), 1)
data(cells)
ppm(cells, ~1, SatPiece(c(0.07, 0.1, 0.13), 2))
fit a stationary piecewise constant Saturated pairwise interaction process

Not run:
ppm(cells, ~polynom(x,y,3), SatPiece(c(0.07, 0.1, 0.13), 2))
nonstationary process with log-cubic polynomial trend

End(Not run)

Saturated Saturated Pairwise Interaction model

Description

Experimental.

scalardilate 1517

Usage

Saturated(pot, name)

Arguments

pot An S language function giving the user-supplied pairwise interaction potential.

name Character string.

Details

This is experimental. It constructs a member of the “saturated pairwise” family pairsat.family.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, pairsat.family, Geyer, SatPiece, ppm.object

scalardilate Apply Scalar Dilation

Description

Applies scalar dilation to a plane geometrical object, such as a point pattern or a window, relative
to a specified origin.

Usage

scalardilate(X, f, ...)

S3 method for class 'im'
scalardilate(X, f, ..., origin=NULL)

S3 method for class 'owin'
scalardilate(X, f, ..., origin=NULL)

S3 method for class 'ppp'
scalardilate(X, f, ..., origin=NULL)

S3 method for class 'psp'

1518 scalardilate

scalardilate(X, f, ..., origin=NULL)

Default S3 method:
scalardilate(X, f, ...)

Arguments

X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), a window (object of class "owin"), a pixel image
(class "im") and so on.

f Scalar dilation factor. A finite number greater than zero.

... Ignored by the methods.

origin Origin for the scalar dilation. Either a vector of 2 numbers, or one of the char-
acter strings "centroid", "midpoint", "left", "right", "top", "bottom",
"topleft", "bottomleft", "topright" or "bottomright" (partially matched).

Details

This command performs scalar dilation of the object X by the factor f relative to the origin specified
by origin.

The function scalardilate is generic, with methods for windows (class "owin"), point patterns
(class "ppp"), pixel images (class "im"), line segment patterns (class "psp") and a default method.

If the argument origin is not given, then every spatial coordinate is multiplied by the factor f.

If origin is given, then scalar dilation is performed relative to the specified origin. Effectively, X
is shifted so that origin is moved to c(0,0), then scalar dilation is performed, then the result is
shifted so that c(0,0) is moved to origin.

This command is a special case of an affine transformation: see affine.

Value

Another object of the same type, representing the result of applying the scalar dilation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

affine, shift

Examples

plot(letterR)
plot(scalardilate(letterR, 0.7, origin="left"), col="red", add=TRUE)

scaletointerval 1519

scaletointerval Rescale Data to Lie Between Specified Limits

Description

Rescales a dataset so that the values range exactly between the specified limits.

Usage

scaletointerval(x, from=0, to=1, xrange=range(x))
Default S3 method:

scaletointerval(x, from=0, to=1, xrange=range(x))
S3 method for class 'im'

scaletointerval(x, from=0, to=1, xrange=range(x))

Arguments

x Data to be rescaled.
from,to Lower and upper endpoints of the interval to which the values of x should be

rescaled.
xrange Optional range of values of x that should be mapped to the new interval.

Details

These functions rescale a dataset x so that its values range exactly between the limits from and to.

The method for pixel images (objects of class "im") applies this scaling to the pixel values of x.

Rescaling cannot be performed if the values in x are not interpretable as numeric, or if the values in
x are all equal.

Value

An object of the same type as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

scale

Examples

X <- as.im(function(x,y) {x+y+3}, unit.square())
summary(X)
Y <- scaletointerval(X)
summary(Y)

1520 scan.test

scan.test Spatial Scan Test

Description

Performs the Spatial Scan Test for clustering in a spatial point pattern, or for clustering of one type
of point in a bivariate spatial point pattern.

Usage

scan.test(X, r, ...,
method = c("poisson", "binomial"),
nsim = 19,
baseline = NULL,
case = 2,
alternative = c("greater", "less", "two.sided"),
verbose = TRUE)

Arguments

X A point pattern (object of class "ppp").

r Radius of circle to use. A single number or a numeric vector.

... Optional. Arguments passed to as.mask to determine the spatial resolution of
the computations.

method Either "poisson" or "binomial" specifying the type of likelihood.

nsim Number of simulations for computing Monte Carlo p-value.

baseline Baseline for the Poisson intensity, if method="poisson". A pixel image or a
function.

case Which type of point should be interpreted as a case, if method="binomial".
Integer or character string.

alternative Alternative hypothesis: "greater" if the alternative postulates that the mean
number of points inside the circle will be greater than expected under the null.

verbose Logical. Whether to print progress reports.

Details

The spatial scan test (Kulldorf, 1997) is applied to the point pattern X.

In a nutshell,

• If method="poisson" then a significant result would mean that there is a circle of radius r,
located somewhere in the spatial domain of the data, which contains a significantly higher
than expected number of points of X. That is, the pattern X exhibits spatial clustering.

scan.test 1521

• If method="binomial" then X must be a bivariate (two-type) point pattern. By default, the
first type of point is interpreted as a control (non-event) and the second type of point as a case
(event). A significant result would mean that there is a circle of radius r which contains a
significantly higher than expected number of cases. That is, the cases are clustered together,
conditional on the locations of all points.

Following is a more detailed explanation.

• If method="poisson" then the scan test based on Poisson likelihood is performed (Kulldorf,
1997). The dataset X is treated as an unmarked point pattern. By default (if baseline is not
specified) the null hypothesis is complete spatial randomness CSR (i.e. a uniform Poisson
process). The alternative hypothesis is a Poisson process with one intensity β1 inside some
circle of radius r and another intensity β0 outside the circle. If baseline is given, then it
should be a pixel image or a function(x,y). The null hypothesis is an inhomogeneous
Poisson process with intensity proportional to baseline. The alternative hypothesis is an
inhomogeneous Poisson process with intensity beta1 * baseline inside some circle of radius
r, and beta0 * baseline outside the circle.

• If method="binomial" then the scan test based on binomial likelihood is performed (Kulldorf,
1997). The dataset X must be a bivariate point pattern, i.e. a multitype point pattern with two
types. The null hypothesis is that all permutations of the type labels are equally likely. The
alternative hypothesis is that some circle of radius r has a higher proportion of points of the
second type, than expected under the null hypothesis.

The result of scan.test is a hypothesis test (object of class "htest") which can be plotted to report
the results. The component p.value contains the p-value.

The result of scan.test can also be plotted (using the plot method for the class "scan.test").
The plot is a pixel image of the Likelihood Ratio Test Statistic (2 times the log likelihood ratio) as a
function of the location of the centre of the circle. This pixel image can be extracted from the object
using as.im.scan.test. The Likelihood Ratio Test Statistic is computed by scanLRTS.

Value

An object of class "htest" (hypothesis test) which also belongs to the class "scan.test". Printing
this object gives the result of the test. Plotting this object displays the Likelihood Ratio Test Statistic
as a function of the location of the centre of the circle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Kulldorff, M. (1997) A spatial scan statistic. Communications in Statistics — Theory and Methods
26, 1481–1496.

See Also

plot.scan.test, as.im.scan.test, relrisk, scanLRTS

1522 scanLRTS

Examples

nsim <- if(interactive()) 19 else 2
rr <- if(interactive()) seq(0.5, 1, by=0.1) else c(0.5, 1)
scan.test(redwood, 0.1 * rr, method="poisson", nsim=nsim)
scan.test(chorley, rr, method="binomial", case="larynx", nsim=nsim)

scanLRTS Likelihood Ratio Test Statistic for Scan Test

Description

Calculate the Likelihood Ratio Test Statistic for the Scan Test, at each spatial location.

Usage

scanLRTS(X, r, ...,
method = c("poisson", "binomial"),
baseline = NULL, case = 2,
alternative = c("greater", "less", "two.sided"),
saveopt = FALSE,
Xmask = NULL)

Arguments

X A point pattern (object of class "ppp").

r Radius of circle to use. A single number or a numeric vector.

... Optional. Arguments passed to as.mask to determine the spatial resolution of
the computations.

method Either "poisson" or "binomial" specifying the type of likelihood.

baseline Baseline for the Poisson intensity, if method="poisson". A pixel image or a
function.

case Which type of point should be interpreted as a case, if method="binomial".
Integer or character string.

alternative Alternative hypothesis: "greater" if the alternative postulates that the mean
number of points inside the circle will be greater than expected under the null.

saveopt Logical value indicating to save the optimal value of r at each location.

Xmask Internal use only.

Details

This command computes, for all spatial locations u, the Likelihood Ratio Test Statistic Λ(u) for a
test of homogeneity at the location u, as described below. The result is a pixel image giving the
values of Λ(u) at each pixel.

The maximum value of Λ(u) over all locations u is the scan statistic, which is the basis of the scan
test performed by scan.test.

scanLRTS 1523

• If method="poisson" then the test statistic is based on Poisson likelihood. The dataset X
is treated as an unmarked point pattern. By default (if baseline is not specified) the null
hypothesis is complete spatial randomness CSR (i.e. a uniform Poisson process). At the
spatial location u, the alternative hypothesis is a Poisson process with one intensity β1 inside
the circle of radius r centred at u, and another intensity β0 outside the circle. If baseline
is given, then it should be a pixel image or a function(x,y). The null hypothesis is an
inhomogeneous Poisson process with intensity proportional to baseline. The alternative
hypothesis is an inhomogeneous Poisson process with intensity beta1 * baseline inside the
circle, and beta0 * baseline outside the circle.

• If method="binomial" then the test statistic is based on binomial likelihood. The dataset X
must be a bivariate point pattern, i.e. a multitype point pattern with two types. The null hy-
pothesis is that all permutations of the type labels are equally likely. The alternative hypothesis
is that the circle of radius r centred at u has a higher proportion of points of the second type,
than expected under the null hypothesis.

If r is a vector of more than one value for the radius, then the calculations described above are
performed for every value of r. Then the maximum over r is taken for each spatial location u. The
resulting pixel value of scanLRTS at a location u is the profile maximum of the Likelihood Ratio
Test Statistic, that is, the maximum of the Likelihood Ratio Test Statistic for circles of all radii,
centred at the same location u.

If you have already performed a scan test using scan.test, the Likelihood Ratio Test Statistic can
be extracted from the test result using the function as.im.scan.test.

Value

A pixel image (object of class "im") whose pixel values are the values of the (profile) Likelihood
Ratio Test Statistic at each spatial location.

Warning: window size

Note that the result of scanLRTS is a pixel image on a larger window than the original window of X.
The expanded window contains the centre of any circle of radius r that has nonempty intersection
with the original window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Kulldorff, M. (1997) A spatial scan statistic. Communications in Statistics — Theory and Methods
26, 1481–1496.

See Also

scan.test, as.im.scan.test

1524 scanpp

Examples

plot(scanLRTS(redwood, 0.1, method="poisson"))
sc <- scanLRTS(chorley, 1, method="binomial", case="larynx")
plot(sc)
scanstatchorley <- max(sc)

scanpp Read Point Pattern From Data File

Description

Reads a point pattern dataset from a text file.

Usage

scanpp(filename, window, header=TRUE, dir="", factor.marks=NULL, ...)

Arguments

filename String name of the file containing the coordinates of the points in the point pat-
tern, and their marks if any.

window Window for the point pattern. An object of class "owin".

header Logical flag indicating whether the first line of the file contains headings for the
columns. Passed to read.table.

dir String containing the path name of the directory in which filename is to be
found. Default is the current directory.

factor.marks Logical vector (or NULL) indicating whether marks are to be interpreted as
factors. Defaults to NULL which means that strings will be interpreted as factors
while numeric variables will not. See details.

... Ignored.

Details

This simple function reads a point pattern dataset from a file containing the cartesian coordinates of
its points, and optionally the mark values for these points.

The file identified by filename in directory dir should be a text file that can be read using read.table.
Thus, each line of the file (except possibly the first line) contains data for one point in the point pat-
tern. Data are arranged in columns. There should be either two columns (for an unmarked point
pattern) or more columns (for a marked point pattern).

If header=FALSE then the first two columns of data will be interpreted as the x and y coordinates of
points. Remaining columns, if present, will be interpreted as containing the marks for these points.

If header=TRUE then the first line of the file should contain string names for each of the columns of
data. If there are columns named x and y then these will be taken as the cartesian coordinates, and
any remaining columns will be taken as the marks. If there are no columns named x and y then the
first and second columns will be taken as the cartesian coordinates.

sdr 1525

If a logical vector is provided for factor.marks the length should equal the number of mark
columns (a shorter factor.marks is recycled to this length). This vector is then used to deter-
mine which mark columns should be interpreted as factors. Note: Strings will not be interpreted as
factors if the corresponding entry in factor.marks is FALSE.

Note that there is intentionally no default for window. The window of observation should be speci-
fied. If you really need to estimate the window, use the Ripley-Rasson estimator ripras.

Value

A point pattern (an object of class "ppp", see ppp.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

ppp.object, ppp, as.ppp, ripras

Examples

files installed with spatstat, for demonstration
d <- system.file("rawdata", "finpines", package="spatstat.data")
if(nzchar(d)) {

W <- owin(c(-5,5), c(-8,2))
X <- scanpp("finpines.txt", dir=d, window=W)
print(X)

}
d <- system.file("rawdata", "amacrine", package="spatstat.data")
if(nzchar(d)) {

W <- owin(c(0, 1060/662), c(0, 1))
Y <- scanpp("amacrine.txt", dir=d, window=W, factor.marks=TRUE)
print(Y)

}

sdr Sufficient Dimension Reduction

Description

Given a point pattern and a set of predictors, find a minimal set of new predictors, each constructed
as a linear combination of the original predictors.

1526 sdr

Usage

sdr(X, covariates, ...)

S3 method for class 'ppp'
sdr(X, covariates,

method = c("DR", "NNIR", "SAVE", "SIR", "TSE"),
Dim1 = 1, Dim2 = 1, predict=FALSE, ...)

Arguments

X A point pattern (object of class "ppp").

covariates A list of pixel images (objects of class "im") to serve as predictor variables.

method Character string indicating which method to use. See Details.

Dim1 Dimension of the first order Central Intensity Subspace (applicable when method
is "DR", "NNIR", "SAVE" or "TSE").

Dim2 Dimension of the second order Central Intensity Subspace (applicable when
method="TSE").

predict Logical value indicating whether to compute the new predictors as well.

... Additional arguments (ignored by sdr.ppp).

Details

Given a point pattern X and predictor variables Z1, . . . , Zp, Sufficient Dimension Reduction meth-
ods (Guan and Wang, 2010) attempt to find a minimal set of new predictor variables, each con-
structed by taking a linear combination of the original predictors, which explain the dependence
of X on Z1, . . . , Zp. The methods do not assume any particular form of dependence of the point
pattern on the predictors. The predictors are assumed to be Gaussian random fields.

Available methods are:

method="DR" directional regression
method="NNIR" nearest neighbour inverse regression
method="SAVE" sliced average variance estimation
method="SIR" sliced inverse regression
method="TSE" two-step estimation

The result includes a matrix B whose columns are estimates of the basis vectors of the space of new
predictors. That is, the jth column of B expresses the jth new predictor as a linear combination of
the original predictors.

If predict=TRUE, the new predictors are also evaluated. They can also be evaluated using sdrPredict.

Value

A list with components B,M or B,M1,M2 where B is a matrix whose columns are estimates of the
basis vectors for the space, and M or M1,M2 are matrices containing estimates of the kernel.

sdrPredict 1527

If predict=TRUE, the result also includes a component Y which is a list of pixel images giving the
values of the new predictors.

Author(s)

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References

Guan, Y. and Wang, H. (2010) Sufficient dimension reduction for spatial point processes directed
by Gaussian random fields. Journal of the Royal Statistical Society, Series B, 72, 367–387.

See Also

sdrPredict to compute the new predictors from the coefficient matrix.

dimhat to estimate the subspace dimension.

subspaceDistance

Examples

A <- sdr(bei, bei.extra, predict=TRUE)
A
Y1 <- A$Y[[1]]
plot(Y1)
points(bei, pch=".", cex=2)
investigate likely form of dependence
plot(rhohat(bei, Y1))

sdrPredict Compute Predictors from Sufficient Dimension Reduction

Description

Given the result of a Sufficient Dimension Reduction method, compute the new predictors.

Usage

sdrPredict(covariates, B)

Arguments

covariates A list of pixel images (objects of class "im").

B Either a matrix of coefficients for the covariates, or the result of a call to sdr.

1528 segregation.test

Details

This function assumes that sdr has already been used to find a minimal set of predictors based
on the covariates. The argument B should be either the result of sdr or the coefficient matrix
returned as one of the results of sdr. The columns of this matrix define linear combinations of the
covariates. This function evaluates those linear combinations, and returns a list of pixel images
containing the new predictors.

Value

A list of pixel images (objects of class "im") with one entry for each column of B.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

sdr

Examples

A <- sdr(bei, bei.extra)
Y <- sdrPredict(bei.extra, A)
Y

segregation.test Test of Spatial Segregation of Types

Description

Performs a Monte Carlo test of spatial segregation of the types in a multitype point pattern.

Usage

segregation.test(X, ...)

S3 method for class 'ppp'
segregation.test(X, ..., nsim = 19,

permute = TRUE, verbose = TRUE, Xname)

Arguments

X Multitype point pattern (object of class "ppp" with factor-valued marks).

... Additional arguments passed to relrisk.ppp to control the smoothing param-
eter or bandwidth selection.

nsim Number of simulations for the Monte Carlo test.

segregation.test 1529

permute Argument passed to rlabel. If TRUE (the default), randomisation is performed
by randomly permuting the labels of X. If FALSE, randomisation is performing
by resampling the labels with replacement.

verbose Logical value indicating whether to print progress reports.

Xname Optional character string giving the name of the dataset X.

Details

The Monte Carlo test of spatial segregation of types, proposed by Kelsall and Diggle (1995) and
Diggle et al (2005), is applied to the point pattern X. The test statistic is

T =
∑
i

∑
m

(p̂(m | xi)− pm)
2

where p̂(m | xi) is the leave-one-out kernel smoothing estimate of the probability that the i-th data
point has type m, and pm is the average fraction of data points which are of type m. The statistic T
is evaluated for the data and for nsim randomised versions of X, generated by randomly permuting
or resampling the marks.

Note that, by default, automatic bandwidth selection will be performed separately for each ran-
domised pattern. This computation can be very time-consuming but is necessary for the test to be
valid in most conditions. A short-cut is to specify the value of the smoothing bandwidth sigma as
shown in the examples.

Value

An object of class "htest" representing the result of the test.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Kelsall, J.E. and Diggle, P.J. (1995) Kernel estimation of relative risk. Bernoulli 1, 3–16.

Diggle, P.J., Zheng, P. and Durr, P. (2005) Non-parametric estimation of spatial segregation in a
multivariate point process: bovine tuberculosis in Cornwall, UK. Applied Statistics 54, 645–658.

See Also

relrisk

Examples

segregation.test(hyytiala, 5)

if(interactive()) segregation.test(hyytiala, hmin=0.05)

1530 selfcrossing.psp

selfcrossing.psp Crossing Points in a Line Segment Pattern

Description

Finds any crossing points between the line segments in a line segment pattern.

Usage

selfcrossing.psp(A)

Arguments

A Line segment pattern (object of class "psp").

Details

This function finds any crossing points between different line segments in the line segment pattern
A.

A crossing point occurs whenever one of the line segments in A intersects another line segment in
A, at a nonzero angle of intersection.

Value

Point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

crossing.psp, psp.object, ppp.object.

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(a, col="green", main="selfcrossing.psp")
P <- selfcrossing.psp(a)
plot(P, add=TRUE, col="red")

selfcut.psp 1531

selfcut.psp Cut Line Segments Where They Intersect

Description

Finds any crossing points between the line segments in a line segment pattern, and cuts the segments
into pieces at these crossing-points.

Usage

selfcut.psp(A, ..., eps)

Arguments

A Line segment pattern (object of class "psp").

eps Optional. Smallest permissible length of the resulting line segments. There is a
sensible default.

... Ignored.

Details

This function finds any crossing points between different line segments in the line segment pattern
A, and cuts the line segments into pieces at these intersection points.

A crossing point occurs whenever one of the line segments in A intersects another line segment in
A, at a nonzero angle of intersection.

Value

Another line segment pattern (object of class "psp") in the same window as A with the same kind
of marks as A.

The result also has an attribute "camefrom" indicating the provenance of each segment in the result.
For example camefrom[3]=2 means that the third segment in the result is a piece of the second
segment of A.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

selfcrossing.psp

1532 sessionLibs

Examples

X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
Y <- selfcut.psp(X)
n <- nsegments(Y)
plot(Y %mark% factor(sample(seq_len(n), n, replace=TRUE)))

sessionLibs Print Names and Version Numbers of Libraries Loaded

Description

Prints the names and version numbers of libraries currently loaded by the user.

Usage

sessionLibs()

Details

This function prints a list of the libraries loaded by the user in the current session, giving just their
name and version number. It obtains this information from sessionInfo.

This function is not needed in an interactive R session because the package startup messages will
usually provide this information.

Its main use is in an Sweave script, where it is needed because the package startup messages are not
printed.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

sessionInfo

Examples

sessionLibs()

setcov 1533

setcov Set Covariance of a Window

Description

Computes the set covariance function of a window.

Usage

setcov(W, V=W, ...)

Arguments

W A window (object of class "owin".

V Optional. Another window.

... Optional arguments passed to as.mask to control the pixel resolution.

Details

The set covariance function of a region W in the plane is the function C(v) defined for each vector
v as the area of the intersection between W and W + v, where W + v is the set obtained by shifting
(translating) W by v.

We may interpret C(v) as the area of the set of all points x in W such that x+ v also lies in W .

This command computes a discretised approximation to the set covariance function of any plane
region W represented as a window object (of class "owin", see owin.object). The return value
is a pixel image (object of class "im") whose greyscale values are values of the set covariance
function.

The set covariance is computed using the Fast Fourier Transform, unless W is a rectangle, when an
exact formula is used.

If the argument V is present, then setcov(W,V) computes the set cross-covariance function C(x)
defined for each vector x as the area of the intersection between W and V + x.

Value

A pixel image (an object of class "im") representing the set covariance function of W, or the cross-
covariance of W and V.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

imcov, owin, as.owin, erosion

1534 sharpen

Examples

w <- owin(c(0,1),c(0,1))
v <- setcov(w)
plot(v)

sharpen Data Sharpening of Point Pattern

Description

Performs Choi-Hall data sharpening of a spatial point pattern.

Usage

sharpen(X, ...)
S3 method for class 'ppp'
sharpen(X, sigma=NULL, ...,

varcov=NULL, edgecorrect=FALSE)

Arguments

X A marked point pattern (object of class "ppp").

sigma Standard deviation of isotropic Gaussian smoothing kernel.

varcov Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with
sigma.

edgecorrect Logical value indicating whether to apply edge effect bias correction.

... Arguments passed to density.ppp to control the pixel resolution of the result.

Details

Choi and Hall (2001) proposed a procedure for data sharpening of spatial point patterns. This pro-
cedure is appropriate for earthquake epicentres and other point patterns which are believed to exhibit
strong concentrations of points along a curve. Data sharpening causes such points to concentrate
more tightly along the curve.

If the original data points are X1, . . . , Xn then the sharpened points are

X̂i =

∑
j Xjk(Xj −Xi)∑
j k(Xj −Xi)

where k is a smoothing kernel in two dimensions. Thus, the new point X̂i is a vector average of the
nearby points X[j].

The function sharpen is generic. It currently has only one method, for two-dimensional point
patterns (objects of class "ppp").

If sigma is given, the smoothing kernel is the isotropic two-dimensional Gaussian density with
standard deviation sigma in each axis. If varcov is given, the smoothing kernel is the Gaussian
density with variance-covariance matrix varcov.

shift 1535

The data sharpening procedure tends to cause the point pattern to contract away from the boundary
of the window. That is, points X_iX[i] that lie ‘quite close to the edge of the window of the point
pattern tend to be displaced inward. If edgecorrect=TRUE then the algorithm is modified to correct
this vector bias.

Value

A point pattern (object of class "ppp") in the same window as the original pattern X, and with the
same marks as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Choi, E. and Hall, P. (2001) Nonparametric analysis of earthquake point-process data. In M. de
Gunst, C. Klaassen and A. van der Vaart (eds.) State of the art in probability and statistics:
Festschrift for Willem R. van Zwet, Institute of Mathematical Statistics, Beachwood, Ohio. Pages
324–344.

See Also

density.ppp, Smooth.ppp.

Examples

data(shapley)
X <- unmark(shapley)

Y <- sharpen(X, sigma=0.5)
Z <- sharpen(X, sigma=0.5, edgecorrect=TRUE)
opa <- par(mar=rep(0.2, 4))
plot(solist(X, Y, Z), main= " ",

main.panel=c("data", "sharpen", "sharpen, correct"),
pch=".", equal.scales=TRUE, mar.panel=0.2)

par(opa)

shift Apply Vector Translation

Description

Applies a vector shift of the plane to a geometrical object, such as a point pattern or a window.

Usage

shift(X, ...)

1536 shift.im

Arguments

X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), or a window (object of class "owin").

... Arguments determining the shift vector.

Details

This is generic. Methods are provided for point patterns (shift.ppp) and windows (shift.owin).

The object is translated by the vector vec.

Value

Another object of the same type, representing the result of applying the shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

shift.ppp, shift.owin, rotate, affine, periodify

shift.im Apply Vector Translation To Pixel Image

Description

Applies a vector shift to a pixel image

Usage

S3 method for class 'im'
shift(X, vec=c(0,0), ..., origin=NULL)

Arguments

X Pixel image (object of class "im").

vec Vector of length 2 representing a translation.

... Ignored

origin Location that will be shifted to the origin. Either a numeric vector of length 2
giving the location, or a point pattern containing only one point, or a list with two
entries named x and y, or one of the character strings "centroid", "midpoint",
"left", "right", "top", "bottom", "topleft", "bottomleft", "topright"
or "bottomright" (partially matched).

shift.owin 1537

Details

The spatial location of each pixel in the image is translated by the vector vec. This is a method for
the generic function shift.

If origin is given, the argument vec will be ignored; instead the shift will be performed so that
the specified geometric location is shifted to the coordinate origin (0, 0). The argument origin
should be either a numeric vector of length 2 giving the spatial coordinates of a location, or one of
the character strings "centroid", "midpoint", "left", "right", "top", "bottom", "topleft",
"bottomleft", "topright" or "bottomright" (partially matched). If origin="centroid" then
the centroid of the window will be shifted to the origin. If origin="midpoint" then the centre of
the bounding rectangle of the window will be shifted to the origin. If origin="bottomleft" then
the bottom left corner of the bounding rectangle of the window will be shifted to the origin, and so
on.

Value

Another pixel image (of class "im") representing the result of applying the vector shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

shift

Examples

make up an image
X <- setcov(unit.square())
plot(X)

Y <- shift(X, c(10,10))
plot(Y)
no discernible difference except coordinates are different

shift(X, origin="c")

shift.owin Apply Vector Translation To Window

Description

Applies a vector shift to a window

1538 shift.owin

Usage

S3 method for class 'owin'
shift(X, vec=c(0,0), ..., origin=NULL)

Arguments

X Window (object of class "owin").

vec Vector of length 2 representing a translation.

... Ignored

origin Location that will be shifted to the origin. Either a numeric vector of length 2
giving the location, or a point pattern containing only one point, or a list with two
entries named x and y, or one of the character strings "centroid", "midpoint",
"left", "right", "top", "bottom", "topleft", "bottomleft", "topright"
or "bottomright" (partially matched).

Details

The window is translated by the vector vec. This is a method for the generic function shift.

If origin is given, the argument vec will be ignored; instead the shift will be performed so that
the specified geometric location is shifted to the coordinate origin (0, 0). The argument origin
should be either a numeric vector of length 2 giving the spatial coordinates of a location, or one of
the character strings "centroid", "midpoint", "left", "right", "top", "bottom", "topleft",
"bottomleft", "topright" or "bottomright" (partially matched). If origin="centroid" then
the centroid of the window will be shifted to the origin. If origin="midpoint" then the centre of
the bounding rectangle of the window will be shifted to the origin. If origin="bottomleft" then
the bottom left corner of the bounding rectangle of the window will be shifted to the origin, and so
on.

Value

Another window (of class "owin") representing the result of applying the vector shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

shift, shift.ppp, periodify, rotate, affine, centroid.owin

Examples

W <- owin(c(0,1),c(0,1))
X <- shift(W, c(2,3))
Not run:
plot(W)
no discernible difference except coordinates are different

shift.ppp 1539

End(Not run)
shift(W, origin="top")

shift.ppp Apply Vector Translation To Point Pattern

Description

Applies a vector shift to a point pattern.

Usage

S3 method for class 'ppp'
shift(X, vec=c(0,0), ..., origin=NULL)

Arguments

X Point pattern (object of class "ppp").

vec Vector of length 2 representing a translation.

... Ignored

origin Location that will be shifted to the origin. Either a numeric vector of length 2
giving the location, or a point pattern containing only one point, or a list with two
entries named x and y, or one of the character strings "centroid", "midpoint",
"left", "right", "top", "bottom", "topleft", "bottomleft", "topright"
or "bottomright" (partially matched).

Details

The point pattern, and its window, are translated by the vector vec.

This is a method for the generic function shift.

If origin is given, the argument vec will be ignored; instead the shift will be performed so that
the specified geometric location is shifted to the coordinate origin (0, 0). The argument origin
should be either a numeric vector of length 2 giving the spatial coordinates of a location, or one of
the character strings "centroid", "midpoint", "left", "right", "top", "bottom", "topleft",
"bottomleft", "topright" or "bottomright" (partially matched). If origin="centroid" then
the centroid of the window will be shifted to the origin. If origin="midpoint" then the centre of
the bounding rectangle of the window will be shifted to the origin. If origin="bottomleft" then
the bottom left corner of the bounding rectangle of the window will be shifted to the origin, and so
on.

Value

Another point pattern (of class "ppp") representing the result of applying the vector shift.

1540 shift.psp

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

shift, shift.owin, periodify, rotate, affine

Examples

data(cells)
X <- shift(cells, c(2,3))
Not run:
plot(X)
no discernible difference except coordinates are different

End(Not run)
plot(cells, pch=16)
plot(shift(cells, c(0.03,0.03)), add=TRUE)

shift(cells, origin="mid")

shift.psp Apply Vector Translation To Line Segment Pattern

Description

Applies a vector shift to a line segment pattern.

Usage

S3 method for class 'psp'
shift(X, vec=c(0,0), ..., origin=NULL)

Arguments

X Line Segment pattern (object of class "psp").

vec Vector of length 2 representing a translation.

... Ignored

origin Location that will be shifted to the origin. Either a numeric vector of length 2
giving the location, or a point pattern containing only one point, or a list with two
entries named x and y, or one of the character strings "centroid", "midpoint",
"left", "right", "top", "bottom", "topleft", "bottomleft", "topright"
or "bottomright" (partially matched).

sidelengths.owin 1541

Details

The line segment pattern, and its window, are translated by the vector vec.
This is a method for the generic function shift.
If origin is given, the argument vec will be ignored; instead the shift will be performed so that
the specified geometric location is shifted to the coordinate origin (0, 0). The argument origin
should be either a numeric vector of length 2 giving the spatial coordinates of a location, or one of
the character strings "centroid", "midpoint", "left", "right", "top", "bottom", "topleft",
"bottomleft", "topright" or "bottomright" (partially matched). If origin="centroid" then
the centroid of the window will be shifted to the origin. If origin="midpoint" then the centre of
the bounding rectangle of the window will be shifted to the origin. If origin="bottomleft" then
the bottom left corner of the bounding rectangle of the window will be shifted to the origin, and so
on.

Value

Another line segment pattern (of class "psp") representing the result of applying the vector shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

shift, shift.owin, shift.ppp, periodify, rotate, affine

Examples

X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(X, col="red")
Y <- shift(X, c(0.05,0.05))
plot(Y, add=TRUE, col="blue")

shift(Y, origin="mid")

sidelengths.owin Side Lengths of Enclosing Rectangle of a Window

Description

Computes the side lengths of the (enclosing rectangle of) a window.

Usage

S3 method for class 'owin'
sidelengths(x)

S3 method for class 'owin'
shortside(x)

1542 simplepanel

Arguments

x A window whose side lengths will be computed. Object of class "owin".

Details

The functions shortside and sidelengths are generic. The functions documented here are the
methods for the class "owin".

sidelengths.owin computes the side-lengths of the enclosing rectangle of the window x.

For safety, both functions give a warning if the window is not a rectangle. To suppress the warning,
first convert the window to a rectangle using as.rectangle.

shortside.owin computes the minimum of the two side-lengths.

Value

For sidelengths.owin, a numeric vector of length 2 giving the side-lengths (x then y) of the
enclosing rectangle. For shortside.owin, a numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

shortside, sidelengths for the generic functions.

area.owin, diameter.owin, perimeter for other geometric calculations on "owin" objects.

owin, as.owin.

Examples

w <- owin(c(0,2),c(-1,3))
sidelengths(w)
shortside(as.rectangle(letterR))

simplepanel Simple Point-and-Click Interface Panels

Description

These functions enable the user to create a simple, robust, point-and-click interface to any R code.

Usage

simplepanel(title, B, boxes, clicks,
redraws=NULL, exit = NULL, env)

grow.simplepanel(P, side = c("right", "left", "top", "bottom"),
len = NULL, new.clicks, new.redraws=NULL, ..., aspect)

simplepanel 1543

Arguments

title Character string giving the title of the interface panel.

B Bounding box of the panel coordinates. A rectangular window (object of class
"owin")

boxes A list of rectangular windows (objects of class "owin") specifying the placement
of the buttons and other interactive components of the panel.

clicks A list of R functions, of the same length as boxes, specifying the operations to
be performed when each button is clicked. Entries can also be NULL indicating
that no action should occur. See Details.

redraws Optional list of R functions, of the same length as boxes, specifying how to
redraw each button. Entries can also be NULL indicating a simple default. See
Details.

exit An R function specifying actions to be taken when the interactive panel termi-
nates.

env An environment that will be passed as an argument to all the functions in
clicks, redraws and exit.

P An existing interaction panel (object of class "simplepanel").

side Character string identifying which side of the panel P should be grown to ac-
commodate the new buttons.

len Optional. Thickness of the new panel area that should be grown to accommodate
the new buttons. A single number in the same units as the coordinate system of
P.

new.clicks List of R functions defining the operations to be performed when each of the
new buttons is clicked.

new.redraws Optional. List of R functions, of the same length as new.clicks, defining how
to redraw each of the new buttons.

... Arguments passed to layout.boxes to determine the layout of the new buttons.

aspect Optional. Aspect ratio (height/width) of the new buttons.

Details

These functions enable the user to create a simple, robust, point-and-click interface to any R code.

The functions simplepanel and grow.simplepanel create an object of class "simplepanel".
Such an object defines the graphics to be displayed and the actions to be performed when the user
interacts with the panel.

The panel is activated by calling run.simplepanel.

The function simplepanel creates a panel object from basic data. The function grow.simplepanel
modifies an existing panel object P by growing an additional row or column of buttons.

For simplepanel,

• The spatial layout of the panel is determined by the rectangles B and boxes.

1544 simplepanel

• The argument clicks must be a list of functions specifying the action to be taken when
each button is clicked (or NULL to indicate that no action should be taken). The list entries
should have names (but there are sensible defaults). Each function should be of the form
function(env,xy) where env is an environment that may contain shared data, and xy gives
the coordinates of the mouse click, in the format list(x,y). The function returns TRUE if the
panel should continue running, and FALSE if the panel should terminate.

• The argument redraws, if given, must be a list of functions specifying the action to be taken
when each button is to be redrawn. Each function should be of the form function(button,name,env)
where button is a rectangle specifying the location of the button in the current coordinate sys-
tem; name is a character string giving the name of the button; and env is the environment that
may contain shared data. The function returns TRUE if the panel should continue running,
and FALSE if the panel should terminate. If redraws is not given (or if one of the entries in
redraws is NULL), the default action is to draw a pink rectangle showing the button position,
draw the name of the button in the middle of this rectangle, and return TRUE.

• The argument exit, if given, must be a function specifying the action to be taken when the
panel terminates. (Termination occurs when one of the clicks functions returns FALSE). The
exit function should be of the form function(env) where env is the environment that may
contain shared data. Its return value will be used as the return value of run.simplepanel.

• The argument env should be an R environment. The panel buttons will have access to this
environment, and will be able to read and write data in it. This mechanism is used to exchange
data between the panel and other R code.

For grow.simplepanel,

• the spatial layout of the new boxes is determined by the arguments side, len, aspect and by
the additional ... arguments passed to layout.boxes.

• the argument new.clicks should have the same format as clicks. It implicitly specifies the
number of new buttons to be added, and the actions to be performed when they are clicked.

• the optional argument new.redraws, if given, should have the same format as redraws. It
specifies the actions to be performed when the new buttons are clicked.

Value

An object of class "simplepanel".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

run.simplepanel, layout.boxes

Examples

make boxes (alternatively use layout.boxes())
Bminus <- square(1)
Bvalue <- shift(Bminus, c(1.2, 0))

simplepanel 1545

Bplus <- shift(Bvalue, c(1.2, 0))
Bdone <- shift(Bplus, c(1.2, 0))
myboxes <- list(Bminus, Bvalue, Bplus, Bdone)
myB <- do.call(boundingbox,myboxes)

make environment containing an integer count
myenv <- new.env()
assign("answer", 0, envir=myenv)

what to do when finished: return the count.
myexit <- function(e) { return(get("answer", envir=e)) }

button clicks
decrement the count
Cminus <- function(e, xy) {

ans <- get("answer", envir=e)
assign("answer", ans - 1, envir=e)
return(TRUE)

}
display the count (clicking does nothing)
Cvalue <- function(...) { TRUE }
increment the count
Cplus <- function(e, xy) {

ans <- get("answer", envir=e)
assign("answer", ans + 1, envir=e)
return(TRUE)

}
'Clear' button
Cclear <- function(e, xy) {

assign("answer", 0, envir=e)
return(TRUE)

}
quit button
Cdone <- function(e, xy) { return(FALSE) }

myclicks <- list("-"=Cminus,
value=Cvalue,
"+"=Cplus,
done=Cdone)

redraw the button that displays the current value of the count
Rvalue <- function(button, nam, e) {

plot(button, add=TRUE)
ans <- get("answer", envir=e)
text(centroid.owin(button), labels=ans)
return(TRUE)

}

make the panel
P <- simplepanel("Counter",

B=myB, boxes=myboxes,
clicks=myclicks,
redraws = list(NULL, Rvalue, NULL, NULL),

1546 simplify.owin

exit=myexit, env=myenv)
print it
P
show what it looks like
redraw.simplepanel(P)

(type run.simplepanel(P) to run the panel interactively)

add another button to right
Pplus <- grow.simplepanel(P, "right", new.clicks=list(clear=Cclear))

simplify.owin Approximate a Polygon by a Simpler Polygon

Description

Given a polygonal window, this function finds a simpler polygon that approximates it.

Usage

simplify.owin(W, dmin)

Arguments

W The polygon which is to be simplied. An object of class "owin".

dmin Numeric value. The smallest permissible length of an edge.

Details

This function simplifies a polygon W by recursively deleting the shortest edge of W until all remaining
edges are longer than the specified minimum length dmin, or until there are only three edges left.

The argument W must be a window (object of class "owin"). It should be of type "polygonal". If
W is a rectangle, it is returned without alteration.

The simplification algorithm is not yet implemented for binary masks. If W is a mask, an error is
generated.

Value

Another window (object of class "owin") of type "polygonal".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

owin

simulate.dppm 1547

Examples

plot(letterR, col="red")
plot(simplify.owin(letterR, 0.3), col="blue", add=TRUE)

W <- Window(chorley)
plot(W)
WS <- simplify.owin(W, 2)
plot(WS, add=TRUE, border="green")
points(vertices(WS))

simulate.dppm Simulation of Determinantal Point Process Model

Description

Generates simulated realisations from a determinantal point process model.

Usage

S3 method for class 'dppm'
simulate(object, nsim = 1, seed = NULL, ...,

W = NULL, trunc = 0.99, correction = "periodic", rbord = reach(object))

S3 method for class 'detpointprocfamily'
simulate(object, nsim = 1, seed = NULL, ...,

W = NULL, trunc = 0.99, correction = "periodic", rbord = reach(object))

Arguments

object Determinantal point process model. An object of class "detpointprocfamily"
or "dppm".

nsim Number of simulated realisations.

seed an object specifying whether and how to initialise the random number gener-
ator. Either NULL or an integer that will be used in a call to set.seed before
simulating the point patterns.

... Arguments passed on to rdpp.

W Object specifying the window of simulation (defaults to a unit box if nothing else
is sensible – see Details). Can be any single argument acceptable to as.boxx
(e.g. an "owin", "box3" or "boxx" object).

trunc Numeric value specifying how the model truncation is preformed. See Details.

correction Character string specifying the type of correction to use. The options are "peri-
odic" (default) and "border". See Details.

rbord Numeric value specifying the extent of the border correction if this correction is
used. See Details.

1548 simulate.dppm

Details

These functions are methods for the generic function simulate for the classes "detpointprocfamily"
and "dppm" of determinantal point process models.

The return value is a list of nsim point patterns. It also carries an attribute "seed" that captures
the initial state of the random number generator. This follows the convention used in simulate.lm
(see simulate). It can be used to force a sequence of simulations to be repeated exactly, as shown
in the examples for simulate.

The exact simulation of a determinantal point process model involves an infinite series, which typ-
ically has no analytical solution. In the implementation a truncation is performed. The truncation
trunc can be specified either directly as a positive integer or as a fraction between 0 and 1. In the
latter case the truncation is chosen such that the expected number of points in a simulation is trunc
times the theoretical expected number of points in the model. The default is 0.99.

The window of the returned point pattern(s) can be specified via the argument W. For a fitted model
(of class "dppm") it defaults to the observation window of the data used to fit the model. For
inhomogeneous models it defaults to the window of the intensity image. Otherwise it defaults to
a unit box. For non-rectangular windows simulation is done in the containing rectangle and then
restricted to the window. For inhomogeneous models a stationary model is first simulated using the
maximum intensity and then the result is obtained by thinning.

The default is to use periodic edge correction for simulation such that opposite edges are glued
together. If border correction is used then the simulation is done in an extended window. Edge
effects are theoretically completely removed by doubling the size of the window in each spatial
dimension, but for practical purposes much less extension may be sufficient. The numeric rbord
determines the extent of the extra space added to the window.

Value

A list of length nsim containing simulated point patterns. If the patterns are two-dimensional, then
they are objects of class "ppp", and the list has class "solist". Otherwise, the patterns are objects
of class "ppx" and the list has class "anylist".

The return value also carries an attribute "seed" that captures the initial state of the random number
generator. See Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

rdpp, simulate

simulate.kppm 1549

Examples

model <- dppGauss(lambda=100, alpha=.05, d=2)
simulate(model, 2)

simulate.kppm Simulate a Fitted Cluster Point Process Model

Description

Generates simulated realisations from a fitted cluster point process model.

Usage

S3 method for class 'kppm'
simulate(object, nsim = 1, seed=NULL, ...,

window=NULL, covariates=NULL, verbose=TRUE, retry=10,
drop=FALSE)

Arguments

object Fitted cluster point process model. An object of class "kppm".

nsim Number of simulated realisations.

seed an object specifying whether and how to initialise the random number gener-
ator. Either NULL or an integer that will be used in a call to set.seed before
simulating the point patterns.

... Additional arguments passed to the relevant random generator. See Details.

window Optional. Window (object of class "owin") in which the model should be simu-
lated.

covariates Optional. A named list containing new values for the covariates in the model.

verbose Logical. Whether to print progress reports (when nsim > 1).

retry Number of times to repeat the simulation if it fails (e.g. because of insufficient
memory).

drop Logical. If nsim=1 and drop=TRUE, the result will be a point pattern, rather than
a list containing a point pattern.

Details

This function is a method for the generic function simulate for the class "kppm" of fitted cluster
point process models.

Simulations are performed by rThomas, rMatClust, rCauchy, rVarGamma or rLGCP depending on
the model.

Additional arguments ... are passed to the relevant function performing the simulation. For exam-
ple the argument saveLambda is recognised by all of the simulation functions.

1550 simulate.lppm

The return value is a list of point patterns. It also carries an attribute "seed" that captures the
initial state of the random number generator. This follows the convention used in simulate.lm
(see simulate). It can be used to force a sequence of simulations to be repeated exactly, as shown
in the examples for simulate.

Value

A list of length nsim containing simulated point patterns (objects of class "ppp").

The return value also carries an attribute "seed" that captures the initial state of the random number
generator. See Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

kppm, rThomas, rMatClust, rCauchy, rVarGamma, rLGCP, simulate.ppm, simulate

Examples

fit <- kppm(redwood ~1, "Thomas")
simulate(fit, 2)
fitx <- kppm(redwood ~x, "Thomas")
simulate(fitx, 2)

simulate.lppm Simulate a Fitted Point Process Model on a Linear Network

Description

Generates simulated realisations from a fitted Poisson point process model on a linear network.

Usage

S3 method for class 'lppm'
simulate(object, nsim=1, ...,

new.coef=NULL,
progress=(nsim > 1),
drop=FALSE)

simulate.lppm 1551

Arguments

object Fitted point process model on a linear network. An object of class "lppm".

nsim Number of simulated realisations.

progress Logical flag indicating whether to print progress reports for the sequence of
simulations.

new.coef New values for the canonical parameters of the model. A numeric vector of the
same length as coef(object).

... Arguments passed to predict.lppm to determine the spatial resolution of the
image of the fitted intensity used in the simulation.

drop Logical. If nsim=1 and drop=TRUE, the result will be a point pattern, rather than
a list containing a point pattern.

Details

This function is a method for the generic function simulate for the class "lppm" of fitted point
process models on a linear network.

Only Poisson process models are supported so far.

Simulations are performed by rpoislpp.

Value

A list of length nsim containing simulated point patterns (objects of class "lpp") on the same linear
network as the original data used to fit the model. The result also belongs to the class "solist", so
that it can be plotted, and the class "timed", so that the total computation time is recorded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

lppm, rpoislpp, simulate

Examples

fit <- lppm(unmark(chicago) ~ y)
simulate(fit)[[1]]

1552 simulate.mppm

simulate.mppm Simulate a Point Process Model Fitted to Several Point Patterns

Description

Generates simulated realisations from a point process model that was fitted to several point patterns.

Usage

S3 method for class 'mppm'
simulate(object, nsim=1, ..., verbose=TRUE)

Arguments

object Point process model fitted to several point patterns. An object of class "mppm".

nsim Number of simulated realisations (of each original pattern).

... Further arguments passed to simulate.ppm to control the simulation.

verbose Logical value indicating whether to print progress reports.

Details

This function is a method for the generic function simulate for the class "mppm" of fitted point
process models for replicated point pattern data.

The result is a hyperframe with n rows and nsim columns, where n is the number of original point
pattern datasets to which the model was fitted. Each column of the hyperframe contains a simulated
version of the original data.

For each of the original point pattern datasets, the fitted model for this dataset is extracted using
subfits, then nsim simulated realisations of this model are generated using simulate.ppm, and
these are stored in the corresponding row of the output.

Value

A hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

mppm, simulate.ppm.

simulate.ppm 1553

Examples

H <- hyperframe(Bugs=waterstriders)
fit <- mppm(Bugs ~ id, H)
y <- simulate(fit, nsim=2)
y
plot(y[1,,drop=TRUE], main="Simulations for Waterstriders pattern 1")
plot(y[,1,drop=TRUE], main="Simulation 1 for each Waterstriders pattern")

simulate.ppm Simulate a Fitted Gibbs Point Process Model

Description

Generates simulated realisations from a fitted Gibbs or Poisson point process model.

Usage

S3 method for class 'ppm'
simulate(object, nsim=1, ...,

singlerun = FALSE,
start = NULL,
control = default.rmhcontrol(object, w=w),
w = NULL,
project=TRUE, new.coef=NULL,
verbose=FALSE, progress=(nsim > 1),
drop=FALSE)

Arguments

object Fitted point process model. An object of class "ppm".

nsim Number of simulated realisations.

singlerun Logical. Whether to generate the simulated realisations from a single long run
of the Metropolis-Hastings algorithm (singlerun=TRUE) or from separate, in-
dependent runs of the algorithm (singlerun=FALSE, the default).

start Data determining the initial state of the Metropolis-Hastings algorithm. See
rmhstart for description of these arguments. Defaults to list(n.start=npoints(data.ppm(object)))
meaning that the initial state of the algorithm has the same number of points as
the original dataset.

control Data controlling the running of the Metropolis-Hastings algorithm. See rmhcontrol
for description of these arguments.

w Optional. The window in which the model is defined. An object of class "owin".

... Further arguments passed to rmhcontrol, or to rmh.default, or to covariate
functions in the model.

1554 simulate.ppm

project Logical flag indicating what to do if the fitted model is invalid (in the sense
that the values of the fitted coefficients do not specify a valid point process). If
project=TRUE the closest valid model will be simulated; if project=FALSE an
error will occur.

verbose Logical flag indicating whether to print progress reports from rmh.ppm during
the simulation of each point pattern.

progress Logical flag indicating whether to print progress reports for the sequence of
simulations.

new.coef New values for the canonical parameters of the model. A numeric vector of the
same length as coef(object).

drop Logical. If nsim=1 and drop=TRUE, the result will be a point pattern, rather than
a list containing a point pattern.

Details

This function is a method for the generic function simulate for the class "ppm" of fitted point
process models.

Simulations are performed by rmh.ppm.

If singlerun=FALSE (the default), the simulated patterns are the results of independent runs of
the Metropolis-Hastings algorithm. If singlerun=TRUE, a single long run of the algorithm is per-
formed, and the state of the simulation is saved every nsave iterations to yield the simulated pat-
terns.

In the case of a single run, the behaviour is controlled by the parameters nsave,nburn,nrep. These
are described in rmhcontrol. They may be passed in the ... arguments or included in control. It
is sufficient to specify two of the three parameters nsave,nburn,nrep.

Value

A list of length nsim containing simulated point patterns (objects of class "ppp"). It also belongs
to the class "solist", so that it can be plotted, and the class "timed", so that the total computation
time is recorded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, simulate.kppm, simulate

Examples

fit <- ppm(japanesepines, ~1, Strauss(0.1))
simulate(fit, 2)
simulate(fit, 2, singlerun=TRUE, nsave=1e4, nburn=1e4)

simulate.slrm 1555

simulate.slrm Simulate a Fitted Spatial Logistic Regression Model

Description

Generates simulated realisations from a fitted spatial logistic regresson model

Usage

S3 method for class 'slrm'
simulate(object, nsim = 1, seed=NULL, ...,

window=NULL, covariates=NULL, verbose=TRUE, drop=FALSE)

Arguments

object Fitted spatial logistic regression model. An object of class "slrm".

nsim Number of simulated realisations.

seed an object specifying whether and how to initialise the random number gener-
ator. Either NULL or an integer that will be used in a call to set.seed before
simulating the point patterns.

... Ignored.

window Optional. Window (object of class "owin") in which the model should be simu-
lated.

covariates Optional. A named list containing new values for the covariates in the model.

verbose Logical. Whether to print progress reports (when nsim > 1).

drop Logical. If nsim=1 and drop=TRUE, the result will be a point pattern, rather than
a list containing a point pattern.

Details

This function is a method for the generic function simulate for the class "slrm" of fitted spatial
logistic regression models.

Simulations are performed by rpoispp after the intensity has been computed by predict.slrm.

The return value is a list of point patterns. It also carries an attribute "seed" that captures the
initial state of the random number generator. This follows the convention used in simulate.lm
(see simulate). It can be used to force a sequence of simulations to be repeated exactly, as shown
in the examples for simulate.

Value

A list of length nsim containing simulated point patterns (objects of class "ppp").

The return value also carries an attribute "seed" that captures the initial state of the random number
generator. See Details.

1556 slrm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm, rpoispp, simulate.ppm, simulate.kppm, simulate

Examples

X <- copper$SouthPoints
fit <- slrm(X ~ 1)
simulate(fit, 2)
fitxy <- slrm(X ~ x+y)
simulate(fitxy, 2, window=square(2))

slrm Spatial Logistic Regression

Description

Fits a spatial logistic regression model to a spatial point pattern.

Usage

slrm(formula, ..., data = NULL, offset = TRUE, link = "logit",
dataAtPoints=NULL, splitby=NULL)

Arguments

formula The model formula. See Details.

... Optional arguments passed to pixellate determining the pixel resolution for
the discretisation of the point pattern.

data Optional. A list containing data required in the formula. The names of entries in
the list should correspond to variable names in the formula. The entries should
be point patterns, pixel images or windows.

offset Logical flag indicating whether the model formula should be augmented by an
offset equal to the logarithm of the pixel area.

link The link function for the regression model. A character string, specifying a link
function for binary regression.

dataAtPoints Optional. Exact values of the covariates at the data points. A data frame, with
column names corresponding to variables in the formula, with one row for each
point in the point pattern dataset.

splitby Optional. Character string identifying a window. The window will be used to
split pixels into sub-pixels.

slrm 1557

Details

This function fits a Spatial Logistic Regression model (Tukey, 1972; Agterberg, 1974) to a spatial
point pattern dataset. The logistic function may be replaced by another link function.

The formula specifies the form of the model to be fitted, and the data to which it should be fitted.
The formula must be an R formula with a left and right hand side.

The left hand side of the formula is the name of the point pattern dataset, an object of class "ppp".

The right hand side of the formula is an expression, in the usual R formula syntax, representing
the functional form of the linear predictor for the model.

Each variable name that appears in the formula may be

• one of the reserved names x and y, referring to the Cartesian coordinates;

• the name of an entry in the list data, if this argument is given;

• the name of an object in the parent environment, that is, in the environment where the call to
slrm was issued.

Each object appearing on the right hand side of the formula may be

• a pixel image (object of class "im") containing the values of a covariate;

• a window (object of class "owin"), which will be interpreted as a logical covariate which is
TRUE inside the window and FALSE outside it;

• a function in the R language, with arguments x,y, which can be evaluated at any location to
obtain the values of a covariate.

See the Examples below.

The fitting algorithm discretises the point pattern onto a pixel grid. The value in each pixel is 1 if
there are any points of the point pattern in the pixel, and 0 if there are no points in the pixel. The
dimensions of the pixel grid will be determined as follows:

• The pixel grid will be determined by the extra arguments ... if they are specified (for example
the argument dimyx can be used to specify the number of pixels).

• Otherwise, if the right hand side of the formula includes the names of any pixel images
containing covariate values, these images will determine the pixel grid for the discretisation.
The covariate image with the finest grid (the smallest pixels) will be used.

• Otherwise, the default pixel grid size is given by spatstat.options("npixel").

If link="logit" (the default), the algorithm fits a Spatial Logistic Regression model. This model
states that the probability p that a given pixel contains a data point, is related to the covariates
through

log
p

1− p
= η

where η is the linear predictor of the model (a linear combination of the covariates, whose form is
specified by the formula).

If link="cloglog" then the algorithm fits a model stating that

log(− log(1− p)) = η

.

1558 slrm

If offset=TRUE (the default), the model formula will be augmented by adding an offset term equal
to the logarithm of the pixel area. This ensures that the fitted parameters are approximately indepen-
dent of pixel size. If offset=FALSE, the offset is not included, and the traditional form of Spatial
Logistic Regression is fitted.

Value

An object of class "slrm" representing the fitted model.

There are many methods for this class, including methods for print, fitted, predict, anova,
coef, logLik, terms, update, formula and vcov. Automated stepwise model selection is possible
using step. Confidence intervals for the parameters can be computed using confint.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Agterberg, F.P. (1974) Automatic contouring of geological maps to detect target areas for mineral
exploration. Journal of the International Association for Mathematical Geology 6, 373–395.

Baddeley, A., Berman, M., Fisher, N.I., Hardegen, A., Milne, R.K., Schuhmacher, D., Shah, R.
and Turner, R. (2010) Spatial logistic regression and change-of-support for spatial Poisson point
processes. Electronic Journal of Statistics 4, 1151–1201. doi: 10.1214/10-EJS581

Tukey, J.W. (1972) Discussion of paper by F.P. Agterberg and S.C. Robinson. Bulletin of the In-
ternational Statistical Institute 44 (1) p. 596. Proceedings, 38th Congress, International Statistical
Institute.

See Also

anova.slrm, coef.slrm, fitted.slrm, logLik.slrm, plot.slrm, predict.slrm, vcov.slrm

Examples

X <- copper$SouthPoints
slrm(X ~ 1)
slrm(X ~ x+y)

slrm(X ~ x+y, link="cloglog")
specify a grid of 2-km-square pixels
slrm(X ~ 1, eps=2)

Y <- copper$SouthLines
Z <- distmap(Y)
slrm(X ~ Z)
slrm(X ~ Z, dataAtPoints=list(Z=nncross(X,Y,what="dist")))

mur <- murchison
mur$dfault <- distfun(mur$faults)
slrm(gold ~ dfault, data=mur)
slrm(gold ~ dfault + greenstone, data=mur)

Smooth 1559

slrm(gold ~ dfault, data=mur, splitby="greenstone")

Smooth Spatial smoothing of data

Description

Generic function to perform spatial smoothing of spatial data.

Usage

Smooth(X, ...)

Arguments

X Some kind of spatial data

... Arguments passed to methods.

Details

This generic function calls an appropriate method to perform spatial smoothing on the spatial dataset
X.

Methods for this function include

• Smooth.ppp for point patterns

• Smooth.msr for measures

• Smooth.fv for function value tables

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Smooth.ppp, Smooth.im, Smooth.msr, Smooth.fv.

1560 Smooth.fv

Smooth.fv Apply Smoothing to Function Values

Description

Applies smoothing to the values in selected columns of a function value table.

Usage

S3 method for class 'fv'
Smooth(X, which = "*", ...,

method=c("smooth.spline", "loess"),
xinterval=NULL)

Arguments

X Values to be smoothed. A function value table (object of class "fv", see fv.object).

which Character vector identifying which columns of the table should be smoothed.
Either a vector containing names of columns, or one of the wildcard strings "*"
or "." explained below.

... Extra arguments passed to smooth.spline or loess to control the smoothing.

method Smoothing algorithm. A character string, partially matched to either "smooth.spline"
or "loess".

xinterval Optional. Numeric vector of length 2 specifying a range of x values. Smoothing
will be performed only on the part of the function corresponding to this range.

Details

The command Smooth.fv applies smoothing to the function values in a function value table (object
of class "fv").

Smooth.fv is a method for the generic function Smooth.

The smoothing is performed either by smooth.spline or by loess.

Smoothing is applied to every column (or to each of the selected columns) of function values in
turn, using the function argument as the x coordinate and the selected column as the y coordinate.
The original function values are then replaced by the corresponding smooth interpolated function
values.

The optional argument which specifies which of the columns of function values in x will be smoothed.
The default (indicated by the wildcard which="*") is to smooth all function values, i.e.\ all columns
except the function argument. Alternatively which="." designates the subset of function values that
are displayed in the default plot. Alternatively which can be a character vector containing the names
of columns of x.

If the argument xinterval is given, then smoothing will be performed only in the specified range
of x values.

Smooth.msr 1561

Value

Another function value table (object of class "fv") of the same format.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Smooth, with.fv, fv.object, smooth.spline, smooth.spline

Examples

data(cells)
G <- Gest(cells)
plot(G)
plot(Smooth(G, df=9), add=TRUE)

Smooth.msr Smooth a Signed or Vector-Valued Measure

Description

Apply kernel smoothing to a signed measure or vector-valued measure.

Usage

S3 method for class 'msr'
Smooth(X, ..., drop=TRUE)

Arguments

X Object of class "msr" representing a signed measure or vector-valued measure.

... Arguments passed to density.ppp controlling the smoothing bandwidth and
the pixel resolution.

drop Logical. If TRUE (the default), the result of smoothing a scalar-valued measure
is a pixel image. If FALSE, the result of smoothing a scalar-valued measure is a
list containing one pixel image.

Details

This function applies kernel smoothing to a signed measure or vector-valued measure X. The Gaus-
sian kernel is used.

The object X would typically have been created by residuals.ppm or msr.

1562 Smooth.ppp

Value

A pixel image or a list of pixel images. For scalar-valued measures, a pixel image (object of class
"im") provided drop=TRUE. For vector-valued measures (or if drop=FALSE), a list of pixel images;
the list also belongs to the class "solist" so that it can be printed and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

See Also

Smooth, msr, plot.msr

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")
rs <- residuals(fit, type="score")

plot(Smooth(rp))
plot(Smooth(rs))

Smooth.ppp Spatial smoothing of observations at irregular points

Description

Performs spatial smoothing of numeric values observed at a set of irregular locations. Uses kernel
smoothing and least-squares cross-validated bandwidth selection.

Usage

S3 method for class 'ppp'
Smooth(X, sigma=NULL,

...,
weights = rep(1, npoints(X)),
at="pixels",
adjust=1, varcov=NULL,
edge=TRUE, diggle=FALSE,

Smooth.ppp 1563

kernel="gaussian", scalekernel=is.character(kernel),
geometric=FALSE)

markmean(X, ...)

markvar(X, sigma=NULL, ..., weights=NULL, varcov=NULL)

Arguments

X A marked point pattern (object of class "ppp").

sigma Smoothing bandwidth. A single positive number, a numeric vector of length 2,
or a function that selects the bandwidth automatically. See density.ppp.

... Further arguments passed to bw.smoothppp and density.ppp to control the
kernel smoothing and the pixel resolution of the result.

weights Optional weights attached to the observations. A numeric vector, a function(x,y),
a pixel image, or an expression. See density.ppp.

at String specifying whether to compute the smoothed values at a grid of pixel
locations (at="pixels") or only at the points of X (at="points").

edge,diggle Arguments passed to density.ppp to determine the edge correction.

adjust Optional. Adjustment factor for the bandwidth sigma.

varcov Variance-covariance matrix. An alternative to sigma. See density.ppp.

kernel The smoothing kernel. A character string specifying the smoothing kernel (cur-
rent options are "gaussian", "epanechnikov", "quartic" or "disc"), or a
pixel image (object of class "im") containing values of the kernel, or a function(x,y)
which yields values of the kernel.

scalekernel Logical value. If scalekernel=TRUE, then the kernel will be rescaled to the
bandwidth determined by sigma and varcov: this is the default behaviour when
kernel is a character string. If scalekernel=FALSE, then sigma and varcov
will be ignored: this is the default behaviour when kernel is a function or a
pixel image.

geometric Logical value indicating whether to perform geometric mean smoothing instead
of arithmetic mean smoothing. See Details.

Details

The function Smooth.ppp performs spatial smoothing of numeric values observed at a set of irreg-
ular locations. The functions markmean and markvar are wrappers for Smooth.ppp which compute
the spatially-varying mean and variance of the marks of a point pattern.

Smooth.ppp is a method for the generic function Smooth for the class "ppp" of point patterns. Thus
you can type simply Smooth(X).

Smoothing is performed by kernel weighting, using the Gaussian kernel by default. If the observed
values are v1, . . . , vn at locations x1, . . . , xn respectively, then the smoothed value at a location u
is (ignoring edge corrections)

g(u) =

∑
i k(u− xi)vi∑
i k(u− xi)

1564 Smooth.ppp

where k is the kernel (a Gaussian kernel by default). This is known as the Nadaraya-Watson
smoother (Nadaraya, 1964, 1989; Watson, 1964). By default, the smoothing kernel bandwidth
is chosen by least squares cross-validation (see below).

The argument X must be a marked point pattern (object of class "ppp", see ppp.object). The points
of the pattern are taken to be the observation locations xi, and the marks of the pattern are taken to
be the numeric values vi observed at these locations.

The marks are allowed to be a data frame (in Smooth.ppp and markmean). Then the smoothing
procedure is applied to each column of marks.

The numerator and denominator are computed by density.ppp. The arguments ... control the
smoothing kernel parameters and determine whether edge correction is applied. The smoothing
kernel bandwidth can be specified by either of the arguments sigma or varcov which are passed to
density.ppp. If neither of these arguments is present, then by default the bandwidth is selected by
least squares cross-validation, using bw.smoothppp.

The optional argument weights allows numerical weights to be applied to the data. If a weight wi
is associated with location xi, then the smoothed function is (ignoring edge corrections)

g(u) =

∑
i k(u− xi)viwi∑
i k(u− xi)wi

If geometric=TRUE then geometric mean smoothing is performed instead of arithmetic mean smooth-
ing. The mark values must be non-negative numbers. The logarithm of the mark values is computed;
these logarithmic values are kernel-smoothed as described above; then the exponential function is
applied to the smoothed values.

An alternative to kernel smoothing is inverse-distance weighting, which is performed by idw.

Value

If X has a single column of marks:

• If at="pixels" (the default), the result is a pixel image (object of class "im"). Pixel values
are values of the interpolated function.

• If at="points", the result is a numeric vector of length equal to the number of points in X.
Entries are values of the interpolated function at the points of X.

If X has a data frame of marks:

• If at="pixels" (the default), the result is a named list of pixel images (object of class "im").
There is one image for each column of marks. This list also belongs to the class "solist",
for which there is a plot method.

• If at="points", the result is a data frame with one row for each point of X, and one column
for each column of marks. Entries are values of the interpolated function at the points of X.

The return value has attributes "sigma" and "varcov" which report the smoothing bandwidth that
was used.

Very small bandwidth

If the chosen bandwidth sigma is very small, kernel smoothing is mathematically equivalent to
nearest-neighbour interpolation; the result will be computed by nnmark. This is unless at="points"
and leaveoneout=FALSE, when the original mark values are returned.

Smooth.ssf 1565

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Nadaraya, E.A. (1964) On estimating regression. Theory of Probability and its Applications 9,
141–142.

Nadaraya, E.A. (1989) Nonparametric estimation of probability densities and regression curves.
Kluwer, Dordrecht.

Watson, G.S. (1964) Smooth regression analysis. Sankhya A 26, 359–372.

See Also

Smooth,

density.ppp, bw.smoothppp, nnmark, ppp.object, im.object.

See idw for inverse-distance weighted smoothing.

To perform interpolation, see also the akima package.

Examples

Longleaf data - tree locations, marked by tree diameter
Local smoothing of tree diameter (automatic bandwidth selection)
Z <- Smooth(longleaf)
Kernel bandwidth sigma=5
plot(Smooth(longleaf, 5))
mark variance
plot(markvar(longleaf, sigma=5))
data frame of marks: trees marked by diameter and height
plot(Smooth(finpines, sigma=2))
head(Smooth(finpines, sigma=2, at="points"))

Smooth.ssf Smooth a Spatially Sampled Function

Description

Applies kernel smoothing to a spatially sampled function.

Usage

S3 method for class 'ssf'
Smooth(X, ...)

1566 Smoothfun.ppp

Arguments

X Object of class "ssf".

... Arguments passed to Smooth.ppp to control the smoothing.

Details

An object of class "ssf" represents a real-valued or vector-valued function that has been evaluated
or sampled at an irregular set of points.

The function values will be smoothed using a Gaussian kernel.

Value

A pixel image or a list of pixel images.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

ssf, Smooth.ppp

Examples

f <- ssf(redwood, nndist(redwood))
Smooth(f, sigma=0.1)

Smoothfun.ppp Smooth Interpolation of Marks as a Spatial Function

Description

Perform spatial smoothing of numeric values observed at a set of irregular locations, and return the
result as a function of spatial location.

Usage

Smoothfun(X, ...)

S3 method for class 'ppp'
Smoothfun(X, sigma = NULL, ...,

weights = NULL, edge = TRUE, diggle = FALSE)

Softcore 1567

Arguments

X Marked point pattern (object of class "ppp").

sigma Smoothing bandwidth, or bandwidth selection function, passed to Smooth.ppp.

... Additional arguments passed to Smooth.ppp.

weights Optional vector of weights associated with the points of X.

edge,diggle Logical arguments controlling the edge correction. Arguments passed to Smooth.ppp.

Details

The commands Smoothfun and Smooth both perform kernel-smoothed spatial interpolation of nu-
meric values observed at irregular spatial locations. The difference is that Smooth returns a pixel im-
age, containing the interpolated values at a grid of locations, while Smoothfun returns a function(x,y)
which can be used to compute the interpolated value at any spatial location. For purposes such as
model-fitting it is more accurate to use Smoothfun to interpolate data.

Value

A function with arguments x,y. The function also belongs to the class "Smoothfun" which has
methods for print and as.im. It also belongs to the class "funxy" which has methods for plot,
contour and persp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Smooth

Examples

f <- Smoothfun(longleaf)
f
f(120, 80)
plot(f)

Softcore The Soft Core Point Process Model

Description

Creates an instance of the Soft Core point process model which can then be fitted to point pattern
data.

1568 Softcore

Usage

Softcore(kappa, sigma0=NA)

Arguments

kappa The exponent κ of the Soft Core interaction

sigma0 Optional. Initial estimate of the parameter σ. A positive number.

Details

The (stationary) Soft Core point process with parameters β and σ and exponent κ is the pairwise
interaction point process in which each point contributes a factor β to the probability density of the
point pattern, and each pair of points contributes a factor

exp

{
−
(σ
d

)2/κ}
to the density, where d is the distance between the two points. See the Examples for a plot of this
interaction curve.

Thus the process has probability density

f(x1, . . . , xn) = αβn(x) exp

−∑
i<j

(
σ

||xi − xj ||

)2/κ

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern, α
is the normalising constant, and the sum on the right hand side is over all unordered pairs of points
of the pattern.

This model describes an “ordered” or “inhibitive” process, with the strength of inhibition decreasing
smoothly with distance. The interaction is controlled by the parameters σ and κ.

• The spatial scale of interaction is controlled by the parameter σ, which is a positive real
number interpreted as a distance, expressed in the same units of distance as the spatial data.
The parameter σ is the distance at which the pair potential reaches the threshold value 0.37.

• The shape of the interaction function is controlled by the exponent κ which is a dimensionless
number in the range (0, 1), with larger values corresponding to a flatter shape (or a more
gradual decay rate). The process is well-defined only for κ in (0, 1). The limit of the model
as κ→ 0 is the hard core process with hard core distance h = σ.

• The “strength” of the interaction is determined by both of the parameters σ and κ. The larger
the value of κ, the wider the range of distances over which the interaction has an effect. If σ
is very small, the interaction is very weak for all practical purposes (theoretically if σ = 0 the
model reduces to the Poisson point process).

The nonstationary Soft Core process is similar except that the contribution of each individual point
xi is a function β(xi) of location, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the Soft Core process pairwise interaction is yielded by the function
Softcore(). See the examples below.

Softcore 1569

The main argument is the exponent kappa. When kappa is fixed, the model becomes an exponential
family with canonical parameters log β and

log γ =
2

κ
log σ

The canonical parameters are estimated by ppm(), not fixed in Softcore().

The optional argument sigma0 can be used to improve numerical stability. If sigma0 is given, it
should be a positive number, and it should be a rough estimate of the parameter σ.

Value

An object of class "interact" describing the interpoint interaction structure of the Soft Core pro-
cess with exponent κ.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Ogata, Y, and Tanemura, M. (1981). Estimation of interaction potentials of spatial point patterns
through the maximum likelihood procedure. Annals of the Institute of Statistical Mathematics, B
33, 315–338.

Ogata, Y, and Tanemura, M. (1984). Likelihood analysis of spatial point patterns. Journal of the
Royal Statistical Society, series B 46, 496–518.

See Also

ppm, pairwise.family, ppm.object

Examples

fit the stationary Soft Core process to `cells'
fit5 <- ppm(cells ~1, Softcore(kappa=0.5), correction="isotropic")

study shape of interaction and explore effect of parameters
fit2 <- update(fit5, Softcore(kappa=0.2))
fit8 <- update(fit5, Softcore(kappa=0.8))
plot(fitin(fit2), xlim=c(0, 0.4),

main="Pair potential (sigma = 0.1)",
xlab=expression(d), ylab=expression(h(d)), legend=FALSE)

plot(fitin(fit5), add=TRUE, col=4)
plot(fitin(fit8), add=TRUE, col=3)
legend("bottomright", col=c(1,4,3), lty=1,

legend=expression(kappa==0.2, kappa==0.5, kappa==0.8))

1570 solapply

solapply Apply a Function Over a List and Obtain a List of Objects

Description

Applies the function FUN to each element of the list X, and returns the result as a list of class
"solist" or "anylist" as appropriate.

Usage

anylapply(X, FUN, ...)

solapply(X, FUN, ..., check = TRUE, promote = TRUE, demote = FALSE)

Arguments

X A list.

FUN Function to be applied to each element of X.

... Additional arguments to FUN.
check,promote,demote

Arguments passed to solist which determine how to handle different classes
of objects.

Details

These convenience functions are similar to lapply except that they return a list of class "solist"
or "anylist".

In both functions, the result is computed by lapply(X,FUN,...).

In anylapply the result is converted to a list of class "anylist" and returned.

In solapply the result is converted to a list of class "solist" if possible, using as.solist. If this
is not possible, then the behaviour depends on the argument demote. If demote=TRUE the result will
be returned as a list of class "anylist". If demote=FALSE (the default), an error occurs.

Value

A list, usually of class "solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

solist, anylist.

solist 1571

Examples

solapply(waterstriders, density)

solist List of Two-Dimensional Spatial Objects

Description

Make a list of two-dimensional spatial objects.

Usage

solist(..., check=TRUE, promote=TRUE, demote=FALSE, .NameBase)

Arguments

... Any number of objects, each representing a two-dimensional spatial dataset.
check Logical value. If TRUE, check that each of the objects is a 2D spatial object.
promote Logical value. If TRUE, test whether all objects belong to the same class, and if

so, promote the list of objects to the appropriate class of list.
demote Logical value determining what should happen if any of the objects is not a 2D

spatial object: if demote=FALSE (the default), a fatal error occurs; if demote=TRUE,
a list of class "anylist" is returned.

.NameBase Optional. Character string. If the ... arguments have no names, then the entries
of the resulting list will be given names that start with .NameBase.

Details

This command creates an object of class "solist" (spatial object list) which represents a list of
two-dimensional spatial datasets. The datasets do not necessarily belong to the same class.

Typically the intention is that the datasets in the list should be treated in the same way, for ex-
ample, they should be plotted side-by-side. The spatstat package provides a plotting function,
plot.solist, and many other functions for this class.

In the spatstat package, various functions produce an object of class "solist". For example,
when a point pattern is split into several point patterns by split.ppp, or an image is split into
several images by split.im, the result is of class "solist".

If check=TRUE then the code will check whether all objects in ... belong to the classes of two-
dimensional spatial objects defined in the spatstat package. They do not have to belong to the same
class. Set check=FALSE for efficiency, but only if you are sure that all the objects are valid.

If some of the objects in ... are not two-dimensional spatial objects, the action taken depends on
the argument demote. If demote=TRUE, the result will belong to the more general class "anylist"
instead of "solist". If demote=FALSE (the default), an error occurs.

If promote=TRUE then the code will check whether all the objects ... belong to the same class. If
they are all point patterns (class "ppp"), the result will also belong to the class "ppplist". If they
are all pixel images (class "im"), the result will also belong to the class "imlist".

Use as.solist to convert a list to a "solist".

1572 solutionset

Value

A list, usually belonging to the class "solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.solist, anylist, solapply

Examples

solist(cells, density(cells))
solist(cells, japanesepines, redwood, .NameBase="Pattern")

solutionset Evaluate Logical Expression Involving Pixel Images and Return Re-
gion Where Expression is True

Description

Given a logical expression involving one or more pixel images, find all pixels where the expression
is true, and assemble these pixels into a window.

Usage

solutionset(..., envir)

Arguments

... An expression in the R language, involving one or more pixel images.

envir Optional. The environment in which to evaluate the expression.

Details

Given a logical expression involving one or more pixel images, this function will find all pixels
where the expression is true, and assemble these pixels into a spatial window.

Pixel images in spatstat are represented by objects of class "im" (see im.object). These are
essentially matrices of pixel values, with extra attributes recording the pixel dimensions, etc.

Suppose X is a pixel image. Then solutionset(abs(X) > 3) will find all the pixels in X for which
the pixel value is greater than 3 in absolute value, and return a window containing all these pixels.

If X and Y are two pixel images, solutionset(X > Y) will find all pixels for which the pixel value
of X is greater than the corresponding pixel value of Y, and return a window containing these pixels.

In general, ... can be any logical expression involving pixel images.

spatdim 1573

The code first tries to evaluate the expression using eval.im. This is successful if the expression
involves only (a) the names of pixel images, (b) scalar constants, and (c) functions which are vec-
torised. There must be at least one pixel image in the expression. The expression expr must be
vectorised. See the Examples.

If this is unsuccessful, the code then tries to evaluate the expression using pixel arithmetic. This is
successful if all the arithmetic operations in the expression are listed in Math.im.

Value

A spatial window (object of class "owin", see owin.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

im.object, owin.object, eval.im, levelset

Examples

test images
X <- as.im(function(x,y) { x^2 - y^2 }, unit.square())
Y <- as.im(function(x,y) { 3 * x + y - 1}, unit.square())

W <- solutionset(abs(X) > 0.1)
W <- solutionset(X > Y)
W <- solutionset(X + Y >= 1)

area(solutionset(X < Y))

solutionset(density(cells) > 20)

spatdim Spatial Dimension of a Dataset

Description

Extracts the spatial dimension of an object in the spatstat package.

Usage

spatdim(X, intrinsic=FALSE)

1574 spatdim

Arguments

X Object belonging to any class defined in the spatstat package.

intrinsic Logical value indicating whether to return the number of intrinsic dimensions.
See Details.

Details

This function returns the number of spatial coordinate dimensions of the dataset X. The results for
some of the more common types of objects are as follows:

object class dimension
"ppp" 2
"lpp" 2
"pp3" 3
"ppx" number of spatial dimensions
"owin" 2
"psp" 2
"ppm" 2

Note that time dimensions are not counted.

Some spatial objects are lower-dimensional subsets of the space in which they live. This lower
number of dimensions is returned if intrinsic=TRUE. For example, a dataset on a linear network
(an object X of class "linnet","lpp","linim","linfun" or "lintess") returns spatdim(X) = 2
but spatdim(X,intrinsic=TRUE) = 1.

If X is not a recognised spatial object, the result is NA.

Value

An integer, or NA.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

spatdim(lansing)
A <- osteo$pts[[1]]
spatdim(A)
spatdim(domain(A))
spatdim(chicago)
spatdim(chicago, intrinsic=TRUE)

spatialcdf 1575

spatialcdf Spatial Cumulative Distribution Function

Description

Compute the spatial cumulative distribution function of a spatial covariate, optionally using spatially-
varying weights.

Usage

spatialcdf(Z, weights = NULL, normalise = FALSE, ..., W = NULL, Zname = NULL)

Arguments

Z Spatial covariate. A pixel image or a function(x,y,...)

weights Spatial weighting for different locations. A pixel image, a function(x,y,...),
a window, a constant value, or a fitted point process model (object of class "ppm"
or "kppm").

normalise Logical. Whether the weights should be normalised so that they sum to 1.

... Arguments passed to as.mask to determine the pixel resolution, or extra argu-
ments passed to Z if it is a function.

W Optional window (object of class "owin") defining the spatial domain.

Zname Optional character string for the name of the covariate Z used in plots.

Details

If weights is missing or NULL, it defaults to 1. The values of the covariate Z are computed on a
grid of pixels. The weighted cumulative distribution function of Z values is computed, taking each
value with weight equal to the pixel area. The resulting function F is such that F (t) is the area of
the region of space where Z ≤ t.
If weights is a pixel image or a function, then the values of weights and of the covariate Z are
computed on a grid of pixels. The weights are multiplied by the pixel area. Then the weighted
empirical cumulative distribution function of Z values is computed using ewcdf. The resulting
function F is such that F (t) is the total weight (or weighted area) of the region of space where
Z ≤ t.
If weights is a fitted point process model, then it should be a Poisson process. The fitted intensity
of the model, and the value of the covariate Z, are evaluated at the quadrature points used to fit the
model. The weights are multiplied by the weights of the quadrature points. Then the weighted
empirical cumulative distribution of Z values is computed using ewcdf. The resulting function F is
such that F (t) is the expected number of points in the point process that will fall in the region of
space where Z ≤ t.
If normalise=TRUE, the function is normalised so that its maximum value equals 1, so that it gives
the cumulative fraction of weight or cumulative fraction of points.

The result can be printed, plotted, and used as a function.

1576 spatstat.options

Value

A cumulative distribution function object belonging to the classes "spatialcdf", "ewcdf", "ecdf"
(only if normalise=TRUE) and "stepfun".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ewcdf, cdf.test

Examples

with(bei.extra, {
plot(spatialcdf(grad))
fit <- ppm(bei ~ elev)
plot(spatialcdf(grad, predict(fit)))
plot(A <- spatialcdf(grad, fit))
A(0.1)

})
plot(spatialcdf("x", W=letterR))

spatstat.options Internal Options in Spatstat Package

Description

Allows the user to examine and reset the values of global parameters which control actions in the
spatstat package.

Usage

spatstat.options(...)
reset.spatstat.options()

Arguments

... Either empty, or a succession of parameter names in quotes, or a succession of
name=value pairs. See below for the parameter names.

spatstat.options 1577

Details

The function spatstat.options allows the user to examine and reset the values of global parame-
ters which control actions in the spatstat package. It is analogous to the system function options.

The function reset.spatstat.options resets all the global parameters in spatstat to their origi-
nal, default values.

The global parameters of interest to the user are:

checkpolygons Logical flag indicating whether the functions owin and as.owin should apply very
strict checks on the validity of polygon data. These strict checks are no longer necessary, and
the default is checkpolygons=FALSE. See also fixpolygons below.

checksegments Logical flag indicating whether the functions psp and as.psp should check the
validity of line segment data (in particular, checking that the endpoints of the line segments
are inside the specified window). It is advisable to leave this flag set to TRUE.

dpp.maxmatrix Integer specifying the maximum size of matrices generated by dppeigen. De-
faults to 2^24.

eroded.intensity Logical flag affecting the behaviour of the score and pseudo-score residual func-
tions Gcom, Gres Kcom, Kres, psstA, psstG, psst. The flag indicates whether to compute
intensity estimates on an eroded window (eroded.intensity=TRUE) or on the original data
window (eroded.intensity=FALSE, the default).

expand The default expansion factor (area inflation factor) for expansion of the simulation window
in rmh (see rmhcontrol). Initialised to 2.

expand.polynom Logical. Whether expressions involving polynom in a model formula should be
expanded, so that polynom(x,2) is replaced by x + I(x^2) and so on. Initialised to TRUE.

fastpois Logical. Whether to use a fast algorithm (introduced in spatstat 1.42-3) for simulating
the Poisson point process in rpoispp when the argument lambda is a pixel image. Initialised
to TRUE. Should be set to FALSE if needed to guarantee repeatability of results computed using
earlier versions of spatstat.

fastthin Logical. Whether to use a fast C language algorithm (introduced in spatstat 1.42-3) for
random thinning in rthin when the argument P is a single number. Initialised to TRUE. Should
be set to FALSE if needed to guarantee repeatability of results computed using earlier versions
of spatstat.

fastK.lgcp Logical. Whether to use fast or slow algorithm to compute the (theoretical) K-function
of a log-Gaussian Cox process for use in lgcp.estK or Kmodel. The slow algorithm uses ac-
curate numerical integration; the fast algorithm uses Simpson’s Rule for numerical integration,
and is about two orders of magnitude faster. Initialised to FALSE.

fixpolygons Logical flag indicating whether the functions owin and as.owin should repair errors
in polygon data. For example, self-intersecting polygons and overlapping polygons will be
repaired. The default is fixpolygons=TRUE.

fftw Logical value indicating whether the two-dimensional Fast Fourier Transform should be com-
puted using the package fftwtools, instead of the fft function in the stats package. This
affects the speed of density.ppp, density.psp, blur setcov and Smooth.ppp.

gpclib Defunct. This parameter was used to permit or forbid the use of the package gpclib, because
of its restricted software licence. This package is no longer needed.

1578 spatstat.options

huge.npoints The maximum value of n for which runif(n) will not generate an error (possible
errors include failure to allocate sufficient memory, and integer overflow of n). An attempt to
generate more than this number of random points triggers a warning from runifpoint and
other functions. Defaults to 1e6.

image.colfun Function determining the default colour map for plot.im. When called with one
integer argument n, this function should return a character vector of length n specifying n
different colours.

Kcom.remove.zeroes Logical value, determining whether the algorithm in Kcom and Kres removes
or retains the contributions to the function from pairs of points that are identical. If these are
retained then the function has a jump at r = 0. Initialised to TRUE.

maxedgewt Edge correction weights will be trimmed so as not to exceed this value. This applies
to the weights computed by edge.Trans or edge.Ripley and used in Kest and its relatives.

maxmatrix The maximum permitted size (rows times columns) of matrices generated by spat-
stat’s internal code. Used by ppm and predict.ppm (for example) to decide when to split a
large calculation into blocks. Defaults to 2^24=16777216.

monochrome Logical flag indicating whether graphics should be plotted in grey scale (monochrome=TRUE)
or in colour (monochrome=FALSE, the default).

n.bandwidth Integer. Number of trial values of smoothing bandwidth to use for cross-validation
in bw.relrisk and similar functions.

ndummy.min The minimum number of dummy points in a quadrature scheme created by default.dummy.
Either an integer or a pair of integers giving the minimum number of dummy points in the x
and y directions respectively.

ngrid.disc Number of points in the square grid used to compute a discrete approximation to the
areas of discs in areaLoss and areaGain when exact calculation is not available. A single
integer.

npixel Default number of pixels in a binary mask or pixel image. Either an integer, or a pair of
integers, giving the number of pixels in the x and y directions respectively.

nvoxel Default number of voxels in a 3D image, typically for calculating the distance transform in
F3est. Initialised to 4 megavoxels: nvoxel = 2^22 = 4194304.

par.binary List of arguments to be passed to the function image when displaying a binary image
mask (in plot.owin or plot.ppp). Typically used to reset the colours of foreground and
background.

par.contour List of arguments controlling contour plots of pixel images by contour.im.

par.fv List of arguments controlling the plotting of functions by plot.fv and its relatives.

par.persp List of arguments to be passed to the function persp when displaying a real-valued
image, such as the fitted surfaces in plot.ppm.

par.points List of arguments controlling the plotting of point patterns by plot.ppp.

par.pp3 List of arguments controlling the plotting of three-dimensional point patterns by plot.pp3.

print.ppm.SE Default rule used by print.ppm to decide whether to calculate and print standard
errors of the estimated coefficients of the model. One of the strings "always", "never"
or "poisson" (the latter indicating that standard errors will be calculated only for Poisson
models). The default is "poisson" because the calculation for non-Poisson models can take
a long time.

spatstat.options 1579

progress Character string determining the style of progress reports printed by progressreport.
Either "tty", "tk" or "txtbar". For explanation of these options, see progressreport.

project.fast Logical. If TRUE, the algorithm of project.ppm will be accelerated using a shorcut.
Initialised to FALSE.

psstA.ngrid Single integer, controlling the accuracy of the discrete approximation of areas com-
puted in the function psstA. The area of a disc is approximated by counting points on an n×n
grid. Initialised to 32.

psstA.nr Single integer, determining the number of distances r at which the function psstA will
be evaluated (in the default case where argument r is absent). Initialised to 30.

psstG.remove.zeroes Logical value, determining whether the algorithm in psstG removes or re-
tains the contributions to the function from pairs of points that are identical. If these are
retained then the function has a jump at r = 0. Initialised to TRUE.

rmh.p, rmh.q, rmh.nrep New default values for the parameters p, q and nrep in the Metropolis-
Hastings simulation algorithm. These override the defaults in rmhcontrol.default.

scalable Logical flag indicating whether the new code in rmh.default which makes the results
scalable (invariant to change of units) should be used. In order to recover former behaviour
(so that previous results can be reproduced) set this option equal to FALSE. See the “Warning”
section in the help for rmh() for more detail.

terse Integer between 0 and 4. The level of terseness (brevity) in printed output from many func-
tions in spatstat. Higher values mean shorter output. A rough guide is the following:

0 Full output
1 Avoid wasteful output
2 Remove space between paragraphs
3 Suppress extras such as standard errors
4 Compress text, suppress internal warnings

The value of terse is initialised to 0.

transparent Logical value indicating whether default colour maps are allowed to include semi-
transparent colours, where possible. Default is TRUE. Currently this only affects plot.ppp.

units.paren The kind of parenthesis which encloses the text that explains a unitname. This text is
seen in the text output of functions like print.ppp and in the graphics generated by plot.fv.
The value should be one of the character strings '(', '[', '{' or ''. The default is '('.

If no arguments are given, the current values of all parameters are returned, in a list.

If one parameter name is given, the current value of this parameter is returned (not in a list, just the
value).

If several parameter names are given, the current values of these parameters are returned, in a list.

If name=value pairs are given, the named parameters are reset to the given values, and the previous
values of these parameters are returned, in a list.

Value

Either a list of parameters and their values, or a single value. See Details.

1580 spatstat.options

Internal parameters

The following parameters may also be specified to spatstat.options but are intended for software
development or testing purposes.

closepairs.newcode Logical. Whether to use new version of the code for closepairs. Initialised
to TRUE.

crossing.psp.useCall Logical. Whether to use new version of the code for crossing.psp. Ini-
tialised to TRUE.

crosspairs.newcode Logical. Whether to use new version of the code for crosspairs. Initialised
to TRUE.

densityC Logical. Indicates whether to use accelerated C code (densityC=TRUE) or interpreted R
code (densityC=FALSE) to evaluate density.ppp(X,at="points"). Initialised to TRUE.

exactdt.checks.data Logical. Do not change this value, unless you are Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

fasteval One of the strings 'off', 'on' or 'test' determining whether to use accelerated C code
to evaluate the conditional intensity of a Gibbs model. Initialised to 'on'.

old.morpho.psp Logical. Whether to use old R code for morphological operations. Initialise to
FALSE.

selfcrossing.psp.useCall Logical. Whether to use new version of the code for selfcrossing.psp.
Initialised to TRUE.

use.Krect Logical. Whether to use specialised code for the K-function in a rectangular window.
Initialised to TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

options

Examples

save current values whatever they are
oldopt <- spatstat.options()

spatstat.options("npixel")
spatstat.options(npixel=150)
spatstat.options(npixel=c(100,200))

spatstat.options(par.binary=list(col=grey(c(0.5,1))))

spatstat.options(par.persp=list(theta=-30,phi=40,d=4))
see help(persp.default) for other options

revert to the state at the beginning of these examples
spatstat.options(oldopt)

split.hyperframe 1581

revert to 'factory defaults'
reset.spatstat.options()

split.hyperframe Divide Hyperframe Into Subsets and Reassemble

Description

split divides the data x into subsets defined by f. The replacement form replaces values corre-
sponding to such a division.

Usage

S3 method for class 'hyperframe'
split(x, f, drop = FALSE, ...)

S3 replacement method for class 'hyperframe'
split(x, f, drop = FALSE, ...) <- value

Arguments

x Hyperframe (object of class "hyperframe").

f a factor in the sense that as.factor(f) defines the grouping, or a list of such
factors in which case their interaction is used for the grouping.

drop logical value, indicating whether levels that do not occur should be dropped
from the result.

value a list of hyperframes which arose (or could have arisen) from the command
split(x,f,drop=drop).

... Ignored.

Details

These are methods for the generic functions split and split<- for hyperframes (objects of class
"hyperframe").

A hyperframe is like a data frame, except that its entries can be objects of any kind. The behaviour
of these methods is analogous to the corresponding methods for data frames.

Value

The value returned from split.hyperframe is a list of hyperframe containing the values for the
groups. The components of the list are named by the levels of f (after converting to a factor, or if
already a factor and drop = TRUE, dropping unused levels).

The replacement method split<-.hyperframe returns a new hyperframe x for which split(x,f)
equals value.

1582 split.im

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

hyperframe, [.hyperframe

Examples

split(pyramidal, pyramidal$group)

split.im Divide Image Into Sub-images

Description

Divides a pixel image into several sub-images according to the value of a factor, or according to the
tiles of a tessellation.

Usage

S3 method for class 'im'
split(x, f, ..., drop = FALSE)

Arguments

x Pixel image (object of class "im").

f Splitting criterion. Either a tessellation (object of class "tess") or a pixel image
with factor values.

... Ignored.

drop Logical value determining whether each subset should be returned as a pixel im-
ages (drop=FALSE) or as a one-dimensional vector of pixel values (drop=TRUE).

Details

This is a method for the generic function split for the class of pixel images. The image x will be
divided into subsets determined by the data f. The result is a list of these subsets.

The splitting criterion may be either

• a tessellation (object of class "tess"). Each tile of the tessellation delineates a subset of the
spatial domain.

• a pixel image (object of class "im") with factor values. The levels of the factor determine
subsets of the spatial domain.

split.msr 1583

If drop=FALSE (the default), the result is a list of pixel images, each one a subset of the pixel image
x, obtained by restricting the pixel domain to one of the subsets. If drop=TRUE, then the pixel values
are returned as numeric vectors.

Value

If drop=FALSE, a list of pixel images (objects of class "im"). It is also of class "solist" so that it
can be plotted immediately.

If drop=TRUE, a list of numeric vectors.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

by.im, tess, im

Examples

W <- square(1)
X <- as.im(function(x,y){sqrt(x^2+y^2)}, W)
Y <- dirichlet(runifpoint(12, W))
plot(split(X,Y))

split.msr Divide a Measure into Parts

Description

Decomposes a measure into components, each component being a measure.

Usage

S3 method for class 'msr'
split(x, f, drop = FALSE, ...)

Arguments

x Measure (object of class "msr") to be decomposed.

f Factor or tessellation determining the decomposition. Argument passed to split.ppp.
See Details.

drop Logical value indicating whether empty components should be retained in the
list (drop=FALSE, the default) or deleted (drop=TRUE).

... Ignored.

1584 split.msr

Details

An object of class "msr" represents a signed (i.e. real-valued) or vector-valued measure in the
spatstat package. See msr for explanation.

This function is a method for the generic split. It divides the measure x into components, each of
which is a measure.

A measure x is represented in spatstat by a finite set of sample points with values attached to them.
The function split.msr divides this pattern of sample points into several sub-patterns of points
using split.ppp. For each sub-pattern, the values attached to these points are extracted from x,
and these values and sample points determine a measure, which is a component or piece of the
original x.

The argument f can be missing, if the sample points of x are multitype points. In this case, x repre-
sents a measure associated with marked spatial locations, and the command split(x) separates x
into a list of component measures, one for each possible mark.

Otherwise the argument f is passed to split.ppp. It should be either a factor (of length equal to
the number of sample points of x) or a tessellation (object of class "tess" representing a division
of space into tiles) as documented under split.ppp.

Value

A list, each of whose entries is a measure (object of class "msr").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

msr, [.msr, with.msr

Examples

split by tessellation
a <- residuals(ppm(cells ~ x))
aa <- split(a, dirichlet(runifpoint(4)))
aa
sapply(aa, integral)

split by type of point
b <- residuals(ppm(amacrine ~ marks + x))
bb <- split(b)
bb

split.ppp 1585

split.ppp Divide Point Pattern into Sub-patterns

Description

Divides a point pattern into several sub-patterns, according to their marks, or according to any
user-specified grouping.

Usage

S3 method for class 'ppp'
split(x, f = marks(x), drop=FALSE, un=NULL, reduce=FALSE, ...)
S3 replacement method for class 'ppp'

split(x, f = marks(x), drop=FALSE, un=NULL, ...) <- value

Arguments

x A two-dimensional point pattern. An object of class "ppp".

f Data determining the grouping. Either a factor, a logical vector, a pixel image
with factor values, a tessellation, a window, or the name of one of the columns
of marks.

drop Logical. Determines whether empty groups will be deleted.

un Logical. Determines whether the resulting subpatterns will be unmarked (i.e.
whether marks will be removed from the points in each subpattern).

reduce Logical. Determines whether to delete the column of marks used to split the
pattern, when the marks are a data frame.

... Other arguments are ignored.

value List of point patterns.

Details

The function split.ppp divides up the points of the point pattern x into several sub-patterns ac-
cording to the values of f. The result is a list of point patterns.

The argument f may be

• a factor, of length equal to the number of points in x. The levels of f determine the destination
of each point in x. The ith point of x will be placed in the sub-pattern split.ppp(x)$l where
l = f[i].

• a pixel image (object of class "im") with factor values. The pixel value of f at each point of x
will be used as the classifying variable.

• a tessellation (object of class "tess"). Each point of x will be classified according to the tile
of the tessellation into which it falls.

• a window (object of class "owin"). Each point of x will be classified according to whether it
falls inside or outside this window.

1586 split.ppp

• a character string, matching the name of one of the columns of marks, if marks(x) is a data
frame. This column should be a factor.

If f is missing, then it will be determined by the marks of the point pattern. The pattern x can be
either

• a multitype point pattern (a marked point pattern whose marks vector is a factor). Then f
is taken to be the marks vector. The effect is that the points of each type are separated into
different point patterns.

• a marked point pattern with a data frame of marks, containing at least one column that is a
factor. The first such column will be used to determine the splitting factor f.

Some of the sub-patterns created by the split may be empty. If drop=TRUE, then empty sub-patterns
will be deleted from the list. If drop=FALSE then they are retained.

The argument un determines how to handle marks in the case where x is a marked point pattern.
If un=TRUE then the marks of the points will be discarded when they are split into groups, while if
un=FALSE then the marks will be retained.

If f and un are both missing, then the default is un=TRUE for multitype point patterns and un=FALSE
for marked point patterns with a data frame of marks.

If the marks of x are a data frame, then split(x,reduce=TRUE) will discard only the column of
marks that was used to split the pattern. This applies only when the argument f is missing.

The result of split.ppp has class "splitppp" and can be plotted using plot.splitppp.

The assignment function split<-.ppp updates the point pattern x so that it satisfies split(x,f,drop,un)
= value. The argument value is expected to be a list of point patterns, one for each level of f. These
point patterns are expected to be compatible with the type of data in the original pattern x.

Splitting can also be undone by the function superimpose, but this typically changes the ordering
of the data.

Value

The value of split.ppp is a list of point patterns. The components of the list are named by the
levels of f. The list also has the class "splitppp".

The assignment form split<-.ppp returns the updated point pattern x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

cut.ppp, plot.splitppp, superimpose, im, tess, ppp.object

split.ppp 1587

Examples

(1) Splitting by marks

Multitype point pattern: separate into types
u <- split(amacrine)

plot them
plot(split(amacrine))

the following are equivalent:
amon <- split(amacrine)$on
amon <- unmark(amacrine[amacrine$marks == "on"])
amon <- subset(amacrine, marks == "on", -marks)

the following are equivalent:
amon <- split(amacrine, un=FALSE)$on
amon <- amacrine[amacrine$marks == "on"]

Scramble the locations of the 'on' cells
X <- amacrine
u <- split(X)
u$on <- runifpoint(ex=amon)
split(X) <- u

Point pattern with continuous marks
trees <- longleaf

cut the range of tree diameters into three intervals
using cut.ppp
long3 <- cut(trees, breaks=3)
now split them
long3split <- split(long3)

(2) Splitting by a factor

Unmarked point pattern
swedishpines

cut & split according to nearest neighbour distance
f <- cut(nndist(swedishpines), 3)
u <- split(swedishpines, f)

(3) Splitting over a tessellation
tes <- tess(xgrid=seq(0,96,length=5),ygrid=seq(0,100,length=5))
v <- split(swedishpines, tes)

(4) how to apply an operation to selected points:
split into components, transform desired component, then un-split
e.g. apply random jitter to 'on' points only

X <- amacrine
Y <- split(X)

1588 split.ppx

Y$on <- rjitter(Y$on, 0.1)
split(X) <- Y

split.ppx Divide Multidimensional Point Pattern into Sub-patterns

Description

Divides a multidimensional point pattern into several sub-patterns, according to their marks, or
according to any user-specified grouping.

Usage

S3 method for class 'ppx'
split(x, f = marks(x), drop=FALSE, un=NULL, ...)

Arguments

x A multi-dimensional point pattern. An object of class "ppx".

f Data determining the grouping. Either a factor, a logical vector, or the name of
one of the columns of marks.

drop Logical. Determines whether empty groups will be deleted.

un Logical. Determines whether the resulting subpatterns will be unmarked (i.e.
whether marks will be removed from the points in each subpattern).

... Other arguments are ignored.

Details

The generic command split allows a dataset to be separated into subsets according to the value of
a grouping variable.

The function split.ppx is a method for the generic split for the class "ppx" of multidimensional
point patterns. It divides up the points of the point pattern x into several sub-patterns according to
the values of f. The result is a list of point patterns.

The argument f may be

• a factor, of length equal to the number of points in x. The levels of f determine the destination
of each point in x. The ith point of x will be placed in the sub-pattern split.ppx(x)$l where
l = f[i].

• a character string, matching the name of one of the columns of marks, if marks(x) is a data
frame. This column should be a factor.

If f is missing, then it will be determined by the marks of the point pattern. The pattern x can be
either

• a multitype point pattern (a marked point pattern whose marks vector is a factor). Then f
is taken to be the marks vector. The effect is that the points of each type are separated into
different point patterns.

spokes 1589

• a marked point pattern with a data frame or hyperframe of marks, containing at least one
column that is a factor. The first such column will be used to determine the splitting factor f.

Some of the sub-patterns created by the split may be empty. If drop=TRUE, then empty sub-patterns
will be deleted from the list. If drop=FALSE then they are retained.

The argument un determines how to handle marks in the case where x is a marked point pattern.
If un=TRUE then the marks of the points will be discarded when they are split into groups, while if
un=FALSE then the marks will be retained.

If f and un are both missing, then the default is un=TRUE for multitype point patterns and un=FALSE
for marked point patterns with a data frame of marks.

The result of split.ppx has class "splitppx" and "anylist". There are methods for print,
summary and plot.

Value

A list of point patterns. The components of the list are named by the levels of f. The list also has
the class "splitppx" and "anylist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppx, plot.anylist

Examples

df <- data.frame(x=runif(4),y=runif(4),t=runif(4),
age=factor(rep(c("old", "new"), 2)),
size=runif(4))

X <- ppx(data=df, coord.type=c("s","s","t","m","m"))
X
split(X)

spokes Spokes pattern of dummy points

Description

Generates a pattern of dummy points in a window, given a data point pattern. The dummy points
lie on the radii of circles emanating from each data point.

Usage

spokes(x, y, nrad = 3, nper = 3, fctr = 1.5, Mdefault = 1)

1590 spokes

Arguments

x Vector of x coordinates of data points, or a list with components x and y, or a
point pattern (an object of class ppp).

y Vector of y coordinates of data points. Ignored unless x is a vector.
nrad Number of radii emanating from each data point.
nper Number of dummy points per radius.
fctr Scale factor. Length of largest spoke radius is fctr * M where M is the mean

nearest neighbour distance for the data points.
Mdefault Value of M to be used if x has length 1.

Details

This function is useful in creating dummy points for quadrature schemes (see quadscheme).

Given the data points, the function creates a collection of nrad * nper * length(x) dummy points.

Around each data point (x[i],y[i]) there are nrad * nper dummy points, lying on nrad radii
emanating from (x[i],y[i]), with nper dummy points equally spaced along each radius.

The (equal) spacing of dummy points along each radius is controlled by the factor fctr. The
distance from a data point to the furthest of its associated dummy points is fctr * M where M is the
mean nearest neighbour distance for the data points.

If there is only one data point the nearest neighbour distance is infinite, so the value Mdefault will
be used in place of M.

If x is a point pattern, then the value returned is also a point pattern, which is clipped to the win-
dow of x. Hence there may be fewer than nrad * nper * length(x) dummy points in the pattern
returned.

Value

If argument x is a point pattern, a point pattern with window equal to that of x. Otherwise a list with
two components x and y. In either case the components x and y of the value are numeric vectors
giving the coordinates of the dummy points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, quadscheme, inside.owin, gridcentres, stratrand

Examples

dat <- runifrect(10)
dum <- spokes(datx, daty, 5, 3, 0.7)
plot(dum)
Q <- quadscheme(dat, dum, method="dirichlet")
plot(Q, tiles=TRUE)

square 1591

square Square Window

Description

Creates a square window

Usage

square(r=1, unitname=NULL)
unit.square()

Arguments

r Numeric. The side length of the square, or a vector giving the minimum and
maximum coordinate values.

unitname Optional. Name of unit of length. Either a single character string, or a vector of
two character strings giving the singular and plural forms, respectively.

Details

If r is a number, square(r) is a shortcut for creating a window object representing the square
[0, r]× [0, r]. It is equivalent to the command owin(c(0,r),c(0,r)).

If r is a vector of length 2, then square(r) creates the square with x and y coordinates ranging
from r[1] to r[2].

unit.square creates the unit square [0, 1] × [0, 1]. It is equivalent to square(1) or square() or
owin(c(0,1),c(0,1)).

These commands are included for convenience, and to improve the readability of some code.

Value

An object of class "owin" (see owin.object) specifying a window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin.object, owin

Examples

W <- square(10)
W <- square(c(-1,1))

1592 ssf

ssf Spatially Sampled Function

Description

Create an object that represents a spatial function which has been evaluated or sampled at an irreg-
ular set of points.

Usage

ssf(loc, val)

Arguments

loc The spatial locations at which the function has been evaluated. A point pattern
(object of class "ppp").

val The function values at these locations. A numeric vector with one entry for each
point of loc, or a data frame with one row for each point of loc.

Details

An object of class "ssf" represents a real-valued or vector-valued function that has been evaluated
or sampled at an irregular set of points. An example would be a spatial covariate that has only been
measured at certain locations.

An object of this class also inherits the class "ppp", and is essentially the same as a marked point
pattern, except for the class membership which enables it to be handled in a different way.

There are methods for plot, print etc; see plot.ssf and methods.ssf.

Use unmark to extract only the point locations, and marks.ssf to extract only the function values.

Value

Object of class "ssf".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

plot.ssf, methods.ssf, Smooth.ssf, with.ssf, [.ssf.

Examples

ssf(cells, nndist(cells, k=1:3))

stieltjes 1593

stieltjes Compute Integral of Function Against Cumulative Distribution

Description

Computes the Stieltjes integral of a function f with respect to a function M .

Usage

stieltjes(f, M, ...)

Arguments

f The integrand. A function in the R language.

M The cumulative function against which f will be integrated. An object of class
"fv" or "stepfun".

... Additional arguments passed to f.

Details

This command computes the Stieltjes integral

I =

∫
f(x)dM(x)

of a real-valued function f(x) with respect to a nondecreasing function M(x).

One common use of the Stieltjes integral is to find the mean value of a random variable from its
cumulative distribution function F (x). The mean value is the Stieltjes integral of f(x) = x with
respect to F (x).

The argument f should be a function in the R language. It should accept a numeric vector argu-
ment x and should return a numeric vector of the same length.

The argument M should be either a step function (object of class "stepfun") or a function value
table (object of class "fv", see fv.object). Objects of class "stepfun" are returned by ecdf,
ewcdf, spatialcdf and other utilities. Objects of class "fv" are returned by the commands Kest,
Gest, etc.

Value

A list containing the value of the Stieltjes integral computed using each of the versions of the
function M.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

1594 stienen

See Also

fv.object, Gest

Examples

estimate cdf of nearest neighbour distance in redwood data
G <- Gest(redwood)
compute estimate of mean nearest neighbour distance
stieltjes(function(x){x}, G)
estimated probability of a distance in the interval [0.1,0.2]
stieltjes(function(x,a,b){ (x >= a) & (x <= b)}, G, a=0.1, b=0.2)

stepfun example
H <- spatialcdf(bei.extra$elev, normalise=TRUE)
stieltjes(function(x){x}, H)

stienen Stienen Diagram

Description

Draw the Stienen diagram of a point pattern, or compute the region covered by the Stienen diagram.

Usage

stienen(X, ..., bg = "grey", border = list(bg = NULL))
stienenSet(X, edge=TRUE)

Arguments

X Point pattern (object of class "ppp").

... Arguments passed to plot.ppp to control the plot.

bg Fill colour for circles.

border Either a list of arguments passed to plot.ppp to control the display of circles at
the border of the diagram, or the value FALSE indicating that the border circles
should not be plotted.

edge Logical value indicating whether to include the circles at the border of the dia-
gram.

Details

The Stienen diagram of a point pattern (Stienen, 1982) is formed by drawing a circle around each
point of the pattern, with diameter equal to the nearest-neighbour distance for that point. These
circles do not overlap. If two points are nearest neighbours of each other, then the corresponding
circles touch.

stienenSet(X) computes the union of these circles and returns it as a window (object of class
"owin").

stratrand 1595

stienen(X) generates a plot of the Stienen diagram of the point pattern X. By default, circles are
shaded in grey if they lie inside the window of X, and are not shaded otherwise.

Value

The plotting function stienen returns NULL.

The return value of stienenSet is a window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Stienen, H. (1982) Die Vergroeberung von Karbiden in reinen Eisen-Kohlenstoff Staehlen. Disser-
tation, RWTH Aachen.

See Also

nndist, plot.ppp

Examples

Y <- stienenSet(cells)
stienen(redwood)
stienen(redwood, border=list(bg=NULL, lwd=2, cols="red"))

stratrand Stratified random point pattern

Description

Generates a “stratified random” pattern of points in a window, by dividing the window into rectan-
gular tiles and placing k random points in each tile.

Usage

stratrand(window, nx, ny, k = 1)

Arguments

window A window. An object of class owin, or data in any format acceptable to as.owin().

nx Number of tiles in each row.

ny Number of tiles in each column.

k Number of random points to generate in each tile.

1596 stratrand

Details

The bounding rectangle of window is divided into a regular nx × ny grid of rectangular tiles. In
each tile, k random points are generated independently with a uniform distribution in that tile.

Note that some of these grid points may lie outside the window, if window is not of type "rectangle".
The function inside.owin can be used to select those grid points which do lie inside the window.
See the examples.

This function is useful in creating dummy points for quadrature schemes (see quadscheme) as well
as in simulating random point patterns.

Value

A list with two components x and y, which are numeric vectors giving the coordinates of the random
points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, quadscheme, inside.owin, gridcentres

Examples

w <- unit.square()
xy <- stratrand(w, 10, 10)
Not run:
plot(w)
points(xy)

End(Not run)

polygonal boundary
bdry <- list(x=c(0.1,0.3,0.7,0.4,0.2),

y=c(0.1,0.1,0.5,0.7,0.3))
w <- owin(c(0,1), c(0,1), poly=bdry)
xy <- stratrand(w, 10, 10, 3)
Not run:
plot(w)
points(xy)

End(Not run)
determine which grid points are inside polygon
ok <- inside.owin(xyx, xyy, w)
Not run:
plot(w)
points(xy$x[ok], xy$y[ok])

End(Not run)

Strauss 1597

Strauss The Strauss Point Process Model

Description

Creates an instance of the Strauss point process model which can then be fitted to point pattern data.

Usage

Strauss(r)

Arguments

r The interaction radius of the Strauss process

Details

The (stationary) Strauss process with interaction radius r and parameters β and γ is the pairwise
interaction point process in which each point contributes a factor β to the probability density of the
point pattern, and each pair of points closer than r units apart contributes a factor γ to the density.

Thus the probability density is

f(x1, . . . , xn) = αβn(x)γs(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
s(x) is the number of distinct unordered pairs of points that are closer than r units apart, and α is
the normalising constant.

The interaction parameter γ must be less than or equal to 1 so that this model describes an “ordered”
or “inhibitive” pattern.

The nonstationary Strauss process is similar except that the contribution of each individual point xi
is a function β(xi) of location, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The appro-
priate description of the Strauss process pairwise interaction is yielded by the function Strauss().
See the examples below.

Note the only argument is the interaction radius r. When r is fixed, the model becomes an expo-
nential family. The canonical parameters log(β) and log(γ) are estimated by ppm(), not fixed in
Strauss().

Value

An object of class "interact" describing the interpoint interaction structure of the Strauss process
with interaction radius r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

1598 StraussHard

References

Kelly, F.P. and Ripley, B.D. (1976) On Strauss’s model for clustering. Biometrika 63, 357–360.

Strauss, D.J. (1975) A model for clustering. Biometrika 62, 467–475.

See Also

ppm, pairwise.family, ppm.object

Examples

Strauss(r=0.1)
prints a sensible description of itself
data(cells)

Not run:
ppm(cells, ~1, Strauss(r=0.07))
fit the stationary Strauss process to `cells'

End(Not run)

ppm(cells, ~polynom(x,y,3), Strauss(r=0.07))
fit a nonstationary Strauss process with log-cubic polynomial trend

StraussHard The Strauss / Hard Core Point Process Model

Description

Creates an instance of the “Strauss/ hard core” point process model which can then be fitted to point
pattern data.

Usage

StraussHard(r, hc=NA)

Arguments

r The interaction radius of the Strauss interaction

hc The hard core distance. Optional.

Details

A Strauss/hard core process with interaction radius r, hard core distance h < r, and parameters β
and γ, is a pairwise interaction point process in which

• distinct points are not allowed to come closer than a distance h apart

• each pair of points closer than r units apart contributes a factor γ to the probability density.

StraussHard 1599

This is a hybrid of the Strauss process and the hard core process.

The probability density is zero if any pair of points is closer than h units apart, and otherwise equals

f(x1, . . . , xn) = αβn(x)γs(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
s(x) is the number of distinct unordered pairs of points that are closer than r units apart, and α is
the normalising constant.

The interaction parameter γ may take any positive value (unlike the case for the Strauss process).
If γ < 1, the model describes an “ordered” or “inhibitive” pattern. If γ > 1, the model is “ordered”
or “inhibitive” up to the distance h, but has an “attraction” between points lying at distances in the
range between h and r.

If γ = 1, the process reduces to a classical hard core process with hard core distance h. If γ = 0,
the process reduces to a classical hard core process with hard core distance r.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The ap-
propriate description of the Strauss/hard core process pairwise interaction is yielded by the function
StraussHard(). See the examples below.

The canonical parameter log(γ) is estimated by ppm(), not fixed in StraussHard().

If the hard core distance argument hc is missing or NA, it will be estimated from the data when
ppm is called. The estimated value of hc is the minimum nearest neighbour distance multiplied by
n/(n+ 1), where n is the number of data points.

Value

An object of class "interact" describing the interpoint interaction structure of the “Strauss/hard
core” process with Strauss interaction radius r and hard core distance hc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

Strauss, D.J. (1975) A model for clustering. Biometrika 62, 467–475.

See Also

ppm, pairwise.family, ppm.object

1600 studpermu.test

Examples

StraussHard(r=1,hc=0.02)
prints a sensible description of itself

data(cells)

Not run:
ppm(cells, ~1, StraussHard(r=0.1, hc=0.05))
fit the stationary Strauss/hard core process to `cells'

End(Not run)

ppm(cells, ~ polynom(x,y,3), StraussHard(r=0.1, hc=0.05))
fit a nonstationary Strauss/hard core process
with log-cubic polynomial trend

studpermu.test Studentised Permutation Test

Description

Perform a studentised permutation test for a difference between groups of point patterns.

Usage

studpermu.test(X, formula, summaryfunction = Kest,
..., rinterval = NULL, nperm = 999,
use.Tbar = FALSE, minpoints = 20, rsteps = 128,
r = NULL, arguments.in.data = FALSE)

Arguments

X Data. Either a hyperframe or a list of lists of point patterns.

formula Formula describing the grouping, when X is a hyperframe. The left side of the
formula identifies which column of X contains the point patterns. The right side
identifies the grouping factor. If the formula is missing, the grouping variable is
taken to be the first column of X that contains a factor, and the point patterns are
taken from the first column that contains point patterns.

summaryfunction

Summary function applicable to point patterns.

... Additional arguments passed to summaryfunction.

rinterval Interval of distance values r over which the summary function should be eval-
uated and over which the test statistic will be integrated. If NULL, the default
range of the summary statistic is used (taking the intersection of these ranges
over all patterns).

nperm Number of random permutations for the test.

studpermu.test 1601

use.Tbar Logical value indicating choice of test statistic. If TRUE, use the alternative test
statistic, which is appropriate for summary functions with roughly constant vari-
ance, such as K(r)/r or L(r).

minpoints Minimum permissible number of points in a point pattern for inclusion in the
test calculation.

rsteps Number of discretisation steps in the rinterval.
r Optional vector of distance values as the argument for summaryfunction. Should

not usually be given. There is a sensible default.
arguments.in.data

Logical. If TRUE, individual extra arguments to summaryfunction will be taken
from X (which must be a hyperframe). This assumes that the first argument of
summaryfunction is the point pattern dataset.

Details

This function performs the studentized permutation test of Hahn (2012) for a difference between
groups of point patterns.

The first argument X should be either

a list of lists of point patterns. Each element of X will be interpreted as a group of point patterns,
assumed to be replicates of the same point process.

a hyperframe: One column of the hyperframe should contain point patterns, and another column
should contain a factor indicating the grouping. The argument formula should be a formula
in the R language specifying the grouping: it should be of the form P ~ G where P is the name
of the column of point patterns, and G is the name of the factor.

A group needs to contain at least two point patterns with at least minpoints points in each pattern.

The function returns an object of class "htest" and "studpermutest" that can be printed and
plotted. The printout shows the test result and p-value. The plot shows the summary functions for
the groups (and the group means if requested).

Value

Object of class "studpermutest".

Author(s)

Ute Hahn.

Modified for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner
<r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

Hahn, U. (2012) A studentized permutation test for the comparison of spatial point patterns. Journal
of the American Statistical Association 107 (498), 754–764.

See Also

plot.studpermutest

1602 subfits

Examples

np <- if(interactive()) 99 else 19
testpyramidal <- studpermu.test(pyramidal, Neurons ~ group, nperm=np)
testpyramidal

subfits Extract List of Individual Point Process Models

Description

Takes a Gibbs point process model that has been fitted to several point patterns simultaneously, and
produces a list of fitted point process models for the individual point patterns.

Usage

subfits(object, what="models", verbose=FALSE)
subfits.old(object, what="models", verbose=FALSE)
subfits.new(object, what="models", verbose=FALSE)

Arguments

object An object of class "mppm" representing a point process model fitted to several
point patterns.

what What should be returned. Either "models" to return the fitted models, or "interactions"
to return the fitted interactions only.

verbose Logical flag indicating whether to print progress reports.

Details

object is assumed to have been generated by mppm. It represents a point process model that has
been fitted to a list of several point patterns, with covariate data.

For each of the individual point pattern datasets, this function derives the corresponding fitted model
for that dataset only (i.e. a point process model for the ith point pattern, that is consistent with
object).

If what="models", the result is a list of point process models (a list of objects of class "ppm"), one
model for each point pattern dataset in the original fit. If what="interactions", the result is a list
of fitted interpoint interactions (a list of objects of class "fii").

Two different algorithms are provided, as subfits.old and subfits.new. Currently subfits is
the same as the old algorithm subfits.old because the newer algorithm is too memory-hungry.

Value

A list of point process models (a list of objects of class "ppm") or a list of fitted interpoint interac-
tions (a list of objects of class "fii").

subset.hyperframe 1603

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and
Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm, ppm

Examples

H <- hyperframe(Wat=waterstriders)
fit <- mppm(Wat~x, data=H)
subfits(fit)

H$Wat[[3]] <- rthin(H$Wat[[3]], 0.1)
fit2 <- mppm(Wat~x, data=H, random=~1|id)
subfits(fit2)

subset.hyperframe Subset of Hyperframe Satisfying A Condition

Description

Given a hyperframe, return the subset specified by imposing a condition on each row, and optionally
by choosing only some of the columns.

Usage

S3 method for class 'hyperframe'
subset(x, subset, select, ...)

Arguments

x A hyperframe pattern (object of class "hyperframe".

subset Logical expression indicating which points are to be kept. The expression may
involve the names of columns of x and will be evaluated by with.hyperframe.

select Expression indicating which columns of marks should be kept.

... Arguments passed to [.hyperframe such as drop and strip.

1604 subset.ppp

Details

This is a method for the generic function subset. It extracts the subset of rows of x that satisfy the
logical expression subset, and retains only the columns of x that are specified by the expression
select. The result is always a hyperframe.

The argument subset determines the subset of rows that will be extracted. It should be a logical
expression. It may involve the names of columns of x. The default is to keep all points.

The argument select determines which columns of x will be retained. It should be an expression
involving the names of columns (which will be interpreted as integers representing the positions
of these columns). For example if there are columns named A to Z, then select=D:F is a valid
expression and means that columns D, E and F will be retained. Similarly select=-(A:C) is valid
and means that columns A to C will be deleted. The default is to retain all columns.

Setting subset=FALSE will remove all the rows. Setting select=FALSE will remove all the columns.

The result is always a hyperframe.

Value

A hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

subset, [.hyperframe

Examples

a <- subset(flu, virustype=="wt")

aa <- subset(flu, minnndist(pattern) > 10)

aaa <- subset(flu, virustype=="wt", select = -pattern)

subset.ppp Subset of Point Pattern Satisfying A Condition

Description

Given a point pattern, return the subset of points which satisfy a specified condition.

subset.ppp 1605

Usage

S3 method for class 'ppp'
subset(x, subset, select, drop=FALSE, ...)

S3 method for class 'pp3'
subset(x, subset, select, drop=FALSE, ...)

S3 method for class 'lpp'
subset(x, subset, select, drop=FALSE, ...)

S3 method for class 'ppx'
subset(x, subset, select, drop=FALSE, ...)

Arguments

x A point pattern (object of class "ppp", "lpp", "pp3" or "ppx").

subset Logical expression indicating which points are to be kept. The expression may
involve the names of spatial coordinates (x, y, etc), the marks, and (if there is
more than one column of marks) the names of individual columns of marks.
Missing values are taken as false. See Details.

select Expression indicating which columns of marks should be kept. The names of
columns of marks can be used in this expression, and will be treated as if they
were column indices. See Details.

drop Logical value indicating whether to remove unused levels of the marks, if the
marks are a factor.

... Ignored.

Details

This is a method for the generic function subset. It extracts the subset of points of x that satisfy
the logical expression subset, and retains only the columns of marks that are specified by the
expression select. The result is always a point pattern, with the same window as x.

The argument subset determines the subset of points that will be extracted. It should be a logical
expression. It may involve the variable names x and y representing the Cartesian coordinates; the
names of other spatial coordinates or local coordinates; the name marks representing the marks;
and (if there is more than one column of marks) the names of individual columns of marks. The
default is to keep all points.

The argument select determines which columns of marks will be retained (if there are several
columns of marks). It should be an expression involving the names of columns of marks (which
will be interpreted as integers representing the positions of these columns). For example if there are
columns of marks named A to Z, then select=D:F is a valid expression and means that columns D,
E and F will be retained. Similarly select=-(A:C) is valid and means that columns A to C will be
deleted. The default is to retain all columns.

Setting subset=FALSE will produce an empty point pattern (i.e. containing zero points) in the same
window as x. Setting select=FALSE or select= -marks will remove all the marks from x.

1606 subset.ppp

The argument drop determines whether to remove unused levels of a factor, if the resulting point
pattern is multitype (i.e. the marks are a factor) or if the marks are a data frame in which some of
the columns are factors.

The result is always a point pattern, of the same class as x. Spatial coordinates (and local coordi-
nates) are always retained. To extract only some columns of marks or coordinates as a data frame,
use subset(as.data.frame(x),...)

Value

A point pattern of the same class as x, in the same spatial window as x. The result is a subset of x,
possibly with some columns of marks removed.

Other kinds of subset arguments

Alternatively the argument subset can be any kind of subset index acceptable to [.ppp, [.pp3,
[.ppx. This argument selects which points of x will be retained.

Warning: if the argument subset is a window, this is interpreted as specifying the subset of points
that fall inside that window, but the resulting point pattern has the same window as the original
pattern x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

subset,

[.ppp, [.pp3, [.lpp, [.ppx

Examples

plot(subset(cells, x > 0.5))

subset(amacrine, marks == "on")

subset(amacrine, marks == "on", drop=TRUE)

subset(redwood, nndist(redwood) > 0.04)

subset(finpines, select=height)

subset(finpines, diameter > 2, height)

subset(nbfires, year==1999 & ign.src == "campfire",
select=cause:fnl.size)

v <- subset(chicago, x + y > 1100 & marks == "assault")

vv <- subset(chicago, x + y > 1100 & marks == "assault", drop=TRUE)

subset.psp 1607

a <- subset(rpoispp3(40), z > 0.5)

subset.psp Subset of Line Segment Satisfying A Condition

Description

Given a line segment pattern, return the subset of segments which satisfy a specified condition.

Usage

S3 method for class 'psp'
subset(x, subset, select, drop=FALSE, ...)

Arguments

x A line segment pattern (object of class "psp").

subset Logical expression indicating which points are to be kept. The expression may
involve the names of spatial coordinates of the segment endpoints (x0, y0, x1,
y1), the marks, and (if there is more than one column of marks) the names of
individual columns of marks. Missing values are taken as false. See Details.

select Expression indicating which columns of marks should be kept. The names of
columns of marks can be used in this expression, and will be treated as if they
were column indices. See Details.

drop Logical value indicating whether to remove unused levels of the marks, if the
marks are a factor.

... Ignored.

Details

This is a method for the generic function subset. It extracts the subset of x consisting of those
segments that satisfy the logical expression subset, and retains only the columns of marks that
are specified by the expression select. The result is always a line segment pattern, with the same
window as x.

The argument subset determines the subset that will be extracted. It should be a logical expression.
It may involve the variable names x0, y0, x1, y1 representing the Cartesian coordinates of the
segment endpoints; the name marks representing the marks; and (if there is more than one column
of marks) the names of individual columns of marks. The default is to keep all segments.

The argument select determines which columns of marks will be retained (if there are several
columns of marks). It should be an expression involving the names of columns of marks (which
will be interpreted as integers representing the positions of these columns). For example if there are
columns of marks named A to Z, then select=D:F is a valid expression and means that columns D,
E and F will be retained. Similarly select=-(A:C) is valid and means that columns A to C will be
deleted. The default is to retain all columns.

1608 subspaceDistance

Setting subset=FALSE will produce an empty point pattern (i.e. containing zero points) in the same
window as x. Setting select=FALSE or select= -marks will remove all the marks from x.

The argument drop determines whether to remove unused levels of a factor, if the resulting point
pattern is multitype (i.e. the marks are a factor) or if the marks are a data frame in which some of
the columns are factors.

The result is always a line segment pattern. To extract only some columns of marks as a data frame,
use subset(as.data.frame(x),...)

Value

A line segment pattern (object of class "psp") in the same spatial window as x. The result is a
subset of x, possibly with some columns of marks removed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

subset, [.psp.

Examples

plot(nbw.seg)
plot(subset(nbw.seg, x0 < 500 & y0 < 800), add=TRUE, lwd=6)
subset(nbw.seg, type == "island")
subset(nbw.seg, type == "coast", select= -type)
subset(nbw.seg, type %in% c("island", "coast"), select= FALSE)

subspaceDistance Distance Between Linear Spaces

Description

Evaluate the distance between two linear subspaces using the measure proposed by Li, Zha and
Chiaromonte (2005).

Usage

subspaceDistance(B0, B1)

Arguments

B0 Matrix whose columns are a basis for the first subspace.

B1 Matrix whose columns are a basis for the second subspace.

suffstat 1609

Details

This algorithm calculates the maximum absolute value of the eigenvalues of P1−P0 where P0, P1
are the projection matrices onto the subspaces generated by B0,B1. This measure of distance was
proposed by Li, Zha and Chiaromonte (2005). See also Xia (2007).

Value

A single numeric value.

Author(s)

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References

Guan, Y. and Wang, H. (2010) Sufficient dimension reduction for spatial point processes directed
by Gaussian random fields. Journal of the Royal Statistical Society, Series B, 72, 367–387.

Li, B., Zha, H. and Chiaromonte, F. (2005) Contour regression: a general approach to dimension
reduction. Annals of Statistics 33, 1580–1616.

Xia, Y. (2007) A constructive approach to the estimation of dimension reduction directions. Annals
of Statistics 35, 2654–2690.

suffstat Sufficient Statistic of Point Process Model

Description

The canonical sufficient statistic of a point process model is evaluated for a given point pattern.

Usage

suffstat(model, X=data.ppm(model))

Arguments

model A fitted point process model (object of class "ppm").

X A point pattern (object of class "ppp").

Details

The canonical sufficient statistic of model is evaluated for the point pattern X. This computation is
useful for various Monte Carlo methods.

Here model should be a point process model (object of class "ppm", see ppm.object), typically
obtained from the model-fitting function ppm. The argument X should be a point pattern (object of
class "ppp").

1610 suffstat

Every point process model fitted by ppm has a probability density of the form

f(x) = Z(θ) exp(θTS(x))

where x denotes a typical realisation (i.e. a point pattern), θ is the vector of model coefficients,
Z(θ) is a normalising constant, and S(x) is a function of the realisation x, called the “canonical
sufficient statistic” of the model.

For example, the stationary Poisson process has canonical sufficient statistic S(x) = n(x), the
number of points in x. The stationary Strauss process with interaction range r (and fitted with no
edge correction) has canonical sufficient statistic S(x) = (n(x), s(x)) where s(x) is the number of
pairs of points in x which are closer than a distance r to each other.

suffstat(model,X) returns the value of S(x), where S is the canonical sufficient statistic associ-
ated with model, evaluated when x is the given point pattern X. The result is a numeric vector, with
entries which correspond to the entries of the coefficient vector coef(model).

The sufficient statistic S does not depend on the fitted coefficients of the model. However it does
depend on the irregular parameters which are fixed in the original call to ppm, for example, the
interaction range r of the Strauss process.

The sufficient statistic also depends on the edge correction that was used to fit the model. For
example in a Strauss process,

• If the model is fitted with correction="none", the sufficient statistic is S(x) = (n(x), s(x))
where n(x) is the number of points and s(x) is the number of pairs of points which are closer
than r units apart.

• If the model is fitted with correction="periodic", the sufficient statistic is the same as
above, except that distances are measured in the periodic sense.

• If the model is fitted with correction="translate", then n(x) is unchanged but s(x) is
replaced by a weighted sum (the sum of the translation correction weights for all pairs of
points which are closer than r units apart).

• If the model is fitted with correction="border" (the default), then points lying less than r
units from the boundary of the observation window are treated as fixed. Thus n(x) is replaced
by the number nr(x) of points lying at least r units from the boundary of the observation win-
dow, and s(x) is replaced by the number sr(x) of pairs of points, which are closer than r units
apart, and at least one of which lies more than r units from the boundary of the observation
window.

Non-finite values of the sufficient statistic (NA or -Inf) may be returned if the point pattern X is not
a possible realisation of the model (i.e. if X has zero probability of occurring under model for all
values of the canonical coefficients θ).

Value

A numeric vector of sufficient statistics. The entries correspond to the model coefficients coef(model).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

summary.anylist 1611

See Also

ppm

Examples

fitS <- ppm(swedishpines~1, Strauss(7))
suffstat(fitS)
X <- rpoispp(intensity(swedishpines), win=Window(swedishpines))
suffstat(fitS, X)

summary.anylist Summary of a List of Things

Description

Prints a useful summary of each item in a list of things.

Usage

S3 method for class 'anylist'
summary(object, ...)

Arguments

object An object of class "anylist".

... Ignored.

Details

This is a method for the generic function summary.

An object of the class "anylist" is effectively a list of things which are intended to be treated in a
similar way. See anylist.

This function extracts a useful summary of each of the items in the list.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

anylist, summary, plot.anylist

Examples

x <- anylist(A=runif(10), B=runif(10), C=runif(10))
summary(x)

1612 summary.distfun

summary.distfun Summarizing a Function of Spatial Location

Description

Prints a useful summary of a function of spatial location.

Usage

S3 method for class 'distfun'
summary(object, ...)

S3 method for class 'funxy'
summary(object, ...)

Arguments

object An object of class "distfun" or "funxy" representing a function of spatial
coordinates.

... Arguments passed to as.mask controlling the pixel resolution used to compute
the summary.

Details

These are the summary methods for the classes "funxy" and "distfun".

An object of class "funxy" represents a function of spatial location, defined in a particular region
of space. This includes objects of the special class "distfun" which represent distance functions.

The summary method computes a summary of the function values. The function is evaluated on
a grid of locations using as.im and numerical values at these locations are summarised using
summary.im. The pixel resolution for the grid of locations is determined by the arguments ...
which are passed to as.mask.

Value

For summary.funxy the result is an object of class "summary.funxy". For summary.distfun the
result is an object of class "summary.distfun". There are print methods for these classes.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

distfun, funxy

summary.dppm 1613

Examples

f <- function(x,y) { x^2 + y^2 - 1}
g <- funxy(f, square(2))
summary(g)

summary(distfun(cells))
summary(distfun(cells), dimyx=256)

summary.dppm Summarizing a Fitted Determinantal Point Process Model

Description

summary method for class "dppm".

Usage

S3 method for class 'dppm'
summary(object, ..., quick=FALSE)

S3 method for class 'summary.dppm'
print(x, ...)

Arguments

object A fitted determinantal point process model (object of class "dppm").

quick Logical value controlling the scope of the summary.

... Arguments passed to summary.ppm or print.summary.ppm controlling the treat-
ment of the trend component of the model.

x Object of class "summary.dppm" as returned by summary.dppm.

Details

This is a method for the generic summary for the class "dppm". An object of class "dppm" describes
a fitted determinantal point process model. See dppm.

summary.dppm extracts information about the type of model that has been fitted, the data to which
the model was fitted, and the values of the fitted coefficients.

print.summary.dppm prints this information in a comprehensible format.

In normal usage, print.summary.dppm is invoked implicitly when the user calls summary.dppm
without assigning its value to anything. See the examples.

1614 summary.im

Value

summary.dppm returns an object of class "summary.dppm", while print.summary.dppm returns
NULL.

The result of summary.dppm includes at least the following components:

Xname character string name of the original point pattern data

stationary logical value indicating whether the model is stationary

trend Object of class summary.ppm summarising the trend

repul Repulsiveness index

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

Examples

jpines <- residualspaper$Fig1

fit <- dppm(jpines ~ 1, dppGauss)
summary(fit)

summary.im Summarizing a Pixel Image

Description

summary method for class "im".

Usage

S3 method for class 'im'
summary(object, ...)
S3 method for class 'summary.im'

print(x, ...)

Arguments

object A pixel image.

... Ignored.

x Object of class "summary.im" as returned by summary.im.

summary.im 1615

Details

This is a method for the generic summary for the class "im". An object of class "im" describes a
pixel image. See im.object) for details of this class.

summary.im extracts information about the pixel image, and print.summary.im prints this infor-
mation in a comprehensible format.

In normal usage, print.summary.im is invoked implicitly when the user calls summary.im without
assigning its value to anything. See the examples.

The information extracted by summary.im includes

range The range of the image values.

mean The mean of the image values.

integral The “integral” of the image values, calculated as the sum of the image values multiplied
by the area of one pixel.

dim The dimensions of the pixel array: dim[1] is the number of rows in the array, corresponding
to the y coordinate.

Value

summary.im returns an object of class "summary.im", while print.summary.im returns NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

mean.im, integral.im, anyNA.im

Examples

make an image
X <- as.im(function(x,y) {x^2}, unit.square())
summarize it
summary(X)
save the summary
s <- summary(X)
print it
print(X)
s
extract stuff
X$dim
X$range
X$integral

1616 summary.kppm

summary.kppm Summarizing a Fitted Cox or Cluster Point Process Model

Description

summary method for class "kppm".

Usage

S3 method for class 'kppm'
summary(object, ..., quick=FALSE)

S3 method for class 'summary.kppm'
print(x, ...)

Arguments

object A fitted Cox or cluster point process model (object of class "kppm").

quick Logical value controlling the scope of the summary.

... Arguments passed to summary.ppm or print.summary.ppm controlling the treat-
ment of the trend component of the model.

x Object of class "summary.kppm" as returned by summary.kppm.

Details

This is a method for the generic summary for the class "kppm". An object of class "kppm" describes
a fitted Cox or cluster point process model. See kppm.

summary.kppm extracts information about the type of model that has been fitted, the data to which
the model was fitted, and the values of the fitted coefficients.

print.summary.kppm prints this information in a comprehensible format.

In normal usage, print.summary.kppm is invoked implicitly when the user calls summary.kppm
without assigning its value to anything. See the examples.

You can also type coef(summary(object)) to extract a table of the fitted coefficients of the point
process model object together with standard errors and confidence limits.

Value

summary.kppm returns an object of class "summary.kppm", while print.summary.kppm returns
NULL.

The result of summary.kppm includes at least the following components:

Xname character string name of the original point pattern data

stationary logical value indicating whether the model is stationary

clusters the clusters argument to kppm

summary.listof 1617

modelname character string describing the model

isPCP TRUE if the model is a Poisson cluster process, FALSE if it is a log-Gaussian Cox
process

lambda Estimated intensity: numeric value, or pixel image

mu Mean cluster size: numeric value, pixel image, or NULL

clustpar list of fitted parameters for the cluster model

clustargs list of fixed parameters for the cluster model, if any

callstring character string representing the original call to kppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

Examples

fit <- kppm(redwood ~ 1, "Thomas")
summary(fit)
coef(summary(fit))

summary.listof Summary of a List of Things

Description

Prints a useful summary of each item in a list of things.

Usage

S3 method for class 'listof'
summary(object, ...)

Arguments

object An object of class "listof".

... Ignored.

Details

This is a method for the generic function summary.

An object of the class "listof" is effectively a list of things which are all of the same class.

This function extracts a useful summary of each of the items in the list.

1618 summary.owin

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

summary, plot.listof

Examples

x <- list(A=runif(10), B=runif(10), C=runif(10))
class(x) <- c("listof", class(x))
summary(x)

summary.owin Summary of a Spatial Window

Description

Prints a useful description of a window object.

Usage

S3 method for class 'owin'
summary(object, ...)

Arguments

object Window (object of class "owin").

... Ignored.

Details

A useful description of the window object is printed.

This is a method for the generic function summary.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

summary, summary.ppp, print.owin

summary.ppm 1619

Examples

summary(owin()) # the unit square

data(demopat)
W <- Window(demopat) # weird polygonal window
summary(W) # describes it

summary(as.mask(W)) # demonstrates current pixel resolution

summary.ppm Summarizing a Fitted Point Process Model

Description

summary method for class "ppm".

Usage

S3 method for class 'ppm'
summary(object, ..., quick=FALSE, fine=FALSE)
S3 method for class 'summary.ppm'

print(x, ...)

Arguments

object A fitted point process model.

... Ignored.

quick Logical flag controlling the scope of the summary.

fine Logical value passed to vcov.ppm determining whether to compute the quick,
coarse estimate of variance (fine=FALSE, the default) or the slower, finer esti-
mate (fine=TRUE).

x Object of class "summary.ppm" as returned by summary.ppm.

Details

This is a method for the generic summary for the class "ppm". An object of class "ppm" describes a
fitted point process model. See ppm.object) for details of this class.

summary.ppm extracts information about the type of model that has been fitted, the data to which the
model was fitted, and the values of the fitted coefficients. (If quick=TRUE then only the information
about the type of model is extracted.)

print.summary.ppm prints this information in a comprehensible format.

In normal usage, print.summary.ppm is invoked implicitly when the user calls summary.ppm with-
out assigning its value to anything. See the examples.

You can also type coef(summary(object)) to extract a table of the fitted coefficients of the point
process model object together with standard errors and confidence limits.

1620 summary.ppm

Value

summary.ppm returns an object of class "summary.ppm", while print.summary.ppm returns NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

invent some data
X <- rpoispp(42)
fit a model to it
fit <- ppm(X ~ x, Strauss(r=0.1))
summarize the fitted model
summary(fit)
`quick' option
summary(fit, quick=TRUE)
coefficients with standard errors and CI
coef(summary(fit))
coef(summary(fit, fine=TRUE))

save the full summary
s <- summary(fit)
print it
print(s)
s
extract stuff
names(s)
coef(s)
s$args$correction
s$name
s$trend$value

Not run:
multitype pattern
data(demopat)
fit <- ppm(demopat, ~marks, Poisson())
summary(fit)

End(Not run)

model with external covariates
fitX <- ppm(X, ~Z, covariates=list(Z=function(x,y){x+y}))
summary(fitX)

summary.ppp 1621

summary.ppp Summary of a Point Pattern Dataset

Description

Prints a useful summary of a point pattern dataset.

Usage

S3 method for class 'ppp'
summary(object, ..., checkdup=TRUE)

Arguments

object Point pattern (object of class "ppp").

... Ignored.

checkdup Logical value indicating whether to check for the presence of duplicate points.

Details

A useful summary of the point pattern object is printed.

This is a method for the generic function summary.

If checkdup=TRUE, the pattern will be checked for the presence of duplicate points, using duplicated.ppp.
This can be time-consuming if the pattern contains many points, so the checking can be disabled by
setting checkdup=FALSE.

If the point pattern was generated by simulation using rmh, the parameters of the algorithm are
printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

summary, summary.owin, print.ppp

Examples

summary(cells) # plain vanilla point pattern

multitype point pattern
woods <- lansing

summary(woods) # tabulates frequencies of each mark

numeric marks

1622 summary.psp

trees <- longleaf

summary(trees) # prints summary.default(marks(trees))

weird polygonal window
summary(demopat) # describes it

summary.psp Summary of a Line Segment Pattern Dataset

Description

Prints a useful summary of a line segment pattern dataset.

Usage

S3 method for class 'psp'
summary(object, ...)

Arguments

object Line segment pattern (object of class "psp").

... Ignored.

Details

A useful summary of the line segment pattern object is printed.

This is a method for the generic function summary.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

summary, summary.owin, print.psp

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
summary(a) # describes it

summary.quad 1623

summary.quad Summarizing a Quadrature Scheme

Description

summary method for class "quad".

Usage

S3 method for class 'quad'
summary(object, ..., checkdup=FALSE)
S3 method for class 'summary.quad'

print(x, ..., dp=3)

Arguments

object A quadrature scheme.

... Ignored.

checkdup Logical value indicating whether to test for duplicated points.

dp Number of significant digits to print.

x Object of class "summary.quad" returned by summary.quad.

Details

This is a method for the generic summary for the class "quad". An object of class "quad" describes
a quadrature scheme, used to fit a point process model. See quad.object) for details of this class.

summary.quad extracts information about the quadrature scheme, and print.summary.quad prints
this information in a comprehensible format.

In normal usage, print.summary.quad is invoked implicitly when the user calls summary.quad
without assigning its value to anything. See the examples.

Value

summary.quad returns an object of class "summary.quad", while print.summary.quad returns
NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

1624 summary.solist

Examples

make a quadrature scheme
Q <- quadscheme(rpoispp(42))
summarize it
summary(Q)
save the summary
s <- summary(Q)
print it
print(s)
s
extract total quadrature weight
swall$sum

summary.solist Summary of a List of Spatial Objects

Description

Prints a useful summary of each entry in a list of two-dimensional spatial objects.

Usage

S3 method for class 'solist'
summary(object, ...)

Arguments

object An object of class "solist".

... Ignored.

Details

This is a method for the generic function summary.

An object of the class "solist" is effectively a list of two-dimensional spatial datasets. See solist.

This function extracts a useful summary of each of the datasets.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

solist, summary, plot.solist

summary.splitppp 1625

Examples

x <- solist(cells, japanesepines, redwood)
summary(x)

summary.splitppp Summary of a Split Point Pattern

Description

Prints a useful summary of a split point pattern.

Usage

S3 method for class 'splitppp'
summary(object, ...)

Arguments

object Split point pattern (object of class "splitppp", effectively a list of point pat-
terns, usually created by split.ppp).

... Ignored.

Details

This is a method for the generic function summary.

An object of the class "splitppp" is effectively a list of point patterns (objects of class "ppp")
representing different sub-patterns of an original point pattern.

This function extracts a useful summary of each of the sub-patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

summary, split, split.ppp

Examples

data(amacrine) # multitype point pattern
summary(split(amacrine))

1626 sumouter

sumouter Compute Quadratic Forms

Description

Calculates certain quadratic forms of matrices.

Usage

sumouter(x, w=NULL, y=x)
quadform(x, v)
bilinearform(x, v, y)

Arguments

x,y A matrix, whose rows are the vectors in the quadratic form.

w Optional vector of weights

v Matrix determining the quadratic form

Details

The matrices x and y will be interpreted as collections of row vectors. They must have the same
number of rows. The entries of x and y may be numeric, integer, logical or complex values.

The command sumouter computes the sum of the outer products of corresponding row vectors,
weighted by the entries of w:

M =
∑
i

wix
>
i yi

where xi is the i-th row of x and yi is the i-th row of y (after removing any rows containing NA or
other non-finite values). If w is missing, the weights will be taken as 1. The result is a p× q matrix
where p = ncol(x) and q = ncol(y).

The command quadform evaluates the quadratic form, defined by the matrix v, for each of the row
vectors of x:

yi = xiV x
>
i

The result y is a numeric vector of length n where n = nrow(x). If x[i,] contains NA or other
non-finite values, then y[i] = NA.

The command bilinearform evaluates the more general bilinear form defined by the matrix v.
Here x and y must be matrices of the same dimensions. For each row vector of x and corresponding
row vector of y, the bilinear form is

zi = xiV y
>
i

The result z is a numeric vector of length n where n = nrow(x). If x[i,] or y[i,] contains NA or
other non-finite values, then z[i] = NA.

Value

A vector or matrix.

superimpose 1627

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

Examples

x <- matrix(1:12, 4, 3)
dimnames(x) <- list(c("Wilma", "Fred", "Barney", "Betty"), letters[1:3])
x

sumouter(x)

w <- 4:1
sumouter(x, w)
v <- matrix(1, 3, 3)
quadform(x, v)

should be the same as quadform(x, v)
bilinearform(x, v, x)

See what happens with NA's
x[3,2] <- NA
sumouter(x, w)
quadform(x, v)

superimpose Superimpose Several Geometric Patterns

Description

Superimpose any number of point patterns or line segment patterns.

Usage

superimpose(...)

S3 method for class 'ppp'
superimpose(..., W=NULL, check=TRUE)

S3 method for class 'psp'
superimpose(..., W=NULL, check=TRUE)

S3 method for class 'splitppp'
superimpose(..., W=NULL, check=TRUE)

S3 method for class 'ppplist'
superimpose(..., W=NULL, check=TRUE)

Default S3 method:
superimpose(...)

1628 superimpose

Arguments

... Any number of arguments, each of which represents either a point pattern or a
line segment pattern or a list of point patterns.

W Optional. Data determining the window for the resulting pattern. Either a win-
dow (object of class "owin", or something acceptable to as.owin), or a function
which returns a window, or one of the strings "convex", "rectangle", "bbox"
or "none".

check Logical value (passed to ppp or psp as appropriate) determining whether to
check the geometrical validity of the resulting pattern.

Details

This function is used to superimpose several geometric patterns of the same kind, producing a single
pattern of the same kind.

The function superimpose is generic, with methods for the class ppp of point patterns, the class psp
of line segment patterns, and a default method. There is also a method for lpp, described separately
in superimpose.lpp.

The dispatch to a method is initially determined by the class of the first argument in

• default: If the first argument is not an object of class ppp or psp, then the default method
superimpose.default is executed. This checks the class of all arguments, and dispatches to
the appropriate method. Arguments of class ppplist can be handled.

• ppp: If the first ... argument is an object of class ppp then the method superimpose.ppp is
executed. All arguments in ... must be either ppp objects or lists with components x and y.
The result will be an object of class ppp.

• psp: If the first ... argument is an object of class psp then the psp method is dispatched and
all ... arguments must be psp objects. The result is a psp object.

The patterns are not required to have the same window of observation.

The window for the superimposed pattern is controlled by the argument W.

• If W is a window (object of class "W" or something acceptable to as.owin) then this determines
the window for the superimposed pattern.

• If W is NULL, or the character string "none", then windows are extracted from the geomet-
ric patterns, as follows. For superimpose.psp, all arguments ... are line segment patterns
(objects of class "psp"); their observation windows are extracted; the union of these win-
dows is computed; and this union is taken to be the window for the superimposed pattern.
For superimpose.ppp and superimpose.default, the arguments ... are inspected, and any
arguments which are point patterns (objects of class "ppp") are selected; their observation
windows are extracted, and the union of these windows is taken to be the window for the
superimposed point pattern. For superimpose.default if none of the arguments is of class
"ppp" then no window is computed and the result of superimpose is a list(x,y).

• If W is one of the strings "convex", "rectangle" or "bbox" then a window for the superim-
posed pattern is computed from the coordinates of the points or the line segments as follows.

"bbox": the bounding box of the points or line segments (see bounding.box.xy);
"convex": the Ripley-Rasson estimator of a convex window (see ripras);

superimpose 1629

"rectangle": the Ripley-Rasson estimator of a rectangular window (using ripras with ar-
gument shape="rectangle").

• If W is a function, then this function is used to compute a window for the superimposed pattern
from the coordinates of the points or the line segments. The function should accept input of
the form list(x,y) and is expected to return an object of class "owin". Examples of such
functions are ripras and bounding.box.xy.

The arguments ... may be marked patterns. The marks of each component pattern must have
the same format. Numeric and character marks may be “mixed”. If there is such mixing then the
numeric marks are coerced to character in the combining process. If the mark structures are all data
frames, then these data frames must have the same number of columns and identical column names.

If the arguments ... are given in the form name=value, then the names will be used as an extra
column of marks attached to the elements of the corresponding patterns.

Value

For superimpose.ppp, a point pattern (object of class "ppp"). For superimpose.default, either a
point pattern (object of class "ppp") or a list(x,y). For superimpose.psp, a line segment pattern
(object of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

superimpose.lpp, concatxy, quadscheme.

Examples

superimposing point patterns
p1 <- runifrect(30)
p2 <- runifrect(42)
s1 <- superimpose(p1,p2) # Unmarked pattern.
p3 <- list(x=rnorm(20),y=rnorm(20))
s2 <- superimpose(p3,p2,p1) # Default method gets called.
s2a <- superimpose(p1,p2,p3) # Same as s2 except for order of points.
s3 <- superimpose(clyde=p1,irving=p2) # Marked pattern; marks a factor

with levels "clyde" and "irving";
warning given.

marks(p1) <- factor(sample(LETTERS[1:3],30,TRUE))
marks(p2) <- factor(sample(LETTERS[1:3],42,TRUE))
s5 <- superimpose(clyde=p1,irving=p2) # Marked pattern with extra column
marks(p2) <- data.frame(a=marks(p2),b=runif(42))
s6 <- try(superimpose(p1,p2)) # Gives an error.
marks(p1) <- data.frame(a=marks(p1),b=1:30)
s7 <- superimpose(p1,p2) # O.K.

how to make a 2-type point pattern with types "a" and "b"

1630 superimpose.lpp

u <- superimpose(a = rpoispp(10), b = rpoispp(20))

how to make a 2-type point pattern with types 1 and 2
u <- superimpose("1" = rpoispp(10), "2" = rpoispp(20))

superimposing line segment patterns
X <- rpoisline(10)
Y <- as.psp(matrix(runif(40), 10, 4), window=owin())
Z <- superimpose(X, Y)

being unreasonable
Not run:
if(FALSE) {
crud <- try(superimpose(p1,p2,X,Y)) # Gives an error, of course!
}

End(Not run)

superimpose.lpp Superimpose Several Point Patterns on Linear Network

Description

Superimpose any number of point patterns on the same linear network.

Usage

S3 method for class 'lpp'
superimpose(..., L=NULL)

Arguments

... Any number of arguments, each of which represents a point pattern on the same
linear network. Each argument can be either an object of class "lpp", giving
both the spatial coordinates of the points and the linear network, or a list(x,y)
or list(x,y,seg,tp) giving just the spatial coordinates of the points.

L Optional. The linear network. An object of class "linnet". This argument is
required if none of the other arguments is of class "lpp".

Details

This function is used to superimpose several point patterns on the same linear network. It is a
method for the generic function superimpose.

Each of the arguments ... can be either a point pattern on a linear network (object of class
"lpp" giving both the spatial coordinates of the points and the linear network), or a list(x,y)
or list(x,y,seg,tp) giving just the spatial coordinates of the points. These arguments must rep-
resent point patterns on the same linear network.

symbolmap 1631

The argument L is an alternative way to specify the linear network, and is required if none of the
arguments ... is an object of class "lpp".

The arguments ... may be marked patterns. The marks of each component pattern must have
the same format. Numeric and character marks may be “mixed”. If there is such mixing then the
numeric marks are coerced to character in the combining process. If the mark structures are all data
frames, then these data frames must have the same number of columns and identical column names.

If the arguments ... are given in the form name=value, then the names will be used as an extra
column of marks attached to the elements of the corresponding patterns.

Value

An object of class "lpp" representing the combined point pattern on the linear network.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

Ege Rubak <rubak@math.aau.dk>

and Greg McSwiggan.

See Also

superimpose

Examples

X <- rpoislpp(5, simplenet)
Y <- rpoislpp(10, simplenet)
superimpose(X,Y) # not marked
superimpose(A=X, B=Y) # multitype with types A and B

symbolmap Graphics Symbol Map

Description

Create a graphics symbol map that associates data values with graphical symbols.

Usage

symbolmap(..., range = NULL, inputs = NULL)

1632 symbolmap

Arguments

... Named arguments specifying the graphical parameters. See Details.

range Optional. Range of numbers that are mapped. A numeric vector of length 2
giving the minimum and maximum values that will be mapped. Incompatible
with inputs.

inputs Optional. A vector containing all the data values that will be mapped to symbols.
Incompatible with range.

Details

A graphical symbol map is an association between data values and graphical symbols. The com-
mand symbolmap creates an object of class "symbolmap" that represents a graphical symbol map.

Once a symbol map has been created, it can be applied to any suitable data to generate a plot of
those data. This makes it easy to ensure that the same symbol map is used in two different plots.
The symbol map can be plotted as a legend to the plots, and can also be plotted in its own right.

The possible values of data that will be mapped are specified by range or inputs.

• if range is given, it should be a numeric vector of length 2 giving the minimum and maximum
values of the range of numbers that will be mapped. These limits must be finite.

• if inputs is given, it should be a vector of any atomic type (e.g. numeric, character, logical,
factor). This vector contains all the possible data values that will be mapped.

• If neither range nor inputs is given, it is assumed that the possible values are real numbers.

The association of data values with graphical symbols is specified by the other arguments ... which
are given in name=value form. These arguments specify the kinds of symbols that will be used, the
sizes of the symbols, and graphics parameters for drawing the symbols.

Each graphics parameter can be either a single value, for example shape="circles", or a function(x)
which determines the value of the graphics parameter as a function of the data x, for example
shape=function(x) ifelse(x > 0,"circles","squares"). Colourmaps (see colourmap) are
also acceptable because they are functions.

Currently recognised graphics parameters, and their allowed values, are:

shape The shape of the symbol: currently either "circles", "squares", "arrows" or NA. This
parameter takes precedence over pch.

size The size of the symbol: a positive number or zero.

pch Graphics character code: a positive integer, or a single character. See par.

cex Graphics character expansion factor.

cols Colour of plotting characters.

fg,bg Colour of foreground (or symbol border) and background (or symbol interior).

col,lwd,lty Colour, width and style of lines.

etch Logical. If TRUE, each symbol is surrounded by a border drawn in the opposite colour, which
improves its visibility against the background. Default is FALSE.

tess 1633

direction,headlength,headangle,arrowtype Numeric parameters of arrow symbols, applicable when
shape="arrows". Here direction is the direction of the arrow in degrees anticlockwise from
the x axis; headlength is the length of the head of the arrow in coordinate units; headangle
is the angle subtended by the point of the arrow; and arrowtype is an integer code specifying
which ends of the shaft have arrowheads attached (0 means no arrowheads, 1 is an arrowhead
at the start of the shaft, 2 is an arrowhead at the end of the shaft, and 3 is arrowheads at both
ends).

A vector of colour values is also acceptable for the arguments col,cols,fg,bg if range is speci-
fied.

Value

An object of class "symbolmap".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.symbolmap to plot the symbol map itself.

invoke.symbolmap to apply the symbol map to some data and plot the resulting symbols.

update.symbolmap to change the symbol map.

Examples

g <- symbolmap(inputs=letters[1:10], pch=11:20)

g1 <- symbolmap(range=c(0,100), size=function(x) x/50)

g2 <- symbolmap(shape=function(x) ifelse(x > 0, "circles", "squares"),
size=function(x) sqrt(ifelse(x > 0, x/pi, -x)),
bg = function(x) ifelse(abs(x) < 1, "red", "black"))

colmap <- colourmap(topo.colors(20), range=c(0,10))
g3 <- symbolmap(pch=21, bg=colmap, range=c(0,10))
plot(g3)

tess Create a Tessellation

Description

Creates an object of class "tess" representing a tessellation of a spatial region.

1634 tess

Usage

tess(..., xgrid = NULL, ygrid = NULL, tiles = NULL, image = NULL,
window=NULL, marks=NULL, keepempty=FALSE, unitname=NULL, check=TRUE)

Arguments

... Ignored.

xgrid,ygrid Cartesian coordinates of vertical and horizontal lines determining a grid of rect-
angles. Incompatible with other arguments.

tiles List of tiles in the tessellation. A list, each of whose elements is a window
(object of class "owin"). Incompatible with other arguments.

image Pixel image which specifies the tessellation. Incompatible with other arguments.

window Optional. The spatial region which is tessellated (i.e. the union of all the tiles).
An object of class "owin".

marks Optional vector or data frame of marks associated with the tiles.

keepempty Logical flag indicating whether empty tiles should be retained or deleted.

unitname Optional. Name of unit of length. Either a single character string, or a vector of
two character strings giving the singular and plural forms, respectively. If this
argument is missing or NULL, information about the unitname will be extracted
from the other arguments. If this argument is given, it overrides any other infor-
mation about the unitname.

check Logical value indicating whether to check the validity of the input data. It is
strongly recommended to use the default value check=TRUE.

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. This command creates an object of class "tess" that represents a tessellation.

Three types of tessellation are supported:

rectangular: tiles are rectangles, with sides parallel to the x and y axes. They may or may not have
equal size and shape. The arguments xgrid and ygrid determine the positions of the vertical
and horizontal grid lines, respectively. (See quadrats for another way to do this.)

tile list: tiles are arbitrary spatial regions. The argument tiles is a list of these tiles, which are
objects of class "owin".

pixel image: Tiles are subsets of a fine grid of pixels. The argument image is a pixel image (object
of class "im") with factor values. Each level of the factor represents a different tile of the
tessellation. The pixels that have a particular value of the factor constitute a tile.

The optional argument window specifies the spatial region formed by the union of all the tiles. In
other words it specifies the spatial region that is divided into tiles by the tessellation. If this argument
is missing or NULL, it will be determined by computing the set union of all the tiles. This is a time-
consuming computation. For efficiency it is advisable to specify the window. Note that the validity
of the window will not be checked.

Empty tiles may occur, either because one of the entries in the list tiles is an empty window, or
because one of the levels of the factor-valued pixel image image does not occur in the pixel data.

tess 1635

When keepempty=TRUE, empty tiles are permitted. When keepempty=FALSE (the default), tiles are
not allowed to be empty, and any empty tiles will be removed from the tessellation.

There are methods for print, plot, [and [<- for tessellations. Use tiles to extract the list of
tiles in a tessellation, tilenames to extract the names of the tiles, and tile.areas to compute their
areas.

The tiles may have marks, which can be extracted by marks.tess and changed by marks<-.tess.

Tessellations can be used to classify the points of a point pattern, in split.ppp, cut.ppp and
by.ppp.

To construct particular tessellations, see quadrats, hextess, dirichlet, delaunay, venn.tess,
polartess, quantess and rpoislinetess.

Value

An object of class "tess" representing the tessellation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

marks.tess, plot.tess, [.tess, as.tess, tiles, intersect.tess, split.ppp, cut.ppp, by.ppp,
bdist.tiles, tile.areas, as.function.tess.

To construct particular tessellations, see quadrats, hextess, venn.tess, polartess, dirichlet,
delaunay, quantess and rpoislinetess.

To divide space into pieces containing equal amounts of stuff, use quantess.

To convert a tessellation to a function, for use as a spatial covariate (associating a numerical value
with each tile of the tessellation) use as.function.tess.

Examples

A <- tess(xgrid=0:4,ygrid=0:4)
A
plot(A)
B <- A[c(1, 2, 5, 7, 9)]
B
v <- as.im(function(x,y){factor(round(5 * (x^2 + y^2)))}, W=owin())
levels(v) <- letters[seq(length(levels(v)))]
E <- tess(image=v)
plot(E)
G <- tess(image=v, marks=toupper(levels(v)), unitname="km")
G

1636 test.crossing.psp

test.crossing.psp Check Whether Segments Cross

Description

Determine whether there is a crossing (intersection) between each pair of line segments.

Usage

test.crossing.psp(A, B)
test.selfcrossing.psp(A)

Arguments

A,B Line segment patterns (objects of class "psp").

Details

These functions decide whether the given line segments intersect each other.

If A and B are two spatial patterns of line segments, test.crossing.psp(A,B) returns a logical
matrix in which the entry on row i, column j is equal to TRUE if segment A[i] has an intersection
with segment B[j].

If A is a pattern of line segments, test.selfcross.psp(A) returns a symmetric logical matrix in
which the entry on row i, column j is equal to TRUE if segment A[i] has an intersection with
segment A[j].

Value

A logical matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp

Examples

B <- edges(letterR)
A <- rpoisline(5, Frame(B))
MA <- test.selfcrossing.psp(A)
MAB <- test.crossing.psp(A, B)

text.ppp 1637

text.ppp Add Text Labels to Spatial Pattern

Description

Plots a text label at the location of each point in a spatial point pattern, or each object in a spatial
pattern of objects.

Usage

S3 method for class 'ppp'
text(x, ...)

S3 method for class 'lpp'
text(x, ...)

S3 method for class 'psp'
text(x, ...)

Arguments

x A spatial point pattern (object of class "ppp"), a point pattern on a linear network
(class "lpp") or a spatial pattern of line segments (class "psp").

... Additional arguments passed to text.default.

Details

These functions are methods for the generic text. A text label is added to the existing plot, at the
location of each point in the point pattern x, or near the location of the midpoint of each segment in
the segment pattern x.

Additional arguments ... are passed to text.default and may be used to control the placement
of the labels relative to the point locations, and the size and colour of the labels.

By default, the labels are the serial numbers 1 to n, where n is the number of points or segments in
x. This can be changed by specifying the argument labels, which should be a vector of length n.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

text.default

1638 texturemap

Examples

plot(cells)
text(cells, pos=2)

plot(Frame(cells))
text(cells, cex=1.5)

S <- as.psp(simplenet)
plot(S)
text(S)

X <- runiflpp(5, simplenet)
plot(X)
text(X, pos=2, col="blue")

texturemap Texture Map

Description

Create a map that associates data values with graphical textures.

Usage

texturemap(inputs, textures, ...)

Arguments

inputs A vector containing all the data values that will be mapped to textures.

textures Optional. A vector of integer codes specifying the textures to which the inputs
will be mapped.

... Other graphics parameters such as col, lwd, lty.

Details

A texture map is an association between data values and graphical textures. The command texturemap
creates an object of class "texturemap" that represents a texture map.

Once a texture map has been created, it can be applied to any suitable data to generate a texture plot
of those data using textureplot. This makes it easy to ensure that the same texture map is used in
two different plots. The texture map can also be plotted in its own right.

The argument inputs should be a vector containing all the possible data values (such as the levels
of a factor) that are to be mapped.

The textures should be integer values between 1 and 8, representing the eight possible textures
described in the help for add.texture. The default is textures = 1:n where n is the length of
inputs.

textureplot 1639

Value

An object of class "texturemap" representing the texture map.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

textureplot

Examples

texturemap(letters[1:4], 2:5, col=1:4, lwd=2)

textureplot Plot Image or Tessellation Using Texture Fill

Description

For a factor-valued pixel image, this command plots each level of the factor using a different texture.
For a tessellation, each tile is plotted using a different texture.

Usage

textureplot(x, ...,
main, add=FALSE, clipwin=NULL, do.plot = TRUE,
border=NULL, col = NULL, lwd = NULL, lty = NULL, spacing = NULL,
textures=1:8,
legend=TRUE,
leg.side=c("right", "left", "bottom", "top"),
legsep=0.1, legwid=0.2)

Arguments

x A tessellation (object of class "tess" or something acceptable to as.tess) with
at most 8 tiles, or a pixel image (object of class "im" or something acceptable to
as.im) whose pixel values are a factor with at most 8 levels.

... Other arguments passed to add.texture.

main Character string giving a main title for the plot.

add Logical value indicating whether to draw on the current plot (add=TRUE) or to
initialise a new plot (add=FALSE).

clipwin Optional. A window (object of class "owin"). Only this subset of the image will
be displayed.

do.plot Logical. Whether to actually do the plot.

1640 textureplot

border Colour for drawing the boundaries between the different regions. The default
(border=NULL) means to use par("fg"). Use border=NA to omit borders.

col Numeric value or vector giving the colour or colours in which the textures should
be plotted.

lwd Numeric value or vector giving the line width or widths to be used.

lty Numeric value or vector giving the line type or types to be used.

spacing Numeric value or vector giving the spacing parameter for the textures.

textures Textures to be used for each level. Either a texture map (object of class "texturemap")
or a vector of integer codes (to be interpreted by add.texture).

legend Logical. Whether to display an explanatory legend.

leg.side Position of legend relative to main plot.

legsep Separation between legend and main plot, as a fraction of the shortest side length
of the main plot.

legwid Width (if vertical) or height (if horizontal) of the legend as a fraction of the
shortest side length of the main plot.

Details

If x is a tessellation, then each tile of the tessellation is plotted and filled with a texture using
add.texture.

If x is a factor-valued pixel image, then for each level of the factor, the algorithm finds the region
where the image takes this value, and fills the region with a texture using add.texture.

Value

(Invisible) A texture map (object of class "texturemap") associating a texture with each level of
the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

im, plot.im, add.texture.

Examples

nd <- if(interactive()) 128 else 32
Z <- setcov(owin(), dimyx=nd)
Zcut <- cut(Z, 3, labels=c("Lo", "Med", "Hi"))
textureplot(Zcut)
textureplot(dirichlet(runifpoint(6)))

thinNetwork 1641

thinNetwork Remove Vertices or Segments from a Linear Network

Description

Delete some vertices and/or segments from a linear network or related object.

Usage

thinNetwork(X, retainvertices, retainedges)

Arguments

X A linear network (object of class "linnet"), or a point pattern on a linear net-
work (object of class "lpp").

retainvertices Optional. Subset index specifying which vertices should be retained (not deleted).

retainedges Optional. Subset index specifying which edges (segments) should be retained
(not deleted).

Details

This function deletes some of the vertices and edges (segments) in the linear network.

The arguments retainvertices and retainedges can be any kind of subset index: a vector of
positive integers specifying which vertices/edges should be retained; a vector of negative integers
specifying which vertices/edges should be deleted; or a logical vector specifying whether each
vertex/edge should be retained (TRUE) or deleted (FALSE).

Vertices are indexed in the same sequence as in vertices(as.linnet(X)). Segments are indexed
in the same sequence as in as.psp(as.linnet(X)).

The argument retainedges has higher precedence than retainvertices in the sense that:

• If retainedges is given, then any vertex which is an endpoint of a retained edge will also be
retained.

• If retainvertices is given and retainedges is missing, then any segment joining two re-
tained vertices will also be retained.

• Thus, when both retainvertices and retainedges are given, it is possible that more ver-
tices will be retained than those specified by retainvertices.

After the network has been altered, other consequential changes will occur, including renumbering
of the segments and vertices. If X is a point pattern on a linear network, then data points will be
deleted if they lie on a deleted edge.

Value

An object of the same kind as X.

1642 thomas.estK

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Suman Rakshit.

See Also

linnet to make a network;

connected.linnet to extract connected components.

repairNetwork.

Examples

L <- simplenet
plot(L, main="thinNetwork(L, retainedges=c(-3, -5))")
text(midpoints.psp(as.psp(L)), labels=1:nsegments(L), pos=3)
Lsub <- thinNetwork(L, retainedges=c(-3, -5))
plot(Lsub, add=TRUE, col="blue", lwd=2)

thomas.estK Fit the Thomas Point Process by Minimum Contrast

Description

Fits the Thomas point process to a point pattern dataset by the Method of Minimum Contrast using
the K function.

Usage

thomas.estK(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X Data to which the Thomas model will be fitted. Either a point pattern or a
summary statistic. See Details.

startpar Vector of starting values for the parameters of the Thomas process.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

thomas.estK 1643

Details

This algorithm fits the Thomas point process model to a point pattern dataset by the Method of
Minimum Contrast, using the K function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Thomas point process to X, by finding the parameters of the Thomas model
which give the closest match between the theoretical K function of the Thomas process and the
observed K function. For a more detailed explanation of the Method of Minimum Contrast, see
mincontrast.

The Thomas point process is described in Møller and Waagepetersen (2003, pp. 61–62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and isotropically Normally
distributed around the parent point with standard deviation σ which is equal to the parameter scale.
The named vector of stating values can use either sigma2 (σ2) or scale as the name of the second
component, but the latter is recommended for consistency with other cluster models.

The theoretical K-function of the Thomas process is

K(r) = πr2 +
1

κ
(1− exp(− r2

4σ2
)).

The theoretical intensity of the Thomas process is λ = κµ.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and σ2. Then the remaining parameter µ is inferred from the estimated intensity λ.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Thomas process can be simulated, using rThomas.

Homogeneous or inhomogeneous Thomas process models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

1644 thomas.estpcf

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Rasmus Waagepetersen <rw@math.auc.dk> Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Diggle, P. J., Besag, J. and Gleaves, J. T. (1976) Statistical analysis of spatial point patterns by
means of distance methods. Biometrics 32 659–667.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Thomas, M. (1949) A generalisation of Poisson’s binomial limit for use in ecology. Biometrika 36,
18–25.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, lgcp.estK, matclust.estK, mincontrast, Kest, rThomas to simulate the fitted model.

Examples

data(redwood)
u <- thomas.estK(redwood, c(kappa=10, scale=0.1))
u
plot(u)

thomas.estpcf Fit the Thomas Point Process by Minimum Contrast

Description

Fits the Thomas point process to a point pattern dataset by the Method of Minimum Contrast using
the pair correlation function.

Usage

thomas.estpcf(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ..., pcfargs=list())

thomas.estpcf 1645

Arguments

X Data to which the Thomas model will be fitted. Either a point pattern or a
summary statistic. See Details.

startpar Vector of starting values for the parameters of the Thomas process.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits the Thomas point process model to a point pattern dataset by the Method of
Minimum Contrast, using the pair correlation function pcf.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Thomas point process to X, by finding the parameters of the Thomas model
which give the closest match between the theoretical pair correlation function of the Thomas pro-
cess and the observed pair correlation function. For a more detailed explanation of the Method of
Minimum Contrast, see mincontrast.

The Thomas point process is described in Møller and Waagepetersen (2003, pp. 61–62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and isotropically Normally
distributed around the parent point with standard deviation σ which is equal to the parameter scale.
The named vector of stating values can use either sigma2 (σ2) or scale as the name of the second
component, but the latter is recommended for consistency with other cluster models.

The theoretical pair correlation function of the Thomas process is

g(r) = 1 +
1

4πκσ2
exp(− r2

4σ2
)).

The theoretical intensity of the Thomas process is λ = κµ.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and σ2. Then the remaining parameter µ is inferred from the estimated intensity λ.

1646 thomas.estpcf

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Thomas process can be simulated, using rThomas.

Homogeneous or inhomogeneous Thomas process models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.
fit Function value table (object of class "fv") containing the observed values of the

summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Diggle, P. J., Besag, J. and Gleaves, J. T. (1976) Statistical analysis of spatial point patterns by
means of distance methods. Biometrics 32 659–667.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Thomas, M. (1949) A generalisation of Poisson’s binomial limit for use in ecology. Biometrika 36,
18–25.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

thomas.estK mincontrast, pcf, rThomas to simulate the fitted model.

Examples

data(redwood)
u <- thomas.estpcf(redwood, c(kappa=10, scale=0.1))
u
plot(u, legendpos="topright")
u2 <- thomas.estpcf(redwood, c(kappa=10, scale=0.1),

pcfargs=list(stoyan=0.12))

tile.areas 1647

tile.areas Compute Areas of Tiles in a Tessellation

Description

Computes the area of each tile in a tessellation.

Usage

tile.areas(x)

Arguments

x A tessellation (object of class "tess").

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. See tess.

This command computes the area of each of the tiles that make up the tessellation x. The result is a
numeric vector in the same order as the tiles would be listed by tiles(x).

Value

A numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

tess, tiles, tilenames, tiles.empty

Examples

A <- tess(xgrid=0:2,ygrid=0:2)
tile.areas(A)
v <- as.im(function(x,y){factor(round(x^2 + y^2))}, W=owin())
E <- tess(image=v)
tile.areas(E)

1648 tile.lengths

tile.lengths Compute Lengths of Tiles in a Tessellation on a Network

Description

Computes the length of each tile in a tessellation on a linear network.

Usage

tile.lengths(x)

Arguments

x A tessellation on a linear network (object of class "lintess").

Details

A tessellation on a linear network L is a partition of the network into non-overlapping pieces (tiles).
Each tile consists of one or more line segments which are subsets of the line segments making up
the network. A tile can consist of several disjoint pieces.

This command computes the length of each of the tiles that make up the tessellation x. The result
is a numeric vector.

Value

A numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

lintess

Examples

X <- runiflpp(5, simplenet)
A <- lineardirichlet(X)
plot(A)
tile.lengths(A)

tileindex 1649

tileindex Determine Which Tile Contains Each Given Point

Description

Given a tessellation and a list of spatial points, determine which tile of the tessellation contains each
of the given points.

Usage

tileindex(x, y, Z)

Arguments

x,y Spatial coordinates. Numeric vectors of equal length. (Alternatively y may be
missing and x may be an object containing spatial coordinates).

Z A tessellation (object of class "tess").

Details

This function determines which tile of the tessellation Z contains each of the spatial points with
coordinates (x[i],y[i]).

The result is a factor, of the same length as x and y, indicating which tile contains each point. The
levels of the factor are the names of the tiles of Z. Values are NA if the corresponding point lies
outside the tessellation.

Value

A factor, of the same length as x and y, whose levels are the names of the tiles of Z.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

cut.ppp and split.ppp to divide up the points of a point pattern according to a tessellation.

as.function.tess to create a function whose value is the tile index.

Examples

X <- runifpoint(7)
V <- dirichlet(X)
tileindex(0.1, 0.4, V)
tileindex(list(x=0.1, y=0.4), Z=V)
tileindex(X, Z=V)

1650 tilenames

tilenames Names of Tiles in a Tessellation

Description

Extract or Change the Names of the Tiles in a Tessellation.

Usage

tilenames(x)
tilenames(x) <- value

S3 method for class 'tess'
tilenames(x)

S3 method for class 'lintess'
tilenames(x)

S3 replacement method for class 'tess'
tilenames(x) <- value

S3 replacement method for class 'lintess'
tilenames(x) <- value

Arguments

x A tessellation (object of class "tess") or a tessellation on a linear network (ob-
ject of class "lintess").

value Character vector giving new names for the tiles.

Details

These functions extract or change the names of the tiles that make up the tessellation x.

If the tessellation is a regular grid, the tile names cannot be changed.

Value

tilenames returns a character vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

tess, lintess, tiles

tiles 1651

Examples

D <- dirichlet(runifpoint(10))
tilenames(D)
tilenames(D) <- paste("Cell", 1:10)
tilenames(D)

B <- lineardirichlet(runiflpp(5, simplenet))
tilenames(B)
tilenames(B) <- letters[1:5]

tiles Extract List of Tiles in a Tessellation

Description

Extracts a list of the tiles that make up a tessellation.

Usage

tiles(x)

Arguments

x A tessellation (object of class "tess").

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. See tess.

The tiles that make up the tessellation x are returned in a list.

Value

A list of windows (objects of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

tess, tilenames, tile.areas, tiles.empty

1652 tiles.empty

Examples

A <- tess(xgrid=0:2,ygrid=0:2)
tiles(A)
v <- as.im(function(x,y){factor(round(x^2 + y^2))}, W=owin())
E <- tess(image=v)
tiles(E)

tiles.empty Check For Empty Tiles in a Tessellation

Description

Checks whether each tile in a tessellation is empty or non-empty.

Usage

tiles.empty(x)

Arguments

x A tessellation (object of class "tess").

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. See tess.

It is possible for some tiles of a tessellation to be empty. For example, this can happen when the
tessellation x is obtained by restricting another tessellation y to a smaller spatial domain w.

The function tiles.empty checks whether each tile is empty or non-empty. The result is a logical
vector, with entries equal to TRUE when the corresponding tile is empty. Results are given in the
same order as the tiles would be listed by tiles(x).

Value

A logical vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

tess, tiles, tilenames, tile.areas

timed 1653

Examples

A <- tess(xgrid=0:2,ygrid=0:2)
tiles.empty(A)
v <- as.im(function(x,y){factor(round(x^2 + y^2))}, W=owin())
E <- tess(image=v)
tiles.empty(E)

timed Record the Computation Time

Description

Saves the result of a calculation as an object of class "timed" which includes information about the
time taken to compute the result. The computation time is printed when the object is printed.

Usage

timed(x, ..., starttime = NULL, timetaken = NULL)

Arguments

x An expression to be evaluated, or an object that has already been evaluated.
starttime The time at which the computation is defined to have started. The default is the

current time. Ignored if timetaken is given.
timetaken The length of time taken to perform the computation. The default is the time

taken to evaluate x.
... Ignored.

Details

This is a simple mechanism for recording how long it takes to perform complicated calculations
(usually for the purposes of reporting in a publication).

If x is an expression to be evaluated, timed(x) evaluates the expression and measures the time taken
to evaluate it. The result is saved as an object of the class "timed". Printing this object displays the
computation time.

If x is an object which has already been computed, then the time taken to compute the object can be
specified either directly by the argument timetaken, or indirectly by the argument starttime.

• timetaken is the duration of time taken to perform the computation. It should be the differ-
ence of two clock times returned by proc.time. Typically the user sets begin <-proc.time()
before commencing the calculations, then end <-proc.time() after completing the calcula-
tions, and then sets timetaken <-end -begin.

• starttime is the clock time at which the computation started. It should be a value that was re-
turned by proc.time at some earlier time when the calculations commenced. When timed is
called, the computation time will be taken as the difference between the current clock time and
starttime. Typically the user sets begin <-proc.time() before commencing the calcula-
tions, and when the calculations are completed, the user calls result <-timed(result,starttime=begin).

1654 timeTaken

If the result of evaluating x belongs to other S3 classes, then the result of timed(x,...) also inherits
these classes, and printing the object will display the appropriate information for these classes as
well.

Value

An object inheriting the class "timed".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

timeTaken to extract the time taken.

Examples

timed(clarkevans(cells))

timed(Kest(cells))

answer <- timed(42, timetaken=4.1e17)
answer

timeTaken Extract the Total Computation Time

Description

Given an object or objects that contain timing information (reporting the amount of computer time
taken to compute each object), this function extracts the timing data and evaluates the total time
taken.

Usage

timeTaken(..., warn=TRUE)

Arguments

... One or more objects of class "timed" containing timing data.

warn Logical value indicating whether a warning should be issued if some of the
arguments do not contain timing information.

transect.im 1655

Details

An object of class "timed" contains information on the amount of computer time that was taken to
compute the object. See timed.

This function extracts the timing information from one or more such objects, and calculates the total
time.

Value

An object inheriting the class "timed".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

timed

Examples

A <- timed(Kest(cells))
B <- timed(Gest(cells))
A
B
timeTaken(A,B)

transect.im Pixel Values Along a Transect

Description

Extract the pixel values of a pixel image at each point along a linear transect.

Usage

transect.im(X, ..., from="bottomleft", to="topright",
nsample=512, click=FALSE, add=FALSE)

Arguments

X A pixel image (object of class "im").

... Ignored.

from,to Optional. Start point and end point of the transect. Pairs of (x, y) coordinates
in a format acceptable to xy.coords, or keywords "bottom", "left", "top",
"right", "bottomleft" etc.

nsample Integer. Number of sample locations along the transect.

1656 transmat

click Optional. Logical value. If TRUE, the linear transect is determined interactively
by the user, who clicks two points on the current plot.

add Logical. If click=TRUE, this argument determines whether to perform interac-
tive tasks on the current plot (add=TRUE) or to start by plotting X (add=FALSE).

Details

The pixel values of the image X along a line segment will be extracted. The result is a function table
("fv" object) which can be plotted directly.

If click=TRUE, then the user is prompted to click two points on the plot of X. These endpoints define
the transect.

Otherwise, the transect is defined by the endpoints from and to. The default is a diagonal transect
from bottom left to top right of the frame.

Value

An object of class "fv" which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

im

Examples

Z <- density(redwood)
plot(transect.im(Z))
Not run:
if(FALSE) {
plot(transect.im(Z, click=TRUE))
}

End(Not run)

transmat Convert Pixel Array Between Different Conventions

Description

This function provides a simple way to convert arrays of pixel data between different display con-
ventions.

transmat 1657

Usage

transmat(m, from, to)

Arguments

m A matrix.

from,to Specifications of the spatial arrangement of the pixels. See Details.

Details

Pixel images are handled by many different software packages. In virtually all of these, the pixel
values are stored in a matrix, and are accessed using the row and column indices of the matrix.
However, different pieces of software use different conventions for mapping the matrix indices
[i, j] to the spatial coordinates (x, y).

• In the Cartesian convention, the first matrix index i is associated with the first Cartesian
coordinate x, and j is associated with y. This convention is used in image.default.

• In the European reading order convention, a matrix is displayed in the spatial coordinate
system as it would be printed in a page of text: i is effectively associated with the negative y
coordinate, and j is associated with x. This convention is used in some image file formats.

• In the spatstat convention, i is associated with the increasing y coordinate, and j is associ-
ated with x. This is also used in some image file formats.

To convert between these conventions, use the function transmat. If a matrix m contains pixel image
data that is correctly displayed by software that uses the Cartesian convention, and we wish to con-
vert it to the European reading convention, we can type mm <-transmat(m,from="Cartesian",to="European").
The transformed matrix mm will then be correctly displayed by software that uses the European con-
vention.

Each of the arguments from and to can be one of the names "Cartesian", "European" or "spatstat"
(partially matched) or it can be a list specifying another convention. For example to=list(x="-i",y="-j")!
specifies that rows of the output matrix are expected to be displayed as vertical columns in the plot,
starting at the right side of the plot, as in the traditional Chinese, Japanese and Korean writing order.

Value

Another matrix obtained by rearranging the entries of m.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

1658 treebranchlabels

Examples

opa <- par(mfrow=c(1,2))
image in spatstat format
Z <- bei.extra$elev
plot(Z, main="plot.im", ribbon=FALSE)
m <- as.matrix(Z)
convert matrix to format suitable for display by image.default
Y <- transmat(m, from="spatstat", to="Cartesian")
image(Y, asp=0.5, main="image.default", axes=FALSE)
par(opa)

treebranchlabels Label Vertices of a Tree by Branch Membership

Description

Given a linear network which is a tree (acyclic graph), this function assigns a label to each vertex,
indicating its position in the tree.

Usage

treebranchlabels(L, root = 1)

Arguments

L Linear network (object of class "linnet"). The network must have no loops.

root Root of the tree. An integer index identifying which point in vertices(L) is
the root of the tree.

Details

The network L should be a tree, that is, it must have no loops.

This function computes a character string label for each vertex of the network L. The vertex iden-
tified by root (that is, vertices(L)[root]) is taken as the root of the tree and is given the empty
label "".

• If there are several line segments which meet at the root vertex, each of these segments is the
start of a new branch of the tree; the other endpoints of these segments are assigned the labels
"a", "b", "c" and so on.

• If only one segment issues from the root vertex, the other endpoint of this segment is assigned
the empty label "".

A similar rule is then applied to each of the newly-labelled vertices. If the vertex labelled "a" is
joined to two other unlabelled vertices, these will be labelled "aa" and "ab". The rule is applied
recursively until all vertices have been labelled.

If L is not a tree, the algorithm will terminate, but the results will be nonsense.

treeprune 1659

Value

A vector of character strings, with one entry for each point in vertices(L).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

deletebranch, extractbranch, treeprune for manipulating a network using the branch labels.

linnet for creating a network.

Examples

make a simple tree
m <- simplenet$m
m[8,10] <- m[10,8] <- FALSE
L <- linnet(vertices(simplenet), m)
plot(L, main="")
compute branch labels
tb <- treebranchlabels(L, 1)
tbc <- paste0("[", tb, "]")
text(vertices(L), labels=tbc, cex=2)

treeprune Prune Tree to Given Level

Description

Prune a tree by removing all the branches above a given level.

Usage

treeprune(X, root = 1, level = 0)

Arguments

X Object of class "linnet" or "lpp".
root Index of the root vertex amongst the vertices of as.linnet(X).
level Integer specifying the level above which the tree should be pruned.

Details

The object X must be either a linear network, or a derived object such as a point pattern on a linear
network. The linear network must be an acyclic graph (i.e. must not contain any loops) so that it
can be interpreted as a tree.

This function removes all vertices for which treebranchlabels gives a string more than level
characters long.

1660 triangulate.owin

Value

Object of the same kind as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

treebranchlabels for calculating the branch labels.

deletebranch for removing entire branches. extractbranch for extracting entire branches.

linnet for creating networks.

Examples

make a simple tree
m <- simplenet$m
m[8,10] <- m[10,8] <- FALSE
L <- linnet(vertices(simplenet), m)
plot(L, main="")
compute branch labels
tb <- treebranchlabels(L, 1)
tbc <- paste0("[", tb, "]")
text(vertices(L), labels=tbc, cex=2)
prune tree
tp <- treeprune(L, root=1, 1)
plot(tp, add=TRUE, col="blue", lwd=3)

triangulate.owin Decompose Window into Triangles

Description

Given a spatial window, this function decomposes the window into disjoint triangles. The result is
a tessellation of the window in which each tile is a triangle.

Usage

triangulate.owin(W)

Arguments

W Window (object of class "owin").

trim.rectangle 1661

Details

The window W will be decomposed into disjoint triangles. The result is a tessellation of W in which
each tile is a triangle. All triangle vertices lie on the boundary of the original polygon.

The window is first converted to a polygonal window using as.polygonal. The vertices of the
polygonal window are extracted, and the Delaunay triangulation of these vertices is computed using
delaunay. Each Delaunay triangle is intersected with the window: if the result is not a triangle, the
triangulation procedure is applied recursively to this smaller polygon.

Value

Tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

tess, delaunay, as.polygonal

Examples

plot(triangulate.owin(letterR))

trim.rectangle Cut margins from rectangle

Description

Trims a margin from a rectangle.

Usage

trim.rectangle(W, xmargin=0, ymargin=xmargin)

Arguments

W A window (object of class "owin"). Must be of type "rectangle".

xmargin Width of horizontal margin to be trimmed. A single nonnegative number, or a
vector of length 2 indicating margins of unequal width at left and right.

ymargin Height of vertical margin to be trimmed. A single nonnegative number, or a
vector of length 2 indicating margins of unequal width at bottom and top.

Details

This is a simple convenience function to trim off a margin of specified width and height from each
side of a rectangular window. Unequal margins can also be trimmed.

1662 triplet.family

Value

Another object of class "owin" representing the window after margins are trimmed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

grow.rectangle, erosion, owin.object

Examples

w <- square(10)
trim a margin of width 1 from all four sides
square9 <- trim.rectangle(w, 1)

trim margin of width 3 from the right side
and margin of height 4 from top edge.
v <- trim.rectangle(w, c(0,3), c(0,4))

triplet.family Triplet Interaction Family

Description

An object describing the family of all Gibbs point processes with interaction order equal to 3.

Details

Advanced Use Only!
This structure would not normally be touched by the user. It describes the interaction structure of
Gibbs point processes which have infinite order of interaction, such as the triplet interaction process
Triplets.

Anyway, triplet.family is an object of class "isf" containing a function triplet.family$eval
for evaluating the sufficient statistics of a Gibbs point process model taking an exponential family
form.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Triplets 1663

See Also

Triplets to create the triplet interaction process structure.

Other families: pairwise.family, pairsat.family, inforder.family, ord.family.

Triplets The Triplet Point Process Model

Description

Creates an instance of Geyer’s triplet interaction point process model which can then be fitted to
point pattern data.

Usage

Triplets(r)

Arguments

r The interaction radius of the Triplets process

Details

The (stationary) Geyer triplet process (Geyer, 1999) with interaction radius r and parameters β and
γ is the point process in which each point contributes a factor β to the probability density of the
point pattern, and each triplet of close points contributes a factor γ to the density. A triplet of close
points is a group of 3 points, each pair of which is closer than r units apart.

Thus the probability density is

f(x1, . . . , xn) = αβn(x)γs(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
s(x) is the number of unordered triples of points that are closer than r units apart, and α is the
normalising constant.

The interaction parameter γ must be less than or equal to 1 so that this model describes an “ordered”
or “inhibitive” pattern.

The nonstationary Triplets process is similar except that the contribution of each individual point xi
is a function β(xi) of location, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The appro-
priate description of the Triplets process pairwise interaction is yielded by the function Triplets().
See the examples below.

Note the only argument is the interaction radius r. When r is fixed, the model becomes an expo-
nential family. The canonical parameters log(β) and log(γ) are estimated by ppm(), not fixed in
Triplets().

1664 Tstat

Value

An object of class "interact" describing the interpoint interaction structure of the Triplets process
with interaction radius r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

ppm, triplet.family, ppm.object

Examples

Triplets(r=0.1)
prints a sensible description of itself

Not run:
ppm(cells, ~1, Triplets(r=0.2))
fit the stationary Triplets process to `cells'

End(Not run)

ppm(cells, ~polynom(x,y,3), Triplets(r=0.2))
fit a nonstationary Triplets process with log-cubic polynomial trend

Tstat Third order summary statistic

Description

Computes the third order summary statistic T (r) of a spatial point pattern.

Usage

Tstat(X, ..., r = NULL, rmax = NULL,
correction = c("border", "translate"), ratio = FALSE, verbose=TRUE)

Tstat 1665

Arguments

X The observed point pattern, from which an estimate of T (r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

r Optional. Vector of values for the argument r at which T (r) should be evaluated.
Users are advised not to specify this argument; there is a sensible default.

rmax Optional. Numeric. The maximum value of r for which T (r) should be esti-
mated.

correction Optional. A character vector containing any selection of the options "none",
"border", "bord.modif", "translate", "translation", or "best". It spec-
ifies the edge correction(s) to be applied. Alternatively correction="all" se-
lects all options.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

verbose Logical. If TRUE, an estimate of the computation time is printed.

Details

This command calculates the third-order summary statistic T (r) for a spatial point patterns, defined
by Schladitz and Baddeley (2000).

The definition of T (r) is similar to the definition of Ripley’s K function K(r), except that K(r)
counts pairs of points while T (r) counts triples of points. Essentially T (r) is a rescaled cumulative
distribution function of the diameters of triangles in the point pattern. The diameter of a triangle is
the length of its longest side.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Computation time

If the number of points is large, the algorithm can take a very long time to inspect all possible
triangles. A rough estimate of the total computation time will be printed at the beginning of the
calculation. If this estimate seems very large, stop the calculation using the user interrupt signal,
and call Tstat again, using rmax to restrict the range of r values, thus reducing the number of
triangles to be inspected.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Schladitz, K. and Baddeley, A. (2000) A third order point process characteristic. Scandinavian
Journal of Statistics 27 (2000) 657–671.

1666 tweak.colourmap

See Also

Kest

Examples

plot(Tstat(redwood))

tweak.colourmap Change Colour Values in a Colour Map

Description

Assign new colour values to some of the entries in a colour map.

Usage

tweak.colourmap(m, col, ..., inputs=NULL, range=NULL)

Arguments

m A colour map (object of class "colourmap").

inputs Input values to the colour map, to be assigned new colours. Incompatible with
range.

range Numeric vector of length 2 specifying a range of numerical values which should
be assigned a new colour. Incompatible with inputs.

col Replacement colours for the specified inputs or the specified range of values.

... Other arguments are ignored.

Details

This function changes the colour map m by assigning new colours to each of the input values speci-
fied by inputs, or by assigning a single new colour to the range of input values specified by range.

The modified colour map is returned.

Value

Another colour map (object of class "colourmap").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

colourmap, interp.colourmap, colouroutputs, colourtools.

union.quad 1667

Examples

co <- colourmap(rainbow(32), range=c(0,1))
plot(tweak.colourmap(co, inputs=c(0.5, 0.6), "white"))
plot(tweak.colourmap(co, range=c(0.5,0.6), "white"))

union.quad Union of Data and Dummy Points

Description

Combines the data and dummy points of a quadrature scheme into a single point pattern.

Usage

union.quad(Q)

Arguments

Q A quadrature scheme (an object of class "quad").

Details

The argument Q should be a quadrature scheme (an object of class "quad", see quad.object for
details).

This function combines the data and dummy points of Q into a single point pattern. If either the data
or the dummy points are marked, the result is a marked point pattern.

The function as.ppp will perform the same task.

Value

A point pattern (of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quad.object, as.ppp

Examples

data(simdat)
Q <- quadscheme(simdat, default.dummy(simdat))
U <- union.quad(Q)
Not run: plot(U)
equivalent:
U <- as.ppp(Q)

1668 unique.ppp

unique.ppp Extract Unique Points from a Spatial Point Pattern

Description

Removes any points that are identical to other points in a spatial point pattern.

Usage

S3 method for class 'ppp'
unique(x, ..., warn=FALSE)

S3 method for class 'ppx'
unique(x, ..., warn=FALSE)

Arguments

x A spatial point pattern (object of class "ppp" or "ppx").
... Arguments passed to duplicated.ppp or duplicated.data.frame.
warn Logical. If TRUE, issue a warning message if any duplicated points were found.

Details

These are methods for the generic function unique for point pattern datasets (of class "ppp", see
ppp.object, or class "ppx").
This function removes duplicate points in x, and returns a point pattern.
Two points in a point pattern are deemed to be identical if their x, y coordinates are the same, and
their marks are the same (if they carry marks). This is the default rule: see duplicated.ppp for
other options.

Value

Another point pattern object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, duplicated.ppp, multiplicity.ppp

Examples

X <- ppp(c(1,1,0.5), c(2,2,1), window=square(3))
unique(X)
unique(X, rule="deldir")

uniquemap.default 1669

uniquemap.default Map Duplicate Entries to Unique Entries

Description

Determine whether entries in a vector (or rows in a matrix or data frame) are duplicated, choose a
unique representative for each set of duplicates, and map the duplicates to the unique representative.

Usage

Default S3 method:
uniquemap(x)

S3 method for class 'data.frame'
uniquemap(x)

S3 method for class 'matrix'
uniquemap(x)

Arguments

x A vector, data frame or matrix, or another type of data.

Details

The function uniquemap is generic, with methods for point patterns, data frames, and a default
method.

The default method expects a vector. It determines whether any entries of the vector x are dupli-
cated, and constructs a mapping of the indices of x so that all duplicates are mapped to a unique
representative index.

The result is an integer vector u such that u[j] = i if the entries x[i] and x[j] are identical and
point i has been chosen as the unique representative. The entry u[i] = i means either that point i
is unique, or that it has been chosen as the unique representative of its equivalence class.

The method for data.frame determines whether any rows of the data frame x are duplicated, and
constructs a mapping of the row indices so that all duplicate rows are mapped to a unique represen-
tative row.

Value

An integer vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

1670 uniquemap.ppp

See Also

uniquemap, uniquemap.ppp

Examples

x <- c(3, 5, 2, 4, 2, 3)
uniquemap(x)

df <- data.frame(A=x, B=42)
uniquemap(df)

z <- cbind(x, 10-x)
uniquemap(z)

uniquemap.ppp Map Duplicate Entries to Unique Entries

Description

Determine whether points in a point pattern are duplicated, choose a unique representative for each
set of duplicates, and map the duplicates to the unique representative.

Usage

uniquemap(x)

S3 method for class 'ppp'
uniquemap(x)

S3 method for class 'lpp'
uniquemap(x)

S3 method for class 'ppx'
uniquemap(x)

Arguments

x A point pattern (object of class "ppp", "lpp", "pp3" or "ppx").

Details

The function uniquemap is generic, with methods for point patterns and data frames.

This function determines whether any points of x are duplicated, and constructs a mapping of the
indices of x so that all duplicates are mapped to a unique representative index.

The result is an integer vector u such that u[j] = i if the points x[i] and x[j] are identical and
point i has been chosen as the unique representative. The entry u[i] = i means either that point i
is unique, or that it has been chosen as the unique representative of its equivalence class.

unitname 1671

Value

An integer vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

unique.ppp, duplicated.ppp, uniquemap.default

Examples

Y <- runifpoint(4)
X <- Y[c(1,2,3,4,2,1)]
uniquemap(X)

unitname Name for Unit of Length

Description

Inspect or change the name of the unit of length in a spatial dataset.

Usage

unitname(x)
S3 method for class 'dppm'
unitname(x)
S3 method for class 'im'
unitname(x)
S3 method for class 'kppm'
unitname(x)
S3 method for class 'minconfit'
unitname(x)
S3 method for class 'owin'
unitname(x)
S3 method for class 'ppm'
unitname(x)
S3 method for class 'ppp'
unitname(x)
S3 method for class 'psp'
unitname(x)
S3 method for class 'quad'
unitname(x)
S3 method for class 'slrm'

1672 unitname

unitname(x)
S3 method for class 'tess'
unitname(x)
unitname(x) <- value
S3 replacement method for class 'dppm'
unitname(x) <- value
S3 replacement method for class 'im'
unitname(x) <- value
S3 replacement method for class 'kppm'
unitname(x) <- value
S3 replacement method for class 'minconfit'
unitname(x) <- value
S3 replacement method for class 'owin'
unitname(x) <- value
S3 replacement method for class 'ppm'
unitname(x) <- value
S3 replacement method for class 'ppp'
unitname(x) <- value
S3 replacement method for class 'psp'
unitname(x) <- value
S3 replacement method for class 'quad'
unitname(x) <- value
S3 replacement method for class 'slrm'
unitname(x) <- value
S3 replacement method for class 'tess'
unitname(x) <- value

Arguments

x A spatial dataset. Either a point pattern (object of class "ppp"), a line segment
pattern (object of class "psp"), a window (object of class "owin"), a pixel im-
age (object of class "im"), a tessellation (object of class "tess"), a quadrature
scheme (object of class "quad"), or a fitted point process model (object of class
"ppm" or "kppm" or "slrm" or "dppm" or "minconfit").

value Name of the unit of length. See Details.

Details

Spatial datasets in the spatstat package may include the name of the unit of length. This name is
used when printing or plotting the dataset, and in some other applications.

unitname(x) extracts this name, and unitname(x) <-value sets the name to value.

A valid name is either

• a single character string

• a vector of two character strings giving the singular and plural forms of the unit name

• a list of length 3, containing two character strings giving the singular and plural forms of the
basic unit, and a number specifying the multiple of this unit.

unmark 1673

Note that re-setting the name of the unit of length does not affect the numerical values in x. It
changes only the string containing the name of the unit of length. To rescale the numerical values,
use rescale.

Value

The return value of unitname is an object of class "unitname" containing the name of the unit of
length in x. There are methods for print, summary, as.character, rescale and compatible.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rescale, owin, ppp

Examples

X <- runifpoint(20)

if the unit of length is 1 metre:
unitname(X) <- c("metre", "metres")

if the unit of length is 6 inches:
unitname(X) <- list("inch", "inches", 6)

unmark Remove Marks

Description

Remove the mark information from a spatial dataset.

Usage

unmark(X)
S3 method for class 'ppp'

unmark(X)
S3 method for class 'splitppp'

unmark(X)
S3 method for class 'psp'

unmark(X)
S3 method for class 'ppx'

unmark(X)

1674 unnormdensity

Arguments

X A point pattern (object of class "ppp"), a split point pattern (object of class
"splitppp"), a line segment pattern (object of class "psp") or a multidimen-
sional space-time point pattern (object of class "ppx").

Details

A ‘mark’ is a value attached to each point in a spatial point pattern, or attached to each line segment
in a line segment pattern, etc.

The function unmark is a simple way to remove the marks from such a dataset.

Value

An object of the same class as X with any mark information deleted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppp.object, psp.object

Examples

data(lansing)
hicks <- lansing[lansing$marks == "hickory",]
Not run:
plot(hicks) # still a marked point pattern, but only 1 value of marks
plot(unmark(hicks)) # unmarked

End(Not run)

unnormdensity Weighted kernel smoother

Description

An unnormalised version of kernel density estimation where the weights are not required to sum to
1. The weights may be positive, negative or zero.

Usage

unnormdensity(x, ..., weights = NULL)

unnormdensity 1675

Arguments

x Numeric vector of data

... Arguments passed to density.default. Arguments must be named. ‘

weights Optional numeric vector of weights for the data.

Details

This is an alternative to the standard R kernel density estimation function density.default.

The standard density.default requires the weights to be nonnegative numbers that add up to 1,
and returns a probability density (a function that integrates to 1).

This function unnormdensity does not impose any requirement on the weights except that they be
finite. Individual weights may be positive, negative or zero. The result is a function that does not
necessarily integrate to 1 and may be negative. The result is the convolution of the kernel k with
the weighted data,

f(x) =
∑
i

wik(x− xi)

where xi are the data points and wi are the weights.

The algorithm first selects the kernel bandwidth by applying density.default to the data x with
normalised, positive weight vector w = abs(weights)/sum(abs(weights)) and extracting the se-
lected bandwidth. Then the result is computed by applying applying density.default to x twice
using the normalised positive and negative parts of the weights.

Note that the arguments ... must be passed by name, i.e. in the form (name=value). Arguments
that do not match an argument of density.default will be ignored silently.

Value

Object of class "density" as described in density.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

density.default

Examples

d <- unnormdensity(1:3, weights=c(-1,0,1))
if(interactive()) plot(d)

1676 unstack.msr

unstack.msr Separate a Vector Measure into its Scalar Components

Description

Converts a vector-valued measure into a list of scalar-valued measures.

Usage

S3 method for class 'msr'
unstack(x, ...)

Arguments

x A measure (object of class "msr").

... Ignored.

Details

This is a method for the generic unstack for the class "msr" of measures.

If x is a vector-valued measure, then y <-unstack(x) is a list of scalar-valued measures defined by
the components of x. The jth entry of the list, y[[j]], is equivalent to the jth component of the
vector measure x.

If x is a scalar-valued measure, then the result is a list consisting of one entry, which is x.

Value

A list of measures, of class "solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

unstack

unstack.ppp

split.msr.

Examples

fit <- ppm(cells ~ x)
m <- residuals(fit, type="score")
m
unstack(m)

unstack.ppp 1677

unstack.ppp Separate Multiple Columns of Marks

Description

Given a spatial pattern with several columns of marks, take one column at a time, and return a list
of spatial patterns each having only one column of marks.

Usage

S3 method for class 'ppp'
unstack(x, ...)

S3 method for class 'psp'
unstack(x, ...)

S3 method for class 'lpp'
unstack(x, ...)

S3 method for class 'tess'
unstack(x, ...)

S3 method for class 'lintess'
unstack(x, ...)

Arguments

x A spatial point pattern (object of class "ppp" or "lpp") or a spatial pattern of
line segments (object of class "psp") or a spatial tessellation (object of class
"tess") or a tessellation on a linear network (object of class "lintess").

... Ignored.

Details

The functions defined here are methods for the generic unstack. The functions expect a spatial
object x which has several columns of marks; they separate the columns, and return a list of spatial
objects, each having only one column of marks.

If x has several columns of marks (i.e. marks(x) is a matrix, data frame or hyperframe with several
columns), then y <-unstack(x) is a list of spatial objects, each of the same kind as x. The jth entry
y[[j]] is equivalent to x except that it only includes the jth column of marks(x).

If x has no marks, or has only a single column of marks, the result is a list consisting of one entry,
which is x.

Value

A list, of class "solist", whose entries are objects of the same type as x.

1678 unstack.solist

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

unstack

unstack.msr

See also methods for the generic split such as split.ppp.

Examples

finpines
unstack(finpines)

unstack.solist Unstack Each Spatial Object in a List of Objects

Description

Given a list of two-dimensional spatial objects, apply

Usage

S3 method for class 'solist'
unstack(x, ...)

S3 method for class 'layered'
unstack(x, ...)

Arguments

x An object of class "solist" or "layered" representing a list of two-dimensional
spatial objects.

... Ignored.

Details

The functions defined here are methods for the generic unstack. They expect the argument x to be
a list of spatial objects, of class "solist" or "layered".

Each spatial object in the list x will be unstacked by applying the relevant method for unstack.
This means that

• a marked point pattern with several columns of marks will be separated into several point
patterns, each having a single column of marks

update.detpointprocfamily 1679

• a measure with k-dimensional vector values will be separated into k measures with scalar
values

The resulting unstacked objects will be collected into a list of the same kind as x. Typically the
length of unstack(x) is greater than the length of x.

Value

A list belonging to the same class as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

unstack

unstack.msr, unstack.ppp, unstack.lpp, unstack.psp

Examples

A <- solist(finpines=finpines, cells=cells)
A
unstack(A)
B <- layered(fin=finpines, loc=unmark(finpines),

plotargs=list(list(), list(pch=16)))
B
plot(B)
unstack(B)
plot(unstack(B))

update.detpointprocfamily

Set Parameter Values in a Determinantal Point Process Model

Description

Set parameter values in a determinantal point process model object.

Usage

S3 method for class 'detpointprocfamily'
update(object, ...)

Arguments

object object of class "detpointprocfamily".

... arguments of the form tag=value specifying the parameters values to set.

1680 update.interact

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

update.interact Update an Interpoint Interaction

Description

This command updates the object using the arguments given.

Usage

S3 method for class 'interact'
update(object, ...)

Arguments

object Interpoint interaction (object of class "interact").

... Additional or replacement values of parameters of object.

Details

This is a method for the generic function update for the class "interact" of interpoint interactions.
It updates the object using the parameters given in the extra arguments

The extra arguments must be given in the form name=value and must be recognisable to the inter-
action object. They override any parameters of the same name in object.

Value

Another object of class "interact", equivalent to object except for changes in parameter values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

update.ppm

update.kppm 1681

Examples

Str <- Strauss(r=1)
Str
update(Str, r=2)

M <- MultiStrauss(radii=matrix(1,2,2))
update(M, types=c("on", "off"))

update.kppm Update a Fitted Cluster Point Process Model

Description

update method for class "kppm".

Usage

S3 method for class 'kppm'
update(object, ..., evaluate=TRUE)

Arguments

object Fitted cluster point process model. An object of class "kppm", obtained from
kppm.

... Arguments passed to kppm.

evaluate Logical value indicating whether to return the updated fitted model (evaluate=TRUE,
the default) or just the updated call to kppm (evaluate=FALSE).

Details

object should be a fitted cluster point process model, obtained from the model-fitting function
kppm. The model will be updated according to the new arguments provided.

If the argument trend is provided, it determines the intensity in the updated model. It should be an
R formula (with or without a left hand side). It may include the symbols + or - to specify addition
or deletion of terms in the current model formula, as shown in the Examples below. The symbol .
refers to the current contents of the formula.

The intensity in the updated model is determined by the argument trend if it is provided, or other-
wise by any unnamed argument that is a formula, or otherwise by the formula of the original model,
formula(object).

The spatial point pattern data to which the new model is fitted is determined by the left hand side
of the updated model formula, if this is present. Otherwise it is determined by the argument X if it
is provided, or otherwise by any unnamed argument that is a point pattern or a quadrature scheme.

The model is refitted using kppm.

1682 update.ppm

Value

Another fitted cluster point process model (object of class "kppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

kppm, plot.kppm, predict.kppm, simulate.kppm, methods.kppm, vcov.kppm

Examples

fit <- kppm(redwood ~1, "Thomas")
fitx <- update(fit, ~ . + x)
fitM <- update(fit, clusters="MatClust")
fitC <- update(fit, cells)
fitCx <- update(fit, cells ~ x)

update.ppm Update a Fitted Point Process Model

Description

update method for class "ppm".

Usage

S3 method for class 'ppm'
update(object, ..., fixdummy=TRUE, use.internal=NULL,

envir=environment(terms(object)))

Arguments

object An existing fitted point process model, typically produced by ppm.

... Arguments to be updated in the new call to ppm.

fixdummy Logical flag indicating whether the quadrature scheme for the call to ppm should
use the same set of dummy points as that in the original call.

use.internal Optional. Logical flag indicating whether the model should be refitted using the
internally saved data (use.internal=TRUE) or by re-evaluating these data in the
current frame (use.internal=FALSE).

envir Environment in which to re-evaluate the call to ppm.

update.ppm 1683

Details

This is a method for the generic function update for the class "ppm". An object of class "ppm"
describes a fitted point process model. See ppm.object) for details of this class.

update.ppm will modify the point process model specified by object according to the new argu-
ments given, then re-fit it. The actual re-fitting is performed by the model-fitting function ppm.

If you are comparing several model fits to the same data, or fits of the same model to different data,
it is strongly advisable to use update.ppm rather than trying to fit them by hand. This is because
update.ppm re-fits the model in a way which is comparable to the original fit.

The arguments ... are matched to the formal arguments of ppm as follows.

First, all the named arguments in ... are matched with the formal arguments of ppm. Use name=NULL
to remove the argument name from the call.

Second, any unnamed arguments in ... are matched with formal arguments of ppm if the matching
is obvious from the class of the object. Thus ... may contain

• exactly one argument of class "ppp" or "quad", which will be interpreted as the named argu-
ment Q;

• exactly one argument of class "formula", which will be interpreted as the named argument
trend (or as specifying a change to the trend formula);

• exactly one argument of class "interact", which will be interpreted as the named argument
interaction;

• exactly one argument of class "data.frame", which will be interpreted as the named argu-
ment covariates.

The trend argument can be a formula that specifies a change to the current trend formula. For
example, the formula ~ . + Z specifies that the additional covariate Z will be added to the right hand
side of the trend formula in the existing object.

The argument fixdummy=TRUE ensures comparability of the objects before and after updating.
When fixdummy=FALSE, calling update.ppm is exactly the same as calling ppm with the updated
arguments. However, the original and updated models are not strictly comparable (for example,
their pseudolikelihoods are not strictly comparable) unless they used the same set of dummy points
for the quadrature scheme. Setting fixdummy=TRUE ensures that the re-fitting will be performed
using the same set of dummy points. This is highly recommended.

The value of use.internal determines where to find data to re-evaluate the model (data for the ar-
guments mentioned in the original call to ppm that are not overwritten by arguments to update.ppm).

If use.internal=FALSE, then arguments to ppm are re-evaluated in the frame where you call
update.ppm. This is like the behaviour of the other methods for update. This means that if you
have changed any of the objects referred to in the call, these changes will be taken into account.
Also if the original call to ppm included any calls to random number generators, these calls will be
recomputed, so that you will get a different outcome of the random numbers.

If use.internal=TRUE, then arguments to ppm are extracted from internal data stored inside the
current fitted model object. This is useful if you don’t want to re-evaluate anything. It is also
necessary if if object has been restored from a dump file using load or source. In such cases, we
have lost the environment in which object was fitted, and data cannot be re-evaluated.

By default, if use.internal is missing, update.ppm will re-evaluate the arguments if this is pos-
sible, and use internal data if not.

1684 update.ppm

Value

Another fitted point process model (object of class "ppm").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

data(nztrees)
data(cells)

fit the stationary Poisson process
fit <- ppm(nztrees, ~ 1)

fit a nonstationary Poisson process
fitP <- update(fit, trend=~x)
fitP <- update(fit, ~x)

change the trend formula: add another term to the trend
fitPxy <- update(fitP, ~ . + y)
change the trend formula: remove the x variable
fitPy <- update(fitPxy, ~ . - x)

fit a stationary Strauss process
fitS <- update(fit, interaction=Strauss(13))
fitS <- update(fit, Strauss(13))

refit using a different edge correction
fitS <- update(fitS, correction="isotropic")

re-fit the model to a subset
of the original point pattern
nzw <- owin(c(0,148),c(0,95))
nzsub <- nztrees[,nzw]
fut <- update(fitS, Q=nzsub)
fut <- update(fitS, nzsub)

WARNING: the point pattern argument is called 'Q'

ranfit <- ppm(rpoispp(42), ~1, Poisson())
ranfit
different random data!
update(ranfit)
the original data
update(ranfit, use.internal=TRUE)

update.rmhcontrol 1685

update.rmhcontrol Update Control Parameters of Metropolis-Hastings Algorithm

Description

update method for class "rmhcontrol".

Usage

S3 method for class 'rmhcontrol'
update(object, ...)

Arguments

object Object of class "rmhcontrol" containing control parameters for a Metropolis-
Hastings algorithm.

... Arguments to be updated in the new call to rmhcontrol.

Details

This is a method for the generic function update for the class "rmhcontrol". An object of class
"rmhcontrol" describes a set of control parameters for the Metropolis-Hastings simulation algo-
rithm. See rmhcontrol).

update.rmhcontrol will modify the parameters specified by object according to the new argu-
ments given.

Value

Another object of class "rmhcontrol".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

a <- rmhcontrol(expand=1)
update(a, expand=2)

1686 update.symbolmap

update.symbolmap Update a Graphics Symbol Map.

Description

This command updates the object using the arguments given.

Usage

S3 method for class 'symbolmap'
update(object, ...)

Arguments

object Graphics symbol map (object of class "symbolmap").

... Additional or replacement arguments to symbolmap.

Details

This is a method for the generic function update for the class "symbolmap" of graphics symbol
maps. It updates the object using the parameters given in the extra arguments

The extra arguments must be given in the form name=value and must be recognisable to symbolmap.
They override any parameters of the same name in object.

Value

Another object of class "symbolmap".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

See Also

symbolmap to create a graphics symbol map.

Examples

g <- symbolmap(size=function(x) x/50)
g
update(g, range=c(0,1))
update(g, size=42)
update(g, shape="squares", range=c(0,1))

valid 1687

valid Check Whether Point Process Model is Valid

Description

Determines whether a point process model object corresponds to a valid point process.

Usage

valid(object, ...)

Arguments

object Object of some class, describing a point process model.

... Additional arguments passed to methods.

Details

The function valid is generic, with methods for the classes "ppm" and "dppmodel".

An object representing a point process is called valid if all its parameter values are known (for
example, no parameter takes the value NA or NaN) and the parameter values correspond to a well-
defined point process (for example, the parameter values satisfy all the constraints that are imposed
by mathematical theory.)

See the methods for further details.

Value

A logical value, or NA.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

valid.ppm, valid.detpointprocfamily

1688 valid.detpointprocfamily

valid.detpointprocfamily

Check Validity of a Determinantal Point Process Model

Description

Checks the validity of a determinantal point process model.

Usage

S3 method for class 'detpointprocfamily'
valid(object, ...)

Arguments

object Model of class "detpointprocfamily".

... Ignored.

Value

Logical

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

valid

Examples

model1 <- dppMatern(lambda=100, alpha=.01, nu=1, d=2)
valid(model1)
model2 <- dppMatern(lambda=100, alpha=1, nu=1, d=2)
valid(model2)

valid.ppm 1689

valid.ppm Check Whether Point Process Model is Valid

Description

Determines whether a fitted point process model satisfies the integrability conditions for existence
of the point process.

Usage

S3 method for class 'ppm'
valid(object, warn=TRUE, ...)

Arguments

object Fitted point process model (object of class "ppm").
warn Logical value indicating whether to issue a warning if the validity of the model

cannot be checked (due to unavailability of the required code).
... Ignored.

Details

This is a method for the generic function valid for Poisson and Gibbs point process models (class
"ppm").

The model-fitting function ppm fits Gibbs point process models to point pattern data. By default,
ppm does not check whether the fitted model actually exists as a point process. This checking is
done by valid.ppm.

Unlike a regression model, which is well-defined for any values of the fitted regression coefficients,
a Gibbs point process model is only well-defined if the fitted interaction parameters satisfy some
constraints. A famous example is the Strauss process (see Strauss) which exists only when the
interaction parameter γ is less than or equal to 1. For values γ > 1, the probability density is not
integrable and the process does not exist (and cannot be simulated).

By default, ppm does not enforce the constraint that a fitted Strauss process (for example) must
satisfy γ ≤ 1. This is because a fitted parameter value of γ > 1 could be useful information for data
analysis, as it indicates that the Strauss model is not appropriate, and suggests a clustered model
should be fitted.

The function valid.ppm checks whether the fitted model object specifies a well-defined point
process. It returns TRUE if the model is well-defined.

Another possible reason for invalid models is that the data may not be adequate for estimation of
the model parameters. In this case, some of the fitted coefficients could be NA or infinite values. If
this happens then valid.ppm returns FALSE.

Use the function project.ppm to force the fitted model to be valid.

Value

A logical value, or NA.

1690 varblock

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, project.ppm

Examples

fit1 <- ppm(cells, ~1, Strauss(0.1))
valid(fit1)
fit2 <- ppm(redwood, ~1, Strauss(0.1))
valid(fit2)

varblock Estimate Variance of Summary Statistic by Subdivision

Description

This command estimates the variance of any summary statistic (such as the K-function) by spatial
subdivision of a single point pattern dataset.

Usage

varblock(X, fun = Kest,
blocks = quadrats(X, nx = nx, ny = ny),
...,
nx = 3, ny = nx,
confidence=0.95)

Arguments

X Point pattern dataset (object of class "ppp").

fun Function that computes the summary statistic.

blocks Optional. A tessellation that specifies the division of the space into blocks.

... Arguments passed to fun.

nx,ny Optional. Number of rectangular blocks in the x and y directions. Incompatible
with blocks.

confidence Confidence level, as a fraction between 0 and 1.

varblock 1691

Details

This command computes an estimate of the variance of the summary statistic fun(X) from a single
point pattern dataset X using a subdivision method. It can be used to plot confidence intervals for
the true value of a summary function such as the K-function.

The window containing X is divided into pieces by an nx * ny array of rectangles (or is divided into
pieces of more general shape, according to the argument blocks if it is present). The summary
statistic fun is applied to each of the corresponding sub-patterns of X as described below. Then the
pointwise sample mean, sample variance and sample standard deviation of these summary statis-
tics are computed. Then pointwise confidence intervals are computed, for the specified level of
confidence, defaulting to 95 percent.

The variance is estimated by equation (4.21) of Diggle (2003, page 52). This assumes that the point
pattern X is stationary. For further details see Diggle (2003, pp 52–53).

The estimate of the summary statistic from each block is computed as follows. For most functions
fun, the estimate from block B is computed by finding the subset of X consisting of points that fall
inside B, and applying fun to these points, by calling fun(X[B]).

However if fun is the K-function Kest, or any function which has an argument called domain, the
estimate for each block B is computed by calling fun(X,domain=B). In the case of the K-function
this means that the estimate from block B is computed by counting pairs of points in which the first
point lies in B, while the second point may lie anywhere.

Value

A function value table (object of class "fv") that contains the result of fun(X) as well as the sample
mean, sample variance and sample standard deviation of the block estimates, together with the upper
and lower two-standard-deviation confidence limits.

Errors

If the blocks are too small, there may be insufficient data in some blocks, and the function fun may
report an error. If this happens, you need to take larger blocks.

An error message about incompatibility may occur. The different function estimates may be incom-
patible in some cases, for example, because they use different default edge corrections (typically
because the tiles of the tessellation are not the same kind of geometric object as the window of X, or
because the default edge correction depends on the number of points). To prevent this, specify the
choice of edge correction, in the correction argument to fun, if it has one.

An alternative to varblock is Loh’s mark bootstrap lohboot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

1692 varcount

See Also

tess, quadrats for basic manipulation.

lohboot for an alternative bootstrap technique.

Examples

v <- varblock(amacrine, Kest, nx=4, ny=2)
v <- varblock(amacrine, Kcross, nx=4, ny=2)
if(interactive()) plot(v, iso ~ r, shade=c("hiiso", "loiso"))

varcount Predicted Variance of the Number of Points

Description

Given a fitted point process model, calculate the predicted variance of the number of points in a
nominated set B.

Usage

varcount(model, B, ..., dimyx = NULL)

Arguments

model A fitted point process model (object of class "ppm", "kppm" or "dppm").
B A window (object of class "owin" specifying the region in which the points

are counted. Alternatively a pixel image (object of class "im") or a function of
spatial coordinates specifying a numerical weight for each random point.

... Additional arguments passed to B when it is a function.
dimyx Spatial resolution for the calculations. Argument passed to as.mask.

Details

This command calculates the variance of the number of points falling in a specified window B
according to the model. It can also calculate the variance of a sum of weights attached to each
random point.

The model should be a fitted point process model (object of class "ppm", "kppm" or "dppm").

• If B is a window, this command calculates the variance of the number of points falling in B,
according to the fitted model.
If the model depends on spatial covariates other than the Cartesian coordinates, then B should
be a subset of the domain in which these covariates are defined.

• If B is a pixel image, this command calculates the variance of T =
∑
iB(xi), the sum of the

values of B over all random points falling in the domain of the image.
If the model depends on spatial covariates other than the Cartesian coordinates, then the do-
main of the pixel image, as.owin(B), should be a subset of the domain in which these covari-
ates are defined.

vargamma.estK 1693

• If B is a function(x,y) or function(x,y,...) this command calculates the variance of
T =

∑
iB(xi), the sum of the values of B over all random points falling inside the window

W=as.owin(model), the window in which the original data were observed.

The variance calculation involves the intensity and the pair correlation function of the model. The
calculation is exact (up to discretisation error) for models of class "kppm" and "dppm", and for
Poisson point process models of class "ppm". For Gibbs point process models of class "ppm" the
calculation depends on the Poisson-saddlepoint approximations to the intensity and pair correlation
function, which are rough approximations. The approximation is not yet implemented for some
Gibbs models.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

predict.ppm, predict.kppm, predict.dppm

Examples

fitT <- kppm(redwood ~ 1, "Thomas")
B <- owin(c(0, 0.5), c(-0.5, 0))
varcount(fitT, B)

fitS <- ppm(swedishpines ~ 1, Strauss(9))
BS <- square(50)
varcount(fitS, BS)

vargamma.estK Fit the Neyman-Scott Cluster Point Process with Variance Gamma ker-
nel

Description

Fits the Neyman-Scott cluster point process, with Variance Gamma kernel, to a point pattern dataset
by the Method of Minimum Contrast.

Usage

vargamma.estK(X, startpar=c(kappa=1,scale=1), nu = -1/4, lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

1694 vargamma.estK

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

nu Numerical value controlling the shape of the tail of the clusters. A number
greater than -1/2.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits the Neyman-Scott Cluster point process model with Variance Gamma kernel
(Jalilian et al, 2013) to a point pattern dataset by the Method of Minimum Contrast, using the K
function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Neyman-Scott Cluster point process with Variance Gamma kernel to X, by
finding the parameters of the model which give the closest match between the theoreticalK function
of the model and the observed K function. For a more detailed explanation of the Method of
Minimum Contrast, see mincontrast.

The Neyman-Scott cluster point process with Variance Gamma kernel is described in Jalilian et
al (2013). It is a cluster process formed by taking a pattern of parent points, generated according
to a Poisson process with intensity κ, and around each parent point, generating a random number
of offspring points, such that the number of offspring of each parent is a Poisson random variable
with mean µ, and the locations of the offspring points of one parent have a common distribution
described in Jalilian et al (2013).

The shape of the kernel is determined by the dimensionless index nu. This is the parameter ν′ =
α/2 − 1 appearing in equation (12) on page 126 of Jalilian et al (2013). In previous versions of
spatstat instead of specifying nu (called nu.ker at that time) the user could specify nu.pcf which
is the parameter ν = α− 1 appearing in equation (13), page 127 of Jalilian et al (2013). These are
related by nu.pcf = 2 * nu.ker + 1 and nu.ker = (nu.pcf -1)/2. This syntax is still supported
but not recommended for consistency across the package. In that case exactly one of nu.ker or
nu.pcf must be specified.

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and

vargamma.estK 1695

lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rVarGamma.

The parameter eta appearing in startpar is equivalent to the scale parameter omega used in
rVarGamma.

Homogeneous or inhomogeneous Neyman-Scott/VarGamma models can also be fitted using the
function kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.
fit Function value table (object of class "fv") containing the observed values of the

summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, vargamma.estpcf, lgcp.estK, thomas.estK, cauchy.estK, mincontrast, Kest, Kmodel.

rVarGamma to simulate the model.

Examples

if(interactive()) {
u <- vargamma.estK(redwood)
u
plot(u)

}

1696 vargamma.estpcf

vargamma.estpcf Fit the Neyman-Scott Cluster Point Process with Variance Gamma ker-
nel

Description

Fits the Neyman-Scott cluster point process, with Variance Gamma kernel, to a point pattern dataset
by the Method of Minimum Contrast, using the pair correlation function.

Usage

vargamma.estpcf(X, startpar=c(kappa=1,scale=1), nu = -1/4, lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL,
..., pcfargs = list())

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

nu Numerical value controlling the shape of the tail of the clusters. A number
greater than -1/2.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits the Neyman-Scott Cluster point process model with Variance Gamma kernel
(Jalilian et al, 2013) to a point pattern dataset by the Method of Minimum Contrast, using the pair
correlation function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

vargamma.estpcf 1697

The algorithm fits the Neyman-Scott Cluster point process with Variance Gamma kernel to X, by
finding the parameters of the model which give the closest match between the theoretical pair cor-
relation function of the model and the observed pair correlation function. For a more detailed
explanation of the Method of Minimum Contrast, see mincontrast.

The Neyman-Scott cluster point process with Variance Gamma kernel is described in Jalilian et
al (2013). It is a cluster process formed by taking a pattern of parent points, generated according
to a Poisson process with intensity κ, and around each parent point, generating a random number
of offspring points, such that the number of offspring of each parent is a Poisson random variable
with mean µ, and the locations of the offspring points of one parent have a common distribution
described in Jalilian et al (2013).

The shape of the kernel is determined by the dimensionless index nu. This is the parameter ν′ =
α/2 − 1 appearing in equation (12) on page 126 of Jalilian et al (2013). In previous versions of
spatstat instead of specifying nu (called nu.ker at that time) the user could specify nu.pcf which
is the parameter ν = α− 1 appearing in equation (13), page 127 of Jalilian et al (2013). These are
related by nu.pcf = 2 * nu.ker + 1 and nu.ker = (nu.pcf -1)/2. This syntax is still supported
but not recommended for consistency across the package. In that case exactly one of nu.ker or
nu.pcf must be specified.

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and
lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rVarGamma.

The parameter eta appearing in startpar is equivalent to the scale parameter omega used in
rVarGamma.

Homogeneous or inhomogeneous Neyman-Scott/VarGamma models can also be fitted using the
function kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

1698 vcov.kppm

References

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, vargamma.estK, lgcp.estpcf, thomas.estpcf, cauchy.estpcf, mincontrast, pcf, pcfmodel.

rVarGamma to simulate the model.

Examples

u <- vargamma.estpcf(redwood)
u
plot(u, legendpos="topright")

vcov.kppm Variance-Covariance Matrix for a Fitted Cluster Point Process Model

Description

Returns the variance-covariance matrix of the estimates of the parameters of a fitted cluster point
process model.

Usage

S3 method for class 'kppm'
vcov(object, ...,

what=c("vcov", "corr", "fisher", "internals"),
fast = NULL, rmax = NULL, eps.rmax = 0.01,
verbose = TRUE)

Arguments

object A fitted cluster point process model (an object of class "kppm".)

... Ignored.

what Character string (partially-matched) that specifies what matrix is returned. Op-
tions are "vcov" for the variance-covariance matrix, "corr" for the correlation
matrix, and "fisher" for the Fisher information matrix.

fast Logical specifying whether tapering (using sparse matrices from Matrix) should
be used to speed up calculations. Warning: This is expected to underestimate
the true asymptotic variances/covariances.

rmax Optional. The dependence range. Not usually specified by the user. Only used
when fast=TRUE.

vcov.kppm 1699

eps.rmax Numeric. A small positive number which is used to determine rmax from the
tail behaviour of the pair correlation function when fast option (fast=TRUE) is
used. Namely rmax is the smallest value of r at which (g(r) − 1)/(g(0) − 1)
falls below eps.rmax. Only used when fast=TRUE. Ignored if rmax is provided.

verbose Logical value indicating whether to print progress reports during very long cal-
culations.

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical
(regression) parameters in the cluster point process model object. It is a method for the generic
function vcov.

The result is an n * n matrix where n = length(coef(model)).

To calculate a confidence interval for a regression parameter, use confint as shown in the examples.

Value

A square matrix.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Ported to spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Ege Rubak <rubak@math.aau.dk>.

References

Waagepetersen, R. (2007) Estimating functions for inhomogeneous spatial point processes with
incomplete covariate data. Biometrika 95, 351–363.

See Also

kppm, vcov, vcov.ppm

Examples

fit <- kppm(redwood ~ x + y)
vcov(fit)
vcov(fit, what="corr")

confidence interval
confint(fit)
cross-check the confidence interval by hand:
sd <- sqrt(diag(vcov(fit)))
t(coef(fit) + 1.96 * outer(sd, c(lower=-1, upper=1)))

1700 vcov.mppm

vcov.mppm Calculate Variance-Covariance Matrix for Fitted Multiple Point Pro-
cess Model

Description

Given a fitted multiple point process model, calculate the variance-covariance matrix of the param-
eter estimates.

Usage

S3 method for class 'mppm'
vcov(object, ..., what="vcov", err="fatal")

Arguments

object A multiple point process model (object of class "mppm").

... Arguments recognised by vcov.ppm.

what Character string indicating which quantity should be calculated. Options include
"vcov" for the variance-covariance matrix, "corr" for the correlation matrix,
and "fisher" for the Fisher information matrix.

err Character string indicating what action to take if an error occurs. Either "fatal",
"warn" or "null".

Details

This is a method for the generic function vcov.

The argument object should be a fitted multiple point process model (object of class "mppm")
generated by mppm.

The variance-covariance matrix of the parameter estimates is computed using asymptotic theory for
maximum likelihood (for Poisson processes) or estimating equations (for other Gibbs models).

If what="vcov" (the default), the variance-covariance matrix is returned. If what="corr", the
variance-covariance matrix is normalised to yield a correlation matrix, and this is returned. If
what="fisher", the Fisher information matrix is returned instead.

In all three cases, the rows and columns of the matrix correspond to the parameters (coefficients) in
the same order as in coef{model}.

If errors or numerical problems occur, the argument err determines what will happen. If err="fatal"
an error will occur. If err="warn" a warning will be issued and NA will be returned. If err="null",
no warning is issued, but NULL is returned.

Value

A numeric matrix (or NA or NULL).

vcov.ppm 1701

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix of one of the models was either too large or too small for reliable
numerical calculation. See vcov.ppm for suggestions on how to handle this.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

vcov, vcov.ppm, mppm

Examples

fit <- mppm(Wat ~x, data=hyperframe(Wat=waterstriders))
vcov(fit)

vcov.ppm Variance-Covariance Matrix for a Fitted Point Process Model

Description

Returns the variance-covariance matrix of the estimates of the parameters of a fitted point process
model.

Usage

S3 method for class 'ppm'
vcov(object, ..., what = "vcov", verbose = TRUE,

fine=FALSE,
gam.action=c("warn", "fatal", "silent"),
matrix.action=c("warn", "fatal", "silent"),
logi.action=c("warn", "fatal", "silent"),
nacoef.action=c("warn", "fatal", "silent"),
hessian=FALSE)

1702 vcov.ppm

Arguments

object A fitted point process model (an object of class "ppm".)
... Ignored.
what Character string (partially-matched) that specifies what matrix is returned. Op-

tions are "vcov" for the variance-covariance matrix, "corr" for the correlation
matrix, and "fisher" or "Fisher" for the Fisher information matrix.

fine Logical value indicating whether to use a quick estimate (fine=FALSE, the de-
fault) or a slower, more accurate estimate (fine=TRUE).

verbose Logical. If TRUE, a message will be printed if various minor problems are en-
countered.

gam.action String indicating what to do if object was fitted by gam.
matrix.action String indicating what to do if the matrix is ill-conditioned (so that its inverse

cannot be calculated).
logi.action String indicating what to do if object was fitted via the logistic regression ap-

proximation using a non-standard dummy point process.
nacoef.action String indicating what to do if some of the fitted coefficients are NA (so that

variance cannot be calculated).
hessian Logical. Use the negative Hessian matrix of the log pseudolikelihood instead of

the Fisher information.

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical
parameters in the point process model object. It is a method for the generic function vcov.

object should be an object of class "ppm", typically produced by ppm.

The canonical parameters of the fitted model object are the quantities returned by coef.ppm(object).
The function vcov calculates the variance-covariance matrix for these parameters.

The argument what provides three options:

what="vcov" return the variance-covariance matrix of the parameter estimates
what="corr" return the correlation matrix of the parameter estimates
what="fisher" return the observed Fisher information matrix.

In all three cases, the result is a square matrix. The rows and columns of the matrix correspond to
the canonical parameters given by coef.ppm(object). The row and column names of the matrix
are also identical to the names in coef.ppm(object).

For models fitted by the Berman-Turner approximation (Berman and Turner, 1992; Baddeley and
Turner, 2000) to the maximum pseudolikelihood (using the default method="mpl" in the call to
ppm), the implementation works as follows.

• If the fitted model object is a Poisson process, the calculations are based on standard asymp-
totic theory for the maximum likelihood estimator (Kutoyants, 1998). The observed Fisher in-
formation matrix of the fitted model object is first computed, by summing over the Berman-
Turner quadrature points in the fitted model. The asymptotic variance-covariance matrix is
calculated as the inverse of the observed Fisher information. The correlation matrix is then
obtained by normalising.

vcov.ppm 1703

• If the fitted model is not a Poisson process (i.e. it is some other Gibbs point process) then
the calculations are based on Coeurjolly and Rubak (2012). A consistent estimator of the
variance-covariance matrix is computed by summing terms over all pairs of data points. If
required, the Fisher information is calculated as the inverse of the variance-covariance matrix.

For models fitted by the Huang-Ogata method (method="ho" in the call to ppm), the implementation
uses the Monte Carlo estimate of the Fisher information matrix that was computed when the original
model was fitted.

For models fitted by the logistic regression approximation to the maximum pseudolikelihood (method="logi"
in the call to ppm), calculations are based on (Baddeley et al., 2013). A consistent estimator of the
variance-covariance matrix is computed by summing terms over all pairs of data points. If required,
the Fisher information is calculated as the inverse of the variance-covariance matrix. In this case the
calculations depend on the type of dummy pattern used, and currently only the types "stratrand",
"binomial" and "poisson" as generated by quadscheme.logi are implemented. For other types
the behavior depends on the argument logi.action. If logi.action="fatal" an error is pro-
duced. Otherwise, for types "grid" and "transgrid" the formulas for "stratrand" are used
which in many cases should be conservative. For an arbitrary user specified dummy pattern (type
"given") the formulas for "poisson" are used which in many cases should be conservative. If
logi.action="warn" a warning is issued otherwise the calculation proceeds without a warning.

The argument verbose makes it possible to suppress some diagnostic messages.

The asymptotic theory is not correct if the model was fitted using gam (by calling ppm with use.gam=TRUE).
The argument gam.action determines what to do in this case. If gam.action="fatal", an error
is generated. If gam.action="warn", a warning is issued and the calculation proceeds using the
incorrect theory for the parametric case, which is probably a reasonable approximation in many
applications. If gam.action="silent", the calculation proceeds without a warning.

If hessian=TRUE then the negative Hessian (second derivative) matrix of the log pseudolikelihood,
and its inverse, will be computed. For non-Poisson models, this is not a valid estimate of variance,
but is useful for other calculations.

Note that standard errors and 95% confidence intervals for the coefficients can also be obtained
using confint(object) or coef(summary(object)).

Value

A square matrix.

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix was either too large or too small for reliable numerical calculation.

If this message occurs, try repeating the calculation using fine=TRUE.

Singularity can occur because of numerical overflow or collinearity in the covariates. To check this,
rescale the coordinates of the data points and refit the model. See the Examples.

In a Gibbs model, a singular matrix may also occur if the fitted model is a hard core process: this is
a feature of the variance estimator.

1704 vcov.ppm

Author(s)

Original code for Poisson point process was written by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz> . New code for stationary Gibbs point processes
was generously contributed by Ege Rubak <rubak@math.aau.dk> and Jean-Francois Coeurjolly.
New code for generic Gibbs process written by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.
New code for logistic method contributed by Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2014) Logistic regression for
spatial Gibbs point processes. Biometrika 101 (2) 377–392.

Coeurjolly, J.-F. and Rubak, E. (2013) Fast covariance estimation for innovations computed from a
spatial Gibbs point process. Scandinavian Journal of Statistics 40 669–684.

Kutoyants, Y.A. (1998) Statistical Inference for Spatial Poisson Processes, Lecture Notes in
Statistics 134. New York: Springer 1998.

See Also

vcov for the generic,

ppm for information about fitted models,

confint for confidence intervals.

Examples

X <- rpoispp(42)
fit <- ppm(X, ~ x + y)
vcov(fit)
vcov(fit, what="Fish")

example of singular system
m <- ppm(demopat ~polynom(x,y,2))
Not run:

try(v <- vcov(m))

End(Not run)
rescale x, y coordinates to range [0,1] x [0,1] approximately
demopatScale <- rescale(demopat, 10000)
m <- ppm(demopatScale ~ polynom(x,y,2))
v <- vcov(m)

Gibbs example
fitS <- ppm(swedishpines ~1, Strauss(9))
coef(fitS)
sqrt(diag(vcov(fitS)))

vcov.slrm 1705

vcov.slrm Variance-Covariance Matrix for a Fitted Spatial Logistic Regression

Description

Returns the variance-covariance matrix of the estimates of the parameters of a point process model
that was fitted by spatial logistic regression.

Usage

S3 method for class 'slrm'
vcov(object, ...,

what=c("vcov", "corr", "fisher", "Fisher"))

Arguments

object A fitted point process model of class "slrm".

... Ignored.

what Character string (partially-matched) that specifies what matrix is returned. Op-
tions are "vcov" for the variance-covariance matrix, "corr" for the correlation
matrix, and "fisher" or "Fisher" for the Fisher information matrix.

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical
parameters in the point process model object. It is a method for the generic function vcov.

object should be an object of class "slrm", typically produced by slrm. It represents a Poisson
point process model fitted by spatial logistic regression.

The canonical parameters of the fitted model object are the quantities returned by coef.slrm(object).
The function vcov calculates the variance-covariance matrix for these parameters.

The argument what provides three options:

what="vcov" return the variance-covariance matrix of the parameter estimates

what="corr" return the correlation matrix of the parameter estimates

what="fisher" return the observed Fisher information matrix.

In all three cases, the result is a square matrix. The rows and columns of the matrix correspond to
the canonical parameters given by coef.slrm(object). The row and column names of the matrix
are also identical to the names in coef.slrm(object).

Note that standard errors and 95% confidence intervals for the coefficients can also be obtained
using confint(object) or coef(summary(object)).

Standard errors for the fitted intensity can be obtained using predict.slrm.

Value

A square matrix.

1706 venn.tess

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix was either too large or too small for reliable numerical calculation.
This can occur because of numerical overflow or collinearity in the covariates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz> .

References

Baddeley, A., Berman, M., Fisher, N.I., Hardegen, A., Milne, R.K., Schuhmacher, D., Shah, R.
and Turner, R. (2010) Spatial logistic regression and change-of-support for spatial Poisson point
processes. Electronic Journal of Statistics 4, 1151–1201. doi: 10.1214/10-EJS581

See Also

vcov for the generic,

slrm for information about fitted models,

predict.slrm for other kinds of calculation about the model,

confint for confidence intervals.

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x + y)
vcov(fit)
vcov(fit, what="corr")
vcov(fit, what="f")

venn.tess Tessellation Delimited by Several Sets

Description

Given a list of windows, construct the tessellation formed by all combinations of inclusion/exclusion
of these windows.

Usage

venn.tess(..., window = NULL)

vertices 1707

Arguments

... Sets which delimit the tessellation. Any number of windows (objects of class
"owin") or tessellations (objects of class "tess").

window Optional. The bounding window of the resulting tessellation. If not specified,
the default is the union of all the arguments

Details

The arguments ... may be any number of windows. This function constructs a tessellation, like
a Venn diagram, whose boundaries are made up of the boundaries of these sets. Each tile of the
tessellation is defined by one of the possible combinations in which each set is either included or
excluded.

If the arguments ... are named, then the resulting tiles will also have names, which identify the
inclusion/exclusion combinations defining each tile. See the Examples.

Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

intersect.tess.

To construct other kinds of tessellations, see tess, quadrats, hextess, polartess, dirichlet,
delaunay, quantess and rpoislinetess.

Examples

V <- venn.tess(A=square(1),
B=square(c(-0.5, 0.5)),
window=square(c(-1,1.5)))

V
plot(V, do.labels=TRUE)

vertices Vertices of a Window

Description

Finds the vertices of a window, or similar object.

1708 vertices

Usage

vertices(w)

S3 method for class 'owin'
vertices(w)

Arguments

w A window (object of class "owin") or similar object.

Details

This function computes the vertices (‘corners’) of a spatial window or other object.

For vertices.owin, the argument w should be a window (an object of class "owin", see owin.object
for details).

If w is a rectangle, the coordinates of the four corner points are returned.

If w is a polygonal window (consisting of one or more polygons), the coordinates of the vertices of
all polygons are returned.

If w is a binary mask, then a ‘boundary pixel’ is defined to be a pixel inside the window which has
at least one neighbour outside the window. The coordinates of the centres of all boundary pixels are
returned.

Value

A list with components x and y giving the coordinates of the vertices.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

owin.object.

Examples

data(letterR)
vert <- vertices(letterR)

plot(letterR, main="Polygonal vertices")
points(vert)
plot(letterR, main="Boundary pixels")
points(vertices(as.mask(letterR)))

volume 1709

volume Volume of an Object

Description

Computes the volume of a spatial object such as a three-dimensional box.

Usage

volume(x)

Arguments

x An object whose volume will be computed.

Details

This function computes the volume of an object such as a three-dimensional box.

The function volume is generic, with methods for the classes "box3" (three-dimensional boxes) and
"boxx" (multi-dimensional boxes).

There is also a method for the class "owin" (two-dimensional windows), which is identical to
area.owin, and a method for the class "linnet" of linear networks, which returns the length of
the network.

Value

The numerical value of the volume of the object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

area.owin, volume.box3, volume.boxx, volume.linnet

1710 weighted.median

weighted.median Weighted Median, Quantiles or Variance

Description

Compute the median, quantiles or variance of a set of numbers which have weights associated with
them.

Usage

weighted.median(x, w, na.rm = TRUE)

weighted.quantile(x, w, probs=seq(0,1,0.25), na.rm = TRUE)

weighted.var(x, w, na.rm = TRUE)

Arguments

x Data values. A vector of numeric values, for which the median or quantiles are
required.

w Weights. A vector of nonnegative numbers, of the same length as x.

probs Probabilities for which the quantiles should be computed. A numeric vector of
values between 0 and 1.

na.rm Logical. Whether to ignore NA values.

Details

The ith observation x[i] is treated as having a weight proportional to w[i].

The weighted median is a value m such that the total weight of data to the left of m is equal to half
the total weight. If there is no such value, linear interpolation is performed.

Value

A numeric value or vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

quantile, median.

where.max 1711

Examples

x <- 1:20
w <- runif(20)
weighted.median(x, w)
weighted.quantile(x, w)
weighted.var(x, w)

where.max Find Location of Maximum in a Pixel Image

Description

Finds the spatial location(s) where a given pixel image attains its maximum or minimum value.

Usage

where.max(x, first = TRUE)
where.min(x, first = TRUE)

Arguments

x A pixel image (object of class "im").

first Logical value. If TRUE (the default), then only one location will be returned. If
FALSE, then all locations where the maximum is achieved will be returned.

Details

This function finds the spatial location or locations where the pixel image x attains its maximum or
minimum value. The result is a point pattern giving the locations.

If first=TRUE (the default), then only one location will be returned, namely the location with the
smallest y coordinate value which attains the maximum or minimum. This behaviour is analogous
to the functions which.min and which.max.

If first=FALSE, then the function returns the locations of all pixels where the maximum (or mini-
mum) value is attained. This could be a large number of points.

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

Summary.im for computing the minimum and maximum of pixel values; eval.im and Math.im
for mathematical expressions involving images; solutionset for finding the set of pixels where a
statement is true.

1712 whichhalfplane

Examples

D <- distmap(letterR, invert=TRUE)
plot(D)
plot(where.max(D), add=TRUE, pch=16, cols="green")

whichhalfplane Test Which Side of Infinite Line a Point Falls On

Description

Given an infinite line and a spatial point location, determine which side of the line the point falls
on.

Usage

whichhalfplane(L, x, y = NULL)

Arguments

L Object of class "infline" specifying one or more infinite straight lines in two
dimensions.

x,y Arguments acceptable to xy.coords specifying the locations of the points.

Details

An infinite line L divides the two-dimensional plane into two half-planes. This function returns a
matrix M of logical values in which M[i,j] = TRUE if the jth spatial point lies below or to the left of
the ith line.

Value

A logical matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

infline

Examples

L <- infline(p=runif(3), theta=runif(3, max=2*pi))
X <- runifpoint(4)
whichhalfplane(L, X)

whist 1713

whist Weighted Histogram

Description

Computes the weighted histogram of a set of observations with a given set of weights.

Usage

whist(x, breaks, weights = NULL)

Arguments

x Numeric vector of observed values.

breaks Vector of breakpoints for the histogram.

weights Numeric vector of weights for the observed values.

Details

This low-level function computes (but does not plot) the weighted histogram of a vector of obser-
vations x using a given vector of weights.

The arguments x and weights should be numeric vectors of equal length. They may include NA or
infinite values.

The argument breaks should be a numeric vector whose entries are strictly increasing. These values
define the boundaries between the successive histogram cells. The breaks do not have to span the
range of the observations.

There are N-1 histogram cells, where N = length(breaks). An observation x[i] falls in the jth
cell if breaks[j] <= x[i] < breaks[j+1] (for j < N-1) or breaks[j] <= x[i] <= breaks[j+1]
(for j = N-1). The weighted histogram value h[j] for the jth cell is the sum of weights[i] for all
observations x[i] that fall in the cell.

Note that, in contrast to the function hist, the function whist does not require the breakpoints to
span the range of the observations x. Values of x that fall outside the range of breaks are handled
separately; their total weight is returned as an attribute of the histogram.

Value

A numeric vector of length N-1 containing the histogram values, where N = length(breaks).

The return value also has attributes "low" and "high" giving the total weight of all observations
that are less than the lowest breakpoint, or greater than the highest breakpoint, respectively.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

with thanks to Peter Dalgaard.

1714 will.expand

Examples

x <- rnorm(100)
b <- seq(-1,1,length=21)
w <- runif(100)
whist(x,b,w)

will.expand Test Expansion Rule

Description

Determines whether an expansion rule will actually expand the window or not.

Usage

will.expand(x)

Arguments

x Expansion rule. An object of class "rmhexpand".

Details

An object of class "rmhexpand" describes a rule for expanding a simulation window. See rmhexpand
for details.

One possible expansion rule is to do nothing, i.e. not to expand the window.

This command inspects the expansion rule x and determines whether it will or will not actually
expand the window. It returns TRUE if the window will be expanded.

Value

Logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rmhexpand, expand.owin

Examples

x <- rmhexpand(distance=0.2)
y <- rmhexpand(area=1)
will.expand(x)
will.expand(y)

Window 1715

Window Extract or Change the Window of a Spatial Object

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions
extract or change the window in which the object is defined.

Usage

Window(X, ...)

Window(X, ...) <- value

S3 method for class 'ppp'
Window(X, ...)

S3 replacement method for class 'ppp'
Window(X, ...) <- value

S3 method for class 'psp'
Window(X, ...)

S3 replacement method for class 'psp'
Window(X, ...) <- value

S3 method for class 'im'
Window(X, ...)

S3 replacement method for class 'im'
Window(X, ...) <- value

Arguments

X A spatial object such as a point pattern, line segment pattern or pixel image.

... Extra arguments. They are ignored by all the methods listed here.

value Another window (object of class "owin") to be used as the window for X.

Details

The functions Window and Window<- are generic.

Window(X) extracts the spatial window in which X is defined.

Window(X) <-W changes the window in which X is defined to the new window W, and discards any
data outside W. In particular:

• If X is a point pattern (object of class "ppp") then Window(X) <-W discards any points of X
which fall outside W.

1716 WindowOnly

• If X is a line segment pattern (object of class "psp") then Window(X) <-W clips the segments
of X to the boundaries of W.

• If X is a pixel image (object of class "im") then Window(X) <-W has the effect that pixels lying
outside W are retained but their pixel values are set to NA.

Many other classes of spatial object have a method for Window, but not Window<-. See Window.ppm.

Value

The result of Window is a window (object of class "owin").

The result of Window<- is the updated object X, of the same class as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

Window.ppm

Examples

point patterns
Window(cells)
X <- demopat
Window(X)
Window(X) <- as.rectangle(Window(X))

line segment patterns
X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
Window(X)
Window(X) <- square(0.5)

images
Z <- setcov(owin())
Window(Z)
Window(Z) <- square(0.5)

WindowOnly Extract Window of Spatial Object

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions
extract the window in which the object is defined.

WindowOnly 1717

Usage

S3 method for class 'ppm'
Window(X, ..., from=c("points", "covariates"))

S3 method for class 'kppm'
Window(X, ..., from=c("points", "covariates"))

S3 method for class 'dppm'
Window(X, ..., from=c("points", "covariates"))

S3 method for class 'lpp'
Window(X, ...)

S3 method for class 'lppm'
Window(X, ...)

S3 method for class 'msr'
Window(X, ...)

S3 method for class 'quad'
Window(X, ...)

S3 method for class 'quadratcount'
Window(X, ...)

S3 method for class 'quadrattest'
Window(X, ...)

S3 method for class 'tess'
Window(X, ...)

S3 method for class 'layered'
Window(X, ...)

S3 method for class 'distfun'
Window(X, ...)

S3 method for class 'nnfun'
Window(X, ...)

S3 method for class 'funxy'
Window(X, ...)

S3 method for class 'rmhmodel'
Window(X, ...)

S3 method for class 'leverage.ppm'
Window(X, ...)

1718 WindowOnly

S3 method for class 'influence.ppm'
Window(X, ...)

Arguments

X A spatial object.

... Ignored.

from Character string. See Details.

Details

These are methods for the generic function Window which extract the spatial window in which the
object X is defined.

The argument from applies when X is a fitted point process model (object of class "ppm", "kppm"
or "dppm"). If from="data" (the default), Window extracts the window of the original point pattern
data to which the model was fitted. If from="covariates" then Window returns the window in
which the spatial covariates of the model were provided.

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

Window, Window.ppp, Window.psp.

owin.object

Examples

X <- quadratcount(cells, 4)
Window(X)

with.fv 1719

with.fv Evaluate an Expression in a Function Table

Description

Evaluate an R expression in a function value table (object of class "fv").

Usage

S3 method for class 'fv'
with(data, expr, ..., fun = NULL, enclos=NULL)

Arguments

data A function value table (object of class "fv") in which the expression will be
evaluated.

expr The expression to be evaluated. An R language expression, which may involve
the names of columns in data, the special abbreviations ., .x and .y, and global
constants or functions.

... Ignored.

fun Logical value, specifying whether the result should be interpreted as another
function (fun=TRUE) or simply returned as a numeric vector or array (fun=FALSE).
See Details.

enclos An environment in which to search for variables that are not found in data.
Defaults to parent.frame().

Details

This is a method for the generic command with for an object of class "fv" (function value table).

An object of class "fv" is a convenient way of storing and plotting several different estimates of
the same function. It is effectively a data frame with extra attributes. See fv.object for further
explanation.

This command makes it possible to perform computations that involve different estimates of the
same function. For example we use it to compute the arithmetic difference between two different
edge-corrected estimates of the K function of a point pattern.

The argument expr should be an R language expression. The expression may involve

• the name of any column in data, referring to one of the estimates of the function;

• the symbol . which stands for all the available estimates of the function;

• the symbol .y which stands for the recommended estimate of the function (in an "fv" object,
one of the estimates is always identified as the recommended estimate);

• the symbol .x which stands for the argument of the function;

• global constants or functions.

1720 with.fv

See the Examples. The expression should be capable of handling vectors and matrices.

The interpretation of the argument fun is as follows:

• If fun=FALSE, the result of evaluating the expression expr will be returned as a numeric vector,
matrix or data frame.

• If fun=TRUE, then the result of evaluating expr will be interpreted as containing the values of
a new function. The return value will be an object of class "fv". (This can only happen if the
result has the right dimensions.)

• The default is fun=TRUE if the result of evaluating expr has more than one column, and
fun=FALSE otherwise.

To perform calculations involving several objects of class "fv", use eval.fv.

Value

A function value table (object of class "fv") or a numeric vector or data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

with, fv.object, eval.fv, Kest

Examples

compute 4 estimates of the K function
X <- rpoispp(42)
K <- Kest(X)
plot(K)

derive 4 estimates of the L function L(r) = sqrt(K(r)/pi)
L <- with(K, sqrt(./pi))
plot(L)

compute 4 estimates of V(r) = L(r)/r
V <- with(L, ./.x)
plot(V)

compute the maximum absolute difference between
the isotropic and translation correction estimates of K(r)
D <- with(K, max(abs(iso - trans)))

with.hyperframe 1721

with.hyperframe Evaluate an Expression in Each Row of a Hyperframe

Description

An expression, involving the names of columns in a hyperframe, is evaluated separately for each
row of the hyperframe.

Usage

S3 method for class 'hyperframe'
with(data, expr, ...,

simplify = TRUE,
ee = NULL, enclos=NULL)

Arguments

data A hyperframe (object of class "hyperframe") containing data.

expr An R language expression to be evaluated.

... Ignored.

simplify Logical. If TRUE, the return value will be simplified to a vector whenever possi-
ble.

ee Alternative form of expr, as an object of class "expression".

enclos An environment in which to search for objects that are not found in the hyper-
frame. Defaults to parent.frame().

Details

This function evaluates the expression expr in each row of the hyperframe data. It is a method for
the generic function with.

The argument expr should be an R language expression in which each variable name is either
the name of a column in the hyperframe data, or the name of an object in the parent frame (the
environment in which with was called.) The argument ee can be used as an alternative to expr and
should be an expression object (of class "expression").

For each row of data, the expression will be evaluated so that variables which are column names
of data are interpreted as the entries for those columns in the current row.

For example, if a hyperframe h has columns called A and B, then with(h,A != B) inspects each row
of data in turn, tests whether the entries in columns A and B are equal, and returns the n logical
values.

Value

Normally a list of length n (where n is the number of rows) containing the results of evaluating the
expression for each row. If simplify=TRUE and each result is a single atomic value, then the result
is a vector or factor containing the same values.

1722 with.msr

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

hyperframe, plot.hyperframe

Examples

generate Poisson point patterns with intensities 10 to 100
H <- hyperframe(L=seq(10,100, by=10))
X <- with(H, rpoispp(L))

with.msr Evaluate Expression Involving Components of a Measure

Description

An expression involving the names of components of a measure is evaluated.

Usage

S3 method for class 'msr'
with(data, expr, ...)

Arguments

data A measure (object of class "msr").

expr An expression to be evaluated.

... Ignored.

Details

This is a method for the generic function with for the class "msr". The argument data should be
an object of class "msr" representing a measure (a function which assigns a value to each subset of
two-dimensional space).

This function can be used to extract the components of the measure, or to perform more complicated
manipulations of the components.

The argument expr should be an un-evaluated expression in the R language. The expression may
involve any of the variable names listed below with their corresponding meanings.

qlocations (point pattern) all quadrature locations
qweights (numeric) all quadrature weights
density (numeric) density value at each quadrature point
discrete (numeric) discrete mass at each quadrature point

with.ssf 1723

continuous (numeric) increment of continuous component
increment (numeric) increment of measure
is.atom (logical) whether quadrature point is an atom
atoms (point pattern) locations of atoms
atommass (numeric) massess of atoms

The measure is the sum of discrete and continuous components. The discrete component assigns
non-zero mass to several points called atoms. The continuous component has a density which
should be integrated over a region to determine the value for that region.

An object of class "msr" approximates the continuous component by a sum over quadrature points.
The quadrature points are chosen so that they include the atoms of the measure. In the list above,
we have increment = continuous + discrete, continuous = density * qweights, is.atom =
(discrete > 0), atoms = qlocations[is.atom] and atommass = discrete[is.atom].

Value

The result of evaluating the expression could be an object of any kind.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

msr, split.msr, measureContinuous, measurePositive

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")

with(rp, atoms)
with(rp, qlocations %mark% continuous)

with.ssf Evaluate Expression in a Spatially Sampled Function

Description

Given a spatially sampled function, evaluate an expression involving the function values.

Usage

apply.ssf(X, ...)

S3 method for class 'ssf'
with(data, ...)

1724 yardstick

Arguments

X, data A spatially sampled function (object of class "ssf").

... Arguments passed to with.default or apply specifying what to compute.

Details

An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a
finite set of points. It contains a data frame which provides the function values at the sample points.

In with.ssf, the expression specified by ... will be evaluated in this dataframe. In apply.ssf,
the dataframe will be subjected to the apply operator using the additional arguments

If the result of evaluation is a data frame with one row for each data point, or a numeric vector
with one entry for each data point, then the result will be an object of class "ssf" containing this
information. Otherwise, the result will be a numeric vector.

Value

An object of class "ssf" or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

ssf

Examples

a <- ssf(cells, data.frame(d=nndist(cells), i=1:npoints(cells)))
with(a, i/d)

yardstick Text, Arrow or Scale Bar in a Diagram

Description

Create spatial objects that represent a text string, an arrow, or a yardstick (scale bar).

Usage

textstring(x, y, txt = NULL, ...)

onearrow(x0, y0, x1, y1, txt = NULL, ...)

yardstick(x0, y0, x1, y1, txt = NULL, ...)

yardstick 1725

Arguments

x,y Coordinates where the text should be placed.
x0,y0,x1,y1 Spatial coordinates of both ends of the arrow or yardstick. Alternatively x0 can

be a point pattern (class "ppp") containing exactly two points, or a line segment
pattern (class "psp") consisting of exactly one line segment.

txt The text to be displayed beside the line segment. Either a character string or an
expression.

... Additional named arguments for plotting the object.

Details

These commands create objects that represent components of a diagram:

• textstring creates an object that represents a string of text at a particular spatial location.
• onearrow creates an object that represents an arrow between two locations.
• yardstick creates an object that represents a scale bar: a line segment indicating the scale of

the plot.

To display the relevant object, it should be plotted, using plot. See the help files for the plot
methods plot.textstring, plot.onearrow and plot.yardstick.

These objects are designed to be included as components in a layered object or a solist. This
makes it possible to build up a diagram consisting of many spatial objects, and to annotate the
diagram with arrows, text and so on, so that ultimately the entire diagram is plotted using plot.

Value

An object of class "diagramobj" which also belongs to one of the special classes "textstring",
"onearrow" or "yardstick". There are methods for plot, print, "[" and shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.textstring, plot.onearrow, plot.yardstick.

Examples

X <- rescale(swedishpines)
plot(X, pch=16, main="")
yd <- yardstick(0,0,1,1, "diagonal")
yy <- yardstick(X[1:2])
ys <- yardstick(as.psp(list(xmid=4, ymid=0.5, length=1, angle=0),

window=Window(X)),
txt="1 m")

ys
plot(ys, angle=90)
scalardilate(ys, 2)

1726 zapsmall.im

zapsmall.im Rounding of Pixel Values

Description

Modifies a pixel image, identifying those pixels that have values very close to zero, and replacing
the value by zero.

Usage

zapsmall.im(x, digits)

Arguments

x Pixel image (object of class "im").

digits Argument passed to zapsmall indicating the precision to be used.

Details

The function zapsmall is applied to each pixel value of the image x.

Value

Another pixel image.

Author(s)

Ege Rubak <rubak@math.aau.dk> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

zapsmall

Examples

data(cells)
D <- density(cells)
zapsmall.im(D)

zclustermodel 1727

zclustermodel Cluster Point Process Model

Description

Experimental code. Creates an object representing a cluster point process model. Typically used
for theoretical calculations about such a model.

Usage

zclustermodel(name = "Thomas", ..., mu, kappa, scale)

Arguments

name Name of the cluster process. One of "Thomas", "MatClust", "VarGamma" or
"Cauchy".

... Other arguments needed for the model.

mu Mean cluster size. A single number, or a pixel image.

kappa Parent intensity. A single number.

scale Cluster scale parameter of the model.

Details

Experimental.

Value

Object of the experimental class "zclustermodel".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

methods.zclustermodel

Examples

m <- zclustermodel("Thomas", kappa=10, mu=5, scale=0.1)

1728 [.ssf

[.ssf Subset of spatially sampled function

Description

Extract a subset of the data for a spatially sampled function.

Usage

S3 method for class 'ssf'
x[i, j, ..., drop]

Arguments

x Object of class "ssf".

i Subset index applying to the locations where the function is sampled.

j Subset index applying to the columns (variables) measured at each location.

..., drop Ignored.

Details

This is the subset operator for the class "ssf".

Value

Another object of class "ssf".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

ssf, with.ssf

Examples

f <- ssf(cells, data.frame(d=nndist(cells), i=1:42))
f
f[1:10,]
f[,1]

Index

∗Topic IO
scanpp, 1524

∗Topic algebra
dimhat, 391
matrixpower, 902
subspaceDistance, 1608

∗Topic arith
polynom, 1192
whist, 1713

∗Topic array
dimhat, 391
matrixpower, 902
sumouter, 1626

∗Topic attribute
bind.fv, 169
fasp.object, 525
fv.object, 558
im.object, 634
owin.object, 1032
ppm.object, 1208
ppp.object, 1227
pppmatching.object, 1234
psp.object, 1270
quad.object, 1283

∗Topic character
begins, 165

∗Topic classes
fv, 556

∗Topic classif
clusterset, 253
nnclean, 975

∗Topic color
beachcolours, 163
colourmap, 260
colouroutputs, 262
colourtools, 263
interp.colourmap, 662
plot.colourmap, 1104
tweak.colourmap, 1666

∗Topic datagen
box3, 181
boxx, 182
clickjoin, 234
default.dummy, 323
default.expand, 324
default.rmhcontrol, 326
disc, 397
discs, 401
ellipse, 448
gridcentres, 588
gridweights, 590
hextess, 608
im, 631
infline, 641
linequad, 825
lintess, 832
owin, 1029
pixelquad, 1096
pp3, 1201
ppp, 1224
pppmatching, 1232
ppx, 1237
psp, 1268
quadratresample, 1296
quadrats, 1297
quadscheme, 1298
quadscheme.logi, 1301
quasirandom, 1308
rags, 1310
ragsAreaInter, 1311
ragsMultiHard, 1312
rCauchy, 1318
rcell, 1321
rcelllpp, 1322
rcellnumber, 1324
rDGS, 1325
rDiggleGratton, 1326
rdpp, 1328

1729

1730 INDEX

regularpolygon, 1338
rGaussPoisson, 1373
rgbim, 1374
rHardcore, 1375
rjitter, 1386
rlabel, 1389
rLGCP, 1390
rlinegrid, 1392
rlpp, 1393
rMatClust, 1394
rMaternI, 1396
rMaternII, 1398
rmh, 1399
rmh.default, 1400
rmh.ppm, 1411
rmhcontrol, 1415
rmhexpand, 1419
rmhmodel, 1421
rmhmodel.default, 1422
rmhmodel.list, 1429
rmhmodel.ppm, 1431
rmhstart, 1433
rMosaicField, 1435
rMosaicSet, 1436
rmpoint, 1437
rmpoispp, 1441
rNeymanScott, 1444
rnoise, 1447
rPenttinen, 1463
rpoint, 1464
rpoisline, 1466
rpoislinetess, 1467
rpoislpp, 1468
rpoispp, 1470
rpoispp3, 1472
rpoisppOnLines, 1473
rpoisppx, 1475
rPoissonCluster, 1476
rQuasi, 1479
rshift, 1480
rshift.ppp, 1481
rshift.psp, 1484
rshift.splitppp, 1485
rSSI, 1487
rstrat, 1489
rStrauss, 1490
rStraussHard, 1492
rSwitzerlpp, 1493

rsyst, 1495
rtemper, 1496
rthin, 1497
rthinclumps, 1499
rThomas, 1500
runifdisc, 1505
runiflpp, 1507
runifpoint, 1508
runifpoint3, 1509
runifpointOnLines, 1510
runifpointx, 1511
rVarGamma, 1512
simulate.dppm, 1547
spokes, 1589
square, 1591
ssf, 1592
stratrand, 1595
tess, 1633

∗Topic data
sessionLibs, 1532

∗Topic distribution
dmixpois, 414
rknn, 1387

∗Topic documentation
beginner, 164
bugfixes, 184
foo, 546
latest.news, 773

∗Topic environment
requireversion, 1357

∗Topic fit model
improve.kppm, 637

∗Topic hplot
add.texture, 56
bits.envelope, 170
contour.im, 286
contour.imlist, 288
dg.envelope, 366
diagnose.ppm, 375
envelope, 455
envelope.envelope, 466
envelope.pp3, 472
invoke.symbolmap, 669
layered, 774
layerplotargs, 776
lurking, 864
lurking.mppm, 868
markmarkscatter, 880

INDEX 1731

methods.objsurf, 931
pairs.im, 1046
pairs.linim, 1047
panel.contour, 1052
persp.im, 1085
perspPoints, 1088
plot.anylist, 1097
plot.bermantest, 1100
plot.cdftest, 1102
plot.colourmap, 1104
plot.envelope, 1107
plot.fasp, 1108
plot.fv, 1110
plot.hyperframe, 1113
plot.im, 1115
plot.imlist, 1121
plot.laslett, 1125
plot.layered, 1126
plot.lintess, 1133
plot.listof, 1135
plot.lpp, 1138
plot.mppm, 1141
plot.msr, 1142
plot.onearrow, 1144
plot.owin, 1145
plot.plotppm, 1148
plot.pp3, 1150
plot.ppm, 1151
plot.ppp, 1154
plot.pppmatching, 1159
plot.profilepl, 1160
plot.psp, 1162
plot.quad, 1164
plot.quadratcount, 1166
plot.quadrattest, 1167
plot.rppm, 1168
plot.slrm, 1171
plot.solist, 1172
plot.splitppp, 1175
plot.ssf, 1176
plot.studpermutest, 1177
plot.symbolmap, 1179
plot.tess, 1181
plot.textstring, 1183
plot.texturemap, 1184
plot.yardstick, 1185
points.lpp, 1187
pool.envelope, 1195

pool.fasp, 1196
pool.fv, 1197
qqplot.ppm, 1278
rose, 1450
symbolmap, 1631
text.ppp, 1637
texturemap, 1638
textureplot, 1639
transmat, 1656
update.symbolmap, 1686
yardstick, 1724

∗Topic htest
berman.test, 166
bits.envelope, 170
bits.test, 172
cdf.test, 217
cdf.test.mppm, 221
clarkevans.test, 231
dclf.progress, 315
dclf.sigtrace, 317
dclf.test, 319
dg.envelope, 366
dg.progress, 368
dg.sigtrace, 370
dg.test, 372
envelope, 455
envelope.envelope, 466
envelope.pp3, 472
hopskel, 618
plot.quadrattest, 1167
plot.scan.test, 1169
plot.studpermutest, 1177
pool.envelope, 1195
pool.fasp, 1196
pool.fv, 1197
pool.quadrattest, 1198
quadrat.test, 1286
quadrat.test.mppm, 1290
quadrat.test.splitppp, 1292
scan.test, 1520
scanLRTS, 1522
segregation.test, 1528
studpermu.test, 1600

∗Topic iplot
clickbox, 232
clickdist, 233
clicklpp, 235
clickpoly, 236

1732 INDEX

clickppp, 237
identify.ppp, 624
identify.psp, 625
run.simplepanel, 1503
simplepanel, 1542
transect.im, 1655

∗Topic iteration
applynbd, 88
bits.envelope, 170
dg.envelope, 366
envelope, 455
envelope.envelope, 466
envelope.pp3, 472
envelopeArray, 475
pool.envelope, 1195
pool.fasp, 1196
pool.fv, 1197

∗Topic list
anylist, 85
as.solist, 152
Extract.anylist, 490
Extract.solist, 517
solapply, 1570
solist, 1571

∗Topic manip
[.ssf, 1728
addVertices, 60
anylist, 85
append.psp, 87
as.box3, 98
as.data.frame.envelope, 100
as.data.frame.hyperframe, 101
as.data.frame.ppp, 105
as.data.frame.psp, 106
as.function.im, 110
as.function.leverage.ppm, 111
as.function.owin, 112
as.function.tess, 113
as.fv, 114
as.hyperframe, 116
as.hyperframe.ppx, 117
as.im, 119
as.layered, 125
as.linfun, 127
as.linim, 128
as.linnet.linim, 130
as.linnet.psp, 131
as.mask, 134

as.mask.psp, 135
as.owin, 139
as.polygonal, 143
as.ppp, 145
as.psp, 148
as.rectangle, 150
as.solist, 152
as.tess, 153
blur, 174
by.im, 208
by.ppp, 209
cbind.hyperframe, 215
chop.linnet, 226
collapse.fv, 259
commonGrid, 266
compatible, 269
compatible.fasp, 270
compatible.fv, 271
compatible.im, 272
concatxy, 276
connected.linnet, 281
connected.lpp, 282
coords, 293
crossing.linnet, 305
crossing.psp, 306
data.lppm, 313
data.ppm, 314
delaunay, 327
delaunayDistance, 328
delaunayNetwork, 329
deletebranch, 330
dirichlet, 392
dirichletAreas, 393
dirichletVertices, 394
discretise, 399
divide.linnet, 412
domain, 416
edges, 440
edges2triangles, 441
edges2vees, 442
edit.hyperframe, 443
edit.ppp, 444
endpoints.psp, 454
eval.fasp, 480
eval.fv, 481
eval.im, 483
eval.linim, 485
expand.owin, 489

INDEX 1733

Extract.anylist, 490
Extract.fasp, 491
Extract.fv, 493
Extract.hyperframe, 494
Extract.im, 496
Extract.influence.ppm, 499
Extract.layered, 500
Extract.leverage.ppm, 502
Extract.linim, 503
Extract.linnet, 504
Extract.listof, 505
Extract.lpp, 506
Extract.msr, 508
Extract.owin, 509
Extract.ppp, 510
Extract.ppx, 513
Extract.psp, 515
Extract.quad, 516
Extract.solist, 517
Extract.splitppp, 519
Extract.tess, 520
Frame, 551
fvnames, 559
grow.boxx, 591
grow.rectangle, 592
harmonise, 596
harmonise.fv, 597
harmonise.im, 598
harmonise.msr, 599
harmonise.owin, 600
headtail, 603
hyperframe, 623
im, 631
im.apply, 633
insertVertices, 645
interp.im, 663
intersect.lintess, 664
is.convex, 675
is.dppm, 676
is.empty, 676
is.im, 678
is.linim, 679
is.lpp, 680
is.marked, 680
is.marked.ppm, 681
is.marked.ppp, 683
is.multitype, 684
is.multitype.ppm, 685

is.multitype.ppp, 686
is.owin, 688
is.ppm, 688
is.ppp, 689
is.rectangle, 690
joinVertices, 707
laslett, 771
levelset, 789
lineardirichlet, 798
lineartileindex, 824
lixellate, 833
lut, 869
marks, 881
marks.psp, 883
marks.tess, 884
mergeLevels, 910
nearest.raster.point, 971
nearestValue, 973
nestsplit, 974
nobjects, 1015
npoints, 1018
nsegments, 1019
nvertices, 1020
padimage, 1033
periodify, 1084
pixelcentres, 1089
pixellate, 1090
pixellate.owin, 1091
pixellate.ppp, 1092
pixellate.psp, 1094
pointsOnLines, 1188
polartess, 1190
PPversion, 1235
quad.ppm, 1284
quantess, 1303
raster.x, 1316
rat, 1317
relevel.im, 1339
repairNetwork, 1351
Replace.im, 1352
Replace.linim, 1354
rescue.rectangle, 1364
rgbim, 1374
rotate.infline, 1454
round.ppp, 1460
rthin, 1497
rthinclumps, 1499
selfcrossing.psp, 1530

1734 INDEX

selfcut.psp, 1531
shift, 1535
shift.im, 1536
shift.owin, 1537
shift.ppp, 1539
shift.psp, 1540
solapply, 1570
solist, 1571
solutionset, 1572
split.hyperframe, 1581
split.im, 1582
split.msr, 1583
split.ppp, 1585
split.ppx, 1588
stienen, 1594
subset.hyperframe, 1603
subset.ppp, 1604
subset.psp, 1607
superimpose, 1627
superimpose.lpp, 1630
thinNetwork, 1641
tile.areas, 1647
tile.lengths, 1648
tileindex, 1649
tilenames, 1650
tiles, 1651
tiles.empty, 1652
transect.im, 1655
transmat, 1656
treeprune, 1659
triangulate.owin, 1660
trim.rectangle, 1661
union.quad, 1667
unitname, 1671
unmark, 1673
unstack.msr, 1676
unstack.ppp, 1677
unstack.solist, 1678
whichhalfplane, 1712
will.expand, 1714
Window, 1715
WindowOnly, 1716
with.fv, 1719
with.hyperframe, 1721
with.msr, 1722
with.ssf, 1723

∗Topic math
affine, 61

affine.im, 62
affine.linnet, 63
affine.lpp, 65
affine.owin, 66
affine.ppp, 68
affine.psp, 69
affine.tess, 70
angles.psp, 76
area.owin, 91
areaGain, 92
areaLoss, 96
as.lpp, 132
bc.ppm, 158
bdist.pixels, 159
bdist.points, 161
bdist.tiles, 162
border, 176
boundingcircle, 180
branchlabelfun, 183
centroid.owin, 224
chop.tess, 227
clip.infline, 238
closepairs, 239
closepairs.pp3, 242
closetriples, 244
closing, 245
complement.owin, 275
connected, 279
connected.ppp, 284
connected.tess, 285
convolve.im, 292
covering, 296
crossdist, 297
crossdist.default, 298
crossdist.lpp, 299
crossdist.pp3, 300
crossdist.ppp, 302
crossdist.ppx, 303
crossdist.psp, 304
deltametric, 331
deriv.fv, 358
diameter, 380
diameter.box3, 381
diameter.boxx, 382
diameter.linnet, 383
diameter.owin, 384
dilated.areas, 388
dilation, 389

INDEX 1735

dirichletAreas, 393
dirichletVertices, 394
discpartarea, 398
distcdf, 402
distfun, 404
distfun.lpp, 406
distmap, 407
distmap.owin, 408
distmap.ppp, 410
distmap.psp, 411
dummify, 433
eroded.areas, 476
erosion, 477
erosionAny, 479
extrapolate.psp, 521
fardist, 524
flipxy, 544
funxy, 554
gauss.hermite, 562
has.close, 602
heatkernelapprox, 604
hotrod, 619
imcov, 636
incircle, 639
increment.fv, 640
inside.boxx, 646
inside.owin, 648
integral.im, 649
integral.linim, 651
integral.msr, 652
intersect.owin, 665
intersect.tess, 667
is.connected, 672
is.connected.ppp, 674
is.subset.owin, 693
LambertW, 770
lengths_psp, 784
linfun, 826
matchingdist, 890
maxnndist, 903
measureContinuous, 907
measureVariation, 908
methods.linfun, 921
methods.linim, 923
midpoints.psp, 943
MinkowskiSum, 946
nearestsegment, 972
nncross, 980

nncross.lpp, 983
nncross.pp3, 985
nncross.ppx, 988
nndist, 991
nndist.pp3, 995
nndist.ppx, 997
nndist.psp, 999
nnfromvertex, 1000
nnfun, 1001
nnfun.lpp, 1003
nnmap, 1004
nnwhich, 1009
nnwhich.pp3, 1013
nnwhich.ppx, 1014
opening, 1022
overlap.owin, 1028
pairdist, 1034
pairdist.default, 1035
pairdist.pp3, 1038
pairdist.ppp, 1039
pairdist.ppx, 1040
pairdist.psp, 1041
perimeter, 1083
pppdist, 1229
project2segment, 1263
project2set, 1264
quadratcount, 1293
range.fv, 1315
rectdistmap, 1334
reflect, 1337
rescale, 1358
rescale.im, 1359
rescale.owin, 1360
rescale.ppp, 1361
rescale.psp, 1363
rex, 1371
rotate, 1452
rotate.im, 1453
rotate.owin, 1456
rotate.ppp, 1457
rotate.psp, 1458
rotmean, 1459
rounding, 1461
scalardilate, 1517
setcov, 1533
sidelengths.owin, 1541
simplify.owin, 1546
stieltjes, 1593

1736 INDEX

stienen, 1594
test.crossing.psp, 1636
treebranchlabels, 1658
venn.tess, 1706
vertices, 1707
volume, 1709
weighted.median, 1710
where.max, 1711

∗Topic methods
adaptive.density, 55
anova.lppm, 77
anova.mppm, 79
anova.ppm, 81
anova.slrm, 84
anyNA.im, 86
as.data.frame.im, 102
as.data.frame.lintess, 103
as.data.frame.owin, 104
as.data.frame.tess, 107
as.function.fv, 108
as.matrix.im, 137
as.matrix.owin, 138
bw.CvL, 188
bw.diggle, 190
bw.frac, 192
bw.lppl, 193
bw.pcf, 195
bw.ppl, 197
bw.relrisk, 198
bw.relrisklpp, 200
bw.scott, 202
bw.smoothppp, 204
bw.stoyan, 206
bw.voronoi, 207
by.im, 208
by.ppp, 209
coef.mppm, 255
coef.ppm, 257
coef.slrm, 258
cut.im, 307
cut.lpp, 309
cut.ppp, 310
density.lpp, 333
density.ppp, 335
density.psp, 341
density.splitppp, 342
densityAdaptiveKernel, 344
densityEqualSplit, 346

densityfun.ppp, 350
densityHeat, 351
densityVoronoi, 355
densityVoronoi.lpp, 357
dkernel, 413
duplicated.ppp, 435
fitted.lppm, 537
fitted.ppm, 540
fitted.slrm, 542
fixef.mppm, 543
formula.fv, 547
formula.ppm, 549
hist.funxy, 615
hist.im, 616
idw, 627
kernel.factor, 727
kernel.moment, 728
kernel.squint, 730
logLik.slrm, 856
Math.im, 897
Math.imlist, 899
Math.linim, 901
mean.im, 905
mean.linim, 906
methods.box3, 911
methods.boxx, 912
methods.distfun, 913
methods.dppm, 915
methods.fii, 916
methods.funxy, 917
methods.kppm, 918
methods.layered, 920
methods.linnet, 924
methods.lpp, 927
methods.pp3, 932
methods.rho2hat, 934
methods.rhohat, 935
methods.slrm, 937
methods.ssf, 938
methods.unitname, 940
nndensity.ppp, 990
nnmark, 1006
Ops.msr, 1024
predict.slrm, 1250
quantile.density, 1305
quantile.im, 1307
ranef.mppm, 1314
relrisk.lpp, 1342

INDEX 1737

relrisk.ppp, 1347
residuals.dppm, 1365
residuals.kppm, 1366
residuals.ppm, 1368
scaletointerval, 1519
Smooth, 1559
Smooth.ppp, 1562
Smooth.ssf, 1565
Smoothfun.ppp, 1566
split.im, 1582
split.ppp, 1585
split.ppx, 1588
summary.anylist, 1611
summary.distfun, 1612
summary.dppm, 1613
summary.im, 1614
summary.kppm, 1616
summary.listof, 1617
summary.owin, 1618
summary.ppm, 1619
summary.ppp, 1621
summary.psp, 1622
summary.quad, 1623
summary.solist, 1624
summary.splitppp, 1625
unique.ppp, 1668
uniquemap.default, 1669
uniquemap.ppp, 1670
update.ppm, 1682
update.rmhcontrol, 1685
vcov.kppm, 1698
vcov.mppm, 1700
vcov.ppm, 1701
vcov.slrm, 1705
zapsmall.im, 1726

∗Topic models
addvar, 57
anova.lppm, 77
anova.mppm, 79
anova.ppm, 81
anova.slrm, 84
AreaInter, 94
as.interact, 124
as.ppm, 144
BadGey, 156
bc.ppm, 158
cauchy.estK, 211
cauchy.estpcf, 213

clusterfit, 248
coef.mppm, 255
coef.ppm, 257
coef.slrm, 258
compareFit, 267
Concom, 277
data.lppm, 313
data.ppm, 314
detpointprocfamilyfun, 360
dfbetas.ppm, 363
dffit.ppm, 364
diagnose.ppm, 375
DiggleGatesStibbard, 385
DiggleGratton, 387
dim.detpointprocfamily, 391
dppeigen, 422
dppkernel, 424
dppm, 424
dppparbounds, 429
dppspecden, 431
dppspecdenrange, 432
dummy.ppm, 434
eem, 445
effectfun, 446
emend, 451
emend.ppm, 452
exactMPLEstrauss, 488
Fiksel, 531
fitin.ppm, 535
fitted.lppm, 537
fitted.mppm, 538
fitted.ppm, 540
fitted.slrm, 542
fixef.mppm, 543
Gcom, 563
Geyer, 576
Gres, 587
Hardcore, 593
harmonic, 594
HierHard, 609
hierpair.family, 611
HierStrauss, 612
HierStraussHard, 613
Hybrid, 620
hybrid.family, 622
influence.ppm, 643
inforder.family, 644
intensity, 653

1738 INDEX

intensity.dppm, 654
intensity.ppm, 656
ippm, 670
is.dppm, 676
is.hybrid, 677
is.marked.ppm, 681
is.multitype.ppm, 685
is.ppm, 688
is.stationary, 691
Kcom, 711
Kmodel, 748
Kmodel.kppm, 750
Kmodel.ppm, 751
kppm, 759
Kres, 764
LennardJones, 786
leverage.ppm, 790
lgcp.estK, 792
lgcp.estpcf, 795
logLik.dppm, 848
logLik.kppm, 849
logLik.mppm, 851
logLik.ppm, 854
logLik.slrm, 856
lppm, 862
lurking, 864
lurking.mppm, 868
matclust.estK, 892
matclust.estpcf, 894
methods.lppm, 929
methods.zclustermodel, 942
mincontrast, 944
model.depends, 949
model.frame.ppm, 951
model.images, 952
model.matrix.mppm, 954
model.matrix.ppm, 955
model.matrix.slrm, 957
mppm, 958
msr, 962
MultiHard, 964
MultiStrauss, 967
MultiStraussHard, 969
objsurf, 1021
Ord, 1025
ord.family, 1026
OrdThresh, 1027
PairPiece, 1044

pairsat.family, 1048
Pairwise, 1049
pairwise.family, 1051
parameters, 1053
parres, 1054
Penttinen, 1081
plot.dppm, 1105
plot.influence.ppm, 1122
plot.kppm, 1124
plot.leverage.ppm, 1128
plot.lppm, 1140
plot.mppm, 1141
plot.plotppm, 1148
plot.ppm, 1151
plot.profilepl, 1160
plot.rppm, 1168
plot.slrm, 1171
Poisson, 1189
ppm, 1202
ppm.ppp, 1211
ppmInfluence, 1222
predict.dppm, 1238
predict.kppm, 1239
predict.lppm, 1240
predict.mppm, 1242
predict.ppm, 1244
predict.rppm, 1249
predict.slrm, 1250
print.ppm, 1254
profilepl, 1258
prune.rppm, 1265
pseudoR2, 1266
psib, 1267
psst, 1271
psstA, 1273
psstG, 1276
qqplot.ppm, 1278
quad.ppm, 1284
ranef.mppm, 1314
rdpp, 1328
reach, 1329
reach.dppm, 1331
reach.kppm, 1332
relrisk.ppm, 1345
repul.dppm, 1356
residuals.dppm, 1365
residuals.kppm, 1366
residuals.mppm, 1367

INDEX 1739

residuals.ppm, 1368
rho2hat, 1377
rhohat, 1378
rmh.ppm, 1411
rppm, 1478
SatPiece, 1515
Saturated, 1516
simulate.dppm, 1547
simulate.kppm, 1549
simulate.lppm, 1550
simulate.mppm, 1552
simulate.ppm, 1553
simulate.slrm, 1555
slrm, 1556
Smooth.msr, 1561
Softcore, 1567
Strauss, 1597
StraussHard, 1598
subfits, 1602
suffstat, 1609
summary.dppm, 1613
summary.kppm, 1616
summary.ppm, 1619
thomas.estK, 1642
thomas.estpcf, 1644
triplet.family, 1662
Triplets, 1663
update.detpointprocfamily, 1679
update.interact, 1680
update.kppm, 1681
update.ppm, 1682
update.rmhcontrol, 1685
valid, 1687
valid.detpointprocfamily, 1688
valid.ppm, 1689
varcount, 1692
vargamma.estK, 1693
vargamma.estpcf, 1696
vcov.kppm, 1698
vcov.mppm, 1700
vcov.ppm, 1701
vcov.slrm, 1705
zclustermodel, 1727

∗Topic multivariate
dimhat, 391
sdr, 1525
subspaceDistance, 1608

∗Topic nonparametric

allstats, 72
alltypes, 73
blur, 174
bw.abram, 186
CDF, 216
circdensity, 228
clarkevans, 229
clarkevans.test, 231
compileK, 273
densityfun.lpp, 348
densityQuick.lpp, 353
deriv.fv, 358
dkernel, 413
edge.Ripley, 436
edge.Trans, 438
Emark, 449
envelopeArray, 475
ewcdf, 486
F3est, 522
Fest, 527
Finhom, 533
FmultiInhom, 545
fryplot, 552
G3est, 561
Gcross, 567
Gdot, 570
Gest, 573
Gfox, 578
Ginhom, 580
Gmulti, 582
GmultiInhom, 585
Hest, 605
hopskel, 618
Iest, 629
increment.fv, 640
intensity.lpp, 655
intensity.ppp, 657
intensity.psp, 660
intensity.quadratcount, 661
Jcross, 694
Jdot, 696
Jest, 699
Jinhom, 702
Jmulti, 704
K3est, 708
kaplan.meier, 709
Kcross, 714
Kcross.inhom, 717

1740 INDEX

Kdot, 721
Kdot.inhom, 724
kernel.factor, 727
kernel.moment, 728
kernel.squint, 730
Kest, 731
Kest.fft, 735
Kinhom, 737
km.rs, 741
Kmark, 743
Kmeasure, 745
Kmulti, 752
Kmulti.inhom, 755
Kscaled, 766
Ksector, 769
Lcross, 778
Lcross.inhom, 779
Ldot, 781
Ldot.inhom, 783
Lest, 788
linearK, 801
linearKcross, 802
linearKcross.inhom, 804
linearKdot, 806
linearKdot.inhom, 807
linearKinhom, 809
linearmarkconnect, 811
linearmarkequal, 812
linearpcf, 813
linearpcfcross, 815
linearpcfcross.inhom, 816
linearpcfdot, 818
linearpcfdot.inhom, 820
linearpcfinhom, 822
Linhom, 827
localK, 835
localKcross, 837
localKcross.inhom, 839
localKdot, 841
localKinhom, 843
localpcf, 845
lohboot, 857
markconnect, 871
markcorr, 874
markcrosscorr, 878
markvario, 888
miplot, 948
nncorr, 977

nnorient, 1008
npfun, 1017
pairorient, 1042
pcf, 1057
pcf.fasp, 1059
pcf.fv, 1061
pcf.ppp, 1063
pcf3est, 1066
pcfcross, 1068
pcfcross.inhom, 1071
pcfdot, 1073
pcfdot.inhom, 1075
pcfinhom, 1077
pcfmulti, 1079
pool.anylist, 1194
pool.rat, 1200
PPversion, 1235
quantile.density, 1305
quantile.ewcdf, 1306
rectcontact, 1333
reduced.sample, 1335
rhohat, 1378
sdrPredict, 1527
sharpen, 1534
Smooth.fv, 1560
spatialcdf, 1575
Tstat, 1664
varblock, 1690

∗Topic optimize
bc.ppm, 158
rex, 1371

∗Topic package
spatstat-package, 28

∗Topic print
print.im, 1252
print.owin, 1253
print.ppm, 1254
print.ppp, 1255
print.psp, 1256
print.quad, 1257
progressreport, 1261

∗Topic programming
applynbd, 88
eval.fasp, 480
eval.fv, 481
eval.im, 483
eval.linim, 485
im.apply, 633

INDEX 1741

levelset, 789
markstat, 886
marktable, 887
solutionset, 1572
with.fv, 1719
with.hyperframe, 1721
with.ssf, 1723

∗Topic smooth
adaptive.density, 55
bw.CvL, 188
bw.diggle, 190
bw.frac, 192
bw.lppl, 193
bw.pcf, 195
bw.ppl, 197
bw.relrisk, 198
bw.relrisklpp, 200
bw.scott, 202
bw.smoothppp, 204
bw.stoyan, 206
bw.voronoi, 207
circdensity, 228
density.lpp, 333
density.ppp, 335
density.psp, 341
density.splitppp, 342
densityAdaptiveKernel, 344
densityEqualSplit, 346
densityfun.ppp, 350
densityHeat, 351
densityVoronoi, 355
densityVoronoi.lpp, 357
dkernel, 413
idw, 627
kernel.factor, 727
kernel.moment, 728
kernel.squint, 730
nndensity.ppp, 990
nnmark, 1006
relrisk.lpp, 1342
relrisk.ppp, 1347
Smooth, 1559
Smooth.ppp, 1562
Smooth.ssf, 1565
Smoothfun.ppp, 1566
unnormdensity, 1674

∗Topic spatial
[.ssf, 1728

adaptive.density, 55
add.texture, 56
addvar, 57
addVertices, 60
affine, 61
affine.im, 62
affine.linnet, 63
affine.lpp, 65
affine.owin, 66
affine.ppp, 68
affine.psp, 69
affine.tess, 70
allstats, 72
alltypes, 73
angles.psp, 76
anova.lppm, 77
anova.mppm, 79
anova.ppm, 81
anova.slrm, 84
anyNA.im, 86
append.psp, 87
applynbd, 88
area.owin, 91
areaGain, 92
AreaInter, 94
areaLoss, 96
as.box3, 98
as.data.frame.envelope, 100
as.data.frame.hyperframe, 101
as.data.frame.im, 102
as.data.frame.lintess, 103
as.data.frame.owin, 104
as.data.frame.ppp, 105
as.data.frame.psp, 106
as.data.frame.tess, 107
as.function.fv, 108
as.function.im, 110
as.function.leverage.ppm, 111
as.function.owin, 112
as.function.tess, 113
as.fv, 114
as.hyperframe, 116
as.hyperframe.ppx, 117
as.im, 119
as.interact, 124
as.layered, 125
as.linfun, 127
as.linim, 128

1742 INDEX

as.linnet.linim, 130
as.linnet.psp, 131
as.lpp, 132
as.mask, 134
as.mask.psp, 135
as.matrix.im, 137
as.matrix.owin, 138
as.owin, 139
as.polygonal, 143
as.ppm, 144
as.ppp, 145
as.psp, 148
as.rectangle, 150
as.solist, 152
as.tess, 153
auc, 154
BadGey, 156
bc.ppm, 158
bdist.pixels, 159
bdist.points, 161
bdist.tiles, 162
beachcolours, 163
berman.test, 166
bind.fv, 169
bits.envelope, 170
bits.test, 172
blur, 174
border, 176
bounding.box.xy, 177
boundingbox, 178
boundingcircle, 180
box3, 181
boxx, 182
branchlabelfun, 183
bw.abram, 186
bw.CvL, 188
bw.diggle, 190
bw.frac, 192
bw.lppl, 193
bw.pcf, 195
bw.ppl, 197
bw.relrisk, 198
bw.relrisklpp, 200
bw.scott, 202
bw.smoothppp, 204
bw.stoyan, 206
bw.voronoi, 207
by.im, 208

by.ppp, 209
cauchy.estK, 211
cauchy.estpcf, 213
cbind.hyperframe, 215
cdf.test, 217
cdf.test.mppm, 221
centroid.owin, 224
chop.linnet, 226
chop.tess, 227
clarkevans, 229
clarkevans.test, 231
clickbox, 232
clickdist, 233
clickjoin, 234
clicklpp, 235
clickpoly, 236
clickppp, 237
clip.infline, 238
closepairs, 239
closepairs.pp3, 242
closetriples, 244
closing, 245
clusterfield, 246
clusterfit, 248
clusterkernel, 250
clusterradius, 251
clusterset, 253
coef.mppm, 255
coef.ppm, 257
coef.slrm, 258
collapse.fv, 259
colourmap, 260
colouroutputs, 262
commonGrid, 266
compareFit, 267
compatible, 269
compatible.fasp, 270
compatible.fv, 271
compatible.im, 272
compileK, 273
complement.owin, 275
concatxy, 276
Concom, 277
connected, 279
connected.linnet, 281
connected.lpp, 282
connected.ppp, 284
connected.tess, 285

INDEX 1743

contour.im, 286
contour.imlist, 288
convexhull, 289
convexhull.xy, 290
convexify, 291
convolve.im, 292
coords, 293
corners, 295
covering, 296
crossdist, 297
crossdist.default, 298
crossdist.lpp, 299
crossdist.pp3, 300
crossdist.ppp, 302
crossdist.ppx, 303
crossdist.psp, 304
crossing.linnet, 305
crossing.psp, 306
cut.im, 307
cut.lpp, 309
cut.ppp, 310
data.lppm, 313
data.ppm, 314
dclf.progress, 315
dclf.sigtrace, 317
dclf.test, 319
default.dummy, 323
default.expand, 324
default.rmhcontrol, 326
delaunay, 327
delaunayDistance, 328
delaunayNetwork, 329
deletebranch, 330
deltametric, 331
density.lpp, 333
density.ppp, 335
density.psp, 341
density.splitppp, 342
densityAdaptiveKernel, 344
densityEqualSplit, 346
densityfun.lpp, 348
densityfun.ppp, 350
densityHeat, 351
densityQuick.lpp, 353
densityVoronoi, 355
densityVoronoi.lpp, 357
deriv.fv, 358
detpointprocfamilyfun, 360

dfbetas.ppm, 363
dffit.ppm, 364
dg.envelope, 366
dg.progress, 368
dg.sigtrace, 370
dg.test, 372
diagnose.ppm, 375
diameter, 380
diameter.box3, 381
diameter.boxx, 382
diameter.linnet, 383
diameter.owin, 384
DiggleGatesStibbard, 385
DiggleGratton, 387
dilated.areas, 388
dilation, 389
dim.detpointprocfamily, 391
dirichlet, 392
dirichletAreas, 393
dirichletVertices, 394
dirichletWeights, 395
disc, 397
discpartarea, 398
discretise, 399
discs, 401
distcdf, 402
distfun, 404
distfun.lpp, 406
distmap, 407
distmap.owin, 408
distmap.ppp, 410
distmap.psp, 411
divide.linnet, 412
domain, 416
dppeigen, 422
dppkernel, 424
dppm, 424
dppparbounds, 429
dppspecden, 431
dppspecdenrange, 432
dummy.ppm, 434
duplicated.ppp, 435
edge.Ripley, 436
edge.Trans, 438
edges, 440
edges2triangles, 441
edges2vees, 442
edit.hyperframe, 443

1744 INDEX

edit.ppp, 444
eem, 445
effectfun, 446
ellipse, 448
Emark, 449
emend, 451
emend.ppm, 452
endpoints.psp, 454
envelope, 455
envelope.envelope, 466
envelope.lpp, 468
envelope.pp3, 472
envelopeArray, 475
eroded.areas, 476
erosion, 477
erosionAny, 479
eval.fasp, 480
eval.fv, 481
eval.im, 483
eval.linim, 485
exactMPLEstrauss, 488
expand.owin, 489
Extract.anylist, 490
Extract.fasp, 491
Extract.fv, 493
Extract.hyperframe, 494
Extract.im, 496
Extract.influence.ppm, 499
Extract.layered, 500
Extract.leverage.ppm, 502
Extract.linim, 503
Extract.linnet, 504
Extract.listof, 505
Extract.lpp, 506
Extract.msr, 508
Extract.owin, 509
Extract.ppp, 510
Extract.ppx, 513
Extract.psp, 515
Extract.quad, 516
Extract.solist, 517
Extract.splitppp, 519
Extract.tess, 520
extrapolate.psp, 521
F3est, 522
fardist, 524
fasp.object, 525
Fest, 527

Fiksel, 531
Finhom, 533
fitin.ppm, 535
fitted.lppm, 537
fitted.mppm, 538
fitted.ppm, 540
fitted.slrm, 542
fixef.mppm, 543
flipxy, 544
FmultiInhom, 545
formula.fv, 547
formula.ppm, 549
Frame, 551
fryplot, 552
funxy, 554
fv, 556
fv.object, 558
fvnames, 559
G3est, 561
Gcom, 563
Gcross, 567
Gdot, 570
Gest, 573
Geyer, 576
Gfox, 578
Ginhom, 580
Gmulti, 582
GmultiInhom, 585
Gres, 587
gridcentres, 588
gridweights, 590
grow.boxx, 591
grow.rectangle, 592
Hardcore, 593
harmonic, 594
harmonise, 596
harmonise.fv, 597
harmonise.im, 598
harmonise.msr, 599
harmonise.owin, 600
has.close, 602
headtail, 603
Hest, 605
hextess, 608
HierHard, 609
hierpair.family, 611
HierStrauss, 612
HierStraussHard, 613

INDEX 1745

hist.funxy, 615
hist.im, 616
hopskel, 618
Hybrid, 620
hybrid.family, 622
hyperframe, 623
identify.ppp, 624
identify.psp, 625
idw, 627
Iest, 629
im, 631
im.apply, 633
im.object, 634
imcov, 636
improve.kppm, 637
incircle, 639
increment.fv, 640
infline, 641
influence.ppm, 643
inforder.family, 644
insertVertices, 645
inside.boxx, 646
inside.owin, 648
integral.im, 649
integral.linim, 651
integral.msr, 652
intensity, 653
intensity.dppm, 654
intensity.lpp, 655
intensity.ppm, 656
intensity.ppp, 657
intensity.psp, 660
intensity.quadratcount, 661
interp.colourmap, 662
interp.im, 663
intersect.lintess, 664
intersect.owin, 665
intersect.tess, 667
invoke.symbolmap, 669
ippm, 670
is.connected, 672
is.connected.ppp, 674
is.convex, 675
is.dppm, 676
is.empty, 676
is.hybrid, 677
is.im, 678
is.linim, 679

is.lpp, 680
is.marked, 680
is.marked.ppm, 681
is.marked.ppp, 683
is.multitype, 684
is.multitype.ppm, 685
is.multitype.ppp, 686
is.owin, 688
is.ppm, 688
is.ppp, 689
is.rectangle, 690
is.stationary, 691
is.subset.owin, 693
Jcross, 694
Jdot, 696
Jest, 699
Jinhom, 702
Jmulti, 704
joinVertices, 707
K3est, 708
kaplan.meier, 709
Kcom, 711
Kcross, 714
Kcross.inhom, 717
Kdot, 721
Kdot.inhom, 724
Kest, 731
Kest.fft, 735
Kinhom, 737
km.rs, 741
Kmark, 743
Kmeasure, 745
Kmodel, 748
Kmodel.kppm, 750
Kmodel.ppm, 751
Kmulti, 752
Kmulti.inhom, 755
kppm, 759
Kres, 764
Kscaled, 766
Ksector, 769
laslett, 771
layered, 774
layerplotargs, 776
Lcross, 778
Lcross.inhom, 779
Ldot, 781
Ldot.inhom, 783

1746 INDEX

lengths_psp, 784
LennardJones, 786
Lest, 788
levelset, 789
leverage.ppm, 790
lgcp.estK, 792
lgcp.estpcf, 795
lineardirichlet, 798
lineardisc, 799
linearK, 801
linearKcross, 802
linearKcross.inhom, 804
linearKdot, 806
linearKdot.inhom, 807
linearKinhom, 809
linearmarkconnect, 811
linearmarkequal, 812
linearpcf, 813
linearpcfcross, 815
linearpcfcross.inhom, 816
linearpcfdot, 818
linearpcfdot.inhom, 820
linearpcfinhom, 822
lineartileindex, 824
linequad, 825
linfun, 826
Linhom, 827
linim, 829
linnet, 830
lintess, 832
lixellate, 833
localK, 835
localKcross, 837
localKcross.inhom, 839
localKdot, 841
localKinhom, 843
localpcf, 845
logLik.dppm, 848
logLik.kppm, 849
logLik.mppm, 851
logLik.ppm, 854
logLik.slrm, 856
lohboot, 857
lpp, 860
lppm, 862
lurking, 864
lurking.mppm, 868
lut, 869

markconnect, 871
markcorr, 874
markcrosscorr, 878
markmarkscatter, 880
marks, 881
marks.psp, 883
marks.tess, 884
markstat, 886
marktable, 887
markvario, 888
matchingdist, 890
matclust.estK, 892
matclust.estpcf, 894
Math.im, 897
Math.imlist, 899
Math.linim, 901
maxnndist, 903
mean.im, 905
mean.linim, 906
measureContinuous, 907
measureVariation, 908
mergeLevels, 910
methods.box3, 911
methods.boxx, 912
methods.distfun, 913
methods.dppm, 915
methods.fii, 916
methods.funxy, 917
methods.kppm, 918
methods.layered, 920
methods.linfun, 921
methods.linim, 923
methods.linnet, 924
methods.lpp, 927
methods.lppm, 929
methods.objsurf, 931
methods.pp3, 932
methods.ppx, 933
methods.rho2hat, 934
methods.rhohat, 935
methods.slrm, 937
methods.ssf, 938
methods.unitname, 940
methods.zclustermodel, 942
midpoints.psp, 943
mincontrast, 944
MinkowskiSum, 946
miplot, 948

INDEX 1747

model.depends, 949
model.frame.ppm, 951
model.images, 952
model.matrix.mppm, 954
model.matrix.ppm, 955
model.matrix.slrm, 957
mppm, 958
msr, 962
MultiHard, 964
multiplicity.ppp, 966
MultiStrauss, 967
MultiStraussHard, 969
nearest.raster.point, 971
nearestsegment, 972
nearestValue, 973
nestsplit, 974
nnclean, 975
nncorr, 977
nncross, 980
nncross.lpp, 983
nncross.pp3, 985
nncross.ppx, 988
nndensity.ppp, 990
nndist, 991
nndist.lpp, 994
nndist.pp3, 995
nndist.ppx, 997
nndist.psp, 999
nnfromvertex, 1000
nnfun, 1001
nnfun.lpp, 1003
nnmap, 1004
nnmark, 1006
nnorient, 1008
nnwhich, 1009
nnwhich.lpp, 1012
nnwhich.pp3, 1013
nnwhich.ppx, 1014
nobjects, 1015
npfun, 1017
npoints, 1018
nsegments, 1019
nvertices, 1020
objsurf, 1021
opening, 1022
Ops.msr, 1024
Ord, 1025
ord.family, 1026

OrdThresh, 1027
overlap.owin, 1028
owin, 1029
owin.object, 1032
padimage, 1033
pairdist, 1034
pairdist.default, 1035
pairdist.lpp, 1037
pairdist.pp3, 1038
pairdist.ppp, 1039
pairdist.ppx, 1040
pairdist.psp, 1041
pairorient, 1042
PairPiece, 1044
pairs.im, 1046
pairs.linim, 1047
pairsat.family, 1048
Pairwise, 1049
pairwise.family, 1051
panel.contour, 1052
parameters, 1053
parres, 1054
pcf, 1057
pcf.fasp, 1059
pcf.fv, 1061
pcf.ppp, 1063
pcf3est, 1066
pcfcross, 1068
pcfcross.inhom, 1071
pcfdot, 1073
pcfdot.inhom, 1075
pcfinhom, 1077
pcfmulti, 1079
Penttinen, 1081
perimeter, 1083
periodify, 1084
persp.im, 1085
perspPoints, 1088
pixelcentres, 1089
pixellate, 1090
pixellate.owin, 1091
pixellate.ppp, 1092
pixellate.psp, 1094
pixelquad, 1096
plot.anylist, 1097
plot.bermantest, 1100
plot.cdftest, 1102
plot.colourmap, 1104

1748 INDEX

plot.dppm, 1105
plot.envelope, 1107
plot.fasp, 1108
plot.fv, 1110
plot.hyperframe, 1113
plot.im, 1115
plot.imlist, 1121
plot.influence.ppm, 1122
plot.kppm, 1124
plot.laslett, 1125
plot.layered, 1126
plot.leverage.ppm, 1128
plot.linim, 1130
plot.linnet, 1132
plot.lintess, 1133
plot.listof, 1135
plot.lpp, 1138
plot.lppm, 1140
plot.mppm, 1141
plot.msr, 1142
plot.onearrow, 1144
plot.owin, 1145
plot.plotppm, 1148
plot.pp3, 1150
plot.ppm, 1151
plot.ppp, 1154
plot.pppmatching, 1159
plot.profilepl, 1160
plot.psp, 1162
plot.quad, 1164
plot.quadratcount, 1166
plot.quadrattest, 1167
plot.rppm, 1168
plot.scan.test, 1169
plot.slrm, 1171
plot.solist, 1172
plot.splitppp, 1175
plot.ssf, 1176
plot.symbolmap, 1179
plot.tess, 1181
plot.textstring, 1183
plot.texturemap, 1184
plot.yardstick, 1185
points.lpp, 1187
pointsOnLines, 1188
Poisson, 1189
polartess, 1190
pool, 1193

pool.anylist, 1194
pool.envelope, 1195
pool.fasp, 1196
pool.fv, 1197
pool.quadrattest, 1198
pool.rat, 1200
pp3, 1201
ppm, 1202
ppm.object, 1208
ppm.ppp, 1211
ppmInfluence, 1222
ppp, 1224
ppp.object, 1227
pppdist, 1229
pppmatching, 1232
pppmatching.object, 1234
PPversion, 1235
ppx, 1237
predict.dppm, 1238
predict.kppm, 1239
predict.lppm, 1240
predict.mppm, 1242
predict.ppm, 1244
predict.rppm, 1249
predict.slrm, 1250
print.im, 1252
print.owin, 1253
print.ppm, 1254
print.ppp, 1255
print.psp, 1256
print.quad, 1257
profilepl, 1258
project2segment, 1263
project2set, 1264
prune.rppm, 1265
pseudoR2, 1266
psib, 1267
psp, 1268
psp.object, 1270
psst, 1271
psstA, 1273
psstG, 1276
qqplot.ppm, 1278
quad.object, 1283
quad.ppm, 1284
quadrat.test, 1286
quadrat.test.mppm, 1290
quadrat.test.splitppp, 1292

INDEX 1749

quadratcount, 1293
quadratresample, 1296
quadscheme, 1298
quadscheme.logi, 1301
quantess, 1303
quantile.ewcdf, 1306
quantile.im, 1307
quasirandom, 1308
rags, 1310
ragsAreaInter, 1311
ragsMultiHard, 1312
ranef.mppm, 1314
range.fv, 1315
raster.x, 1316
rat, 1317
rCauchy, 1318
rcell, 1321
rcelllpp, 1322
rDGS, 1325
rDiggleGratton, 1326
rdpp, 1328
reach, 1329
reach.dppm, 1331
reach.kppm, 1332
rectcontact, 1333
rectdistmap, 1334
reduced.sample, 1335
reflect, 1337
regularpolygon, 1338
relevel.im, 1339
relrisk, 1341
relrisk.lpp, 1342
relrisk.ppm, 1345
relrisk.ppp, 1347
repairNetwork, 1351
Replace.im, 1352
Replace.linim, 1354
repul.dppm, 1356
rescale, 1358
rescale.im, 1359
rescale.owin, 1360
rescale.ppp, 1361
rescale.psp, 1363
rescue.rectangle, 1364
residuals.dppm, 1365
residuals.kppm, 1366
residuals.mppm, 1367
residuals.ppm, 1368

rGaussPoisson, 1373
rgbim, 1374
rHardcore, 1375
rho2hat, 1377
rhohat, 1378
ripras, 1384
rjitter, 1386
rknn, 1387
rlabel, 1389
rLGCP, 1390
rlinegrid, 1392
rlpp, 1393
rMatClust, 1394
rMaternI, 1396
rMaternII, 1398
rmh, 1399
rmh.default, 1400
rmh.ppm, 1411
rmhcontrol, 1415
rmhexpand, 1419
rmhmodel, 1421
rmhmodel.default, 1422
rmhmodel.list, 1429
rmhmodel.ppm, 1431
rmhstart, 1433
rMosaicField, 1435
rMosaicSet, 1436
rmpoint, 1437
rmpoispp, 1441
rNeymanScott, 1444
rnoise, 1447
roc, 1448
rose, 1450
rotate, 1452
rotate.im, 1453
rotate.infline, 1454
rotate.owin, 1456
rotate.ppp, 1457
rotate.psp, 1458
rotmean, 1459
round.ppp, 1460
rounding, 1461
rPenttinen, 1463
rpoint, 1464
rpoisline, 1466
rpoislinetess, 1467
rpoislpp, 1468
rpoispp, 1470

1750 INDEX

rpoispp3, 1472
rpoisppOnLines, 1473
rpoisppx, 1475
rPoissonCluster, 1476
rppm, 1478
rQuasi, 1479
rshift, 1480
rshift.ppp, 1481
rshift.psp, 1484
rshift.splitppp, 1485
rSSI, 1487
rstrat, 1489
rStrauss, 1490
rStraussHard, 1492
rSwitzerlpp, 1493
rsyst, 1495
rtemper, 1496
rthin, 1497
rthinclumps, 1499
rThomas, 1500
runifdisc, 1505
runiflpp, 1507
runifpoint, 1508
runifpoint3, 1509
runifpointOnLines, 1510
runifpointx, 1511
rVarGamma, 1512
SatPiece, 1515
Saturated, 1516
scalardilate, 1517
scaletointerval, 1519
scan.test, 1520
scanLRTS, 1522
scanpp, 1524
sdr, 1525
sdrPredict, 1527
segregation.test, 1528
selfcrossing.psp, 1530
selfcut.psp, 1531
setcov, 1533
sharpen, 1534
shift, 1535
shift.im, 1536
shift.owin, 1537
shift.ppp, 1539
shift.psp, 1540
sidelengths.owin, 1541
simplify.owin, 1546

simulate.dppm, 1547
simulate.kppm, 1549
simulate.lppm, 1550
simulate.mppm, 1552
simulate.ppm, 1553
simulate.slrm, 1555
slrm, 1556
Smooth, 1559
Smooth.fv, 1560
Smooth.msr, 1561
Smooth.ppp, 1562
Smooth.ssf, 1565
Smoothfun.ppp, 1566
Softcore, 1567
solapply, 1570
solist, 1571
solutionset, 1572
spatialcdf, 1575
spatstat-package, 28
spatstat.options, 1576
split.hyperframe, 1581
split.im, 1582
split.msr, 1583
split.ppp, 1585
split.ppx, 1588
spokes, 1589
square, 1591
ssf, 1592
stieltjes, 1593
stienen, 1594
stratrand, 1595
Strauss, 1597
StraussHard, 1598
studpermu.test, 1600
subfits, 1602
subset.hyperframe, 1603
subset.ppp, 1604
subset.psp, 1607
suffstat, 1609
summary.anylist, 1611
summary.distfun, 1612
summary.dppm, 1613
summary.im, 1614
summary.kppm, 1616
summary.listof, 1617
summary.owin, 1618
summary.ppm, 1619
summary.ppp, 1621

INDEX 1751

summary.psp, 1622
summary.quad, 1623
summary.solist, 1624
summary.splitppp, 1625
superimpose, 1627
superimpose.lpp, 1630
symbolmap, 1631
tess, 1633
test.crossing.psp, 1636
text.ppp, 1637
texturemap, 1638
textureplot, 1639
thinNetwork, 1641
thomas.estK, 1642
thomas.estpcf, 1644
tile.areas, 1647
tile.lengths, 1648
tileindex, 1649
tilenames, 1650
tiles, 1651
tiles.empty, 1652
transect.im, 1655
transmat, 1656
treebranchlabels, 1658
treeprune, 1659
triangulate.owin, 1660
trim.rectangle, 1661
triplet.family, 1662
Triplets, 1663
Tstat, 1664
tweak.colourmap, 1666
union.quad, 1667
unique.ppp, 1668
uniquemap.default, 1669
uniquemap.ppp, 1670
unitname, 1671
unmark, 1673
unstack.msr, 1676
unstack.ppp, 1677
unstack.solist, 1678
update.detpointprocfamily, 1679
update.interact, 1680
update.kppm, 1681
update.ppm, 1682
update.rmhcontrol, 1685
update.symbolmap, 1686
valid, 1687
valid.detpointprocfamily, 1688

valid.ppm, 1689
varblock, 1690
varcount, 1692
vargamma.estK, 1693
vargamma.estpcf, 1696
vcov.kppm, 1698
vcov.mppm, 1700
vcov.ppm, 1701
vcov.slrm, 1705
venn.tess, 1706
vertices, 1707
volume, 1709
where.max, 1711
whichhalfplane, 1712
will.expand, 1714
Window, 1715
WindowOnly, 1716
with.fv, 1719
with.hyperframe, 1721
with.msr, 1722
with.ssf, 1723
yardstick, 1724
zapsmall.im, 1726
zclustermodel, 1727

∗Topic univar
CDF, 216
ewcdf, 486
mean.im, 905
mean.linim, 906
quantile.density, 1305
quantile.im, 1307
scaletointerval, 1519
zapsmall.im, 1726

∗Topic utilities
bounding.box.xy, 177
boundingbox, 178
convexhull, 289
convexhull.xy, 290
convexify, 291
corners, 295
dirichletWeights, 395
dummy.ppm, 434
layout.boxes, 777
multiplicity.ppp, 966
quadrats, 1297
reload.or.compute, 1340
ripras, 1384
run.simplepanel, 1503

1752 INDEX

simplepanel, 1542
timed, 1653
timeTaken, 1654

.Random.seed, 1403, 1405
[, 493, 495, 500–502, 507, 511, 514, 515, 517,

1353
[.anylist (Extract.anylist), 490
[.fasp, 526
[.fasp (Extract.fasp), 491
[.fv (Extract.fv), 493
[.hyperframe, 624, 1582, 1603, 1604
[.hyperframe (Extract.hyperframe), 494
[.im, 36, 110, 308, 502, 503, 632, 635, 636,

650, 1353
[.im (Extract.im), 496
[.influence.ppm

(Extract.influence.ppm), 499
[.layered, 40, 775, 776, 1127
[.layered (Extract.layered), 500
[.leverage.ppm, 503
[.leverage.ppm (Extract.leverage.ppm),

502
[.linim (Extract.linim), 503
[.linnet (Extract.linnet), 504
[.lpp, 310, 1606
[.lpp (Extract.lpp), 506
[.msr, 963, 964, 1584
[.msr (Extract.msr), 508
[.owin (Extract.owin), 509
[.pp3, 1606
[.ppp, 33, 311, 499, 516, 517, 545, 585, 1228,

1606
[.ppp (Extract.ppp), 510
[.ppx, 1606
[.ppx (Extract.ppx), 513
[.psp, 37, 1270, 1271, 1608
[.psp (Extract.psp), 515
[.quad (Extract.quad), 516
[.solist (Extract.solist), 517
[.splitppp (Extract.splitppp), 519
[.ssf, 1592, 1728
[.tess, 38, 1635
[.tess (Extract.tess), 520
[<-.im, 36
[<-.tess, 38
[<-.anylist (Extract.anylist), 490
[<-.fv (Extract.fv), 493
[<-.hyperframe (Extract.hyperframe), 494

[<-.im (Replace.im), 1352
[<-.layered (Extract.layered), 500
[<-.linim (Replace.linim), 1354
[<-.listof (Extract.listof), 505
[<-.ppp (Extract.ppp), 510
[<-.solist (Extract.solist), 517
[<-.splitppp (Extract.splitppp), 519
[<-.tess (Extract.tess), 520
[[<-.layered (Extract.layered), 500
$, 495
$.hyperframe (Extract.hyperframe), 494
$<-.fv (Extract.fv), 493
$<-.hyperframe (Extract.hyperframe), 494
%mark% (marks), 881

abline, 641, 642
ad.test, 218–220, 223
adaptive.density, 55, 338, 340, 346, 357
add.texture, 56, 1146, 1184, 1185,

1638–1640
add1, 1209
addvar, 52, 57, 1057
addVertices, 39, 60, 646
affine, 33, 34, 61, 63, 64, 66–71, 490, 544,

545, 914, 921, 923, 1032, 1337,
1358, 1359, 1361–1364, 1506, 1518,
1536, 1538, 1540, 1541

affine.distfun (methods.distfun), 913
affine.im, 36, 62, 62, 67, 68, 70, 71, 1454
affine.layered (methods.layered), 920
affine.linim (methods.linim), 923
affine.linnet, 63
affine.lpp, 65
affine.owin, 62, 63, 66, 68–71, 1033
affine.ppp, 62, 63, 67, 68, 70
affine.psp, 37, 62, 63, 67, 68, 69
affine.tess, 38, 70
aggregate, 993
AIC, 45, 47, 852
AIC.dppm (logLik.dppm), 848
AIC.kppm (logLik.kppm), 849
AIC.mppm (logLik.mppm), 851
AIC.ppm, 1258
AIC.ppm (logLik.ppm), 854
allstats, 41, 72
alltypes, 43, 73, 270, 476, 480, 525, 526,

873, 1058, 1060, 1062, 1109, 1196,
1197

amacrine, 32, 681–685, 687, 1228

INDEX 1753

anemones, 32
angles.psp, 37, 76, 455, 522, 785, 943, 1269,

1270
anova, 78, 80, 82, 84
anova.glm, 78, 80, 82, 84
anova.lppm, 49, 77
anova.mppm, 79
anova.ppm, 47, 52, 81, 856, 1209, 1289, 1293
anova.slrm, 50, 84, 1558
ants, 32
anyDuplicated, 435
anyDuplicated.ppp (duplicated.ppp), 435
anyDuplicated.ppx (duplicated.ppp), 435
anylapply, 85
anylapply (solapply), 1570
anylist, 85, 491, 1194, 1570, 1572, 1611
anyNA, 86
anyNA.im, 86, 906, 1615
append.psp, 87
apply, 88–90, 484, 886, 887, 1724
apply.ssf (with.ssf), 1723
applynbd, 43, 88, 241, 886–888
approxfun, 597
area (area.owin), 91
area.owin, 35, 91, 385, 1028, 1032, 1033,

1083, 1542, 1709
areaGain, 92, 97, 1578
AreaInter, 47, 93, 94, 97, 644, 645, 1052,

1082, 1203, 1206, 1214, 1220, 1259,
1260, 1274, 1311, 1312, 1405, 1412,
1413, 1427, 1433

areaLoss, 93, 96, 1578
array, 137
as.anylist, 152
as.anylist (anylist), 85
as.array.im (as.matrix.im), 137
as.box3, 38, 98, 182, 382, 1202
as.boxx, 99, 647, 1547
as.data.frame, 100, 101, 105, 106, 117, 118,

922, 923
as.data.frame.default, 102–104, 107
as.data.frame.envelope, 100
as.data.frame.hyperframe, 40, 101, 624
as.data.frame.im, 36, 102, 105, 107, 108
as.data.frame.linfun (methods.linfun),

921
as.data.frame.linim (methods.linim), 923
as.data.frame.lintess, 103

as.data.frame.owin, 34, 104, 107, 108
as.data.frame.ppp, 105, 604
as.data.frame.ppx, 604
as.data.frame.ppx (as.hyperframe.ppx),

117
as.data.frame.psp, 37, 106, 604
as.data.frame.tess, 107
as.function, 109, 922, 939
as.function.fv, 108, 558, 559
as.function.im, 36, 110
as.function.leverage.ppm, 111, 792
as.function.linfun (methods.linfun), 921
as.function.owin, 112
as.function.rhohat (as.function.fv), 108
as.function.ssf (methods.ssf), 938
as.function.tess, 113, 1204, 1635, 1649
as.fv, 114
as.fv.kppm, 763
as.hyperframe, 38–40, 116, 118, 215, 216,

624
as.hyperframe.ppx, 116, 117, 117, 624
as.im, 36, 119, 129, 138, 139, 186, 266, 267,

350, 355, 403, 405, 484, 598, 599,
615, 616, 632, 635, 636, 918, 923,
939, 1002, 1090–1094, 1448, 1567,
1612, 1639

as.im.function, 918
as.im.leverage.ppm, 111, 791
as.im.linim (methods.linim), 923
as.im.owin, 35, 112
as.im.ppp, 34, 122, 123
as.im.ppp (pixellate.ppp), 1092
as.im.scan.test, 1521, 1523
as.im.scan.test (plot.scan.test), 1169
as.im.ssf (methods.ssf), 938
as.interact, 47, 124, 917, 1209
as.interact.fii, 536, 917
as.interact.ppm, 1209
as.layered, 125, 775
as.layered.msr, 963
as.linfun, 127
as.linfun.lintess, 824, 833
as.linim, 128, 406, 826, 833, 922, 1003
as.linim.linfun, 922
as.linnet, 64, 130, 226, 800
as.linnet (methods.linnet), 924
as.linnet.linfun (as.linnet.linim), 130
as.linnet.linim, 130

1754 INDEX

as.linnet.lintess, 833
as.linnet.lintess (as.linnet.linim), 130
as.linnet.lpp (as.linnet.linim), 130
as.linnet.lppm (methods.lppm), 929
as.linnet.psp, 131, 329
as.lpp, 61, 132, 503, 645, 646, 861
as.mask, 35, 62, 67, 120, 129, 134, 136, 138,

144, 155, 159, 160, 166, 180, 245,
247, 253, 266, 279, 285, 296, 332,
336, 338, 341, 344, 346, 351, 353,
363, 390, 397, 398, 400, 401, 403,
404, 407–411, 448, 449, 478, 524,
533, 579, 580, 590, 606, 627, 638,
661, 665, 666, 668, 693, 703, 735,
746, 771, 791, 972, 990, 1004, 1006,
1007, 1023, 1032, 1033, 1089, 1091,
1093, 1095, 1096, 1152, 1240, 1264,
1280, 1317, 1382, 1390, 1435, 1448,
1449, 1456, 1520, 1522, 1533, 1575,
1612, 1692

as.mask.psp, 37, 135, 1095
as.matrix, 1328
as.matrix.im, 36, 137, 139, 632, 635
as.matrix.owin, 137, 138
as.matrix.ppx (as.hyperframe.ppx), 117
as.owin, 34, 91, 92, 134, 139, 144, 147,

149–151, 176, 178, 179, 192, 225,
246, 289, 290, 295, 385, 389, 390,
440, 477, 478, 529, 549, 575, 588,
601, 637, 643, 648, 666, 693, 733,
790, 791, 856, 922, 926, 1023, 1029,
1031–1033, 1065, 1083, 1096, 1146,
1182, 1190, 1209, 1225, 1226, 1264,
1269, 1297, 1319, 1321, 1365, 1373,
1385, 1392, 1394, 1397, 1398, 1401,
1426, 1432, 1442, 1445, 1466, 1467,
1470, 1476, 1487, 1489, 1495, 1501,
1508, 1513, 1533, 1542, 1577, 1595,
1628

as.owin.data.frame, 105
as.owin.linfun (methods.linfun), 921
as.owin.linnet (methods.linnet), 924
as.owin.ppm, 1209
as.polygonal, 35, 135, 143, 1083, 1661
as.ppm, 144, 1259, 1365, 1366
as.ppm.dppm, 427, 915
as.ppm.kppm, 763, 919
as.ppp, 31, 88, 145, 323, 398, 400, 449, 450,

496–498, 527, 528, 533, 552, 568,
571, 573, 574, 580, 583, 629, 630,
694, 697, 699, 700, 702, 705, 715,
719, 722, 725, 731, 732, 735, 737,
743, 746, 753, 757, 766, 769, 788,
827, 860, 871, 872, 874, 875, 878,
879, 889, 928, 939, 948, 1154, 1225,
1226, 1228, 1299–1303, 1352, 1353,
1355, 1402, 1434, 1525, 1665, 1667

as.ppp.influence.ppm, 643
as.ppp.lpp (methods.lpp), 927
as.ppp.ssf (methods.ssf), 938
as.psp, 37, 87, 148, 926, 928, 1163,

1269–1271, 1577
as.psp.linnet, 926
as.psp.linnet (methods.linnet), 924
as.psp.lpp (methods.lpp), 927
as.rectangle, 135, 150, 179, 225, 1032,

1033, 1445, 1477, 1542
as.solist, 85, 152, 1570–1572
as.tess, 38, 153, 667, 668, 1287, 1293, 1294,

1635, 1639
atan2, 77
auc, 154, 1449, 1450
axis, 1104, 1105, 1116, 1117, 1130, 1157,

1180
axis.default, 1184
axisTicks, 1116, 1117

BadGey, 47, 156, 157, 578, 1203, 1206, 1214,
1220, 1259, 1405, 1427, 1433, 1516

barplot, 617
bc, 1372
bc (bc.ppm), 158
bc.ppm, 158
bdist.pixels, 35, 159, 161, 162, 1032, 1033
bdist.points, 35, 160, 161, 162, 1032, 1033
bdist.tiles, 35, 38, 160, 161, 162, 1635
bdspots, 32
beachcolourmap, 40, 1086, 1118
beachcolourmap (beachcolours), 163
beachcolours, 163, 1086, 1118
beginner, 164, 547
begins, 165
bei, 32
berman.test, 52, 166, 220, 1100, 1101, 1209
berman.test.ppm, 1209
betacells, 32, 1228
bilinearform (sumouter), 1626

INDEX 1755

bind.fv, 169, 274, 558, 559
bits.envelope, 51, 170, 171, 174, 367
bits.test, 52, 172, 172, 374
blur, 36, 174, 534, 581, 703, 739, 767, 973,

1577
border, 34, 176
bounding.box.xy, 177, 290, 1385, 1628,

1629
boundingbox, 34, 151, 178, 666, 1032, 1033
boundingcentre (boundingcircle), 180
boundingcircle, 180
boundingradius, 384
boundingradius (boundingcircle), 180
boundingradius.linnet, 181
boundingradius.linnet

(diameter.linnet), 383
box3, 38, 98, 181, 592, 912, 942, 1202, 1473,

1510
boxx, 39, 99, 182, 383, 592, 647, 913, 1476,

1512
bramblecanes, 32, 1228
branchlabelfun, 183, 331
bronzefilter, 32
bugfixes, 184, 774
bw.abram, 41, 186, 344, 345
bw.CvL, 41, 188, 191, 192, 198, 204, 337, 338,

340
bw.diggle, 41, 115, 190, 190, 192, 198, 203,

204, 337, 338, 340, 1349
bw.frac, 41, 190, 191, 192, 198, 204
bw.lppl, 193, 198
bw.pcf, 195, 1066, 1079
bw.ppl, 41, 186, 190–192, 194, 197, 204, 337,

338, 340
bw.relrisk, 41, 192, 198, 207, 1348–1350,

1578
bw.relrisklpp, 200, 1343
bw.scott, 41, 190–192, 194, 198, 202, 337,

338, 340, 354
bw.scott.iso, 201, 353, 354, 1343
bw.smoothppp, 41, 192, 204, 1563–1565
bw.stoyan, 41, 192, 199, 200, 206, 1066,

1077, 1079
bw.voronoi, 207, 358
by, 209, 210
by.im, 208, 1583
by.ppp, 33, 209, 1635

cauchy.estK, 46, 211, 215, 763, 1695

cauchy.estpcf, 46, 213, 213, 763, 1698
cbind, 169, 215
cbind.fv, 259, 260, 558, 559, 597, 598
cbind.fv (bind.fv), 169
cbind.hyperframe, 40, 215, 624
CDF, 216, 1306
cdf.test, 52, 168, 217, 222–224, 1102, 1103,

1209, 1289, 1293, 1576
cdf.test.mppm, 221
cdf.test.ppm, 1209
cells, 32, 1228
centroid.owin, 35, 224, 640, 1538
chicago, 32, 39, 861
chisq.test, 1288, 1289, 1293
chop.linnet, 226, 665
chop.tess, 38, 227, 239, 642
chorley, 32
chull, 675
circdensity, 228, 1008, 1043, 1452
clarkevans, 40, 229, 231, 232, 619
clarkevans.test, 52, 230, 231, 619
clear.simplepanel (run.simplepanel),

1503
clickbox, 34, 232, 234, 236–238
clickdist, 35, 233, 233, 236–238
clickjoin, 39, 234
clicklpp, 234, 235
clickpoly, 34, 233, 234, 236, 236, 238
clickppp, 31, 233–237, 237, 625
clip.infline, 227, 238, 642
clip.psp, 1270
clmfires, 32
closepaircounts (closepairs), 239
closepairs, 239, 243, 244, 1036, 1065, 1079,

1580
closepairs.pp3, 241, 242
closetriples, 244
closing, 34, 245, 1023, 1032, 1033
clusterfield, 45, 246, 251, 1124, 1319,

1395, 1501, 1513
clusterfit, 248, 426, 427, 762, 763, 1320,

1396, 1502
clusterkernel, 250, 252
clusterradius, 45, 251, 1319, 1501, 1513
clusterset, 41, 253
cm.colors, 1086, 1118
coef, 255, 257, 258, 536, 915, 916, 919, 930,

1054

1756 INDEX

coef.dppm (methods.dppm), 915
coef.fii (methods.fii), 916
coef.kppm, 45
coef.kppm (methods.kppm), 918
coef.lppm (methods.lppm), 929
coef.mppm, 255, 544, 961, 1314
coef.ppm, 46, 257, 549, 856, 1209, 1210, 1702
coef.slrm, 50, 258, 938, 1558, 1705
coef.summary.fii (methods.fii), 916
col2hex (colourtools), 263
col2rgb, 264, 266
collapse, 259
collapse.anylist (collapse.fv), 259
collapse.fv, 259, 268, 597
colourmap, 40, 164, 260, 263, 266, 287, 663,

871, 880, 1086, 1104, 1105, 1116,
1117, 1120, 1182, 1632, 1666

colouroutputs, 262, 262, 1666
colouroutputs<- (colouroutputs), 262
colours, 262
colourtools, 164, 262, 263, 263, 663, 1375,

1666
commonGrid, 35, 36, 266, 272, 599, 601
compareFit, 53, 267
compatible, 269, 270, 271, 596, 941, 1317,

1318, 1673
compatible.fasp, 269, 270
compatible.fv, 269, 270, 271, 597, 598
compatible.im, 36, 267, 269, 272, 484, 599
compatible.unitname, 269
compatible.unitname (methods.unitname),

940
compileK, 273, 802
compilepcf (compileK), 273
complement.owin, 34, 275, 677, 1031–1033
complementarycolour (colourtools), 263
Complex.im, 905
Complex.im (Math.im), 897
Complex.imlist (Math.imlist), 899
Complex.linim (Math.linim), 901
concatxy, 276, 1629
Concom, 47, 277, 1203, 1206, 1214, 1220
confint, 1209, 1558, 1699, 1704, 1706
connected, 279, 673
connected.im, 36, 285, 1499, 1500
connected.linnet, 280, 281, 282, 831, 926,

1642
connected.lpp, 280, 282

connected.owin, 35, 285, 286, 1499, 1500
connected.pp3 (connected.ppp), 284
connected.ppp, 33, 280, 284, 674
connected.tess, 38, 280, 285
contour, 918, 931, 1149, 1152, 1153, 1177
contour.default, 122, 286, 287, 931, 1128,

1129, 1176
contour.funxy (methods.funxy), 917
contour.im, 36, 286, 288, 918, 1052, 1087,

1120, 1128, 1129, 1578
contour.imlist, 288
contour.leverage.ppm

(plot.leverage.ppm), 1128
contour.listof, 1100, 1138, 1174
contour.listof (contour.imlist), 288
contour.objsurf (methods.objsurf), 931
contour.ssf (plot.ssf), 1176
convexhull, 34, 35, 289, 290, 292
convexhull.xy, 178, 289, 290, 328, 675, 1385
convexify, 291
convolve.im, 36, 292, 637
coords, 33, 38, 39, 293
coords.ppx, 303, 997, 1014, 1040
coords<- (coords), 293
coplot, 1052
copper, 32
cor, 978, 979
corners, 48, 295, 324, 1299, 1300
countends (lineardisc), 799
covering, 296
crossdist, 42, 297, 298–304, 1035, 1036,

1039–1042
crossdist.default, 297, 298, 303
crossdist.lpp, 44, 299
crossdist.pp3, 44, 300
crossdist.ppp, 297, 299, 300, 302
crossdist.ppx, 45, 303
crossdist.psp, 297, 299, 303, 304
crossing.linnet, 226, 305
crossing.psp, 37, 306, 306, 1530, 1580
crosspaircounts (closepairs), 239
crosspairs, 1580
crosspairs (closepairs), 239
crosspairs.pp3 (closepairs.pp3), 242
cut, 308, 310, 312
cut.default, 308, 309, 311
cut.im, 36, 307, 632, 635, 1308
cut.lpp, 309, 824

INDEX 1757

cut.ppp, 33, 43, 113, 210, 310, 512, 977,
1586, 1635, 1649

cvm.test, 218–220, 223

data, 32
data.frame, 120, 623
data.lppm, 313
data.ppm, 313, 314, 445, 446, 1209
dclf.progress, 52, 315, 319, 322, 370
dclf.sigtrace, 317, 372
dclf.test, 52, 173, 174, 316–319, 319, 373,

374, 463
default.dummy, 48, 323, 1215, 1299, 1578
default.expand, 324, 326, 327, 463
default.rmhcontrol, 326, 1412, 1413
delaunay, 34, 38, 327, 329, 330, 393, 1191,

1298, 1635, 1661, 1707
delaunayDistance, 34, 328, 328, 330
delaunayNetwork, 39, 328, 329, 329, 831
deldir, 393
deletebranch, 330, 1659, 1660
deltametric, 331
demohyper, 32
demopat, 32, 1228
dendrite, 32, 39, 861
density, 217, 341, 342, 350, 450, 872, 874,

876, 879, 889, 1070, 1074, 1080,
1305

density.default, 57, 58, 196, 228, 273, 413,
414, 728–730, 814, 815, 817, 819,
820, 822, 823, 1055, 1056, 1063,
1064, 1066, 1069–1071, 1073, 1074,
1076, 1077, 1080, 1081, 1380, 1382,
1452, 1675

density.linnet (density.psp), 341
density.lpp, 44, 193, 194, 200, 202, 203,

333, 347–349, 352, 354, 357, 358,
1342, 1343

density.ppp, 33, 36, 41, 42, 55, 56, 121, 176,
186, 187, 189–192, 197, 198, 203,
204, 247, 335, 343, 346, 350, 355,
357, 376, 533, 534, 580, 582, 628,
703, 704, 718, 719, 725, 726,
737–739, 756, 757, 766, 767, 839,
840, 843, 844, 846, 991, 1052, 1072,
1076, 1078, 1094, 1348, 1350, 1377,
1534, 1535, 1561, 1563–1565, 1577

density.ppplist (density.splitppp), 342
density.psp, 37, 341, 1577

density.splitppp, 342, 1100, 1138, 1174
density.splitppx (density.lpp), 333
densityAdaptiveKernel, 55, 56, 344
densityEqualSplit, 333, 334, 346
densityfun, 121, 348
densityfun (densityfun.ppp), 350
densityfun.lpp, 348
densityfun.ppp, 350
densityHeat, 333, 334, 351
densityQuick.lpp, 333–335, 353
densityVoronoi, 55, 56, 346, 355, 357, 358
densityVoronoi.lpp, 207, 208, 357, 357
deriv, 359
deriv.fv, 42, 358, 641, 1008, 1043
detpointprocfamilyfun, 360
dev.capabilities, 1118
dev.new, 1504
dev.off, 1504
dev.set, 1504
deviance, 855, 930
deviance.lppm, 1266, 1267
deviance.lppm (methods.lppm), 929
deviance.ppm, 1266, 1267
deviance.ppm (logLik.ppm), 854
dfbetas, 363
dfbetas.ppm, 52, 362, 365, 537, 541, 644,

792, 962, 963, 1222, 1223
dffit (dffit.ppm), 364
dffit.ppm, 52, 364, 962, 963
dg.envelope, 171, 172, 366
dg.progress, 368
dg.sigtrace, 319, 370
dg.test, 52, 174, 367, 369–372, 372
diagnose.ppm, 52, 375, 445, 446, 865–868,

1278–1280, 1282, 1369–1371
diameter, 380, 384, 1033
diameter.box3, 38, 182, 380, 381
diameter.boxx, 39, 183, 380, 382
diameter.linnet, 380, 383
diameter.owin, 35, 92, 380, 384, 1032, 1083,

1542
DiggleGatesStibbard, 47, 385, 1203, 1206,

1214, 1220, 1259, 1326, 1405, 1412,
1413, 1427, 1433

DiggleGratton, 47, 386, 387, 1203, 1206,
1214, 1220, 1259, 1328, 1330, 1331,
1405, 1412, 1413, 1422, 1427, 1430,
1433

1758 INDEX

dilated.areas, 35, 97, 388
dilation, 34, 176, 177, 245, 246, 325, 389,

389, 478, 593, 947, 1023, 1032, 1033
dilation.owin, 1131, 1420
dilationAny, 390
dilationAny (MinkowskiSum), 946
dim.detpointprocfamily, 391
dimhat, 391, 1527
dirichlet, 34, 38, 327–330, 355, 357, 392,

394, 395, 1191, 1298, 1635, 1707
dirichletAreas, 393, 395
dirichletEdges (dirichletVertices), 394
dirichletNetwork, 39
dirichletNetwork (delaunayNetwork), 329
dirichletVertices, 393, 394, 394
dirichletWeights, 49, 395, 591, 1300
disc, 34, 390, 397, 399, 401, 402, 449, 1030,

1031, 1225, 1338, 1506
discpartarea, 398
discretise, 34, 399
discs, 398, 401
distcdf, 192, 402
distfun, 42, 121, 404, 406, 408, 410–412,

914, 918, 1002, 1612
distfun.lpp, 44, 406, 827, 861, 1004
distfun.owin, 35
distfun.psp, 37
distmap, 42, 93, 121, 332, 333, 388, 389, 405,

407, 409–412, 606, 635, 639, 1006,
1335

distmap.owin, 35, 160, 407, 408, 408, 410,
412

distmap.ppp, 407–409, 410, 412
distmap.psp, 37, 407–410, 411, 972, 1270
Distributions, 1448
divide.linnet, 412, 665, 833
dkernel, 334, 346, 413, 728–730
dknn (rknn), 1387
dmixpois, 414
domain, 416, 643, 791
dpois, 415
dppapproxkernel, 419, 424
dppapproxpcf, 419
dppBessel, 420, 422, 423, 425, 426, 428, 429,

431
dppCauchy, 421, 421, 423, 425, 426, 428, 429,

431
dppeigen, 422, 1577

dppGauss, 421, 422, 423, 425, 426, 428, 429,
431

dppkernel, 424
dppm, 49, 115, 424, 447, 692, 848, 849, 915,

952–954, 956, 957, 1021, 1106,
1206, 1238, 1239, 1357, 1366, 1613

dppMatern, 421–423, 425, 426, 428, 428, 431
dppparbounds, 429
dppPowerExp, 421–423, 425, 426, 428, 429,

430
dppspecden, 431, 432
dppspecdenrange, 432, 432
drop1, 45, 47, 1209
dummify, 433
dummy.ppm, 434, 1209
duplicated, 435
duplicated.data.frame, 436, 1668
duplicated.ppp, 33, 435, 967, 1621, 1668,

1671
duplicated.ppx (duplicated.ppp), 435
duplicatedxy, 436

ecdf, 487, 1593
edge.Ripley, 436, 440, 1578
edge.Trans, 438, 438, 1578
edges, 35, 37, 150, 385, 440
edges2triangles, 441, 442
edges2vees, 441, 442
edit, 443, 444, 604
edit.data.frame, 443–445
edit.hyperframe, 443, 445
edit.im (edit.ppp), 444
edit.ppp, 33, 443, 444
edit.psp (edit.ppp), 444
eem, 377–379, 445, 867, 868, 1282, 1370
effectfun, 47, 446
eigen, 903
ellipse, 34, 398, 448, 1031, 1225, 1338
Emark, 43, 449
emend, 451, 453, 930
emend.lppm, 452
emend.lppm (methods.lppm), 929
emend.ppm, 452, 452, 1213, 1219, 1220
endpoints.psp, 37, 77, 454, 522, 785, 943,

1269
envelope, 42, 49, 51, 52, 74–76, 100,

171–173, 315, 317, 319–322, 325,
326, 366–368, 370, 373, 374, 455,
466, 467, 470, 471, 474–476, 557,

INDEX 1759

583, 705, 734, 753, 757, 1080, 1107,
1195, 1196, 1209, 1280

envelope.envelope, 458, 461, 463, 466,
1195, 1196

envelope.lpp, 44, 458, 468
envelope.lppm, 49
envelope.lppm (envelope.lpp), 468
envelope.pp3, 38, 44, 458, 472
envelope.ppm, 1209
envelopeArray, 475
eroded.areas, 35, 389, 476, 478, 1032, 1033
eroded.volumes, 38, 182, 183
eroded.volumes (diameter.box3), 381
eroded.volumes.boxx, 39, 183
eroded.volumes.boxx (diameter.boxx), 382
erosion, 34, 160, 161, 176, 177, 245, 246,

390, 477, 477, 479, 593, 637, 677,
1023, 1032, 1033, 1483, 1533, 1662

erosionAny, 478, 479, 947
eval.fasp, 42, 270, 480, 526
eval.fv, 42, 271, 480, 481, 481, 597, 598,

1720
eval.im, 36, 272, 483, 486, 632, 634–636,

650, 897–900, 1350, 1360, 1573,
1711

eval.linim, 49, 485, 830, 901, 902
ewcdf, 219, 223, 486, 1306, 1307, 1575, 1576,

1593
exactdt, 42
exactMPLEstrauss, 488
expand.owin, 489, 1420, 1714
expression, 1114
Extract.anylist, 490
Extract.fasp, 491
Extract.fv, 493
Extract.hyperframe, 494
Extract.im, 496
Extract.influence.ppm, 499
Extract.layered, 500
Extract.leverage.ppm, 502
Extract.linim, 503
Extract.linnet, 504
Extract.listof, 505
Extract.lpp, 506
Extract.msr, 508
Extract.owin, 509
Extract.ppp, 510
Extract.ppx, 513

Extract.psp, 515
Extract.quad, 516
Extract.solist, 517
Extract.splitppp, 519
Extract.tess, 520
extractAIC, 848, 850, 852, 855, 930
extractAIC.dppm (logLik.dppm), 848
extractAIC.kppm (logLik.kppm), 849
extractAIC.lppm (methods.lppm), 929
extractAIC.mppm (logLik.mppm), 851
extractAIC.ppm, 549, 1209
extractAIC.ppm (logLik.ppm), 854
extractbranch, 1659, 1660
extractbranch (deletebranch), 330
extrapolate.psp, 37, 77, 455, 521, 785, 943,

1269

F3est, 44, 475, 522, 562, 709, 1068, 1578
factor, 910, 911
fardist, 524
fasp, 1197
fasp.object, 72, 75, 76, 481, 492, 525, 1058,

1060, 1109
Fest, 41, 72–76, 95, 463, 482, 524, 527, 534,

535, 558, 559, 576, 579, 606, 607,
695, 697–702, 706, 735, 1236

fft, 746
Fhazard (Fest), 527
Fiksel, 47, 531, 1052, 1203, 1206, 1214,

1220, 1259, 1405, 1427, 1433
Finhom, 41, 533, 546, 582, 704
finpines, 32
fitin, 47, 125, 916, 917, 1209, 1259, 1330
fitin (fitin.ppm), 535
fitin.ppm, 535, 1209
fitted, 537, 542, 1238, 1239, 1249
fitted.dppm, 427
fitted.dppm (predict.dppm), 1238
fitted.kppm, 45, 763
fitted.kppm (predict.kppm), 1239
fitted.lppm, 49, 537, 809, 822
fitted.mppm, 538, 1243
fitted.ppm, 47, 540, 549, 718, 725, 738, 756,

809, 822, 840, 844, 846, 856, 1078,
1209, 1210, 1238–1240, 1248

fitted.rppm (predict.rppm), 1249
fitted.slrm, 50, 542, 1558
fixef, 543
fixef.mppm, 256, 543, 1314

1760 INDEX

flipxy, 33, 34, 37, 62, 68, 70, 71, 544, 544,
914, 921, 1337, 1455

flipxy.distfun (methods.distfun), 913
flipxy.infline (rotate.infline), 1454
flipxy.layered (methods.layered), 920
flipxy.tess, 38
flipxy.tess (affine.tess), 70
flu, 32
FmultiInhom, 545
foo, 546
formula, 548, 549, 915, 919, 930, 938, 949,

961
formula.dppm (methods.dppm), 915
formula.fv, 547
formula.kppm, 45
formula.kppm (methods.kppm), 918
formula.lppm (methods.lppm), 929
formula.ppm, 46, 549, 856, 1209
formula.slrm (methods.slrm), 937
formula<- (formula.fv), 547
fourierbasis, 361, 550
fourierbasisraw (fourierbasis), 550
Frame, 34, 418, 551
Frame<- (Frame), 551
fryplot, 40, 552, 746, 747
frypoints (fryplot), 552
funxy, 554, 918, 1612
fv, 109, 169, 170, 548, 556, 1452
fv.object, 73, 109, 114, 115, 259, 260, 359,

360, 403, 447, 451, 461, 463, 483,
493, 494, 529, 534, 548, 556, 557,
558, 559, 560, 566, 568, 572, 575,
582, 584, 587, 598, 606, 630, 641,
695, 698, 700, 704, 706, 713, 716,
719, 722, 726, 733, 736, 740, 744,
754, 758, 765, 768, 779, 780, 782,
783, 788, 803, 805, 806, 808, 811,
813, 816, 817, 819, 821, 828, 836,
838, 840, 842, 844, 847, 873, 876,
889, 945, 1058, 1061, 1062, 1070,
1074, 1112, 1272, 1275, 1277, 1560,
1561, 1593, 1594, 1665, 1719, 1720

fvnames, 109, 260, 559, 1112, 1236
fvnames<- (fvnames), 559

G3est, 44, 301, 475, 524, 561, 709, 996, 1068
gam, 595, 959
gam.control, 959, 1213
ganglia, 1228

gauss.hermite, 415, 562
Gcom, 53, 268, 563, 587, 588, 713, 1577
Gcross, 42, 74–76, 567, 571, 573, 583, 585,

695
Gdot, 42, 75, 76, 568, 570, 570, 583, 585, 695,

698, 706
Gest, 41, 72, 73, 75, 76, 230, 299, 303, 305,

462, 463, 530, 558, 559, 562, 566,
568, 570, 571, 573, 573, 579,
581–583, 585, 588, 699–702, 735,
992, 993, 1236, 1593, 1594

getCall, 852
getCall.mppm (logLik.mppm), 851
Geyer, 48, 156, 157, 576, 577, 578, 1027,

1049, 1052, 1203, 1206, 1214, 1220,
1259, 1277, 1330, 1331, 1405, 1412,
1413, 1427, 1433, 1515–1517

Gfox, 45, 578
Ginhom, 41, 535, 580, 586, 704
glm, 29, 595, 949, 959, 1203, 1212–1214
glm.control, 959, 1213
Gmulti, 42, 43, 568, 570, 571, 573, 582, 586,

695, 697
GmultiInhom, 585
gordon, 32
gorillas, 32
Gres, 53, 268, 566, 587, 765, 1273, 1275,

1277, 1577
gridcenters (gridcentres), 588
gridcentres, 48, 324, 588, 1299, 1300, 1590,

1596
gridweights, 49, 396, 590, 1300
grow.box3 (grow.boxx), 591
grow.boxx, 591
grow.rectangle, 592, 592, 1662
grow.simplepanel, 1503
grow.simplepanel (simplepanel), 1542

Halton, 1479, 1480
Halton (quasirandom), 1308
Hammersley, 1479
Hammersley (quasirandom), 1308
hamster, 32
Hardcore, 48, 593, 1052, 1203, 1205, 1206,

1214, 1217, 1220, 1259, 1377, 1405,
1412, 1413, 1427, 1433

harmonic, 594, 1192
harmonise, 596, 597, 599–601, 941
harmonise.fv, 42, 482, 596, 597

INDEX 1761

harmonise.im, 36, 267, 272, 484, 596, 598,
601, 633, 897, 899

harmonise.msr, 599
harmonise.owin, 600
harmonise.unitname (methods.unitname),

940
harmonize (harmonise), 596
harmonize.fv (harmonise.fv), 597
harmonize.im (harmonise.im), 598
harmonize.owin (harmonise.owin), 600
harmonize.unitname (methods.unitname),

940
has.close, 602
has.offset (model.depends), 949
head, 604
head.hyperframe, 40
head.ppp (headtail), 603
head.ppx (headtail), 603
head.psp (headtail), 603
head.tess (headtail), 603
headtail, 603
heat.colors, 1086, 1118
heatkernelapprox, 604
Hest, 45, 579, 605, 1334
hexagon, 609, 1031, 1225
hexagon (regularpolygon), 1338
hexgrid (hextess), 608
hextess, 37, 608, 1191, 1295, 1298, 1338,

1635, 1707
HierHard, 48, 609, 613, 615, 1203, 1206,

1214, 1220
hierpair.family, 611
HierStrauss, 48, 610, 611, 612, 615, 1203,

1206, 1214, 1220
HierStraussHard, 48, 610, 613, 613, 1203,

1206, 1214, 1220
hist, 528, 568, 571, 574, 583, 616, 617, 706,

753, 757, 1451, 1452, 1713
hist.default, 616, 617, 976
hist.funxy, 615
hist.im, 36, 615, 616, 616, 635, 1120
hopskel, 230, 618
hopskel.test, 232
hotrod, 605, 619
hsv, 1375
hsvim, 36
hsvim (rgbim), 1374
humberside, 32

Hybrid, 48, 157, 578, 620, 622, 677, 678,
1203, 1204, 1206, 1214, 1220, 1412,
1413, 1427, 1433

hybrid.family, 622
hyperframe, 39, 101, 116–118, 215, 216, 222,

496, 623, 647, 882, 953, 959, 960,
1114, 1115, 1237, 1242, 1243, 1582,
1722

hyytiala, 32

identify, 625, 626
identify.default, 625
identify.lpp, 236
identify.lpp (identify.ppp), 624
identify.ppp, 33, 234, 237, 238, 624, 626
identify.psp, 625
idw, 627, 1564, 1565
Iest, 43, 629
im, 30, 36, 187, 209, 210, 631, 635, 636, 830,

954, 1034, 1047, 1094, 1360, 1583,
1586, 1640, 1656

im.apply, 36, 484, 633
im.object, 56, 86, 121, 280, 285, 287, 308,

340, 342, 343, 346, 357, 484, 497,
498, 617, 628, 632, 634, 678, 747,
790, 905, 906, 954, 1086, 1087,
1116, 1120, 1204, 1214, 1247, 1252,
1308, 1352, 1353, 1375, 1426, 1439,
1442, 1445, 1465, 1471, 1477, 1565,
1572, 1573, 1615

image, 931, 1149, 1152, 1153, 1177, 1578
image.default, 122, 1104, 1116–1120, 1130,

1146–1148, 1176, 1657
image.im (plot.im), 1115
image.imlist (plot.imlist), 1121
image.listof, 1099, 1100, 1137, 1138, 1173,

1174
image.listof (plot.imlist), 1121
image.objsurf (methods.objsurf), 931
image.ssf (plot.ssf), 1176
imcov, 36, 293, 403, 636, 1533
improve.kppm, 45, 637, 639, 760, 761
incircle, 35, 639
increment.fv, 640
infline, 227, 239, 521, 522, 641, 1455, 1712
influence, 643
influence.ppm, 52, 364, 499, 500, 643, 792,

1122, 1123, 1222, 1223

1762 INDEX

inforder.family, 611, 622, 644, 1049, 1052,
1663

inradius, 35
inradius (incircle), 639
insertVertices, 39, 61, 645, 831, 926
inside.boxx, 646
inside.owin, 35, 589, 648, 1590, 1596
integral, 643, 653, 791, 939
integral (integral.im), 649
integral.im, 36, 649, 651, 747, 1615
integral.linfun (integral.linim), 651
integral.linim, 129, 651
integral.msr, 652, 963, 1370
integral.ssf (methods.ssf), 938
intensity, 41, 653, 655–662, 991
intensity.detpointprocfamily

(intensity.dppm), 654
intensity.dppm, 654
intensity.lpp, 655, 861, 928
intensity.ppm, 46, 654, 656, 658
intensity.ppp, 654, 655, 657, 657
intensity.ppx, 659
intensity.psp, 660
intensity.quadratcount, 41, 661, 1294,

1295, 1382
intensity.splitppp (intensity.ppp), 657
interp.colourmap, 40, 262, 263, 266, 662,

1666
interp.colours (colourtools), 263
interp.im, 36, 176, 663
intersect.lintess, 664
intersect.owin, 35, 509, 510, 665, 668, 677,

1028
intersect.tess, 38, 521, 667, 1191, 1635,

1707
invoke.symbolmap, 669, 1180, 1633
ippm, 363, 643, 670, 791, 957, 1205, 1206,

1217, 1220, 1223
is.colour (colourtools), 263
is.connected, 672, 674
is.connected.ppp, 673, 674
is.convex, 35, 289, 675
is.dppm, 676
is.empty, 666, 676
is.grey (colourtools), 263
is.hybrid, 47, 677
is.im, 36, 678
is.kppm (is.ppm), 688

is.linim, 679
is.lpp, 680
is.lppm (is.ppm), 688
is.marked, 680, 682, 683, 692, 1209
is.marked.lppm (is.marked.ppm), 681
is.marked.ppm, 681, 681, 683, 1209
is.marked.ppp, 681, 682, 683, 978
is.mask, 35
is.mask (is.rectangle), 690
is.multitype, 684, 686, 687, 1209
is.multitype.lpp (is.multitype.ppp), 686
is.multitype.lppm (is.multitype.ppm),

685
is.multitype.ppm, 685, 685, 687, 1209
is.multitype.ppp, 685, 686, 686
is.owin, 688
is.poisson, 1209
is.poisson (is.stationary), 691
is.poisson.ppm, 1209
is.polygonal, 35
is.polygonal (is.rectangle), 690
is.ppm, 688
is.ppp, 689
is.psp, 37
is.rectangle, 35, 690
is.slrm (is.ppm), 688
is.stationary, 691, 1209
is.stationary.ppm, 1209
is.subset.owin, 35, 666, 693

japanesepines, 32
Jcross, 42, 74–76, 694, 697, 698, 705, 706
Jdot, 42, 75, 76, 694, 696, 696, 705, 706
Jest, 41, 72, 73, 75, 76, 463, 530, 558, 559,

576, 579, 629–631, 694–698, 699,
703–706, 735

Jfox, 45
Jfox (Gfox), 578
Jinhom, 41, 535, 582, 702, 702
jitter, 880
Jmulti, 42, 43, 694, 696–698, 704
joinVertices, 39, 61, 646, 707, 831, 926

K3est, 44, 475, 524, 562, 708, 1039, 1067,
1068

kaplan.meier, 530, 576, 702, 709, 742, 743,
1336

Kcom, 53, 268, 566, 711, 764, 765, 1577, 1578

INDEX 1763

Kcross, 42, 74–76, 241, 451, 714, 718, 720,
722, 733, 735, 753, 755, 778, 779,
803, 837, 838, 859, 873, 877, 888,
890, 1058, 1060–1062, 1070, 1074

Kcross.inhom, 43, 717, 727, 758, 780, 781,
805, 859

Kdot, 42, 75, 76, 451, 715, 716, 721, 723, 725,
727, 733, 735, 753, 755, 782, 806,
807, 842, 859, 873, 877, 890, 1058,
1060–1062, 1070, 1074, 1075

Kdot.inhom, 43, 720, 724, 758, 783, 784, 808
kernel.factor, 414, 727, 729, 730
kernel.moment, 728, 728, 730
kernel.squint, 728, 730
Kest, 41, 72, 73, 75, 76, 108, 109, 190, 211,

213, 241, 249, 271, 274, 321, 426,
428, 438, 440, 450, 462, 463, 467,
481–483, 530, 553, 554, 558, 559,
576, 702, 709, 711–713, 715, 716,
719, 722, 723, 726, 731, 736, 738,
740, 747, 748, 751–755, 761, 763,
765, 768–770, 788, 789, 793, 795,
828, 835, 836, 838, 840, 842, 844,
859, 860, 872, 876, 893, 894, 945,
1035, 1036, 1040, 1043, 1044,
1058–1062, 1064, 1066, 1069, 1077,
1112, 1201, 1322, 1578, 1593, 1643,
1644, 1666, 1691, 1694, 1695, 1720

Kest.fft, 42, 735
Kinhom, 41, 249, 426, 428, 718, 720, 725, 727,

733, 735, 737, 758, 761, 763, 767,
827, 828, 841, 845, 859, 860, 1058,
1060–1062, 1078, 1079

km.rs, 530, 576, 702, 710, 741, 1336
Kmark, 43, 743, 877
Kmeasure, 36, 42, 553, 554, 635, 736, 745
Kmodel, 213, 748, 750–752, 1577, 1695
Kmodel.detpointprocfamily

(Kmodel.dppm), 749
Kmodel.dppm, 427, 749
Kmodel.kppm, 45, 748, 750, 752, 763
Kmodel.ppm, 47, 748, 751, 751
Kmulti, 42, 43, 715, 716, 722, 723, 733, 735,

752, 756, 758, 1058, 1060–1062
Kmulti.inhom, 720, 727, 755
kppm, 45, 51, 115, 145, 212–215, 247,

250–252, 638, 639, 692, 750, 751,
759, 850, 851, 893, 894, 896, 919,

946, 952–954, 956, 957, 1021, 1022,
1124, 1125, 1203, 1206, 1239, 1240,
1268, 1319, 1320, 1367, 1391, 1395,
1396, 1446, 1502, 1514, 1550, 1616,
1617, 1643, 1644, 1646, 1681, 1682,
1695, 1697–1699

Kres, 53, 268, 588, 713, 764, 1273, 1275,
1277, 1577, 1578

ks.test, 218–220, 223
Kscaled, 42, 766
Ksector, 42, 769, 1044

labels, 915, 919, 938
labels.dppm (methods.dppm), 915
labels.kppm (methods.kppm), 918
labels.slrm (methods.slrm), 937
LambertW, 770
lansing, 32, 1228
lapply, 900, 1570
laslett, 771, 1125, 1126
latest.news, 165, 185, 773
layered, 40, 126, 142, 501, 502, 774, 776,

921, 1126, 1127, 1725
layerplotargs, 775, 776, 1127
layerplotargs<- (layerplotargs), 776
layout.boxes, 777, 1543, 1544
Lcross, 42, 74–76, 778, 780–782, 838, 859
Lcross.inhom, 43, 779, 784, 859
Ldot, 42, 75, 779, 781, 783, 784, 842, 859
Ldot.inhom, 43, 783
legend, 1111
lengths, 785
lengths.psp (lengths_psp), 784
lengths_psp, 37, 77, 455, 522, 784, 943,

1269, 1270
LennardJones, 48, 786, 1052, 1203, 1206,

1214, 1220, 1259, 1330, 1331, 1405,
1424, 1427, 1432, 1433

Lest, 41, 75, 76, 316, 321, 369, 779, 782, 788,
828, 836, 859

letterR, 34
levelset, 36, 789, 1573
leverage (leverage.ppm), 790
leverage.ppm, 52, 111, 364, 502, 503, 644,

790, 1128, 1129, 1222, 1223
lgcp.estK, 45, 213, 763, 792, 798, 894, 896,

944, 946, 1391, 1577, 1644, 1695
lgcp.estpcf, 45, 215, 763, 794, 795, 795,

1698

1764 INDEX

lineardirichlet, 357, 358, 798, 833
lineardisc, 39, 799
linearK, 43, 471, 801, 803, 805, 807, 808,

810, 815, 861
linearKcross, 44, 802, 807, 861
linearKcross.inhom, 44, 804
linearKdot, 44, 803, 805, 806, 808, 861
linearKdot.inhom, 44, 807
linearKinhom, 43, 809, 822, 823, 861
linearmarkconnect, 44, 811, 813, 861
linearmarkequal, 44, 812, 812
linearpcf, 43, 811–813, 813, 816, 818, 819,

823, 861
linearpcfcross, 44, 811–813, 815, 819, 821
linearpcfcross.inhom, 44, 816, 821
linearpcfdot, 44, 816, 818, 818
linearpcfdot.inhom, 44, 820
linearpcfinhom, 44, 815, 822
lineartileindex, 824
linequad, 825
lines, 865, 1088, 1161
linfun, 49, 128, 184, 309, 310, 407, 826, 922,

1004
Linhom, 41, 780, 781, 783, 784, 827, 841, 844,

845, 859
linim, 49, 129, 310, 335, 357, 486, 651, 829,

901, 906, 1132, 1241
linnet, 39, 61, 64, 130–133, 234, 235, 300,

331, 384, 413, 646, 707, 800, 801,
830, 830, 833, 834, 861, 926, 1037,
1133, 1469, 1507, 1642, 1659, 1660

lintess, 104, 309, 310, 413, 665, 799, 824,
832, 1134, 1648, 1650

lixellate, 831, 833, 926
lm, 29, 595, 949, 959
lme, 959, 961
lmeControl, 959
load, 1683
localK, 41, 735, 835, 838, 841, 842, 844, 845,

847, 859, 860
localKcross, 43, 837, 840, 859, 860
localKcross.inhom, 43, 838, 839, 859, 860
localKdot, 43, 841, 859, 860
localKinhom, 41, 836, 843, 847, 859, 860
localL, 41, 838, 841, 842, 844, 845, 859
localL (localK), 835
localLcross, 43, 840, 859, 860
localLcross (localKcross), 837

localLcross.inhom, 43, 859, 860
localLcross.inhom (localKcross.inhom),

839
localLdot, 43, 859, 860
localLdot (localKdot), 841
localLinhom, 41, 836, 838, 859
localLinhom (localKinhom), 843
localpcf, 41, 845, 858–860
localpcfinhom, 42, 859, 860
localpcfinhom (localpcf), 845
locator, 233–238
locfit, 1380, 1382
loess, 450, 872, 874, 879, 889, 1560
logLik, 848, 850, 852, 855, 857, 930
logLik.dppm, 848
logLik.kppm, 849
logLik.lppm (methods.lppm), 929
logLik.mppm, 851
logLik.ppm, 47, 549, 849, 851, 854, 1209
logLik.slrm, 50, 856, 1558
lohboot, 42, 51, 462, 734, 857, 1065, 1066,

1691, 1692
longleaf, 32, 681–685, 687, 1228
lpp, 31, 39, 66, 133, 134, 310, 335, 507, 802,

810, 815, 823, 834, 860, 863, 928,
995, 1012, 1038, 1139, 1241, 1469,
1507

lppm, 49, 78, 79, 313, 538, 692, 825, 826, 862,
930, 952–954, 956, 957, 1140, 1240,
1241, 1551

Lscaled (Kscaled), 766
lurking, 376, 379, 864, 869, 1282
lurking.mppm, 868
lurking.ppm, 868, 869
lut, 262, 869

mad.progress, 52
mad.progress (dclf.progress), 315
mad.sigtrace (dclf.sigtrace), 317
mad.test, 52, 171–174, 316–318, 366, 367,

373, 374, 460, 463
mad.test (dclf.test), 319
markconnect, 43, 451, 811–813, 871, 877,

890, 1070, 1075
markcorr, 43, 451, 744, 745, 872, 873, 874,

879, 889, 890
markcorrint (Kmark), 743
markcrosscorr, 43, 877, 878
markmarkscatter, 43, 880

INDEX 1765

markmean, 43
markmean (Smooth.ppp), 1562
marks, 33, 881, 883–885, 939
marks.lintess (marks.tess), 884
marks.psp, 37, 77, 455, 785, 883, 943, 1269
marks.ssf, 1592
marks.ssf (methods.ssf), 938
marks.tess, 884, 1635
marks<-, 31
marks<-.psp, 37
marks<- (marks), 881
marks<-.lintess (marks.tess), 884
marks<-.lpp (methods.lpp), 927
marks<-.psp (marks.psp), 883
marks<-.ssf (methods.ssf), 938
marks<-.tess (marks.tess), 884
markstat, 43, 89, 90, 241, 886, 888
marktable, 43, 89, 90, 886, 887, 887, 1007
markvar, 43
markvar (Smooth.ppp), 1562
markvario, 43, 451, 873, 877, 888
matchingdist, 890, 1231, 1233–1235
matclust.estK, 46, 763, 795, 892, 896, 944,

946, 1644
matclust.estpcf, 46, 763, 798, 894
Math.im, 897, 900, 905, 906, 1573, 1711
Math.imlist, 899
Math.linim, 830, 901
matrix, 632
matrixinvsqrt (matrixpower), 902
matrixpower, 902
matrixsqrt (matrixpower), 902
max, 939, 1315
max.fv (range.fv), 1315
max.ssf (methods.ssf), 938
maxnndist, 903, 993
mctest.progress, 317
mctest.progress (dclf.progress), 315
mctest.sigtrace (dclf.sigtrace), 317
mean, 905–907
mean.im, 36, 635, 905, 907, 1615
mean.linim, 906
measureContinuous, 907, 964, 1723
measureDiscrete, 909
measureDiscrete (measureContinuous), 907
measureNegative (measureVariation), 908
measurePositive, 908, 1723
measurePositive (measureVariation), 908

measureVariation, 908, 964
median, 905–907, 1710
median.im (mean.im), 905
median.linim (mean.linim), 906
mergeLevels, 910, 1340
methods.box3, 911
methods.boxx, 912
methods.distfun, 405, 913
methods.dppm, 427, 915
methods.fii, 536, 916
methods.funxy, 405, 914, 917
methods.kppm, 763, 918, 1682
methods.layered, 775, 776, 920
methods.linfun, 49, 349, 407, 827, 921, 1004
methods.linim, 923
methods.linnet, 39, 61, 131, 132, 646, 707,

831, 924
methods.lpp, 39, 861, 927
methods.lppm, 863, 929, 1140
methods.objsurf, 931, 1021, 1022
methods.pp3, 932
methods.ppm (ppm.object), 1208
methods.ppx, 861, 928, 933
methods.rho2hat, 934, 1378
methods.rhohat, 935, 1384
methods.slrm, 937
methods.ssf, 938, 1592
methods.unitname, 940
methods.zclustermodel, 942, 1727
midpoints.psp, 37, 77, 455, 522, 785, 943,

1269, 1270
min, 939, 1315
min.fv (range.fv), 1315
min.ssf (methods.ssf), 938
mincontrast, 46, 115, 212–215, 248, 249,

426, 427, 761, 763, 793–798,
893–896, 944, 1021, 1022,
1643–1646, 1694, 1695, 1697, 1698

MinkowskiSum, 479, 946
minnndist, 993
minnndist (maxnndist), 903
miplot, 40, 948, 1295
model.covariates (model.depends), 949
model.depends, 47, 949
model.frame, 951, 952
model.frame.dppm (model.frame.ppm), 951
model.frame.glm, 951
model.frame.kppm (model.frame.ppm), 951

1766 INDEX

model.frame.lppm (model.frame.ppm), 951
model.frame.ppm, 47, 549, 856, 951, 1209
model.images, 47, 952, 957, 958
model.is.additive (model.depends), 949
model.matrix, 433, 949, 950, 954–958
model.matrix.dppm (model.matrix.ppm),

955
model.matrix.ippm (model.matrix.ppm),

955
model.matrix.kppm (model.matrix.ppm),

955
model.matrix.lm, 953, 954, 956, 957
model.matrix.lppm (model.matrix.ppm),

955
model.matrix.mppm, 954
model.matrix.ppm, 549, 856, 952–954, 955,

1209
model.matrix.slrm, 957
mppm, 80, 81, 224, 255, 256, 379, 538, 539,

543, 852, 853, 869, 955, 958, 1141,
1142, 1242, 1243, 1290, 1291, 1314,
1367, 1368, 1552, 1602, 1603, 1700,
1701

msr, 364, 378, 508, 509, 600, 653, 867, 908,
909, 962, 1142, 1143, 1365–1367,
1370, 1371, 1561, 1562, 1584, 1723

mtext, 1116, 1157
mucosa, 32
MultiHard, 48, 594, 610, 964, 968, 970, 1052,

1203, 1205, 1206, 1214, 1217, 1220,
1310, 1313, 1405

multiplicity (multiplicity.ppp), 966
multiplicity.ppp, 436, 966, 1226, 1668
MultiStrauss, 48, 613, 965, 967, 969, 970,

1052, 1203, 1206, 1214, 1220, 1330,
1331, 1405, 1412, 1413, 1422, 1427,
1430, 1433

MultiStraussHard, 48, 615, 965, 969, 1052,
1204, 1206, 1214, 1220, 1330, 1331,
1405, 1412, 1413, 1422, 1427, 1430,
1433

murchison, 32

nbfires, 32
nearest.neighbour (Gest), 573
nearest.raster.point, 35, 971, 1032, 1033
nearestsegment, 37, 412, 972, 1263
nearestValue, 973, 1131
nestsplit, 974

news, 185, 774
nlm, 670, 671
nnclean, 41, 254, 975
nncorr, 977
nncross, 37, 42, 241, 410–412, 619, 980, 992,

993, 996, 998, 1010, 1011,
1013–1015, 1264

nncross.lpp, 44, 861, 983
nncross.pp3, 44, 985
nncross.ppx, 988
nndensity (nndensity.ppp), 990
nndensity.ppp, 990
nndist, 42, 230, 241, 297, 299–301, 303–305,

575, 576, 603, 619, 904, 977, 982,
987, 989, 991, 996, 998–1000, 1010,
1011, 1013–1015, 1035, 1036,
1039–1042, 1595

nndist.lpp, 44, 861, 985, 992, 993, 994, 1001
nndist.pp3, 44, 992, 993, 995
nndist.ppp, 1000
nndist.ppx, 45, 992, 993, 997
nndist.psp, 992, 993, 999
nnfromvertex, 1000
nnfun, 42, 121, 1001, 1003
nnfun.lpp, 44, 407, 827, 861, 1003
nnmap, 42, 121, 990, 1004
nnmark, 33, 628, 1006, 1177, 1564, 1565
nnmean, 43
nnmean (nncorr), 977
nnorient, 1008, 1044
nnvario, 43
nnvario (nncorr), 977
nnwhich, 42, 575, 576, 992, 993, 996, 998,

1007, 1009, 1014, 1015
nnwhich.lpp, 44, 861, 985, 1012
nnwhich.pp3, 44, 1010, 1013
nnwhich.ppx, 45, 1014
nobjects, 1015
nobs, 848, 850, 855, 930
nobs.dppm (logLik.dppm), 848
nobs.kppm (logLik.kppm), 849
nobs.lppm (methods.lppm), 929
nobs.mppm (logLik.mppm), 851
nobs.ppm, 1209
nobs.ppm (logLik.ppm), 854
npfun, 1017
npoints, 33, 38, 39, 1016, 1018, 1019
nsegments, 926, 928, 1019

INDEX 1767

nsegments.linnet (methods.linnet), 924
nsegments.lpp (methods.lpp), 927
nvertices, 926, 1020
nvertices.linnet (methods.linnet), 924
nztrees, 32, 1228

objsurf, 931, 1021
offset, 950
onearrow, 1144, 1145, 1183
onearrow (yardstick), 1724
opening, 34, 246, 677, 1022, 1032, 1033
Ops.im (Math.im), 897
Ops.imlist (Math.imlist), 899
Ops.linim (Math.linim), 901
Ops.msr, 964, 1024
optim, 211–214, 249, 425, 427, 488, 760, 762,

793, 794, 796, 797, 892, 893, 895,
896, 944, 945, 1642, 1643, 1645,
1646, 1694–1697

options, 1577, 1580
Ord, 48, 1025, 1026, 1027, 1052, 1204, 1206,

1214, 1220, 1330, 1331
ord.family, 611, 622, 645, 1026, 1049, 1052,

1663
OrdThresh, 48, 1025–1027, 1027, 1052, 1204,

1206, 1214, 1220, 1259, 1330, 1331,
1432

osteo, 33
overlap.owin, 439, 666, 1028
owin, 30, 34, 57, 91, 142, 144, 151, 178, 179,

225, 246, 275, 289, 290, 295, 385,
389, 390, 398, 399, 449, 477, 478,
515, 588, 637, 648, 675, 690, 1023,
1029, 1032, 1033, 1146, 1224–1226,
1228, 1269, 1270, 1317, 1321, 1338,
1385, 1489, 1495, 1533, 1542, 1546,
1577, 1591, 1595, 1673

owin.object, 92, 121, 134, 135, 141, 142,
147, 150, 160, 225, 275, 385, 397,
398, 449, 477, 498, 512, 516, 593,
648, 666, 688, 790, 971, 972, 1029,
1031, 1032, 1083, 1148, 1226, 1269,
1353, 1365, 1439, 1443, 1456, 1466,
1471, 1509, 1533, 1573, 1591, 1662,
1708, 1718

padimage, 1033
pairdist, 42, 297, 299–301, 303–305, 993,

996, 998, 1034, 1039–1042

pairdist.default, 1035, 1035, 1040
pairdist.lpp, 44, 1037
pairdist.pp3, 44, 1038
pairdist.ppp, 1035, 1039, 1042
pairdist.ppx, 45, 1040
pairdist.psp, 1035, 1040, 1041
pairorient, 1009, 1042
PairPiece, 48, 157, 1027, 1044, 1052, 1204,

1206, 1214, 1220, 1330, 1331, 1405,
1412, 1413, 1422, 1427, 1430, 1433,
1515, 1516

pairs, 1046–1048, 1052
pairs.default, 1046–1048, 1053
pairs.im, 1046, 1048, 1052, 1053
pairs.linim, 1047
pairsat.family, 157, 611, 622, 645, 1027,

1048, 1052, 1516, 1517, 1663
Pairwise, 48, 388, 1027, 1049, 1051, 1052,

1082, 1204, 1206, 1214, 1220, 1330,
1331

pairwise.family, 96, 278, 386, 532, 578,
594, 611, 622, 645, 787, 965, 968,
970, 1027, 1045, 1049, 1050, 1051,
1569, 1598, 1599, 1663

palette, 265, 266
paletteindex (colourtools), 263
panel.contour, 1046, 1047, 1052
panel.histogram (panel.contour), 1052
panel.image, 1046, 1047
panel.image (panel.contour), 1052
panel.smooth, 1053
par, 236–238, 1047, 1099, 1109, 1114, 1118,

1137, 1157, 1164, 1165, 1174, 1632
paracou, 33
parameters, 45, 46, 1053, 1259
parent.frame, 1719, 1721
parres, 52, 59, 1054, 1384
pcf, 41, 195, 207, 213–215, 249, 274, 426,

428, 462, 463, 715, 716, 719, 720,
722, 723, 726, 727, 733, 735, 740,
748, 751, 752, 754, 755, 758, 761,
763, 768, 789, 796, 798, 828, 847,
858–860, 895, 896, 1057,
1060–1062, 1066, 1068–1070, 1073,
1075, 1079, 1645, 1646, 1696, 1698

pcf.fasp, 1058, 1059
pcf.fv, 768, 1058, 1061
pcf.ppp, 196, 213, 796, 895, 1058, 1062,

1768 INDEX

1063, 1070, 1072, 1075–1079, 1081,
1645, 1696

pcf3est, 44, 475, 524, 562, 709, 1066
pcfcross, 42, 74, 815, 816, 819, 873, 1068,

1072, 1074, 1075, 1080, 1081
pcfcross.inhom, 43, 817, 818, 821, 1071,

1077
pcfdot, 42, 819, 1070, 1073, 1077, 1081
pcfdot.inhom, 43, 820, 1072, 1075
pcfinhom, 41, 195, 196, 249, 426, 428, 761,

763, 847, 859, 860, 1072, 1077, 1077
pcfmodel, 215, 750, 751, 1698
pcfmodel (Kmodel), 748
pcfmodel.detpointprocfamily

(Kmodel.dppm), 749
pcfmodel.dppm, 427
pcfmodel.dppm (Kmodel.dppm), 749
pcfmodel.kppm, 45, 763
pcfmodel.kppm (Kmodel.kppm), 750
pcfmodel.ppm, 47
pcfmodel.ppm (Kmodel.ppm), 751
pcfmodel.zclustermodel

(methods.zclustermodel), 942
pcfmulti, 42, 1070, 1075, 1079
pdf.options, 1119
Penttinen, 48, 1081, 1204, 1206, 1214, 1220,

1405, 1422, 1424, 1427, 1433, 1464
perimeter, 35, 92, 385, 440, 1032, 1083, 1542
periodify, 33, 34, 37, 1084, 1536, 1538,

1540, 1541
persp, 918, 931, 1149, 1152, 1153, 1578
persp.default, 931, 1086, 1087
persp.funxy (methods.funxy), 917
persp.im, 36, 287, 635, 636, 918, 1085, 1088,

1089, 1120, 1128, 1129
persp.leverage.ppm (plot.leverage.ppm),

1128
persp.objsurf (methods.objsurf), 931
perspContour (perspPoints), 1088
perspLines, 1087
perspLines (perspPoints), 1088
perspPoints, 1087, 1088
perspSegments (perspPoints), 1088
pictex, 1147
pixelcentres, 35, 36, 1089, 1317
pixellate, 36, 926, 1090, 1092–1095, 1250,

1556
pixellate.linnet, 39, 1091

pixellate.linnet (methods.linnet), 924
pixellate.owin, 35, 1090, 1091, 1091
pixellate.ppp, 34, 247, 336, 338,

1090–1092, 1092
pixellate.psp, 37, 136, 341, 926, 1090,

1091, 1094
pixelquad, 48, 1096, 1215
pkernel (dkernel), 413
pknn (rknn), 1387
plot, 916, 918, 922, 931, 933, 935, 936, 1097,

1106, 1114, 1124, 1127, 1135, 1153,
1157, 1161, 1164, 1171, 1172, 1177,
1182, 1184, 1259, 1284

plot.anylist, 85, 491, 1097, 1141, 1174,
1589, 1611

plot.bermantest, 168, 1100
plot.cdftest, 219, 220, 1102
plot.colourmap, 40, 262, 1104, 1134
plot.default, 376, 865, 1102, 1118, 1146,

1147, 1154, 1161
plot.diagppm (diagnose.ppm), 375
plot.dppm, 427, 915, 1105, 1239
plot.ecdf, 1100
plot.envelope, 460, 461, 463, 1107
plot.fasp, 72, 74–76, 526, 1108
plot.fii (methods.fii), 916
plot.foo (foo), 546
plot.funxy, 405, 555, 1002
plot.funxy (methods.funxy), 917
plot.fv, 42, 73, 109, 114, 317, 319, 403, 461,

463, 482, 529, 534, 548, 557–560,
575, 582, 606, 630, 700, 704, 733,
779, 782, 788, 828, 836, 838, 840,
842, 844, 847, 935, 936, 1008, 1043,
1070, 1074, 1106–1109, 1110, 1124,
1178, 1236, 1578, 1579, 1665

plot.hyperframe, 40, 624, 1113, 1722
plot.im, 36, 287, 497, 498, 635, 636, 918,

922, 1047, 1052, 1087, 1115, 1121,
1122, 1124, 1125, 1128–1134, 1142,
1143, 1168–1171, 1182, 1578, 1640

plot.imlist, 1119, 1121
plot.infline (infline), 641
plot.influence.ppm, 644, 1122
plot.kppm, 45, 763, 919, 1124, 1240, 1682
plot.laslett, 771, 773, 1125
plot.layered, 40, 775, 1126
plot.leverage.ppm, 121, 792, 1128

INDEX 1769

plot.linfun (methods.linfun), 921
plot.linim, 49, 830, 922, 1130, 1140, 1160,

1164
plot.linnet, 1132, 1138, 1139
plot.lintess, 833, 1133
plot.listof, 506, 1135, 1142, 1156, 1175,

1618
plot.lpp, 625, 1138, 1187
plot.lppm, 930, 1140
plot.mppm, 1141
plot.msr, 963, 964, 1142, 1365, 1366, 1369,

1370, 1562
plot.objsurf (methods.objsurf), 931
plot.onearrow, 1144, 1725
plot.owin, 34, 57, 1032, 1033, 1125, 1145,

1156, 1157, 1160, 1163, 1164, 1182,
1578

plot.plotppm, 1148, 1153
plot.pp3, 38, 1150, 1578
plot.ppm, 46, 549, 856, 1106, 1124, 1125,

1141, 1142, 1149, 1151, 1208, 1210,
1247, 1248, 1254, 1578

plot.ppp, 33, 625, 880, 1123, 1125, 1138,
1139, 1142, 1143, 1148, 1149, 1154,
1165, 1175, 1176, 1187, 1226, 1228,
1578, 1579, 1594, 1595

plot.pppmatching, 1159, 1231, 1235
plot.ppx (methods.ppx), 933
plot.profilepl, 1160, 1260
plot.psp, 37, 626, 1132, 1160, 1162, 1270
plot.qqppm, 1281
plot.quad, 1164, 1257, 1284
plot.quadratcount, 1166, 1168, 1295
plot.quadrattest, 1167, 1167
plot.rho2hat (methods.rho2hat), 934
plot.rhohat (methods.rhohat), 935
plot.rpart, 1168
plot.rppm, 1168, 1250, 1265, 1479
plot.scan.test, 1169, 1521
plot.slrm, 50, 938, 1171, 1558
plot.solist, 73, 288, 518, 954, 1121, 1122,

1125, 1126, 1172, 1182, 1571, 1624
plot.splitppp, 519, 1175, 1586
plot.ssf, 1176, 1592
plot.studpermutest, 1177, 1601
plot.symbolmap, 670, 1155, 1179, 1633
plot.tess, 38, 1166–1168, 1181, 1635
plot.textstring, 1183, 1725

plot.texturemap, 1184
plot.yardstick, 1185, 1725
pmixpois (dmixpois), 414
points, 1047, 1088, 1138, 1150, 1154, 1156,

1157, 1180, 1187
points.default, 1187
points.lpp, 1139, 1187
pointsOnLines, 37, 1188, 1511
Poisson, 47, 124, 1027, 1052, 1189, 1204,

1206, 1214, 1220, 1259, 1330, 1331,
1405, 1412, 1413, 1427, 1433

polartess, 37, 1190, 1298, 1635, 1707
poly, 1192, 1219
polyclip, 665
polygon, 233, 236, 1130–1132, 1146–1148,

1160, 1451
polynom, 595, 1192, 1577
polypath, 1146, 1147
ponderosa, 33
pool, 274, 1193, 1194–1201, 1318
pool.anylist, 1194, 1198
pool.envelope, 461, 463, 1193, 1195, 1197
pool.fasp, 1193, 1196, 1196
pool.fv, 42, 1193, 1197, 1201
pool.quadrattest, 1198, 1292
pool.rat, 1193, 1198, 1200
pp3, 31, 38, 98, 182, 294, 475, 524, 562, 709,

933, 1068, 1151, 1201, 1238, 1473,
1510

ppm, 46, 51, 58, 80, 82, 83, 94–96, 124, 125,
145, 156, 157, 168, 220, 257, 268,
277, 278, 314, 327, 375, 377, 379,
386–388, 425, 426, 428, 434, 435,
445–447, 453, 463, 488, 489, 532,
536, 537, 541, 549, 564–566, 577,
578, 588, 593–595, 610, 612, 614,
621, 639, 670–672, 677, 681, 682,
685, 692, 711–713, 751, 752, 761,
763, 765, 786, 787, 855, 856, 862,
863, 865–868, 949, 950, 952–954,
956, 957, 959–961, 965, 968–970,
1026–1028, 1045, 1050, 1056, 1082,
1096, 1097, 1123, 1149, 1151–1153,
1189, 1202, 1208, 1210, 1213, 1244,
1245, 1247, 1248, 1254, 1258, 1259,
1272, 1274–1276, 1279, 1282–1285,
1299–1303, 1330, 1331, 1347, 1369,
1371, 1384, 1405, 1411–1413, 1421,

1770 INDEX

1422, 1427, 1430, 1432, 1433, 1478,
1515–1517, 1554, 1568, 1569, 1578,
1597–1599, 1603, 1609–1611, 1663,
1664, 1682, 1683, 1689, 1690,
1702–1704

ppm.object, 96, 257, 278, 314, 379, 386, 388,
434, 435, 446, 532, 535, 536, 541,
578, 594, 689, 787, 954, 957, 965,
968, 970, 1026, 1028, 1045, 1050,
1082, 1152, 1153, 1204, 1206, 1208,
1217, 1220, 1244, 1245, 1248, 1254,
1282, 1285, 1371, 1411, 1412, 1517,
1569, 1598, 1599, 1609, 1619, 1664,
1683

ppm.ppp, 763, 1203, 1205, 1206, 1211
ppm.quad, 1203, 1204, 1206
ppm.quad (ppm.ppp), 1211
ppmInfluence, 364, 644, 792, 1222
ppois, 415
ppp, 30, 31, 146, 147, 210, 294, 328, 393, 400,

463, 831, 882, 1031, 1188, 1206,
1220, 1224, 1228, 1405, 1474, 1511,
1525, 1628, 1673

ppp.object, 90, 146, 147, 161, 307, 312, 314,
324, 340, 343, 435, 436, 455, 498,
512, 528, 574, 627, 628, 630, 700,
732, 882, 887, 888, 967, 1006, 1018,
1031, 1155, 1157, 1175, 1215, 1225,
1226, 1227, 1353, 1403, 1413, 1439,
1443, 1458, 1466, 1471, 1509, 1525,
1530, 1564, 1565, 1586, 1668, 1674

pppdist, 43, 891, 1229, 1233, 1234
pppmatching, 1232, 1234, 1235
pppmatching.object, 891, 1160, 1231, 1233,

1234
PPversion, 1235
ppx, 31, 38, 118, 183, 294, 514, 647, 882, 934,

1202, 1237, 1309, 1476, 1512, 1589
predict, 935, 936, 1238, 1239, 1241, 1249,

1251
predict.dppm, 427, 915, 1238, 1693
predict.glm, 1219, 1247
predict.kppm, 45, 763, 919, 1239, 1682, 1693
predict.lppm, 49, 538, 863, 1140, 1240, 1551
predict.mppm, 539, 1242
predict.ppm, 46, 447, 541, 549, 656, 856,

1152, 1153, 1204, 1209, 1210, 1214,
1219, 1238–1240, 1244, 1249, 1254,

1346, 1578, 1693
predict.rho2hat (methods.rho2hat), 934
predict.rhohat (methods.rhohat), 935
predict.rppm, 1168, 1249, 1265, 1479
predict.slrm, 50, 938, 1171, 1250, 1555,

1558, 1705, 1706
predict.smooth.spline, 1060–1062
predict.zclustermodel

(methods.zclustermodel), 942
print, 641, 911–913, 915, 916, 919, 922, 923,

926, 928, 930–933, 935, 936, 938,
939, 941, 942, 1252, 1253, 1255,
1256, 1259

print.box3 (methods.box3), 911
print.boxx (methods.boxx), 912
print.default, 922, 941
print.dppm (methods.dppm), 915
print.fii (methods.fii), 916
print.im, 635, 1252
print.infline (infline), 641
print.kppm (methods.kppm), 918
print.linfun (methods.linfun), 921
print.linim (methods.linim), 923
print.linnet (methods.linnet), 924
print.listof, 1136, 1138
print.lpp (methods.lpp), 927
print.lppm (methods.lppm), 929
print.mppm, 256, 961
print.objsurf (methods.objsurf), 931
print.owin, 1033, 1253, 1255, 1256, 1618
print.pp3, 1018, 1202
print.pp3 (methods.pp3), 932
print.ppm, 47, 257, 621, 1153, 1204, 1208,

1210, 1214, 1248, 1254, 1578
print.ppp, 1253, 1255, 1579, 1621
print.ppx, 1018, 1238
print.ppx (methods.ppx), 933
print.psp, 37, 1256, 1622
print.qqppm, 1281
print.quad, 1257
print.rho2hat (methods.rho2hat), 934
print.rhohat (methods.rhohat), 935
print.slrm (methods.slrm), 937
print.ssf (methods.ssf), 938
print.summary.dppm (summary.dppm), 1613
print.summary.fii (methods.fii), 916
print.summary.im (summary.im), 1614
print.summary.kppm (summary.kppm), 1616

INDEX 1771

print.summary.linim, 924
print.summary.lpp (methods.lpp), 927
print.summary.pp3 (methods.pp3), 932
print.summary.ppm, 1613, 1616
print.summary.ppm (summary.ppm), 1619
print.summary.quad (summary.quad), 1623
print.unitname (methods.unitname), 940
print.zclustermodel

(methods.zclustermodel), 942
proc.time, 1653
profilepl, 145, 532, 672, 1161, 1162, 1205,

1206, 1217, 1220, 1258
progressreport, 1261, 1579
project.ppm, 47, 1206, 1579, 1689, 1690
project.ppm (emend.ppm), 452
project2segment, 37, 411, 412, 972, 1263,

1264
project2set, 1264
prune, 1265
prune.rpart, 1265
prune.rppm, 1265, 1479
ps.options, 1119
pseudoR2, 1266
psib, 1267
psp, 31, 37, 77, 87, 149, 150, 239, 522, 831,

1188, 1268, 1270, 1271, 1393, 1467,
1474, 1511, 1577, 1628, 1636

psp.object, 149, 150, 307, 342, 455, 516,
884, 1019, 1163, 1164, 1269, 1270,
1459, 1530, 1674

psst, 53, 268, 566, 588, 713, 765, 1017, 1271,
1275, 1277, 1577

psstA, 53, 268, 566, 588, 713, 765, 1273,
1273, 1277, 1577, 1579

psstG, 53, 268, 566, 588, 713, 765, 1273,
1275, 1276, 1577, 1579

pyramidal, 33

qkernel (dkernel), 413
qknn (rknn), 1387
qmixpois (dmixpois), 414
qpois, 415
qqplot.ppm, 51, 52, 325, 326, 377, 379, 868,

1278
QQversion (PPversion), 1235
quad, 48
quad.mppm, 539
quad.object, 146, 295, 323, 324, 396, 517,

589–591, 1096, 1097, 1165, 1215,

1257, 1283, 1285, 1299, 1300, 1590,
1596, 1623, 1667

quad.ppm, 541, 867, 951, 957, 962, 1209,
1284, 1369

quadform (sumouter), 1626
quadrat.test, 52, 153, 168, 220, 224, 1167,

1168, 1199, 1209, 1286, 1291,
1293–1295, 1298

quadrat.test.mppm, 1290
quadrat.test.ppm, 1209, 1290
quadrat.test.ppp, 1292
quadrat.test.splitppp, 1287, 1289, 1292
quadratcount, 41, 153, 661, 662, 949, 1166,

1167, 1286, 1288–1290, 1293, 1293,
1297, 1298, 1382

quadratresample, 32, 51, 53, 1289, 1293,
1295, 1296, 1298

quadrats, 37, 974, 1191, 1289, 1293, 1295,
1297, 1297, 1303, 1304, 1634, 1635,
1692, 1707

quadscheme, 48, 82, 277, 295, 324, 564, 589,
712, 962, 1096, 1097, 1206, 1215,
1220, 1257, 1272, 1274, 1276, 1284,
1298, 1369, 1370, 1489, 1495, 1496,
1590, 1596, 1629

quadscheme.logi, 1301, 1703
quantess, 38, 975, 1191, 1298, 1303, 1635,

1707
quantile, 906, 907, 1304, 1306–1308, 1710
quantile.default, 858, 1303, 1306, 1307
quantile.density, 217, 1305
quantile.ewcdf, 487, 1306, 1306
quantile.im, 36, 635, 905, 906, 1306, 1307
quantile.linim (mean.linim), 906
quasirandom, 1308
quote, 557, 1114

rags, 1310, 1311–1313
ragsAreaInter, 96, 1311, 1311, 1313
ragsMultiHard, 965, 1310–1312, 1312
ranef, 1314
ranef.lme, 1314
ranef.mppm, 256, 1314
range, 939, 1315
range.fv, 558, 1315
range.ssf (methods.ssf), 938
raster.x, 35, 1030, 1032, 1033, 1316
raster.xy, 35, 1090
raster.xy (raster.x), 1316

1772 INDEX

raster.y, 35, 1030, 1032, 1033
raster.y (raster.x), 1316
rasterImage, 1118, 1119
rat, 1200, 1201, 1317
rbind, 215
rbind.hyperframe, 40, 624
rbind.hyperframe (cbind.hyperframe), 215
rCauchy, 31, 45, 51, 212–215, 247, 252, 1318,

1396, 1447, 1477, 1502, 1549, 1550
rcell, 31, 51, 1321, 1324, 1471
rcelllpp, 1322, 1494
rcellnumber, 1321–1323, 1324
rDGS, 31, 51, 386, 1325, 1328, 1377, 1464,

1491, 1493
rDiggleGratton, 31, 50, 1326, 1326, 1377,

1464, 1491, 1493
rdpp, 1328, 1547, 1548
reach, 83, 325, 917, 1209, 1329
reach.detpointprocfamily (reach.dppm),

1331
reach.dppm, 1331, 1331
reach.fii, 536, 917
reach.kppm, 1331, 1332
reach.ppm, 1209
read.table, 1228, 1524
rect, 1052
rectcontact, 1333
rectdistmap, 1333, 1334
redraw.simplepanel (run.simplepanel),

1503
reduced.sample, 530, 576, 702, 710, 735,

742, 743, 1335
redwood, 33, 1228
redwoodfull, 33
reflect, 33, 62, 71, 292, 293, 545, 914, 921,

1337, 1455
reflect.default, 71
reflect.distfun (methods.distfun), 913
reflect.im, 71
reflect.infline (rotate.infline), 1454
reflect.layered (methods.layered), 920
reflect.tess, 38
reflect.tess (affine.tess), 70
regularpolygon, 1031, 1225, 1338
relevel, 910, 911, 1339
relevel.im, 1339
relevel.ppp (relevel.im), 1339
relevel.ppx (relevel.im), 1339

reload.or.compute, 1340
relrisk, 41, 42, 199, 200, 338–340, 1341,

1341, 1343, 1344, 1346, 1347, 1349,
1521, 1529

relrisk.lpp, 201, 202, 1342
relrisk.ppm, 1341, 1342, 1345, 1350
relrisk.ppp, 1341, 1342, 1347, 1347, 1528
repairNetwork, 39, 1351, 1642
Replace.im, 1352
Replace.linim, 1354
repul (repul.dppm), 1356
repul.dppm, 1356
requireversion, 1357
rescale, 64, 66, 658, 660, 914, 920, 921, 941,

1218, 1358, 1359–1363, 1673
rescale.distfun (methods.distfun), 913
rescale.im, 1359, 1359
rescale.layered, 1359
rescale.layered (methods.layered), 920
rescale.linnet, 1359
rescale.linnet (affine.linnet), 63
rescale.lpp, 1359
rescale.lpp (affine.lpp), 65
rescale.owin, 1359, 1360, 1361, 1362
rescale.ppp, 1359, 1361
rescale.psp, 1359, 1363
rescale.unitname, 1359
rescale.unitname (methods.unitname), 940
rescue.rectangle, 67, 1364, 1456, 1471
reset.spatstat.options

(spatstat.options), 1576
residuals.dppm, 1365
residuals.kppm, 1366
residuals.mppm, 1367, 1368
residuals.ppm, 47, 377–379, 446, 549, 856,

867, 868, 957, 962, 963, 1209, 1279,
1282, 1365–1367, 1368, 1561

residualspaper, 33, 52
rex, 159, 1371
RFsimulate, 1391
rGaussPoisson, 31, 51, 1320, 1373, 1391,

1396, 1447, 1471, 1477, 1502
rgb, 264, 1375
rgb2hex (colourtools), 263
rgb2hsv, 265, 266
rgb2hsva (colourtools), 263
rgbim, 36, 1374
rHardcore, 31, 50, 1326, 1328, 1375, 1464,

INDEX 1773

1491, 1493
rho2hat, 41, 52, 59, 935, 1057, 1377, 1384
rhohat, 41, 52, 59, 936, 937, 1057, 1377,

1378, 1378
rhohat.lpp, 825
ripras, 34, 178, 290, 1384, 1525, 1628, 1629
rjitter, 31, 32, 51, 53, 1386
rkernel (dkernel), 413
rknn, 42, 1387
rlabel, 32, 459, 1389, 1529
rLGCP, 45, 51, 761, 1390, 1549, 1550
rlinegrid, 37, 51, 1392
rlpp, 1393, 1469, 1507
rMatClust, 31, 45, 51, 247, 252, 893, 894,

896, 1228, 1320, 1374, 1391, 1394,
1397, 1399, 1447, 1471, 1477, 1502,
1549, 1550

rMaternI, 31, 50, 1228, 1396, 1399, 1471,
1488

rMaternII, 31, 50, 1228, 1398, 1471, 1488
rmax.Ripley (edge.Ripley), 436
rmax.Trans, 438, 440
rmax.Trans (edge.Trans), 438
rmh, 31, 51, 96, 142, 325, 326, 460, 965, 1209,

1213, 1216, 1279, 1280, 1282,
1325–1328, 1376, 1377, 1399, 1401,
1405, 1412, 1413, 1416–1423, 1426,
1427, 1429, 1430, 1432–1435, 1463,
1464, 1491–1493, 1497, 1577, 1579,
1621

rmh.default, 1279, 1399, 1400, 1400, 1412,
1413, 1471, 1496, 1497, 1553

rmh.ppm, 47, 49, 1045, 1209, 1399, 1405,
1411, 1554

rmhcontrol, 325–327, 1280–1282,
1401–1403, 1411–1413, 1415, 1420,
1422, 1427, 1430, 1432–1435, 1553,
1554, 1577, 1685

rmhcontrol.default, 326, 1579
rmhexpand, 326, 490, 1325, 1327, 1376, 1415,

1416, 1418, 1419, 1463, 1490, 1492,
1714

rmhmodel, 1209, 1330, 1331, 1413, 1416,
1418, 1421, 1421, 1423, 1429, 1430,
1432, 1433, 1435, 1496

rmhmodel.default, 1401, 1421, 1422, 1422,
1430, 1433

rmhmodel.list, 1421, 1422, 1429, 1433

rmhmodel.ppm, 1209, 1421, 1422, 1430, 1431
rmhstart, 1402, 1411–1413, 1416, 1418,

1422, 1427, 1430, 1433, 1433, 1496,
1553

rmixpois (dmixpois), 414
RMmodel, 794, 795, 797, 798, 1391
rMosaicField, 51, 1435, 1437
rMosaicSet, 51, 1436, 1436
rmpoint, 31, 50, 1413, 1437, 1443, 1471
rmpoispp, 31, 50, 1313, 1399, 1413, 1439,

1441, 1471
rNeymanScott, 31, 51, 252, 1228, 1320, 1374,

1391, 1396, 1444, 1477, 1502, 1514
rnoise, 36, 1447
rnorm, 1448
roc, 41, 155, 156, 1448
rose, 228, 1008, 1043, 1450
rotate, 33, 34, 62–64, 66–68, 70, 71, 490,

545, 914, 921, 1032, 1359, 1361,
1362, 1364, 1452, 1454, 1455, 1536,
1538, 1540, 1541

rotate.distfun (methods.distfun), 913
rotate.im, 36, 71, 1453
rotate.infline, 642, 1454
rotate.layered (methods.layered), 920
rotate.linnet (affine.linnet), 63
rotate.lpp (affine.lpp), 65
rotate.owin, 71, 1033, 1453, 1456,

1457–1459
rotate.ppp, 1453, 1457, 1459
rotate.psp, 37, 1458
rotate.tess, 38
rotate.tess (affine.tess), 70
rotmean, 1459
round, 1461, 1462
round.pp3 (round.ppp), 1460
round.ppp, 1460, 1462
round.ppx (round.ppp), 1460
rounding, 1461, 1461
rpart, 1478
rPenttinen, 31, 51, 1326, 1328, 1377, 1424,

1463, 1491, 1493
rpoint, 31, 50, 1413, 1439, 1464, 1471, 1487,

1506, 1508, 1509
rpois, 415
rpoisline, 37, 51, 1393, 1466, 1468
rpoislinetess, 38, 51, 1191, 1298, 1436,

1437, 1467, 1635, 1707

1774 INDEX

rpoislpp, 39, 44, 861, 1468, 1507, 1551
rpoispp, 31, 50, 1228, 1320, 1374, 1391,

1396, 1397, 1399, 1413, 1443, 1445,
1447, 1470, 1474, 1477, 1488, 1502,
1509, 1514, 1555, 1556, 1577

rpoispp3, 38, 475, 1472, 1510
rpoisppOnLines, 32, 51, 1469, 1473
rpoisppx, 39, 1475, 1512
rPoissonCluster, 31, 1476
rppm, 1168, 1169, 1249, 1250, 1265, 1478
rQuasi, 1310, 1479
rshift, 32, 51, 53, 1480, 1483, 1485, 1486
rshift.ppp, 1480, 1481, 1481, 1484–1486
rshift.psp, 1480, 1481, 1483, 1484
rshift.splitppp, 1480, 1481, 1485
rSSI, 31, 50, 1228, 1471, 1487
rstrat, 31, 48, 50, 1322, 1471, 1489, 1496
rStrauss, 31, 50, 1326, 1328, 1376, 1377,

1405, 1425, 1464, 1471, 1490, 1493
rStraussHard, 31, 50, 1326, 1328, 1377,

1464, 1491, 1492
rSwitzerlpp, 1323, 1493
rsyst, 31, 50, 1322, 1489, 1495
rtemper, 1496
rthin, 31, 32, 51, 53, 1446, 1497, 1500, 1577
rthinclumps, 1499
rThomas, 31, 45, 51, 247, 252, 1228, 1320,

1374, 1396, 1447, 1471, 1477, 1500,
1549, 1550, 1643, 1644, 1646

rug, 935, 936
run.simplepanel, 1503, 1543, 1544
runif, 1448
runifdisc, 31, 50, 1505
runiflpp, 39, 44, 861, 1394, 1469, 1507
runifpoint, 31, 50, 1228, 1322, 1465, 1466,

1471, 1489, 1496, 1506, 1508, 1511,
1578

runifpoint3, 38, 1473, 1509
runifpointOnLines, 31, 51, 1188, 1474,

1507, 1510
runifpointx, 39, 1476, 1511
rVarGamma, 31, 45, 51, 247, 252, 761, 1320,

1396, 1447, 1477, 1502, 1512, 1549,
1550, 1695, 1697, 1698

samecolour (colourtools), 263
sample, 1465, 1508
SatPiece, 48, 157, 1027, 1049, 1204, 1206,

1214, 1220, 1515, 1516, 1517

Saturated, 48, 1027, 1049, 1052, 1204, 1206,
1214, 1220, 1330, 1331, 1516

scalardilate, 33, 64, 66, 71, 914, 921, 923,
1517

scalardilate.distfun (methods.distfun),
913

scalardilate.im, 71
scalardilate.layered (methods.layered),

920
scalardilate.linim (methods.linim), 923
scalardilate.linnet (affine.linnet), 63
scalardilate.lpp (affine.lpp), 65
scalardilate.owin, 71
scalardilate.tess (affine.tess), 70
scale, 1519
scaletointerval, 36, 1519
scan.test, 42, 51, 52, 1170, 1520, 1522, 1523
scanLRTS, 1170, 1521, 1522
scanpp, 1228, 1524
sdr, 45, 47, 50, 391, 392, 1525, 1527, 1528
sdrPredict, 1526, 1527, 1527
segments, 234, 1088, 1133, 1134, 1144, 1150,

1163, 1182, 1185
segregation.test, 51, 1528
selfcrossing.psp, 37, 307, 1530, 1531,

1580
selfcut.psp, 37, 131, 132, 1531
sessionInfo, 1532
sessionLibs, 1532
set.seed, 1405, 1547, 1549, 1555
setcov, 35, 36, 403, 404, 439, 440, 635, 637,

1028, 1533, 1577
setmarks (marks), 881
setminus.owin, 35
setminus.owin (intersect.owin), 665
shapley, 33
sharpen, 254, 1534
sharpen.ppp, 33, 41, 42, 338, 340
shift, 33, 34, 62–64, 66–68, 70, 71, 490, 545,

643, 914, 921, 923, 1032, 1085,
1099, 1137, 1174, 1359, 1361, 1362,
1364, 1455, 1518, 1535, 1537–1541,
1725

shift.distfun (methods.distfun), 913
shift.im, 36, 71, 1454, 1536
shift.infline (rotate.infline), 1454
shift.layered (methods.layered), 920
shift.linim (methods.linim), 923

INDEX 1775

shift.linnet (affine.linnet), 63
shift.lpp (affine.lpp), 65
shift.owin, 71, 1033, 1459, 1536, 1537,

1540, 1541
shift.ppp, 1536, 1538, 1539, 1541
shift.psp, 37, 1540
shift.tess, 38
shift.tess (affine.tess), 70
shortside, 1542
shortside (diameter.box3), 381
shortside.box3, 38
shortside.boxx, 39
shortside.boxx (diameter.boxx), 382
shortside.owin (sidelengths.owin), 1541
sidelengths, 1542
sidelengths (diameter.box3), 381
sidelengths.boxx (diameter.boxx), 382
sidelengths.owin, 1541
simdat, 33, 1228
simplenet, 39, 831
simplepanel, 777, 778, 1503, 1504, 1542
simplify.owin, 34, 143, 144, 291, 1083, 1546
simulate, 936, 1259, 1548–1552, 1554–1556
simulate.detpointprocfamily, 419, 420
simulate.detpointprocfamily

(simulate.dppm), 1547
simulate.dppm, 427, 915, 1547
simulate.kppm, 45, 51, 212, 214, 460, 763,

919, 1549, 1554, 1556, 1682, 1695,
1697

simulate.lppm, 1550
simulate.mppm, 1552
simulate.ppm, 31, 47, 49, 51, 325, 549, 856,

1209, 1413, 1550, 1552, 1553, 1556
simulate.rhohat (methods.rhohat), 935
simulate.slrm, 50, 938, 1555
slrm, 50, 84, 258, 259, 542, 692, 857, 938,

953, 954, 958, 1171, 1251, 1556,
1556, 1705, 1706

Smooth, 175, 643, 791, 1559, 1560–1563,
1565, 1567

Smooth.fv, 42, 529, 1559, 1560
Smooth.im, 36, 1559
Smooth.im (blur), 174
Smooth.msr, 963, 964, 1143, 1559, 1561
Smooth.ppp, 33, 41, 42, 121, 176, 205,

338–340, 628, 973, 1007, 1094,
1142, 1143, 1177, 1350, 1535, 1559,

1562, 1566, 1567, 1577
smooth.spline, 359, 360, 1060–1062, 1560,

1561
Smooth.ssf, 1565, 1592
Smoothfun, 121, 350
Smoothfun (Smoothfun.ppp), 1566
Smoothfun.ppp, 1566
Softcore, 48, 1027, 1052, 1204, 1206, 1214,

1220, 1259, 1330, 1331, 1405, 1412,
1413, 1422, 1427, 1430, 1433, 1567

solapply, 152, 900, 1570, 1572
solist, 85, 152, 518, 1570, 1571, 1624, 1725
solutionset, 36, 635, 790, 1572, 1711
source, 1683
spatdim, 1573
spatialcdf, 41, 616, 617, 1575, 1593
spatstat (spatstat-package), 28
spatstat-package, 28
spatstat.options, 34, 35, 47, 122, 135, 287,

453, 523, 566, 736, 747, 918, 953,
954, 1112, 1120, 1146–1149, 1151,
1153, 1156, 1246, 1248, 1275, 1416,
1418, 1508, 1576

spiders, 33, 39, 861
split, 1581, 1582, 1584, 1588, 1625, 1678
split.hyperframe, 624, 1581
split.im, 209, 1571, 1582
split.msr, 652, 908, 909, 963, 964, 1583,

1676, 1723
split.ppp, 33, 113, 126, 210, 343, 511, 512,

519, 974, 975, 977, 1175, 1294,
1480, 1486, 1571, 1583, 1584, 1585,
1625, 1635, 1649, 1678

split.ppx, 1588
split<-.hyperframe (split.hyperframe),

1581
split<-.ppp (split.ppp), 1585
spokes, 48, 324, 1299, 1300, 1589
sporophores, 33
spruces, 33
square, 34, 1030, 1031, 1225, 1591
ssf, 940, 1177, 1566, 1592, 1724, 1728
step, 45, 47, 848, 850, 853, 855, 1209, 1558
stepfun, 1426, 1427
stieltjes, 1593
stienen, 1594
stienenSet (stienen), 1594
stratrand, 324, 589, 1299, 1300, 1590, 1595

1776 INDEX

Strauss, 48, 124, 453, 577, 578, 594, 965,
968, 970, 1027, 1045, 1052, 1189,
1204, 1206, 1214, 1220, 1258, 1259,
1330, 1331, 1405, 1412, 1413, 1422,
1427, 1430, 1432, 1433, 1491, 1597,
1689

StraussHard, 48, 532, 594, 1027, 1052, 1204,
1206, 1214, 1220, 1259, 1330, 1331,
1405, 1412, 1413, 1422, 1427, 1430,
1433, 1492, 1493, 1598

studpermu.test, 51, 1178, 1179, 1600
subfits, 379, 1141, 1552, 1602
subset, 1604–1608
subset.hyperframe, 40, 1603
subset.lpp, 39, 310, 507
subset.lpp (subset.ppp), 1604
subset.pp3, 38
subset.pp3 (subset.ppp), 1604
subset.ppp, 33, 311, 512, 1604
subset.ppx, 39
subset.ppx (subset.ppp), 1604
subset.psp, 37, 1607
subspaceDistance, 392, 1527, 1608
substitute, 557
suffstat, 1609
summary, 36, 40, 48, 916, 922, 923, 926, 928,

930, 932, 939, 941, 1259,
1611–1613, 1615–1619, 1621–1625

summary.anylist, 491, 1611
summary.distfun, 405, 1612
summary.dppm, 1613
summary.fii (methods.fii), 916
summary.funxy, 555
summary.funxy (summary.distfun), 1612
Summary.im, 905, 1711
Summary.im (Math.im), 897
summary.im, 617, 635, 905, 906, 1252, 1612,

1614
Summary.imlist (Math.imlist), 899
summary.kppm, 45, 1616
summary.linfun (methods.linfun), 921
Summary.linim (Math.linim), 901
summary.linim (methods.linim), 923
summary.linnet (methods.linnet), 924
summary.listof, 506, 1617
summary.lpp (methods.lpp), 927
summary.lppm (methods.lppm), 929
summary.mppm, 961

summary.owin, 1033, 1253, 1618, 1621, 1622
summary.pp3 (methods.pp3), 932
summary.ppm, 47, 549, 692, 856, 1613, 1616,

1619
summary.ppp, 1255, 1403, 1618, 1621
summary.psp, 37, 77, 455, 785, 943, 1256,

1269, 1622
summary.quad, 1257, 1623
summary.solist, 518, 1624
summary.splitppp, 519, 1625
summary.ssf (methods.ssf), 938
summary.unitname (methods.unitname), 940
sumouter, 1626
superimpose, 33, 37, 87, 276, 277, 1228,

1586, 1627, 1630, 1631
superimpose.lpp, 1628, 1629, 1630
svd, 903
Sweave, 1340, 1532
swedishpines, 33, 1228
symbolmap, 670, 880, 1155, 1157, 1180, 1631,

1686
symbols, 1154, 1156, 1157, 1164, 1180

table, 888
tail, 604
tail.hyperframe, 40
tail.ppp (headtail), 603
tail.ppx (headtail), 603
tail.psp (headtail), 603
tail.tess (headtail), 603
terms, 549, 852, 915, 919, 930, 938, 949
terms.dppm (methods.dppm), 915
terms.kppm (methods.kppm), 918
terms.lppm (methods.lppm), 929
terms.mppm (logLik.mppm), 851
terms.ppm, 856, 1209
terms.ppm (formula.ppm), 549
terms.slrm (methods.slrm), 937
terrain.colors, 1086, 1118
tess, 31, 37, 154, 162, 209, 210, 280, 285,

311, 312, 328, 393, 520, 521, 609,
668, 974, 1182, 1191, 1295, 1298,
1303, 1304, 1583, 1586, 1633, 1647,
1650–1652, 1661, 1692, 1707

test.crossing.psp, 1636
test.selfcrossing.psp

(test.crossing.psp), 1636
text, 1183, 1186, 1637

INDEX 1777

text.default, 626, 1130, 1166–1168, 1181,
1637

text.lpp, 1139
text.lpp (text.ppp), 1637
text.ppp, 1157, 1637
text.psp, 1164
text.psp (text.ppp), 1637
text.rpart, 1168
textstring, 1183
textstring (yardstick), 1724
texturemap, 57, 1184, 1185, 1638
textureplot, 57, 1184, 1185, 1638, 1639,

1639
thinNetwork, 39, 61, 282, 283, 646, 707, 831,

926, 1351, 1641
thomas.estK, 45, 213, 763, 795, 894, 896,

944, 946, 1642, 1646, 1695
thomas.estpcf, 46, 215, 763, 798, 896, 1644,

1698
tile.areas, 38, 1635, 1647, 1651, 1652
tile.lengths, 833, 1648
tileindex, 113, 824, 1649
tilenames, 1304, 1635, 1647, 1650, 1651,

1652
tilenames<- (tilenames), 1650
tiles, 38, 521, 1635, 1647, 1650, 1651, 1652
tiles.empty, 1647, 1651, 1652
timed, 1653, 1655
timeTaken, 1654, 1654
to.grey, 1119
to.grey (colourtools), 263
to.opaque (colourtools), 263
to.saturated (colourtools), 263
to.transparent (colourtools), 263
topo.colors, 1086, 1118
totalVariation (measureVariation), 908
trans3d, 1087
transect.im, 36, 1655
transmat, 36, 1656
treebranchlabels, 184, 330, 331, 1658,

1659, 1660
treeprune, 1659, 1659
triangulate.owin, 35, 1660
trim.rectangle, 593, 1661
triplet.family, 1662, 1664
Triplets, 48, 1204, 1206, 1214, 1220, 1405,

1422, 1427, 1433, 1662, 1663, 1663
Tstat, 41, 244, 1664

tweak.colourmap, 40, 262, 263, 266, 663,
1666

txtProgressBar, 1261

union.owin, 35, 402
union.owin (intersect.owin), 665
union.quad, 1284, 1667
unique.ppp, 33, 436, 967, 1226, 1668, 1671
unique.ppx (unique.ppp), 1668
uniquemap, 1669, 1670
uniquemap (uniquemap.ppp), 1670
uniquemap.data.frame

(uniquemap.default), 1669
uniquemap.default, 1669, 1671
uniquemap.matrix (uniquemap.default),

1669
uniquemap.ppp, 33, 1670, 1670
uniroot, 770
unit.square (square), 1591
unitname, 182, 183, 911–913, 926, 928,

932–934, 942, 1209, 1358–1363,
1671

unitname.box3, 38
unitname.box3 (methods.box3), 911
unitname.boxx (methods.boxx), 912
unitname.linnet (methods.linnet), 924
unitname.lpp (methods.lpp), 927
unitname.pp3, 38
unitname.pp3 (methods.pp3), 932
unitname.ppm, 1209
unitname.ppx, 39
unitname.ppx (methods.ppx), 933
unitname<- (unitname), 1671
unitname<-.box3 (methods.box3), 911
unitname<-.boxx (methods.boxx), 912
unitname<-.linnet (methods.linnet), 924
unitname<-.lpp (methods.lpp), 927
unitname<-.pp3 (methods.pp3), 932
unitname<-.ppx (methods.ppx), 933
units, 1364
unmark, 33, 507, 511, 512, 514, 882, 928, 939,

1592, 1673
unmark.lintess (marks.tess), 884
unmark.lpp (methods.lpp), 927
unmark.psp, 37
unmark.ssf (methods.ssf), 938
unmark.tess (marks.tess), 884
unnormdensity, 1674
unstack, 1676–1679

1778 INDEX

unstack.layered (unstack.solist), 1678
unstack.lintess (unstack.ppp), 1677
unstack.lpp, 1679
unstack.lpp (unstack.ppp), 1677
unstack.msr, 963, 1676, 1678, 1679
unstack.ppp, 1676, 1677, 1679
unstack.psp, 1679
unstack.psp (unstack.ppp), 1677
unstack.solist, 1678
unstack.tess (unstack.ppp), 1677
update, 930, 938, 961, 1680, 1683, 1685, 1686
update.detpointprocfamily, 1679
update.interact, 1680
update.kppm, 45, 533, 581, 703, 718, 725,

738, 756, 763, 840, 844, 846, 919,
1078, 1681

update.lppm, 809, 822
update.lppm (methods.lppm), 929
update.ppm, 47, 533, 549, 564, 581, 703, 711,

718, 725, 738, 756, 809, 822, 840,
844, 846, 856, 1078, 1209, 1271,
1274, 1276, 1280, 1680, 1682

update.rmhcontrol, 326, 327, 1412, 1413,
1685

update.slrm (methods.slrm), 937
update.symbolmap, 1633, 1686
urkiola, 33

valid, 452, 930, 1687, 1688, 1689
valid.detpointprocfamily, 1687, 1688
valid.lppm (methods.lppm), 929
valid.ppm, 47, 453, 1206, 1219, 1220, 1687,

1689
varblock, 42, 51, 462, 734, 859, 860, 1297,

1690
varcount, 1692
vargamma.estK, 46, 213, 763, 1514, 1693,

1698
vargamma.estpcf, 46, 215, 763, 1514, 1695,

1696
vcov, 930, 1699–1702, 1704–1706
vcov.kppm, 45, 763, 919, 1240, 1682, 1698
vcov.lppm (methods.lppm), 929
vcov.mppm, 1700
vcov.ppm, 47, 80, 82, 83, 549, 856, 1209,

1346, 1619, 1699–1701, 1701
vcov.slrm, 50, 938, 1558, 1705
vdCorput (quasirandom), 1308
venn.tess, 38, 1191, 1298, 1635, 1706

vertexdegree (methods.linnet), 924
vertices, 675, 926, 1020, 1707
vertices.linnet, 39
vertices.linnet (methods.linnet), 924
View, 40, 604
Vmark, 43
Vmark (Emark), 449
volume, 926, 1709
volume.box3, 38, 182, 1709
volume.box3 (diameter.box3), 381
volume.boxx, 39, 183, 1709
volume.boxx (diameter.boxx), 382
volume.linnet, 1709
volume.linnet (methods.linnet), 924
volume.owin (area.owin), 91

waka, 33
waterstriders, 33
weighted.median, 1710
weighted.quantile (weighted.median),

1710
weighted.var (weighted.median), 1710
where.max, 1711
where.min (where.max), 1711
which.max, 1711
which.min, 1711
whichhalfplane, 642, 1712
whist, 1713
will.expand, 1420, 1714
Window, 34, 418, 552, 926, 1715, 1718
Window.distfun (WindowOnly), 1716
Window.dppm (WindowOnly), 1716
Window.funxy (WindowOnly), 1716
Window.influence.ppm (WindowOnly), 1716
Window.kppm (WindowOnly), 1716
Window.layered (WindowOnly), 1716
Window.leverage.ppm (WindowOnly), 1716
Window.linnet (methods.linnet), 924
Window.lpp (WindowOnly), 1716
Window.lppm (WindowOnly), 1716
Window.msr (WindowOnly), 1716
Window.nnfun (WindowOnly), 1716
Window.ppm, 1716
Window.ppm (WindowOnly), 1716
Window.ppp, 1718
Window.psp, 1718
Window.quad (WindowOnly), 1716
Window.quadratcount (WindowOnly), 1716
Window.quadrattest (WindowOnly), 1716

INDEX 1779

Window.rmhmodel (WindowOnly), 1716
Window.tess (WindowOnly), 1716
Window<- (Window), 1715
WindowOnly, 1716
with, 1719–1722
with.default, 1724
with.fv, 42, 170, 360, 461, 558, 1315, 1316,

1561, 1719
with.hyperframe, 40, 624, 1115, 1603, 1721
with.msr, 908, 909, 963, 964, 1024, 1584,

1722
with.ssf, 1592, 1723, 1728

X11, 1147
X11.options, 1147
xfig, 1147
xy.coords, 133, 663, 669, 1088, 1446, 1655,

1712

yardstick, 1145, 1183, 1185, 1186, 1724

zapsmall, 1726
zapsmall.im, 36, 1726
zclustermodel, 942, 1727

	spatstat-package
	adaptive.density
	add.texture
	addvar
	addVertices
	affine
	affine.im
	affine.linnet
	affine.lpp
	affine.owin
	affine.ppp
	affine.psp
	affine.tess
	allstats
	alltypes
	angles.psp
	anova.lppm
	anova.mppm
	anova.ppm
	anova.slrm
	anylist
	anyNA.im
	append.psp
	applynbd
	area.owin
	areaGain
	AreaInter
	areaLoss
	as.box3
	as.boxx
	as.data.frame.envelope
	as.data.frame.hyperframe
	as.data.frame.im
	as.data.frame.lintess
	as.data.frame.owin
	as.data.frame.ppp
	as.data.frame.psp
	as.data.frame.tess
	as.function.fv
	as.function.im
	as.function.leverage.ppm
	as.function.owin
	as.function.tess
	as.fv
	as.hyperframe
	as.hyperframe.ppx
	as.im
	as.interact
	as.layered
	as.linfun
	as.linim
	as.linnet.linim
	as.linnet.psp
	as.lpp
	as.mask
	as.mask.psp
	as.matrix.im
	as.matrix.owin
	as.owin
	as.polygonal
	as.ppm
	as.ppp
	as.psp
	as.rectangle
	as.solist
	as.tess
	auc
	BadGey
	bc.ppm
	bdist.pixels
	bdist.points
	bdist.tiles
	beachcolours
	beginner
	begins
	berman.test
	bind.fv
	bits.envelope
	bits.test
	blur
	border
	bounding.box.xy
	boundingbox
	boundingcircle
	box3
	boxx
	branchlabelfun
	bugfixes
	bw.abram
	bw.CvL
	bw.diggle
	bw.frac
	bw.lppl
	bw.pcf
	bw.ppl
	bw.relrisk
	bw.relrisklpp
	bw.scott
	bw.smoothppp
	bw.stoyan
	bw.voronoi
	by.im
	by.ppp
	cauchy.estK
	cauchy.estpcf
	cbind.hyperframe
	CDF
	cdf.test
	cdf.test.mppm
	centroid.owin
	chop.linnet
	chop.tess
	circdensity
	clarkevans
	clarkevans.test
	clickbox
	clickdist
	clickjoin
	clicklpp
	clickpoly
	clickppp
	clip.infline
	closepairs
	closepairs.pp3
	closetriples
	closing
	clusterfield
	clusterfit
	clusterkernel
	clusterradius
	clusterset
	coef.mppm
	coef.ppm
	coef.slrm
	collapse.fv
	colourmap
	colouroutputs
	colourtools
	commonGrid
	compareFit
	compatible
	compatible.fasp
	compatible.fv
	compatible.im
	compileK
	complement.owin
	concatxy
	Concom
	connected
	connected.linnet
	connected.lpp
	connected.ppp
	connected.tess
	contour.im
	contour.imlist
	convexhull
	convexhull.xy
	convexify
	convolve.im
	coords
	corners
	covering
	crossdist
	crossdist.default
	crossdist.lpp
	crossdist.pp3
	crossdist.ppp
	crossdist.ppx
	crossdist.psp
	crossing.linnet
	crossing.psp
	cut.im
	cut.lpp
	cut.ppp
	data.lppm
	data.ppm
	dclf.progress
	dclf.sigtrace
	dclf.test
	default.dummy
	default.expand
	default.rmhcontrol
	delaunay
	delaunayDistance
	delaunayNetwork
	deletebranch
	deltametric
	density.lpp
	density.ppp
	density.psp
	density.splitppp
	densityAdaptiveKernel
	densityEqualSplit
	densityfun.lpp
	densityfun.ppp
	densityHeat
	densityQuick.lpp
	densityVoronoi
	densityVoronoi.lpp
	deriv.fv
	detpointprocfamilyfun
	dfbetas.ppm
	dffit.ppm
	dg.envelope
	dg.progress
	dg.sigtrace
	dg.test
	diagnose.ppm
	diameter
	diameter.box3
	diameter.boxx
	diameter.linnet
	diameter.owin
	DiggleGatesStibbard
	DiggleGratton
	dilated.areas
	dilation
	dim.detpointprocfamily
	dimhat
	dirichlet
	dirichletAreas
	dirichletVertices
	dirichletWeights
	disc
	discpartarea
	discretise
	discs
	distcdf
	distfun
	distfun.lpp
	distmap
	distmap.owin
	distmap.ppp
	distmap.psp
	divide.linnet
	dkernel
	dmixpois
	domain
	dppapproxkernel
	dppapproxpcf
	dppBessel
	dppCauchy
	dppeigen
	dppGauss
	dppkernel
	dppm
	dppMatern
	dppparbounds
	dppPowerExp
	dppspecden
	dppspecdenrange
	dummify
	dummy.ppm
	duplicated.ppp
	edge.Ripley
	edge.Trans
	edges
	edges2triangles
	edges2vees
	edit.hyperframe
	edit.ppp
	eem
	effectfun
	ellipse
	Emark
	emend
	emend.ppm
	endpoints.psp
	envelope
	envelope.envelope
	envelope.lpp
	envelope.pp3
	envelopeArray
	eroded.areas
	erosion
	erosionAny
	eval.fasp
	eval.fv
	eval.im
	eval.linim
	ewcdf
	exactMPLEstrauss
	expand.owin
	Extract.anylist
	Extract.fasp
	Extract.fv
	Extract.hyperframe
	Extract.im
	Extract.influence.ppm
	Extract.layered
	Extract.leverage.ppm
	Extract.linim
	Extract.linnet
	Extract.listof
	Extract.lpp
	Extract.msr
	Extract.owin
	Extract.ppp
	Extract.ppx
	Extract.psp
	Extract.quad
	Extract.solist
	Extract.splitppp
	Extract.tess
	extrapolate.psp
	F3est
	fardist
	fasp.object
	Fest
	Fiksel
	Finhom
	fitin.ppm
	fitted.lppm
	fitted.mppm
	fitted.ppm
	fitted.slrm
	fixef.mppm
	flipxy
	FmultiInhom
	foo
	formula.fv
	formula.ppm
	fourierbasis
	Frame
	fryplot
	funxy
	fv
	fv.object
	fvnames
	G3est
	gauss.hermite
	Gcom
	Gcross
	Gdot
	Gest
	Geyer
	Gfox
	Ginhom
	Gmulti
	GmultiInhom
	Gres
	gridcentres
	gridweights
	grow.boxx
	grow.rectangle
	Hardcore
	harmonic
	harmonise
	harmonise.fv
	harmonise.im
	harmonise.msr
	harmonise.owin
	has.close
	headtail
	heatkernelapprox
	Hest
	hextess
	HierHard
	hierpair.family
	HierStrauss
	HierStraussHard
	hist.funxy
	hist.im
	hopskel
	hotrod
	Hybrid
	hybrid.family
	hyperframe
	identify.ppp
	identify.psp
	idw
	Iest
	im
	im.apply
	im.object
	imcov
	improve.kppm
	incircle
	increment.fv
	infline
	influence.ppm
	inforder.family
	insertVertices
	inside.boxx
	inside.owin
	integral.im
	integral.linim
	integral.msr
	intensity
	intensity.dppm
	intensity.lpp
	intensity.ppm
	intensity.ppp
	intensity.ppx
	intensity.psp
	intensity.quadratcount
	interp.colourmap
	interp.im
	intersect.lintess
	intersect.owin
	intersect.tess
	invoke.symbolmap
	ippm
	is.connected
	is.connected.ppp
	is.convex
	is.dppm
	is.empty
	is.hybrid
	is.im
	is.linim
	is.lpp
	is.marked
	is.marked.ppm
	is.marked.ppp
	is.multitype
	is.multitype.ppm
	is.multitype.ppp
	is.owin
	is.ppm
	is.ppp
	is.rectangle
	is.stationary
	is.subset.owin
	Jcross
	Jdot
	Jest
	Jinhom
	Jmulti
	joinVertices
	K3est
	kaplan.meier
	Kcom
	Kcross
	Kcross.inhom
	Kdot
	Kdot.inhom
	kernel.factor
	kernel.moment
	kernel.squint
	Kest
	Kest.fft
	Kinhom
	km.rs
	Kmark
	Kmeasure
	Kmodel
	Kmodel.dppm
	Kmodel.kppm
	Kmodel.ppm
	Kmulti
	Kmulti.inhom
	kppm
	Kres
	Kscaled
	Ksector
	LambertW
	laslett
	latest.news
	layered
	layerplotargs
	layout.boxes
	Lcross
	Lcross.inhom
	Ldot
	Ldot.inhom
	lengths_psp
	LennardJones
	Lest
	levelset
	leverage.ppm
	lgcp.estK
	lgcp.estpcf
	lineardirichlet
	lineardisc
	linearK
	linearKcross
	linearKcross.inhom
	linearKdot
	linearKdot.inhom
	linearKinhom
	linearmarkconnect
	linearmarkequal
	linearpcf
	linearpcfcross
	linearpcfcross.inhom
	linearpcfdot
	linearpcfdot.inhom
	linearpcfinhom
	lineartileindex
	linequad
	linfun
	Linhom
	linim
	linnet
	lintess
	lixellate
	localK
	localKcross
	localKcross.inhom
	localKdot
	localKinhom
	localpcf
	logLik.dppm
	logLik.kppm
	logLik.mppm
	logLik.ppm
	logLik.slrm
	lohboot
	lpp
	lppm
	lurking
	lurking.mppm
	lut
	markconnect
	markcorr
	markcrosscorr
	markmarkscatter
	marks
	marks.psp
	marks.tess
	markstat
	marktable
	markvario
	matchingdist
	matclust.estK
	matclust.estpcf
	Math.im
	Math.imlist
	Math.linim
	matrixpower
	maxnndist
	mean.im
	mean.linim
	measureContinuous
	measureVariation
	mergeLevels
	methods.box3
	methods.boxx
	methods.distfun
	methods.dppm
	methods.fii
	methods.funxy
	methods.kppm
	methods.layered
	methods.linfun
	methods.linim
	methods.linnet
	methods.lpp
	methods.lppm
	methods.objsurf
	methods.pp3
	methods.ppx
	methods.rho2hat
	methods.rhohat
	methods.slrm
	methods.ssf
	methods.unitname
	methods.zclustermodel
	midpoints.psp
	mincontrast
	MinkowskiSum
	miplot
	model.depends
	model.frame.ppm
	model.images
	model.matrix.mppm
	model.matrix.ppm
	model.matrix.slrm
	mppm
	msr
	MultiHard
	multiplicity.ppp
	MultiStrauss
	MultiStraussHard
	nearest.raster.point
	nearestsegment
	nearestValue
	nestsplit
	nnclean
	nncorr
	nncross
	nncross.lpp
	nncross.pp3
	nncross.ppx
	nndensity.ppp
	nndist
	nndist.lpp
	nndist.pp3
	nndist.ppx
	nndist.psp
	nnfromvertex
	nnfun
	nnfun.lpp
	nnmap
	nnmark
	nnorient
	nnwhich
	nnwhich.lpp
	nnwhich.pp3
	nnwhich.ppx
	nobjects
	npfun
	npoints
	nsegments
	nvertices
	objsurf
	opening
	Ops.msr
	Ord
	ord.family
	OrdThresh
	overlap.owin
	owin
	owin.object
	padimage
	pairdist
	pairdist.default
	pairdist.lpp
	pairdist.pp3
	pairdist.ppp
	pairdist.ppx
	pairdist.psp
	pairorient
	PairPiece
	pairs.im
	pairs.linim
	pairsat.family
	Pairwise
	pairwise.family
	panel.contour
	parameters
	parres
	pcf
	pcf.fasp
	pcf.fv
	pcf.ppp
	pcf3est
	pcfcross
	pcfcross.inhom
	pcfdot
	pcfdot.inhom
	pcfinhom
	pcfmulti
	Penttinen
	perimeter
	periodify
	persp.im
	perspPoints
	pixelcentres
	pixellate
	pixellate.owin
	pixellate.ppp
	pixellate.psp
	pixelquad
	plot.anylist
	plot.bermantest
	plot.cdftest
	plot.colourmap
	plot.dppm
	plot.envelope
	plot.fasp
	plot.fv
	plot.hyperframe
	plot.im
	plot.imlist
	plot.influence.ppm
	plot.kppm
	plot.laslett
	plot.layered
	plot.leverage.ppm
	plot.linim
	plot.linnet
	plot.lintess
	plot.listof
	plot.lpp
	plot.lppm
	plot.mppm
	plot.msr
	plot.onearrow
	plot.owin
	plot.plotppm
	plot.pp3
	plot.ppm
	plot.ppp
	plot.pppmatching
	plot.profilepl
	plot.psp
	plot.quad
	plot.quadratcount
	plot.quadrattest
	plot.rppm
	plot.scan.test
	plot.slrm
	plot.solist
	plot.splitppp
	plot.ssf
	plot.studpermutest
	plot.symbolmap
	plot.tess
	plot.textstring
	plot.texturemap
	plot.yardstick
	points.lpp
	pointsOnLines
	Poisson
	polartess
	polynom
	pool
	pool.anylist
	pool.envelope
	pool.fasp
	pool.fv
	pool.quadrattest
	pool.rat
	pp3
	ppm
	ppm.object
	ppm.ppp
	ppmInfluence
	ppp
	ppp.object
	pppdist
	pppmatching
	pppmatching.object
	PPversion
	ppx
	predict.dppm
	predict.kppm
	predict.lppm
	predict.mppm
	predict.ppm
	predict.rppm
	predict.slrm
	print.im
	print.owin
	print.ppm
	print.ppp
	print.psp
	print.quad
	profilepl
	progressreport
	project2segment
	project2set
	prune.rppm
	pseudoR2
	psib
	psp
	psp.object
	psst
	psstA
	psstG
	qqplot.ppm
	quad.object
	quad.ppm
	quadrat.test
	quadrat.test.mppm
	quadrat.test.splitppp
	quadratcount
	quadratresample
	quadrats
	quadscheme
	quadscheme.logi
	quantess
	quantile.density
	quantile.ewcdf
	quantile.im
	quasirandom
	rags
	ragsAreaInter
	ragsMultiHard
	ranef.mppm
	range.fv
	raster.x
	rat
	rCauchy
	rcell
	rcelllpp
	rcellnumber
	rDGS
	rDiggleGratton
	rdpp
	reach
	reach.dppm
	reach.kppm
	rectcontact
	rectdistmap
	reduced.sample
	reflect
	regularpolygon
	relevel.im
	reload.or.compute
	relrisk
	relrisk.lpp
	relrisk.ppm
	relrisk.ppp
	repairNetwork
	Replace.im
	Replace.linim
	repul.dppm
	requireversion
	rescale
	rescale.im
	rescale.owin
	rescale.ppp
	rescale.psp
	rescue.rectangle
	residuals.dppm
	residuals.kppm
	residuals.mppm
	residuals.ppm
	rex
	rGaussPoisson
	rgbim
	rHardcore
	rho2hat
	rhohat
	ripras
	rjitter
	rknn
	rlabel
	rLGCP
	rlinegrid
	rlpp
	rMatClust
	rMaternI
	rMaternII
	rmh
	rmh.default
	rmh.ppm
	rmhcontrol
	rmhexpand
	rmhmodel
	rmhmodel.default
	rmhmodel.list
	rmhmodel.ppm
	rmhstart
	rMosaicField
	rMosaicSet
	rmpoint
	rmpoispp
	rNeymanScott
	rnoise
	roc
	rose
	rotate
	rotate.im
	rotate.infline
	rotate.owin
	rotate.ppp
	rotate.psp
	rotmean
	round.ppp
	rounding
	rPenttinen
	rpoint
	rpoisline
	rpoislinetess
	rpoislpp
	rpoispp
	rpoispp3
	rpoisppOnLines
	rpoisppx
	rPoissonCluster
	rppm
	rQuasi
	rshift
	rshift.ppp
	rshift.psp
	rshift.splitppp
	rSSI
	rstrat
	rStrauss
	rStraussHard
	rSwitzerlpp
	rsyst
	rtemper
	rthin
	rthinclumps
	rThomas
	run.simplepanel
	runifdisc
	runiflpp
	runifpoint
	runifpoint3
	runifpointOnLines
	runifpointx
	rVarGamma
	SatPiece
	Saturated
	scalardilate
	scaletointerval
	scan.test
	scanLRTS
	scanpp
	sdr
	sdrPredict
	segregation.test
	selfcrossing.psp
	selfcut.psp
	sessionLibs
	setcov
	sharpen
	shift
	shift.im
	shift.owin
	shift.ppp
	shift.psp
	sidelengths.owin
	simplepanel
	simplify.owin
	simulate.dppm
	simulate.kppm
	simulate.lppm
	simulate.mppm
	simulate.ppm
	simulate.slrm
	slrm
	Smooth
	Smooth.fv
	Smooth.msr
	Smooth.ppp
	Smooth.ssf
	Smoothfun.ppp
	Softcore
	solapply
	solist
	solutionset
	spatdim
	spatialcdf
	spatstat.options
	split.hyperframe
	split.im
	split.msr
	split.ppp
	split.ppx
	spokes
	square
	ssf
	stieltjes
	stienen
	stratrand
	Strauss
	StraussHard
	studpermu.test
	subfits
	subset.hyperframe
	subset.ppp
	subset.psp
	subspaceDistance
	suffstat
	summary.anylist
	summary.distfun
	summary.dppm
	summary.im
	summary.kppm
	summary.listof
	summary.owin
	summary.ppm
	summary.ppp
	summary.psp
	summary.quad
	summary.solist
	summary.splitppp
	sumouter
	superimpose
	superimpose.lpp
	symbolmap
	tess
	test.crossing.psp
	text.ppp
	texturemap
	textureplot
	thinNetwork
	thomas.estK
	thomas.estpcf
	tile.areas
	tile.lengths
	tileindex
	tilenames
	tiles
	tiles.empty
	timed
	timeTaken
	transect.im
	transmat
	treebranchlabels
	treeprune
	triangulate.owin
	trim.rectangle
	triplet.family
	Triplets
	Tstat
	tweak.colourmap
	union.quad
	unique.ppp
	uniquemap.default
	uniquemap.ppp
	unitname
	unmark
	unnormdensity
	unstack.msr
	unstack.ppp
	unstack.solist
	update.detpointprocfamily
	update.interact
	update.kppm
	update.ppm
	update.rmhcontrol
	update.symbolmap
	valid
	valid.detpointprocfamily
	valid.ppm
	varblock
	varcount
	vargamma.estK
	vargamma.estpcf
	vcov.kppm
	vcov.mppm
	vcov.ppm
	vcov.slrm
	venn.tess
	vertices
	volume
	weighted.median
	where.max
	whichhalfplane
	whist
	will.expand
	Window
	WindowOnly
	with.fv
	with.hyperframe
	with.msr
	with.ssf
	yardstick
	zapsmall.im
	zclustermodel
	[.ssf
	Index

